]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - mm/rmap.c
proc: drop handling non-linear mappings
[mirror_ubuntu-bionic-kernel.git] / mm / rmap.c
1 /*
2 * mm/rmap.c - physical to virtual reverse mappings
3 *
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
6 *
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
9 *
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
13 *
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17 * Contributions by Hugh Dickins 2003, 2004
18 */
19
20 /*
21 * Lock ordering in mm:
22 *
23 * inode->i_mutex (while writing or truncating, not reading or faulting)
24 * mm->mmap_sem
25 * page->flags PG_locked (lock_page)
26 * mapping->i_mmap_rwsem
27 * anon_vma->rwsem
28 * mm->page_table_lock or pte_lock
29 * zone->lru_lock (in mark_page_accessed, isolate_lru_page)
30 * swap_lock (in swap_duplicate, swap_info_get)
31 * mmlist_lock (in mmput, drain_mmlist and others)
32 * mapping->private_lock (in __set_page_dirty_buffers)
33 * inode->i_lock (in set_page_dirty's __mark_inode_dirty)
34 * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
35 * sb_lock (within inode_lock in fs/fs-writeback.c)
36 * mapping->tree_lock (widely used, in set_page_dirty,
37 * in arch-dependent flush_dcache_mmap_lock,
38 * within bdi.wb->list_lock in __sync_single_inode)
39 *
40 * anon_vma->rwsem,mapping->i_mutex (memory_failure, collect_procs_anon)
41 * ->tasklist_lock
42 * pte map lock
43 */
44
45 #include <linux/mm.h>
46 #include <linux/pagemap.h>
47 #include <linux/swap.h>
48 #include <linux/swapops.h>
49 #include <linux/slab.h>
50 #include <linux/init.h>
51 #include <linux/ksm.h>
52 #include <linux/rmap.h>
53 #include <linux/rcupdate.h>
54 #include <linux/export.h>
55 #include <linux/memcontrol.h>
56 #include <linux/mmu_notifier.h>
57 #include <linux/migrate.h>
58 #include <linux/hugetlb.h>
59 #include <linux/backing-dev.h>
60
61 #include <asm/tlbflush.h>
62
63 #include "internal.h"
64
65 static struct kmem_cache *anon_vma_cachep;
66 static struct kmem_cache *anon_vma_chain_cachep;
67
68 static inline struct anon_vma *anon_vma_alloc(void)
69 {
70 struct anon_vma *anon_vma;
71
72 anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
73 if (anon_vma) {
74 atomic_set(&anon_vma->refcount, 1);
75 anon_vma->degree = 1; /* Reference for first vma */
76 anon_vma->parent = anon_vma;
77 /*
78 * Initialise the anon_vma root to point to itself. If called
79 * from fork, the root will be reset to the parents anon_vma.
80 */
81 anon_vma->root = anon_vma;
82 }
83
84 return anon_vma;
85 }
86
87 static inline void anon_vma_free(struct anon_vma *anon_vma)
88 {
89 VM_BUG_ON(atomic_read(&anon_vma->refcount));
90
91 /*
92 * Synchronize against page_lock_anon_vma_read() such that
93 * we can safely hold the lock without the anon_vma getting
94 * freed.
95 *
96 * Relies on the full mb implied by the atomic_dec_and_test() from
97 * put_anon_vma() against the acquire barrier implied by
98 * down_read_trylock() from page_lock_anon_vma_read(). This orders:
99 *
100 * page_lock_anon_vma_read() VS put_anon_vma()
101 * down_read_trylock() atomic_dec_and_test()
102 * LOCK MB
103 * atomic_read() rwsem_is_locked()
104 *
105 * LOCK should suffice since the actual taking of the lock must
106 * happen _before_ what follows.
107 */
108 might_sleep();
109 if (rwsem_is_locked(&anon_vma->root->rwsem)) {
110 anon_vma_lock_write(anon_vma);
111 anon_vma_unlock_write(anon_vma);
112 }
113
114 kmem_cache_free(anon_vma_cachep, anon_vma);
115 }
116
117 static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
118 {
119 return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
120 }
121
122 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
123 {
124 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
125 }
126
127 static void anon_vma_chain_link(struct vm_area_struct *vma,
128 struct anon_vma_chain *avc,
129 struct anon_vma *anon_vma)
130 {
131 avc->vma = vma;
132 avc->anon_vma = anon_vma;
133 list_add(&avc->same_vma, &vma->anon_vma_chain);
134 anon_vma_interval_tree_insert(avc, &anon_vma->rb_root);
135 }
136
137 /**
138 * anon_vma_prepare - attach an anon_vma to a memory region
139 * @vma: the memory region in question
140 *
141 * This makes sure the memory mapping described by 'vma' has
142 * an 'anon_vma' attached to it, so that we can associate the
143 * anonymous pages mapped into it with that anon_vma.
144 *
145 * The common case will be that we already have one, but if
146 * not we either need to find an adjacent mapping that we
147 * can re-use the anon_vma from (very common when the only
148 * reason for splitting a vma has been mprotect()), or we
149 * allocate a new one.
150 *
151 * Anon-vma allocations are very subtle, because we may have
152 * optimistically looked up an anon_vma in page_lock_anon_vma_read()
153 * and that may actually touch the spinlock even in the newly
154 * allocated vma (it depends on RCU to make sure that the
155 * anon_vma isn't actually destroyed).
156 *
157 * As a result, we need to do proper anon_vma locking even
158 * for the new allocation. At the same time, we do not want
159 * to do any locking for the common case of already having
160 * an anon_vma.
161 *
162 * This must be called with the mmap_sem held for reading.
163 */
164 int anon_vma_prepare(struct vm_area_struct *vma)
165 {
166 struct anon_vma *anon_vma = vma->anon_vma;
167 struct anon_vma_chain *avc;
168
169 might_sleep();
170 if (unlikely(!anon_vma)) {
171 struct mm_struct *mm = vma->vm_mm;
172 struct anon_vma *allocated;
173
174 avc = anon_vma_chain_alloc(GFP_KERNEL);
175 if (!avc)
176 goto out_enomem;
177
178 anon_vma = find_mergeable_anon_vma(vma);
179 allocated = NULL;
180 if (!anon_vma) {
181 anon_vma = anon_vma_alloc();
182 if (unlikely(!anon_vma))
183 goto out_enomem_free_avc;
184 allocated = anon_vma;
185 }
186
187 anon_vma_lock_write(anon_vma);
188 /* page_table_lock to protect against threads */
189 spin_lock(&mm->page_table_lock);
190 if (likely(!vma->anon_vma)) {
191 vma->anon_vma = anon_vma;
192 anon_vma_chain_link(vma, avc, anon_vma);
193 /* vma reference or self-parent link for new root */
194 anon_vma->degree++;
195 allocated = NULL;
196 avc = NULL;
197 }
198 spin_unlock(&mm->page_table_lock);
199 anon_vma_unlock_write(anon_vma);
200
201 if (unlikely(allocated))
202 put_anon_vma(allocated);
203 if (unlikely(avc))
204 anon_vma_chain_free(avc);
205 }
206 return 0;
207
208 out_enomem_free_avc:
209 anon_vma_chain_free(avc);
210 out_enomem:
211 return -ENOMEM;
212 }
213
214 /*
215 * This is a useful helper function for locking the anon_vma root as
216 * we traverse the vma->anon_vma_chain, looping over anon_vma's that
217 * have the same vma.
218 *
219 * Such anon_vma's should have the same root, so you'd expect to see
220 * just a single mutex_lock for the whole traversal.
