]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - mm/rmap.c
mm/rmap: Convert the struct anon_vma::mutex to an rwsem
[mirror_ubuntu-bionic-kernel.git] / mm / rmap.c
CommitLineData
1da177e4
LT
1/*
2 * mm/rmap.c - physical to virtual reverse mappings
3 *
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
6 *
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
9 *
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
13 *
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
98f32602 17 * Contributions by Hugh Dickins 2003, 2004
1da177e4
LT
18 */
19
20/*
21 * Lock ordering in mm:
22 *
1b1dcc1b 23 * inode->i_mutex (while writing or truncating, not reading or faulting)
82591e6e
NP
24 * mm->mmap_sem
25 * page->flags PG_locked (lock_page)
3d48ae45 26 * mapping->i_mmap_mutex
5a505085 27 * anon_vma->rwsem
82591e6e
NP
28 * mm->page_table_lock or pte_lock
29 * zone->lru_lock (in mark_page_accessed, isolate_lru_page)
30 * swap_lock (in swap_duplicate, swap_info_get)
31 * mmlist_lock (in mmput, drain_mmlist and others)
32 * mapping->private_lock (in __set_page_dirty_buffers)
250df6ed 33 * inode->i_lock (in set_page_dirty's __mark_inode_dirty)
f758eeab 34 * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
82591e6e
NP
35 * sb_lock (within inode_lock in fs/fs-writeback.c)
36 * mapping->tree_lock (widely used, in set_page_dirty,
37 * in arch-dependent flush_dcache_mmap_lock,
f758eeab 38 * within bdi.wb->list_lock in __sync_single_inode)
6a46079c 39 *
5a505085 40 * anon_vma->rwsem,mapping->i_mutex (memory_failure, collect_procs_anon)
9b679320 41 * ->tasklist_lock
6a46079c 42 * pte map lock
1da177e4
LT
43 */
44
45#include <linux/mm.h>
46#include <linux/pagemap.h>
47#include <linux/swap.h>
48#include <linux/swapops.h>
49#include <linux/slab.h>
50#include <linux/init.h>
5ad64688 51#include <linux/ksm.h>
1da177e4
LT
52#include <linux/rmap.h>
53#include <linux/rcupdate.h>
b95f1b31 54#include <linux/export.h>
8a9f3ccd 55#include <linux/memcontrol.h>
cddb8a5c 56#include <linux/mmu_notifier.h>
64cdd548 57#include <linux/migrate.h>
0fe6e20b 58#include <linux/hugetlb.h>
ef5d437f 59#include <linux/backing-dev.h>
1da177e4
LT
60
61#include <asm/tlbflush.h>
62
b291f000
NP
63#include "internal.h"
64
fdd2e5f8 65static struct kmem_cache *anon_vma_cachep;
5beb4930 66static struct kmem_cache *anon_vma_chain_cachep;
fdd2e5f8
AB
67
68static inline struct anon_vma *anon_vma_alloc(void)
69{
01d8b20d
PZ
70 struct anon_vma *anon_vma;
71
72 anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
73 if (anon_vma) {
74 atomic_set(&anon_vma->refcount, 1);
75 /*
76 * Initialise the anon_vma root to point to itself. If called
77 * from fork, the root will be reset to the parents anon_vma.
78 */
79 anon_vma->root = anon_vma;
80 }
81
82 return anon_vma;
fdd2e5f8
AB
83}
84
01d8b20d 85static inline void anon_vma_free(struct anon_vma *anon_vma)
fdd2e5f8 86{
01d8b20d 87 VM_BUG_ON(atomic_read(&anon_vma->refcount));
88c22088
PZ
88
89 /*
90 * Synchronize against page_lock_anon_vma() such that
91 * we can safely hold the lock without the anon_vma getting
92 * freed.
93 *
94 * Relies on the full mb implied by the atomic_dec_and_test() from
95 * put_anon_vma() against the acquire barrier implied by
96 * mutex_trylock() from page_lock_anon_vma(). This orders:
97 *
98 * page_lock_anon_vma() VS put_anon_vma()
99 * mutex_trylock() atomic_dec_and_test()
100 * LOCK MB
101 * atomic_read() mutex_is_locked()
102 *
103 * LOCK should suffice since the actual taking of the lock must
104 * happen _before_ what follows.
105 */
5a505085 106 if (rwsem_is_locked(&anon_vma->root->rwsem)) {
88c22088
PZ
107 anon_vma_lock(anon_vma);
108 anon_vma_unlock(anon_vma);
109 }
110
fdd2e5f8
AB
111 kmem_cache_free(anon_vma_cachep, anon_vma);
112}
1da177e4 113
dd34739c 114static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
5beb4930 115{
dd34739c 116 return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
5beb4930
RR
117}
118
e574b5fd 119static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
5beb4930
RR
120{
121 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
122}
123
6583a843
KC
124static void anon_vma_chain_link(struct vm_area_struct *vma,
125 struct anon_vma_chain *avc,
126 struct anon_vma *anon_vma)
127{
128 avc->vma = vma;
129 avc->anon_vma = anon_vma;
130 list_add(&avc->same_vma, &vma->anon_vma_chain);
bf181b9f 131 anon_vma_interval_tree_insert(avc, &anon_vma->rb_root);
6583a843
KC
132}
133
d9d332e0
LT
134/**
135 * anon_vma_prepare - attach an anon_vma to a memory region
136 * @vma: the memory region in question
137 *
138 * This makes sure the memory mapping described by 'vma' has
139 * an 'anon_vma' attached to it, so that we can associate the
140 * anonymous pages mapped into it with that anon_vma.
141 *
142 * The common case will be that we already have one, but if
23a0790a 143 * not we either need to find an adjacent mapping that we
d9d332e0
LT
144 * can re-use the anon_vma from (very common when the only
145 * reason for splitting a vma has been mprotect()), or we
146 * allocate a new one.
147 *
148 * Anon-vma allocations are very subtle, because we may have
149 * optimistically looked up an anon_vma in page_lock_anon_vma()
150 * and that may actually touch the spinlock even in the newly
151 * allocated vma (it depends on RCU to make sure that the
152 * anon_vma isn't actually destroyed).
153 *
154 * As a result, we need to do proper anon_vma locking even
155 * for the new allocation. At the same time, we do not want
156 * to do any locking for the common case of already having
157 * an anon_vma.
158 *
159 * This must be called with the mmap_sem held for reading.
160 */
1da177e4
LT
161int anon_vma_prepare(struct vm_area_struct *vma)
162{
163 struct anon_vma *anon_vma = vma->anon_vma;
5beb4930 164 struct anon_vma_chain *avc;
1da177e4
LT
165
166 might_sleep();
167 if (unlikely(!anon_vma)) {
168 struct mm_struct *mm = vma->vm_mm;
d9d332e0 169 struct anon_vma *allocated;
1da177e4 170
dd34739c 171 avc = anon_vma_chain_alloc(GFP_KERNEL);
5beb4930
RR
172 if (!avc)
173 goto out_enomem;
174
1da177e4 175 anon_vma = find_mergeable_anon_vma(vma);
d9d332e0
LT
176 allocated = NULL;
177 if (!anon_vma) {
1da177e4
LT
178 anon_vma = anon_vma_alloc();
179 if (unlikely(!anon_vma))
5beb4930 180 goto out_enomem_free_avc;
1da177e4 181 allocated = anon_vma;
1da177e4
LT
182 }
183
cba48b98 184 anon_vma_lock(anon_vma);
1da177e4
LT
185 /* page_table_lock to protect against threads */
186 spin_lock(&mm->page_table_lock);
187 if (likely(!vma->anon_vma)) {
188 vma->anon_vma = anon_vma;
6583a843 189 anon_vma_chain_link(vma, avc, anon_vma);
1da177e4 190 allocated = NULL;
31f2b0eb 191 avc = NULL;
1da177e4
LT
192 }
193 spin_unlock(&mm->page_table_lock);
cba48b98 194 anon_vma_unlock(anon_vma);
31f2b0eb
ON
195
196 if (unlikely(allocated))
01d8b20d 197 put_anon_vma(allocated);
31f2b0eb 198 if (unlikely(avc))
5beb4930 199 anon_vma_chain_free(avc);
1da177e4
LT
200 }
201 return 0;
5beb4930
RR
202
203 out_enomem_free_avc:
204 anon_vma_chain_free(avc);
205 out_enomem:
206 return -ENOMEM;
1da177e4
LT
207}
208
bb4aa396
LT
209/*
210 * This is a useful helper function for locking the anon_vma root as
211 * we traverse the vma->anon_vma_chain, looping over anon_vma's that
212 * have the same vma.
213 *
214 * Such anon_vma's should have the same root, so you'd expect to see
215 * just a single mutex_lock for the whole traversal.
216 */
217static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
218{
219 struct anon_vma *new_root = anon_vma->root;
220 if (new_root != root) {
221 if (WARN_ON_ONCE(root))
5a505085 222 up_write(&root->rwsem);
bb4aa396 223 root = new_root;
5a505085 224 down_write(&root->rwsem);
bb4aa396
LT
225 }
226 return root;
227}
228
229static inline void unlock_anon_vma_root(struct anon_vma *root)
230{
231 if (root)
5a505085 232 up_write(&root->rwsem);
bb4aa396
LT
233}
234
5beb4930
RR
235/*
236 * Attach the anon_vmas from src to dst.
