]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - mm/rmap.c
mm: hugetlb: defer freeing pages when gathering surplus pages
[mirror_ubuntu-bionic-kernel.git] / mm / rmap.c
CommitLineData
1da177e4
LT
1/*
2 * mm/rmap.c - physical to virtual reverse mappings
3 *
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
6 *
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
9 *
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
13 *
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
98f32602 17 * Contributions by Hugh Dickins 2003, 2004
1da177e4
LT
18 */
19
20/*
21 * Lock ordering in mm:
22 *
1b1dcc1b 23 * inode->i_mutex (while writing or truncating, not reading or faulting)
82591e6e
NP
24 * mm->mmap_sem
25 * page->flags PG_locked (lock_page)
3d48ae45 26 * mapping->i_mmap_mutex
2b575eb6 27 * anon_vma->mutex
82591e6e
NP
28 * mm->page_table_lock or pte_lock
29 * zone->lru_lock (in mark_page_accessed, isolate_lru_page)
30 * swap_lock (in swap_duplicate, swap_info_get)
31 * mmlist_lock (in mmput, drain_mmlist and others)
32 * mapping->private_lock (in __set_page_dirty_buffers)
250df6ed 33 * inode->i_lock (in set_page_dirty's __mark_inode_dirty)
f758eeab 34 * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
82591e6e
NP
35 * sb_lock (within inode_lock in fs/fs-writeback.c)
36 * mapping->tree_lock (widely used, in set_page_dirty,
37 * in arch-dependent flush_dcache_mmap_lock,
f758eeab 38 * within bdi.wb->list_lock in __sync_single_inode)
6a46079c 39 *
9b679320
PZ
40 * anon_vma->mutex,mapping->i_mutex (memory_failure, collect_procs_anon)
41 * ->tasklist_lock
6a46079c 42 * pte map lock
1da177e4
LT
43 */
44
45#include <linux/mm.h>
46#include <linux/pagemap.h>
47#include <linux/swap.h>
48#include <linux/swapops.h>
49#include <linux/slab.h>
50#include <linux/init.h>
5ad64688 51#include <linux/ksm.h>
1da177e4
LT
52#include <linux/rmap.h>
53#include <linux/rcupdate.h>
b95f1b31 54#include <linux/export.h>
8a9f3ccd 55#include <linux/memcontrol.h>
cddb8a5c 56#include <linux/mmu_notifier.h>
64cdd548 57#include <linux/migrate.h>
0fe6e20b 58#include <linux/hugetlb.h>
1da177e4
LT
59
60#include <asm/tlbflush.h>
61
b291f000
NP
62#include "internal.h"
63
fdd2e5f8 64static struct kmem_cache *anon_vma_cachep;
5beb4930 65static struct kmem_cache *anon_vma_chain_cachep;
fdd2e5f8
AB
66
67static inline struct anon_vma *anon_vma_alloc(void)
68{
01d8b20d
PZ
69 struct anon_vma *anon_vma;
70
71 anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
72 if (anon_vma) {
73 atomic_set(&anon_vma->refcount, 1);
74 /*
75 * Initialise the anon_vma root to point to itself. If called
76 * from fork, the root will be reset to the parents anon_vma.
77 */
78 anon_vma->root = anon_vma;
79 }
80
81 return anon_vma;
fdd2e5f8
AB
82}
83
01d8b20d 84static inline void anon_vma_free(struct anon_vma *anon_vma)
fdd2e5f8 85{
01d8b20d 86 VM_BUG_ON(atomic_read(&anon_vma->refcount));
88c22088
PZ
87
88 /*
89 * Synchronize against page_lock_anon_vma() such that
90 * we can safely hold the lock without the anon_vma getting
91 * freed.
92 *
93 * Relies on the full mb implied by the atomic_dec_and_test() from
94 * put_anon_vma() against the acquire barrier implied by
95 * mutex_trylock() from page_lock_anon_vma(). This orders:
96 *
97 * page_lock_anon_vma() VS put_anon_vma()
98 * mutex_trylock() atomic_dec_and_test()
99 * LOCK MB
100 * atomic_read() mutex_is_locked()
101 *
102 * LOCK should suffice since the actual taking of the lock must
103 * happen _before_ what follows.
104 */
105 if (mutex_is_locked(&anon_vma->root->mutex)) {
106 anon_vma_lock(anon_vma);
107 anon_vma_unlock(anon_vma);
108 }
109
fdd2e5f8
AB
110 kmem_cache_free(anon_vma_cachep, anon_vma);
111}
1da177e4 112
dd34739c 113static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
5beb4930 114{
dd34739c 115 return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
5beb4930
RR
116}
117
e574b5fd 118static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
5beb4930
RR
119{
120 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
121}
122
d9d332e0
LT
123/**
124 * anon_vma_prepare - attach an anon_vma to a memory region
125 * @vma: the memory region in question
126 *
127 * This makes sure the memory mapping described by 'vma' has
128 * an 'anon_vma' attached to it, so that we can associate the
129 * anonymous pages mapped into it with that anon_vma.
130 *
131 * The common case will be that we already have one, but if
23a0790a 132 * not we either need to find an adjacent mapping that we
d9d332e0
LT
133 * can re-use the anon_vma from (very common when the only
134 * reason for splitting a vma has been mprotect()), or we
135 * allocate a new one.
136 *
137 * Anon-vma allocations are very subtle, because we may have
138 * optimistically looked up an anon_vma in page_lock_anon_vma()
139 * and that may actually touch the spinlock even in the newly
140 * allocated vma (it depends on RCU to make sure that the
141 * anon_vma isn't actually destroyed).
142 *
143 * As a result, we need to do proper anon_vma locking even
144 * for the new allocation. At the same time, we do not want
145 * to do any locking for the common case of already having
146 * an anon_vma.
147 *
148 * This must be called with the mmap_sem held for reading.
149 */
1da177e4
LT
150int anon_vma_prepare(struct vm_area_struct *vma)
151{
152 struct anon_vma *anon_vma = vma->anon_vma;
5beb4930 153 struct anon_vma_chain *avc;
1da177e4
LT
154
155 might_sleep();
156 if (unlikely(!anon_vma)) {
157 struct mm_struct *mm = vma->vm_mm;
d9d332e0 158 struct anon_vma *allocated;
1da177e4 159
dd34739c 160 avc = anon_vma_chain_alloc(GFP_KERNEL);
5beb4930
RR
161 if (!avc)
162 goto out_enomem;
163
1da177e4 164 anon_vma = find_mergeable_anon_vma(vma);
d9d332e0
LT
165 allocated = NULL;
166 if (!anon_vma) {
1da177e4
LT
167 anon_vma = anon_vma_alloc();
168 if (unlikely(!anon_vma))
5beb4930 169 goto out_enomem_free_avc;
1da177e4 170 allocated = anon_vma;
1da177e4
LT
171 }
172
cba48b98 173 anon_vma_lock(anon_vma);
1da177e4
LT
174 /* page_table_lock to protect against threads */
175 spin_lock(&mm->page_table_lock);
176 if (likely(!vma->anon_vma)) {
177 vma->anon_vma = anon_vma;
5beb4930
RR
178 avc->anon_vma = anon_vma;
179 avc->vma = vma;
180 list_add(&avc->same_vma, &vma->anon_vma_chain);
26ba0cb6 181 list_add_tail(&avc->same_anon_vma, &anon_vma->head);
1da177e4 182 allocated = NULL;
31f2b0eb 183 avc = NULL;
1da177e4
LT
184 }
185 spin_unlock(&mm->page_table_lock);
cba48b98 186 anon_vma_unlock(anon_vma);
31f2b0eb
ON
187
188 if (unlikely(allocated))
01d8b20d 189 put_anon_vma(allocated);
31f2b0eb 190 if (unlikely(avc))
5beb4930 191 anon_vma_chain_free(avc);
1da177e4
LT
192 }
193 return 0;
5beb4930
RR
194
195 out_enomem_free_avc:
196 anon_vma_chain_free(avc);
197 out_enomem:
198 return -ENOMEM;
1da177e4
LT
199}
200
bb4aa396
LT
201/*
202 * This is a useful helper function for locking the anon_vma root as
203 * we traverse the vma->anon_vma_chain, looping over anon_vma's that
204 * have the same vma.
205 *
206 * Such anon_vma's should have the same root, so you'd expect to see
207 * just a single mutex_lock for the whole traversal.
208 */
209static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
210{
211 struct anon_vma *new_root = anon_vma->root;
212 if (new_root != root) {
213 if (WARN_ON_ONCE(root))
214 mutex_unlock(&root->mutex);
215 root = new_root;
216 mutex_lock(&root->mutex);
217 }
218 return root;
219}
220
221static inline void unlock_anon_vma_root(struct anon_vma *root)
222{
223 if (root)
224 mutex_unlock(&root->mutex);
225}
226
5beb4930
RR
227static void anon_vma_chain_link(struct vm_area_struct *vma,
228 struct anon_vma_chain *avc,
229 struct anon_vma *anon_vma)
1da177e4 230{
5beb4930
RR
231 avc->vma = vma;
232 avc->anon_vma = anon_vma;
233 list_add(&avc->same_vma, &vma->anon_vma_chain);
234
05759d38
AA
235 /*
236 * It's critical to add new vmas to the tail of the anon_vma,
237 * see comment in huge_memory.c:__split_huge_page().
