]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - mm/rmap.c
rmap: always use anon_vma root pointer
[mirror_ubuntu-bionic-kernel.git] / mm / rmap.c
CommitLineData
1da177e4
LT
1/*
2 * mm/rmap.c - physical to virtual reverse mappings
3 *
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
6 *
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
9 *
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
13 *
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
98f32602 17 * Contributions by Hugh Dickins 2003, 2004
1da177e4
LT
18 */
19
20/*
21 * Lock ordering in mm:
22 *
1b1dcc1b 23 * inode->i_mutex (while writing or truncating, not reading or faulting)
82591e6e
NP
24 * inode->i_alloc_sem (vmtruncate_range)
25 * mm->mmap_sem
26 * page->flags PG_locked (lock_page)
27 * mapping->i_mmap_lock
28 * anon_vma->lock
29 * mm->page_table_lock or pte_lock
30 * zone->lru_lock (in mark_page_accessed, isolate_lru_page)
31 * swap_lock (in swap_duplicate, swap_info_get)
32 * mmlist_lock (in mmput, drain_mmlist and others)
33 * mapping->private_lock (in __set_page_dirty_buffers)
34 * inode_lock (in set_page_dirty's __mark_inode_dirty)
35 * sb_lock (within inode_lock in fs/fs-writeback.c)
36 * mapping->tree_lock (widely used, in set_page_dirty,
37 * in arch-dependent flush_dcache_mmap_lock,
38 * within inode_lock in __sync_single_inode)
6a46079c
AK
39 *
40 * (code doesn't rely on that order so it could be switched around)
41 * ->tasklist_lock
42 * anon_vma->lock (memory_failure, collect_procs_anon)
43 * pte map lock
1da177e4
LT
44 */
45
46#include <linux/mm.h>
47#include <linux/pagemap.h>
48#include <linux/swap.h>
49#include <linux/swapops.h>
50#include <linux/slab.h>
51#include <linux/init.h>
5ad64688 52#include <linux/ksm.h>
1da177e4
LT
53#include <linux/rmap.h>
54#include <linux/rcupdate.h>
a48d07af 55#include <linux/module.h>
8a9f3ccd 56#include <linux/memcontrol.h>
cddb8a5c 57#include <linux/mmu_notifier.h>
64cdd548 58#include <linux/migrate.h>
1da177e4
LT
59
60#include <asm/tlbflush.h>
61
b291f000
NP
62#include "internal.h"
63
fdd2e5f8 64static struct kmem_cache *anon_vma_cachep;
5beb4930 65static struct kmem_cache *anon_vma_chain_cachep;
fdd2e5f8
AB
66
67static inline struct anon_vma *anon_vma_alloc(void)
68{
69 return kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
70}
71
db114b83 72void anon_vma_free(struct anon_vma *anon_vma)
fdd2e5f8
AB
73{
74 kmem_cache_free(anon_vma_cachep, anon_vma);
75}
1da177e4 76
5beb4930
RR
77static inline struct anon_vma_chain *anon_vma_chain_alloc(void)
78{
79 return kmem_cache_alloc(anon_vma_chain_cachep, GFP_KERNEL);
80}
81
82void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
83{
84 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
85}
86
d9d332e0
LT
87/**
88 * anon_vma_prepare - attach an anon_vma to a memory region
89 * @vma: the memory region in question
90 *
91 * This makes sure the memory mapping described by 'vma' has
92 * an 'anon_vma' attached to it, so that we can associate the
93 * anonymous pages mapped into it with that anon_vma.
94 *
95 * The common case will be that we already have one, but if
96 * if not we either need to find an adjacent mapping that we
97 * can re-use the anon_vma from (very common when the only
98 * reason for splitting a vma has been mprotect()), or we
99 * allocate a new one.
100 *
101 * Anon-vma allocations are very subtle, because we may have
102 * optimistically looked up an anon_vma in page_lock_anon_vma()
103 * and that may actually touch the spinlock even in the newly
104 * allocated vma (it depends on RCU to make sure that the
105 * anon_vma isn't actually destroyed).
106 *
107 * As a result, we need to do proper anon_vma locking even
108 * for the new allocation. At the same time, we do not want
109 * to do any locking for the common case of already having
110 * an anon_vma.
111 *
112 * This must be called with the mmap_sem held for reading.
113 */
1da177e4
LT
114int anon_vma_prepare(struct vm_area_struct *vma)
115{
116 struct anon_vma *anon_vma = vma->anon_vma;
5beb4930 117 struct anon_vma_chain *avc;
1da177e4
LT
118
119 might_sleep();
120 if (unlikely(!anon_vma)) {
121 struct mm_struct *mm = vma->vm_mm;
d9d332e0 122 struct anon_vma *allocated;
1da177e4 123
5beb4930
RR
124 avc = anon_vma_chain_alloc();
125 if (!avc)
126 goto out_enomem;
127
1da177e4 128 anon_vma = find_mergeable_anon_vma(vma);
d9d332e0
LT
129 allocated = NULL;
130 if (!anon_vma) {
1da177e4
LT
131 anon_vma = anon_vma_alloc();
132 if (unlikely(!anon_vma))
5beb4930 133 goto out_enomem_free_avc;
1da177e4 134 allocated = anon_vma;
5c341ee1
RR
135 /*
136 * This VMA had no anon_vma yet. This anon_vma is
137 * the root of any anon_vma tree that might form.
138 */
139 anon_vma->root = anon_vma;
1da177e4
LT
140 }
141
cba48b98 142 anon_vma_lock(anon_vma);
1da177e4
LT
143 /* page_table_lock to protect against threads */
144 spin_lock(&mm->page_table_lock);
145 if (likely(!vma->anon_vma)) {
146 vma->anon_vma = anon_vma;
5beb4930
RR
147 avc->anon_vma = anon_vma;
148 avc->vma = vma;
149 list_add(&avc->same_vma, &vma->anon_vma_chain);
26ba0cb6 150 list_add_tail(&avc->same_anon_vma, &anon_vma->head);
1da177e4 151 allocated = NULL;
31f2b0eb 152 avc = NULL;
1da177e4
LT
153 }
154 spin_unlock(&mm->page_table_lock);
cba48b98 155 anon_vma_unlock(anon_vma);
31f2b0eb
ON
156
157 if (unlikely(allocated))
1da177e4 158 anon_vma_free(allocated);
31f2b0eb 159 if (unlikely(avc))
5beb4930 160 anon_vma_chain_free(avc);
1da177e4
LT
161 }
162 return 0;
5beb4930
RR
163
164 out_enomem_free_avc:
165 anon_vma_chain_free(avc);
166 out_enomem:
167 return -ENOMEM;
1da177e4
LT
168}
169
5beb4930
RR
170static void anon_vma_chain_link(struct vm_area_struct *vma,
171 struct anon_vma_chain *avc,
172 struct anon_vma *anon_vma)
1da177e4 173{
5beb4930
RR
174 avc->vma = vma;
175 avc->anon_vma = anon_vma;
176 list_add(&avc->same_vma, &vma->anon_vma_chain);
177
cba48b98 178 anon_vma_lock(anon_vma);
5beb4930 179 list_add_tail(&avc->same_anon_vma, &anon_vma->head);
cba48b98 180 anon_vma_unlock(anon_vma);
1da177e4
LT
181}
182
5beb4930
RR
183/*
184 * Attach the anon_vmas from src to dst.
185 * Returns 0 on success, -ENOMEM on failure.
