]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - mm/rmap.c
mm anon rmap: replace same_anon_vma linked list with an interval tree.
[mirror_ubuntu-bionic-kernel.git] / mm / rmap.c
CommitLineData
1da177e4
LT
1/*
2 * mm/rmap.c - physical to virtual reverse mappings
3 *
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
6 *
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
9 *
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
13 *
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
98f32602 17 * Contributions by Hugh Dickins 2003, 2004
1da177e4
LT
18 */
19
20/*
21 * Lock ordering in mm:
22 *
1b1dcc1b 23 * inode->i_mutex (while writing or truncating, not reading or faulting)
82591e6e
NP
24 * mm->mmap_sem
25 * page->flags PG_locked (lock_page)
3d48ae45 26 * mapping->i_mmap_mutex
2b575eb6 27 * anon_vma->mutex
82591e6e
NP
28 * mm->page_table_lock or pte_lock
29 * zone->lru_lock (in mark_page_accessed, isolate_lru_page)
30 * swap_lock (in swap_duplicate, swap_info_get)
31 * mmlist_lock (in mmput, drain_mmlist and others)
32 * mapping->private_lock (in __set_page_dirty_buffers)
250df6ed 33 * inode->i_lock (in set_page_dirty's __mark_inode_dirty)
f758eeab 34 * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
82591e6e
NP
35 * sb_lock (within inode_lock in fs/fs-writeback.c)
36 * mapping->tree_lock (widely used, in set_page_dirty,
37 * in arch-dependent flush_dcache_mmap_lock,
f758eeab 38 * within bdi.wb->list_lock in __sync_single_inode)
6a46079c 39 *
9b679320
PZ
40 * anon_vma->mutex,mapping->i_mutex (memory_failure, collect_procs_anon)
41 * ->tasklist_lock
6a46079c 42 * pte map lock
1da177e4
LT
43 */
44
45#include <linux/mm.h>
46#include <linux/pagemap.h>
47#include <linux/swap.h>
48#include <linux/swapops.h>
49#include <linux/slab.h>
50#include <linux/init.h>
5ad64688 51#include <linux/ksm.h>
1da177e4
LT
52#include <linux/rmap.h>
53#include <linux/rcupdate.h>
b95f1b31 54#include <linux/export.h>
8a9f3ccd 55#include <linux/memcontrol.h>
cddb8a5c 56#include <linux/mmu_notifier.h>
64cdd548 57#include <linux/migrate.h>
0fe6e20b 58#include <linux/hugetlb.h>
1da177e4
LT
59
60#include <asm/tlbflush.h>
61
b291f000
NP
62#include "internal.h"
63
fdd2e5f8 64static struct kmem_cache *anon_vma_cachep;
5beb4930 65static struct kmem_cache *anon_vma_chain_cachep;
fdd2e5f8
AB
66
67static inline struct anon_vma *anon_vma_alloc(void)
68{
01d8b20d
PZ
69 struct anon_vma *anon_vma;
70
71 anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
72 if (anon_vma) {
73 atomic_set(&anon_vma->refcount, 1);
74 /*
75 * Initialise the anon_vma root to point to itself. If called
76 * from fork, the root will be reset to the parents anon_vma.
77 */
78 anon_vma->root = anon_vma;
79 }
80
81 return anon_vma;
fdd2e5f8
AB
82}
83
01d8b20d 84static inline void anon_vma_free(struct anon_vma *anon_vma)
fdd2e5f8 85{
01d8b20d 86 VM_BUG_ON(atomic_read(&anon_vma->refcount));
88c22088
PZ
87
88 /*
89 * Synchronize against page_lock_anon_vma() such that
90 * we can safely hold the lock without the anon_vma getting
91 * freed.
92 *
93 * Relies on the full mb implied by the atomic_dec_and_test() from
94 * put_anon_vma() against the acquire barrier implied by
95 * mutex_trylock() from page_lock_anon_vma(). This orders:
96 *
97 * page_lock_anon_vma() VS put_anon_vma()
98 * mutex_trylock() atomic_dec_and_test()
99 * LOCK MB
100 * atomic_read() mutex_is_locked()
101 *
102 * LOCK should suffice since the actual taking of the lock must
103 * happen _before_ what follows.
104 */
105 if (mutex_is_locked(&anon_vma->root->mutex)) {
106 anon_vma_lock(anon_vma);
107 anon_vma_unlock(anon_vma);
108 }
109
fdd2e5f8
AB
110 kmem_cache_free(anon_vma_cachep, anon_vma);
111}
1da177e4 112
dd34739c 113static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
5beb4930 114{
dd34739c 115 return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
5beb4930
RR
116}
117
e574b5fd 118static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
5beb4930
RR
119{
120 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
121}
122
6583a843
KC
123static void anon_vma_chain_link(struct vm_area_struct *vma,
124 struct anon_vma_chain *avc,
125 struct anon_vma *anon_vma)
126{
127 avc->vma = vma;
128 avc->anon_vma = anon_vma;
129 list_add(&avc->same_vma, &vma->anon_vma_chain);
bf181b9f 130 anon_vma_interval_tree_insert(avc, &anon_vma->rb_root);
6583a843
KC
131}
132
d9d332e0
LT
133/**
134 * anon_vma_prepare - attach an anon_vma to a memory region
135 * @vma: the memory region in question
136 *
137 * This makes sure the memory mapping described by 'vma' has
138 * an 'anon_vma' attached to it, so that we can associate the
139 * anonymous pages mapped into it with that anon_vma.
140 *
141 * The common case will be that we already have one, but if
23a0790a 142 * not we either need to find an adjacent mapping that we
d9d332e0
LT
143 * can re-use the anon_vma from (very common when the only
144 * reason for splitting a vma has been mprotect()), or we
145 * allocate a new one.
146 *
147 * Anon-vma allocations are very subtle, because we may have
148 * optimistically looked up an anon_vma in page_lock_anon_vma()
149 * and that may actually touch the spinlock even in the newly
150 * allocated vma (it depends on RCU to make sure that the
151 * anon_vma isn't actually destroyed).
152 *
153 * As a result, we need to do proper anon_vma locking even
154 * for the new allocation. At the same time, we do not want
155 * to do any locking for the common case of already having
156 * an anon_vma.
157 *
158 * This must be called with the mmap_sem held for reading.
159 */
1da177e4
LT
160int anon_vma_prepare(struct vm_area_struct *vma)
161{
162 struct anon_vma *anon_vma = vma->anon_vma;
5beb4930 163 struct anon_vma_chain *avc;
1da177e4
LT
164
165 might_sleep();
166 if (unlikely(!anon_vma)) {
167 struct mm_struct *mm = vma->vm_mm;
d9d332e0 168 struct anon_vma *allocated;
1da177e4 169
dd34739c 170 avc = anon_vma_chain_alloc(GFP_KERNEL);
5beb4930
RR
171 if (!avc)
172 goto out_enomem;
173
1da177e4 174 anon_vma = find_mergeable_anon_vma(vma);
d9d332e0
LT
175 allocated = NULL;
176 if (!anon_vma) {
1da177e4
LT
177 anon_vma = anon_vma_alloc();
178 if (unlikely(!anon_vma))
5beb4930 179 goto out_enomem_free_avc;
1da177e4 180 allocated = anon_vma;
1da177e4
LT
181 }
182
cba48b98 183 anon_vma_lock(anon_vma);
1da177e4
LT
184 /* page_table_lock to protect against threads */
185 spin_lock(&mm->page_table_lock);
186 if (likely(!vma->anon_vma)) {
187 vma->anon_vma = anon_vma;
6583a843 188 anon_vma_chain_link(vma, avc, anon_vma);
1da177e4 189 allocated = NULL;
31f2b0eb 190 avc = NULL;
1da177e4
LT
191 }
192 spin_unlock(&mm->page_table_lock);
cba48b98 193 anon_vma_unlock(anon_vma);
31f2b0eb
ON
194
195 if (unlikely(allocated))
01d8b20d 196 put_anon_vma(allocated);
31f2b0eb 197 if (unlikely(avc))
5beb4930 198 anon_vma_chain_free(avc);
1da177e4
LT
199 }
200 return 0;
5beb4930
RR
201
202 out_enomem_free_avc:
203 anon_vma_chain_free(avc);
204 out_enomem:
205 return -ENOMEM;
1da177e4
LT
206}
207
bb4aa396
LT
208/*
209 * This is a useful helper function for locking the anon_vma root as
210 * we traverse the vma->anon_vma_chain, looping over anon_vma's that
211 * have the same vma.
