]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - mm/rmap.c
proc: drop handling non-linear mappings
[mirror_ubuntu-bionic-kernel.git] / mm / rmap.c
CommitLineData
1da177e4
LT
1/*
2 * mm/rmap.c - physical to virtual reverse mappings
3 *
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
6 *
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
9 *
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
13 *
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
98f32602 17 * Contributions by Hugh Dickins 2003, 2004
1da177e4
LT
18 */
19
20/*
21 * Lock ordering in mm:
22 *
1b1dcc1b 23 * inode->i_mutex (while writing or truncating, not reading or faulting)
82591e6e
NP
24 * mm->mmap_sem
25 * page->flags PG_locked (lock_page)
c8c06efa 26 * mapping->i_mmap_rwsem
5a505085 27 * anon_vma->rwsem
82591e6e
NP
28 * mm->page_table_lock or pte_lock
29 * zone->lru_lock (in mark_page_accessed, isolate_lru_page)
30 * swap_lock (in swap_duplicate, swap_info_get)
31 * mmlist_lock (in mmput, drain_mmlist and others)
32 * mapping->private_lock (in __set_page_dirty_buffers)
250df6ed 33 * inode->i_lock (in set_page_dirty's __mark_inode_dirty)
f758eeab 34 * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
82591e6e
NP
35 * sb_lock (within inode_lock in fs/fs-writeback.c)
36 * mapping->tree_lock (widely used, in set_page_dirty,
37 * in arch-dependent flush_dcache_mmap_lock,
f758eeab 38 * within bdi.wb->list_lock in __sync_single_inode)
6a46079c 39 *
5a505085 40 * anon_vma->rwsem,mapping->i_mutex (memory_failure, collect_procs_anon)
9b679320 41 * ->tasklist_lock
6a46079c 42 * pte map lock
1da177e4
LT
43 */
44
45#include <linux/mm.h>
46#include <linux/pagemap.h>
47#include <linux/swap.h>
48#include <linux/swapops.h>
49#include <linux/slab.h>
50#include <linux/init.h>
5ad64688 51#include <linux/ksm.h>
1da177e4
LT
52#include <linux/rmap.h>
53#include <linux/rcupdate.h>
b95f1b31 54#include <linux/export.h>
8a9f3ccd 55#include <linux/memcontrol.h>
cddb8a5c 56#include <linux/mmu_notifier.h>
64cdd548 57#include <linux/migrate.h>
0fe6e20b 58#include <linux/hugetlb.h>
ef5d437f 59#include <linux/backing-dev.h>
1da177e4
LT
60
61#include <asm/tlbflush.h>
62
b291f000
NP
63#include "internal.h"
64
fdd2e5f8 65static struct kmem_cache *anon_vma_cachep;
5beb4930 66static struct kmem_cache *anon_vma_chain_cachep;
fdd2e5f8
AB
67
68static inline struct anon_vma *anon_vma_alloc(void)
69{
01d8b20d
PZ
70 struct anon_vma *anon_vma;
71
72 anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
73 if (anon_vma) {
74 atomic_set(&anon_vma->refcount, 1);
7a3ef208
KK
75 anon_vma->degree = 1; /* Reference for first vma */
76 anon_vma->parent = anon_vma;
01d8b20d
PZ
77 /*
78 * Initialise the anon_vma root to point to itself. If called
79 * from fork, the root will be reset to the parents anon_vma.
80 */
81 anon_vma->root = anon_vma;
82 }
83
84 return anon_vma;
fdd2e5f8
AB
85}
86
01d8b20d 87static inline void anon_vma_free(struct anon_vma *anon_vma)
fdd2e5f8 88{
01d8b20d 89 VM_BUG_ON(atomic_read(&anon_vma->refcount));
88c22088
PZ
90
91 /*
4fc3f1d6 92 * Synchronize against page_lock_anon_vma_read() such that
88c22088
PZ
93 * we can safely hold the lock without the anon_vma getting
94 * freed.
95 *
96 * Relies on the full mb implied by the atomic_dec_and_test() from
97 * put_anon_vma() against the acquire barrier implied by
4fc3f1d6 98 * down_read_trylock() from page_lock_anon_vma_read(). This orders:
88c22088 99 *
4fc3f1d6
IM
100 * page_lock_anon_vma_read() VS put_anon_vma()
101 * down_read_trylock() atomic_dec_and_test()
88c22088 102 * LOCK MB
4fc3f1d6 103 * atomic_read() rwsem_is_locked()
88c22088
PZ
104 *
105 * LOCK should suffice since the actual taking of the lock must
106 * happen _before_ what follows.
107 */
7f39dda9 108 might_sleep();
5a505085 109 if (rwsem_is_locked(&anon_vma->root->rwsem)) {
4fc3f1d6 110 anon_vma_lock_write(anon_vma);
08b52706 111 anon_vma_unlock_write(anon_vma);
88c22088
PZ
112 }
113
fdd2e5f8
AB
114 kmem_cache_free(anon_vma_cachep, anon_vma);
115}
1da177e4 116
dd34739c 117static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
5beb4930 118{
dd34739c 119 return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
5beb4930
RR
120}
121
e574b5fd 122static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
5beb4930
RR
123{
124 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
125}
126
6583a843
KC
127static void anon_vma_chain_link(struct vm_area_struct *vma,
128 struct anon_vma_chain *avc,
129 struct anon_vma *anon_vma)
130{
131 avc->vma = vma;
132 avc->anon_vma = anon_vma;
133 list_add(&avc->same_vma, &vma->anon_vma_chain);
bf181b9f 134 anon_vma_interval_tree_insert(avc, &anon_vma->rb_root);
6583a843
KC
135}
136
d9d332e0
LT
137/**
138 * anon_vma_prepare - attach an anon_vma to a memory region
139 * @vma: the memory region in question
140 *
141 * This makes sure the memory mapping described by 'vma' has
142 * an 'anon_vma' attached to it, so that we can associate the
143 * anonymous pages mapped into it with that anon_vma.
144 *
145 * The common case will be that we already have one, but if
23a0790a 146 * not we either need to find an adjacent mapping that we
d9d332e0
LT
147 * can re-use the anon_vma from (very common when the only
148 * reason for splitting a vma has been mprotect()), or we
149 * allocate a new one.
150 *
151 * Anon-vma allocations are very subtle, because we may have
4fc3f1d6 152 * optimistically looked up an anon_vma in page_lock_anon_vma_read()
d9d332e0
LT
153 * and that may actually touch the spinlock even in the newly
154 * allocated vma (it depends on RCU to make sure that the
155 * anon_vma isn't actually destroyed).
156 *
157 * As a result, we need to do proper anon_vma locking even
158 * for the new allocation. At the same time, we do not want
159 * to do any locking for the common case of already having
160 * an anon_vma.
161 *
162 * This must be called with the mmap_sem held for reading.
163 */
1da177e4
LT
164int anon_vma_prepare(struct vm_area_struct *vma)
165{
166 struct anon_vma *anon_vma = vma->anon_vma;
5beb4930 167 struct anon_vma_chain *avc;
1da177e4
LT
168
169 might_sleep();
170 if (unlikely(!anon_vma)) {
171 struct mm_struct *mm = vma->vm_mm;
d9d332e0 172 struct anon_vma *allocated;
1da177e4 173
dd34739c 174 avc = anon_vma_chain_alloc(GFP_KERNEL);
5beb4930
RR
175 if (!avc)
176 goto out_enomem;
177
1da177e4 178 anon_vma = find_mergeable_anon_vma(vma);
d9d332e0
LT
179 allocated = NULL;
180 if (!anon_vma) {
1da177e4
LT
181 anon_vma = anon_vma_alloc();
182 if (unlikely(!anon_vma))
5beb4930 183 goto out_enomem_free_avc;
1da177e4 184 allocated = anon_vma;
1da177e4
LT
185 }
186
4fc3f1d6 187 anon_vma_lock_write(anon_vma);
1da177e4
LT
188 /* page_table_lock to protect against threads */
189 spin_lock(&mm->page_table_lock);
190 if (likely(!vma->anon_vma)) {
191 vma->anon_vma = anon_vma;
6583a843 192 anon_vma_chain_link(vma, avc, anon_vma);
7a3ef208
KK
193 /* vma reference or self-parent link for new root */
194 anon_vma->degree++;
1da177e4 195 allocated = NULL;
31f2b0eb 196 avc = NULL;
1da177e4
LT
197 }
198 spin_unlock(&mm->page_table_lock);
08b52706 199 anon_vma_unlock_write(anon_vma);
31f2b0eb
ON
200
201 if (unlikely(allocated))
01d8b20d 202 put_anon_vma(allocated);
31f2b0eb 203 if (unlikely(avc))
5beb4930 204 anon_vma_chain_free(avc);
1da177e4
LT
205 }
206 return 0;
5beb4930
RR
207
208 out_enomem_free_avc:
209 anon_vma_chain_free(avc);
210 out_enomem:
211 return -ENOMEM;
1da177e4
LT
212}
213
bb4aa396
LT
214/*
215 * This is a useful helper function for locking the anon_vma root as
216 * we traverse the vma->anon_vma_chain, looping over anon_vma's that
217 * have the same vma.
218 *
219 * Such anon_vma's should have the same root, so you'd expect to see
220 * just a single mutex_lock for the whole traversal.