237 * Returns 0 on success, -ENOMEM on failure.
238 */
239int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
1da177e4 240{
5beb4930 241 struct anon_vma_chain *avc, *pavc;
bb4aa396 242 struct anon_vma *root = NULL;
5beb4930 243
646d87b4 244 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
bb4aa396
LT
245 struct anon_vma *anon_vma;
246
dd34739c
LT
247 avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
248 if (unlikely(!avc)) {
249 unlock_anon_vma_root(root);
250 root = NULL;
251 avc = anon_vma_chain_alloc(GFP_KERNEL);
252 if (!avc)
253 goto enomem_failure;
254 }
bb4aa396
LT
255 anon_vma = pavc->anon_vma;
256 root = lock_anon_vma_root(root, anon_vma);
257 anon_vma_chain_link(dst, avc, anon_vma);
5beb4930 258 }
bb4aa396 259 unlock_anon_vma_root(root);
5beb4930 260 return 0;
1da177e4 261
5beb4930
RR
262 enomem_failure:
263 unlink_anon_vmas(dst);
264 return -ENOMEM;
1da177e4
LT
265}
266
5beb4930
RR
267/*
268 * Attach vma to its own anon_vma, as well as to the anon_vmas that
269 * the corresponding VMA in the parent process is attached to.
270 * Returns 0 on success, non-zero on failure.
271 */
272int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
1da177e4 273{
5beb4930
RR
274 struct anon_vma_chain *avc;
275 struct anon_vma *anon_vma;
1da177e4 276
5beb4930
RR
277 /* Don't bother if the parent process has no anon_vma here. */
278 if (!pvma->anon_vma)
279 return 0;
280
281 /*
282 * First, attach the new VMA to the parent VMA's anon_vmas,
283 * so rmap can find non-COWed pages in child processes.
284 */
285 if (anon_vma_clone(vma, pvma))
286 return -ENOMEM;
287
288 /* Then add our own anon_vma. */
289 anon_vma = anon_vma_alloc();
290 if (!anon_vma)
291 goto out_error;
dd34739c 292 avc = anon_vma_chain_alloc(GFP_KERNEL);
5beb4930
RR
293 if (!avc)
294 goto out_error_free_anon_vma;
5c341ee1
RR
295
296 /*
297 * The root anon_vma's spinlock is the lock actually used when we
298 * lock any of the anon_vmas in this anon_vma tree.
299 */
300 anon_vma->root = pvma->anon_vma->root;
76545066 301 /*
01d8b20d
PZ
302 * With refcounts, an anon_vma can stay around longer than the
303 * process it belongs to. The root anon_vma needs to be pinned until
304 * this anon_vma is freed, because the lock lives in the root.
76545066
RR
305 */
306 get_anon_vma(anon_vma->root);
5beb4930
RR
307 /* Mark this anon_vma as the one where our new (COWed) pages go. */
308 vma->anon_vma = anon_vma;
bb4aa396 309 anon_vma_lock(anon_vma);
5c341ee1 310 anon_vma_chain_link(vma, avc, anon_vma);
bb4aa396 311 anon_vma_unlock(anon_vma);
5beb4930
RR
312
313 return 0;
314
315 out_error_free_anon_vma:
01d8b20d 316 put_anon_vma(anon_vma);
5beb4930 317 out_error:
4946d54c 318 unlink_anon_vmas(vma);
5beb4930 319 return -ENOMEM;
1da177e4
LT
320}
321
5beb4930
RR
322void unlink_anon_vmas(struct vm_area_struct *vma)
323{
324 struct anon_vma_chain *avc, *next;
eee2acba 325 struct anon_vma *root = NULL;
5beb4930 326
5c341ee1
RR
327 /*
328 * Unlink each anon_vma chained to the VMA. This list is ordered
329 * from newest to oldest, ensuring the root anon_vma gets freed last.
330 */
5beb4930 331 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
eee2acba
PZ
332 struct anon_vma *anon_vma = avc->anon_vma;
333
334 root = lock_anon_vma_root(root, anon_vma);
bf181b9f 335 anon_vma_interval_tree_remove(avc, &anon_vma->rb_root);
eee2acba
PZ
336
337 /*
338 * Leave empty anon_vmas on the list - we'll need
339 * to free them outside the lock.
340 */
bf181b9f 341 if (RB_EMPTY_ROOT(&anon_vma->rb_root))
eee2acba
PZ
342 continue;
343
344 list_del(&avc->same_vma);
345 anon_vma_chain_free(avc);
346 }
347 unlock_anon_vma_root(root);
348
349 /*
350 * Iterate the list once more, it now only contains empty and unlinked
351 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
5a505085 352 * needing to write-acquire the anon_vma->root->rwsem.
eee2acba
PZ
353 */
354 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
355 struct anon_vma *anon_vma = avc->anon_vma;
356
357 put_anon_vma(anon_vma);
358
5beb4930
RR
359 list_del(&avc->same_vma);
360 anon_vma_chain_free(avc);
361 }
362}
363
51cc5068 364static void anon_vma_ctor(void *data)
1da177e4 365{
a35afb83 366 struct anon_vma *anon_vma = data;
1da177e4 367
5a505085 368 init_rwsem(&anon_vma->rwsem);
83813267 369 atomic_set(&anon_vma->refcount, 0);
bf181b9f 370 anon_vma->rb_root = RB_ROOT;
1da177e4
LT
371}
372
373void __init anon_vma_init(void)
374{
375 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
20c2df83 376 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);
5beb4930 377 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, SLAB_PANIC);
1da177e4
LT
378}
379
380/*
6111e4ca
PZ
381 * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
382 *
383 * Since there is no serialization what so ever against page_remove_rmap()
384 * the best this function can do is return a locked anon_vma that might
385 * have been relevant to this page.
386 *
387 * The page might have been remapped to a different anon_vma or the anon_vma
388 * returned may already be freed (and even reused).
389 *
bc658c96
PZ
390 * In case it was remapped to a different anon_vma, the new anon_vma will be a
391 * child of the old anon_vma, and the anon_vma lifetime rules will therefore
392 * ensure that any anon_vma obtained from the page will still be valid for as
393 * long as we observe page_mapped() [ hence all those page_mapped() tests ].
394 *
6111e4ca
PZ
395 * All users of this function must be very careful when walking the anon_vma
396 * chain and verify that the page in question is indeed mapped in it
397 * [ something equivalent to page_mapped_in_vma() ].
398 *
399 * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap()
400 * that the anon_vma pointer from page->mapping is valid if there is a
401 * mapcount, we can dereference the anon_vma after observing those.
1da177e4 402 */
746b18d4 403struct anon_vma *page_get_anon_vma(struct page *page)
1da177e4 404{
746b18d4 405 struct anon_vma *anon_vma = NULL;
1da177e4
LT
406 unsigned long anon_mapping;
407
408 rcu_read_lock();
80e14822 409 anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
3ca7b3c5 410 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
1da177e4
LT
411 goto out;
412 if (!page_mapped(page))
413 goto out;
414
415 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
746b18d4
PZ
416 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
417 anon_vma = NULL;
418 goto out;
419 }
f1819427
HD
420
421 /*
422 * If this page is still mapped, then its anon_vma cannot have been
746b18d4
PZ
423 * freed. But if it has been unmapped, we have no security against the
424 * anon_vma structure being freed and reused (for another anon_vma:
425 * SLAB_DESTROY_BY_RCU guarantees that - so the atomic_inc_not_zero()
426 * above cannot corrupt).
f1819427 427 */
746b18d4
PZ
428 if (!page_mapped(page)) {
429 put_anon_vma(anon_vma);
430 anon_vma = NULL;
431 }
1da177e4
LT
432out:
433 rcu_read_unlock();
746b18d4
PZ
434
435 return anon_vma;
436}
437
88c22088
PZ
438/*
439 * Similar to page_get_anon_vma() except it locks the anon_vma.
440 *
441 * Its a little more complex as it tries to keep the fast path to a single
442 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
443 * reference like with page_get_anon_vma() and then block on the mutex.
444 */
746b18d4
PZ
445struct anon_vma *page_lock_anon_vma(struct page *page)
446{
88c22088 447 struct anon_vma *anon_vma = NULL;
eee0f252 448 struct anon_vma *root_anon_vma;
88c22088 449 unsigned long anon_mapping;
746b18d4 450
88c22088
PZ
451 rcu_read_lock();
452 anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
453 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
454 goto out;
455 if (!page_mapped(page))
456 goto out;
457
458 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
eee0f252 459 root_anon_vma = ACCESS_ONCE(anon_vma->root);
5a505085 460 if (down_write_trylock(&root_anon_vma->rwsem)) {
88c22088 461 /*
eee0f252
HD
462 * If the page is still mapped, then this anon_vma is still
463 * its anon_vma, and holding the mutex ensures that it will
bc658c96 464 * not go away, see anon_vma_free().