238 */
5beb4930 239 list_add_tail(&avc->same_anon_vma, &anon_vma->head);
1da177e4
LT
240}
241
5beb4930
RR
242/*
243 * Attach the anon_vmas from src to dst.
244 * Returns 0 on success, -ENOMEM on failure.
245 */
246int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
1da177e4 247{
5beb4930 248 struct anon_vma_chain *avc, *pavc;
bb4aa396 249 struct anon_vma *root = NULL;
5beb4930 250
646d87b4 251 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
bb4aa396
LT
252 struct anon_vma *anon_vma;
253
dd34739c
LT
254 avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
255 if (unlikely(!avc)) {
256 unlock_anon_vma_root(root);
257 root = NULL;
258 avc = anon_vma_chain_alloc(GFP_KERNEL);
259 if (!avc)
260 goto enomem_failure;
261 }
bb4aa396
LT
262 anon_vma = pavc->anon_vma;
263 root = lock_anon_vma_root(root, anon_vma);
264 anon_vma_chain_link(dst, avc, anon_vma);
5beb4930 265 }
bb4aa396 266 unlock_anon_vma_root(root);
5beb4930 267 return 0;
1da177e4 268
5beb4930
RR
269 enomem_failure:
270 unlink_anon_vmas(dst);
271 return -ENOMEM;
1da177e4
LT
272}
273
948f017b
AA
274/*
275 * Some rmap walk that needs to find all ptes/hugepmds without false
276 * negatives (like migrate and split_huge_page) running concurrent
277 * with operations that copy or move pagetables (like mremap() and
278 * fork()) to be safe. They depend on the anon_vma "same_anon_vma"
279 * list to be in a certain order: the dst_vma must be placed after the
280 * src_vma in the list. This is always guaranteed by fork() but
281 * mremap() needs to call this function to enforce it in case the
282 * dst_vma isn't newly allocated and chained with the anon_vma_clone()
283 * function but just an extension of a pre-existing vma through
284 * vma_merge.
285 *
286 * NOTE: the same_anon_vma list can still be changed by other
287 * processes while mremap runs because mremap doesn't hold the
288 * anon_vma mutex to prevent modifications to the list while it
289 * runs. All we need to enforce is that the relative order of this
290 * process vmas isn't changing (we don't care about other vmas
291 * order). Each vma corresponds to an anon_vma_chain structure so
292 * there's no risk that other processes calling anon_vma_moveto_tail()
293 * and changing the same_anon_vma list under mremap() will screw with
294 * the relative order of this process vmas in the list, because we
295 * they can't alter the order of any vma that belongs to this
296 * process. And there can't be another anon_vma_moveto_tail() running
297 * concurrently with mremap() coming from this process because we hold
298 * the mmap_sem for the whole mremap(). fork() ordering dependency
299 * also shouldn't be affected because fork() only cares that the
300 * parent vmas are placed in the list before the child vmas and
301 * anon_vma_moveto_tail() won't reorder vmas from either the fork()
302 * parent or child.
303 */
304void anon_vma_moveto_tail(struct vm_area_struct *dst)
305{
306 struct anon_vma_chain *pavc;
307 struct anon_vma *root = NULL;
308
309 list_for_each_entry_reverse(pavc, &dst->anon_vma_chain, same_vma) {
310 struct anon_vma *anon_vma = pavc->anon_vma;
311 VM_BUG_ON(pavc->vma != dst);
312 root = lock_anon_vma_root(root, anon_vma);
313 list_del(&pavc->same_anon_vma);
314 list_add_tail(&pavc->same_anon_vma, &anon_vma->head);
315 }
316 unlock_anon_vma_root(root);
317}
318
5beb4930
RR
319/*
320 * Attach vma to its own anon_vma, as well as to the anon_vmas that
321 * the corresponding VMA in the parent process is attached to.
322 * Returns 0 on success, non-zero on failure.
323 */
324int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
1da177e4 325{
5beb4930
RR
326 struct anon_vma_chain *avc;
327 struct anon_vma *anon_vma;
1da177e4 328
5beb4930
RR
329 /* Don't bother if the parent process has no anon_vma here. */
330 if (!pvma->anon_vma)
331 return 0;
332
333 /*
334 * First, attach the new VMA to the parent VMA's anon_vmas,
335 * so rmap can find non-COWed pages in child processes.
336 */
337 if (anon_vma_clone(vma, pvma))
338 return -ENOMEM;
339
340 /* Then add our own anon_vma. */
341 anon_vma = anon_vma_alloc();
342 if (!anon_vma)
343 goto out_error;
dd34739c 344 avc = anon_vma_chain_alloc(GFP_KERNEL);
5beb4930
RR
345 if (!avc)
346 goto out_error_free_anon_vma;
5c341ee1
RR
347
348 /*
349 * The root anon_vma's spinlock is the lock actually used when we
350 * lock any of the anon_vmas in this anon_vma tree.
351 */
352 anon_vma->root = pvma->anon_vma->root;
76545066 353 /*
01d8b20d
PZ
354 * With refcounts, an anon_vma can stay around longer than the
355 * process it belongs to. The root anon_vma needs to be pinned until
356 * this anon_vma is freed, because the lock lives in the root.
76545066
RR
357 */
358 get_anon_vma(anon_vma->root);
5beb4930
RR
359 /* Mark this anon_vma as the one where our new (COWed) pages go. */
360 vma->anon_vma = anon_vma;
bb4aa396 361 anon_vma_lock(anon_vma);
5c341ee1 362 anon_vma_chain_link(vma, avc, anon_vma);
bb4aa396 363 anon_vma_unlock(anon_vma);
5beb4930
RR
364
365 return 0;
366
367 out_error_free_anon_vma:
01d8b20d 368 put_anon_vma(anon_vma);
5beb4930 369 out_error:
4946d54c 370 unlink_anon_vmas(vma);
5beb4930 371 return -ENOMEM;
1da177e4
LT
372}
373
5beb4930
RR
374void unlink_anon_vmas(struct vm_area_struct *vma)
375{
376 struct anon_vma_chain *avc, *next;
eee2acba 377 struct anon_vma *root = NULL;
5beb4930 378
5c341ee1
RR
379 /*
380 * Unlink each anon_vma chained to the VMA. This list is ordered
381 * from newest to oldest, ensuring the root anon_vma gets freed last.
382 */
5beb4930 383 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
eee2acba
PZ
384 struct anon_vma *anon_vma = avc->anon_vma;
385
386 root = lock_anon_vma_root(root, anon_vma);
387 list_del(&avc->same_anon_vma);
388
389 /*
390 * Leave empty anon_vmas on the list - we'll need
391 * to free them outside the lock.
392 */
393 if (list_empty(&anon_vma->head))
394 continue;
395
396 list_del(&avc->same_vma);
397 anon_vma_chain_free(avc);
398 }
399 unlock_anon_vma_root(root);
400
401 /*
402 * Iterate the list once more, it now only contains empty and unlinked
403 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
404 * needing to acquire the anon_vma->root->mutex.
405 */
406 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
407 struct anon_vma *anon_vma = avc->anon_vma;
408
409 put_anon_vma(anon_vma);
410
5beb4930
RR
411 list_del(&avc->same_vma);
412 anon_vma_chain_free(avc);
413 }
414}
415
51cc5068 416static void anon_vma_ctor(void *data)
1da177e4 417{
a35afb83 418 struct anon_vma *anon_vma = data;
1da177e4 419
2b575eb6 420 mutex_init(&anon_vma->mutex);
83813267 421 atomic_set(&anon_vma->refcount, 0);
a35afb83 422 INIT_LIST_HEAD(&anon_vma->head);
1da177e4
LT
423}
424
425void __init anon_vma_init(void)
426{
427 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
20c2df83 428 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);
5beb4930 429 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, SLAB_PANIC);
1da177e4
LT
430}
431
432/*
6111e4ca
PZ
433 * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
434 *
435 * Since there is no serialization what so ever against page_remove_rmap()
436 * the best this function can do is return a locked anon_vma that might
437 * have been relevant to this page.
438 *
439 * The page might have been remapped to a different anon_vma or the anon_vma
440 * returned may already be freed (and even reused).
441 *
bc658c96
PZ
442 * In case it was remapped to a different anon_vma, the new anon_vma will be a
443 * child of the old anon_vma, and the anon_vma lifetime rules will therefore
444 * ensure that any anon_vma obtained from the page will still be valid for as
445 * long as we observe page_mapped() [ hence all those page_mapped() tests ].
446 *
6111e4ca
PZ
447 * All users of this function must be very careful when walking the anon_vma
448 * chain and verify that the page in question is indeed mapped in it
449 * [ something equivalent to page_mapped_in_vma() ].
450 *
451 * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap()
452 * that the anon_vma pointer from page->mapping is valid if there is a
453 * mapcount, we can dereference the anon_vma after observing those.