221 */
222static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
223{
224 struct anon_vma *new_root = anon_vma->root;
225 if (new_root != root) {
226 if (WARN_ON_ONCE(root))
5a505085 227 up_write(&root->rwsem);
bb4aa396 228 root = new_root;
5a505085 229 down_write(&root->rwsem);
bb4aa396
LT
230 }
231 return root;
232}
233
234static inline void unlock_anon_vma_root(struct anon_vma *root)
235{
236 if (root)
5a505085 237 up_write(&root->rwsem);
bb4aa396
LT
238}
239
5beb4930
RR
240/*
241 * Attach the anon_vmas from src to dst.
242 * Returns 0 on success, -ENOMEM on failure.
7a3ef208
KK
243 *
244 * If dst->anon_vma is NULL this function tries to find and reuse existing
245 * anon_vma which has no vmas and only one child anon_vma. This prevents
246 * degradation of anon_vma hierarchy to endless linear chain in case of
247 * constantly forking task. On the other hand, an anon_vma with more than one
248 * child isn't reused even if there was no alive vma, thus rmap walker has a
249 * good chance of avoiding scanning the whole hierarchy when it searches where
250 * page is mapped.
5beb4930
RR
251 */
252int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
1da177e4 253{
5beb4930 254 struct anon_vma_chain *avc, *pavc;
bb4aa396 255 struct anon_vma *root = NULL;
5beb4930 256
646d87b4 257 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
bb4aa396
LT
258 struct anon_vma *anon_vma;
259
dd34739c
LT
260 avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
261 if (unlikely(!avc)) {
262 unlock_anon_vma_root(root);
263 root = NULL;
264 avc = anon_vma_chain_alloc(GFP_KERNEL);
265 if (!avc)
266 goto enomem_failure;
267 }
bb4aa396
LT
268 anon_vma = pavc->anon_vma;
269 root = lock_anon_vma_root(root, anon_vma);
270 anon_vma_chain_link(dst, avc, anon_vma);
7a3ef208
KK
271
272 /*
273 * Reuse existing anon_vma if its degree lower than two,
274 * that means it has no vma and only one anon_vma child.
275 *
276 * Do not chose parent anon_vma, otherwise first child
277 * will always reuse it. Root anon_vma is never reused:
278 * it has self-parent reference and at least one child.
279 */
280 if (!dst->anon_vma && anon_vma != src->anon_vma &&
281 anon_vma->degree < 2)
282 dst->anon_vma = anon_vma;
5beb4930 283 }
7a3ef208
KK
284 if (dst->anon_vma)
285 dst->anon_vma->degree++;
bb4aa396 286 unlock_anon_vma_root(root);
5beb4930 287 return 0;
1da177e4 288
5beb4930
RR
289 enomem_failure:
290 unlink_anon_vmas(dst);
291 return -ENOMEM;
1da177e4
LT
292}
293
5beb4930
RR
294/*
295 * Attach vma to its own anon_vma, as well as to the anon_vmas that
296 * the corresponding VMA in the parent process is attached to.
297 * Returns 0 on success, non-zero on failure.
298 */
299int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
1da177e4 300{
5beb4930
RR
301 struct anon_vma_chain *avc;
302 struct anon_vma *anon_vma;
c4ea95d7 303 int error;
1da177e4 304
5beb4930
RR
305 /* Don't bother if the parent process has no anon_vma here. */
306 if (!pvma->anon_vma)
307 return 0;
308
7a3ef208
KK
309 /* Drop inherited anon_vma, we'll reuse existing or allocate new. */
310 vma->anon_vma = NULL;
311
5beb4930
RR
312 /*
313 * First, attach the new VMA to the parent VMA's anon_vmas,
314 * so rmap can find non-COWed pages in child processes.
315 */
c4ea95d7
DF
316 error = anon_vma_clone(vma, pvma);
317 if (error)
318 return error;
5beb4930 319
7a3ef208
KK
320 /* An existing anon_vma has been reused, all done then. */
321 if (vma->anon_vma)
322 return 0;
323
5beb4930
RR
324 /* Then add our own anon_vma. */
325 anon_vma = anon_vma_alloc();
326 if (!anon_vma)
327 goto out_error;
dd34739c 328 avc = anon_vma_chain_alloc(GFP_KERNEL);
5beb4930
RR
329 if (!avc)
330 goto out_error_free_anon_vma;
5c341ee1
RR
331
332 /*
333 * The root anon_vma's spinlock is the lock actually used when we
334 * lock any of the anon_vmas in this anon_vma tree.
335 */
336 anon_vma->root = pvma->anon_vma->root;
7a3ef208 337 anon_vma->parent = pvma->anon_vma;
76545066 338 /*
01d8b20d
PZ
339 * With refcounts, an anon_vma can stay around longer than the
340 * process it belongs to. The root anon_vma needs to be pinned until
341 * this anon_vma is freed, because the lock lives in the root.
76545066
RR
342 */
343 get_anon_vma(anon_vma->root);
5beb4930
RR
344 /* Mark this anon_vma as the one where our new (COWed) pages go. */
345 vma->anon_vma = anon_vma;
4fc3f1d6 346 anon_vma_lock_write(anon_vma);
5c341ee1 347 anon_vma_chain_link(vma, avc, anon_vma);
7a3ef208 348 anon_vma->parent->degree++;
08b52706 349 anon_vma_unlock_write(anon_vma);
5beb4930
RR
350
351 return 0;
352
353 out_error_free_anon_vma:
01d8b20d 354 put_anon_vma(anon_vma);
5beb4930 355 out_error:
4946d54c 356 unlink_anon_vmas(vma);
5beb4930 357 return -ENOMEM;
1da177e4
LT
358}
359
5beb4930
RR
360void unlink_anon_vmas(struct vm_area_struct *vma)
361{
362 struct anon_vma_chain *avc, *next;
eee2acba 363 struct anon_vma *root = NULL;
5beb4930 364
5c341ee1
RR
365 /*
366 * Unlink each anon_vma chained to the VMA. This list is ordered
367 * from newest to oldest, ensuring the root anon_vma gets freed last.
368 */
5beb4930 369 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
eee2acba
PZ
370 struct anon_vma *anon_vma = avc->anon_vma;
371
372 root = lock_anon_vma_root(root, anon_vma);
bf181b9f 373 anon_vma_interval_tree_remove(avc, &anon_vma->rb_root);
eee2acba
PZ
374
375 /*
376 * Leave empty anon_vmas on the list - we'll need
377 * to free them outside the lock.
378 */
7a3ef208
KK
379 if (RB_EMPTY_ROOT(&anon_vma->rb_root)) {
380 anon_vma->parent->degree--;
eee2acba 381 continue;
7a3ef208 382 }
eee2acba
PZ
383
384 list_del(&avc->same_vma);
385 anon_vma_chain_free(avc);
386 }
7a3ef208
KK
387 if (vma->anon_vma)
388 vma->anon_vma->degree--;
eee2acba
PZ
389 unlock_anon_vma_root(root);
390
391 /*
392 * Iterate the list once more, it now only contains empty and unlinked
393 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
5a505085 394 * needing to write-acquire the anon_vma->root->rwsem.
eee2acba
PZ
395 */
396 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
397 struct anon_vma *anon_vma = avc->anon_vma;
398
7a3ef208 399 BUG_ON(anon_vma->degree);
eee2acba
PZ
400 put_anon_vma(anon_vma);
401
5beb4930
RR
402 list_del(&avc->same_vma);
403 anon_vma_chain_free(avc);
404 }
405}
406
51cc5068 407static void anon_vma_ctor(void *data)
1da177e4 408{
a35afb83 409 struct anon_vma *anon_vma = data;
1da177e4 410
5a505085 411 init_rwsem(&anon_vma->rwsem);
83813267 412 atomic_set(&anon_vma->refcount, 0);
bf181b9f 413 anon_vma->rb_root = RB_ROOT;
1da177e4
LT
414}
415
416void __init anon_vma_init(void)
417{
418 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
20c2df83 419 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);
5beb4930 420 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, SLAB_PANIC);
1da177e4
LT
421}
422
423/*
6111e4ca
PZ
424 * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
425 *
426 * Since there is no serialization what so ever against page_remove_rmap()
427 * the best this function can do is return a locked anon_vma that might
428 * have been relevant to this page.
429 *
430 * The page might have been remapped to a different anon_vma or the anon_vma
431 * returned may already be freed (and even reused).
432 *
bc658c96
PZ
433 * In case it was remapped to a different anon_vma, the new anon_vma will be a
434 * child of the old anon_vma, and the anon_vma lifetime rules will therefore
435 * ensure that any anon_vma obtained from the page will still be valid for as
436 * long as we observe page_mapped() [ hence all those page_mapped() tests ].
437 *
6111e4ca
PZ
438 * All users of this function must be very careful when walking the anon_vma
439 * chain and verify that the page in question is indeed mapped in it
440 * [ something equivalent to page_mapped_in_vma() ].
441 *
442 * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap()
443 * that the anon_vma pointer from page->mapping is valid if there is a
444 * mapcount, we can dereference the anon_vma after observing those.