212 *
213 * Such anon_vma's should have the same root, so you'd expect to see
214 * just a single mutex_lock for the whole traversal.
215 */
216static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
217{
218 struct anon_vma *new_root = anon_vma->root;
219 if (new_root != root) {
220 if (WARN_ON_ONCE(root))
221 mutex_unlock(&root->mutex);
222 root = new_root;
223 mutex_lock(&root->mutex);
224 }
225 return root;
226}
227
228static inline void unlock_anon_vma_root(struct anon_vma *root)
229{
230 if (root)
231 mutex_unlock(&root->mutex);
232}
233
5beb4930
RR
234/*
235 * Attach the anon_vmas from src to dst.
236 * Returns 0 on success, -ENOMEM on failure.
237 */
238int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
1da177e4 239{
5beb4930 240 struct anon_vma_chain *avc, *pavc;
bb4aa396 241 struct anon_vma *root = NULL;
5beb4930 242
646d87b4 243 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
bb4aa396
LT
244 struct anon_vma *anon_vma;
245
dd34739c
LT
246 avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
247 if (unlikely(!avc)) {
248 unlock_anon_vma_root(root);
249 root = NULL;
250 avc = anon_vma_chain_alloc(GFP_KERNEL);
251 if (!avc)
252 goto enomem_failure;
253 }
bb4aa396
LT
254 anon_vma = pavc->anon_vma;
255 root = lock_anon_vma_root(root, anon_vma);
256 anon_vma_chain_link(dst, avc, anon_vma);
5beb4930 257 }
bb4aa396 258 unlock_anon_vma_root(root);
5beb4930 259 return 0;
1da177e4 260
5beb4930
RR
261 enomem_failure:
262 unlink_anon_vmas(dst);
263 return -ENOMEM;
1da177e4
LT
264}
265
5beb4930
RR
266/*
267 * Attach vma to its own anon_vma, as well as to the anon_vmas that
268 * the corresponding VMA in the parent process is attached to.
269 * Returns 0 on success, non-zero on failure.
270 */
271int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
1da177e4 272{
5beb4930
RR
273 struct anon_vma_chain *avc;
274 struct anon_vma *anon_vma;
1da177e4 275
5beb4930
RR
276 /* Don't bother if the parent process has no anon_vma here. */
277 if (!pvma->anon_vma)
278 return 0;
279
280 /*
281 * First, attach the new VMA to the parent VMA's anon_vmas,
282 * so rmap can find non-COWed pages in child processes.
283 */
284 if (anon_vma_clone(vma, pvma))
285 return -ENOMEM;
286
287 /* Then add our own anon_vma. */
288 anon_vma = anon_vma_alloc();
289 if (!anon_vma)
290 goto out_error;
dd34739c 291 avc = anon_vma_chain_alloc(GFP_KERNEL);
5beb4930
RR
292 if (!avc)
293 goto out_error_free_anon_vma;
5c341ee1
RR
294
295 /*
296 * The root anon_vma's spinlock is the lock actually used when we
297 * lock any of the anon_vmas in this anon_vma tree.
298 */
299 anon_vma->root = pvma->anon_vma->root;
76545066 300 /*
01d8b20d
PZ
301 * With refcounts, an anon_vma can stay around longer than the
302 * process it belongs to. The root anon_vma needs to be pinned until
303 * this anon_vma is freed, because the lock lives in the root.
76545066
RR
304 */
305 get_anon_vma(anon_vma->root);
5beb4930
RR
306 /* Mark this anon_vma as the one where our new (COWed) pages go. */
307 vma->anon_vma = anon_vma;
bb4aa396 308 anon_vma_lock(anon_vma);
5c341ee1 309 anon_vma_chain_link(vma, avc, anon_vma);
bb4aa396 310 anon_vma_unlock(anon_vma);
5beb4930
RR
311
312 return 0;
313
314 out_error_free_anon_vma:
01d8b20d 315 put_anon_vma(anon_vma);
5beb4930 316 out_error:
4946d54c 317 unlink_anon_vmas(vma);
5beb4930 318 return -ENOMEM;
1da177e4
LT
319}
320
5beb4930
RR
321void unlink_anon_vmas(struct vm_area_struct *vma)
322{
323 struct anon_vma_chain *avc, *next;
eee2acba 324 struct anon_vma *root = NULL;
5beb4930 325
5c341ee1
RR
326 /*
327 * Unlink each anon_vma chained to the VMA. This list is ordered
328 * from newest to oldest, ensuring the root anon_vma gets freed last.
329 */
5beb4930 330 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
eee2acba
PZ
331 struct anon_vma *anon_vma = avc->anon_vma;
332
333 root = lock_anon_vma_root(root, anon_vma);
bf181b9f 334 anon_vma_interval_tree_remove(avc, &anon_vma->rb_root);
eee2acba
PZ
335
336 /*
337 * Leave empty anon_vmas on the list - we'll need
338 * to free them outside the lock.
339 */
bf181b9f 340 if (RB_EMPTY_ROOT(&anon_vma->rb_root))
eee2acba
PZ
341 continue;
342
343 list_del(&avc->same_vma);
344 anon_vma_chain_free(avc);
345 }
346 unlock_anon_vma_root(root);
347
348 /*
349 * Iterate the list once more, it now only contains empty and unlinked
350 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
351 * needing to acquire the anon_vma->root->mutex.
352 */
353 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
354 struct anon_vma *anon_vma = avc->anon_vma;
355
356 put_anon_vma(anon_vma);
357
5beb4930
RR
358 list_del(&avc->same_vma);
359 anon_vma_chain_free(avc);
360 }
361}
362
51cc5068 363static void anon_vma_ctor(void *data)
1da177e4 364{
a35afb83 365 struct anon_vma *anon_vma = data;
1da177e4 366
2b575eb6 367 mutex_init(&anon_vma->mutex);
83813267 368 atomic_set(&anon_vma->refcount, 0);
bf181b9f 369 anon_vma->rb_root = RB_ROOT;
1da177e4
LT
370}
371
372void __init anon_vma_init(void)
373{
374 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
20c2df83 375 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);
5beb4930 376 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, SLAB_PANIC);
1da177e4
LT
377}
378
379/*
6111e4ca
PZ
380 * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
381 *
382 * Since there is no serialization what so ever against page_remove_rmap()
383 * the best this function can do is return a locked anon_vma that might
384 * have been relevant to this page.