186 */
187int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
1da177e4 188{
5beb4930
RR
189 struct anon_vma_chain *avc, *pavc;
190
646d87b4 191 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
5beb4930
RR
192 avc = anon_vma_chain_alloc();
193 if (!avc)
194 goto enomem_failure;
195 anon_vma_chain_link(dst, avc, pavc->anon_vma);
196 }
197 return 0;
1da177e4 198
5beb4930
RR
199 enomem_failure:
200 unlink_anon_vmas(dst);
201 return -ENOMEM;
1da177e4
LT
202}
203
5beb4930
RR
204/*
205 * Attach vma to its own anon_vma, as well as to the anon_vmas that
206 * the corresponding VMA in the parent process is attached to.
207 * Returns 0 on success, non-zero on failure.
208 */
209int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
1da177e4 210{
5beb4930
RR
211 struct anon_vma_chain *avc;
212 struct anon_vma *anon_vma;
1da177e4 213
5beb4930
RR
214 /* Don't bother if the parent process has no anon_vma here. */
215 if (!pvma->anon_vma)
216 return 0;
217
218 /*
219 * First, attach the new VMA to the parent VMA's anon_vmas,
220 * so rmap can find non-COWed pages in child processes.
221 */
222 if (anon_vma_clone(vma, pvma))
223 return -ENOMEM;
224
225 /* Then add our own anon_vma. */
226 anon_vma = anon_vma_alloc();
227 if (!anon_vma)
228 goto out_error;
229 avc = anon_vma_chain_alloc();
230 if (!avc)
231 goto out_error_free_anon_vma;
5c341ee1
RR
232
233 /*
234 * The root anon_vma's spinlock is the lock actually used when we
235 * lock any of the anon_vmas in this anon_vma tree.
236 */
237 anon_vma->root = pvma->anon_vma->root;
76545066
RR
238 /*
239 * With KSM refcounts, an anon_vma can stay around longer than the
240 * process it belongs to. The root anon_vma needs to be pinned
241 * until this anon_vma is freed, because the lock lives in the root.
242 */
243 get_anon_vma(anon_vma->root);
5beb4930
RR
244 /* Mark this anon_vma as the one where our new (COWed) pages go. */
245 vma->anon_vma = anon_vma;
5c341ee1 246 anon_vma_chain_link(vma, avc, anon_vma);
5beb4930
RR
247
248 return 0;
249
250 out_error_free_anon_vma:
251 anon_vma_free(anon_vma);
252 out_error:
4946d54c 253 unlink_anon_vmas(vma);
5beb4930 254 return -ENOMEM;
1da177e4
LT
255}
256
5beb4930 257static void anon_vma_unlink(struct anon_vma_chain *anon_vma_chain)
1da177e4 258{
5beb4930 259 struct anon_vma *anon_vma = anon_vma_chain->anon_vma;
1da177e4
LT
260 int empty;
261
5beb4930 262 /* If anon_vma_fork fails, we can get an empty anon_vma_chain. */
1da177e4
LT
263 if (!anon_vma)
264 return;
265
cba48b98 266 anon_vma_lock(anon_vma);
5beb4930 267 list_del(&anon_vma_chain->same_anon_vma);
1da177e4
LT
268
269 /* We must garbage collect the anon_vma if it's empty */
7f60c214 270 empty = list_empty(&anon_vma->head) && !anonvma_external_refcount(anon_vma);
cba48b98 271 anon_vma_unlock(anon_vma);
1da177e4 272
76545066
RR
273 if (empty) {
274 /* We no longer need the root anon_vma */
275 if (anon_vma->root != anon_vma)
276 drop_anon_vma(anon_vma->root);
1da177e4 277 anon_vma_free(anon_vma);
76545066 278 }
1da177e4
LT
279}
280
5beb4930
RR
281void unlink_anon_vmas(struct vm_area_struct *vma)
282{
283 struct anon_vma_chain *avc, *next;
284
5c341ee1
RR
285 /*
286 * Unlink each anon_vma chained to the VMA. This list is ordered
287 * from newest to oldest, ensuring the root anon_vma gets freed last.
288 */
5beb4930
RR
289 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
290 anon_vma_unlink(avc);
291 list_del(&avc->same_vma);
292 anon_vma_chain_free(avc);
293 }
294}
295
51cc5068 296static void anon_vma_ctor(void *data)
1da177e4 297{
a35afb83 298 struct anon_vma *anon_vma = data;
1da177e4 299
a35afb83 300 spin_lock_init(&anon_vma->lock);
7f60c214 301 anonvma_external_refcount_init(anon_vma);
a35afb83 302 INIT_LIST_HEAD(&anon_vma->head);
1da177e4
LT
303}
304
305void __init anon_vma_init(void)
306{
307 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
20c2df83 308 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);
5beb4930 309 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, SLAB_PANIC);
1da177e4
LT
310}
311
312/*
313 * Getting a lock on a stable anon_vma from a page off the LRU is
314 * tricky: page_lock_anon_vma rely on RCU to guard against the races.
315 */
10be22df 316struct anon_vma *page_lock_anon_vma(struct page *page)
1da177e4 317{
34bbd704 318 struct anon_vma *anon_vma;
1da177e4
LT
319 unsigned long anon_mapping;
320
321 rcu_read_lock();
80e14822 322 anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
3ca7b3c5 323 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
1da177e4
LT
324 goto out;
325 if (!page_mapped(page))
326 goto out;
327
328 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
cba48b98 329 anon_vma_lock(anon_vma);
34bbd704 330 return anon_vma;
1da177e4
LT
331out:
332 rcu_read_unlock();
34bbd704
ON
333 return NULL;
334}
335
10be22df 336void page_unlock_anon_vma(struct anon_vma *anon_vma)
34bbd704 337{
cba48b98 338 anon_vma_unlock(anon_vma);
34bbd704 339 rcu_read_unlock();
1da177e4
LT
340}
341
342/*
3ad33b24
LS
343 * At what user virtual address is page expected in @vma?
344 * Returns virtual address or -EFAULT if page's index/offset is not
345 * within the range mapped the @vma.
1da177e4
LT
346 */
347static inline unsigned long
348vma_address(struct page *page, struct vm_area_struct *vma)
349{
350 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
351 unsigned long address;
352
353 address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
354 if (unlikely(address < vma->vm_start || address >= vma->vm_end)) {
3ad33b24 355 /* page should be within @vma mapping range */
1da177e4
LT
356 return -EFAULT;
357 }
358 return address;
359}
360
361/*
bf89c8c8 362 * At what user virtual address is page expected in vma?
ab941e0f 363 * Caller should check the page is actually part of the vma.
1da177e4
LT
364 */
365unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
366{
ab941e0f
NH
367 if (PageAnon(page))
368 ;
369 else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
ee498ed7
HD
370 if (!vma->vm_file ||
371 vma->vm_file->f_mapping != page->mapping)
1da177e4
LT
372 return -EFAULT;
373 } else
374 return -EFAULT;
375 return vma_address(page, vma);
376}
377
81b4082d
ND
378/*
379 * Check that @page is mapped at @address into @mm.
380 *
479db0bf
NP
381 * If @sync is false, page_check_address may perform a racy check to avoid
382 * the page table lock when the pte is not present (helpful when reclaiming
383 * highly shared pages).
384 *
b8072f09 385 * On success returns with pte mapped and locked.