1da177e4 445 */
746b18d4 446struct anon_vma *page_get_anon_vma(struct page *page)
1da177e4 447{
746b18d4 448 struct anon_vma *anon_vma = NULL;
1da177e4
LT
449 unsigned long anon_mapping;
450
451 rcu_read_lock();
80e14822 452 anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
3ca7b3c5 453 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
1da177e4
LT
454 goto out;
455 if (!page_mapped(page))
456 goto out;
457
458 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
746b18d4
PZ
459 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
460 anon_vma = NULL;
461 goto out;
462 }
f1819427
HD
463
464 /*
465 * If this page is still mapped, then its anon_vma cannot have been
746b18d4
PZ
466 * freed. But if it has been unmapped, we have no security against the
467 * anon_vma structure being freed and reused (for another anon_vma:
468 * SLAB_DESTROY_BY_RCU guarantees that - so the atomic_inc_not_zero()
469 * above cannot corrupt).
f1819427 470 */
746b18d4 471 if (!page_mapped(page)) {
7f39dda9 472 rcu_read_unlock();
746b18d4 473 put_anon_vma(anon_vma);
7f39dda9 474 return NULL;
746b18d4 475 }
1da177e4
LT
476out:
477 rcu_read_unlock();
746b18d4
PZ
478
479 return anon_vma;
480}
481
88c22088
PZ
482/*
483 * Similar to page_get_anon_vma() except it locks the anon_vma.
484 *
485 * Its a little more complex as it tries to keep the fast path to a single
486 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
487 * reference like with page_get_anon_vma() and then block on the mutex.
488 */
4fc3f1d6 489struct anon_vma *page_lock_anon_vma_read(struct page *page)
746b18d4 490{
88c22088 491 struct anon_vma *anon_vma = NULL;
eee0f252 492 struct anon_vma *root_anon_vma;
88c22088 493 unsigned long anon_mapping;
746b18d4 494
88c22088
PZ
495 rcu_read_lock();
496 anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
497 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
498 goto out;
499 if (!page_mapped(page))
500 goto out;
501
502 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
eee0f252 503 root_anon_vma = ACCESS_ONCE(anon_vma->root);
4fc3f1d6 504 if (down_read_trylock(&root_anon_vma->rwsem)) {
88c22088 505 /*
eee0f252
HD
506 * If the page is still mapped, then this anon_vma is still
507 * its anon_vma, and holding the mutex ensures that it will
bc658c96 508 * not go away, see anon_vma_free().
88c22088 509 */
eee0f252 510 if (!page_mapped(page)) {
4fc3f1d6 511 up_read(&root_anon_vma->rwsem);
88c22088
PZ
512 anon_vma = NULL;
513 }
514 goto out;
515 }
746b18d4 516
88c22088
PZ
517 /* trylock failed, we got to sleep */
518 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
519 anon_vma = NULL;
520 goto out;
521 }
522
523 if (!page_mapped(page)) {
7f39dda9 524 rcu_read_unlock();
88c22088 525 put_anon_vma(anon_vma);
7f39dda9 526 return NULL;
88c22088
PZ
527 }
528
529 /* we pinned the anon_vma, its safe to sleep */
530 rcu_read_unlock();
4fc3f1d6 531 anon_vma_lock_read(anon_vma);
88c22088
PZ
532
533 if (atomic_dec_and_test(&anon_vma->refcount)) {
534 /*
535 * Oops, we held the last refcount, release the lock
536 * and bail -- can't simply use put_anon_vma() because
4fc3f1d6 537 * we'll deadlock on the anon_vma_lock_write() recursion.
88c22088 538 */
4fc3f1d6 539 anon_vma_unlock_read(anon_vma);
88c22088
PZ
540 __put_anon_vma(anon_vma);
541 anon_vma = NULL;
542 }
543
544 return anon_vma;
545
546out:
547 rcu_read_unlock();
746b18d4 548 return anon_vma;
34bbd704
ON
549}
550
4fc3f1d6 551void page_unlock_anon_vma_read(struct anon_vma *anon_vma)
34bbd704 552{
4fc3f1d6 553 anon_vma_unlock_read(anon_vma);
1da177e4
LT
554}
555
556/*
3ad33b24 557 * At what user virtual address is page expected in @vma?
1da177e4 558 */
86c2ad19
ML
559static inline unsigned long
560__vma_address(struct page *page, struct vm_area_struct *vma)
1da177e4 561{
a0f7a756 562 pgoff_t pgoff = page_to_pgoff(page);
86c2ad19
ML
563 return vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
564}
565
566inline unsigned long
567vma_address(struct page *page, struct vm_area_struct *vma)
568{
569 unsigned long address = __vma_address(page, vma);
570
571 /* page should be within @vma mapping range */
81d1b09c 572 VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
86c2ad19 573
1da177e4
LT
574 return address;
575}
576
577/*
bf89c8c8 578 * At what user virtual address is page expected in vma?
ab941e0f 579 * Caller should check the page is actually part of the vma.
1da177e4
LT
580 */
581unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
582{
86c2ad19 583 unsigned long address;
21d0d443 584 if (PageAnon(page)) {
4829b906
HD
585 struct anon_vma *page__anon_vma = page_anon_vma(page);
586 /*
587 * Note: swapoff's unuse_vma() is more efficient with this
588 * check, and needs it to match anon_vma when KSM is active.
589 */
590 if (!vma->anon_vma || !page__anon_vma ||
591 vma->anon_vma->root != page__anon_vma->root)
21d0d443
AA
592 return -EFAULT;
593 } else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
ee498ed7
HD
594 if (!vma->vm_file ||
595 vma->vm_file->f_mapping != page->mapping)
1da177e4
LT
596 return -EFAULT;
597 } else
598 return -EFAULT;
86c2ad19
ML
599 address = __vma_address(page, vma);
600 if (unlikely(address < vma->vm_start || address >= vma->vm_end))
601 return -EFAULT;
602 return address;
1da177e4
LT
603}
604
6219049a
BL
605pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address)
606{
607 pgd_t *pgd;
608 pud_t *pud;
609 pmd_t *pmd = NULL;
f72e7dcd 610 pmd_t pmde;
6219049a
BL
611
612 pgd = pgd_offset(mm, address);
613 if (!pgd_present(*pgd))
614 goto out;
615
616 pud = pud_offset(pgd, address);
617 if (!pud_present(*pud))
618 goto out;
619
620 pmd = pmd_offset(pud, address);
f72e7dcd
HD
621 /*
622 * Some THP functions use the sequence pmdp_clear_flush(), set_pmd_at()
623 * without holding anon_vma lock for write. So when looking for a
624 * genuine pmde (in which to find pte), test present and !THP together.
625 */
e37c6982
CB
626 pmde = *pmd;
627 barrier();
f72e7dcd 628 if (!pmd_present(pmde) || pmd_trans_huge(pmde))
6219049a
BL
629 pmd = NULL;
630out:
631 return pmd;
632}
633
81b4082d
ND
634/*
635 * Check that @page is mapped at @address into @mm.
636 *
479db0bf
NP
637 * If @sync is false, page_check_address may perform a racy check to avoid
638 * the page table lock when the pte is not present (helpful when reclaiming
639 * highly shared pages).
640 *
b8072f09 641 * On success returns with pte mapped and locked.
81b4082d 642 */
e9a81a82 643pte_t *__page_check_address(struct page *page, struct mm_struct *mm,
479db0bf 644 unsigned long address, spinlock_t **ptlp, int sync)
81b4082d 645{
81b4082d
ND
646 pmd_t *pmd;
647 pte_t *pte;
c0718806 648 spinlock_t *ptl;
81b4082d 649
0fe6e20b 650 if (unlikely(PageHuge(page))) {
98398c32 651 /* when pud is not present, pte will be NULL */
0fe6e20b 652 pte = huge_pte_offset(mm, address);
98398c32
JW
653 if (!pte)
654 return NULL;
655
cb900f41 656 ptl = huge_pte_lockptr(page_hstate(page), mm, pte);
0fe6e20b
NH
657 goto check;
658 }
659
6219049a
BL
660 pmd = mm_find_pmd(mm, address);
661 if (!pmd)
c0718806
HD
662 return NULL;
663
c0718806
HD
664 pte = pte_offset_map(pmd, address);
665 /* Make a quick check before getting the lock */
479db0bf 666 if (!sync && !pte_present(*pte)) {
c0718806
HD
667 pte_unmap(pte);
668 return NULL;
669 }
670
4c21e2f2 671 ptl = pte_lockptr(mm, pmd);
0fe6e20b 672check:
c0718806
HD
673 spin_lock(ptl);
674 if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
675 *ptlp = ptl;
676 return pte;
81b4082d 677 }
c0718806
HD
678 pte_unmap_unlock(pte, ptl);
679 return NULL;
81b4082d
ND
680}
681
b291f000
NP
682/**
683 * page_mapped_in_vma - check whether a page is really mapped in a VMA
684 * @page: the page to test
685 * @vma: the VMA to test
686 *
687 * Returns 1 if the page is mapped into the page tables of the VMA, 0
688 * if the page is not mapped into the page tables of this VMA. Only
689 * valid for normal file or anonymous VMAs.