385 *
386 * The page might have been remapped to a different anon_vma or the anon_vma
387 * returned may already be freed (and even reused).
388 *
bc658c96
PZ
389 * In case it was remapped to a different anon_vma, the new anon_vma will be a
390 * child of the old anon_vma, and the anon_vma lifetime rules will therefore
391 * ensure that any anon_vma obtained from the page will still be valid for as
392 * long as we observe page_mapped() [ hence all those page_mapped() tests ].
393 *
6111e4ca
PZ
394 * All users of this function must be very careful when walking the anon_vma
395 * chain and verify that the page in question is indeed mapped in it
396 * [ something equivalent to page_mapped_in_vma() ].
397 *
398 * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap()
399 * that the anon_vma pointer from page->mapping is valid if there is a
400 * mapcount, we can dereference the anon_vma after observing those.
1da177e4 401 */
746b18d4 402struct anon_vma *page_get_anon_vma(struct page *page)
1da177e4 403{
746b18d4 404 struct anon_vma *anon_vma = NULL;
1da177e4
LT
405 unsigned long anon_mapping;
406
407 rcu_read_lock();
80e14822 408 anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
3ca7b3c5 409 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
1da177e4
LT
410 goto out;
411 if (!page_mapped(page))
412 goto out;
413
414 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
746b18d4
PZ
415 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
416 anon_vma = NULL;
417 goto out;
418 }
f1819427
HD
419
420 /*
421 * If this page is still mapped, then its anon_vma cannot have been
746b18d4
PZ
422 * freed. But if it has been unmapped, we have no security against the
423 * anon_vma structure being freed and reused (for another anon_vma:
424 * SLAB_DESTROY_BY_RCU guarantees that - so the atomic_inc_not_zero()
425 * above cannot corrupt).
f1819427 426 */
746b18d4
PZ
427 if (!page_mapped(page)) {
428 put_anon_vma(anon_vma);
429 anon_vma = NULL;
430 }
1da177e4
LT
431out:
432 rcu_read_unlock();
746b18d4
PZ
433
434 return anon_vma;
435}
436
88c22088
PZ
437/*
438 * Similar to page_get_anon_vma() except it locks the anon_vma.
439 *
440 * Its a little more complex as it tries to keep the fast path to a single
441 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
442 * reference like with page_get_anon_vma() and then block on the mutex.
443 */
746b18d4
PZ
444struct anon_vma *page_lock_anon_vma(struct page *page)
445{
88c22088 446 struct anon_vma *anon_vma = NULL;
eee0f252 447 struct anon_vma *root_anon_vma;
88c22088 448 unsigned long anon_mapping;
746b18d4 449
88c22088
PZ
450 rcu_read_lock();
451 anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
452 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
453 goto out;
454 if (!page_mapped(page))
455 goto out;
456
457 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
eee0f252
HD
458 root_anon_vma = ACCESS_ONCE(anon_vma->root);
459 if (mutex_trylock(&root_anon_vma->mutex)) {
88c22088 460 /*
eee0f252
HD
461 * If the page is still mapped, then this anon_vma is still
462 * its anon_vma, and holding the mutex ensures that it will
bc658c96 463 * not go away, see anon_vma_free().
88c22088 464 */
eee0f252
HD
465 if (!page_mapped(page)) {
466 mutex_unlock(&root_anon_vma->mutex);
88c22088
PZ
467 anon_vma = NULL;
468 }
469 goto out;
470 }
746b18d4 471
88c22088
PZ
472 /* trylock failed, we got to sleep */
473 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
474 anon_vma = NULL;
475 goto out;
476 }
477
478 if (!page_mapped(page)) {
479 put_anon_vma(anon_vma);
480 anon_vma = NULL;
481 goto out;
482 }
483
484 /* we pinned the anon_vma, its safe to sleep */
485 rcu_read_unlock();
486 anon_vma_lock(anon_vma);
487
488 if (atomic_dec_and_test(&anon_vma->refcount)) {
489 /*
490 * Oops, we held the last refcount, release the lock
491 * and bail -- can't simply use put_anon_vma() because
492 * we'll deadlock on the anon_vma_lock() recursion.
493 */
494 anon_vma_unlock(anon_vma);
495 __put_anon_vma(anon_vma);
496 anon_vma = NULL;
497 }
498
499 return anon_vma;
500
501out:
502 rcu_read_unlock();
746b18d4 503 return anon_vma;
34bbd704
ON
504}
505
10be22df 506void page_unlock_anon_vma(struct anon_vma *anon_vma)
34bbd704 507{
cba48b98 508 anon_vma_unlock(anon_vma);
1da177e4
LT
509}
510
511/*
3ad33b24
LS
512 * At what user virtual address is page expected in @vma?
513 * Returns virtual address or -EFAULT if page's index/offset is not
514 * within the range mapped the @vma.
1da177e4 515 */
71e3aac0 516inline unsigned long
1da177e4
LT
517vma_address(struct page *page, struct vm_area_struct *vma)
518{
519 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
520 unsigned long address;
521
0fe6e20b
NH
522 if (unlikely(is_vm_hugetlb_page(vma)))
523 pgoff = page->index << huge_page_order(page_hstate(page));
1da177e4
LT
524 address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
525 if (unlikely(address < vma->vm_start || address >= vma->vm_end)) {
3ad33b24 526 /* page should be within @vma mapping range */
1da177e4
LT
527 return -EFAULT;
528 }
529 return address;
530}
531
532/*
bf89c8c8 533 * At what user virtual address is page expected in vma?
ab941e0f 534 * Caller should check the page is actually part of the vma.
1da177e4
LT
535 */
536unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
537{
21d0d443 538 if (PageAnon(page)) {
4829b906
HD
539 struct anon_vma *page__anon_vma = page_anon_vma(page);
540 /*
541 * Note: swapoff's unuse_vma() is more efficient with this
542 * check, and needs it to match anon_vma when KSM is active.
543 */
544 if (!vma->anon_vma || !page__anon_vma ||
545 vma->anon_vma->root != page__anon_vma->root)
21d0d443
AA
546 return -EFAULT;
547 } else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
ee498ed7
HD
548 if (!vma->vm_file ||
549 vma->vm_file->f_mapping != page->mapping)
1da177e4
LT
550 return -EFAULT;
551 } else
552 return -EFAULT;
553 return vma_address(page, vma);
554}
555
81b4082d
ND
556/*
557 * Check that @page is mapped at @address into @mm.
558 *
479db0bf
NP
559 * If @sync is false, page_check_address may perform a racy check to avoid
560 * the page table lock when the pte is not present (helpful when reclaiming
561 * highly shared pages).
562 *
b8072f09 563 * On success returns with pte mapped and locked.