221 */
222 static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
223 {
224 struct anon_vma *new_root = anon_vma->root;
225 if (new_root != root) {
226 if (WARN_ON_ONCE(root))
227 up_write(&root->rwsem);
228 root = new_root;
229 down_write(&root->rwsem);
230 }
231 return root;
232 }
233
234 static inline void unlock_anon_vma_root(struct anon_vma *root)
235 {
236 if (root)
237 up_write(&root->rwsem);
238 }
239
240 /*
241 * Attach the anon_vmas from src to dst.
242 * Returns 0 on success, -ENOMEM on failure.
243 *
244 * If dst->anon_vma is NULL this function tries to find and reuse existing
245 * anon_vma which has no vmas and only one child anon_vma. This prevents
246 * degradation of anon_vma hierarchy to endless linear chain in case of
247 * constantly forking task. On the other hand, an anon_vma with more than one
248 * child isn't reused even if there was no alive vma, thus rmap walker has a
249 * good chance of avoiding scanning the whole hierarchy when it searches where
250 * page is mapped.
251 */
252 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
253 {
254 struct anon_vma_chain *avc, *pavc;
255 struct anon_vma *root = NULL;
256
257 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
258 struct anon_vma *anon_vma;
259
260 avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
261 if (unlikely(!avc)) {
262 unlock_anon_vma_root(root);
263 root = NULL;
264 avc = anon_vma_chain_alloc(GFP_KERNEL);
265 if (!avc)
266 goto enomem_failure;
267 }
268 anon_vma = pavc->anon_vma;
269 root = lock_anon_vma_root(root, anon_vma);
270 anon_vma_chain_link(dst, avc, anon_vma);
271
272 /*
273 * Reuse existing anon_vma if its degree lower than two,
274 * that means it has no vma and only one anon_vma child.
275 *
276 * Do not chose parent anon_vma, otherwise first child
277 * will always reuse it. Root anon_vma is never reused:
278 * it has self-parent reference and at least one child.
279 */
280 if (!dst->anon_vma && anon_vma != src->anon_vma &&
281 anon_vma->degree < 2)
282 dst->anon_vma = anon_vma;
283 }
284 if (dst->anon_vma)
285 dst->anon_vma->degree++;
286 unlock_anon_vma_root(root);
287 return 0;
288
289 enomem_failure:
290 unlink_anon_vmas(dst);
291 return -ENOMEM;
292 }
293
294 /*
295 * Attach vma to its own anon_vma, as well as to the anon_vmas that
296 * the corresponding VMA in the parent process is attached to.
297 * Returns 0 on success, non-zero on failure.
298 */
299 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
300 {
301 struct anon_vma_chain *avc;
302 struct anon_vma *anon_vma;
303 int error;
304
305 /* Don't bother if the parent process has no anon_vma here. */
306 if (!pvma->anon_vma)
307 return 0;
308
309 /* Drop inherited anon_vma, we'll reuse existing or allocate new. */
310 vma->anon_vma = NULL;
311
312 /*
313 * First, attach the new VMA to the parent VMA's anon_vmas,
314 * so rmap can find non-COWed pages in child processes.
315 */
316 error = anon_vma_clone(vma, pvma);
317 if (error)
318 return error;
319
320 /* An existing anon_vma has been reused, all done then. */
321 if (vma->anon_vma)
322 return 0;
323
324 /* Then add our own anon_vma. */
325 anon_vma = anon_vma_alloc();
326 if (!anon_vma)
327 goto out_error;
328 avc = anon_vma_chain_alloc(GFP_KERNEL);
329 if (!avc)
330 goto out_error_free_anon_vma;
331
332 /*
333 * The root anon_vma's spinlock is the lock actually used when we
334 * lock any of the anon_vmas in this anon_vma tree.
335 */
336 anon_vma->root = pvma->anon_vma->root;
337 anon_vma->parent = pvma->anon_vma;
338 /*
339 * With refcounts, an anon_vma can stay around longer than the
340 * process it belongs to. The root anon_vma needs to be pinned until
341 * this anon_vma is freed, because the lock lives in the root.
342 */
343 get_anon_vma(anon_vma->root);
344 /* Mark this anon_vma as the one where our new (COWed) pages go. */
345 vma->anon_vma = anon_vma;
346 anon_vma_lock_write(anon_vma);
347 anon_vma_chain_link(vma, avc, anon_vma);
348 anon_vma->parent->degree++;
349 anon_vma_unlock_write(anon_vma);
350
351 return 0;
352
353 out_error_free_anon_vma:
354 put_anon_vma(anon_vma);
355 out_error:
356 unlink_anon_vmas(vma);
357 return -ENOMEM;
358 }
359
360 void unlink_anon_vmas(struct vm_area_struct *vma)
361 {
362 struct anon_vma_chain *avc, *next;
363 struct anon_vma *root = NULL;
364
365 /*
366 * Unlink each anon_vma chained to the VMA. This list is ordered
367 * from newest to oldest, ensuring the root anon_vma gets freed last.
368 */
369 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
370 struct anon_vma *anon_vma = avc->anon_vma;
371
372 root = lock_anon_vma_root(root, anon_vma);
373 anon_vma_interval_tree_remove(avc, &anon_vma->rb_root);
374
375 /*
376 * Leave empty anon_vmas on the list - we'll need
377 * to free them outside the lock.
378 */
379 if (RB_EMPTY_ROOT(&anon_vma->rb_root)) {
380 anon_vma->parent->degree--;
381 continue;
382 }
383
384 list_del(&avc->same_vma);
385 anon_vma_chain_free(avc);
386 }
387 if (vma->anon_vma)
388 vma->anon_vma->degree--;
389 unlock_anon_vma_root(root);
390
391 /*
392 * Iterate the list once more, it now only contains empty and unlinked
393 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
394 * needing to write-acquire the anon_vma->root->rwsem.
395 */
396 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
397 struct anon_vma *anon_vma = avc->anon_vma;
398
399 BUG_ON(anon_vma->degree);
400 put_anon_vma(anon_vma);
401
402 list_del(&avc->same_vma);
403 anon_vma_chain_free(avc);
404 }
405 }
406
407 static void anon_vma_ctor(void *data)
408 {
409 struct anon_vma *anon_vma = data;
410
411 init_rwsem(&anon_vma->rwsem);
412 atomic_set(&anon_vma->refcount, 0);
413 anon_vma->rb_root = RB_ROOT;
414 }
415
416 void __init anon_vma_init(void)
417 {
418 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
419 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);
420 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, SLAB_PANIC);
421 }
422
423 /*
424 * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
425 *
426 * Since there is no serialization what so ever against page_remove_rmap()
427 * the best this function can do is return a locked anon_vma that might
428 * have been relevant to this page.
429 *
430 * The page might have been remapped to a different anon_vma or the anon_vma
431 * returned may already be freed (and even reused).
432 *
433 * In case it was remapped to a different anon_vma, the new anon_vma will be a
434 * child of the old anon_vma, and the anon_vma lifetime rules will therefore
435 * ensure that any anon_vma obtained from the page will still be valid for as
436 * long as we observe page_mapped() [ hence all those page_mapped() tests ].
437 *
438 * All users of this function must be very careful when walking the anon_vma
439 * chain and verify that the page in question is indeed mapped in it
440 * [ something equivalent to page_mapped_in_vma() ].
441 *
442 * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap()
443 * that the anon_vma pointer from page->mapping is valid if there is a
444 * mapcount, we can dereference the anon_vma after observing those.
445 */
446 struct anon_vma *page_get_anon_vma(struct page *page)
447 {
448 struct anon_vma *anon_vma = NULL;
449 unsigned long anon_mapping;
450
451 rcu_read_lock();
452 anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
453 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
454 goto out;
455 if (!page_mapped(page))
456 goto out;
457
458 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
459 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
460 anon_vma = NULL;
461 goto out;
462 }
463
464 /*
465 * If this page is still mapped, then its anon_vma cannot have been
466 * freed. But if it has been unmapped, we have no security against the
467 * anon_vma structure being freed and reused (for another anon_vma:
468 * SLAB_DESTROY_BY_RCU guarantees that - so the atomic_inc_not_zero()
469 * above cannot corrupt).