690 */
6a46079c 691int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
b291f000
NP
692{
693 unsigned long address;
694 pte_t *pte;
695 spinlock_t *ptl;
696
86c2ad19
ML
697 address = __vma_address(page, vma);
698 if (unlikely(address < vma->vm_start || address >= vma->vm_end))
b291f000
NP
699 return 0;
700 pte = page_check_address(page, vma->vm_mm, address, &ptl, 1);
701 if (!pte) /* the page is not in this mm */
702 return 0;
703 pte_unmap_unlock(pte, ptl);
704
705 return 1;
706}
707
9f32624b
JK
708struct page_referenced_arg {
709 int mapcount;
710 int referenced;
711 unsigned long vm_flags;
712 struct mem_cgroup *memcg;
713};
1da177e4 714/*
9f32624b 715 * arg: page_referenced_arg will be passed
1da177e4 716 */
ac769501 717static int page_referenced_one(struct page *page, struct vm_area_struct *vma,
9f32624b 718 unsigned long address, void *arg)
1da177e4
LT
719{
720 struct mm_struct *mm = vma->vm_mm;
117b0791 721 spinlock_t *ptl;
1da177e4 722 int referenced = 0;
9f32624b 723 struct page_referenced_arg *pra = arg;
1da177e4 724
71e3aac0
AA
725 if (unlikely(PageTransHuge(page))) {
726 pmd_t *pmd;
727
2da28bfd
AA
728 /*
729 * rmap might return false positives; we must filter
730 * these out using page_check_address_pmd().
731 */
71e3aac0 732 pmd = page_check_address_pmd(page, mm, address,
117b0791
KS
733 PAGE_CHECK_ADDRESS_PMD_FLAG, &ptl);
734 if (!pmd)
9f32624b 735 return SWAP_AGAIN;
2da28bfd
AA
736
737 if (vma->vm_flags & VM_LOCKED) {
117b0791 738 spin_unlock(ptl);
9f32624b
JK
739 pra->vm_flags |= VM_LOCKED;
740 return SWAP_FAIL; /* To break the loop */
2da28bfd
AA
741 }
742
743 /* go ahead even if the pmd is pmd_trans_splitting() */
744 if (pmdp_clear_flush_young_notify(vma, address, pmd))
71e3aac0 745 referenced++;
117b0791 746 spin_unlock(ptl);
71e3aac0
AA
747 } else {
748 pte_t *pte;
71e3aac0 749
2da28bfd
AA
750 /*
751 * rmap might return false positives; we must filter
752 * these out using page_check_address().
753 */
71e3aac0
AA
754 pte = page_check_address(page, mm, address, &ptl, 0);
755 if (!pte)
9f32624b 756 return SWAP_AGAIN;
71e3aac0 757
2da28bfd
AA
758 if (vma->vm_flags & VM_LOCKED) {
759 pte_unmap_unlock(pte, ptl);
9f32624b
JK
760 pra->vm_flags |= VM_LOCKED;
761 return SWAP_FAIL; /* To break the loop */
2da28bfd
AA
762 }
763
71e3aac0
AA
764 if (ptep_clear_flush_young_notify(vma, address, pte)) {
765 /*
766 * Don't treat a reference through a sequentially read
767 * mapping as such. If the page has been used in
768 * another mapping, we will catch it; if this other
769 * mapping is already gone, the unmap path will have
770 * set PG_referenced or activated the page.
771 */
64363aad 772 if (likely(!(vma->vm_flags & VM_SEQ_READ)))
71e3aac0
AA
773 referenced++;
774 }
775 pte_unmap_unlock(pte, ptl);
776 }
777
9f32624b
JK
778 if (referenced) {
779 pra->referenced++;
780 pra->vm_flags |= vma->vm_flags;
1da177e4 781 }
34bbd704 782
9f32624b
JK
783 pra->mapcount--;
784 if (!pra->mapcount)
785 return SWAP_SUCCESS; /* To break the loop */
786
787 return SWAP_AGAIN;
1da177e4
LT
788}
789
9f32624b 790static bool invalid_page_referenced_vma(struct vm_area_struct *vma, void *arg)
1da177e4 791{
9f32624b
JK
792 struct page_referenced_arg *pra = arg;
793 struct mem_cgroup *memcg = pra->memcg;
1da177e4 794
9f32624b
JK
795 if (!mm_match_cgroup(vma->vm_mm, memcg))
796 return true;
1da177e4 797
9f32624b 798 return false;
1da177e4
LT
799}
800
801/**
802 * page_referenced - test if the page was referenced
803 * @page: the page to test
804 * @is_locked: caller holds lock on the page
72835c86 805 * @memcg: target memory cgroup
6fe6b7e3 806 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
1da177e4
LT
807 *
808 * Quick test_and_clear_referenced for all mappings to a page,
809 * returns the number of ptes which referenced the page.
810 */
6fe6b7e3
WF
811int page_referenced(struct page *page,
812 int is_locked,
72835c86 813 struct mem_cgroup *memcg,
6fe6b7e3 814 unsigned long *vm_flags)
1da177e4 815{
9f32624b 816 int ret;
5ad64688 817 int we_locked = 0;
9f32624b
JK
818 struct page_referenced_arg pra = {
819 .mapcount = page_mapcount(page),
820 .memcg = memcg,
821 };
822 struct rmap_walk_control rwc = {
823 .rmap_one = page_referenced_one,
824 .arg = (void *)&pra,
825 .anon_lock = page_lock_anon_vma_read,
826 };
1da177e4 827
6fe6b7e3 828 *vm_flags = 0;
9f32624b
JK
829 if (!page_mapped(page))
830 return 0;
831
832 if (!page_rmapping(page))
833 return 0;
834
835 if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
836 we_locked = trylock_page(page);
837 if (!we_locked)
838 return 1;
1da177e4 839 }
9f32624b
JK
840
841 /*
842 * If we are reclaiming on behalf of a cgroup, skip
843 * counting on behalf of references from different
844 * cgroups
845 */
846 if (memcg) {
847 rwc.invalid_vma = invalid_page_referenced_vma;
848 }
849
850 ret = rmap_walk(page, &rwc);
851 *vm_flags = pra.vm_flags;
852
853 if (we_locked)
854 unlock_page(page);
855
856 return pra.referenced;
1da177e4
LT
857}
858
1cb1729b 859static int page_mkclean_one(struct page *page, struct vm_area_struct *vma,
9853a407 860 unsigned long address, void *arg)
d08b3851
PZ
861{
862 struct mm_struct *mm = vma->vm_mm;
c2fda5fe 863 pte_t *pte;
d08b3851
PZ
864 spinlock_t *ptl;
865 int ret = 0;
9853a407 866 int *cleaned = arg;
d08b3851 867
479db0bf 868 pte = page_check_address(page, mm, address, &ptl, 1);
d08b3851
PZ
869 if (!pte)
870 goto out;
871
c2fda5fe
PZ
872 if (pte_dirty(*pte) || pte_write(*pte)) {
873 pte_t entry;
d08b3851 874
c2fda5fe 875 flush_cache_page(vma, address, pte_pfn(*pte));
2ec74c3e 876 entry = ptep_clear_flush(vma, address, pte);
c2fda5fe
PZ
877 entry = pte_wrprotect(entry);
878 entry = pte_mkclean(entry);
d6e88e67 879 set_pte_at(mm, address, pte, entry);
c2fda5fe
PZ
880 ret = 1;
881 }
d08b3851 882
d08b3851 883 pte_unmap_unlock(pte, ptl);
2ec74c3e 884
9853a407 885 if (ret) {
2ec74c3e 886 mmu_notifier_invalidate_page(mm, address);
9853a407
JK
887 (*cleaned)++;
888 }
d08b3851 889out:
9853a407 890 return SWAP_AGAIN;
d08b3851
PZ
891}
892
9853a407 893static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg)
d08b3851 894{
9853a407 895 if (vma->vm_flags & VM_SHARED)
871beb8c 896 return false;
d08b3851 897
871beb8c 898 return true;
d08b3851
PZ
899}
900
901int page_mkclean(struct page *page)
902{
9853a407
JK
903 int cleaned = 0;
904 struct address_space *mapping;
905 struct rmap_walk_control rwc = {
906 .arg = (void *)&cleaned,
907 .rmap_one = page_mkclean_one,
908 .invalid_vma = invalid_mkclean_vma,
909 };
d08b3851
PZ
910
911 BUG_ON(!PageLocked(page));
912
9853a407
JK
913 if (!page_mapped(page))
914 return 0;
915
916 mapping = page_mapping(page);
917 if (!mapping)
918 return 0;
919
920 rmap_walk(page, &rwc);
d08b3851 921
9853a407 922 return cleaned;
d08b3851 923}
60b59bea 924EXPORT_SYMBOL_GPL(page_mkclean);
d08b3851 925
c44b6743
RR
926/**
927 * page_move_anon_rmap - move a page to our anon_vma
928 * @page: the page to move to our anon_vma
929 * @vma: the vma the page belongs to
930 * @address: the user virtual address mapped
931 *
932 * When a page belongs exclusively to one process after a COW event,
933 * that page can be moved into the anon_vma that belongs to just that
934 * process, so the rmap code will not search the parent or sibling
935 * processes.
936 */
937void page_move_anon_rmap(struct page *page,
938 struct vm_area_struct *vma, unsigned long address)
939{
940 struct anon_vma *anon_vma = vma->anon_vma;
941
309381fe 942 VM_BUG_ON_PAGE(!PageLocked(page), page);
81d1b09c 943 VM_BUG_ON_VMA(!anon_vma, vma);
309381fe 944 VM_BUG_ON_PAGE(page->index != linear_page_index(vma, address), page);
c44b6743
RR
945
946 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
947 page->mapping = (struct address_space *) anon_vma;
948}
949
9617d95e 950/**
4e1c1975
AK
951 * __page_set_anon_rmap - set up new anonymous rmap
952 * @page: Page to add to rmap
953 * @vma: VM area to add page to.