81b4082d 386 */
ceffc078 387pte_t *page_check_address(struct page *page, struct mm_struct *mm,
479db0bf 388 unsigned long address, spinlock_t **ptlp, int sync)
81b4082d
ND
389{
390 pgd_t *pgd;
391 pud_t *pud;
392 pmd_t *pmd;
393 pte_t *pte;
c0718806 394 spinlock_t *ptl;
81b4082d 395
81b4082d 396 pgd = pgd_offset(mm, address);
c0718806
HD
397 if (!pgd_present(*pgd))
398 return NULL;
399
400 pud = pud_offset(pgd, address);
401 if (!pud_present(*pud))
402 return NULL;
403
404 pmd = pmd_offset(pud, address);
405 if (!pmd_present(*pmd))
406 return NULL;
407
408 pte = pte_offset_map(pmd, address);
409 /* Make a quick check before getting the lock */
479db0bf 410 if (!sync && !pte_present(*pte)) {
c0718806
HD
411 pte_unmap(pte);
412 return NULL;
413 }
414
4c21e2f2 415 ptl = pte_lockptr(mm, pmd);
c0718806
HD
416 spin_lock(ptl);
417 if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
418 *ptlp = ptl;
419 return pte;
81b4082d 420 }
c0718806
HD
421 pte_unmap_unlock(pte, ptl);
422 return NULL;
81b4082d
ND
423}
424
b291f000
NP
425/**
426 * page_mapped_in_vma - check whether a page is really mapped in a VMA
427 * @page: the page to test
428 * @vma: the VMA to test
429 *
430 * Returns 1 if the page is mapped into the page tables of the VMA, 0
431 * if the page is not mapped into the page tables of this VMA. Only
432 * valid for normal file or anonymous VMAs.
433 */
6a46079c 434int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
b291f000
NP
435{
436 unsigned long address;
437 pte_t *pte;
438 spinlock_t *ptl;
439
440 address = vma_address(page, vma);
441 if (address == -EFAULT) /* out of vma range */
442 return 0;
443 pte = page_check_address(page, vma->vm_mm, address, &ptl, 1);
444 if (!pte) /* the page is not in this mm */
445 return 0;
446 pte_unmap_unlock(pte, ptl);
447
448 return 1;
449}
450
1da177e4
LT
451/*
452 * Subfunctions of page_referenced: page_referenced_one called
453 * repeatedly from either page_referenced_anon or page_referenced_file.
454 */
5ad64688
HD
455int page_referenced_one(struct page *page, struct vm_area_struct *vma,
456 unsigned long address, unsigned int *mapcount,
457 unsigned long *vm_flags)
1da177e4
LT
458{
459 struct mm_struct *mm = vma->vm_mm;
1da177e4 460 pte_t *pte;
c0718806 461 spinlock_t *ptl;
1da177e4
LT
462 int referenced = 0;
463
479db0bf 464 pte = page_check_address(page, mm, address, &ptl, 0);
c0718806
HD
465 if (!pte)
466 goto out;
1da177e4 467
b291f000
NP
468 /*
469 * Don't want to elevate referenced for mlocked page that gets this far,
470 * in order that it progresses to try_to_unmap and is moved to the
471 * unevictable list.
472 */
5a9bbdcd 473 if (vma->vm_flags & VM_LOCKED) {
5a9bbdcd 474 *mapcount = 1; /* break early from loop */
03ef83af 475 *vm_flags |= VM_LOCKED;
b291f000
NP
476 goto out_unmap;
477 }
478
4917e5d0
JW
479 if (ptep_clear_flush_young_notify(vma, address, pte)) {
480 /*
481 * Don't treat a reference through a sequentially read
482 * mapping as such. If the page has been used in
483 * another mapping, we will catch it; if this other
484 * mapping is already gone, the unmap path will have
485 * set PG_referenced or activated the page.
486 */
487 if (likely(!VM_SequentialReadHint(vma)))
488 referenced++;
489 }
1da177e4 490
c0718806
HD
491 /* Pretend the page is referenced if the task has the
492 swap token and is in the middle of a page fault. */
f7b7fd8f 493 if (mm != current->mm && has_swap_token(mm) &&
c0718806
HD
494 rwsem_is_locked(&mm->mmap_sem))
495 referenced++;
496
b291f000 497out_unmap:
c0718806
HD
498 (*mapcount)--;
499 pte_unmap_unlock(pte, ptl);
273f047e 500
6fe6b7e3
WF
501 if (referenced)
502 *vm_flags |= vma->vm_flags;
273f047e 503out:
1da177e4
LT
504 return referenced;
505}
506
bed7161a 507static int page_referenced_anon(struct page *page,
6fe6b7e3
WF
508 struct mem_cgroup *mem_cont,
509 unsigned long *vm_flags)
1da177e4
LT
510{
511 unsigned int mapcount;
512 struct anon_vma *anon_vma;
5beb4930 513 struct anon_vma_chain *avc;
1da177e4
LT
514 int referenced = 0;
515
516 anon_vma = page_lock_anon_vma(page);
517 if (!anon_vma)
518 return referenced;
519
520 mapcount = page_mapcount(page);
5beb4930
RR
521 list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
522 struct vm_area_struct *vma = avc->vma;
1cb1729b
HD
523 unsigned long address = vma_address(page, vma);
524 if (address == -EFAULT)
525 continue;
bed7161a
BS
526 /*
527 * If we are reclaiming on behalf of a cgroup, skip
528 * counting on behalf of references from different
529 * cgroups
530 */
bd845e38 531 if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
bed7161a 532 continue;
1cb1729b 533 referenced += page_referenced_one(page, vma, address,
6fe6b7e3 534 &mapcount, vm_flags);
1da177e4
LT
535 if (!mapcount)
536 break;
537 }
34bbd704
ON
538
539 page_unlock_anon_vma(anon_vma);
1da177e4
LT
540 return referenced;
541}
542
543/**
544 * page_referenced_file - referenced check for object-based rmap
545 * @page: the page we're checking references on.
43d8eac4 546 * @mem_cont: target memory controller
6fe6b7e3 547 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
1da177e4
LT
548 *
549 * For an object-based mapped page, find all the places it is mapped and
550 * check/clear the referenced flag. This is done by following the page->mapping
551 * pointer, then walking the chain of vmas it holds. It returns the number
552 * of references it found.
553 *
554 * This function is only called from page_referenced for object-based pages.
555 */
bed7161a 556static int page_referenced_file(struct page *page,
6fe6b7e3
WF
557 struct mem_cgroup *mem_cont,
558 unsigned long *vm_flags)
1da177e4
LT
559{
560 unsigned int mapcount;
561 struct address_space *mapping = page->mapping;
562 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
563 struct vm_area_struct *vma;
564 struct prio_tree_iter iter;
565 int referenced = 0;
566
567 /*
568 * The caller's checks on page->mapping and !PageAnon have made
569 * sure that this is a file page: the check for page->mapping
570 * excludes the case just before it gets set on an anon page.
571 */
572 BUG_ON(PageAnon(page));
573
574 /*
575 * The page lock not only makes sure that page->mapping cannot
576 * suddenly be NULLified by truncation, it makes sure that the
577 * structure at mapping cannot be freed and reused yet,
578 * so we can safely take mapping->i_mmap_lock.
579 */
580 BUG_ON(!PageLocked(page));
581
582 spin_lock(&mapping->i_mmap_lock);
583
584 /*
585 * i_mmap_lock does not stabilize mapcount at all, but mapcount
586 * is more likely to be accurate if we note it after spinning.