470 */
471 if (!page_mapped(page)) {
472 rcu_read_unlock();
473 put_anon_vma(anon_vma);
474 return NULL;
475 }
476 out:
477 rcu_read_unlock();
478
479 return anon_vma;
480 }
481
482 /*
483 * Similar to page_get_anon_vma() except it locks the anon_vma.
484 *
485 * Its a little more complex as it tries to keep the fast path to a single
486 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
487 * reference like with page_get_anon_vma() and then block on the mutex.
488 */
489 struct anon_vma *page_lock_anon_vma_read(struct page *page)
490 {
491 struct anon_vma *anon_vma = NULL;
492 struct anon_vma *root_anon_vma;
493 unsigned long anon_mapping;
494
495 rcu_read_lock();
496 anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
497 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
498 goto out;
499 if (!page_mapped(page))
500 goto out;
501
502 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
503 root_anon_vma = ACCESS_ONCE(anon_vma->root);
504 if (down_read_trylock(&root_anon_vma->rwsem)) {
505 /*
506 * If the page is still mapped, then this anon_vma is still
507 * its anon_vma, and holding the mutex ensures that it will
508 * not go away, see anon_vma_free().
509 */
510 if (!page_mapped(page)) {
511 up_read(&root_anon_vma->rwsem);
512 anon_vma = NULL;
513 }
514 goto out;
515 }
516
517 /* trylock failed, we got to sleep */
518 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
519 anon_vma = NULL;
520 goto out;
521 }
522
523 if (!page_mapped(page)) {
524 rcu_read_unlock();
525 put_anon_vma(anon_vma);
526 return NULL;
527 }
528
529 /* we pinned the anon_vma, its safe to sleep */
530 rcu_read_unlock();
531 anon_vma_lock_read(anon_vma);
532
533 if (atomic_dec_and_test(&anon_vma->refcount)) {
534 /*
535 * Oops, we held the last refcount, release the lock
536 * and bail -- can't simply use put_anon_vma() because
537 * we'll deadlock on the anon_vma_lock_write() recursion.
538 */
539 anon_vma_unlock_read(anon_vma);
540 __put_anon_vma(anon_vma);
541 anon_vma = NULL;
542 }
543
544 return anon_vma;
545
546 out:
547 rcu_read_unlock();
548 return anon_vma;
549 }
550
551 void page_unlock_anon_vma_read(struct anon_vma *anon_vma)
552 {
553 anon_vma_unlock_read(anon_vma);
554 }
555
556 /*
557 * At what user virtual address is page expected in @vma?
558 */
559 static inline unsigned long
560 __vma_address(struct page *page, struct vm_area_struct *vma)
561 {
562 pgoff_t pgoff = page_to_pgoff(page);
563 return vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
564 }
565
566 inline unsigned long
567 vma_address(struct page *page, struct vm_area_struct *vma)
568 {
569 unsigned long address = __vma_address(page, vma);
570
571 /* page should be within @vma mapping range */
572 VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
573
574 return address;
575 }
576
577 /*
578 * At what user virtual address is page expected in vma?
579 * Caller should check the page is actually part of the vma.
580 */
581 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
582 {
583 unsigned long address;
584 if (PageAnon(page)) {
585 struct anon_vma *page__anon_vma = page_anon_vma(page);
586 /*
587 * Note: swapoff's unuse_vma() is more efficient with this
588 * check, and needs it to match anon_vma when KSM is active.
589 */
590 if (!vma->anon_vma || !page__anon_vma ||
591 vma->anon_vma->root != page__anon_vma->root)
592 return -EFAULT;
593 } else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
594 if (!vma->vm_file ||
595 vma->vm_file->f_mapping != page->mapping)
596 return -EFAULT;
597 } else
598 return -EFAULT;
599 address = __vma_address(page, vma);
600 if (unlikely(address < vma->vm_start || address >= vma->vm_end))
601 return -EFAULT;
602 return address;
603 }
604
605 pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address)
606 {
607 pgd_t *pgd;
608 pud_t *pud;
609 pmd_t *pmd = NULL;
610 pmd_t pmde;
611
612 pgd = pgd_offset(mm, address);
613 if (!pgd_present(*pgd))
614 goto out;
615
616 pud = pud_offset(pgd, address);
617 if (!pud_present(*pud))
618 goto out;
619
620 pmd = pmd_offset(pud, address);
621 /*
622 * Some THP functions use the sequence pmdp_clear_flush(), set_pmd_at()
623 * without holding anon_vma lock for write. So when looking for a
624 * genuine pmde (in which to find pte), test present and !THP together.
625 */
626 pmde = *pmd;
627 barrier();
628 if (!pmd_present(pmde) || pmd_trans_huge(pmde))
629 pmd = NULL;
630 out:
631 return pmd;
632 }
633
634 /*
635 * Check that @page is mapped at @address into @mm.
636 *
637 * If @sync is false, page_check_address may perform a racy check to avoid
638 * the page table lock when the pte is not present (helpful when reclaiming
639 * highly shared pages).
640 *
641 * On success returns with pte mapped and locked.
642 */
643 pte_t *__page_check_address(struct page *page, struct mm_struct *mm,
644 unsigned long address, spinlock_t **ptlp, int sync)
645 {
646 pmd_t *pmd;
647 pte_t *pte;
648 spinlock_t *ptl;
649
650 if (unlikely(PageHuge(page))) {
651 /* when pud is not present, pte will be NULL */
652 pte = huge_pte_offset(mm, address);
653 if (!pte)
654 return NULL;
655
656 ptl = huge_pte_lockptr(page_hstate(page), mm, pte);
657 goto check;
658 }
659
660 pmd = mm_find_pmd(mm, address);
661 if (!pmd)
662 return NULL;
663
664 pte = pte_offset_map(pmd, address);
665 /* Make a quick check before getting the lock */
666 if (!sync && !pte_present(*pte)) {
667 pte_unmap(pte);
668 return NULL;
669 }
670
671 ptl = pte_lockptr(mm, pmd);
672 check:
673 spin_lock(ptl);
674 if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
675 *ptlp = ptl;
676 return pte;
677 }
678 pte_unmap_unlock(pte, ptl);
679 return NULL;
680 }
681
682 /**
683 * page_mapped_in_vma - check whether a page is really mapped in a VMA
684 * @page: the page to test
685 * @vma: the VMA to test
686 *
687 * Returns 1 if the page is mapped into the page tables of the VMA, 0
688 * if the page is not mapped into the page tables of this VMA. Only
689 * valid for normal file or anonymous VMAs.
690 */
691 int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
692 {
693 unsigned long address;
694 pte_t *pte;
695 spinlock_t *ptl;
696
697 address = __vma_address(page, vma);
698 if (unlikely(address < vma->vm_start || address >= vma->vm_end))
699 return 0;
700 pte = page_check_address(page, vma->vm_mm, address, &ptl, 1);
701 if (!pte) /* the page is not in this mm */
702 return 0;
703 pte_unmap_unlock(pte, ptl);
704
705 return 1;
706 }
707
708 struct page_referenced_arg {
709 int mapcount;
710 int referenced;
711 unsigned long vm_flags;
712 struct mem_cgroup *memcg;
713 };
714 /*
715 * arg: page_referenced_arg will be passed
716 */
717 static int page_referenced_one(struct page *page, struct vm_area_struct *vma,
718 unsigned long address, void *arg)
719 {
720 struct mm_struct *mm = vma->vm_mm;
721 spinlock_t *ptl;
722 int referenced = 0;
723 struct page_referenced_arg *pra = arg;
724
725 if (unlikely(PageTransHuge(page))) {
726 pmd_t *pmd;
727
728 /*
729 * rmap might return false positives; we must filter
730 * these out using page_check_address_pmd().