88c22088 465 */
eee0f252 466 if (!page_mapped(page)) {
5a505085 467 up_write(&root_anon_vma->rwsem);
88c22088
PZ
468 anon_vma = NULL;
469 }
470 goto out;
471 }
746b18d4 472
88c22088
PZ
473 /* trylock failed, we got to sleep */
474 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
475 anon_vma = NULL;
476 goto out;
477 }
478
479 if (!page_mapped(page)) {
480 put_anon_vma(anon_vma);
481 anon_vma = NULL;
482 goto out;
483 }
484
485 /* we pinned the anon_vma, its safe to sleep */
486 rcu_read_unlock();
487 anon_vma_lock(anon_vma);
488
489 if (atomic_dec_and_test(&anon_vma->refcount)) {
490 /*
491 * Oops, we held the last refcount, release the lock
492 * and bail -- can't simply use put_anon_vma() because
493 * we'll deadlock on the anon_vma_lock() recursion.
494 */
495 anon_vma_unlock(anon_vma);
496 __put_anon_vma(anon_vma);
497 anon_vma = NULL;
498 }
499
500 return anon_vma;
501
502out:
503 rcu_read_unlock();
746b18d4 504 return anon_vma;
34bbd704
ON
505}
506
10be22df 507void page_unlock_anon_vma(struct anon_vma *anon_vma)
34bbd704 508{
cba48b98 509 anon_vma_unlock(anon_vma);
1da177e4
LT
510}
511
512/*
3ad33b24 513 * At what user virtual address is page expected in @vma?
1da177e4 514 */
86c2ad19
ML
515static inline unsigned long
516__vma_address(struct page *page, struct vm_area_struct *vma)
1da177e4
LT
517{
518 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1da177e4 519
0fe6e20b
NH
520 if (unlikely(is_vm_hugetlb_page(vma)))
521 pgoff = page->index << huge_page_order(page_hstate(page));
86c2ad19
ML
522
523 return vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
524}
525
526inline unsigned long
527vma_address(struct page *page, struct vm_area_struct *vma)
528{
529 unsigned long address = __vma_address(page, vma);
530
531 /* page should be within @vma mapping range */
532 VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
533
1da177e4
LT
534 return address;
535}
536
537/*
bf89c8c8 538 * At what user virtual address is page expected in vma?
ab941e0f 539 * Caller should check the page is actually part of the vma.
1da177e4
LT
540 */
541unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
542{
86c2ad19 543 unsigned long address;
21d0d443 544 if (PageAnon(page)) {
4829b906
HD
545 struct anon_vma *page__anon_vma = page_anon_vma(page);
546 /*
547 * Note: swapoff's unuse_vma() is more efficient with this
548 * check, and needs it to match anon_vma when KSM is active.
549 */
550 if (!vma->anon_vma || !page__anon_vma ||
551 vma->anon_vma->root != page__anon_vma->root)
21d0d443
AA
552 return -EFAULT;
553 } else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
ee498ed7
HD
554 if (!vma->vm_file ||
555 vma->vm_file->f_mapping != page->mapping)
1da177e4
LT
556 return -EFAULT;
557 } else
558 return -EFAULT;
86c2ad19
ML
559 address = __vma_address(page, vma);
560 if (unlikely(address < vma->vm_start || address >= vma->vm_end))
561 return -EFAULT;
562 return address;
1da177e4
LT
563}
564
81b4082d
ND
565/*
566 * Check that @page is mapped at @address into @mm.
567 *
479db0bf
NP
568 * If @sync is false, page_check_address may perform a racy check to avoid
569 * the page table lock when the pte is not present (helpful when reclaiming
570 * highly shared pages).
571 *
b8072f09 572 * On success returns with pte mapped and locked.
81b4082d 573 */
e9a81a82 574pte_t *__page_check_address(struct page *page, struct mm_struct *mm,
479db0bf 575 unsigned long address, spinlock_t **ptlp, int sync)
81b4082d
ND
576{
577 pgd_t *pgd;
578 pud_t *pud;
579 pmd_t *pmd;
580 pte_t *pte;
c0718806 581 spinlock_t *ptl;
81b4082d 582
0fe6e20b
NH
583 if (unlikely(PageHuge(page))) {
584 pte = huge_pte_offset(mm, address);
585 ptl = &mm->page_table_lock;
586 goto check;
587 }
588
81b4082d 589 pgd = pgd_offset(mm, address);
c0718806
HD
590 if (!pgd_present(*pgd))
591 return NULL;
592
593 pud = pud_offset(pgd, address);
594 if (!pud_present(*pud))
595 return NULL;
596
597 pmd = pmd_offset(pud, address);
598 if (!pmd_present(*pmd))
599 return NULL;
71e3aac0
AA
600 if (pmd_trans_huge(*pmd))
601 return NULL;
c0718806
HD
602
603 pte = pte_offset_map(pmd, address);
604 /* Make a quick check before getting the lock */
479db0bf 605 if (!sync && !pte_present(*pte)) {
c0718806
HD
606 pte_unmap(pte);
607 return NULL;
608 }
609
4c21e2f2 610 ptl = pte_lockptr(mm, pmd);
0fe6e20b 611check:
c0718806
HD
612 spin_lock(ptl);
613 if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
614 *ptlp = ptl;
615 return pte;
81b4082d 616 }
c0718806
HD
617 pte_unmap_unlock(pte, ptl);
618 return NULL;
81b4082d
ND
619}
620
b291f000
NP
621/**
622 * page_mapped_in_vma - check whether a page is really mapped in a VMA
623 * @page: the page to test
624 * @vma: the VMA to test
625 *
626 * Returns 1 if the page is mapped into the page tables of the VMA, 0
627 * if the page is not mapped into the page tables of this VMA. Only
628 * valid for normal file or anonymous VMAs.
629 */
6a46079c 630int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
b291f000
NP
631{
632 unsigned long address;
633 pte_t *pte;
634 spinlock_t *ptl;
635
86c2ad19
ML
636 address = __vma_address(page, vma);
637 if (unlikely(address < vma->vm_start || address >= vma->vm_end))
b291f000
NP
638 return 0;
639 pte = page_check_address(page, vma->vm_mm, address, &ptl, 1);
640 if (!pte) /* the page is not in this mm */
641 return 0;
642 pte_unmap_unlock(pte, ptl);
643
644 return 1;
645}
646
1da177e4
LT
647/*
648 * Subfunctions of page_referenced: page_referenced_one called
649 * repeatedly from either page_referenced_anon or page_referenced_file.
650 */
5ad64688
HD
651int page_referenced_one(struct page *page, struct vm_area_struct *vma,
652 unsigned long address, unsigned int *mapcount,
653 unsigned long *vm_flags)
1da177e4
LT
654{
655 struct mm_struct *mm = vma->vm_mm;
1da177e4
LT
656 int referenced = 0;
657
71e3aac0
AA
658 if (unlikely(PageTransHuge(page))) {
659 pmd_t *pmd;
660
661 spin_lock(&mm->page_table_lock);
2da28bfd
AA
662 /*
663 * rmap might return false positives; we must filter
664 * these out using page_check_address_pmd().
665 */
71e3aac0
AA
666 pmd = page_check_address_pmd(page, mm, address,
667 PAGE_CHECK_ADDRESS_PMD_FLAG);
2da28bfd
AA
668 if (!pmd) {
669 spin_unlock(&mm->page_table_lock);
670 goto out;
671 }
672
673 if (vma->vm_flags & VM_LOCKED) {
674 spin_unlock(&mm->page_table_lock);
675 *mapcount = 0; /* break early from loop */
676 *vm_flags |= VM_LOCKED;
677 goto out;
678 }
679
680 /* go ahead even if the pmd is pmd_trans_splitting() */
681 if (pmdp_clear_flush_young_notify(vma, address, pmd))
71e3aac0
AA
682 referenced++;
683 spin_unlock(&mm->page_table_lock);
684 } else {
685 pte_t *pte;
686 spinlock_t *ptl;
687
2da28bfd
AA
688 /*
689 * rmap might return false positives; we must filter
690 * these out using page_check_address().
691 */
71e3aac0
AA
692 pte = page_check_address(page, mm, address, &ptl, 0);
693 if (!pte)
694 goto out;
695
2da28bfd
AA
696 if (vma->vm_flags & VM_LOCKED) {
697 pte_unmap_unlock(pte, ptl);
698 *mapcount = 0; /* break early from loop */
699 *vm_flags |= VM_LOCKED;
700 goto out;
701 }
702
71e3aac0
AA
703 if (ptep_clear_flush_young_notify(vma, address, pte)) {
704 /*
705 * Don't treat a reference through a sequentially read
706 * mapping as such. If the page has been used in
707 * another mapping, we will catch it; if this other
708 * mapping is already gone, the unmap path will have
709 * set PG_referenced or activated the page.