587 */
588 mapcount = page_mapcount(page);
589
590 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1cb1729b
HD
591 unsigned long address = vma_address(page, vma);
592 if (address == -EFAULT)
593 continue;
bed7161a
BS
594 /*
595 * If we are reclaiming on behalf of a cgroup, skip
596 * counting on behalf of references from different
597 * cgroups
598 */
bd845e38 599 if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
bed7161a 600 continue;
1cb1729b 601 referenced += page_referenced_one(page, vma, address,
6fe6b7e3 602 &mapcount, vm_flags);
1da177e4
LT
603 if (!mapcount)
604 break;
605 }
606
607 spin_unlock(&mapping->i_mmap_lock);
608 return referenced;
609}
610
611/**
612 * page_referenced - test if the page was referenced
613 * @page: the page to test
614 * @is_locked: caller holds lock on the page
43d8eac4 615 * @mem_cont: target memory controller
6fe6b7e3 616 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
1da177e4
LT
617 *
618 * Quick test_and_clear_referenced for all mappings to a page,
619 * returns the number of ptes which referenced the page.
620 */
6fe6b7e3
WF
621int page_referenced(struct page *page,
622 int is_locked,
623 struct mem_cgroup *mem_cont,
624 unsigned long *vm_flags)
1da177e4
LT
625{
626 int referenced = 0;
5ad64688 627 int we_locked = 0;
1da177e4 628
6fe6b7e3 629 *vm_flags = 0;
3ca7b3c5 630 if (page_mapped(page) && page_rmapping(page)) {
5ad64688
HD
631 if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
632 we_locked = trylock_page(page);
633 if (!we_locked) {
634 referenced++;
635 goto out;
636 }
637 }
638 if (unlikely(PageKsm(page)))
639 referenced += page_referenced_ksm(page, mem_cont,
640 vm_flags);
641 else if (PageAnon(page))
6fe6b7e3
WF
642 referenced += page_referenced_anon(page, mem_cont,
643 vm_flags);
5ad64688 644 else if (page->mapping)
6fe6b7e3
WF
645 referenced += page_referenced_file(page, mem_cont,
646 vm_flags);
5ad64688 647 if (we_locked)
1da177e4 648 unlock_page(page);
1da177e4 649 }
5ad64688 650out:
5b7baf05
CB
651 if (page_test_and_clear_young(page))
652 referenced++;
653
1da177e4
LT
654 return referenced;
655}
656
1cb1729b
HD
657static int page_mkclean_one(struct page *page, struct vm_area_struct *vma,
658 unsigned long address)
d08b3851
PZ
659{
660 struct mm_struct *mm = vma->vm_mm;
c2fda5fe 661 pte_t *pte;
d08b3851
PZ
662 spinlock_t *ptl;
663 int ret = 0;
664
479db0bf 665 pte = page_check_address(page, mm, address, &ptl, 1);
d08b3851
PZ
666 if (!pte)
667 goto out;
668
c2fda5fe
PZ
669 if (pte_dirty(*pte) || pte_write(*pte)) {
670 pte_t entry;
d08b3851 671
c2fda5fe 672 flush_cache_page(vma, address, pte_pfn(*pte));
cddb8a5c 673 entry = ptep_clear_flush_notify(vma, address, pte);
c2fda5fe
PZ
674 entry = pte_wrprotect(entry);
675 entry = pte_mkclean(entry);
d6e88e67 676 set_pte_at(mm, address, pte, entry);
c2fda5fe
PZ
677 ret = 1;
678 }
d08b3851 679
d08b3851
PZ
680 pte_unmap_unlock(pte, ptl);
681out:
682 return ret;
683}
684
685static int page_mkclean_file(struct address_space *mapping, struct page *page)
686{
687 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
688 struct vm_area_struct *vma;
689 struct prio_tree_iter iter;
690 int ret = 0;
691
692 BUG_ON(PageAnon(page));
693
694 spin_lock(&mapping->i_mmap_lock);
695 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1cb1729b
HD
696 if (vma->vm_flags & VM_SHARED) {
697 unsigned long address = vma_address(page, vma);
698 if (address == -EFAULT)
699 continue;
700 ret += page_mkclean_one(page, vma, address);
701 }
d08b3851
PZ
702 }
703 spin_unlock(&mapping->i_mmap_lock);
704 return ret;
705}
706
707int page_mkclean(struct page *page)
708{
709 int ret = 0;
710
711 BUG_ON(!PageLocked(page));
712
713 if (page_mapped(page)) {
714 struct address_space *mapping = page_mapping(page);
ce7e9fae 715 if (mapping) {
d08b3851 716 ret = page_mkclean_file(mapping, page);
ce7e9fae
CB
717 if (page_test_dirty(page)) {
718 page_clear_dirty(page);
719 ret = 1;
720 }
6c210482 721 }
d08b3851
PZ
722 }
723
724 return ret;
725}
60b59bea 726EXPORT_SYMBOL_GPL(page_mkclean);
d08b3851 727
c44b6743
RR
728/**
729 * page_move_anon_rmap - move a page to our anon_vma
730 * @page: the page to move to our anon_vma
731 * @vma: the vma the page belongs to
732 * @address: the user virtual address mapped
733 *
734 * When a page belongs exclusively to one process after a COW event,
735 * that page can be moved into the anon_vma that belongs to just that
736 * process, so the rmap code will not search the parent or sibling
737 * processes.
738 */
739void page_move_anon_rmap(struct page *page,
740 struct vm_area_struct *vma, unsigned long address)
741{
742 struct anon_vma *anon_vma = vma->anon_vma;
743
744 VM_BUG_ON(!PageLocked(page));
745 VM_BUG_ON(!anon_vma);
746 VM_BUG_ON(page->index != linear_page_index(vma, address));
747
748 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
749 page->mapping = (struct address_space *) anon_vma;
750}
751
9617d95e 752/**
43d8eac4 753 * __page_set_anon_rmap - setup new anonymous rmap
9617d95e
NP
754 * @page: the page to add the mapping to
755 * @vma: the vm area in which the mapping is added
756 * @address: the user virtual address mapped
e8a03feb 757 * @exclusive: the page is exclusively owned by the current process
9617d95e
NP
758 */
759static void __page_set_anon_rmap(struct page *page,
e8a03feb 760 struct vm_area_struct *vma, unsigned long address, int exclusive)
9617d95e 761{
e8a03feb 762 struct anon_vma *anon_vma = vma->anon_vma;
ea90002b 763
e8a03feb 764 BUG_ON(!anon_vma);
ea90002b
LT
765
766 /*
e8a03feb
RR
767 * If the page isn't exclusively mapped into this vma,
768 * we must use the _oldest_ possible anon_vma for the
769 * page mapping!
ea90002b 770 */
e8a03feb 771 if (!exclusive) {
288468c3
AA
772 if (PageAnon(page))
773 return;
774 anon_vma = anon_vma->root;
775 } else {
776 /*
777 * In this case, swapped-out-but-not-discarded swap-cache
778 * is remapped. So, no need to update page->mapping here.
779 * We convice anon_vma poitned by page->mapping is not obsolete
780 * because vma->anon_vma is necessary to be a family of it.
781 */
782 if (PageAnon(page))
783 return;
e8a03feb 784 }
9617d95e 785
9617d95e
NP
786 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
787 page->mapping = (struct address_space *) anon_vma;
9617d95e 788 page->index = linear_page_index(vma, address);
9617d95e
NP
789}
790
c97a9e10 791/**
43d8eac4 792 * __page_check_anon_rmap - sanity check anonymous rmap addition
c97a9e10
NP
793 * @page: the page to add the mapping to
794 * @vma: the vm area in which the mapping is added
795 * @address: the user virtual address mapped
796 */
797static void __page_check_anon_rmap(struct page *page,
798 struct vm_area_struct *vma, unsigned long address)
799{
800#ifdef CONFIG_DEBUG_VM
801 /*
802 * The page's anon-rmap details (mapping and index) are guaranteed to
803 * be set up correctly at this point.