1da177e4 454 */
746b18d4 455struct anon_vma *page_get_anon_vma(struct page *page)
1da177e4 456{
746b18d4 457 struct anon_vma *anon_vma = NULL;
1da177e4
LT
458 unsigned long anon_mapping;
459
460 rcu_read_lock();
80e14822 461 anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
3ca7b3c5 462 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
1da177e4
LT
463 goto out;
464 if (!page_mapped(page))
465 goto out;
466
467 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
746b18d4
PZ
468 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
469 anon_vma = NULL;
470 goto out;
471 }
f1819427
HD
472
473 /*
474 * If this page is still mapped, then its anon_vma cannot have been
746b18d4
PZ
475 * freed. But if it has been unmapped, we have no security against the
476 * anon_vma structure being freed and reused (for another anon_vma:
477 * SLAB_DESTROY_BY_RCU guarantees that - so the atomic_inc_not_zero()
478 * above cannot corrupt).
f1819427 479 */
746b18d4
PZ
480 if (!page_mapped(page)) {
481 put_anon_vma(anon_vma);
482 anon_vma = NULL;
483 }
1da177e4
LT
484out:
485 rcu_read_unlock();
746b18d4
PZ
486
487 return anon_vma;
488}
489
88c22088
PZ
490/*
491 * Similar to page_get_anon_vma() except it locks the anon_vma.
492 *
493 * Its a little more complex as it tries to keep the fast path to a single
494 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
495 * reference like with page_get_anon_vma() and then block on the mutex.
496 */
746b18d4
PZ
497struct anon_vma *page_lock_anon_vma(struct page *page)
498{
88c22088 499 struct anon_vma *anon_vma = NULL;
eee0f252 500 struct anon_vma *root_anon_vma;
88c22088 501 unsigned long anon_mapping;
746b18d4 502
88c22088
PZ
503 rcu_read_lock();
504 anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
505 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
506 goto out;
507 if (!page_mapped(page))
508 goto out;
509
510 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
eee0f252
HD
511 root_anon_vma = ACCESS_ONCE(anon_vma->root);
512 if (mutex_trylock(&root_anon_vma->mutex)) {
88c22088 513 /*
eee0f252
HD
514 * If the page is still mapped, then this anon_vma is still
515 * its anon_vma, and holding the mutex ensures that it will
bc658c96 516 * not go away, see anon_vma_free().
88c22088 517 */
eee0f252
HD
518 if (!page_mapped(page)) {
519 mutex_unlock(&root_anon_vma->mutex);
88c22088
PZ
520 anon_vma = NULL;
521 }
522 goto out;
523 }
746b18d4 524
88c22088
PZ
525 /* trylock failed, we got to sleep */
526 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
527 anon_vma = NULL;
528 goto out;
529 }
530
531 if (!page_mapped(page)) {
532 put_anon_vma(anon_vma);
533 anon_vma = NULL;
534 goto out;
535 }
536
537 /* we pinned the anon_vma, its safe to sleep */
538 rcu_read_unlock();
539 anon_vma_lock(anon_vma);
540
541 if (atomic_dec_and_test(&anon_vma->refcount)) {
542 /*
543 * Oops, we held the last refcount, release the lock
544 * and bail -- can't simply use put_anon_vma() because
545 * we'll deadlock on the anon_vma_lock() recursion.
546 */
547 anon_vma_unlock(anon_vma);
548 __put_anon_vma(anon_vma);
549 anon_vma = NULL;
550 }
551
552 return anon_vma;
553
554out:
555 rcu_read_unlock();
746b18d4 556 return anon_vma;
34bbd704
ON
557}
558
10be22df 559void page_unlock_anon_vma(struct anon_vma *anon_vma)
34bbd704 560{
cba48b98 561 anon_vma_unlock(anon_vma);
1da177e4
LT
562}
563
564/*
3ad33b24
LS
565 * At what user virtual address is page expected in @vma?
566 * Returns virtual address or -EFAULT if page's index/offset is not
567 * within the range mapped the @vma.
1da177e4 568 */
71e3aac0 569inline unsigned long
1da177e4
LT
570vma_address(struct page *page, struct vm_area_struct *vma)
571{
572 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
573 unsigned long address;
574
0fe6e20b
NH
575 if (unlikely(is_vm_hugetlb_page(vma)))
576 pgoff = page->index << huge_page_order(page_hstate(page));
1da177e4
LT
577 address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
578 if (unlikely(address < vma->vm_start || address >= vma->vm_end)) {
3ad33b24 579 /* page should be within @vma mapping range */
1da177e4
LT
580 return -EFAULT;
581 }
582 return address;
583}
584
585/*
bf89c8c8 586 * At what user virtual address is page expected in vma?
ab941e0f 587 * Caller should check the page is actually part of the vma.
1da177e4
LT
588 */
589unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
590{
21d0d443 591 if (PageAnon(page)) {
4829b906
HD
592 struct anon_vma *page__anon_vma = page_anon_vma(page);
593 /*
594 * Note: swapoff's unuse_vma() is more efficient with this
595 * check, and needs it to match anon_vma when KSM is active.
596 */
597 if (!vma->anon_vma || !page__anon_vma ||
598 vma->anon_vma->root != page__anon_vma->root)
21d0d443
AA
599 return -EFAULT;
600 } else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
ee498ed7
HD
601 if (!vma->vm_file ||
602 vma->vm_file->f_mapping != page->mapping)
1da177e4
LT
603 return -EFAULT;
604 } else
605 return -EFAULT;
606 return vma_address(page, vma);
607}
608
81b4082d
ND
609/*
610 * Check that @page is mapped at @address into @mm.
611 *
479db0bf
NP
612 * If @sync is false, page_check_address may perform a racy check to avoid
613 * the page table lock when the pte is not present (helpful when reclaiming
614 * highly shared pages).
615 *
b8072f09 616 * On success returns with pte mapped and locked.
81b4082d 617 */
e9a81a82 618pte_t *__page_check_address(struct page *page, struct mm_struct *mm,
479db0bf 619 unsigned long address, spinlock_t **ptlp, int sync)
81b4082d
ND
620{
621 pgd_t *pgd;
622 pud_t *pud;
623 pmd_t *pmd;
624 pte_t *pte;
c0718806 625 spinlock_t *ptl;
81b4082d 626
0fe6e20b
NH
627 if (unlikely(PageHuge(page))) {
628 pte = huge_pte_offset(mm, address);
629 ptl = &mm->page_table_lock;
630 goto check;
631 }
632
81b4082d 633 pgd = pgd_offset(mm, address);
c0718806
HD
634 if (!pgd_present(*pgd))
635 return NULL;
636
637 pud = pud_offset(pgd, address);
638 if (!pud_present(*pud))
639 return NULL;
640
641 pmd = pmd_offset(pud, address);
642 if (!pmd_present(*pmd))
643 return NULL;
71e3aac0
AA
644 if (pmd_trans_huge(*pmd))
645 return NULL;
c0718806
HD
646
647 pte = pte_offset_map(pmd, address);
648 /* Make a quick check before getting the lock */
479db0bf 649 if (!sync && !pte_present(*pte)) {
c0718806
HD
650 pte_unmap(pte);
651 return NULL;
652 }
653
4c21e2f2 654 ptl = pte_lockptr(mm, pmd);
0fe6e20b 655check:
c0718806
HD
656 spin_lock(ptl);
657 if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
658 *ptlp = ptl;
659 return pte;
81b4082d 660 }
c0718806
HD
661 pte_unmap_unlock(pte, ptl);
662 return NULL;
81b4082d
ND
663}
664
b291f000
NP
665/**
666 * page_mapped_in_vma - check whether a page is really mapped in a VMA
667 * @page: the page to test
668 * @vma: the VMA to test
669 *
670 * Returns 1 if the page is mapped into the page tables of the VMA, 0
671 * if the page is not mapped into the page tables of this VMA. Only
672 * valid for normal file or anonymous VMAs.
673 */
6a46079c 674int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
b291f000
NP
675{
676 unsigned long address;
677 pte_t *pte;
678 spinlock_t *ptl;
679
680 address = vma_address(page, vma);
681 if (address == -EFAULT) /* out of vma range */
682 return 0;
683 pte = page_check_address(page, vma->vm_mm, address, &ptl, 1);
684 if (!pte) /* the page is not in this mm */
685 return 0;
686 pte_unmap_unlock(pte, ptl);
687
688 return 1;
689}
690
1da177e4
LT
691/*
692 * Subfunctions of page_referenced: page_referenced_one called
693 * repeatedly from either page_referenced_anon or page_referenced_file.
694 */
5ad64688
HD
695int page_referenced_one(struct page *page, struct vm_area_struct *vma,
696 unsigned long address, unsigned int *mapcount,
697 unsigned long *vm_flags)
1da177e4
LT
698{
699 struct mm_struct *mm = vma->vm_mm;
1da177e4
LT
700 int referenced = 0;
701
71e3aac0
AA
702 if (unlikely(PageTransHuge(page))) {
703 pmd_t *pmd;
704
705 spin_lock(&mm->page_table_lock);
2da28bfd
AA
706 /*
707 * rmap might return false positives; we must filter
708 * these out using page_check_address_pmd().
709 */
71e3aac0
AA
710 pmd = page_check_address_pmd(page, mm, address,
711 PAGE_CHECK_ADDRESS_PMD_FLAG);
2da28bfd
AA
712 if (!pmd) {
713 spin_unlock(&mm->page_table_lock);
714 goto out;
715 }
716
717 if (vma->vm_flags & VM_LOCKED) {
718 spin_unlock(&mm->page_table_lock);
719 *mapcount = 0; /* break early from loop */
720 *vm_flags |= VM_LOCKED;
721 goto out;
722 }
723
724 /* go ahead even if the pmd is pmd_trans_splitting() */
725 if (pmdp_clear_flush_young_notify(vma, address, pmd))
71e3aac0
AA
726 referenced++;
727 spin_unlock(&mm->page_table_lock);
728 } else {
729 pte_t *pte;
730 spinlock_t *ptl;
731
2da28bfd
AA
732 /*
733 * rmap might return false positives; we must filter
734 * these out using page_check_address().