731 */
732 pmd = page_check_address_pmd(page, mm, address,
733 PAGE_CHECK_ADDRESS_PMD_FLAG, &ptl);
734 if (!pmd)
735 return SWAP_AGAIN;
736
737 if (vma->vm_flags & VM_LOCKED) {
738 spin_unlock(ptl);
739 pra->vm_flags |= VM_LOCKED;
740 return SWAP_FAIL; /* To break the loop */
741 }
742
743 /* go ahead even if the pmd is pmd_trans_splitting() */
744 if (pmdp_clear_flush_young_notify(vma, address, pmd))
745 referenced++;
746 spin_unlock(ptl);
747 } else {
748 pte_t *pte;
749
750 /*
751 * rmap might return false positives; we must filter
752 * these out using page_check_address().
753 */
754 pte = page_check_address(page, mm, address, &ptl, 0);
755 if (!pte)
756 return SWAP_AGAIN;
757
758 if (vma->vm_flags & VM_LOCKED) {
759 pte_unmap_unlock(pte, ptl);
760 pra->vm_flags |= VM_LOCKED;
761 return SWAP_FAIL; /* To break the loop */
762 }
763
764 if (ptep_clear_flush_young_notify(vma, address, pte)) {
765 /*
766 * Don't treat a reference through a sequentially read
767 * mapping as such. If the page has been used in
768 * another mapping, we will catch it; if this other
769 * mapping is already gone, the unmap path will have
770 * set PG_referenced or activated the page.
771 */
772 if (likely(!(vma->vm_flags & VM_SEQ_READ)))
773 referenced++;
774 }
775 pte_unmap_unlock(pte, ptl);
776 }
777
778 if (referenced) {
779 pra->referenced++;
780 pra->vm_flags |= vma->vm_flags;
781 }
782
783 pra->mapcount--;
784 if (!pra->mapcount)
785 return SWAP_SUCCESS; /* To break the loop */
786
787 return SWAP_AGAIN;
788 }
789
790 static bool invalid_page_referenced_vma(struct vm_area_struct *vma, void *arg)
791 {
792 struct page_referenced_arg *pra = arg;
793 struct mem_cgroup *memcg = pra->memcg;
794
795 if (!mm_match_cgroup(vma->vm_mm, memcg))
796 return true;
797
798 return false;
799 }
800
801 /**
802 * page_referenced - test if the page was referenced
803 * @page: the page to test
804 * @is_locked: caller holds lock on the page
805 * @memcg: target memory cgroup
806 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
807 *
808 * Quick test_and_clear_referenced for all mappings to a page,
809 * returns the number of ptes which referenced the page.
810 */
811 int page_referenced(struct page *page,
812 int is_locked,
813 struct mem_cgroup *memcg,
814 unsigned long *vm_flags)
815 {
816 int ret;
817 int we_locked = 0;
818 struct page_referenced_arg pra = {
819 .mapcount = page_mapcount(page),
820 .memcg = memcg,
821 };
822 struct rmap_walk_control rwc = {
823 .rmap_one = page_referenced_one,
824 .arg = (void *)&pra,
825 .anon_lock = page_lock_anon_vma_read,
826 };
827
828 *vm_flags = 0;
829 if (!page_mapped(page))
830 return 0;
831
832 if (!page_rmapping(page))
833 return 0;
834
835 if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
836 we_locked = trylock_page(page);
837 if (!we_locked)
838 return 1;
839 }
840
841 /*
842 * If we are reclaiming on behalf of a cgroup, skip
843 * counting on behalf of references from different
844 * cgroups
845 */
846 if (memcg) {
847 rwc.invalid_vma = invalid_page_referenced_vma;
848 }
849
850 ret = rmap_walk(page, &rwc);
851 *vm_flags = pra.vm_flags;
852
853 if (we_locked)
854 unlock_page(page);
855
856 return pra.referenced;
857 }
858
859 static int page_mkclean_one(struct page *page, struct vm_area_struct *vma,
860 unsigned long address, void *arg)
861 {
862 struct mm_struct *mm = vma->vm_mm;
863 pte_t *pte;
864 spinlock_t *ptl;
865 int ret = 0;
866 int *cleaned = arg;
867
868 pte = page_check_address(page, mm, address, &ptl, 1);
869 if (!pte)
870 goto out;
871
872 if (pte_dirty(*pte) || pte_write(*pte)) {
873 pte_t entry;
874
875 flush_cache_page(vma, address, pte_pfn(*pte));
876 entry = ptep_clear_flush(vma, address, pte);
877 entry = pte_wrprotect(entry);
878 entry = pte_mkclean(entry);
879 set_pte_at(mm, address, pte, entry);
880 ret = 1;
881 }
882
883 pte_unmap_unlock(pte, ptl);
884
885 if (ret) {
886 mmu_notifier_invalidate_page(mm, address);
887 (*cleaned)++;
888 }
889 out:
890 return SWAP_AGAIN;
891 }
892
893 static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg)
894 {
895 if (vma->vm_flags & VM_SHARED)
896 return false;
897
898 return true;
899 }
900
901 int page_mkclean(struct page *page)
902 {
903 int cleaned = 0;
904 struct address_space *mapping;
905 struct rmap_walk_control rwc = {
906 .arg = (void *)&cleaned,
907 .rmap_one = page_mkclean_one,
908 .invalid_vma = invalid_mkclean_vma,
909 };
910
911 BUG_ON(!PageLocked(page));
912
913 if (!page_mapped(page))
914 return 0;
915
916 mapping = page_mapping(page);
917 if (!mapping)
918 return 0;
919
920 rmap_walk(page, &rwc);
921
922 return cleaned;
923 }
924 EXPORT_SYMBOL_GPL(page_mkclean);
925
926 /**
927 * page_move_anon_rmap - move a page to our anon_vma
928 * @page: the page to move to our anon_vma
929 * @vma: the vma the page belongs to
930 * @address: the user virtual address mapped
931 *
932 * When a page belongs exclusively to one process after a COW event,
933 * that page can be moved into the anon_vma that belongs to just that
934 * process, so the rmap code will not search the parent or sibling
935 * processes.
936 */
937 void page_move_anon_rmap(struct page *page,
938 struct vm_area_struct *vma, unsigned long address)
939 {
940 struct anon_vma *anon_vma = vma->anon_vma;
941
942 VM_BUG_ON_PAGE(!PageLocked(page), page);
943 VM_BUG_ON_VMA(!anon_vma, vma);
944 VM_BUG_ON_PAGE(page->index != linear_page_index(vma, address), page);
945
946 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
947 page->mapping = (struct address_space *) anon_vma;
948 }
949
950 /**
951 * __page_set_anon_rmap - set up new anonymous rmap
952 * @page: Page to add to rmap
953 * @vma: VM area to add page to.
954 * @address: User virtual address of the mapping
955 * @exclusive: the page is exclusively owned by the current process
956 */
957 static void __page_set_anon_rmap(struct page *page,
958 struct vm_area_struct *vma, unsigned long address, int exclusive)
959 {
960 struct anon_vma *anon_vma = vma->anon_vma;
961
962 BUG_ON(!anon_vma);
963
964 if (PageAnon(page))
965 return;
966
967 /*
968 * If the page isn't exclusively mapped into this vma,
969 * we must use the _oldest_ possible anon_vma for the
970 * page mapping!