81b4082d 564 */
e9a81a82 565pte_t *__page_check_address(struct page *page, struct mm_struct *mm,
479db0bf 566 unsigned long address, spinlock_t **ptlp, int sync)
81b4082d
ND
567{
568 pgd_t *pgd;
569 pud_t *pud;
570 pmd_t *pmd;
571 pte_t *pte;
c0718806 572 spinlock_t *ptl;
81b4082d 573
0fe6e20b
NH
574 if (unlikely(PageHuge(page))) {
575 pte = huge_pte_offset(mm, address);
576 ptl = &mm->page_table_lock;
577 goto check;
578 }
579
81b4082d 580 pgd = pgd_offset(mm, address);
c0718806
HD
581 if (!pgd_present(*pgd))
582 return NULL;
583
584 pud = pud_offset(pgd, address);
585 if (!pud_present(*pud))
586 return NULL;
587
588 pmd = pmd_offset(pud, address);
589 if (!pmd_present(*pmd))
590 return NULL;
71e3aac0
AA
591 if (pmd_trans_huge(*pmd))
592 return NULL;
c0718806
HD
593
594 pte = pte_offset_map(pmd, address);
595 /* Make a quick check before getting the lock */
479db0bf 596 if (!sync && !pte_present(*pte)) {
c0718806
HD
597 pte_unmap(pte);
598 return NULL;
599 }
600
4c21e2f2 601 ptl = pte_lockptr(mm, pmd);
0fe6e20b 602check:
c0718806
HD
603 spin_lock(ptl);
604 if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
605 *ptlp = ptl;
606 return pte;
81b4082d 607 }
c0718806
HD
608 pte_unmap_unlock(pte, ptl);
609 return NULL;
81b4082d
ND
610}
611
b291f000
NP
612/**
613 * page_mapped_in_vma - check whether a page is really mapped in a VMA
614 * @page: the page to test
615 * @vma: the VMA to test
616 *
617 * Returns 1 if the page is mapped into the page tables of the VMA, 0
618 * if the page is not mapped into the page tables of this VMA. Only
619 * valid for normal file or anonymous VMAs.
620 */
6a46079c 621int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
b291f000
NP
622{
623 unsigned long address;
624 pte_t *pte;
625 spinlock_t *ptl;
626
627 address = vma_address(page, vma);
628 if (address == -EFAULT) /* out of vma range */
629 return 0;
630 pte = page_check_address(page, vma->vm_mm, address, &ptl, 1);
631 if (!pte) /* the page is not in this mm */
632 return 0;
633 pte_unmap_unlock(pte, ptl);
634
635 return 1;
636}
637
1da177e4
LT
638/*
639 * Subfunctions of page_referenced: page_referenced_one called
640 * repeatedly from either page_referenced_anon or page_referenced_file.
641 */
5ad64688
HD
642int page_referenced_one(struct page *page, struct vm_area_struct *vma,
643 unsigned long address, unsigned int *mapcount,
644 unsigned long *vm_flags)
1da177e4
LT
645{
646 struct mm_struct *mm = vma->vm_mm;
1da177e4
LT
647 int referenced = 0;
648
71e3aac0
AA
649 if (unlikely(PageTransHuge(page))) {
650 pmd_t *pmd;
651
652 spin_lock(&mm->page_table_lock);
2da28bfd
AA
653 /*
654 * rmap might return false positives; we must filter
655 * these out using page_check_address_pmd().
656 */
71e3aac0
AA
657 pmd = page_check_address_pmd(page, mm, address,
658 PAGE_CHECK_ADDRESS_PMD_FLAG);
2da28bfd
AA
659 if (!pmd) {
660 spin_unlock(&mm->page_table_lock);
661 goto out;
662 }
663
664 if (vma->vm_flags & VM_LOCKED) {
665 spin_unlock(&mm->page_table_lock);
666 *mapcount = 0; /* break early from loop */
667 *vm_flags |= VM_LOCKED;
668 goto out;
669 }
670
671 /* go ahead even if the pmd is pmd_trans_splitting() */
672 if (pmdp_clear_flush_young_notify(vma, address, pmd))
71e3aac0
AA
673 referenced++;
674 spin_unlock(&mm->page_table_lock);
675 } else {
676 pte_t *pte;
677 spinlock_t *ptl;
678
2da28bfd
AA
679 /*
680 * rmap might return false positives; we must filter
681 * these out using page_check_address().
682 */
71e3aac0
AA
683 pte = page_check_address(page, mm, address, &ptl, 0);
684 if (!pte)
685 goto out;
686
2da28bfd
AA
687 if (vma->vm_flags & VM_LOCKED) {
688 pte_unmap_unlock(pte, ptl);
689 *mapcount = 0; /* break early from loop */
690 *vm_flags |= VM_LOCKED;
691 goto out;
692 }
693
71e3aac0
AA
694 if (ptep_clear_flush_young_notify(vma, address, pte)) {
695 /*
696 * Don't treat a reference through a sequentially read
697 * mapping as such. If the page has been used in
698 * another mapping, we will catch it; if this other
699 * mapping is already gone, the unmap path will have
700 * set PG_referenced or activated the page.
701 */
702 if (likely(!VM_SequentialReadHint(vma)))
703 referenced++;
704 }
705 pte_unmap_unlock(pte, ptl);
706 }
707
c0718806 708 (*mapcount)--;
273f047e 709
6fe6b7e3
WF
710 if (referenced)
711 *vm_flags |= vma->vm_flags;
273f047e 712out:
1da177e4
LT
713 return referenced;
714}
715
bed7161a 716static int page_referenced_anon(struct page *page,
72835c86 717 struct mem_cgroup *memcg,
6fe6b7e3 718 unsigned long *vm_flags)
1da177e4
LT
719{
720 unsigned int mapcount;
721 struct anon_vma *anon_vma;
bf181b9f 722 pgoff_t pgoff;
5beb4930 723 struct anon_vma_chain *avc;
1da177e4
LT
724 int referenced = 0;
725
726 anon_vma = page_lock_anon_vma(page);
727 if (!anon_vma)
728 return referenced;
729
730 mapcount = page_mapcount(page);
bf181b9f
ML
731 pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
732 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
5beb4930 733 struct vm_area_struct *vma = avc->vma;
1cb1729b
HD
734 unsigned long address = vma_address(page, vma);
735 if (address == -EFAULT)
736 continue;
bed7161a
BS
737 /*
738 * If we are reclaiming on behalf of a cgroup, skip
739 * counting on behalf of references from different
740 * cgroups
741 */
72835c86 742 if (memcg && !mm_match_cgroup(vma->vm_mm, memcg))
bed7161a 743 continue;
1cb1729b 744 referenced += page_referenced_one(page, vma, address,
6fe6b7e3 745 &mapcount, vm_flags);
1da177e4
LT
746 if (!mapcount)
747 break;
748 }
34bbd704
ON
749
750 page_unlock_anon_vma(anon_vma);
1da177e4
LT
751 return referenced;
752}
753
754/**
755 * page_referenced_file - referenced check for object-based rmap
756 * @page: the page we're checking references on.
72835c86 757 * @memcg: target memory control group
6fe6b7e3 758 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
1da177e4
LT
759 *
760 * For an object-based mapped page, find all the places it is mapped and
761 * check/clear the referenced flag. This is done by following the page->mapping
762 * pointer, then walking the chain of vmas it holds. It returns the number
763 * of references it found.
764 *
765 * This function is only called from page_referenced for object-based pages.
766 */
bed7161a 767static int page_referenced_file(struct page *page,
72835c86 768 struct mem_cgroup *memcg,
6fe6b7e3 769 unsigned long *vm_flags)
1da177e4
LT
770{
771 unsigned int mapcount;
772 struct address_space *mapping = page->mapping;
773 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
774 struct vm_area_struct *vma;
1da177e4
LT
775 int referenced = 0;
776
777 /*
778 * The caller's checks on page->mapping and !PageAnon have made
779 * sure that this is a file page: the check for page->mapping
780 * excludes the case just before it gets set on an anon page.
781 */
782 BUG_ON(PageAnon(page));
783
784 /*
785 * The page lock not only makes sure that page->mapping cannot
786 * suddenly be NULLified by truncation, it makes sure that the
787 * structure at mapping cannot be freed and reused yet,
3d48ae45 788 * so we can safely take mapping->i_mmap_mutex.