735 */
71e3aac0
AA
736 pte = page_check_address(page, mm, address, &ptl, 0);
737 if (!pte)
738 goto out;
739
2da28bfd
AA
740 if (vma->vm_flags & VM_LOCKED) {
741 pte_unmap_unlock(pte, ptl);
742 *mapcount = 0; /* break early from loop */
743 *vm_flags |= VM_LOCKED;
744 goto out;
745 }
746
71e3aac0
AA
747 if (ptep_clear_flush_young_notify(vma, address, pte)) {
748 /*
749 * Don't treat a reference through a sequentially read
750 * mapping as such. If the page has been used in
751 * another mapping, we will catch it; if this other
752 * mapping is already gone, the unmap path will have
753 * set PG_referenced or activated the page.
754 */
755 if (likely(!VM_SequentialReadHint(vma)))
756 referenced++;
757 }
758 pte_unmap_unlock(pte, ptl);
759 }
760
2da28bfd
AA
761 /* Pretend the page is referenced if the task has the
762 swap token and is in the middle of a page fault. */
763 if (mm != current->mm && has_swap_token(mm) &&
764 rwsem_is_locked(&mm->mmap_sem))
765 referenced++;
766
c0718806 767 (*mapcount)--;
273f047e 768
6fe6b7e3
WF
769 if (referenced)
770 *vm_flags |= vma->vm_flags;
273f047e 771out:
1da177e4
LT
772 return referenced;
773}
774
bed7161a 775static int page_referenced_anon(struct page *page,
72835c86 776 struct mem_cgroup *memcg,
6fe6b7e3 777 unsigned long *vm_flags)
1da177e4
LT
778{
779 unsigned int mapcount;
780 struct anon_vma *anon_vma;
5beb4930 781 struct anon_vma_chain *avc;
1da177e4
LT
782 int referenced = 0;
783
784 anon_vma = page_lock_anon_vma(page);
785 if (!anon_vma)
786 return referenced;
787
788 mapcount = page_mapcount(page);
5beb4930
RR
789 list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
790 struct vm_area_struct *vma = avc->vma;
1cb1729b
HD
791 unsigned long address = vma_address(page, vma);
792 if (address == -EFAULT)
793 continue;
bed7161a
BS
794 /*
795 * If we are reclaiming on behalf of a cgroup, skip
796 * counting on behalf of references from different
797 * cgroups
798 */
72835c86 799 if (memcg && !mm_match_cgroup(vma->vm_mm, memcg))
bed7161a 800 continue;
1cb1729b 801 referenced += page_referenced_one(page, vma, address,
6fe6b7e3 802 &mapcount, vm_flags);
1da177e4
LT
803 if (!mapcount)
804 break;
805 }
34bbd704
ON
806
807 page_unlock_anon_vma(anon_vma);
1da177e4
LT
808 return referenced;
809}
810
811/**
812 * page_referenced_file - referenced check for object-based rmap
813 * @page: the page we're checking references on.
72835c86 814 * @memcg: target memory control group
6fe6b7e3 815 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
1da177e4
LT
816 *
817 * For an object-based mapped page, find all the places it is mapped and
818 * check/clear the referenced flag. This is done by following the page->mapping
819 * pointer, then walking the chain of vmas it holds. It returns the number
820 * of references it found.
821 *
822 * This function is only called from page_referenced for object-based pages.
823 */
bed7161a 824static int page_referenced_file(struct page *page,
72835c86 825 struct mem_cgroup *memcg,
6fe6b7e3 826 unsigned long *vm_flags)
1da177e4
LT
827{
828 unsigned int mapcount;
829 struct address_space *mapping = page->mapping;
830 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
831 struct vm_area_struct *vma;
832 struct prio_tree_iter iter;
833 int referenced = 0;
834
835 /*
836 * The caller's checks on page->mapping and !PageAnon have made
837 * sure that this is a file page: the check for page->mapping
838 * excludes the case just before it gets set on an anon page.
839 */
840 BUG_ON(PageAnon(page));
841
842 /*
843 * The page lock not only makes sure that page->mapping cannot
844 * suddenly be NULLified by truncation, it makes sure that the
845 * structure at mapping cannot be freed and reused yet,
3d48ae45 846 * so we can safely take mapping->i_mmap_mutex.
1da177e4
LT
847 */
848 BUG_ON(!PageLocked(page));
849
3d48ae45 850 mutex_lock(&mapping->i_mmap_mutex);
1da177e4
LT
851
852 /*
3d48ae45 853 * i_mmap_mutex does not stabilize mapcount at all, but mapcount
1da177e4
LT
854 * is more likely to be accurate if we note it after spinning.
855 */
856 mapcount = page_mapcount(page);
857
858 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1cb1729b
HD
859 unsigned long address = vma_address(page, vma);
860 if (address == -EFAULT)
861 continue;
bed7161a
BS
862 /*
863 * If we are reclaiming on behalf of a cgroup, skip
864 * counting on behalf of references from different
865 * cgroups
866 */
72835c86 867 if (memcg && !mm_match_cgroup(vma->vm_mm, memcg))
bed7161a 868 continue;
1cb1729b 869 referenced += page_referenced_one(page, vma, address,
6fe6b7e3 870 &mapcount, vm_flags);
1da177e4
LT
871 if (!mapcount)
872 break;
873 }
874
3d48ae45 875 mutex_unlock(&mapping->i_mmap_mutex);
1da177e4
LT
876 return referenced;
877}
878
879/**
880 * page_referenced - test if the page was referenced
881 * @page: the page to test
882 * @is_locked: caller holds lock on the page
72835c86 883 * @memcg: target memory cgroup
6fe6b7e3 884 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
1da177e4
LT
885 *
886 * Quick test_and_clear_referenced for all mappings to a page,
887 * returns the number of ptes which referenced the page.
888 */
6fe6b7e3
WF
889int page_referenced(struct page *page,
890 int is_locked,
72835c86 891 struct mem_cgroup *memcg,
6fe6b7e3 892 unsigned long *vm_flags)
1da177e4
LT
893{
894 int referenced = 0;
5ad64688 895 int we_locked = 0;
1da177e4 896
6fe6b7e3 897 *vm_flags = 0;
3ca7b3c5 898 if (page_mapped(page) && page_rmapping(page)) {
5ad64688
HD
899 if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
900 we_locked = trylock_page(page);
901 if (!we_locked) {
902 referenced++;
903 goto out;
904 }
905 }
906 if (unlikely(PageKsm(page)))
72835c86 907 referenced += page_referenced_ksm(page, memcg,
5ad64688
HD
908 vm_flags);
909 else if (PageAnon(page))
72835c86 910 referenced += page_referenced_anon(page, memcg,
6fe6b7e3 911 vm_flags);
5ad64688 912 else if (page->mapping)
72835c86 913 referenced += page_referenced_file(page, memcg,
6fe6b7e3 914 vm_flags);
5ad64688 915 if (we_locked)
1da177e4 916 unlock_page(page);
50a15981
MS
917
918 if (page_test_and_clear_young(page_to_pfn(page)))
919 referenced++;
1da177e4 920 }
5ad64688 921out:
1da177e4
LT
922 return referenced;
923}
924
1cb1729b
HD
925static int page_mkclean_one(struct page *page, struct vm_area_struct *vma,
926 unsigned long address)
d08b3851
PZ
927{
928 struct mm_struct *mm = vma->vm_mm;
c2fda5fe 929 pte_t *pte;
d08b3851
PZ
930 spinlock_t *ptl;
931 int ret = 0;
932
479db0bf 933 pte = page_check_address(page, mm, address, &ptl, 1);
d08b3851
PZ
934 if (!pte)
935 goto out;
936
c2fda5fe
PZ
937 if (pte_dirty(*pte) || pte_write(*pte)) {
938 pte_t entry;
d08b3851 939
c2fda5fe 940 flush_cache_page(vma, address, pte_pfn(*pte));
cddb8a5c 941 entry = ptep_clear_flush_notify(vma, address, pte);
c2fda5fe
PZ
942 entry = pte_wrprotect(entry);
943 entry = pte_mkclean(entry);
d6e88e67 944 set_pte_at(mm, address, pte, entry);
c2fda5fe
PZ
945 ret = 1;
946 }
d08b3851 947
d08b3851
PZ
948 pte_unmap_unlock(pte, ptl);
949out:
950 return ret;
951}
952
953static int page_mkclean_file(struct address_space *mapping, struct page *page)
954{
955 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
956 struct vm_area_struct *vma;
957 struct prio_tree_iter iter;
958 int ret = 0;
959
960 BUG_ON(PageAnon(page));
961
3d48ae45 962 mutex_lock(&mapping->i_mmap_mutex);
d08b3851 963 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1cb1729b
HD
964 if (vma->vm_flags & VM_SHARED) {
965 unsigned long address = vma_address(page, vma);
966 if (address == -EFAULT)
967 continue;
968 ret += page_mkclean_one(page, vma, address);
969 }
d08b3851 970 }
3d48ae45 971 mutex_unlock(&mapping->i_mmap_mutex);
d08b3851
PZ
972 return ret;
973}
974
975int page_mkclean(struct page *page)
976{
977 int ret = 0;
978
979 BUG_ON(!PageLocked(page));
980
981 if (page_mapped(page)) {
982 struct address_space *mapping = page_mapping(page);
ce7e9fae 983 if (mapping) {
d08b3851 984 ret = page_mkclean_file(mapping, page);
2d42552d 985 if (page_test_and_clear_dirty(page_to_pfn(page), 1))
ce7e9fae 986 ret = 1;
6c210482 987 }
d08b3851
PZ
988 }
989
990 return ret;
991}
60b59bea 992EXPORT_SYMBOL_GPL(page_mkclean);
d08b3851 993
c44b6743
RR
994/**
995 * page_move_anon_rmap - move a page to our anon_vma
996 * @page: the page to move to our anon_vma
997 * @vma: the vma the page belongs to
998 * @address: the user virtual address mapped
999 *
1000 * When a page belongs exclusively to one process after a COW event,
1001 * that page can be moved into the anon_vma that belongs to just that
1002 * process, so the rmap code will not search the parent or sibling
1003 * processes.