954 * @address: User virtual address of the mapping
e8a03feb 955 * @exclusive: the page is exclusively owned by the current process
9617d95e
NP
956 */
957static void __page_set_anon_rmap(struct page *page,
e8a03feb 958 struct vm_area_struct *vma, unsigned long address, int exclusive)
9617d95e 959{
e8a03feb 960 struct anon_vma *anon_vma = vma->anon_vma;
ea90002b 961
e8a03feb 962 BUG_ON(!anon_vma);
ea90002b 963
4e1c1975
AK
964 if (PageAnon(page))
965 return;
966
ea90002b 967 /*
e8a03feb
RR
968 * If the page isn't exclusively mapped into this vma,
969 * we must use the _oldest_ possible anon_vma for the
970 * page mapping!
ea90002b 971 */
4e1c1975 972 if (!exclusive)
288468c3 973 anon_vma = anon_vma->root;
9617d95e 974
9617d95e
NP
975 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
976 page->mapping = (struct address_space *) anon_vma;
9617d95e 977 page->index = linear_page_index(vma, address);
9617d95e
NP
978}
979
c97a9e10 980/**
43d8eac4 981 * __page_check_anon_rmap - sanity check anonymous rmap addition
c97a9e10
NP
982 * @page: the page to add the mapping to
983 * @vma: the vm area in which the mapping is added
984 * @address: the user virtual address mapped
985 */
986static void __page_check_anon_rmap(struct page *page,
987 struct vm_area_struct *vma, unsigned long address)
988{
989#ifdef CONFIG_DEBUG_VM
990 /*
991 * The page's anon-rmap details (mapping and index) are guaranteed to
992 * be set up correctly at this point.
993 *
994 * We have exclusion against page_add_anon_rmap because the caller
995 * always holds the page locked, except if called from page_dup_rmap,
996 * in which case the page is already known to be setup.
997 *
998 * We have exclusion against page_add_new_anon_rmap because those pages
999 * are initially only visible via the pagetables, and the pte is locked
1000 * over the call to page_add_new_anon_rmap.
1001 */
44ab57a0 1002 BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root);
c97a9e10
NP
1003 BUG_ON(page->index != linear_page_index(vma, address));
1004#endif
1005}
1006
1da177e4
LT
1007/**
1008 * page_add_anon_rmap - add pte mapping to an anonymous page
1009 * @page: the page to add the mapping to
1010 * @vma: the vm area in which the mapping is added
1011 * @address: the user virtual address mapped
1012 *
5ad64688 1013 * The caller needs to hold the pte lock, and the page must be locked in
80e14822
HD
1014 * the anon_vma case: to serialize mapping,index checking after setting,
1015 * and to ensure that PageAnon is not being upgraded racily to PageKsm
1016 * (but PageKsm is never downgraded to PageAnon).
1da177e4
LT
1017 */
1018void page_add_anon_rmap(struct page *page,
1019 struct vm_area_struct *vma, unsigned long address)
ad8c2ee8
RR
1020{
1021 do_page_add_anon_rmap(page, vma, address, 0);
1022}
1023
1024/*
1025 * Special version of the above for do_swap_page, which often runs
1026 * into pages that are exclusively owned by the current process.
1027 * Everybody else should continue to use page_add_anon_rmap above.
1028 */
1029void do_page_add_anon_rmap(struct page *page,
1030 struct vm_area_struct *vma, unsigned long address, int exclusive)
1da177e4 1031{
5ad64688 1032 int first = atomic_inc_and_test(&page->_mapcount);
79134171 1033 if (first) {
bea04b07
JZ
1034 /*
1035 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1036 * these counters are not modified in interrupt context, and
1037 * pte lock(a spinlock) is held, which implies preemption
1038 * disabled.
1039 */
3cd14fcd 1040 if (PageTransHuge(page))
79134171
AA
1041 __inc_zone_page_state(page,
1042 NR_ANON_TRANSPARENT_HUGEPAGES);
3cd14fcd
KS
1043 __mod_zone_page_state(page_zone(page), NR_ANON_PAGES,
1044 hpage_nr_pages(page));
79134171 1045 }
5ad64688
HD
1046 if (unlikely(PageKsm(page)))
1047 return;
1048
309381fe 1049 VM_BUG_ON_PAGE(!PageLocked(page), page);
5dbe0af4 1050 /* address might be in next vma when migration races vma_adjust */
5ad64688 1051 if (first)
ad8c2ee8 1052 __page_set_anon_rmap(page, vma, address, exclusive);
69029cd5 1053 else
c97a9e10 1054 __page_check_anon_rmap(page, vma, address);
1da177e4
LT
1055}
1056
43d8eac4 1057/**
9617d95e
NP
1058 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
1059 * @page: the page to add the mapping to
1060 * @vma: the vm area in which the mapping is added
1061 * @address: the user virtual address mapped
1062 *
1063 * Same as page_add_anon_rmap but must only be called on *new* pages.
1064 * This means the inc-and-test can be bypassed.
c97a9e10 1065 * Page does not have to be locked.
9617d95e
NP
1066 */
1067void page_add_new_anon_rmap(struct page *page,
1068 struct vm_area_struct *vma, unsigned long address)
1069{
81d1b09c 1070 VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
cbf84b7a
HD
1071 SetPageSwapBacked(page);
1072 atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */
3cd14fcd 1073 if (PageTransHuge(page))
79134171 1074 __inc_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
3cd14fcd
KS
1075 __mod_zone_page_state(page_zone(page), NR_ANON_PAGES,
1076 hpage_nr_pages(page));
e8a03feb 1077 __page_set_anon_rmap(page, vma, address, 1);
9617d95e
NP
1078}
1079
1da177e4
LT
1080/**
1081 * page_add_file_rmap - add pte mapping to a file page
1082 * @page: the page to add the mapping to
1083 *
b8072f09 1084 * The caller needs to hold the pte lock.
1da177e4
LT
1085 */
1086void page_add_file_rmap(struct page *page)
1087{
d7365e78 1088 struct mem_cgroup *memcg;
89c06bd5 1089 unsigned long flags;
d7365e78 1090 bool locked;
89c06bd5 1091
d7365e78 1092 memcg = mem_cgroup_begin_page_stat(page, &locked, &flags);
d69b042f 1093 if (atomic_inc_and_test(&page->_mapcount)) {
65ba55f5 1094 __inc_zone_page_state(page, NR_FILE_MAPPED);
d7365e78 1095 mem_cgroup_inc_page_stat(memcg, MEM_CGROUP_STAT_FILE_MAPPED);
d69b042f 1096 }
e4bd6a02 1097 mem_cgroup_end_page_stat(memcg, &locked, &flags);
1da177e4
LT
1098}
1099
8186eb6a
JW
1100static void page_remove_file_rmap(struct page *page)
1101{
1102 struct mem_cgroup *memcg;
1103 unsigned long flags;
1104 bool locked;
1105
1106 memcg = mem_cgroup_begin_page_stat(page, &locked, &flags);
1107
1108 /* page still mapped by someone else? */
1109 if (!atomic_add_negative(-1, &page->_mapcount))
1110 goto out;
1111
1112 /* Hugepages are not counted in NR_FILE_MAPPED for now. */
1113 if (unlikely(PageHuge(page)))
1114 goto out;
1115
1116 /*
1117 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1118 * these counters are not modified in interrupt context, and
1119 * pte lock(a spinlock) is held, which implies preemption disabled.
1120 */
1121 __dec_zone_page_state(page, NR_FILE_MAPPED);
1122 mem_cgroup_dec_page_stat(memcg, MEM_CGROUP_STAT_FILE_MAPPED);
1123
1124 if (unlikely(PageMlocked(page)))
1125 clear_page_mlock(page);
1126out:
e4bd6a02 1127 mem_cgroup_end_page_stat(memcg, &locked, &flags);
8186eb6a
JW
1128}
1129
1da177e4
LT
1130/**
1131 * page_remove_rmap - take down pte mapping from a page
1132 * @page: page to remove mapping from
1133 *
b8072f09 1134 * The caller needs to hold the pte lock.
1da177e4 1135 */
edc315fd 1136void page_remove_rmap(struct page *page)
1da177e4 1137{
8186eb6a
JW
1138 if (!PageAnon(page)) {
1139 page_remove_file_rmap(page);
1140 return;
1141 }
89c06bd5 1142
b904dcfe
KM
1143 /* page still mapped by someone else? */
1144 if (!atomic_add_negative(-1, &page->_mapcount))
8186eb6a
JW
1145 return;
1146
1147 /* Hugepages are not counted in NR_ANON_PAGES for now. */
1148 if (unlikely(PageHuge(page)))
1149 return;
b904dcfe 1150
0fe6e20b 1151 /*
bea04b07
JZ
1152 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1153 * these counters are not modified in interrupt context, and
bea04b07 1154 * pte lock(a spinlock) is held, which implies preemption disabled.
0fe6e20b 1155 */
8186eb6a
JW
1156 if (PageTransHuge(page))
1157 __dec_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
1158
1159 __mod_zone_page_state(page_zone(page), NR_ANON_PAGES,
1160 -hpage_nr_pages(page));
1161
e6c509f8
HD
1162 if (unlikely(PageMlocked(page)))
1163 clear_page_mlock(page);
8186eb6a 1164
b904dcfe
KM
1165 /*
1166 * It would be tidy to reset the PageAnon mapping here,
1167 * but that might overwrite a racing page_add_anon_rmap
1168 * which increments mapcount after us but sets mapping
1169 * before us: so leave the reset to free_hot_cold_page,
1170 * and remember that it's only reliable while mapped.