804 *
805 * We have exclusion against page_add_anon_rmap because the caller
806 * always holds the page locked, except if called from page_dup_rmap,
807 * in which case the page is already known to be setup.
808 *
809 * We have exclusion against page_add_new_anon_rmap because those pages
810 * are initially only visible via the pagetables, and the pte is locked
811 * over the call to page_add_new_anon_rmap.
812 */
c97a9e10
NP
813 BUG_ON(page->index != linear_page_index(vma, address));
814#endif
815}
816
1da177e4
LT
817/**
818 * page_add_anon_rmap - add pte mapping to an anonymous page
819 * @page: the page to add the mapping to
820 * @vma: the vm area in which the mapping is added
821 * @address: the user virtual address mapped
822 *
5ad64688 823 * The caller needs to hold the pte lock, and the page must be locked in
80e14822
HD
824 * the anon_vma case: to serialize mapping,index checking after setting,
825 * and to ensure that PageAnon is not being upgraded racily to PageKsm
826 * (but PageKsm is never downgraded to PageAnon).
1da177e4
LT
827 */
828void page_add_anon_rmap(struct page *page,
829 struct vm_area_struct *vma, unsigned long address)
830{
5ad64688
HD
831 int first = atomic_inc_and_test(&page->_mapcount);
832 if (first)
833 __inc_zone_page_state(page, NR_ANON_PAGES);
834 if (unlikely(PageKsm(page)))
835 return;
836
c97a9e10
NP
837 VM_BUG_ON(!PageLocked(page));
838 VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
5ad64688 839 if (first)
e8a03feb 840 __page_set_anon_rmap(page, vma, address, 0);
69029cd5 841 else
c97a9e10 842 __page_check_anon_rmap(page, vma, address);
1da177e4
LT
843}
844
43d8eac4 845/**
9617d95e
NP
846 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
847 * @page: the page to add the mapping to
848 * @vma: the vm area in which the mapping is added
849 * @address: the user virtual address mapped
850 *
851 * Same as page_add_anon_rmap but must only be called on *new* pages.
852 * This means the inc-and-test can be bypassed.
c97a9e10 853 * Page does not have to be locked.
9617d95e
NP
854 */
855void page_add_new_anon_rmap(struct page *page,
856 struct vm_area_struct *vma, unsigned long address)
857{
b5934c53 858 VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
cbf84b7a
HD
859 SetPageSwapBacked(page);
860 atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */
5ad64688 861 __inc_zone_page_state(page, NR_ANON_PAGES);
e8a03feb 862 __page_set_anon_rmap(page, vma, address, 1);
b5934c53 863 if (page_evictable(page, vma))
cbf84b7a 864 lru_cache_add_lru(page, LRU_ACTIVE_ANON);
b5934c53
HD
865 else
866 add_page_to_unevictable_list(page);
9617d95e
NP
867}
868
1da177e4
LT
869/**
870 * page_add_file_rmap - add pte mapping to a file page
871 * @page: the page to add the mapping to
872 *
b8072f09 873 * The caller needs to hold the pte lock.
1da177e4
LT
874 */
875void page_add_file_rmap(struct page *page)
876{
d69b042f 877 if (atomic_inc_and_test(&page->_mapcount)) {
65ba55f5 878 __inc_zone_page_state(page, NR_FILE_MAPPED);
d8046582 879 mem_cgroup_update_file_mapped(page, 1);
d69b042f 880 }
1da177e4
LT
881}
882
883/**
884 * page_remove_rmap - take down pte mapping from a page
885 * @page: page to remove mapping from
886 *
b8072f09 887 * The caller needs to hold the pte lock.
1da177e4 888 */
edc315fd 889void page_remove_rmap(struct page *page)
1da177e4 890{
b904dcfe
KM
891 /* page still mapped by someone else? */
892 if (!atomic_add_negative(-1, &page->_mapcount))
893 return;
894
895 /*
896 * Now that the last pte has gone, s390 must transfer dirty
897 * flag from storage key to struct page. We can usually skip
898 * this if the page is anon, so about to be freed; but perhaps
899 * not if it's in swapcache - there might be another pte slot
900 * containing the swap entry, but page not yet written to swap.
901 */
902 if ((!PageAnon(page) || PageSwapCache(page)) && page_test_dirty(page)) {
903 page_clear_dirty(page);
904 set_page_dirty(page);
1da177e4 905 }
b904dcfe
KM
906 if (PageAnon(page)) {
907 mem_cgroup_uncharge_page(page);
908 __dec_zone_page_state(page, NR_ANON_PAGES);
909 } else {
910 __dec_zone_page_state(page, NR_FILE_MAPPED);
d8046582 911 mem_cgroup_update_file_mapped(page, -1);
b904dcfe 912 }
b904dcfe
KM
913 /*
914 * It would be tidy to reset the PageAnon mapping here,
915 * but that might overwrite a racing page_add_anon_rmap
916 * which increments mapcount after us but sets mapping
917 * before us: so leave the reset to free_hot_cold_page,
918 * and remember that it's only reliable while mapped.
919 * Leaving it set also helps swapoff to reinstate ptes
920 * faster for those pages still in swapcache.
921 */
1da177e4
LT
922}
923
924/*
925 * Subfunctions of try_to_unmap: try_to_unmap_one called
926 * repeatedly from either try_to_unmap_anon or try_to_unmap_file.
927 */
5ad64688
HD
928int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
929 unsigned long address, enum ttu_flags flags)
1da177e4
LT
930{
931 struct mm_struct *mm = vma->vm_mm;
1da177e4
LT
932 pte_t *pte;
933 pte_t pteval;
c0718806 934 spinlock_t *ptl;
1da177e4
LT
935 int ret = SWAP_AGAIN;
936
479db0bf 937 pte = page_check_address(page, mm, address, &ptl, 0);
c0718806 938 if (!pte)
81b4082d 939 goto out;
1da177e4
LT
940
941 /*
942 * If the page is mlock()d, we cannot swap it out.
943 * If it's recently referenced (perhaps page_referenced
944 * skipped over this mm) then we should reactivate it.
945 */
14fa31b8 946 if (!(flags & TTU_IGNORE_MLOCK)) {
caed0f48
KM
947 if (vma->vm_flags & VM_LOCKED)
948 goto out_mlock;
949
af8e3354 950 if (TTU_ACTION(flags) == TTU_MUNLOCK)
53f79acb 951 goto out_unmap;
14fa31b8
AK
952 }
953 if (!(flags & TTU_IGNORE_ACCESS)) {
b291f000
NP
954 if (ptep_clear_flush_young_notify(vma, address, pte)) {
955 ret = SWAP_FAIL;
956 goto out_unmap;
957 }
958 }
1da177e4 959
1da177e4
LT
960 /* Nuke the page table entry. */
961 flush_cache_page(vma, address, page_to_pfn(page));
cddb8a5c 962 pteval = ptep_clear_flush_notify(vma, address, pte);
1da177e4
LT
963
964 /* Move the dirty bit to the physical page now the pte is gone. */
965 if (pte_dirty(pteval))
966 set_page_dirty(page);
967
365e9c87
HD
968 /* Update high watermark before we lower rss */
969 update_hiwater_rss(mm);
970
888b9f7c
AK
971 if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
972 if (PageAnon(page))
d559db08 973 dec_mm_counter(mm, MM_ANONPAGES);
888b9f7c 974 else
d559db08 975 dec_mm_counter(mm, MM_FILEPAGES);
888b9f7c
AK
976 set_pte_at(mm, address, pte,
977 swp_entry_to_pte(make_hwpoison_entry(page)));
978 } else if (PageAnon(page)) {
4c21e2f2 979 swp_entry_t entry = { .val = page_private(page) };
0697212a
CL
980
981 if (PageSwapCache(page)) {
982 /*
983 * Store the swap location in the pte.