1004 */
1005void page_move_anon_rmap(struct page *page,
1006 struct vm_area_struct *vma, unsigned long address)
1007{
1008 struct anon_vma *anon_vma = vma->anon_vma;
1009
1010 VM_BUG_ON(!PageLocked(page));
1011 VM_BUG_ON(!anon_vma);
1012 VM_BUG_ON(page->index != linear_page_index(vma, address));
1013
1014 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1015 page->mapping = (struct address_space *) anon_vma;
1016}
1017
9617d95e 1018/**
4e1c1975
AK
1019 * __page_set_anon_rmap - set up new anonymous rmap
1020 * @page: Page to add to rmap
1021 * @vma: VM area to add page to.
1022 * @address: User virtual address of the mapping
e8a03feb 1023 * @exclusive: the page is exclusively owned by the current process
9617d95e
NP
1024 */
1025static void __page_set_anon_rmap(struct page *page,
e8a03feb 1026 struct vm_area_struct *vma, unsigned long address, int exclusive)
9617d95e 1027{
e8a03feb 1028 struct anon_vma *anon_vma = vma->anon_vma;
ea90002b 1029
e8a03feb 1030 BUG_ON(!anon_vma);
ea90002b 1031
4e1c1975
AK
1032 if (PageAnon(page))
1033 return;
1034
ea90002b 1035 /*
e8a03feb
RR
1036 * If the page isn't exclusively mapped into this vma,
1037 * we must use the _oldest_ possible anon_vma for the
1038 * page mapping!
ea90002b 1039 */
4e1c1975 1040 if (!exclusive)
288468c3 1041 anon_vma = anon_vma->root;
9617d95e 1042
9617d95e
NP
1043 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1044 page->mapping = (struct address_space *) anon_vma;
9617d95e 1045 page->index = linear_page_index(vma, address);
9617d95e
NP
1046}
1047
c97a9e10 1048/**
43d8eac4 1049 * __page_check_anon_rmap - sanity check anonymous rmap addition
c97a9e10
NP
1050 * @page: the page to add the mapping to
1051 * @vma: the vm area in which the mapping is added
1052 * @address: the user virtual address mapped
1053 */
1054static void __page_check_anon_rmap(struct page *page,
1055 struct vm_area_struct *vma, unsigned long address)
1056{
1057#ifdef CONFIG_DEBUG_VM
1058 /*
1059 * The page's anon-rmap details (mapping and index) are guaranteed to
1060 * be set up correctly at this point.
1061 *
1062 * We have exclusion against page_add_anon_rmap because the caller
1063 * always holds the page locked, except if called from page_dup_rmap,
1064 * in which case the page is already known to be setup.
1065 *
1066 * We have exclusion against page_add_new_anon_rmap because those pages
1067 * are initially only visible via the pagetables, and the pte is locked
1068 * over the call to page_add_new_anon_rmap.
1069 */
44ab57a0 1070 BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root);
c97a9e10
NP
1071 BUG_ON(page->index != linear_page_index(vma, address));
1072#endif
1073}
1074
1da177e4
LT
1075/**
1076 * page_add_anon_rmap - add pte mapping to an anonymous page
1077 * @page: the page to add the mapping to
1078 * @vma: the vm area in which the mapping is added
1079 * @address: the user virtual address mapped
1080 *
5ad64688 1081 * The caller needs to hold the pte lock, and the page must be locked in
80e14822
HD
1082 * the anon_vma case: to serialize mapping,index checking after setting,
1083 * and to ensure that PageAnon is not being upgraded racily to PageKsm
1084 * (but PageKsm is never downgraded to PageAnon).
1da177e4
LT
1085 */
1086void page_add_anon_rmap(struct page *page,
1087 struct vm_area_struct *vma, unsigned long address)
ad8c2ee8
RR
1088{
1089 do_page_add_anon_rmap(page, vma, address, 0);
1090}
1091
1092/*
1093 * Special version of the above for do_swap_page, which often runs
1094 * into pages that are exclusively owned by the current process.
1095 * Everybody else should continue to use page_add_anon_rmap above.
1096 */
1097void do_page_add_anon_rmap(struct page *page,
1098 struct vm_area_struct *vma, unsigned long address, int exclusive)
1da177e4 1099{
5ad64688 1100 int first = atomic_inc_and_test(&page->_mapcount);
79134171
AA
1101 if (first) {
1102 if (!PageTransHuge(page))
1103 __inc_zone_page_state(page, NR_ANON_PAGES);
1104 else
1105 __inc_zone_page_state(page,
1106 NR_ANON_TRANSPARENT_HUGEPAGES);
1107 }
5ad64688
HD
1108 if (unlikely(PageKsm(page)))
1109 return;
1110
c97a9e10 1111 VM_BUG_ON(!PageLocked(page));
5dbe0af4 1112 /* address might be in next vma when migration races vma_adjust */
5ad64688 1113 if (first)
ad8c2ee8 1114 __page_set_anon_rmap(page, vma, address, exclusive);
69029cd5 1115 else
c97a9e10 1116 __page_check_anon_rmap(page, vma, address);
1da177e4
LT
1117}
1118
43d8eac4 1119/**
9617d95e
NP
1120 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
1121 * @page: the page to add the mapping to
1122 * @vma: the vm area in which the mapping is added
1123 * @address: the user virtual address mapped
1124 *
1125 * Same as page_add_anon_rmap but must only be called on *new* pages.
1126 * This means the inc-and-test can be bypassed.
c97a9e10 1127 * Page does not have to be locked.
9617d95e
NP
1128 */
1129void page_add_new_anon_rmap(struct page *page,
1130 struct vm_area_struct *vma, unsigned long address)
1131{
b5934c53 1132 VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
cbf84b7a
HD
1133 SetPageSwapBacked(page);
1134 atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */
79134171
AA
1135 if (!PageTransHuge(page))
1136 __inc_zone_page_state(page, NR_ANON_PAGES);
1137 else
1138 __inc_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
e8a03feb 1139 __page_set_anon_rmap(page, vma, address, 1);
b5934c53 1140 if (page_evictable(page, vma))
cbf84b7a 1141 lru_cache_add_lru(page, LRU_ACTIVE_ANON);
b5934c53
HD
1142 else
1143 add_page_to_unevictable_list(page);
9617d95e
NP
1144}
1145
1da177e4
LT
1146/**
1147 * page_add_file_rmap - add pte mapping to a file page
1148 * @page: the page to add the mapping to
1149 *
b8072f09 1150 * The caller needs to hold the pte lock.
1da177e4
LT
1151 */
1152void page_add_file_rmap(struct page *page)
1153{
d69b042f 1154 if (atomic_inc_and_test(&page->_mapcount)) {
65ba55f5 1155 __inc_zone_page_state(page, NR_FILE_MAPPED);
2a7106f2 1156 mem_cgroup_inc_page_stat(page, MEMCG_NR_FILE_MAPPED);
d69b042f 1157 }
1da177e4
LT
1158}
1159
1160/**
1161 * page_remove_rmap - take down pte mapping from a page
1162 * @page: page to remove mapping from
1163 *
b8072f09 1164 * The caller needs to hold the pte lock.
1da177e4 1165 */
edc315fd 1166void page_remove_rmap(struct page *page)
1da177e4 1167{
b904dcfe
KM
1168 /* page still mapped by someone else? */
1169 if (!atomic_add_negative(-1, &page->_mapcount))
1170 return;
1171
1172 /*
1173 * Now that the last pte has gone, s390 must transfer dirty
1174 * flag from storage key to struct page. We can usually skip
1175 * this if the page is anon, so about to be freed; but perhaps
1176 * not if it's in swapcache - there might be another pte slot
1177 * containing the swap entry, but page not yet written to swap.
1178 */
2d42552d
MS
1179 if ((!PageAnon(page) || PageSwapCache(page)) &&
1180 page_test_and_clear_dirty(page_to_pfn(page), 1))
b904dcfe 1181 set_page_dirty(page);
0fe6e20b
NH
1182 /*
1183 * Hugepages are not counted in NR_ANON_PAGES nor NR_FILE_MAPPED
1184 * and not charged by memcg for now.