1171 * Leaving it set also helps swapoff to reinstate ptes
1172 * faster for those pages still in swapcache.
1173 */
1da177e4
LT
1174}
1175
1176/*
52629506 1177 * @arg: enum ttu_flags will be passed to this argument
1da177e4 1178 */
ac769501 1179static int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
52629506 1180 unsigned long address, void *arg)
1da177e4
LT
1181{
1182 struct mm_struct *mm = vma->vm_mm;
1da177e4
LT
1183 pte_t *pte;
1184 pte_t pteval;
c0718806 1185 spinlock_t *ptl;
1da177e4 1186 int ret = SWAP_AGAIN;
52629506 1187 enum ttu_flags flags = (enum ttu_flags)arg;
1da177e4 1188
479db0bf 1189 pte = page_check_address(page, mm, address, &ptl, 0);
c0718806 1190 if (!pte)
81b4082d 1191 goto out;
1da177e4
LT
1192
1193 /*
1194 * If the page is mlock()d, we cannot swap it out.
1195 * If it's recently referenced (perhaps page_referenced
1196 * skipped over this mm) then we should reactivate it.
1197 */
14fa31b8 1198 if (!(flags & TTU_IGNORE_MLOCK)) {
caed0f48
KM
1199 if (vma->vm_flags & VM_LOCKED)
1200 goto out_mlock;
1201
daa5ba76 1202 if (flags & TTU_MUNLOCK)
53f79acb 1203 goto out_unmap;
14fa31b8
AK
1204 }
1205 if (!(flags & TTU_IGNORE_ACCESS)) {
b291f000
NP
1206 if (ptep_clear_flush_young_notify(vma, address, pte)) {
1207 ret = SWAP_FAIL;
1208 goto out_unmap;
1209 }
1210 }
1da177e4 1211
1da177e4
LT
1212 /* Nuke the page table entry. */
1213 flush_cache_page(vma, address, page_to_pfn(page));
2ec74c3e 1214 pteval = ptep_clear_flush(vma, address, pte);
1da177e4
LT
1215
1216 /* Move the dirty bit to the physical page now the pte is gone. */
1217 if (pte_dirty(pteval))
1218 set_page_dirty(page);
1219
365e9c87
HD
1220 /* Update high watermark before we lower rss */
1221 update_hiwater_rss(mm);
1222
888b9f7c 1223 if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
5f24ae58
NH
1224 if (!PageHuge(page)) {
1225 if (PageAnon(page))
1226 dec_mm_counter(mm, MM_ANONPAGES);
1227 else
1228 dec_mm_counter(mm, MM_FILEPAGES);
1229 }
888b9f7c 1230 set_pte_at(mm, address, pte,
5f24ae58 1231 swp_entry_to_pte(make_hwpoison_entry(page)));
45961722
KW
1232 } else if (pte_unused(pteval)) {
1233 /*
1234 * The guest indicated that the page content is of no
1235 * interest anymore. Simply discard the pte, vmscan
1236 * will take care of the rest.
1237 */
1238 if (PageAnon(page))
1239 dec_mm_counter(mm, MM_ANONPAGES);
1240 else
1241 dec_mm_counter(mm, MM_FILEPAGES);
888b9f7c 1242 } else if (PageAnon(page)) {
4c21e2f2 1243 swp_entry_t entry = { .val = page_private(page) };
179ef71c 1244 pte_t swp_pte;
0697212a
CL
1245
1246 if (PageSwapCache(page)) {
1247 /*
1248 * Store the swap location in the pte.
1249 * See handle_pte_fault() ...
1250 */
570a335b
HD
1251 if (swap_duplicate(entry) < 0) {
1252 set_pte_at(mm, address, pte, pteval);
1253 ret = SWAP_FAIL;
1254 goto out_unmap;
1255 }
0697212a
CL
1256 if (list_empty(&mm->mmlist)) {
1257 spin_lock(&mmlist_lock);
1258 if (list_empty(&mm->mmlist))
1259 list_add(&mm->mmlist, &init_mm.mmlist);
1260 spin_unlock(&mmlist_lock);
1261 }
d559db08 1262 dec_mm_counter(mm, MM_ANONPAGES);
b084d435 1263 inc_mm_counter(mm, MM_SWAPENTS);
ce1744f4 1264 } else if (IS_ENABLED(CONFIG_MIGRATION)) {
0697212a
CL
1265 /*
1266 * Store the pfn of the page in a special migration
1267 * pte. do_swap_page() will wait until the migration
1268 * pte is removed and then restart fault handling.
1269 */
daa5ba76 1270 BUG_ON(!(flags & TTU_MIGRATION));
0697212a 1271 entry = make_migration_entry(page, pte_write(pteval));
1da177e4 1272 }
179ef71c
CG
1273 swp_pte = swp_entry_to_pte(entry);
1274 if (pte_soft_dirty(pteval))
1275 swp_pte = pte_swp_mksoft_dirty(swp_pte);
1276 set_pte_at(mm, address, pte, swp_pte);
1da177e4 1277 BUG_ON(pte_file(*pte));
ce1744f4 1278 } else if (IS_ENABLED(CONFIG_MIGRATION) &&
daa5ba76 1279 (flags & TTU_MIGRATION)) {
04e62a29
CL
1280 /* Establish migration entry for a file page */
1281 swp_entry_t entry;
1282 entry = make_migration_entry(page, pte_write(pteval));
1283 set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
1284 } else
d559db08 1285 dec_mm_counter(mm, MM_FILEPAGES);
1da177e4 1286
edc315fd 1287 page_remove_rmap(page);
1da177e4
LT
1288 page_cache_release(page);
1289
1290out_unmap:
c0718806 1291 pte_unmap_unlock(pte, ptl);
daa5ba76 1292 if (ret != SWAP_FAIL && !(flags & TTU_MUNLOCK))
2ec74c3e 1293 mmu_notifier_invalidate_page(mm, address);
caed0f48
KM
1294out:
1295 return ret;
53f79acb 1296
caed0f48
KM
1297out_mlock:
1298 pte_unmap_unlock(pte, ptl);
1299
1300
1301 /*
1302 * We need mmap_sem locking, Otherwise VM_LOCKED check makes
1303 * unstable result and race. Plus, We can't wait here because
c8c06efa 1304 * we now hold anon_vma->rwsem or mapping->i_mmap_rwsem.
caed0f48
KM
1305 * if trylock failed, the page remain in evictable lru and later
1306 * vmscan could retry to move the page to unevictable lru if the
1307 * page is actually mlocked.
1308 */
1309 if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
1310 if (vma->vm_flags & VM_LOCKED) {
1311 mlock_vma_page(page);
1312 ret = SWAP_MLOCK;
53f79acb 1313 }
caed0f48 1314 up_read(&vma->vm_mm->mmap_sem);
53f79acb 1315 }
1da177e4
LT
1316 return ret;
1317}
1318
1319/*
1320 * objrmap doesn't work for nonlinear VMAs because the assumption that
1321 * offset-into-file correlates with offset-into-virtual-addresses does not hold.
1322 * Consequently, given a particular page and its ->index, we cannot locate the
1323 * ptes which are mapping that page without an exhaustive linear search.
1324 *
1325 * So what this code does is a mini "virtual scan" of each nonlinear VMA which
1326 * maps the file to which the target page belongs. The ->vm_private_data field
1327 * holds the current cursor into that scan. Successive searches will circulate
1328 * around the vma's virtual address space.
1329 *
1330 * So as more replacement pressure is applied to the pages in a nonlinear VMA,
1331 * more scanning pressure is placed against them as well. Eventually pages
1332 * will become fully unmapped and are eligible for eviction.
1333 *
1334 * For very sparsely populated VMAs this is a little inefficient - chances are
1335 * there there won't be many ptes located within the scan cluster. In this case
1336 * maybe we could scan further - to the end of the pte page, perhaps.
b291f000
NP
1337 *
1338 * Mlocked pages: check VM_LOCKED under mmap_sem held for read, if we can
1339 * acquire it without blocking. If vma locked, mlock the pages in the cluster,
1340 * rather than unmapping them. If we encounter the "check_page" that vmscan is
1341 * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN.
1da177e4
LT
1342 */
1343#define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE)
1344#define CLUSTER_MASK (~(CLUSTER_SIZE - 1))
1345
b291f000
NP
1346static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount,
1347 struct vm_area_struct *vma, struct page *check_page)
1da177e4
LT
1348{
1349 struct mm_struct *mm = vma->vm_mm;
1da177e4 1350 pmd_t *pmd;
c0718806 1351 pte_t *pte;
1da177e4 1352 pte_t pteval;
c0718806 1353 spinlock_t *ptl;
1da177e4
LT
1354 struct page *page;
1355 unsigned long address;
2ec74c3e
SG
1356 unsigned long mmun_start; /* For mmu_notifiers */
1357 unsigned long mmun_end; /* For mmu_notifiers */
1da177e4 1358 unsigned long end;
b291f000
NP
1359 int ret = SWAP_AGAIN;
1360 int locked_vma = 0;
1da177e4 1361
1da177e4
LT
1362 address = (vma->vm_start + cursor) & CLUSTER_MASK;
1363 end = address + CLUSTER_SIZE;
1364 if (address < vma->vm_start)
1365 address = vma->vm_start;
1366 if (end > vma->vm_end)
1367 end = vma->vm_end;
1368
6219049a
BL
1369 pmd = mm_find_pmd(mm, address);
1370 if (!pmd)
b291f000
NP
1371 return ret;
1372
2ec74c3e
SG
1373 mmun_start = address;
1374 mmun_end = end;
1375 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1376
b291f000 1377 /*
af8e3354 1378 * If we can acquire the mmap_sem for read, and vma is VM_LOCKED,
b291f000
NP
1379 * keep the sem while scanning the cluster for mlocking pages.