1da177e4
LT
789 */
790 BUG_ON(!PageLocked(page));
791
3d48ae45 792 mutex_lock(&mapping->i_mmap_mutex);
1da177e4
LT
793
794 /*
3d48ae45 795 * i_mmap_mutex does not stabilize mapcount at all, but mapcount
1da177e4
LT
796 * is more likely to be accurate if we note it after spinning.
797 */
798 mapcount = page_mapcount(page);
799
6b2dbba8 800 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
1cb1729b
HD
801 unsigned long address = vma_address(page, vma);
802 if (address == -EFAULT)
803 continue;
bed7161a
BS
804 /*
805 * If we are reclaiming on behalf of a cgroup, skip
806 * counting on behalf of references from different
807 * cgroups
808 */
72835c86 809 if (memcg && !mm_match_cgroup(vma->vm_mm, memcg))
bed7161a 810 continue;
1cb1729b 811 referenced += page_referenced_one(page, vma, address,
6fe6b7e3 812 &mapcount, vm_flags);
1da177e4
LT
813 if (!mapcount)
814 break;
815 }
816
3d48ae45 817 mutex_unlock(&mapping->i_mmap_mutex);
1da177e4
LT
818 return referenced;
819}
820
821/**
822 * page_referenced - test if the page was referenced
823 * @page: the page to test
824 * @is_locked: caller holds lock on the page
72835c86 825 * @memcg: target memory cgroup
6fe6b7e3 826 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
1da177e4
LT
827 *
828 * Quick test_and_clear_referenced for all mappings to a page,
829 * returns the number of ptes which referenced the page.
830 */
6fe6b7e3
WF
831int page_referenced(struct page *page,
832 int is_locked,
72835c86 833 struct mem_cgroup *memcg,
6fe6b7e3 834 unsigned long *vm_flags)
1da177e4
LT
835{
836 int referenced = 0;
5ad64688 837 int we_locked = 0;
1da177e4 838
6fe6b7e3 839 *vm_flags = 0;
3ca7b3c5 840 if (page_mapped(page) && page_rmapping(page)) {
5ad64688
HD
841 if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
842 we_locked = trylock_page(page);
843 if (!we_locked) {
844 referenced++;
845 goto out;
846 }
847 }
848 if (unlikely(PageKsm(page)))
72835c86 849 referenced += page_referenced_ksm(page, memcg,
5ad64688
HD
850 vm_flags);
851 else if (PageAnon(page))
72835c86 852 referenced += page_referenced_anon(page, memcg,
6fe6b7e3 853 vm_flags);
5ad64688 854 else if (page->mapping)
72835c86 855 referenced += page_referenced_file(page, memcg,
6fe6b7e3 856 vm_flags);
5ad64688 857 if (we_locked)
1da177e4 858 unlock_page(page);
50a15981
MS
859
860 if (page_test_and_clear_young(page_to_pfn(page)))
861 referenced++;
1da177e4 862 }
5ad64688 863out:
1da177e4
LT
864 return referenced;
865}
866
1cb1729b
HD
867static int page_mkclean_one(struct page *page, struct vm_area_struct *vma,
868 unsigned long address)
d08b3851
PZ
869{
870 struct mm_struct *mm = vma->vm_mm;
c2fda5fe 871 pte_t *pte;
d08b3851
PZ
872 spinlock_t *ptl;
873 int ret = 0;
874
479db0bf 875 pte = page_check_address(page, mm, address, &ptl, 1);
d08b3851
PZ
876 if (!pte)
877 goto out;
878
c2fda5fe
PZ
879 if (pte_dirty(*pte) || pte_write(*pte)) {
880 pte_t entry;
d08b3851 881
c2fda5fe 882 flush_cache_page(vma, address, pte_pfn(*pte));
cddb8a5c 883 entry = ptep_clear_flush_notify(vma, address, pte);
c2fda5fe
PZ
884 entry = pte_wrprotect(entry);
885 entry = pte_mkclean(entry);
d6e88e67 886 set_pte_at(mm, address, pte, entry);
c2fda5fe
PZ
887 ret = 1;
888 }
d08b3851 889
d08b3851
PZ
890 pte_unmap_unlock(pte, ptl);
891out:
892 return ret;
893}
894
895static int page_mkclean_file(struct address_space *mapping, struct page *page)
896{
897 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
898 struct vm_area_struct *vma;
d08b3851
PZ
899 int ret = 0;
900
901 BUG_ON(PageAnon(page));
902
3d48ae45 903 mutex_lock(&mapping->i_mmap_mutex);
6b2dbba8 904 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
1cb1729b
HD
905 if (vma->vm_flags & VM_SHARED) {
906 unsigned long address = vma_address(page, vma);
907 if (address == -EFAULT)
908 continue;
909 ret += page_mkclean_one(page, vma, address);
910 }
d08b3851 911 }
3d48ae45 912 mutex_unlock(&mapping->i_mmap_mutex);
d08b3851
PZ
913 return ret;
914}
915
916int page_mkclean(struct page *page)
917{
918 int ret = 0;
919
920 BUG_ON(!PageLocked(page));
921
922 if (page_mapped(page)) {
923 struct address_space *mapping = page_mapping(page);
ce7e9fae 924 if (mapping) {
d08b3851 925 ret = page_mkclean_file(mapping, page);
2d42552d 926 if (page_test_and_clear_dirty(page_to_pfn(page), 1))
ce7e9fae 927 ret = 1;
6c210482 928 }
d08b3851
PZ
929 }
930
931 return ret;
932}
60b59bea 933EXPORT_SYMBOL_GPL(page_mkclean);
d08b3851 934
c44b6743
RR
935/**
936 * page_move_anon_rmap - move a page to our anon_vma
937 * @page: the page to move to our anon_vma
938 * @vma: the vma the page belongs to
939 * @address: the user virtual address mapped
940 *
941 * When a page belongs exclusively to one process after a COW event,
942 * that page can be moved into the anon_vma that belongs to just that
943 * process, so the rmap code will not search the parent or sibling
944 * processes.
945 */
946void page_move_anon_rmap(struct page *page,
947 struct vm_area_struct *vma, unsigned long address)
948{
949 struct anon_vma *anon_vma = vma->anon_vma;
950
951 VM_BUG_ON(!PageLocked(page));
952 VM_BUG_ON(!anon_vma);
953 VM_BUG_ON(page->index != linear_page_index(vma, address));
954
955 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
956 page->mapping = (struct address_space *) anon_vma;
957}
958
9617d95e 959/**
4e1c1975
AK
960 * __page_set_anon_rmap - set up new anonymous rmap
961 * @page: Page to add to rmap
962 * @vma: VM area to add page to.