710 */
711 if (likely(!VM_SequentialReadHint(vma)))
712 referenced++;
713 }
714 pte_unmap_unlock(pte, ptl);
715 }
716
c0718806 717 (*mapcount)--;
273f047e 718
6fe6b7e3
WF
719 if (referenced)
720 *vm_flags |= vma->vm_flags;
273f047e 721out:
1da177e4
LT
722 return referenced;
723}
724
bed7161a 725static int page_referenced_anon(struct page *page,
72835c86 726 struct mem_cgroup *memcg,
6fe6b7e3 727 unsigned long *vm_flags)
1da177e4
LT
728{
729 unsigned int mapcount;
730 struct anon_vma *anon_vma;
bf181b9f 731 pgoff_t pgoff;
5beb4930 732 struct anon_vma_chain *avc;
1da177e4
LT
733 int referenced = 0;
734
735 anon_vma = page_lock_anon_vma(page);
736 if (!anon_vma)
737 return referenced;
738
739 mapcount = page_mapcount(page);
bf181b9f
ML
740 pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
741 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
5beb4930 742 struct vm_area_struct *vma = avc->vma;
1cb1729b 743 unsigned long address = vma_address(page, vma);
bed7161a
BS
744 /*
745 * If we are reclaiming on behalf of a cgroup, skip
746 * counting on behalf of references from different
747 * cgroups
748 */
72835c86 749 if (memcg && !mm_match_cgroup(vma->vm_mm, memcg))
bed7161a 750 continue;
1cb1729b 751 referenced += page_referenced_one(page, vma, address,
6fe6b7e3 752 &mapcount, vm_flags);
1da177e4
LT
753 if (!mapcount)
754 break;
755 }
34bbd704
ON
756
757 page_unlock_anon_vma(anon_vma);
1da177e4
LT
758 return referenced;
759}
760
761/**
762 * page_referenced_file - referenced check for object-based rmap
763 * @page: the page we're checking references on.
72835c86 764 * @memcg: target memory control group
6fe6b7e3 765 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
1da177e4
LT
766 *
767 * For an object-based mapped page, find all the places it is mapped and
768 * check/clear the referenced flag. This is done by following the page->mapping
769 * pointer, then walking the chain of vmas it holds. It returns the number
770 * of references it found.
771 *
772 * This function is only called from page_referenced for object-based pages.
773 */
bed7161a 774static int page_referenced_file(struct page *page,
72835c86 775 struct mem_cgroup *memcg,
6fe6b7e3 776 unsigned long *vm_flags)
1da177e4
LT
777{
778 unsigned int mapcount;
779 struct address_space *mapping = page->mapping;
780 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
781 struct vm_area_struct *vma;
1da177e4
LT
782 int referenced = 0;
783
784 /*
785 * The caller's checks on page->mapping and !PageAnon have made
786 * sure that this is a file page: the check for page->mapping
787 * excludes the case just before it gets set on an anon page.
788 */
789 BUG_ON(PageAnon(page));
790
791 /*
792 * The page lock not only makes sure that page->mapping cannot
793 * suddenly be NULLified by truncation, it makes sure that the
794 * structure at mapping cannot be freed and reused yet,
3d48ae45 795 * so we can safely take mapping->i_mmap_mutex.
1da177e4
LT
796 */
797 BUG_ON(!PageLocked(page));
798
3d48ae45 799 mutex_lock(&mapping->i_mmap_mutex);
1da177e4
LT
800
801 /*
3d48ae45 802 * i_mmap_mutex does not stabilize mapcount at all, but mapcount
1da177e4
LT
803 * is more likely to be accurate if we note it after spinning.
804 */
805 mapcount = page_mapcount(page);
806
6b2dbba8 807 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
1cb1729b 808 unsigned long address = vma_address(page, vma);
bed7161a
BS
809 /*
810 * If we are reclaiming on behalf of a cgroup, skip
811 * counting on behalf of references from different
812 * cgroups
813 */
72835c86 814 if (memcg && !mm_match_cgroup(vma->vm_mm, memcg))
bed7161a 815 continue;
1cb1729b 816 referenced += page_referenced_one(page, vma, address,
6fe6b7e3 817 &mapcount, vm_flags);
1da177e4
LT
818 if (!mapcount)
819 break;
820 }
821
3d48ae45 822 mutex_unlock(&mapping->i_mmap_mutex);
1da177e4
LT
823 return referenced;
824}
825
826/**
827 * page_referenced - test if the page was referenced
828 * @page: the page to test
829 * @is_locked: caller holds lock on the page
72835c86 830 * @memcg: target memory cgroup
6fe6b7e3 831 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
1da177e4
LT
832 *
833 * Quick test_and_clear_referenced for all mappings to a page,
834 * returns the number of ptes which referenced the page.
835 */
6fe6b7e3
WF
836int page_referenced(struct page *page,
837 int is_locked,
72835c86 838 struct mem_cgroup *memcg,
6fe6b7e3 839 unsigned long *vm_flags)
1da177e4
LT
840{
841 int referenced = 0;
5ad64688 842 int we_locked = 0;
1da177e4 843
6fe6b7e3 844 *vm_flags = 0;
3ca7b3c5 845 if (page_mapped(page) && page_rmapping(page)) {
5ad64688
HD
846 if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
847 we_locked = trylock_page(page);
848 if (!we_locked) {
849 referenced++;
850 goto out;
851 }
852 }
853 if (unlikely(PageKsm(page)))
72835c86 854 referenced += page_referenced_ksm(page, memcg,
5ad64688
HD
855 vm_flags);
856 else if (PageAnon(page))
72835c86 857 referenced += page_referenced_anon(page, memcg,
6fe6b7e3 858 vm_flags);
5ad64688 859 else if (page->mapping)
72835c86 860 referenced += page_referenced_file(page, memcg,
6fe6b7e3 861 vm_flags);
5ad64688 862 if (we_locked)
1da177e4 863 unlock_page(page);
50a15981
MS
864
865 if (page_test_and_clear_young(page_to_pfn(page)))
866 referenced++;
1da177e4 867 }
5ad64688 868out:
1da177e4
LT
869 return referenced;
870}
871
1cb1729b
HD
872static int page_mkclean_one(struct page *page, struct vm_area_struct *vma,
873 unsigned long address)
d08b3851
PZ
874{
875 struct mm_struct *mm = vma->vm_mm;
c2fda5fe 876 pte_t *pte;
d08b3851
PZ
877 spinlock_t *ptl;
878 int ret = 0;
879
479db0bf 880 pte = page_check_address(page, mm, address, &ptl, 1);
d08b3851
PZ
881 if (!pte)
882 goto out;
883
c2fda5fe
PZ
884 if (pte_dirty(*pte) || pte_write(*pte)) {
885 pte_t entry;
d08b3851 886
c2fda5fe 887 flush_cache_page(vma, address, pte_pfn(*pte));
2ec74c3e 888 entry = ptep_clear_flush(vma, address, pte);
c2fda5fe
PZ
889 entry = pte_wrprotect(entry);
890 entry = pte_mkclean(entry);
d6e88e67 891 set_pte_at(mm, address, pte, entry);
c2fda5fe
PZ
892 ret = 1;
893 }
d08b3851 894
d08b3851 895 pte_unmap_unlock(pte, ptl);
2ec74c3e
SG
896
897 if (ret)
898 mmu_notifier_invalidate_page(mm, address);
d08b3851
PZ
899out:
900 return ret;
901}
902
903static int page_mkclean_file(struct address_space *mapping, struct page *page)
904{
905 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
906 struct vm_area_struct *vma;
d08b3851
PZ
907 int ret = 0;
908
909 BUG_ON(PageAnon(page));
910
3d48ae45 911 mutex_lock(&mapping->i_mmap_mutex);
6b2dbba8 912 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
1cb1729b
HD
913 if (vma->vm_flags & VM_SHARED) {
914 unsigned long address = vma_address(page, vma);
1cb1729b
HD
915 ret += page_mkclean_one(page, vma, address);
916 }
d08b3851 917 }
3d48ae45 918 mutex_unlock(&mapping->i_mmap_mutex);
d08b3851
PZ
919 return ret;
920}
921
922int page_mkclean(struct page *page)
923{
924 int ret = 0;
925
926 BUG_ON(!PageLocked(page));
927
928 if (page_mapped(page)) {
929 struct address_space *mapping = page_mapping(page);
ef5d437f 930 if (mapping)
d08b3851
PZ
931 ret = page_mkclean_file(mapping, page);
932 }
933
934 return ret;
935}
60b59bea 936EXPORT_SYMBOL_GPL(page_mkclean);
d08b3851 937
c44b6743
RR
938/**
939 * page_move_anon_rmap - move a page to our anon_vma
940 * @page: the page to move to our anon_vma
941 * @vma: the vma the page belongs to
942 * @address: the user virtual address mapped
943 *
944 * When a page belongs exclusively to one process after a COW event,
945 * that page can be moved into the anon_vma that belongs to just that
946 * process, so the rmap code will not search the parent or sibling
947 * processes.
948 */
949void page_move_anon_rmap(struct page *page,
950 struct vm_area_struct *vma, unsigned long address)
951{
952 struct anon_vma *anon_vma = vma->anon_vma;
953
954 VM_BUG_ON(!PageLocked(page));
955 VM_BUG_ON(!anon_vma);
956 VM_BUG_ON(page->index != linear_page_index(vma, address));
957
958 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
959 page->mapping = (struct address_space *) anon_vma;
960}
961
9617d95e 962/**
4e1c1975
AK
963 * __page_set_anon_rmap - set up new anonymous rmap
964 * @page: Page to add to rmap
965 * @vma: VM area to add page to.