1380 */
af8e3354 1381 if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
b291f000
NP
1382 locked_vma = (vma->vm_flags & VM_LOCKED);
1383 if (!locked_vma)
1384 up_read(&vma->vm_mm->mmap_sem); /* don't need it */
1385 }
c0718806
HD
1386
1387 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1da177e4 1388
365e9c87
HD
1389 /* Update high watermark before we lower rss */
1390 update_hiwater_rss(mm);
1391
c0718806 1392 for (; address < end; pte++, address += PAGE_SIZE) {
1da177e4
LT
1393 if (!pte_present(*pte))
1394 continue;
6aab341e
LT
1395 page = vm_normal_page(vma, address, *pte);
1396 BUG_ON(!page || PageAnon(page));
1da177e4 1397
b291f000 1398 if (locked_vma) {
57e68e9c
VB
1399 if (page == check_page) {
1400 /* we know we have check_page locked */
1401 mlock_vma_page(page);
b291f000 1402 ret = SWAP_MLOCK;
57e68e9c
VB
1403 } else if (trylock_page(page)) {
1404 /*
1405 * If we can lock the page, perform mlock.
1406 * Otherwise leave the page alone, it will be
1407 * eventually encountered again later.
1408 */
1409 mlock_vma_page(page);
1410 unlock_page(page);
1411 }
b291f000
NP
1412 continue; /* don't unmap */
1413 }
1414
57128468
ALC
1415 /*
1416 * No need for _notify because we're within an
1417 * mmu_notifier_invalidate_range_ {start|end} scope.
1418 */
1419 if (ptep_clear_flush_young(vma, address, pte))
1da177e4
LT
1420 continue;
1421
1422 /* Nuke the page table entry. */
eca35133 1423 flush_cache_page(vma, address, pte_pfn(*pte));
34ee645e 1424 pteval = ptep_clear_flush_notify(vma, address, pte);
1da177e4
LT
1425
1426 /* If nonlinear, store the file page offset in the pte. */
41bb3476
CG
1427 if (page->index != linear_page_index(vma, address)) {
1428 pte_t ptfile = pgoff_to_pte(page->index);
1429 if (pte_soft_dirty(pteval))
b43790ee 1430 ptfile = pte_file_mksoft_dirty(ptfile);
41bb3476
CG
1431 set_pte_at(mm, address, pte, ptfile);
1432 }
1da177e4
LT
1433
1434 /* Move the dirty bit to the physical page now the pte is gone. */
1435 if (pte_dirty(pteval))
1436 set_page_dirty(page);
1437
edc315fd 1438 page_remove_rmap(page);
1da177e4 1439 page_cache_release(page);
d559db08 1440 dec_mm_counter(mm, MM_FILEPAGES);
1da177e4
LT
1441 (*mapcount)--;
1442 }
c0718806 1443 pte_unmap_unlock(pte - 1, ptl);
2ec74c3e 1444 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
b291f000
NP
1445 if (locked_vma)
1446 up_read(&vma->vm_mm->mmap_sem);
1447 return ret;
1da177e4
LT
1448}
1449
0f843c6a 1450static int try_to_unmap_nonlinear(struct page *page,
7e09e738 1451 struct address_space *mapping, void *arg)
0f843c6a 1452{
7e09e738 1453 struct vm_area_struct *vma;
0f843c6a
JK
1454 int ret = SWAP_AGAIN;
1455 unsigned long cursor;
1456 unsigned long max_nl_cursor = 0;
1457 unsigned long max_nl_size = 0;
1458 unsigned int mapcount;
1459
1460 list_for_each_entry(vma,
1461 &mapping->i_mmap_nonlinear, shared.nonlinear) {
1462
1463 cursor = (unsigned long) vma->vm_private_data;
1464 if (cursor > max_nl_cursor)
1465 max_nl_cursor = cursor;
1466 cursor = vma->vm_end - vma->vm_start;
1467 if (cursor > max_nl_size)
1468 max_nl_size = cursor;
1469 }
1470
1471 if (max_nl_size == 0) { /* all nonlinears locked or reserved ? */
1472 return SWAP_FAIL;
1473 }
1474
1475 /*
1476 * We don't try to search for this page in the nonlinear vmas,
1477 * and page_referenced wouldn't have found it anyway. Instead
1478 * just walk the nonlinear vmas trying to age and unmap some.
1479 * The mapcount of the page we came in with is irrelevant,
1480 * but even so use it as a guide to how hard we should try?
1481 */
1482 mapcount = page_mapcount(page);
1483 if (!mapcount)
1484 return ret;
1485
1486 cond_resched();
1487
1488 max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
1489 if (max_nl_cursor == 0)
1490 max_nl_cursor = CLUSTER_SIZE;
1491
1492 do {
1493 list_for_each_entry(vma,
1494 &mapping->i_mmap_nonlinear, shared.nonlinear) {
1495
1496 cursor = (unsigned long) vma->vm_private_data;
1497 while (cursor < max_nl_cursor &&
1498 cursor < vma->vm_end - vma->vm_start) {
1499 if (try_to_unmap_cluster(cursor, &mapcount,
1500 vma, page) == SWAP_MLOCK)
1501 ret = SWAP_MLOCK;
1502 cursor += CLUSTER_SIZE;
1503 vma->vm_private_data = (void *) cursor;
1504 if ((int)mapcount <= 0)
1505 return ret;
1506 }
1507 vma->vm_private_data = (void *) max_nl_cursor;
1508 }
1509 cond_resched();
1510 max_nl_cursor += CLUSTER_SIZE;
1511 } while (max_nl_cursor <= max_nl_size);
1512
1513 /*
1514 * Don't loop forever (perhaps all the remaining pages are
1515 * in locked vmas). Reset cursor on all unreserved nonlinear
1516 * vmas, now forgetting on which ones it had fallen behind.
1517 */
1518 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.nonlinear)
1519 vma->vm_private_data = NULL;
1520
1521 return ret;
1522}
1523
71e3aac0 1524bool is_vma_temporary_stack(struct vm_area_struct *vma)
a8bef8ff
MG
1525{
1526 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
1527
1528 if (!maybe_stack)
1529 return false;
1530
1531 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
1532 VM_STACK_INCOMPLETE_SETUP)
1533 return true;
1534
1535 return false;
1536}
1537
52629506
JK
1538static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg)
1539{
1540 return is_vma_temporary_stack(vma);
1541}
1542
52629506
JK
1543static int page_not_mapped(struct page *page)
1544{
1545 return !page_mapped(page);
1546};
1547
1da177e4
LT
1548/**
1549 * try_to_unmap - try to remove all page table mappings to a page
1550 * @page: the page to get unmapped
14fa31b8 1551 * @flags: action and flags
1da177e4
LT
1552 *
1553 * Tries to remove all the page table entries which are mapping this
1554 * page, used in the pageout path. Caller must hold the page lock.
1555 * Return values are:
1556 *
1557 * SWAP_SUCCESS - we succeeded in removing all mappings
1558 * SWAP_AGAIN - we missed a mapping, try again later
1559 * SWAP_FAIL - the page is unswappable
b291f000 1560 * SWAP_MLOCK - page is mlocked.
1da177e4 1561 */
14fa31b8 1562int try_to_unmap(struct page *page, enum ttu_flags flags)
1da177e4
LT
1563{
1564 int ret;
52629506
JK
1565 struct rmap_walk_control rwc = {
1566 .rmap_one = try_to_unmap_one,
1567 .arg = (void *)flags,
1568 .done = page_not_mapped,
1569 .file_nonlinear = try_to_unmap_nonlinear,
1570 .anon_lock = page_lock_anon_vma_read,
1571 };
1da177e4 1572
309381fe 1573 VM_BUG_ON_PAGE(!PageHuge(page) && PageTransHuge(page), page);
1da177e4 1574
52629506
JK
1575 /*
1576 * During exec, a temporary VMA is setup and later moved.
1577 * The VMA is moved under the anon_vma lock but not the
1578 * page tables leading to a race where migration cannot
1579 * find the migration ptes. Rather than increasing the
1580 * locking requirements of exec(), migration skips
1581 * temporary VMAs until after exec() completes.
1582 */
daa5ba76 1583 if ((flags & TTU_MIGRATION) && !PageKsm(page) && PageAnon(page))
52629506
JK
1584 rwc.invalid_vma = invalid_migration_vma;
1585
1586 ret = rmap_walk(page, &rwc);
1587
b291f000 1588 if (ret != SWAP_MLOCK && !page_mapped(page))
1da177e4
LT
1589 ret = SWAP_SUCCESS;
1590 return ret;
1591}
81b4082d 1592
b291f000
NP
1593/**
1594 * try_to_munlock - try to munlock a page
1595 * @page: the page to be munlocked
1596 *
1597 * Called from munlock code. Checks all of the VMAs mapping the page
1598 * to make sure nobody else has this page mlocked. The page will be
1599 * returned with PG_mlocked cleared if no other vmas have it mlocked.