963 * @address: User virtual address of the mapping
e8a03feb 964 * @exclusive: the page is exclusively owned by the current process
9617d95e
NP
965 */
966static void __page_set_anon_rmap(struct page *page,
e8a03feb 967 struct vm_area_struct *vma, unsigned long address, int exclusive)
9617d95e 968{
e8a03feb 969 struct anon_vma *anon_vma = vma->anon_vma;
ea90002b 970
e8a03feb 971 BUG_ON(!anon_vma);
ea90002b 972
4e1c1975
AK
973 if (PageAnon(page))
974 return;
975
ea90002b 976 /*
e8a03feb
RR
977 * If the page isn't exclusively mapped into this vma,
978 * we must use the _oldest_ possible anon_vma for the
979 * page mapping!
ea90002b 980 */
4e1c1975 981 if (!exclusive)
288468c3 982 anon_vma = anon_vma->root;
9617d95e 983
9617d95e
NP
984 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
985 page->mapping = (struct address_space *) anon_vma;
9617d95e 986 page->index = linear_page_index(vma, address);
9617d95e
NP
987}
988
c97a9e10 989/**
43d8eac4 990 * __page_check_anon_rmap - sanity check anonymous rmap addition
c97a9e10
NP
991 * @page: the page to add the mapping to
992 * @vma: the vm area in which the mapping is added
993 * @address: the user virtual address mapped
994 */
995static void __page_check_anon_rmap(struct page *page,
996 struct vm_area_struct *vma, unsigned long address)
997{
998#ifdef CONFIG_DEBUG_VM
999 /*
1000 * The page's anon-rmap details (mapping and index) are guaranteed to
1001 * be set up correctly at this point.
1002 *
1003 * We have exclusion against page_add_anon_rmap because the caller
1004 * always holds the page locked, except if called from page_dup_rmap,
1005 * in which case the page is already known to be setup.
1006 *
1007 * We have exclusion against page_add_new_anon_rmap because those pages
1008 * are initially only visible via the pagetables, and the pte is locked
1009 * over the call to page_add_new_anon_rmap.
1010 */
44ab57a0 1011 BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root);
c97a9e10
NP
1012 BUG_ON(page->index != linear_page_index(vma, address));
1013#endif
1014}
1015
1da177e4
LT
1016/**
1017 * page_add_anon_rmap - add pte mapping to an anonymous page
1018 * @page: the page to add the mapping to
1019 * @vma: the vm area in which the mapping is added
1020 * @address: the user virtual address mapped
1021 *
5ad64688 1022 * The caller needs to hold the pte lock, and the page must be locked in
80e14822
HD
1023 * the anon_vma case: to serialize mapping,index checking after setting,
1024 * and to ensure that PageAnon is not being upgraded racily to PageKsm
1025 * (but PageKsm is never downgraded to PageAnon).
1da177e4
LT
1026 */
1027void page_add_anon_rmap(struct page *page,
1028 struct vm_area_struct *vma, unsigned long address)
ad8c2ee8
RR
1029{
1030 do_page_add_anon_rmap(page, vma, address, 0);
1031}
1032
1033/*
1034 * Special version of the above for do_swap_page, which often runs
1035 * into pages that are exclusively owned by the current process.
1036 * Everybody else should continue to use page_add_anon_rmap above.
1037 */
1038void do_page_add_anon_rmap(struct page *page,
1039 struct vm_area_struct *vma, unsigned long address, int exclusive)
1da177e4 1040{
5ad64688 1041 int first = atomic_inc_and_test(&page->_mapcount);
79134171
AA
1042 if (first) {
1043 if (!PageTransHuge(page))
1044 __inc_zone_page_state(page, NR_ANON_PAGES);
1045 else
1046 __inc_zone_page_state(page,
1047 NR_ANON_TRANSPARENT_HUGEPAGES);
1048 }
5ad64688
HD
1049 if (unlikely(PageKsm(page)))
1050 return;
1051
c97a9e10 1052 VM_BUG_ON(!PageLocked(page));
5dbe0af4 1053 /* address might be in next vma when migration races vma_adjust */
5ad64688 1054 if (first)
ad8c2ee8 1055 __page_set_anon_rmap(page, vma, address, exclusive);
69029cd5 1056 else
c97a9e10 1057 __page_check_anon_rmap(page, vma, address);
1da177e4
LT
1058}
1059
43d8eac4 1060/**
9617d95e
NP
1061 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
1062 * @page: the page to add the mapping to
1063 * @vma: the vm area in which the mapping is added
1064 * @address: the user virtual address mapped
1065 *
1066 * Same as page_add_anon_rmap but must only be called on *new* pages.
1067 * This means the inc-and-test can be bypassed.
c97a9e10 1068 * Page does not have to be locked.
9617d95e
NP
1069 */
1070void page_add_new_anon_rmap(struct page *page,
1071 struct vm_area_struct *vma, unsigned long address)
1072{
b5934c53 1073 VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
cbf84b7a
HD
1074 SetPageSwapBacked(page);
1075 atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */
79134171
AA
1076 if (!PageTransHuge(page))
1077 __inc_zone_page_state(page, NR_ANON_PAGES);
1078 else
1079 __inc_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
e8a03feb 1080 __page_set_anon_rmap(page, vma, address, 1);
b5934c53 1081 if (page_evictable(page, vma))
cbf84b7a 1082 lru_cache_add_lru(page, LRU_ACTIVE_ANON);
b5934c53
HD
1083 else
1084 add_page_to_unevictable_list(page);
9617d95e
NP
1085}
1086
1da177e4
LT
1087/**
1088 * page_add_file_rmap - add pte mapping to a file page
1089 * @page: the page to add the mapping to
1090 *
b8072f09 1091 * The caller needs to hold the pte lock.
1da177e4
LT
1092 */
1093void page_add_file_rmap(struct page *page)
1094{
89c06bd5
KH
1095 bool locked;
1096 unsigned long flags;
1097
1098 mem_cgroup_begin_update_page_stat(page, &locked, &flags);
d69b042f 1099 if (atomic_inc_and_test(&page->_mapcount)) {
65ba55f5 1100 __inc_zone_page_state(page, NR_FILE_MAPPED);
2a7106f2 1101 mem_cgroup_inc_page_stat(page, MEMCG_NR_FILE_MAPPED);
d69b042f 1102 }
89c06bd5 1103 mem_cgroup_end_update_page_stat(page, &locked, &flags);
1da177e4
LT
1104}
1105
1106/**
1107 * page_remove_rmap - take down pte mapping from a page
1108 * @page: page to remove mapping from
1109 *
b8072f09 1110 * The caller needs to hold the pte lock.
1da177e4 1111 */
edc315fd 1112void page_remove_rmap(struct page *page)
1da177e4 1113{
89c06bd5
KH
1114 bool anon = PageAnon(page);
1115 bool locked;
1116 unsigned long flags;
1117
1118 /*
1119 * The anon case has no mem_cgroup page_stat to update; but may
1120 * uncharge_page() below, where the lock ordering can deadlock if
1121 * we hold the lock against page_stat move: so avoid it on anon.
1122 */
1123 if (!anon)
1124 mem_cgroup_begin_update_page_stat(page, &locked, &flags);
1125
b904dcfe
KM
1126 /* page still mapped by someone else? */
1127 if (!atomic_add_negative(-1, &page->_mapcount))
89c06bd5 1128 goto out;
b904dcfe
KM
1129
1130 /*
1131 * Now that the last pte has gone, s390 must transfer dirty
1132 * flag from storage key to struct page. We can usually skip
1133 * this if the page is anon, so about to be freed; but perhaps
1134 * not if it's in swapcache - there might be another pte slot
1135 * containing the swap entry, but page not yet written to swap.
1136 */
89c06bd5 1137 if ((!anon || PageSwapCache(page)) &&
2d42552d 1138 page_test_and_clear_dirty(page_to_pfn(page), 1))
b904dcfe 1139 set_page_dirty(page);
0fe6e20b
NH
1140 /*
1141 * Hugepages are not counted in NR_ANON_PAGES nor NR_FILE_MAPPED
1142 * and not charged by memcg for now.