1185 */
1186 if (unlikely(PageHuge(page)))
1187 return;
b904dcfe
KM
1188 if (PageAnon(page)) {
1189 mem_cgroup_uncharge_page(page);
79134171
AA
1190 if (!PageTransHuge(page))
1191 __dec_zone_page_state(page, NR_ANON_PAGES);
1192 else
1193 __dec_zone_page_state(page,
1194 NR_ANON_TRANSPARENT_HUGEPAGES);
b904dcfe
KM
1195 } else {
1196 __dec_zone_page_state(page, NR_FILE_MAPPED);
2a7106f2 1197 mem_cgroup_dec_page_stat(page, MEMCG_NR_FILE_MAPPED);
b904dcfe 1198 }
b904dcfe
KM
1199 /*
1200 * It would be tidy to reset the PageAnon mapping here,
1201 * but that might overwrite a racing page_add_anon_rmap
1202 * which increments mapcount after us but sets mapping
1203 * before us: so leave the reset to free_hot_cold_page,
1204 * and remember that it's only reliable while mapped.
1205 * Leaving it set also helps swapoff to reinstate ptes
1206 * faster for those pages still in swapcache.
1207 */
1da177e4
LT
1208}
1209
1210/*
1211 * Subfunctions of try_to_unmap: try_to_unmap_one called
99ef0315 1212 * repeatedly from try_to_unmap_ksm, try_to_unmap_anon or try_to_unmap_file.
1da177e4 1213 */
5ad64688
HD
1214int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
1215 unsigned long address, enum ttu_flags flags)
1da177e4
LT
1216{
1217 struct mm_struct *mm = vma->vm_mm;
1da177e4
LT
1218 pte_t *pte;
1219 pte_t pteval;
c0718806 1220 spinlock_t *ptl;
1da177e4
LT
1221 int ret = SWAP_AGAIN;
1222
479db0bf 1223 pte = page_check_address(page, mm, address, &ptl, 0);
c0718806 1224 if (!pte)
81b4082d 1225 goto out;
1da177e4
LT
1226
1227 /*
1228 * If the page is mlock()d, we cannot swap it out.
1229 * If it's recently referenced (perhaps page_referenced
1230 * skipped over this mm) then we should reactivate it.
1231 */
14fa31b8 1232 if (!(flags & TTU_IGNORE_MLOCK)) {
caed0f48
KM
1233 if (vma->vm_flags & VM_LOCKED)
1234 goto out_mlock;
1235
af8e3354 1236 if (TTU_ACTION(flags) == TTU_MUNLOCK)
53f79acb 1237 goto out_unmap;
14fa31b8
AK
1238 }
1239 if (!(flags & TTU_IGNORE_ACCESS)) {
b291f000
NP
1240 if (ptep_clear_flush_young_notify(vma, address, pte)) {
1241 ret = SWAP_FAIL;
1242 goto out_unmap;
1243 }
1244 }
1da177e4 1245
1da177e4
LT
1246 /* Nuke the page table entry. */
1247 flush_cache_page(vma, address, page_to_pfn(page));
cddb8a5c 1248 pteval = ptep_clear_flush_notify(vma, address, pte);
1da177e4
LT
1249
1250 /* Move the dirty bit to the physical page now the pte is gone. */
1251 if (pte_dirty(pteval))
1252 set_page_dirty(page);
1253
365e9c87
HD
1254 /* Update high watermark before we lower rss */
1255 update_hiwater_rss(mm);
1256
888b9f7c
AK
1257 if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
1258 if (PageAnon(page))
d559db08 1259 dec_mm_counter(mm, MM_ANONPAGES);
888b9f7c 1260 else
d559db08 1261 dec_mm_counter(mm, MM_FILEPAGES);
888b9f7c
AK
1262 set_pte_at(mm, address, pte,
1263 swp_entry_to_pte(make_hwpoison_entry(page)));
1264 } else if (PageAnon(page)) {
4c21e2f2 1265 swp_entry_t entry = { .val = page_private(page) };
0697212a
CL
1266
1267 if (PageSwapCache(page)) {
1268 /*
1269 * Store the swap location in the pte.
1270 * See handle_pte_fault() ...
1271 */
570a335b
HD
1272 if (swap_duplicate(entry) < 0) {
1273 set_pte_at(mm, address, pte, pteval);
1274 ret = SWAP_FAIL;
1275 goto out_unmap;
1276 }
0697212a
CL
1277 if (list_empty(&mm->mmlist)) {
1278 spin_lock(&mmlist_lock);
1279 if (list_empty(&mm->mmlist))
1280 list_add(&mm->mmlist, &init_mm.mmlist);
1281 spin_unlock(&mmlist_lock);
1282 }
d559db08 1283 dec_mm_counter(mm, MM_ANONPAGES);
b084d435 1284 inc_mm_counter(mm, MM_SWAPENTS);
ce1744f4 1285 } else if (IS_ENABLED(CONFIG_MIGRATION)) {
0697212a
CL
1286 /*
1287 * Store the pfn of the page in a special migration
1288 * pte. do_swap_page() will wait until the migration
1289 * pte is removed and then restart fault handling.
1290 */
14fa31b8 1291 BUG_ON(TTU_ACTION(flags) != TTU_MIGRATION);
0697212a 1292 entry = make_migration_entry(page, pte_write(pteval));
1da177e4
LT
1293 }
1294 set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
1295 BUG_ON(pte_file(*pte));
ce1744f4
KK
1296 } else if (IS_ENABLED(CONFIG_MIGRATION) &&
1297 (TTU_ACTION(flags) == TTU_MIGRATION)) {
04e62a29
CL
1298 /* Establish migration entry for a file page */
1299 swp_entry_t entry;
1300 entry = make_migration_entry(page, pte_write(pteval));
1301 set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
1302 } else
d559db08 1303 dec_mm_counter(mm, MM_FILEPAGES);
1da177e4 1304
edc315fd 1305 page_remove_rmap(page);
1da177e4
LT
1306 page_cache_release(page);
1307
1308out_unmap:
c0718806 1309 pte_unmap_unlock(pte, ptl);
caed0f48
KM
1310out:
1311 return ret;
53f79acb 1312
caed0f48
KM
1313out_mlock:
1314 pte_unmap_unlock(pte, ptl);
1315
1316
1317 /*
1318 * We need mmap_sem locking, Otherwise VM_LOCKED check makes
1319 * unstable result and race. Plus, We can't wait here because
2b575eb6 1320 * we now hold anon_vma->mutex or mapping->i_mmap_mutex.
caed0f48
KM
1321 * if trylock failed, the page remain in evictable lru and later
1322 * vmscan could retry to move the page to unevictable lru if the
1323 * page is actually mlocked.
1324 */
1325 if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
1326 if (vma->vm_flags & VM_LOCKED) {
1327 mlock_vma_page(page);
1328 ret = SWAP_MLOCK;
53f79acb 1329 }
caed0f48 1330 up_read(&vma->vm_mm->mmap_sem);
53f79acb 1331 }
1da177e4
LT
1332 return ret;
1333}
1334
1335/*
1336 * objrmap doesn't work for nonlinear VMAs because the assumption that
1337 * offset-into-file correlates with offset-into-virtual-addresses does not hold.
1338 * Consequently, given a particular page and its ->index, we cannot locate the
1339 * ptes which are mapping that page without an exhaustive linear search.
1340 *
1341 * So what this code does is a mini "virtual scan" of each nonlinear VMA which
1342 * maps the file to which the target page belongs. The ->vm_private_data field
1343 * holds the current cursor into that scan. Successive searches will circulate
1344 * around the vma's virtual address space.
1345 *
1346 * So as more replacement pressure is applied to the pages in a nonlinear VMA,
1347 * more scanning pressure is placed against them as well. Eventually pages
1348 * will become fully unmapped and are eligible for eviction.
1349 *
1350 * For very sparsely populated VMAs this is a little inefficient - chances are
1351 * there there won't be many ptes located within the scan cluster. In this case
1352 * maybe we could scan further - to the end of the pte page, perhaps.
b291f000
NP
1353 *
1354 * Mlocked pages: check VM_LOCKED under mmap_sem held for read, if we can
1355 * acquire it without blocking. If vma locked, mlock the pages in the cluster,
1356 * rather than unmapping them. If we encounter the "check_page" that vmscan is
1357 * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN.
1da177e4
LT
1358 */
1359#define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE)
1360#define CLUSTER_MASK (~(CLUSTER_SIZE - 1))
1361
b291f000
NP
1362static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount,
1363 struct vm_area_struct *vma, struct page *check_page)
1da177e4
LT
1364{
1365 struct mm_struct *mm = vma->vm_mm;
1366 pgd_t *pgd;
1367 pud_t *pud;
1368 pmd_t *pmd;
c0718806 1369 pte_t *pte;
1da177e4 1370 pte_t pteval;
c0718806 1371 spinlock_t *ptl;
1da177e4
LT
1372 struct page *page;
1373 unsigned long address;
1374 unsigned long end;
b291f000
NP
1375 int ret = SWAP_AGAIN;
1376 int locked_vma = 0;
1da177e4 1377
1da177e4
LT
1378 address = (vma->vm_start + cursor) & CLUSTER_MASK;
1379 end = address + CLUSTER_SIZE;
1380 if (address < vma->vm_start)
1381 address = vma->vm_start;
1382 if (end > vma->vm_end)
1383 end = vma->vm_end;
1384
1385 pgd = pgd_offset(mm, address);
1386 if (!pgd_present(*pgd))
b291f000 1387 return ret;
1da177e4
LT
1388
1389 pud = pud_offset(pgd, address);
1390 if (!pud_present(*pud))
b291f000 1391 return ret;
1da177e4
LT
1392
1393 pmd = pmd_offset(pud, address);
1394 if (!pmd_present(*pmd))
b291f000
NP
1395 return ret;
1396
1397 /*
af8e3354 1398 * If we can acquire the mmap_sem for read, and vma is VM_LOCKED,
b291f000
NP
1399 * keep the sem while scanning the cluster for mlocking pages.