971 */
972 if (!exclusive)
973 anon_vma = anon_vma->root;
974
975 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
976 page->mapping = (struct address_space *) anon_vma;
977 page->index = linear_page_index(vma, address);
978 }
979
980 /**
981 * __page_check_anon_rmap - sanity check anonymous rmap addition
982 * @page: the page to add the mapping to
983 * @vma: the vm area in which the mapping is added
984 * @address: the user virtual address mapped
985 */
986 static void __page_check_anon_rmap(struct page *page,
987 struct vm_area_struct *vma, unsigned long address)
988 {
989 #ifdef CONFIG_DEBUG_VM
990 /*
991 * The page's anon-rmap details (mapping and index) are guaranteed to
992 * be set up correctly at this point.
993 *
994 * We have exclusion against page_add_anon_rmap because the caller
995 * always holds the page locked, except if called from page_dup_rmap,
996 * in which case the page is already known to be setup.
997 *
998 * We have exclusion against page_add_new_anon_rmap because those pages
999 * are initially only visible via the pagetables, and the pte is locked
1000 * over the call to page_add_new_anon_rmap.
1001 */
1002 BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root);
1003 BUG_ON(page->index != linear_page_index(vma, address));
1004 #endif
1005 }
1006
1007 /**
1008 * page_add_anon_rmap - add pte mapping to an anonymous page
1009 * @page: the page to add the mapping to
1010 * @vma: the vm area in which the mapping is added
1011 * @address: the user virtual address mapped
1012 *
1013 * The caller needs to hold the pte lock, and the page must be locked in
1014 * the anon_vma case: to serialize mapping,index checking after setting,
1015 * and to ensure that PageAnon is not being upgraded racily to PageKsm
1016 * (but PageKsm is never downgraded to PageAnon).
1017 */
1018 void page_add_anon_rmap(struct page *page,
1019 struct vm_area_struct *vma, unsigned long address)
1020 {
1021 do_page_add_anon_rmap(page, vma, address, 0);
1022 }
1023
1024 /*
1025 * Special version of the above for do_swap_page, which often runs
1026 * into pages that are exclusively owned by the current process.
1027 * Everybody else should continue to use page_add_anon_rmap above.
1028 */
1029 void do_page_add_anon_rmap(struct page *page,
1030 struct vm_area_struct *vma, unsigned long address, int exclusive)
1031 {
1032 int first = atomic_inc_and_test(&page->_mapcount);
1033 if (first) {
1034 /*
1035 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1036 * these counters are not modified in interrupt context, and
1037 * pte lock(a spinlock) is held, which implies preemption
1038 * disabled.
1039 */
1040 if (PageTransHuge(page))
1041 __inc_zone_page_state(page,
1042 NR_ANON_TRANSPARENT_HUGEPAGES);
1043 __mod_zone_page_state(page_zone(page), NR_ANON_PAGES,
1044 hpage_nr_pages(page));
1045 }
1046 if (unlikely(PageKsm(page)))
1047 return;
1048
1049 VM_BUG_ON_PAGE(!PageLocked(page), page);
1050 /* address might be in next vma when migration races vma_adjust */
1051 if (first)
1052 __page_set_anon_rmap(page, vma, address, exclusive);
1053 else
1054 __page_check_anon_rmap(page, vma, address);
1055 }
1056
1057 /**
1058 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
1059 * @page: the page to add the mapping to
1060 * @vma: the vm area in which the mapping is added
1061 * @address: the user virtual address mapped
1062 *
1063 * Same as page_add_anon_rmap but must only be called on *new* pages.
1064 * This means the inc-and-test can be bypassed.
1065 * Page does not have to be locked.
1066 */
1067 void page_add_new_anon_rmap(struct page *page,
1068 struct vm_area_struct *vma, unsigned long address)
1069 {
1070 VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
1071 SetPageSwapBacked(page);
1072 atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */
1073 if (PageTransHuge(page))
1074 __inc_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
1075 __mod_zone_page_state(page_zone(page), NR_ANON_PAGES,
1076 hpage_nr_pages(page));
1077 __page_set_anon_rmap(page, vma, address, 1);
1078 }
1079
1080 /**
1081 * page_add_file_rmap - add pte mapping to a file page
1082 * @page: the page to add the mapping to
1083 *
1084 * The caller needs to hold the pte lock.
1085 */
1086 void page_add_file_rmap(struct page *page)
1087 {
1088 struct mem_cgroup *memcg;
1089 unsigned long flags;
1090 bool locked;
1091
1092 memcg = mem_cgroup_begin_page_stat(page, &locked, &flags);
1093 if (atomic_inc_and_test(&page->_mapcount)) {
1094 __inc_zone_page_state(page, NR_FILE_MAPPED);
1095 mem_cgroup_inc_page_stat(memcg, MEM_CGROUP_STAT_FILE_MAPPED);
1096 }
1097 mem_cgroup_end_page_stat(memcg, &locked, &flags);
1098 }
1099
1100 static void page_remove_file_rmap(struct page *page)
1101 {
1102 struct mem_cgroup *memcg;
1103 unsigned long flags;
1104 bool locked;
1105
1106 memcg = mem_cgroup_begin_page_stat(page, &locked, &flags);
1107
1108 /* page still mapped by someone else? */
1109 if (!atomic_add_negative(-1, &page->_mapcount))
1110 goto out;
1111
1112 /* Hugepages are not counted in NR_FILE_MAPPED for now. */
1113 if (unlikely(PageHuge(page)))
1114 goto out;
1115
1116 /*
1117 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1118 * these counters are not modified in interrupt context, and
1119 * pte lock(a spinlock) is held, which implies preemption disabled.
1120 */
1121 __dec_zone_page_state(page, NR_FILE_MAPPED);
1122 mem_cgroup_dec_page_stat(memcg, MEM_CGROUP_STAT_FILE_MAPPED);
1123
1124 if (unlikely(PageMlocked(page)))
1125 clear_page_mlock(page);
1126 out:
1127 mem_cgroup_end_page_stat(memcg, &locked, &flags);
1128 }
1129
1130 /**
1131 * page_remove_rmap - take down pte mapping from a page
1132 * @page: page to remove mapping from
1133 *
1134 * The caller needs to hold the pte lock.
1135 */
1136 void page_remove_rmap(struct page *page)
1137 {
1138 if (!PageAnon(page)) {
1139 page_remove_file_rmap(page);
1140 return;
1141 }
1142
1143 /* page still mapped by someone else? */
1144 if (!atomic_add_negative(-1, &page->_mapcount))
1145 return;
1146
1147 /* Hugepages are not counted in NR_ANON_PAGES for now. */
1148 if (unlikely(PageHuge(page)))
1149 return;
1150
1151 /*
1152 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1153 * these counters are not modified in interrupt context, and
1154 * pte lock(a spinlock) is held, which implies preemption disabled.
1155 */
1156 if (PageTransHuge(page))
1157 __dec_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
1158
1159 __mod_zone_page_state(page_zone(page), NR_ANON_PAGES,
1160 -hpage_nr_pages(page));
1161
1162 if (unlikely(PageMlocked(page)))
1163 clear_page_mlock(page);
1164
1165 /*
1166 * It would be tidy to reset the PageAnon mapping here,
1167 * but that might overwrite a racing page_add_anon_rmap
1168 * which increments mapcount after us but sets mapping
1169 * before us: so leave the reset to free_hot_cold_page,
1170 * and remember that it's only reliable while mapped.
1171 * Leaving it set also helps swapoff to reinstate ptes
1172 * faster for those pages still in swapcache.
1173 */
1174 }
1175
1176 /*
1177 * @arg: enum ttu_flags will be passed to this argument
1178 */
1179 static int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
1180 unsigned long address, void *arg)
1181 {
1182 struct mm_struct *mm = vma->vm_mm;
1183 pte_t *pte;
1184 pte_t pteval;
1185 spinlock_t *ptl;
1186 int ret = SWAP_AGAIN;
1187 enum ttu_flags flags = (enum ttu_flags)arg;
1188
1189 pte = page_check_address(page, mm, address, &ptl, 0);
1190 if (!pte)
1191 goto out;
1192
1193 /*
1194 * If the page is mlock()d, we cannot swap it out.