966 * @address: User virtual address of the mapping
e8a03feb 967 * @exclusive: the page is exclusively owned by the current process
9617d95e
NP
968 */
969static void __page_set_anon_rmap(struct page *page,
e8a03feb 970 struct vm_area_struct *vma, unsigned long address, int exclusive)
9617d95e 971{
e8a03feb 972 struct anon_vma *anon_vma = vma->anon_vma;
ea90002b 973
e8a03feb 974 BUG_ON(!anon_vma);
ea90002b 975
4e1c1975
AK
976 if (PageAnon(page))
977 return;
978
ea90002b 979 /*
e8a03feb
RR
980 * If the page isn't exclusively mapped into this vma,
981 * we must use the _oldest_ possible anon_vma for the
982 * page mapping!
ea90002b 983 */
4e1c1975 984 if (!exclusive)
288468c3 985 anon_vma = anon_vma->root;
9617d95e 986
9617d95e
NP
987 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
988 page->mapping = (struct address_space *) anon_vma;
9617d95e 989 page->index = linear_page_index(vma, address);
9617d95e
NP
990}
991
c97a9e10 992/**
43d8eac4 993 * __page_check_anon_rmap - sanity check anonymous rmap addition
c97a9e10
NP
994 * @page: the page to add the mapping to
995 * @vma: the vm area in which the mapping is added
996 * @address: the user virtual address mapped
997 */
998static void __page_check_anon_rmap(struct page *page,
999 struct vm_area_struct *vma, unsigned long address)
1000{
1001#ifdef CONFIG_DEBUG_VM
1002 /*
1003 * The page's anon-rmap details (mapping and index) are guaranteed to
1004 * be set up correctly at this point.
1005 *
1006 * We have exclusion against page_add_anon_rmap because the caller
1007 * always holds the page locked, except if called from page_dup_rmap,
1008 * in which case the page is already known to be setup.
1009 *
1010 * We have exclusion against page_add_new_anon_rmap because those pages
1011 * are initially only visible via the pagetables, and the pte is locked
1012 * over the call to page_add_new_anon_rmap.
1013 */
44ab57a0 1014 BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root);
c97a9e10
NP
1015 BUG_ON(page->index != linear_page_index(vma, address));
1016#endif
1017}
1018
1da177e4
LT
1019/**
1020 * page_add_anon_rmap - add pte mapping to an anonymous page
1021 * @page: the page to add the mapping to
1022 * @vma: the vm area in which the mapping is added
1023 * @address: the user virtual address mapped
1024 *
5ad64688 1025 * The caller needs to hold the pte lock, and the page must be locked in
80e14822
HD
1026 * the anon_vma case: to serialize mapping,index checking after setting,
1027 * and to ensure that PageAnon is not being upgraded racily to PageKsm
1028 * (but PageKsm is never downgraded to PageAnon).
1da177e4
LT
1029 */
1030void page_add_anon_rmap(struct page *page,
1031 struct vm_area_struct *vma, unsigned long address)
ad8c2ee8
RR
1032{
1033 do_page_add_anon_rmap(page, vma, address, 0);
1034}
1035
1036/*
1037 * Special version of the above for do_swap_page, which often runs
1038 * into pages that are exclusively owned by the current process.
1039 * Everybody else should continue to use page_add_anon_rmap above.
1040 */
1041void do_page_add_anon_rmap(struct page *page,
1042 struct vm_area_struct *vma, unsigned long address, int exclusive)
1da177e4 1043{
5ad64688 1044 int first = atomic_inc_and_test(&page->_mapcount);
79134171
AA
1045 if (first) {
1046 if (!PageTransHuge(page))
1047 __inc_zone_page_state(page, NR_ANON_PAGES);
1048 else
1049 __inc_zone_page_state(page,
1050 NR_ANON_TRANSPARENT_HUGEPAGES);
1051 }
5ad64688
HD
1052 if (unlikely(PageKsm(page)))
1053 return;
1054
c97a9e10 1055 VM_BUG_ON(!PageLocked(page));
5dbe0af4 1056 /* address might be in next vma when migration races vma_adjust */
5ad64688 1057 if (first)
ad8c2ee8 1058 __page_set_anon_rmap(page, vma, address, exclusive);
69029cd5 1059 else
c97a9e10 1060 __page_check_anon_rmap(page, vma, address);
1da177e4
LT
1061}
1062
43d8eac4 1063/**
9617d95e
NP
1064 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
1065 * @page: the page to add the mapping to
1066 * @vma: the vm area in which the mapping is added
1067 * @address: the user virtual address mapped
1068 *
1069 * Same as page_add_anon_rmap but must only be called on *new* pages.
1070 * This means the inc-and-test can be bypassed.
c97a9e10 1071 * Page does not have to be locked.
9617d95e
NP
1072 */
1073void page_add_new_anon_rmap(struct page *page,
1074 struct vm_area_struct *vma, unsigned long address)
1075{
b5934c53 1076 VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
cbf84b7a
HD
1077 SetPageSwapBacked(page);
1078 atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */
79134171
AA
1079 if (!PageTransHuge(page))
1080 __inc_zone_page_state(page, NR_ANON_PAGES);
1081 else
1082 __inc_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
e8a03feb 1083 __page_set_anon_rmap(page, vma, address, 1);
39b5f29a 1084 if (!mlocked_vma_newpage(vma, page))
cbf84b7a 1085 lru_cache_add_lru(page, LRU_ACTIVE_ANON);
b5934c53
HD
1086 else
1087 add_page_to_unevictable_list(page);
9617d95e
NP
1088}
1089
1da177e4
LT
1090/**
1091 * page_add_file_rmap - add pte mapping to a file page
1092 * @page: the page to add the mapping to
1093 *
b8072f09 1094 * The caller needs to hold the pte lock.
1da177e4
LT
1095 */
1096void page_add_file_rmap(struct page *page)
1097{
89c06bd5
KH
1098 bool locked;
1099 unsigned long flags;
1100
1101 mem_cgroup_begin_update_page_stat(page, &locked, &flags);
d69b042f 1102 if (atomic_inc_and_test(&page->_mapcount)) {
65ba55f5 1103 __inc_zone_page_state(page, NR_FILE_MAPPED);
2a7106f2 1104 mem_cgroup_inc_page_stat(page, MEMCG_NR_FILE_MAPPED);
d69b042f 1105 }
89c06bd5 1106 mem_cgroup_end_update_page_stat(page, &locked, &flags);
1da177e4
LT
1107}
1108
1109/**
1110 * page_remove_rmap - take down pte mapping from a page
1111 * @page: page to remove mapping from
1112 *
b8072f09 1113 * The caller needs to hold the pte lock.
1da177e4 1114 */
edc315fd 1115void page_remove_rmap(struct page *page)
1da177e4 1116{
ef5d437f 1117 struct address_space *mapping = page_mapping(page);
89c06bd5
KH
1118 bool anon = PageAnon(page);
1119 bool locked;
1120 unsigned long flags;
1121
1122 /*
1123 * The anon case has no mem_cgroup page_stat to update; but may
1124 * uncharge_page() below, where the lock ordering can deadlock if
1125 * we hold the lock against page_stat move: so avoid it on anon.
1126 */
1127 if (!anon)
1128 mem_cgroup_begin_update_page_stat(page, &locked, &flags);
1129
b904dcfe
KM
1130 /* page still mapped by someone else? */
1131 if (!atomic_add_negative(-1, &page->_mapcount))
89c06bd5 1132 goto out;
b904dcfe
KM
1133
1134 /*
1135 * Now that the last pte has gone, s390 must transfer dirty
1136 * flag from storage key to struct page. We can usually skip
1137 * this if the page is anon, so about to be freed; but perhaps
1138 * not if it's in swapcache - there might be another pte slot
1139 * containing the swap entry, but page not yet written to swap.
ef5d437f
JK
1140 *
1141 * And we can skip it on file pages, so long as the filesystem
1142 * participates in dirty tracking; but need to catch shm and tmpfs
1143 * and ramfs pages which have been modified since creation by read
1144 * fault.
1145 *
1146 * Note that mapping must be decided above, before decrementing
1147 * mapcount (which luckily provides a barrier): once page is unmapped,
1148 * it could be truncated and page->mapping reset to NULL at any moment.
1149 * Note also that we are relying on page_mapping(page) to set mapping
1150 * to &swapper_space when PageSwapCache(page).
b904dcfe 1151 */
ef5d437f 1152 if (mapping && !mapping_cap_account_dirty(mapping) &&
2d42552d 1153 page_test_and_clear_dirty(page_to_pfn(page), 1))
b904dcfe 1154 set_page_dirty(page);
0fe6e20b
NH
1155 /*
1156 * Hugepages are not counted in NR_ANON_PAGES nor NR_FILE_MAPPED
1157 * and not charged by memcg for now.
1158 */
1159 if (unlikely(PageHuge(page)))
89c06bd5
KH
1160 goto out;
1161 if (anon) {
b904dcfe 1162 mem_cgroup_uncharge_page(page);
79134171
AA
1163 if (!PageTransHuge(page))
1164 __dec_zone_page_state(page, NR_ANON_PAGES);
1165 else
1166 __dec_zone_page_state(page,
1167 NR_ANON_TRANSPARENT_HUGEPAGES);
b904dcfe
KM
1168 } else {
1169 __dec_zone_page_state(page, NR_FILE_MAPPED);
2a7106f2 1170 mem_cgroup_dec_page_stat(page, MEMCG_NR_FILE_MAPPED);
e6c509f8 1171 mem_cgroup_end_update_page_stat(page, &locked, &flags);
b904dcfe 1172 }
e6c509f8
HD
1173 if (unlikely(PageMlocked(page)))
1174 clear_page_mlock(page);
b904dcfe
KM
1175 /*
1176 * It would be tidy to reset the PageAnon mapping here,
1177 * but that might overwrite a racing page_add_anon_rmap
1178 * which increments mapcount after us but sets mapping
1179 * before us: so leave the reset to free_hot_cold_page,
1180 * and remember that it's only reliable while mapped.