1400 */
af8e3354 1401 if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
b291f000
NP
1402 locked_vma = (vma->vm_flags & VM_LOCKED);
1403 if (!locked_vma)
1404 up_read(&vma->vm_mm->mmap_sem); /* don't need it */
1405 }
c0718806
HD
1406
1407 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1da177e4 1408
365e9c87
HD
1409 /* Update high watermark before we lower rss */
1410 update_hiwater_rss(mm);
1411
c0718806 1412 for (; address < end; pte++, address += PAGE_SIZE) {
1da177e4
LT
1413 if (!pte_present(*pte))
1414 continue;
6aab341e
LT
1415 page = vm_normal_page(vma, address, *pte);
1416 BUG_ON(!page || PageAnon(page));
1da177e4 1417
b291f000
NP
1418 if (locked_vma) {
1419 mlock_vma_page(page); /* no-op if already mlocked */
1420 if (page == check_page)
1421 ret = SWAP_MLOCK;
1422 continue; /* don't unmap */
1423 }
1424
cddb8a5c 1425 if (ptep_clear_flush_young_notify(vma, address, pte))
1da177e4
LT
1426 continue;
1427
1428 /* Nuke the page table entry. */
eca35133 1429 flush_cache_page(vma, address, pte_pfn(*pte));
cddb8a5c 1430 pteval = ptep_clear_flush_notify(vma, address, pte);
1da177e4
LT
1431
1432 /* If nonlinear, store the file page offset in the pte. */
1433 if (page->index != linear_page_index(vma, address))
1434 set_pte_at(mm, address, pte, pgoff_to_pte(page->index));
1435
1436 /* Move the dirty bit to the physical page now the pte is gone. */
1437 if (pte_dirty(pteval))
1438 set_page_dirty(page);
1439
edc315fd 1440 page_remove_rmap(page);
1da177e4 1441 page_cache_release(page);
d559db08 1442 dec_mm_counter(mm, MM_FILEPAGES);
1da177e4
LT
1443 (*mapcount)--;
1444 }
c0718806 1445 pte_unmap_unlock(pte - 1, ptl);
b291f000
NP
1446 if (locked_vma)
1447 up_read(&vma->vm_mm->mmap_sem);
1448 return ret;
1da177e4
LT
1449}
1450
71e3aac0 1451bool is_vma_temporary_stack(struct vm_area_struct *vma)
a8bef8ff
MG
1452{
1453 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
1454
1455 if (!maybe_stack)
1456 return false;
1457
1458 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
1459 VM_STACK_INCOMPLETE_SETUP)
1460 return true;
1461
1462 return false;
1463}
1464
b291f000
NP
1465/**
1466 * try_to_unmap_anon - unmap or unlock anonymous page using the object-based
1467 * rmap method
1468 * @page: the page to unmap/unlock
8051be5e 1469 * @flags: action and flags
b291f000
NP
1470 *
1471 * Find all the mappings of a page using the mapping pointer and the vma chains
1472 * contained in the anon_vma struct it points to.
1473 *
1474 * This function is only called from try_to_unmap/try_to_munlock for
1475 * anonymous pages.
1476 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1477 * where the page was found will be held for write. So, we won't recheck
1478 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1479 * 'LOCKED.
1480 */
14fa31b8 1481static int try_to_unmap_anon(struct page *page, enum ttu_flags flags)
1da177e4
LT
1482{
1483 struct anon_vma *anon_vma;
5beb4930 1484 struct anon_vma_chain *avc;
1da177e4 1485 int ret = SWAP_AGAIN;
b291f000 1486
1da177e4
LT
1487 anon_vma = page_lock_anon_vma(page);
1488 if (!anon_vma)
1489 return ret;
1490
5beb4930
RR
1491 list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1492 struct vm_area_struct *vma = avc->vma;
a8bef8ff
MG
1493 unsigned long address;
1494
1495 /*
1496 * During exec, a temporary VMA is setup and later moved.
1497 * The VMA is moved under the anon_vma lock but not the
1498 * page tables leading to a race where migration cannot
1499 * find the migration ptes. Rather than increasing the
1500 * locking requirements of exec(), migration skips
1501 * temporary VMAs until after exec() completes.
1502 */
ce1744f4 1503 if (IS_ENABLED(CONFIG_MIGRATION) && (flags & TTU_MIGRATION) &&
a8bef8ff
MG
1504 is_vma_temporary_stack(vma))
1505 continue;
1506
1507 address = vma_address(page, vma);
1cb1729b
HD
1508 if (address == -EFAULT)
1509 continue;
1510 ret = try_to_unmap_one(page, vma, address, flags);
53f79acb
HD
1511 if (ret != SWAP_AGAIN || !page_mapped(page))
1512 break;
1da177e4 1513 }
34bbd704
ON
1514
1515 page_unlock_anon_vma(anon_vma);
1da177e4
LT
1516 return ret;
1517}
1518
1519/**
b291f000
NP
1520 * try_to_unmap_file - unmap/unlock file page using the object-based rmap method
1521 * @page: the page to unmap/unlock
14fa31b8 1522 * @flags: action and flags
1da177e4
LT
1523 *
1524 * Find all the mappings of a page using the mapping pointer and the vma chains
1525 * contained in the address_space struct it points to.
1526 *
b291f000
NP
1527 * This function is only called from try_to_unmap/try_to_munlock for
1528 * object-based pages.
1529 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1530 * where the page was found will be held for write. So, we won't recheck
1531 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1532 * 'LOCKED.
1da177e4 1533 */
14fa31b8 1534static int try_to_unmap_file(struct page *page, enum ttu_flags flags)
1da177e4
LT
1535{
1536 struct address_space *mapping = page->mapping;
1537 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1538 struct vm_area_struct *vma;
1539 struct prio_tree_iter iter;
1540 int ret = SWAP_AGAIN;
1541 unsigned long cursor;
1542 unsigned long max_nl_cursor = 0;
1543 unsigned long max_nl_size = 0;
1544 unsigned int mapcount;
1545
3d48ae45 1546 mutex_lock(&mapping->i_mmap_mutex);
1da177e4 1547 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1cb1729b
HD
1548 unsigned long address = vma_address(page, vma);
1549 if (address == -EFAULT)
1550 continue;
1551 ret = try_to_unmap_one(page, vma, address, flags);
53f79acb
HD
1552 if (ret != SWAP_AGAIN || !page_mapped(page))
1553 goto out;
1da177e4
LT
1554 }
1555
1556 if (list_empty(&mapping->i_mmap_nonlinear))
1557 goto out;
1558
53f79acb
HD
1559 /*
1560 * We don't bother to try to find the munlocked page in nonlinears.
1561 * It's costly. Instead, later, page reclaim logic may call
1562 * try_to_unmap(TTU_MUNLOCK) and recover PG_mlocked lazily.
1563 */
1564 if (TTU_ACTION(flags) == TTU_MUNLOCK)
1565 goto out;
1566
1da177e4
LT
1567 list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
1568 shared.vm_set.list) {
1da177e4
LT
1569 cursor = (unsigned long) vma->vm_private_data;
1570 if (cursor > max_nl_cursor)
1571 max_nl_cursor = cursor;
1572 cursor = vma->vm_end - vma->vm_start;
1573 if (cursor > max_nl_size)
1574 max_nl_size = cursor;
1575 }
1576
b291f000 1577 if (max_nl_size == 0) { /* all nonlinears locked or reserved ? */
1da177e4
LT
1578 ret = SWAP_FAIL;
1579 goto out;
1580 }
1581
1582 /*
1583 * We don't try to search for this page in the nonlinear vmas,
1584 * and page_referenced wouldn't have found it anyway. Instead
1585 * just walk the nonlinear vmas trying to age and unmap some.
1586 * The mapcount of the page we came in with is irrelevant,
1587 * but even so use it as a guide to how hard we should try?
1588 */
1589 mapcount = page_mapcount(page);
1590 if (!mapcount)
1591 goto out;
3d48ae45 1592 cond_resched();
1da177e4
LT
1593
1594 max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
1595 if (max_nl_cursor == 0)
1596 max_nl_cursor = CLUSTER_SIZE;
1597
1598 do {
1599 list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
1600 shared.vm_set.list) {
1da177e4 1601 cursor = (unsigned long) vma->vm_private_data;
839b9685 1602 while ( cursor < max_nl_cursor &&
1da177e4 1603 cursor < vma->vm_end - vma->vm_start) {
53f79acb
HD
1604 if (try_to_unmap_cluster(cursor, &mapcount,
1605 vma, page) == SWAP_MLOCK)
1606 ret = SWAP_MLOCK;
1da177e4
LT
1607 cursor += CLUSTER_SIZE;
1608 vma->vm_private_data = (void *) cursor;
1609 if ((int)mapcount <= 0)
1610 goto out;
1611 }
1612 vma->vm_private_data = (void *) max_nl_cursor;
1613 }
3d48ae45 1614 cond_resched();
1da177e4
LT
1615 max_nl_cursor += CLUSTER_SIZE;
1616 } while (max_nl_cursor <= max_nl_size);
1617
1618 /*
1619 * Don't loop forever (perhaps all the remaining pages are
1620 * in locked vmas). Reset cursor on all unreserved nonlinear
1621 * vmas, now forgetting on which ones it had fallen behind.