1195 * If it's recently referenced (perhaps page_referenced
1196 * skipped over this mm) then we should reactivate it.
1197 */
1198 if (!(flags & TTU_IGNORE_MLOCK)) {
1199 if (vma->vm_flags & VM_LOCKED)
1200 goto out_mlock;
1201
1202 if (flags & TTU_MUNLOCK)
1203 goto out_unmap;
1204 }
1205 if (!(flags & TTU_IGNORE_ACCESS)) {
1206 if (ptep_clear_flush_young_notify(vma, address, pte)) {
1207 ret = SWAP_FAIL;
1208 goto out_unmap;
1209 }
1210 }
1211
1212 /* Nuke the page table entry. */
1213 flush_cache_page(vma, address, page_to_pfn(page));
1214 pteval = ptep_clear_flush(vma, address, pte);
1215
1216 /* Move the dirty bit to the physical page now the pte is gone. */
1217 if (pte_dirty(pteval))
1218 set_page_dirty(page);
1219
1220 /* Update high watermark before we lower rss */
1221 update_hiwater_rss(mm);
1222
1223 if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
1224 if (!PageHuge(page)) {
1225 if (PageAnon(page))
1226 dec_mm_counter(mm, MM_ANONPAGES);
1227 else
1228 dec_mm_counter(mm, MM_FILEPAGES);
1229 }
1230 set_pte_at(mm, address, pte,
1231 swp_entry_to_pte(make_hwpoison_entry(page)));
1232 } else if (pte_unused(pteval)) {
1233 /*
1234 * The guest indicated that the page content is of no
1235 * interest anymore. Simply discard the pte, vmscan
1236 * will take care of the rest.
1237 */
1238 if (PageAnon(page))
1239 dec_mm_counter(mm, MM_ANONPAGES);
1240 else
1241 dec_mm_counter(mm, MM_FILEPAGES);
1242 } else if (PageAnon(page)) {
1243 swp_entry_t entry = { .val = page_private(page) };
1244 pte_t swp_pte;
1245
1246 if (PageSwapCache(page)) {
1247 /*
1248 * Store the swap location in the pte.
1249 * See handle_pte_fault() ...
1250 */
1251 if (swap_duplicate(entry) < 0) {
1252 set_pte_at(mm, address, pte, pteval);
1253 ret = SWAP_FAIL;
1254 goto out_unmap;
1255 }
1256 if (list_empty(&mm->mmlist)) {
1257 spin_lock(&mmlist_lock);
1258 if (list_empty(&mm->mmlist))
1259 list_add(&mm->mmlist, &init_mm.mmlist);
1260 spin_unlock(&mmlist_lock);
1261 }
1262 dec_mm_counter(mm, MM_ANONPAGES);
1263 inc_mm_counter(mm, MM_SWAPENTS);
1264 } else if (IS_ENABLED(CONFIG_MIGRATION)) {
1265 /*
1266 * Store the pfn of the page in a special migration
1267 * pte. do_swap_page() will wait until the migration
1268 * pte is removed and then restart fault handling.
1269 */
1270 BUG_ON(!(flags & TTU_MIGRATION));
1271 entry = make_migration_entry(page, pte_write(pteval));
1272 }
1273 swp_pte = swp_entry_to_pte(entry);
1274 if (pte_soft_dirty(pteval))
1275 swp_pte = pte_swp_mksoft_dirty(swp_pte);
1276 set_pte_at(mm, address, pte, swp_pte);
1277 BUG_ON(pte_file(*pte));
1278 } else if (IS_ENABLED(CONFIG_MIGRATION) &&
1279 (flags & TTU_MIGRATION)) {
1280 /* Establish migration entry for a file page */
1281 swp_entry_t entry;
1282 entry = make_migration_entry(page, pte_write(pteval));
1283 set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
1284 } else
1285 dec_mm_counter(mm, MM_FILEPAGES);
1286
1287 page_remove_rmap(page);
1288 page_cache_release(page);
1289
1290 out_unmap:
1291 pte_unmap_unlock(pte, ptl);
1292 if (ret != SWAP_FAIL && !(flags & TTU_MUNLOCK))
1293 mmu_notifier_invalidate_page(mm, address);
1294 out:
1295 return ret;
1296
1297 out_mlock:
1298 pte_unmap_unlock(pte, ptl);
1299
1300
1301 /*
1302 * We need mmap_sem locking, Otherwise VM_LOCKED check makes
1303 * unstable result and race. Plus, We can't wait here because
1304 * we now hold anon_vma->rwsem or mapping->i_mmap_rwsem.
1305 * if trylock failed, the page remain in evictable lru and later
1306 * vmscan could retry to move the page to unevictable lru if the
1307 * page is actually mlocked.
1308 */
1309 if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
1310 if (vma->vm_flags & VM_LOCKED) {
1311 mlock_vma_page(page);
1312 ret = SWAP_MLOCK;
1313 }
1314 up_read(&vma->vm_mm->mmap_sem);
1315 }
1316 return ret;
1317 }
1318
1319 /*
1320 * objrmap doesn't work for nonlinear VMAs because the assumption that
1321 * offset-into-file correlates with offset-into-virtual-addresses does not hold.
1322 * Consequently, given a particular page and its ->index, we cannot locate the
1323 * ptes which are mapping that page without an exhaustive linear search.
1324 *
1325 * So what this code does is a mini "virtual scan" of each nonlinear VMA which
1326 * maps the file to which the target page belongs. The ->vm_private_data field
1327 * holds the current cursor into that scan. Successive searches will circulate
1328 * around the vma's virtual address space.
1329 *
1330 * So as more replacement pressure is applied to the pages in a nonlinear VMA,
1331 * more scanning pressure is placed against them as well. Eventually pages
1332 * will become fully unmapped and are eligible for eviction.
1333 *
1334 * For very sparsely populated VMAs this is a little inefficient - chances are
1335 * there there won't be many ptes located within the scan cluster. In this case
1336 * maybe we could scan further - to the end of the pte page, perhaps.
1337 *
1338 * Mlocked pages: check VM_LOCKED under mmap_sem held for read, if we can
1339 * acquire it without blocking. If vma locked, mlock the pages in the cluster,
1340 * rather than unmapping them. If we encounter the "check_page" that vmscan is
1341 * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN.
1342 */
1343 #define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE)
1344 #define CLUSTER_MASK (~(CLUSTER_SIZE - 1))
1345
1346 static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount,
1347 struct vm_area_struct *vma, struct page *check_page)
1348 {
1349 struct mm_struct *mm = vma->vm_mm;
1350 pmd_t *pmd;
1351 pte_t *pte;
1352 pte_t pteval;
1353 spinlock_t *ptl;
1354 struct page *page;
1355 unsigned long address;
1356 unsigned long mmun_start; /* For mmu_notifiers */
1357 unsigned long mmun_end; /* For mmu_notifiers */
1358 unsigned long end;
1359 int ret = SWAP_AGAIN;
1360 int locked_vma = 0;
1361
1362 address = (vma->vm_start + cursor) & CLUSTER_MASK;
1363 end = address + CLUSTER_SIZE;
1364 if (address < vma->vm_start)
1365 address = vma->vm_start;
1366 if (end > vma->vm_end)
1367 end = vma->vm_end;
1368
1369 pmd = mm_find_pmd(mm, address);
1370 if (!pmd)
1371 return ret;
1372
1373 mmun_start = address;
1374 mmun_end = end;
1375 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1376
1377 /*
1378 * If we can acquire the mmap_sem for read, and vma is VM_LOCKED,
1379 * keep the sem while scanning the cluster for mlocking pages.