1181 * Leaving it set also helps swapoff to reinstate ptes
1182 * faster for those pages still in swapcache.
1183 */
e6c509f8 1184 return;
89c06bd5
KH
1185out:
1186 if (!anon)
1187 mem_cgroup_end_update_page_stat(page, &locked, &flags);
1da177e4
LT
1188}
1189
1190/*
1191 * Subfunctions of try_to_unmap: try_to_unmap_one called
99ef0315 1192 * repeatedly from try_to_unmap_ksm, try_to_unmap_anon or try_to_unmap_file.
1da177e4 1193 */
5ad64688
HD
1194int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
1195 unsigned long address, enum ttu_flags flags)
1da177e4
LT
1196{
1197 struct mm_struct *mm = vma->vm_mm;
1da177e4
LT
1198 pte_t *pte;
1199 pte_t pteval;
c0718806 1200 spinlock_t *ptl;
1da177e4
LT
1201 int ret = SWAP_AGAIN;
1202
479db0bf 1203 pte = page_check_address(page, mm, address, &ptl, 0);
c0718806 1204 if (!pte)
81b4082d 1205 goto out;
1da177e4
LT
1206
1207 /*
1208 * If the page is mlock()d, we cannot swap it out.
1209 * If it's recently referenced (perhaps page_referenced
1210 * skipped over this mm) then we should reactivate it.
1211 */
14fa31b8 1212 if (!(flags & TTU_IGNORE_MLOCK)) {
caed0f48
KM
1213 if (vma->vm_flags & VM_LOCKED)
1214 goto out_mlock;
1215
af8e3354 1216 if (TTU_ACTION(flags) == TTU_MUNLOCK)
53f79acb 1217 goto out_unmap;
14fa31b8
AK
1218 }
1219 if (!(flags & TTU_IGNORE_ACCESS)) {
b291f000
NP
1220 if (ptep_clear_flush_young_notify(vma, address, pte)) {
1221 ret = SWAP_FAIL;
1222 goto out_unmap;
1223 }
1224 }
1da177e4 1225
1da177e4
LT
1226 /* Nuke the page table entry. */
1227 flush_cache_page(vma, address, page_to_pfn(page));
2ec74c3e 1228 pteval = ptep_clear_flush(vma, address, pte);
1da177e4
LT
1229
1230 /* Move the dirty bit to the physical page now the pte is gone. */
1231 if (pte_dirty(pteval))
1232 set_page_dirty(page);
1233
365e9c87
HD
1234 /* Update high watermark before we lower rss */
1235 update_hiwater_rss(mm);
1236
888b9f7c
AK
1237 if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
1238 if (PageAnon(page))
d559db08 1239 dec_mm_counter(mm, MM_ANONPAGES);
888b9f7c 1240 else
d559db08 1241 dec_mm_counter(mm, MM_FILEPAGES);
888b9f7c
AK
1242 set_pte_at(mm, address, pte,
1243 swp_entry_to_pte(make_hwpoison_entry(page)));
1244 } else if (PageAnon(page)) {
4c21e2f2 1245 swp_entry_t entry = { .val = page_private(page) };
0697212a
CL
1246
1247 if (PageSwapCache(page)) {
1248 /*
1249 * Store the swap location in the pte.
1250 * See handle_pte_fault() ...
1251 */
570a335b
HD
1252 if (swap_duplicate(entry) < 0) {
1253 set_pte_at(mm, address, pte, pteval);
1254 ret = SWAP_FAIL;
1255 goto out_unmap;
1256 }
0697212a
CL
1257 if (list_empty(&mm->mmlist)) {
1258 spin_lock(&mmlist_lock);
1259 if (list_empty(&mm->mmlist))
1260 list_add(&mm->mmlist, &init_mm.mmlist);
1261 spin_unlock(&mmlist_lock);
1262 }
d559db08 1263 dec_mm_counter(mm, MM_ANONPAGES);
b084d435 1264 inc_mm_counter(mm, MM_SWAPENTS);
ce1744f4 1265 } else if (IS_ENABLED(CONFIG_MIGRATION)) {
0697212a
CL
1266 /*
1267 * Store the pfn of the page in a special migration
1268 * pte. do_swap_page() will wait until the migration
1269 * pte is removed and then restart fault handling.
1270 */
14fa31b8 1271 BUG_ON(TTU_ACTION(flags) != TTU_MIGRATION);
0697212a 1272 entry = make_migration_entry(page, pte_write(pteval));
1da177e4
LT
1273 }
1274 set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
1275 BUG_ON(pte_file(*pte));
ce1744f4
KK
1276 } else if (IS_ENABLED(CONFIG_MIGRATION) &&
1277 (TTU_ACTION(flags) == TTU_MIGRATION)) {
04e62a29
CL
1278 /* Establish migration entry for a file page */
1279 swp_entry_t entry;
1280 entry = make_migration_entry(page, pte_write(pteval));
1281 set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
1282 } else
d559db08 1283 dec_mm_counter(mm, MM_FILEPAGES);
1da177e4 1284
edc315fd 1285 page_remove_rmap(page);
1da177e4
LT
1286 page_cache_release(page);
1287
1288out_unmap:
c0718806 1289 pte_unmap_unlock(pte, ptl);
2ec74c3e
SG
1290 if (ret != SWAP_FAIL)
1291 mmu_notifier_invalidate_page(mm, address);
caed0f48
KM
1292out:
1293 return ret;
53f79acb 1294
caed0f48
KM
1295out_mlock:
1296 pte_unmap_unlock(pte, ptl);
1297
1298
1299 /*
1300 * We need mmap_sem locking, Otherwise VM_LOCKED check makes
1301 * unstable result and race. Plus, We can't wait here because
5a505085 1302 * we now hold anon_vma->rwsem or mapping->i_mmap_mutex.
caed0f48
KM
1303 * if trylock failed, the page remain in evictable lru and later
1304 * vmscan could retry to move the page to unevictable lru if the
1305 * page is actually mlocked.
1306 */
1307 if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
1308 if (vma->vm_flags & VM_LOCKED) {
1309 mlock_vma_page(page);
1310 ret = SWAP_MLOCK;
53f79acb 1311 }
caed0f48 1312 up_read(&vma->vm_mm->mmap_sem);
53f79acb 1313 }
1da177e4
LT
1314 return ret;
1315}
1316
1317/*
1318 * objrmap doesn't work for nonlinear VMAs because the assumption that
1319 * offset-into-file correlates with offset-into-virtual-addresses does not hold.
1320 * Consequently, given a particular page and its ->index, we cannot locate the
1321 * ptes which are mapping that page without an exhaustive linear search.
1322 *
1323 * So what this code does is a mini "virtual scan" of each nonlinear VMA which
1324 * maps the file to which the target page belongs. The ->vm_private_data field
1325 * holds the current cursor into that scan. Successive searches will circulate
1326 * around the vma's virtual address space.
1327 *
1328 * So as more replacement pressure is applied to the pages in a nonlinear VMA,
1329 * more scanning pressure is placed against them as well. Eventually pages
1330 * will become fully unmapped and are eligible for eviction.
1331 *
1332 * For very sparsely populated VMAs this is a little inefficient - chances are
1333 * there there won't be many ptes located within the scan cluster. In this case
1334 * maybe we could scan further - to the end of the pte page, perhaps.
b291f000
NP
1335 *
1336 * Mlocked pages: check VM_LOCKED under mmap_sem held for read, if we can
1337 * acquire it without blocking. If vma locked, mlock the pages in the cluster,
1338 * rather than unmapping them. If we encounter the "check_page" that vmscan is
1339 * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN.
1da177e4
LT
1340 */
1341#define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE)
1342#define CLUSTER_MASK (~(CLUSTER_SIZE - 1))
1343
b291f000
NP
1344static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount,
1345 struct vm_area_struct *vma, struct page *check_page)
1da177e4
LT
1346{
1347 struct mm_struct *mm = vma->vm_mm;
1348 pgd_t *pgd;
1349 pud_t *pud;
1350 pmd_t *pmd;
c0718806 1351 pte_t *pte;
1da177e4 1352 pte_t pteval;
c0718806 1353 spinlock_t *ptl;
1da177e4
LT
1354 struct page *page;
1355 unsigned long address;
2ec74c3e
SG
1356 unsigned long mmun_start; /* For mmu_notifiers */
1357 unsigned long mmun_end; /* For mmu_notifiers */
1da177e4 1358 unsigned long end;
b291f000
NP
1359 int ret = SWAP_AGAIN;
1360 int locked_vma = 0;
1da177e4 1361
1da177e4
LT
1362 address = (vma->vm_start + cursor) & CLUSTER_MASK;
1363 end = address + CLUSTER_SIZE;
1364 if (address < vma->vm_start)
1365 address = vma->vm_start;
1366 if (end > vma->vm_end)
1367 end = vma->vm_end;
1368
1369 pgd = pgd_offset(mm, address);
1370 if (!pgd_present(*pgd))
b291f000 1371 return ret;
1da177e4
LT
1372
1373 pud = pud_offset(pgd, address);
1374 if (!pud_present(*pud))
b291f000 1375 return ret;
1da177e4
LT
1376
1377 pmd = pmd_offset(pud, address);
1378 if (!pmd_present(*pmd))
b291f000
NP
1379 return ret;
1380
2ec74c3e
SG
1381 mmun_start = address;
1382 mmun_end = end;
1383 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1384
b291f000 1385 /*
af8e3354 1386 * If we can acquire the mmap_sem for read, and vma is VM_LOCKED,
b291f000
NP
1387 * keep the sem while scanning the cluster for mlocking pages.