984 * See handle_pte_fault() ...
985 */
570a335b
HD
986 if (swap_duplicate(entry) < 0) {
987 set_pte_at(mm, address, pte, pteval);
988 ret = SWAP_FAIL;
989 goto out_unmap;
990 }
0697212a
CL
991 if (list_empty(&mm->mmlist)) {
992 spin_lock(&mmlist_lock);
993 if (list_empty(&mm->mmlist))
994 list_add(&mm->mmlist, &init_mm.mmlist);
995 spin_unlock(&mmlist_lock);
996 }
d559db08 997 dec_mm_counter(mm, MM_ANONPAGES);
b084d435 998 inc_mm_counter(mm, MM_SWAPENTS);
64cdd548 999 } else if (PAGE_MIGRATION) {
0697212a
CL
1000 /*
1001 * Store the pfn of the page in a special migration
1002 * pte. do_swap_page() will wait until the migration
1003 * pte is removed and then restart fault handling.
1004 */
14fa31b8 1005 BUG_ON(TTU_ACTION(flags) != TTU_MIGRATION);
0697212a 1006 entry = make_migration_entry(page, pte_write(pteval));
1da177e4
LT
1007 }
1008 set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
1009 BUG_ON(pte_file(*pte));
14fa31b8 1010 } else if (PAGE_MIGRATION && (TTU_ACTION(flags) == TTU_MIGRATION)) {
04e62a29
CL
1011 /* Establish migration entry for a file page */
1012 swp_entry_t entry;
1013 entry = make_migration_entry(page, pte_write(pteval));
1014 set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
1015 } else
d559db08 1016 dec_mm_counter(mm, MM_FILEPAGES);
1da177e4 1017
edc315fd 1018 page_remove_rmap(page);
1da177e4
LT
1019 page_cache_release(page);
1020
1021out_unmap:
c0718806 1022 pte_unmap_unlock(pte, ptl);
caed0f48
KM
1023out:
1024 return ret;
53f79acb 1025
caed0f48
KM
1026out_mlock:
1027 pte_unmap_unlock(pte, ptl);
1028
1029
1030 /*
1031 * We need mmap_sem locking, Otherwise VM_LOCKED check makes
1032 * unstable result and race. Plus, We can't wait here because
1033 * we now hold anon_vma->lock or mapping->i_mmap_lock.
1034 * if trylock failed, the page remain in evictable lru and later
1035 * vmscan could retry to move the page to unevictable lru if the
1036 * page is actually mlocked.
1037 */
1038 if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
1039 if (vma->vm_flags & VM_LOCKED) {
1040 mlock_vma_page(page);
1041 ret = SWAP_MLOCK;
53f79acb 1042 }
caed0f48 1043 up_read(&vma->vm_mm->mmap_sem);
53f79acb 1044 }
1da177e4
LT
1045 return ret;
1046}
1047
1048/*
1049 * objrmap doesn't work for nonlinear VMAs because the assumption that
1050 * offset-into-file correlates with offset-into-virtual-addresses does not hold.
1051 * Consequently, given a particular page and its ->index, we cannot locate the
1052 * ptes which are mapping that page without an exhaustive linear search.
1053 *
1054 * So what this code does is a mini "virtual scan" of each nonlinear VMA which
1055 * maps the file to which the target page belongs. The ->vm_private_data field
1056 * holds the current cursor into that scan. Successive searches will circulate
1057 * around the vma's virtual address space.
1058 *
1059 * So as more replacement pressure is applied to the pages in a nonlinear VMA,
1060 * more scanning pressure is placed against them as well. Eventually pages
1061 * will become fully unmapped and are eligible for eviction.
1062 *
1063 * For very sparsely populated VMAs this is a little inefficient - chances are
1064 * there there won't be many ptes located within the scan cluster. In this case
1065 * maybe we could scan further - to the end of the pte page, perhaps.
b291f000
NP
1066 *
1067 * Mlocked pages: check VM_LOCKED under mmap_sem held for read, if we can
1068 * acquire it without blocking. If vma locked, mlock the pages in the cluster,
1069 * rather than unmapping them. If we encounter the "check_page" that vmscan is
1070 * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN.
1da177e4
LT
1071 */
1072#define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE)
1073#define CLUSTER_MASK (~(CLUSTER_SIZE - 1))
1074
b291f000
NP
1075static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount,
1076 struct vm_area_struct *vma, struct page *check_page)
1da177e4
LT
1077{
1078 struct mm_struct *mm = vma->vm_mm;
1079 pgd_t *pgd;
1080 pud_t *pud;
1081 pmd_t *pmd;
c0718806 1082 pte_t *pte;
1da177e4 1083 pte_t pteval;
c0718806 1084 spinlock_t *ptl;
1da177e4
LT
1085 struct page *page;
1086 unsigned long address;
1087 unsigned long end;
b291f000
NP
1088 int ret = SWAP_AGAIN;
1089 int locked_vma = 0;
1da177e4 1090
1da177e4
LT
1091 address = (vma->vm_start + cursor) & CLUSTER_MASK;
1092 end = address + CLUSTER_SIZE;
1093 if (address < vma->vm_start)
1094 address = vma->vm_start;
1095 if (end > vma->vm_end)
1096 end = vma->vm_end;
1097
1098 pgd = pgd_offset(mm, address);
1099 if (!pgd_present(*pgd))
b291f000 1100 return ret;
1da177e4
LT
1101
1102 pud = pud_offset(pgd, address);
1103 if (!pud_present(*pud))
b291f000 1104 return ret;
1da177e4
LT
1105
1106 pmd = pmd_offset(pud, address);
1107 if (!pmd_present(*pmd))
b291f000
NP
1108 return ret;
1109
1110 /*
af8e3354 1111 * If we can acquire the mmap_sem for read, and vma is VM_LOCKED,
b291f000
NP
1112 * keep the sem while scanning the cluster for mlocking pages.
1113 */
af8e3354 1114 if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
b291f000
NP
1115 locked_vma = (vma->vm_flags & VM_LOCKED);
1116 if (!locked_vma)
1117 up_read(&vma->vm_mm->mmap_sem); /* don't need it */
1118 }
c0718806
HD
1119
1120 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1da177e4 1121
365e9c87
HD
1122 /* Update high watermark before we lower rss */
1123 update_hiwater_rss(mm);
1124
c0718806 1125 for (; address < end; pte++, address += PAGE_SIZE) {
1da177e4
LT
1126 if (!pte_present(*pte))
1127 continue;
6aab341e
LT
1128 page = vm_normal_page(vma, address, *pte);
1129 BUG_ON(!page || PageAnon(page));
1da177e4 1130
b291f000
NP
1131 if (locked_vma) {
1132 mlock_vma_page(page); /* no-op if already mlocked */
1133 if (page == check_page)
1134 ret = SWAP_MLOCK;
1135 continue; /* don't unmap */
1136 }
1137
cddb8a5c 1138 if (ptep_clear_flush_young_notify(vma, address, pte))
1da177e4
LT
1139 continue;
1140
1141 /* Nuke the page table entry. */
eca35133 1142 flush_cache_page(vma, address, pte_pfn(*pte));
cddb8a5c 1143 pteval = ptep_clear_flush_notify(vma, address, pte);
1da177e4
LT
1144
1145 /* If nonlinear, store the file page offset in the pte. */
1146 if (page->index != linear_page_index(vma, address))
1147 set_pte_at(mm, address, pte, pgoff_to_pte(page->index));
1148
1149 /* Move the dirty bit to the physical page now the pte is gone. */
1150 if (pte_dirty(pteval))
1151 set_page_dirty(page);
1152
edc315fd 1153 page_remove_rmap(page);
1da177e4 1154 page_cache_release(page);
d559db08 1155 dec_mm_counter(mm, MM_FILEPAGES);
1da177e4
LT
1156 (*mapcount)--;
1157 }
c0718806 1158 pte_unmap_unlock(pte - 1, ptl);
b291f000
NP
1159 if (locked_vma)
1160 up_read(&vma->vm_mm->mmap_sem);
1161 return ret;
1da177e4
LT
1162}
1163
a8bef8ff
MG
1164static bool is_vma_temporary_stack(struct vm_area_struct *vma)
1165{
1166 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
1167
1168 if (!maybe_stack)
1169 return false;
1170
1171 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
1172 VM_STACK_INCOMPLETE_SETUP)
1173 return true;
1174
1175 return false;
1176}
1177
b291f000
NP
1178/**
1179 * try_to_unmap_anon - unmap or unlock anonymous page using the object-based
1180 * rmap method
1181 * @page: the page to unmap/unlock
8051be5e 1182 * @flags: action and flags
b291f000
NP
1183 *
1184 * Find all the mappings of a page using the mapping pointer and the vma chains
1185 * contained in the anon_vma struct it points to.