1600 *
1601 * Return values are:
1602 *
53f79acb 1603 * SWAP_AGAIN - no vma is holding page mlocked, or,
b291f000 1604 * SWAP_AGAIN - page mapped in mlocked vma -- couldn't acquire mmap sem
5ad64688 1605 * SWAP_FAIL - page cannot be located at present
b291f000
NP
1606 * SWAP_MLOCK - page is now mlocked.
1607 */
1608int try_to_munlock(struct page *page)
1609{
e8351ac9
JK
1610 int ret;
1611 struct rmap_walk_control rwc = {
1612 .rmap_one = try_to_unmap_one,
1613 .arg = (void *)TTU_MUNLOCK,
1614 .done = page_not_mapped,
1615 /*
1616 * We don't bother to try to find the munlocked page in
1617 * nonlinears. It's costly. Instead, later, page reclaim logic
1618 * may call try_to_unmap() and recover PG_mlocked lazily.
1619 */
1620 .file_nonlinear = NULL,
1621 .anon_lock = page_lock_anon_vma_read,
1622
1623 };
1624
309381fe 1625 VM_BUG_ON_PAGE(!PageLocked(page) || PageLRU(page), page);
b291f000 1626
e8351ac9
JK
1627 ret = rmap_walk(page, &rwc);
1628 return ret;
b291f000 1629}
e9995ef9 1630
01d8b20d 1631void __put_anon_vma(struct anon_vma *anon_vma)
76545066 1632{
01d8b20d 1633 struct anon_vma *root = anon_vma->root;
76545066 1634
624483f3 1635 anon_vma_free(anon_vma);
01d8b20d
PZ
1636 if (root != anon_vma && atomic_dec_and_test(&root->refcount))
1637 anon_vma_free(root);
76545066 1638}
76545066 1639
0dd1c7bb
JK
1640static struct anon_vma *rmap_walk_anon_lock(struct page *page,
1641 struct rmap_walk_control *rwc)
faecd8dd
JK
1642{
1643 struct anon_vma *anon_vma;
1644
0dd1c7bb
JK
1645 if (rwc->anon_lock)
1646 return rwc->anon_lock(page);
1647
faecd8dd
JK
1648 /*
1649 * Note: remove_migration_ptes() cannot use page_lock_anon_vma_read()
1650 * because that depends on page_mapped(); but not all its usages
1651 * are holding mmap_sem. Users without mmap_sem are required to
1652 * take a reference count to prevent the anon_vma disappearing
1653 */
1654 anon_vma = page_anon_vma(page);
1655 if (!anon_vma)
1656 return NULL;
1657
1658 anon_vma_lock_read(anon_vma);
1659 return anon_vma;
1660}
1661
e9995ef9 1662/*
e8351ac9
JK
1663 * rmap_walk_anon - do something to anonymous page using the object-based
1664 * rmap method
1665 * @page: the page to be handled
1666 * @rwc: control variable according to each walk type
1667 *
1668 * Find all the mappings of a page using the mapping pointer and the vma chains
1669 * contained in the anon_vma struct it points to.
1670 *
1671 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1672 * where the page was found will be held for write. So, we won't recheck
1673 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1674 * LOCKED.
e9995ef9 1675 */
051ac83a 1676static int rmap_walk_anon(struct page *page, struct rmap_walk_control *rwc)
e9995ef9
HD
1677{
1678 struct anon_vma *anon_vma;
b258d860 1679 pgoff_t pgoff;
5beb4930 1680 struct anon_vma_chain *avc;
e9995ef9
HD
1681 int ret = SWAP_AGAIN;
1682
0dd1c7bb 1683 anon_vma = rmap_walk_anon_lock(page, rwc);
e9995ef9
HD
1684 if (!anon_vma)
1685 return ret;
faecd8dd 1686
b258d860 1687 pgoff = page_to_pgoff(page);
bf181b9f 1688 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
5beb4930 1689 struct vm_area_struct *vma = avc->vma;
e9995ef9 1690 unsigned long address = vma_address(page, vma);
0dd1c7bb
JK
1691
1692 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1693 continue;
1694
051ac83a 1695 ret = rwc->rmap_one(page, vma, address, rwc->arg);
e9995ef9
HD
1696 if (ret != SWAP_AGAIN)
1697 break;
0dd1c7bb
JK
1698 if (rwc->done && rwc->done(page))
1699 break;
e9995ef9 1700 }
4fc3f1d6 1701 anon_vma_unlock_read(anon_vma);
e9995ef9
HD
1702 return ret;
1703}
1704
e8351ac9
JK
1705/*
1706 * rmap_walk_file - do something to file page using the object-based rmap method
1707 * @page: the page to be handled
1708 * @rwc: control variable according to each walk type
1709 *
1710 * Find all the mappings of a page using the mapping pointer and the vma chains
1711 * contained in the address_space struct it points to.
1712 *
1713 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1714 * where the page was found will be held for write. So, we won't recheck
1715 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1716 * LOCKED.
1717 */
051ac83a 1718static int rmap_walk_file(struct page *page, struct rmap_walk_control *rwc)
e9995ef9
HD
1719{
1720 struct address_space *mapping = page->mapping;
b258d860 1721 pgoff_t pgoff;
e9995ef9 1722 struct vm_area_struct *vma;
e9995ef9
HD
1723 int ret = SWAP_AGAIN;
1724
9f32624b
JK
1725 /*
1726 * The page lock not only makes sure that page->mapping cannot
1727 * suddenly be NULLified by truncation, it makes sure that the
1728 * structure at mapping cannot be freed and reused yet,
c8c06efa 1729 * so we can safely take mapping->i_mmap_rwsem.
9f32624b 1730 */
81d1b09c 1731 VM_BUG_ON_PAGE(!PageLocked(page), page);
9f32624b 1732
e9995ef9
HD
1733 if (!mapping)
1734 return ret;
3dec0ba0 1735
b258d860 1736 pgoff = page_to_pgoff(page);
3dec0ba0 1737 i_mmap_lock_read(mapping);
6b2dbba8 1738 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
e9995ef9 1739 unsigned long address = vma_address(page, vma);
0dd1c7bb
JK
1740
1741 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1742 continue;
1743
051ac83a 1744 ret = rwc->rmap_one(page, vma, address, rwc->arg);
e9995ef9 1745 if (ret != SWAP_AGAIN)
0dd1c7bb
JK
1746 goto done;
1747 if (rwc->done && rwc->done(page))
1748 goto done;
e9995ef9 1749 }
0dd1c7bb
JK
1750
1751 if (!rwc->file_nonlinear)
1752 goto done;
1753
1754 if (list_empty(&mapping->i_mmap_nonlinear))
1755 goto done;
1756
7e09e738 1757 ret = rwc->file_nonlinear(page, mapping, rwc->arg);
0dd1c7bb 1758done:
3dec0ba0 1759 i_mmap_unlock_read(mapping);
e9995ef9
HD
1760 return ret;
1761}
1762
051ac83a 1763int rmap_walk(struct page *page, struct rmap_walk_control *rwc)
e9995ef9 1764{
e9995ef9 1765 if (unlikely(PageKsm(page)))
051ac83a 1766 return rmap_walk_ksm(page, rwc);
e9995ef9 1767 else if (PageAnon(page))
051ac83a 1768 return rmap_walk_anon(page, rwc);
e9995ef9 1769 else
051ac83a 1770 return rmap_walk_file(page, rwc);
e9995ef9 1771}
0fe6e20b 1772
e3390f67 1773#ifdef CONFIG_HUGETLB_PAGE
0fe6e20b
NH
1774/*
1775 * The following three functions are for anonymous (private mapped) hugepages.
1776 * Unlike common anonymous pages, anonymous hugepages have no accounting code
1777 * and no lru code, because we handle hugepages differently from common pages.
1778 */
1779static void __hugepage_set_anon_rmap(struct page *page,
1780 struct vm_area_struct *vma, unsigned long address, int exclusive)
1781{
1782 struct anon_vma *anon_vma = vma->anon_vma;
433abed6 1783
0fe6e20b 1784 BUG_ON(!anon_vma);
433abed6
NH
1785
1786 if (PageAnon(page))
1787 return;
1788 if (!exclusive)
1789 anon_vma = anon_vma->root;
1790
0fe6e20b
NH
1791 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1792 page->mapping = (struct address_space *) anon_vma;
1793 page->index = linear_page_index(vma, address);
1794}
1795
1796void hugepage_add_anon_rmap(struct page *page,
1797 struct vm_area_struct *vma, unsigned long address)
1798{
1799 struct anon_vma *anon_vma = vma->anon_vma;
1800 int first;
a850ea30
NH
1801
1802 BUG_ON(!PageLocked(page));
0fe6e20b 1803 BUG_ON(!anon_vma);
5dbe0af4 1804 /* address might be in next vma when migration races vma_adjust */
0fe6e20b
NH
1805 first = atomic_inc_and_test(&page->_mapcount);
1806 if (first)
1807 __hugepage_set_anon_rmap(page, vma, address, 0);
1808}
1809
1810void hugepage_add_new_anon_rmap(struct page *page,
1811 struct vm_area_struct *vma, unsigned long address)
1812{
1813 BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1814 atomic_set(&page->_mapcount, 0);
1815 __hugepage_set_anon_rmap(page, vma, address, 1);
1816}
e3390f67 1817#endif /* CONFIG_HUGETLB_PAGE */