1388 */
af8e3354 1389 if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
b291f000
NP
1390 locked_vma = (vma->vm_flags & VM_LOCKED);
1391 if (!locked_vma)
1392 up_read(&vma->vm_mm->mmap_sem); /* don't need it */
1393 }
c0718806
HD
1394
1395 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1da177e4 1396
365e9c87
HD
1397 /* Update high watermark before we lower rss */
1398 update_hiwater_rss(mm);
1399
c0718806 1400 for (; address < end; pte++, address += PAGE_SIZE) {
1da177e4
LT
1401 if (!pte_present(*pte))
1402 continue;
6aab341e
LT
1403 page = vm_normal_page(vma, address, *pte);
1404 BUG_ON(!page || PageAnon(page));
1da177e4 1405
b291f000
NP
1406 if (locked_vma) {
1407 mlock_vma_page(page); /* no-op if already mlocked */
1408 if (page == check_page)
1409 ret = SWAP_MLOCK;
1410 continue; /* don't unmap */
1411 }
1412
cddb8a5c 1413 if (ptep_clear_flush_young_notify(vma, address, pte))
1da177e4
LT
1414 continue;
1415
1416 /* Nuke the page table entry. */
eca35133 1417 flush_cache_page(vma, address, pte_pfn(*pte));
2ec74c3e 1418 pteval = ptep_clear_flush(vma, address, pte);
1da177e4
LT
1419
1420 /* If nonlinear, store the file page offset in the pte. */
1421 if (page->index != linear_page_index(vma, address))
1422 set_pte_at(mm, address, pte, pgoff_to_pte(page->index));
1423
1424 /* Move the dirty bit to the physical page now the pte is gone. */
1425 if (pte_dirty(pteval))
1426 set_page_dirty(page);
1427
edc315fd 1428 page_remove_rmap(page);
1da177e4 1429 page_cache_release(page);
d559db08 1430 dec_mm_counter(mm, MM_FILEPAGES);
1da177e4
LT
1431 (*mapcount)--;
1432 }
c0718806 1433 pte_unmap_unlock(pte - 1, ptl);
2ec74c3e 1434 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
b291f000
NP
1435 if (locked_vma)
1436 up_read(&vma->vm_mm->mmap_sem);
1437 return ret;
1da177e4
LT
1438}
1439
71e3aac0 1440bool is_vma_temporary_stack(struct vm_area_struct *vma)
a8bef8ff
MG
1441{
1442 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
1443
1444 if (!maybe_stack)
1445 return false;
1446
1447 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
1448 VM_STACK_INCOMPLETE_SETUP)
1449 return true;
1450
1451 return false;
1452}
1453
b291f000
NP
1454/**
1455 * try_to_unmap_anon - unmap or unlock anonymous page using the object-based
1456 * rmap method
1457 * @page: the page to unmap/unlock
8051be5e 1458 * @flags: action and flags
b291f000
NP
1459 *
1460 * Find all the mappings of a page using the mapping pointer and the vma chains
1461 * contained in the anon_vma struct it points to.
1462 *
1463 * This function is only called from try_to_unmap/try_to_munlock for
1464 * anonymous pages.
1465 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1466 * where the page was found will be held for write. So, we won't recheck
1467 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1468 * 'LOCKED.
1469 */
14fa31b8 1470static int try_to_unmap_anon(struct page *page, enum ttu_flags flags)
1da177e4
LT
1471{
1472 struct anon_vma *anon_vma;
bf181b9f 1473 pgoff_t pgoff;
5beb4930 1474 struct anon_vma_chain *avc;
1da177e4 1475 int ret = SWAP_AGAIN;
b291f000 1476
1da177e4
LT
1477 anon_vma = page_lock_anon_vma(page);
1478 if (!anon_vma)
1479 return ret;
1480
bf181b9f
ML
1481 pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1482 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
5beb4930 1483 struct vm_area_struct *vma = avc->vma;
a8bef8ff
MG
1484 unsigned long address;
1485
1486 /*
1487 * During exec, a temporary VMA is setup and later moved.
1488 * The VMA is moved under the anon_vma lock but not the
1489 * page tables leading to a race where migration cannot
1490 * find the migration ptes. Rather than increasing the
1491 * locking requirements of exec(), migration skips
1492 * temporary VMAs until after exec() completes.
1493 */
ce1744f4 1494 if (IS_ENABLED(CONFIG_MIGRATION) && (flags & TTU_MIGRATION) &&
a8bef8ff
MG
1495 is_vma_temporary_stack(vma))
1496 continue;
1497
1498 address = vma_address(page, vma);
1cb1729b 1499 ret = try_to_unmap_one(page, vma, address, flags);
53f79acb
HD
1500 if (ret != SWAP_AGAIN || !page_mapped(page))
1501 break;
1da177e4 1502 }
34bbd704
ON
1503
1504 page_unlock_anon_vma(anon_vma);
1da177e4
LT
1505 return ret;
1506}
1507
1508/**
b291f000
NP
1509 * try_to_unmap_file - unmap/unlock file page using the object-based rmap method
1510 * @page: the page to unmap/unlock
14fa31b8 1511 * @flags: action and flags
1da177e4
LT
1512 *
1513 * Find all the mappings of a page using the mapping pointer and the vma chains
1514 * contained in the address_space struct it points to.
1515 *
b291f000
NP
1516 * This function is only called from try_to_unmap/try_to_munlock for
1517 * object-based pages.
1518 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1519 * where the page was found will be held for write. So, we won't recheck
1520 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1521 * 'LOCKED.
1da177e4 1522 */
14fa31b8 1523static int try_to_unmap_file(struct page *page, enum ttu_flags flags)
1da177e4
LT
1524{
1525 struct address_space *mapping = page->mapping;
1526 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1527 struct vm_area_struct *vma;
1da177e4
LT
1528 int ret = SWAP_AGAIN;
1529 unsigned long cursor;
1530 unsigned long max_nl_cursor = 0;
1531 unsigned long max_nl_size = 0;
1532 unsigned int mapcount;
1533
3d48ae45 1534 mutex_lock(&mapping->i_mmap_mutex);
6b2dbba8 1535 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
1cb1729b 1536 unsigned long address = vma_address(page, vma);
1cb1729b 1537 ret = try_to_unmap_one(page, vma, address, flags);
53f79acb
HD
1538 if (ret != SWAP_AGAIN || !page_mapped(page))
1539 goto out;
1da177e4
LT
1540 }
1541
1542 if (list_empty(&mapping->i_mmap_nonlinear))
1543 goto out;
1544
53f79acb
HD
1545 /*
1546 * We don't bother to try to find the munlocked page in nonlinears.
1547 * It's costly. Instead, later, page reclaim logic may call
1548 * try_to_unmap(TTU_MUNLOCK) and recover PG_mlocked lazily.
1549 */
1550 if (TTU_ACTION(flags) == TTU_MUNLOCK)
1551 goto out;
1552
1da177e4 1553 list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
6b2dbba8 1554 shared.nonlinear) {
1da177e4
LT
1555 cursor = (unsigned long) vma->vm_private_data;
1556 if (cursor > max_nl_cursor)
1557 max_nl_cursor = cursor;
1558 cursor = vma->vm_end - vma->vm_start;
1559 if (cursor > max_nl_size)
1560 max_nl_size = cursor;
1561 }
1562
b291f000 1563 if (max_nl_size == 0) { /* all nonlinears locked or reserved ? */
1da177e4
LT
1564 ret = SWAP_FAIL;
1565 goto out;
1566 }
1567
1568 /*
1569 * We don't try to search for this page in the nonlinear vmas,
1570 * and page_referenced wouldn't have found it anyway. Instead
1571 * just walk the nonlinear vmas trying to age and unmap some.
1572 * The mapcount of the page we came in with is irrelevant,
1573 * but even so use it as a guide to how hard we should try?
1574 */
1575 mapcount = page_mapcount(page);
1576 if (!mapcount)
1577 goto out;
3d48ae45 1578 cond_resched();
1da177e4
LT
1579
1580 max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
1581 if (max_nl_cursor == 0)
1582 max_nl_cursor = CLUSTER_SIZE;
1583
1584 do {
1585 list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
6b2dbba8 1586 shared.nonlinear) {
1da177e4 1587 cursor = (unsigned long) vma->vm_private_data;
839b9685 1588 while ( cursor < max_nl_cursor &&
1da177e4 1589 cursor < vma->vm_end - vma->vm_start) {
53f79acb
HD
1590 if (try_to_unmap_cluster(cursor, &mapcount,
1591 vma, page) == SWAP_MLOCK)
1592 ret = SWAP_MLOCK;
1da177e4
LT
1593 cursor += CLUSTER_SIZE;
1594 vma->vm_private_data = (void *) cursor;
1595 if ((int)mapcount <= 0)
1596 goto out;
1597 }
1598 vma->vm_private_data = (void *) max_nl_cursor;
1599 }
3d48ae45 1600 cond_resched();
1da177e4
LT
1601 max_nl_cursor += CLUSTER_SIZE;
1602 } while (max_nl_cursor <= max_nl_size);
1603
1604 /*
1605 * Don't loop forever (perhaps all the remaining pages are
1606 * in locked vmas). Reset cursor on all unreserved nonlinear
1607 * vmas, now forgetting on which ones it had fallen behind.