1186 *
1187 * This function is only called from try_to_unmap/try_to_munlock for
1188 * anonymous pages.
1189 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1190 * where the page was found will be held for write. So, we won't recheck
1191 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1192 * 'LOCKED.
1193 */
14fa31b8 1194static int try_to_unmap_anon(struct page *page, enum ttu_flags flags)
1da177e4
LT
1195{
1196 struct anon_vma *anon_vma;
5beb4930 1197 struct anon_vma_chain *avc;
1da177e4 1198 int ret = SWAP_AGAIN;
b291f000 1199
1da177e4
LT
1200 anon_vma = page_lock_anon_vma(page);
1201 if (!anon_vma)
1202 return ret;
1203
5beb4930
RR
1204 list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1205 struct vm_area_struct *vma = avc->vma;
a8bef8ff
MG
1206 unsigned long address;
1207
1208 /*
1209 * During exec, a temporary VMA is setup and later moved.
1210 * The VMA is moved under the anon_vma lock but not the
1211 * page tables leading to a race where migration cannot
1212 * find the migration ptes. Rather than increasing the
1213 * locking requirements of exec(), migration skips
1214 * temporary VMAs until after exec() completes.
1215 */
1216 if (PAGE_MIGRATION && (flags & TTU_MIGRATION) &&
1217 is_vma_temporary_stack(vma))
1218 continue;
1219
1220 address = vma_address(page, vma);
1cb1729b
HD
1221 if (address == -EFAULT)
1222 continue;
1223 ret = try_to_unmap_one(page, vma, address, flags);
53f79acb
HD
1224 if (ret != SWAP_AGAIN || !page_mapped(page))
1225 break;
1da177e4 1226 }
34bbd704
ON
1227
1228 page_unlock_anon_vma(anon_vma);
1da177e4
LT
1229 return ret;
1230}
1231
1232/**
b291f000
NP
1233 * try_to_unmap_file - unmap/unlock file page using the object-based rmap method
1234 * @page: the page to unmap/unlock
14fa31b8 1235 * @flags: action and flags
1da177e4
LT
1236 *
1237 * Find all the mappings of a page using the mapping pointer and the vma chains
1238 * contained in the address_space struct it points to.
1239 *
b291f000
NP
1240 * This function is only called from try_to_unmap/try_to_munlock for
1241 * object-based pages.
1242 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1243 * where the page was found will be held for write. So, we won't recheck
1244 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1245 * 'LOCKED.
1da177e4 1246 */
14fa31b8 1247static int try_to_unmap_file(struct page *page, enum ttu_flags flags)
1da177e4
LT
1248{
1249 struct address_space *mapping = page->mapping;
1250 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1251 struct vm_area_struct *vma;
1252 struct prio_tree_iter iter;
1253 int ret = SWAP_AGAIN;
1254 unsigned long cursor;
1255 unsigned long max_nl_cursor = 0;
1256 unsigned long max_nl_size = 0;
1257 unsigned int mapcount;
1258
1259 spin_lock(&mapping->i_mmap_lock);
1260 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1cb1729b
HD
1261 unsigned long address = vma_address(page, vma);
1262 if (address == -EFAULT)
1263 continue;
1264 ret = try_to_unmap_one(page, vma, address, flags);
53f79acb
HD
1265 if (ret != SWAP_AGAIN || !page_mapped(page))
1266 goto out;
1da177e4
LT
1267 }
1268
1269 if (list_empty(&mapping->i_mmap_nonlinear))
1270 goto out;
1271
53f79acb
HD
1272 /*
1273 * We don't bother to try to find the munlocked page in nonlinears.
1274 * It's costly. Instead, later, page reclaim logic may call
1275 * try_to_unmap(TTU_MUNLOCK) and recover PG_mlocked lazily.
1276 */
1277 if (TTU_ACTION(flags) == TTU_MUNLOCK)
1278 goto out;
1279
1da177e4
LT
1280 list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
1281 shared.vm_set.list) {
1da177e4
LT
1282 cursor = (unsigned long) vma->vm_private_data;
1283 if (cursor > max_nl_cursor)
1284 max_nl_cursor = cursor;
1285 cursor = vma->vm_end - vma->vm_start;
1286 if (cursor > max_nl_size)
1287 max_nl_size = cursor;
1288 }
1289
b291f000 1290 if (max_nl_size == 0) { /* all nonlinears locked or reserved ? */
1da177e4
LT
1291 ret = SWAP_FAIL;
1292 goto out;
1293 }
1294
1295 /*
1296 * We don't try to search for this page in the nonlinear vmas,
1297 * and page_referenced wouldn't have found it anyway. Instead
1298 * just walk the nonlinear vmas trying to age and unmap some.
1299 * The mapcount of the page we came in with is irrelevant,
1300 * but even so use it as a guide to how hard we should try?
1301 */
1302 mapcount = page_mapcount(page);
1303 if (!mapcount)
1304 goto out;
1305 cond_resched_lock(&mapping->i_mmap_lock);
1306
1307 max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
1308 if (max_nl_cursor == 0)
1309 max_nl_cursor = CLUSTER_SIZE;
1310
1311 do {
1312 list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
1313 shared.vm_set.list) {
1da177e4 1314 cursor = (unsigned long) vma->vm_private_data;
839b9685 1315 while ( cursor < max_nl_cursor &&
1da177e4 1316 cursor < vma->vm_end - vma->vm_start) {
53f79acb
HD
1317 if (try_to_unmap_cluster(cursor, &mapcount,
1318 vma, page) == SWAP_MLOCK)
1319 ret = SWAP_MLOCK;
1da177e4
LT
1320 cursor += CLUSTER_SIZE;
1321 vma->vm_private_data = (void *) cursor;
1322 if ((int)mapcount <= 0)
1323 goto out;
1324 }
1325 vma->vm_private_data = (void *) max_nl_cursor;
1326 }
1327 cond_resched_lock(&mapping->i_mmap_lock);
1328 max_nl_cursor += CLUSTER_SIZE;
1329 } while (max_nl_cursor <= max_nl_size);
1330
1331 /*
1332 * Don't loop forever (perhaps all the remaining pages are
1333 * in locked vmas). Reset cursor on all unreserved nonlinear
1334 * vmas, now forgetting on which ones it had fallen behind.