1143 */
1144 if (unlikely(PageHuge(page)))
89c06bd5
KH
1145 goto out;
1146 if (anon) {
b904dcfe 1147 mem_cgroup_uncharge_page(page);
79134171
AA
1148 if (!PageTransHuge(page))
1149 __dec_zone_page_state(page, NR_ANON_PAGES);
1150 else
1151 __dec_zone_page_state(page,
1152 NR_ANON_TRANSPARENT_HUGEPAGES);
b904dcfe
KM
1153 } else {
1154 __dec_zone_page_state(page, NR_FILE_MAPPED);
2a7106f2 1155 mem_cgroup_dec_page_stat(page, MEMCG_NR_FILE_MAPPED);
b904dcfe 1156 }
b904dcfe
KM
1157 /*
1158 * It would be tidy to reset the PageAnon mapping here,
1159 * but that might overwrite a racing page_add_anon_rmap
1160 * which increments mapcount after us but sets mapping
1161 * before us: so leave the reset to free_hot_cold_page,
1162 * and remember that it's only reliable while mapped.
1163 * Leaving it set also helps swapoff to reinstate ptes
1164 * faster for those pages still in swapcache.
1165 */
89c06bd5
KH
1166out:
1167 if (!anon)
1168 mem_cgroup_end_update_page_stat(page, &locked, &flags);
1da177e4
LT
1169}
1170
1171/*
1172 * Subfunctions of try_to_unmap: try_to_unmap_one called
99ef0315 1173 * repeatedly from try_to_unmap_ksm, try_to_unmap_anon or try_to_unmap_file.
1da177e4 1174 */
5ad64688
HD
1175int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
1176 unsigned long address, enum ttu_flags flags)
1da177e4
LT
1177{
1178 struct mm_struct *mm = vma->vm_mm;
1da177e4
LT
1179 pte_t *pte;
1180 pte_t pteval;
c0718806 1181 spinlock_t *ptl;
1da177e4
LT
1182 int ret = SWAP_AGAIN;
1183
479db0bf 1184 pte = page_check_address(page, mm, address, &ptl, 0);
c0718806 1185 if (!pte)
81b4082d 1186 goto out;
1da177e4
LT
1187
1188 /*
1189 * If the page is mlock()d, we cannot swap it out.
1190 * If it's recently referenced (perhaps page_referenced
1191 * skipped over this mm) then we should reactivate it.
1192 */
14fa31b8 1193 if (!(flags & TTU_IGNORE_MLOCK)) {
caed0f48
KM
1194 if (vma->vm_flags & VM_LOCKED)
1195 goto out_mlock;
1196
af8e3354 1197 if (TTU_ACTION(flags) == TTU_MUNLOCK)
53f79acb 1198 goto out_unmap;
14fa31b8
AK
1199 }
1200 if (!(flags & TTU_IGNORE_ACCESS)) {
b291f000
NP
1201 if (ptep_clear_flush_young_notify(vma, address, pte)) {
1202 ret = SWAP_FAIL;
1203 goto out_unmap;
1204 }
1205 }
1da177e4 1206
1da177e4
LT
1207 /* Nuke the page table entry. */
1208 flush_cache_page(vma, address, page_to_pfn(page));
cddb8a5c 1209 pteval = ptep_clear_flush_notify(vma, address, pte);
1da177e4
LT
1210
1211 /* Move the dirty bit to the physical page now the pte is gone. */
1212 if (pte_dirty(pteval))
1213 set_page_dirty(page);
1214
365e9c87
HD
1215 /* Update high watermark before we lower rss */
1216 update_hiwater_rss(mm);
1217
888b9f7c
AK
1218 if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
1219 if (PageAnon(page))
d559db08 1220 dec_mm_counter(mm, MM_ANONPAGES);
888b9f7c 1221 else
d559db08 1222 dec_mm_counter(mm, MM_FILEPAGES);
888b9f7c
AK
1223 set_pte_at(mm, address, pte,
1224 swp_entry_to_pte(make_hwpoison_entry(page)));
1225 } else if (PageAnon(page)) {
4c21e2f2 1226 swp_entry_t entry = { .val = page_private(page) };
0697212a
CL
1227
1228 if (PageSwapCache(page)) {
1229 /*
1230 * Store the swap location in the pte.
1231 * See handle_pte_fault() ...
1232 */
570a335b
HD
1233 if (swap_duplicate(entry) < 0) {
1234 set_pte_at(mm, address, pte, pteval);
1235 ret = SWAP_FAIL;
1236 goto out_unmap;
1237 }
0697212a
CL
1238 if (list_empty(&mm->mmlist)) {
1239 spin_lock(&mmlist_lock);
1240 if (list_empty(&mm->mmlist))
1241 list_add(&mm->mmlist, &init_mm.mmlist);
1242 spin_unlock(&mmlist_lock);
1243 }
d559db08 1244 dec_mm_counter(mm, MM_ANONPAGES);
b084d435 1245 inc_mm_counter(mm, MM_SWAPENTS);
ce1744f4 1246 } else if (IS_ENABLED(CONFIG_MIGRATION)) {
0697212a
CL
1247 /*
1248 * Store the pfn of the page in a special migration
1249 * pte. do_swap_page() will wait until the migration
1250 * pte is removed and then restart fault handling.
1251 */
14fa31b8 1252 BUG_ON(TTU_ACTION(flags) != TTU_MIGRATION);
0697212a 1253 entry = make_migration_entry(page, pte_write(pteval));
1da177e4
LT
1254 }
1255 set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
1256 BUG_ON(pte_file(*pte));
ce1744f4
KK
1257 } else if (IS_ENABLED(CONFIG_MIGRATION) &&
1258 (TTU_ACTION(flags) == TTU_MIGRATION)) {
04e62a29
CL
1259 /* Establish migration entry for a file page */
1260 swp_entry_t entry;
1261 entry = make_migration_entry(page, pte_write(pteval));
1262 set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
1263 } else
d559db08 1264 dec_mm_counter(mm, MM_FILEPAGES);
1da177e4 1265
edc315fd 1266 page_remove_rmap(page);
1da177e4
LT
1267 page_cache_release(page);
1268
1269out_unmap:
c0718806 1270 pte_unmap_unlock(pte, ptl);
caed0f48
KM
1271out:
1272 return ret;
53f79acb 1273
caed0f48
KM
1274out_mlock:
1275 pte_unmap_unlock(pte, ptl);
1276
1277
1278 /*
1279 * We need mmap_sem locking, Otherwise VM_LOCKED check makes
1280 * unstable result and race. Plus, We can't wait here because
2b575eb6 1281 * we now hold anon_vma->mutex or mapping->i_mmap_mutex.
caed0f48
KM
1282 * if trylock failed, the page remain in evictable lru and later
1283 * vmscan could retry to move the page to unevictable lru if the
1284 * page is actually mlocked.
1285 */
1286 if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
1287 if (vma->vm_flags & VM_LOCKED) {
1288 mlock_vma_page(page);
1289 ret = SWAP_MLOCK;
53f79acb 1290 }
caed0f48 1291 up_read(&vma->vm_mm->mmap_sem);
53f79acb 1292 }
1da177e4
LT
1293 return ret;
1294}
1295
1296/*
1297 * objrmap doesn't work for nonlinear VMAs because the assumption that
1298 * offset-into-file correlates with offset-into-virtual-addresses does not hold.
1299 * Consequently, given a particular page and its ->index, we cannot locate the
1300 * ptes which are mapping that page without an exhaustive linear search.
1301 *
1302 * So what this code does is a mini "virtual scan" of each nonlinear VMA which
1303 * maps the file to which the target page belongs. The ->vm_private_data field
1304 * holds the current cursor into that scan. Successive searches will circulate
1305 * around the vma's virtual address space.