1380 */
1381 if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
1382 locked_vma = (vma->vm_flags & VM_LOCKED);
1383 if (!locked_vma)
1384 up_read(&vma->vm_mm->mmap_sem); /* don't need it */
1385 }
1386
1387 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1388
1389 /* Update high watermark before we lower rss */
1390 update_hiwater_rss(mm);
1391
1392 for (; address < end; pte++, address += PAGE_SIZE) {
1393 if (!pte_present(*pte))
1394 continue;
1395 page = vm_normal_page(vma, address, *pte);
1396 BUG_ON(!page || PageAnon(page));
1397
1398 if (locked_vma) {
1399 if (page == check_page) {
1400 /* we know we have check_page locked */
1401 mlock_vma_page(page);
1402 ret = SWAP_MLOCK;
1403 } else if (trylock_page(page)) {
1404 /*
1405 * If we can lock the page, perform mlock.
1406 * Otherwise leave the page alone, it will be
1407 * eventually encountered again later.
1408 */
1409 mlock_vma_page(page);
1410 unlock_page(page);
1411 }
1412 continue; /* don't unmap */
1413 }
1414
1415 /*
1416 * No need for _notify because we're within an
1417 * mmu_notifier_invalidate_range_ {start|end} scope.
1418 */
1419 if (ptep_clear_flush_young(vma, address, pte))
1420 continue;
1421
1422 /* Nuke the page table entry. */
1423 flush_cache_page(vma, address, pte_pfn(*pte));
1424 pteval = ptep_clear_flush_notify(vma, address, pte);
1425
1426 /* If nonlinear, store the file page offset in the pte. */
1427 if (page->index != linear_page_index(vma, address)) {
1428 pte_t ptfile = pgoff_to_pte(page->index);
1429 if (pte_soft_dirty(pteval))
1430 ptfile = pte_file_mksoft_dirty(ptfile);
1431 set_pte_at(mm, address, pte, ptfile);
1432 }
1433
1434 /* Move the dirty bit to the physical page now the pte is gone. */
1435 if (pte_dirty(pteval))
1436 set_page_dirty(page);
1437
1438 page_remove_rmap(page);
1439 page_cache_release(page);
1440 dec_mm_counter(mm, MM_FILEPAGES);
1441 (*mapcount)--;
1442 }
1443 pte_unmap_unlock(pte - 1, ptl);
1444 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1445 if (locked_vma)
1446 up_read(&vma->vm_mm->mmap_sem);
1447 return ret;
1448 }
1449
1450 static int try_to_unmap_nonlinear(struct page *page,
1451 struct address_space *mapping, void *arg)
1452 {
1453 struct vm_area_struct *vma;
1454 int ret = SWAP_AGAIN;
1455 unsigned long cursor;
1456 unsigned long max_nl_cursor = 0;
1457 unsigned long max_nl_size = 0;
1458 unsigned int mapcount;
1459
1460 list_for_each_entry(vma,
1461 &mapping->i_mmap_nonlinear, shared.nonlinear) {
1462
1463 cursor = (unsigned long) vma->vm_private_data;
1464 if (cursor > max_nl_cursor)
1465 max_nl_cursor = cursor;
1466 cursor = vma->vm_end - vma->vm_start;
1467 if (cursor > max_nl_size)
1468 max_nl_size = cursor;
1469 }
1470
1471 if (max_nl_size == 0) { /* all nonlinears locked or reserved ? */
1472 return SWAP_FAIL;
1473 }
1474
1475 /*
1476 * We don't try to search for this page in the nonlinear vmas,
1477 * and page_referenced wouldn't have found it anyway. Instead
1478 * just walk the nonlinear vmas trying to age and unmap some.
1479 * The mapcount of the page we came in with is irrelevant,
1480 * but even so use it as a guide to how hard we should try?
1481 */
1482 mapcount = page_mapcount(page);
1483 if (!mapcount)
1484 return ret;
1485
1486 cond_resched();
1487
1488 max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
1489 if (max_nl_cursor == 0)
1490 max_nl_cursor = CLUSTER_SIZE;
1491
1492 do {
1493 list_for_each_entry(vma,
1494 &mapping->i_mmap_nonlinear, shared.nonlinear) {
1495
1496 cursor = (unsigned long) vma->vm_private_data;
1497 while (cursor < max_nl_cursor &&
1498 cursor < vma->vm_end - vma->vm_start) {
1499 if (try_to_unmap_cluster(cursor, &mapcount,
1500 vma, page) == SWAP_MLOCK)
1501 ret = SWAP_MLOCK;
1502 cursor += CLUSTER_SIZE;
1503 vma->vm_private_data = (void *) cursor;
1504 if ((int)mapcount <= 0)
1505 return ret;
1506 }
1507 vma->vm_private_data = (void *) max_nl_cursor;
1508 }
1509 cond_resched();
1510 max_nl_cursor += CLUSTER_SIZE;
1511 } while (max_nl_cursor <= max_nl_size);
1512
1513 /*
1514 * Don't loop forever (perhaps all the remaining pages are
1515 * in locked vmas). Reset cursor on all unreserved nonlinear
1516 * vmas, now forgetting on which ones it had fallen behind.
1517 */
1518 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.nonlinear)
1519 vma->vm_private_data = NULL;
1520
1521 return ret;
1522 }
1523
1524 bool is_vma_temporary_stack(struct vm_area_struct *vma)
1525 {
1526 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
1527
1528 if (!maybe_stack)
1529 return false;
1530
1531 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
1532 VM_STACK_INCOMPLETE_SETUP)
1533 return true;
1534
1535 return false;
1536 }
1537
1538 static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg)
1539 {
1540 return is_vma_temporary_stack(vma);
1541 }
1542
1543 static int page_not_mapped(struct page *page)
1544 {
1545 return !page_mapped(page);
1546 };
1547
1548 /**
1549 * try_to_unmap - try to remove all page table mappings to a page
1550 * @page: the page to get unmapped
1551 * @flags: action and flags
1552 *
1553 * Tries to remove all the page table entries which are mapping this
1554 * page, used in the pageout path. Caller must hold the page lock.
1555 * Return values are:
1556 *
1557 * SWAP_SUCCESS - we succeeded in removing all mappings
1558 * SWAP_AGAIN - we missed a mapping, try again later
1559 * SWAP_FAIL - the page is unswappable
1560 * SWAP_MLOCK - page is mlocked.
1561 */
1562 int try_to_unmap(struct page *page, enum ttu_flags flags)
1563 {
1564 int ret;
1565 struct rmap_walk_control rwc = {
1566 .rmap_one = try_to_unmap_one,
1567 .arg = (void *)flags,
1568 .done = page_not_mapped,
1569 .file_nonlinear = try_to_unmap_nonlinear,
1570 .anon_lock = page_lock_anon_vma_read,
1571 };
1572
1573 VM_BUG_ON_PAGE(!PageHuge(page) && PageTransHuge(page), page);
1574
1575 /*
1576 * During exec, a temporary VMA is setup and later moved.
1577 * The VMA is moved under the anon_vma lock but not the
1578 * page tables leading to a race where migration cannot
1579 * find the migration ptes. Rather than increasing the
1580 * locking requirements of exec(), migration skips
1581 * temporary VMAs until after exec() completes.
1582 */
1583 if ((flags & TTU_MIGRATION) && !PageKsm(page) && PageAnon(page))
1584 rwc.invalid_vma = invalid_migration_vma;
1585
1586 ret = rmap_walk(page, &rwc);
1587
1588 if (ret != SWAP_MLOCK && !page_mapped(page))
1589 ret = SWAP_SUCCESS;
1590 return ret;
1591 }
1592
1593 /**
1594 * try_to_munlock - try to munlock a page
1595 * @page: the page to be munlocked
1596 *
1597 * Called from munlock code. Checks all of the VMAs mapping the page
1598 * to make sure nobody else has this page mlocked. The page will be
1599 * returned with PG_mlocked cleared if no other vmas have it mlocked.