1335 */
101d2be7
HD
1336 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
1337 vma->vm_private_data = NULL;
1da177e4
LT
1338out:
1339 spin_unlock(&mapping->i_mmap_lock);
1340 return ret;
1341}
1342
1343/**
1344 * try_to_unmap - try to remove all page table mappings to a page
1345 * @page: the page to get unmapped
14fa31b8 1346 * @flags: action and flags
1da177e4
LT
1347 *
1348 * Tries to remove all the page table entries which are mapping this
1349 * page, used in the pageout path. Caller must hold the page lock.
1350 * Return values are:
1351 *
1352 * SWAP_SUCCESS - we succeeded in removing all mappings
1353 * SWAP_AGAIN - we missed a mapping, try again later
1354 * SWAP_FAIL - the page is unswappable
b291f000 1355 * SWAP_MLOCK - page is mlocked.
1da177e4 1356 */
14fa31b8 1357int try_to_unmap(struct page *page, enum ttu_flags flags)
1da177e4
LT
1358{
1359 int ret;
1360
1da177e4
LT
1361 BUG_ON(!PageLocked(page));
1362
5ad64688
HD
1363 if (unlikely(PageKsm(page)))
1364 ret = try_to_unmap_ksm(page, flags);
1365 else if (PageAnon(page))
14fa31b8 1366 ret = try_to_unmap_anon(page, flags);
1da177e4 1367 else
14fa31b8 1368 ret = try_to_unmap_file(page, flags);
b291f000 1369 if (ret != SWAP_MLOCK && !page_mapped(page))
1da177e4
LT
1370 ret = SWAP_SUCCESS;
1371 return ret;
1372}
81b4082d 1373
b291f000
NP
1374/**
1375 * try_to_munlock - try to munlock a page
1376 * @page: the page to be munlocked
1377 *
1378 * Called from munlock code. Checks all of the VMAs mapping the page
1379 * to make sure nobody else has this page mlocked. The page will be
1380 * returned with PG_mlocked cleared if no other vmas have it mlocked.
1381 *
1382 * Return values are:
1383 *
53f79acb 1384 * SWAP_AGAIN - no vma is holding page mlocked, or,
b291f000 1385 * SWAP_AGAIN - page mapped in mlocked vma -- couldn't acquire mmap sem
5ad64688 1386 * SWAP_FAIL - page cannot be located at present
b291f000
NP
1387 * SWAP_MLOCK - page is now mlocked.
1388 */
1389int try_to_munlock(struct page *page)
1390{
1391 VM_BUG_ON(!PageLocked(page) || PageLRU(page));
1392
5ad64688
HD
1393 if (unlikely(PageKsm(page)))
1394 return try_to_unmap_ksm(page, TTU_MUNLOCK);
1395 else if (PageAnon(page))
14fa31b8 1396 return try_to_unmap_anon(page, TTU_MUNLOCK);
b291f000 1397 else
14fa31b8 1398 return try_to_unmap_file(page, TTU_MUNLOCK);
b291f000 1399}
e9995ef9 1400
76545066
RR
1401#if defined(CONFIG_KSM) || defined(CONFIG_MIGRATION)
1402/*
1403 * Drop an anon_vma refcount, freeing the anon_vma and anon_vma->root
1404 * if necessary. Be careful to do all the tests under the lock. Once
1405 * we know we are the last user, nobody else can get a reference and we
1406 * can do the freeing without the lock.
1407 */
1408void drop_anon_vma(struct anon_vma *anon_vma)
1409{
1410 if (atomic_dec_and_lock(&anon_vma->external_refcount, &anon_vma->root->lock)) {
1411 struct anon_vma *root = anon_vma->root;
1412 int empty = list_empty(&anon_vma->head);
1413 int last_root_user = 0;
1414 int root_empty = 0;
1415
1416 /*
1417 * The refcount on a non-root anon_vma got dropped. Drop
1418 * the refcount on the root and check if we need to free it.
1419 */
1420 if (empty && anon_vma != root) {
1421 last_root_user = atomic_dec_and_test(&root->external_refcount);
1422 root_empty = list_empty(&root->head);
1423 }
1424 anon_vma_unlock(anon_vma);
1425
1426 if (empty) {
1427 anon_vma_free(anon_vma);
1428 if (root_empty && last_root_user)
1429 anon_vma_free(root);
1430 }
1431 }
1432}
1433#endif
1434
e9995ef9
HD
1435#ifdef CONFIG_MIGRATION
1436/*
1437 * rmap_walk() and its helpers rmap_walk_anon() and rmap_walk_file():
1438 * Called by migrate.c to remove migration ptes, but might be used more later.
1439 */
1440static int rmap_walk_anon(struct page *page, int (*rmap_one)(struct page *,
1441 struct vm_area_struct *, unsigned long, void *), void *arg)
1442{
1443 struct anon_vma *anon_vma;
5beb4930 1444 struct anon_vma_chain *avc;
e9995ef9
HD
1445 int ret = SWAP_AGAIN;
1446
1447 /*
1448 * Note: remove_migration_ptes() cannot use page_lock_anon_vma()
1449 * because that depends on page_mapped(); but not all its usages
3f6c8272
MG
1450 * are holding mmap_sem. Users without mmap_sem are required to
1451 * take a reference count to prevent the anon_vma disappearing
e9995ef9
HD
1452 */
1453 anon_vma = page_anon_vma(page);
1454 if (!anon_vma)
1455 return ret;
cba48b98 1456 anon_vma_lock(anon_vma);
5beb4930
RR
1457 list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1458 struct vm_area_struct *vma = avc->vma;
e9995ef9
HD
1459 unsigned long address = vma_address(page, vma);
1460 if (address == -EFAULT)
1461 continue;
1462 ret = rmap_one(page, vma, address, arg);
1463 if (ret != SWAP_AGAIN)
1464 break;
1465 }
cba48b98 1466 anon_vma_unlock(anon_vma);
e9995ef9
HD
1467 return ret;
1468}
1469
1470static int rmap_walk_file(struct page *page, int (*rmap_one)(struct page *,
1471 struct vm_area_struct *, unsigned long, void *), void *arg)
1472{
1473 struct address_space *mapping = page->mapping;
1474 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1475 struct vm_area_struct *vma;
1476 struct prio_tree_iter iter;
1477 int ret = SWAP_AGAIN;
1478
1479 if (!mapping)
1480 return ret;
1481 spin_lock(&mapping->i_mmap_lock);
1482 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1483 unsigned long address = vma_address(page, vma);
1484 if (address == -EFAULT)
1485 continue;
1486 ret = rmap_one(page, vma, address, arg);
1487 if (ret != SWAP_AGAIN)
1488 break;
1489 }
1490 /*
1491 * No nonlinear handling: being always shared, nonlinear vmas
1492 * never contain migration ptes. Decide what to do about this
1493 * limitation to linear when we need rmap_walk() on nonlinear.
1494 */
1495 spin_unlock(&mapping->i_mmap_lock);
1496 return ret;
1497}
1498
1499int rmap_walk(struct page *page, int (*rmap_one)(struct page *,
1500 struct vm_area_struct *, unsigned long, void *), void *arg)
1501{
1502 VM_BUG_ON(!PageLocked(page));
1503
1504 if (unlikely(PageKsm(page)))
1505 return rmap_walk_ksm(page, rmap_one, arg);
1506 else if (PageAnon(page))
1507 return rmap_walk_anon(page, rmap_one, arg);
1508 else
1509 return rmap_walk_file(page, rmap_one, arg);
1510}
1511#endif /* CONFIG_MIGRATION */