1608 */
6b2dbba8 1609 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.nonlinear)
101d2be7 1610 vma->vm_private_data = NULL;
1da177e4 1611out:
3d48ae45 1612 mutex_unlock(&mapping->i_mmap_mutex);
1da177e4
LT
1613 return ret;
1614}
1615
1616/**
1617 * try_to_unmap - try to remove all page table mappings to a page
1618 * @page: the page to get unmapped
14fa31b8 1619 * @flags: action and flags
1da177e4
LT
1620 *
1621 * Tries to remove all the page table entries which are mapping this
1622 * page, used in the pageout path. Caller must hold the page lock.
1623 * Return values are:
1624 *
1625 * SWAP_SUCCESS - we succeeded in removing all mappings
1626 * SWAP_AGAIN - we missed a mapping, try again later
1627 * SWAP_FAIL - the page is unswappable
b291f000 1628 * SWAP_MLOCK - page is mlocked.
1da177e4 1629 */
14fa31b8 1630int try_to_unmap(struct page *page, enum ttu_flags flags)
1da177e4
LT
1631{
1632 int ret;
1633
1da177e4 1634 BUG_ON(!PageLocked(page));
91600e9e 1635 VM_BUG_ON(!PageHuge(page) && PageTransHuge(page));
1da177e4 1636
5ad64688
HD
1637 if (unlikely(PageKsm(page)))
1638 ret = try_to_unmap_ksm(page, flags);
1639 else if (PageAnon(page))
14fa31b8 1640 ret = try_to_unmap_anon(page, flags);
1da177e4 1641 else
14fa31b8 1642 ret = try_to_unmap_file(page, flags);
b291f000 1643 if (ret != SWAP_MLOCK && !page_mapped(page))
1da177e4
LT
1644 ret = SWAP_SUCCESS;
1645 return ret;
1646}
81b4082d 1647
b291f000
NP
1648/**
1649 * try_to_munlock - try to munlock a page
1650 * @page: the page to be munlocked
1651 *
1652 * Called from munlock code. Checks all of the VMAs mapping the page
1653 * to make sure nobody else has this page mlocked. The page will be
1654 * returned with PG_mlocked cleared if no other vmas have it mlocked.
1655 *
1656 * Return values are:
1657 *
53f79acb 1658 * SWAP_AGAIN - no vma is holding page mlocked, or,
b291f000 1659 * SWAP_AGAIN - page mapped in mlocked vma -- couldn't acquire mmap sem
5ad64688 1660 * SWAP_FAIL - page cannot be located at present
b291f000
NP
1661 * SWAP_MLOCK - page is now mlocked.
1662 */
1663int try_to_munlock(struct page *page)
1664{
1665 VM_BUG_ON(!PageLocked(page) || PageLRU(page));
1666
5ad64688
HD
1667 if (unlikely(PageKsm(page)))
1668 return try_to_unmap_ksm(page, TTU_MUNLOCK);
1669 else if (PageAnon(page))
14fa31b8 1670 return try_to_unmap_anon(page, TTU_MUNLOCK);
b291f000 1671 else
14fa31b8 1672 return try_to_unmap_file(page, TTU_MUNLOCK);
b291f000 1673}
e9995ef9 1674
01d8b20d 1675void __put_anon_vma(struct anon_vma *anon_vma)
76545066 1676{
01d8b20d 1677 struct anon_vma *root = anon_vma->root;
76545066 1678
01d8b20d
PZ
1679 if (root != anon_vma && atomic_dec_and_test(&root->refcount))
1680 anon_vma_free(root);
76545066 1681
01d8b20d 1682 anon_vma_free(anon_vma);
76545066 1683}
76545066 1684
e9995ef9
HD
1685#ifdef CONFIG_MIGRATION
1686/*
1687 * rmap_walk() and its helpers rmap_walk_anon() and rmap_walk_file():
1688 * Called by migrate.c to remove migration ptes, but might be used more later.
1689 */
1690static int rmap_walk_anon(struct page *page, int (*rmap_one)(struct page *,
1691 struct vm_area_struct *, unsigned long, void *), void *arg)
1692{
1693 struct anon_vma *anon_vma;
bf181b9f 1694 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
5beb4930 1695 struct anon_vma_chain *avc;
e9995ef9
HD
1696 int ret = SWAP_AGAIN;
1697
1698 /*
1699 * Note: remove_migration_ptes() cannot use page_lock_anon_vma()
1700 * because that depends on page_mapped(); but not all its usages
3f6c8272
MG
1701 * are holding mmap_sem. Users without mmap_sem are required to
1702 * take a reference count to prevent the anon_vma disappearing
e9995ef9
HD
1703 */
1704 anon_vma = page_anon_vma(page);
1705 if (!anon_vma)
1706 return ret;
cba48b98 1707 anon_vma_lock(anon_vma);
bf181b9f 1708 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
5beb4930 1709 struct vm_area_struct *vma = avc->vma;
e9995ef9 1710 unsigned long address = vma_address(page, vma);
e9995ef9
HD
1711 ret = rmap_one(page, vma, address, arg);
1712 if (ret != SWAP_AGAIN)
1713 break;
1714 }
cba48b98 1715 anon_vma_unlock(anon_vma);
e9995ef9
HD
1716 return ret;
1717}
1718
1719static int rmap_walk_file(struct page *page, int (*rmap_one)(struct page *,
1720 struct vm_area_struct *, unsigned long, void *), void *arg)
1721{
1722 struct address_space *mapping = page->mapping;
1723 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1724 struct vm_area_struct *vma;
e9995ef9
HD
1725 int ret = SWAP_AGAIN;
1726
1727 if (!mapping)
1728 return ret;
3d48ae45 1729 mutex_lock(&mapping->i_mmap_mutex);
6b2dbba8 1730 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
e9995ef9 1731 unsigned long address = vma_address(page, vma);
e9995ef9
HD
1732 ret = rmap_one(page, vma, address, arg);
1733 if (ret != SWAP_AGAIN)
1734 break;
1735 }
1736 /*
1737 * No nonlinear handling: being always shared, nonlinear vmas
1738 * never contain migration ptes. Decide what to do about this
1739 * limitation to linear when we need rmap_walk() on nonlinear.
1740 */
3d48ae45 1741 mutex_unlock(&mapping->i_mmap_mutex);
e9995ef9
HD
1742 return ret;
1743}
1744
1745int rmap_walk(struct page *page, int (*rmap_one)(struct page *,
1746 struct vm_area_struct *, unsigned long, void *), void *arg)
1747{
1748 VM_BUG_ON(!PageLocked(page));
1749
1750 if (unlikely(PageKsm(page)))
1751 return rmap_walk_ksm(page, rmap_one, arg);
1752 else if (PageAnon(page))
1753 return rmap_walk_anon(page, rmap_one, arg);
1754 else
1755 return rmap_walk_file(page, rmap_one, arg);
1756}
1757#endif /* CONFIG_MIGRATION */
0fe6e20b 1758
e3390f67 1759#ifdef CONFIG_HUGETLB_PAGE
0fe6e20b
NH
1760/*
1761 * The following three functions are for anonymous (private mapped) hugepages.
1762 * Unlike common anonymous pages, anonymous hugepages have no accounting code
1763 * and no lru code, because we handle hugepages differently from common pages.
1764 */
1765static void __hugepage_set_anon_rmap(struct page *page,
1766 struct vm_area_struct *vma, unsigned long address, int exclusive)
1767{
1768 struct anon_vma *anon_vma = vma->anon_vma;
433abed6 1769
0fe6e20b 1770 BUG_ON(!anon_vma);
433abed6
NH
1771
1772 if (PageAnon(page))
1773 return;
1774 if (!exclusive)
1775 anon_vma = anon_vma->root;
1776
0fe6e20b
NH
1777 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1778 page->mapping = (struct address_space *) anon_vma;
1779 page->index = linear_page_index(vma, address);
1780}
1781
1782void hugepage_add_anon_rmap(struct page *page,
1783 struct vm_area_struct *vma, unsigned long address)
1784{
1785 struct anon_vma *anon_vma = vma->anon_vma;
1786 int first;
a850ea30
NH
1787
1788 BUG_ON(!PageLocked(page));
0fe6e20b 1789 BUG_ON(!anon_vma);
5dbe0af4 1790 /* address might be in next vma when migration races vma_adjust */
0fe6e20b
NH
1791 first = atomic_inc_and_test(&page->_mapcount);
1792 if (first)
1793 __hugepage_set_anon_rmap(page, vma, address, 0);
1794}
1795
1796void hugepage_add_new_anon_rmap(struct page *page,
1797 struct vm_area_struct *vma, unsigned long address)
1798{
1799 BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1800 atomic_set(&page->_mapcount, 0);
1801 __hugepage_set_anon_rmap(page, vma, address, 1);
1802}
e3390f67 1803#endif /* CONFIG_HUGETLB_PAGE */