1600 *
1601 * Return values are:
1602 *
1603 * SWAP_AGAIN - no vma is holding page mlocked, or,
1604 * SWAP_AGAIN - page mapped in mlocked vma -- couldn't acquire mmap sem
1605 * SWAP_FAIL - page cannot be located at present
1606 * SWAP_MLOCK - page is now mlocked.
1607 */
1608 int try_to_munlock(struct page *page)
1609 {
1610 int ret;
1611 struct rmap_walk_control rwc = {
1612 .rmap_one = try_to_unmap_one,
1613 .arg = (void *)TTU_MUNLOCK,
1614 .done = page_not_mapped,
1615 /*
1616 * We don't bother to try to find the munlocked page in
1617 * nonlinears. It's costly. Instead, later, page reclaim logic
1618 * may call try_to_unmap() and recover PG_mlocked lazily.
1619 */
1620 .file_nonlinear = NULL,
1621 .anon_lock = page_lock_anon_vma_read,
1622
1623 };
1624
1625 VM_BUG_ON_PAGE(!PageLocked(page) || PageLRU(page), page);
1626
1627 ret = rmap_walk(page, &rwc);
1628 return ret;
1629 }
1630
1631 void __put_anon_vma(struct anon_vma *anon_vma)
1632 {
1633 struct anon_vma *root = anon_vma->root;
1634
1635 anon_vma_free(anon_vma);
1636 if (root != anon_vma && atomic_dec_and_test(&root->refcount))
1637 anon_vma_free(root);
1638 }
1639
1640 static struct anon_vma *rmap_walk_anon_lock(struct page *page,
1641 struct rmap_walk_control *rwc)
1642 {
1643 struct anon_vma *anon_vma;
1644
1645 if (rwc->anon_lock)
1646 return rwc->anon_lock(page);
1647
1648 /*
1649 * Note: remove_migration_ptes() cannot use page_lock_anon_vma_read()
1650 * because that depends on page_mapped(); but not all its usages
1651 * are holding mmap_sem. Users without mmap_sem are required to
1652 * take a reference count to prevent the anon_vma disappearing
1653 */
1654 anon_vma = page_anon_vma(page);
1655 if (!anon_vma)
1656 return NULL;
1657
1658 anon_vma_lock_read(anon_vma);
1659 return anon_vma;
1660 }
1661
1662 /*
1663 * rmap_walk_anon - do something to anonymous page using the object-based
1664 * rmap method
1665 * @page: the page to be handled
1666 * @rwc: control variable according to each walk type
1667 *
1668 * Find all the mappings of a page using the mapping pointer and the vma chains
1669 * contained in the anon_vma struct it points to.
1670 *
1671 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1672 * where the page was found will be held for write. So, we won't recheck
1673 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1674 * LOCKED.
1675 */
1676 static int rmap_walk_anon(struct page *page, struct rmap_walk_control *rwc)
1677 {
1678 struct anon_vma *anon_vma;
1679 pgoff_t pgoff;
1680 struct anon_vma_chain *avc;
1681 int ret = SWAP_AGAIN;
1682
1683 anon_vma = rmap_walk_anon_lock(page, rwc);
1684 if (!anon_vma)
1685 return ret;
1686
1687 pgoff = page_to_pgoff(page);
1688 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
1689 struct vm_area_struct *vma = avc->vma;
1690 unsigned long address = vma_address(page, vma);
1691
1692 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1693 continue;
1694
1695 ret = rwc->rmap_one(page, vma, address, rwc->arg);
1696 if (ret != SWAP_AGAIN)
1697 break;
1698 if (rwc->done && rwc->done(page))
1699 break;
1700 }
1701 anon_vma_unlock_read(anon_vma);
1702 return ret;
1703 }
1704
1705 /*
1706 * rmap_walk_file - do something to file page using the object-based rmap method
1707 * @page: the page to be handled
1708 * @rwc: control variable according to each walk type
1709 *
1710 * Find all the mappings of a page using the mapping pointer and the vma chains
1711 * contained in the address_space struct it points to.
1712 *
1713 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1714 * where the page was found will be held for write. So, we won't recheck
1715 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1716 * LOCKED.
1717 */
1718 static int rmap_walk_file(struct page *page, struct rmap_walk_control *rwc)
1719 {
1720 struct address_space *mapping = page->mapping;
1721 pgoff_t pgoff;
1722 struct vm_area_struct *vma;
1723 int ret = SWAP_AGAIN;
1724
1725 /*
1726 * The page lock not only makes sure that page->mapping cannot
1727 * suddenly be NULLified by truncation, it makes sure that the
1728 * structure at mapping cannot be freed and reused yet,
1729 * so we can safely take mapping->i_mmap_rwsem.
1730 */
1731 VM_BUG_ON_PAGE(!PageLocked(page), page);
1732
1733 if (!mapping)
1734 return ret;
1735
1736 pgoff = page_to_pgoff(page);
1737 i_mmap_lock_read(mapping);
1738 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
1739 unsigned long address = vma_address(page, vma);
1740
1741 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1742 continue;
1743
1744 ret = rwc->rmap_one(page, vma, address, rwc->arg);
1745 if (ret != SWAP_AGAIN)
1746 goto done;
1747 if (rwc->done && rwc->done(page))
1748 goto done;
1749 }
1750
1751 if (!rwc->file_nonlinear)
1752 goto done;
1753
1754 if (list_empty(&mapping->i_mmap_nonlinear))
1755 goto done;
1756
1757 ret = rwc->file_nonlinear(page, mapping, rwc->arg);
1758 done:
1759 i_mmap_unlock_read(mapping);
1760 return ret;
1761 }
1762
1763 int rmap_walk(struct page *page, struct rmap_walk_control *rwc)
1764 {
1765 if (unlikely(PageKsm(page)))
1766 return rmap_walk_ksm(page, rwc);
1767 else if (PageAnon(page))
1768 return rmap_walk_anon(page, rwc);
1769 else
1770 return rmap_walk_file(page, rwc);
1771 }
1772
1773 #ifdef CONFIG_HUGETLB_PAGE
1774 /*
1775 * The following three functions are for anonymous (private mapped) hugepages.
1776 * Unlike common anonymous pages, anonymous hugepages have no accounting code
1777 * and no lru code, because we handle hugepages differently from common pages.
1778 */
1779 static void __hugepage_set_anon_rmap(struct page *page,
1780 struct vm_area_struct *vma, unsigned long address, int exclusive)
1781 {
1782 struct anon_vma *anon_vma = vma->anon_vma;
1783
1784 BUG_ON(!anon_vma);
1785
1786 if (PageAnon(page))
1787 return;
1788 if (!exclusive)
1789 anon_vma = anon_vma->root;
1790
1791 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1792 page->mapping = (struct address_space *) anon_vma;
1793 page->index = linear_page_index(vma, address);
1794 }
1795
1796 void hugepage_add_anon_rmap(struct page *page,
1797 struct vm_area_struct *vma, unsigned long address)
1798 {
1799 struct anon_vma *anon_vma = vma->anon_vma;
1800 int first;
1801
1802 BUG_ON(!PageLocked(page));
1803 BUG_ON(!anon_vma);
1804 /* address might be in next vma when migration races vma_adjust */
1805 first = atomic_inc_and_test(&page->_mapcount);
1806 if (first)
1807 __hugepage_set_anon_rmap(page, vma, address, 0);
1808 }
1809
1810 void hugepage_add_new_anon_rmap(struct page *page,
1811 struct vm_area_struct *vma, unsigned long address)
1812 {
1813 BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1814 atomic_set(&page->_mapcount, 0);
1815 __hugepage_set_anon_rmap(page, vma, address, 1);
1816 }
1817 #endif /* CONFIG_HUGETLB_PAGE */