1622 */
101d2be7
HD
1623 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
1624 vma->vm_private_data = NULL;
1da177e4 1625out:
3d48ae45 1626 mutex_unlock(&mapping->i_mmap_mutex);
1da177e4
LT
1627 return ret;
1628}
1629
1630/**
1631 * try_to_unmap - try to remove all page table mappings to a page
1632 * @page: the page to get unmapped
14fa31b8 1633 * @flags: action and flags
1da177e4
LT
1634 *
1635 * Tries to remove all the page table entries which are mapping this
1636 * page, used in the pageout path. Caller must hold the page lock.
1637 * Return values are:
1638 *
1639 * SWAP_SUCCESS - we succeeded in removing all mappings
1640 * SWAP_AGAIN - we missed a mapping, try again later
1641 * SWAP_FAIL - the page is unswappable
b291f000 1642 * SWAP_MLOCK - page is mlocked.
1da177e4 1643 */
14fa31b8 1644int try_to_unmap(struct page *page, enum ttu_flags flags)
1da177e4
LT
1645{
1646 int ret;
1647
1da177e4 1648 BUG_ON(!PageLocked(page));
91600e9e 1649 VM_BUG_ON(!PageHuge(page) && PageTransHuge(page));
1da177e4 1650
5ad64688
HD
1651 if (unlikely(PageKsm(page)))
1652 ret = try_to_unmap_ksm(page, flags);
1653 else if (PageAnon(page))
14fa31b8 1654 ret = try_to_unmap_anon(page, flags);
1da177e4 1655 else
14fa31b8 1656 ret = try_to_unmap_file(page, flags);
b291f000 1657 if (ret != SWAP_MLOCK && !page_mapped(page))
1da177e4
LT
1658 ret = SWAP_SUCCESS;
1659 return ret;
1660}
81b4082d 1661
b291f000
NP
1662/**
1663 * try_to_munlock - try to munlock a page
1664 * @page: the page to be munlocked
1665 *
1666 * Called from munlock code. Checks all of the VMAs mapping the page
1667 * to make sure nobody else has this page mlocked. The page will be
1668 * returned with PG_mlocked cleared if no other vmas have it mlocked.
1669 *
1670 * Return values are:
1671 *
53f79acb 1672 * SWAP_AGAIN - no vma is holding page mlocked, or,
b291f000 1673 * SWAP_AGAIN - page mapped in mlocked vma -- couldn't acquire mmap sem
5ad64688 1674 * SWAP_FAIL - page cannot be located at present
b291f000
NP
1675 * SWAP_MLOCK - page is now mlocked.
1676 */
1677int try_to_munlock(struct page *page)
1678{
1679 VM_BUG_ON(!PageLocked(page) || PageLRU(page));
1680
5ad64688
HD
1681 if (unlikely(PageKsm(page)))
1682 return try_to_unmap_ksm(page, TTU_MUNLOCK);
1683 else if (PageAnon(page))
14fa31b8 1684 return try_to_unmap_anon(page, TTU_MUNLOCK);
b291f000 1685 else
14fa31b8 1686 return try_to_unmap_file(page, TTU_MUNLOCK);
b291f000 1687}
e9995ef9 1688
01d8b20d 1689void __put_anon_vma(struct anon_vma *anon_vma)
76545066 1690{
01d8b20d 1691 struct anon_vma *root = anon_vma->root;
76545066 1692
01d8b20d
PZ
1693 if (root != anon_vma && atomic_dec_and_test(&root->refcount))
1694 anon_vma_free(root);
76545066 1695
01d8b20d 1696 anon_vma_free(anon_vma);
76545066 1697}
76545066 1698
e9995ef9
HD
1699#ifdef CONFIG_MIGRATION
1700/*
1701 * rmap_walk() and its helpers rmap_walk_anon() and rmap_walk_file():
1702 * Called by migrate.c to remove migration ptes, but might be used more later.
1703 */
1704static int rmap_walk_anon(struct page *page, int (*rmap_one)(struct page *,
1705 struct vm_area_struct *, unsigned long, void *), void *arg)
1706{
1707 struct anon_vma *anon_vma;
5beb4930 1708 struct anon_vma_chain *avc;
e9995ef9
HD
1709 int ret = SWAP_AGAIN;
1710
1711 /*
1712 * Note: remove_migration_ptes() cannot use page_lock_anon_vma()
1713 * because that depends on page_mapped(); but not all its usages
3f6c8272
MG
1714 * are holding mmap_sem. Users without mmap_sem are required to
1715 * take a reference count to prevent the anon_vma disappearing
e9995ef9
HD
1716 */
1717 anon_vma = page_anon_vma(page);
1718 if (!anon_vma)
1719 return ret;
cba48b98 1720 anon_vma_lock(anon_vma);
5beb4930
RR
1721 list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1722 struct vm_area_struct *vma = avc->vma;
e9995ef9
HD
1723 unsigned long address = vma_address(page, vma);
1724 if (address == -EFAULT)
1725 continue;
1726 ret = rmap_one(page, vma, address, arg);
1727 if (ret != SWAP_AGAIN)
1728 break;
1729 }
cba48b98 1730 anon_vma_unlock(anon_vma);
e9995ef9
HD
1731 return ret;
1732}
1733
1734static int rmap_walk_file(struct page *page, int (*rmap_one)(struct page *,
1735 struct vm_area_struct *, unsigned long, void *), void *arg)
1736{
1737 struct address_space *mapping = page->mapping;
1738 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1739 struct vm_area_struct *vma;
1740 struct prio_tree_iter iter;
1741 int ret = SWAP_AGAIN;
1742
1743 if (!mapping)
1744 return ret;
3d48ae45 1745 mutex_lock(&mapping->i_mmap_mutex);
e9995ef9
HD
1746 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1747 unsigned long address = vma_address(page, vma);
1748 if (address == -EFAULT)
1749 continue;
1750 ret = rmap_one(page, vma, address, arg);
1751 if (ret != SWAP_AGAIN)
1752 break;
1753 }
1754 /*
1755 * No nonlinear handling: being always shared, nonlinear vmas
1756 * never contain migration ptes. Decide what to do about this
1757 * limitation to linear when we need rmap_walk() on nonlinear.
1758 */
3d48ae45 1759 mutex_unlock(&mapping->i_mmap_mutex);
e9995ef9
HD
1760 return ret;
1761}
1762
1763int rmap_walk(struct page *page, int (*rmap_one)(struct page *,
1764 struct vm_area_struct *, unsigned long, void *), void *arg)
1765{
1766 VM_BUG_ON(!PageLocked(page));
1767
1768 if (unlikely(PageKsm(page)))
1769 return rmap_walk_ksm(page, rmap_one, arg);
1770 else if (PageAnon(page))
1771 return rmap_walk_anon(page, rmap_one, arg);
1772 else
1773 return rmap_walk_file(page, rmap_one, arg);
1774}
1775#endif /* CONFIG_MIGRATION */
0fe6e20b 1776
e3390f67 1777#ifdef CONFIG_HUGETLB_PAGE
0fe6e20b
NH
1778/*
1779 * The following three functions are for anonymous (private mapped) hugepages.
1780 * Unlike common anonymous pages, anonymous hugepages have no accounting code
1781 * and no lru code, because we handle hugepages differently from common pages.
1782 */
1783static void __hugepage_set_anon_rmap(struct page *page,
1784 struct vm_area_struct *vma, unsigned long address, int exclusive)
1785{
1786 struct anon_vma *anon_vma = vma->anon_vma;
433abed6 1787
0fe6e20b 1788 BUG_ON(!anon_vma);
433abed6
NH
1789
1790 if (PageAnon(page))
1791 return;
1792 if (!exclusive)
1793 anon_vma = anon_vma->root;
1794
0fe6e20b
NH
1795 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1796 page->mapping = (struct address_space *) anon_vma;
1797 page->index = linear_page_index(vma, address);
1798}
1799
1800void hugepage_add_anon_rmap(struct page *page,
1801 struct vm_area_struct *vma, unsigned long address)
1802{
1803 struct anon_vma *anon_vma = vma->anon_vma;
1804 int first;
a850ea30
NH
1805
1806 BUG_ON(!PageLocked(page));
0fe6e20b 1807 BUG_ON(!anon_vma);
5dbe0af4 1808 /* address might be in next vma when migration races vma_adjust */
0fe6e20b
NH
1809 first = atomic_inc_and_test(&page->_mapcount);
1810 if (first)
1811 __hugepage_set_anon_rmap(page, vma, address, 0);
1812}
1813
1814void hugepage_add_new_anon_rmap(struct page *page,
1815 struct vm_area_struct *vma, unsigned long address)
1816{
1817 BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1818 atomic_set(&page->_mapcount, 0);
1819 __hugepage_set_anon_rmap(page, vma, address, 1);
1820}
e3390f67 1821#endif /* CONFIG_HUGETLB_PAGE */