1306 *
1307 * So as more replacement pressure is applied to the pages in a nonlinear VMA,
1308 * more scanning pressure is placed against them as well. Eventually pages
1309 * will become fully unmapped and are eligible for eviction.
1310 *
1311 * For very sparsely populated VMAs this is a little inefficient - chances are
1312 * there there won't be many ptes located within the scan cluster. In this case
1313 * maybe we could scan further - to the end of the pte page, perhaps.
b291f000
NP
1314 *
1315 * Mlocked pages: check VM_LOCKED under mmap_sem held for read, if we can
1316 * acquire it without blocking. If vma locked, mlock the pages in the cluster,
1317 * rather than unmapping them. If we encounter the "check_page" that vmscan is
1318 * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN.
1da177e4
LT
1319 */
1320#define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE)
1321#define CLUSTER_MASK (~(CLUSTER_SIZE - 1))
1322
b291f000
NP
1323static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount,
1324 struct vm_area_struct *vma, struct page *check_page)
1da177e4
LT
1325{
1326 struct mm_struct *mm = vma->vm_mm;
1327 pgd_t *pgd;
1328 pud_t *pud;
1329 pmd_t *pmd;
c0718806 1330 pte_t *pte;
1da177e4 1331 pte_t pteval;
c0718806 1332 spinlock_t *ptl;
1da177e4
LT
1333 struct page *page;
1334 unsigned long address;
1335 unsigned long end;
b291f000
NP
1336 int ret = SWAP_AGAIN;
1337 int locked_vma = 0;
1da177e4 1338
1da177e4
LT
1339 address = (vma->vm_start + cursor) & CLUSTER_MASK;
1340 end = address + CLUSTER_SIZE;
1341 if (address < vma->vm_start)
1342 address = vma->vm_start;
1343 if (end > vma->vm_end)
1344 end = vma->vm_end;
1345
1346 pgd = pgd_offset(mm, address);
1347 if (!pgd_present(*pgd))
b291f000 1348 return ret;
1da177e4
LT
1349
1350 pud = pud_offset(pgd, address);
1351 if (!pud_present(*pud))
b291f000 1352 return ret;
1da177e4
LT
1353
1354 pmd = pmd_offset(pud, address);
1355 if (!pmd_present(*pmd))
b291f000
NP
1356 return ret;
1357
1358 /*
af8e3354 1359 * If we can acquire the mmap_sem for read, and vma is VM_LOCKED,
b291f000
NP
1360 * keep the sem while scanning the cluster for mlocking pages.
1361 */
af8e3354 1362 if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
b291f000
NP
1363 locked_vma = (vma->vm_flags & VM_LOCKED);
1364 if (!locked_vma)
1365 up_read(&vma->vm_mm->mmap_sem); /* don't need it */
1366 }
c0718806
HD
1367
1368 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1da177e4 1369
365e9c87
HD
1370 /* Update high watermark before we lower rss */
1371 update_hiwater_rss(mm);
1372
c0718806 1373 for (; address < end; pte++, address += PAGE_SIZE) {
1da177e4
LT
1374 if (!pte_present(*pte))
1375 continue;
6aab341e
LT
1376 page = vm_normal_page(vma, address, *pte);
1377 BUG_ON(!page || PageAnon(page));
1da177e4 1378
b291f000
NP
1379 if (locked_vma) {
1380 mlock_vma_page(page); /* no-op if already mlocked */
1381 if (page == check_page)
1382 ret = SWAP_MLOCK;
1383 continue; /* don't unmap */
1384 }
1385
cddb8a5c 1386 if (ptep_clear_flush_young_notify(vma, address, pte))
1da177e4
LT
1387 continue;
1388
1389 /* Nuke the page table entry. */
eca35133 1390 flush_cache_page(vma, address, pte_pfn(*pte));
cddb8a5c 1391 pteval = ptep_clear_flush_notify(vma, address, pte);
1da177e4
LT
1392
1393 /* If nonlinear, store the file page offset in the pte. */
1394 if (page->index != linear_page_index(vma, address))
1395 set_pte_at(mm, address, pte, pgoff_to_pte(page->index));
1396
1397 /* Move the dirty bit to the physical page now the pte is gone. */
1398 if (pte_dirty(pteval))
1399 set_page_dirty(page);
1400
edc315fd 1401 page_remove_rmap(page);
1da177e4 1402 page_cache_release(page);
d559db08 1403 dec_mm_counter(mm, MM_FILEPAGES);
1da177e4
LT
1404 (*mapcount)--;
1405 }
c0718806 1406 pte_unmap_unlock(pte - 1, ptl);
b291f000
NP
1407 if (locked_vma)
1408 up_read(&vma->vm_mm->mmap_sem);
1409 return ret;
1da177e4
LT
1410}
1411
71e3aac0 1412bool is_vma_temporary_stack(struct vm_area_struct *vma)
a8bef8ff
MG
1413{
1414 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
1415
1416 if (!maybe_stack)
1417 return false;
1418
1419 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
1420 VM_STACK_INCOMPLETE_SETUP)
1421 return true;
1422
1423 return false;
1424}
1425
b291f000
NP
1426/**
1427 * try_to_unmap_anon - unmap or unlock anonymous page using the object-based
1428 * rmap method
1429 * @page: the page to unmap/unlock
8051be5e 1430 * @flags: action and flags
b291f000
NP
1431 *
1432 * Find all the mappings of a page using the mapping pointer and the vma chains
1433 * contained in the anon_vma struct it points to.
1434 *
1435 * This function is only called from try_to_unmap/try_to_munlock for
1436 * anonymous pages.
1437 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1438 * where the page was found will be held for write. So, we won't recheck
1439 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1440 * 'LOCKED.
1441 */
14fa31b8 1442static int try_to_unmap_anon(struct page *page, enum ttu_flags flags)
1da177e4
LT
1443{
1444 struct anon_vma *anon_vma;
bf181b9f 1445 pgoff_t pgoff;
5beb4930 1446 struct anon_vma_chain *avc;
1da177e4 1447 int ret = SWAP_AGAIN;
b291f000 1448
1da177e4
LT
1449 anon_vma = page_lock_anon_vma(page);
1450 if (!anon_vma)
1451 return ret;
1452
bf181b9f
ML
1453 pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1454 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
5beb4930 1455 struct vm_area_struct *vma = avc->vma;
a8bef8ff
MG
1456 unsigned long address;
1457
1458 /*
1459 * During exec, a temporary VMA is setup and later moved.
1460 * The VMA is moved under the anon_vma lock but not the
1461 * page tables leading to a race where migration cannot
1462 * find the migration ptes. Rather than increasing the
1463 * locking requirements of exec(), migration skips
1464 * temporary VMAs until after exec() completes.
1465 */
ce1744f4 1466 if (IS_ENABLED(CONFIG_MIGRATION) && (flags & TTU_MIGRATION) &&
a8bef8ff
MG
1467 is_vma_temporary_stack(vma))
1468 continue;
1469
1470 address = vma_address(page, vma);
1cb1729b
HD
1471 if (address == -EFAULT)
1472 continue;
1473 ret = try_to_unmap_one(page, vma, address, flags);
53f79acb
HD
1474 if (ret != SWAP_AGAIN || !page_mapped(page))
1475 break;
1da177e4 1476 }
34bbd704
ON
1477
1478 page_unlock_anon_vma(anon_vma);
1da177e4
LT
1479 return ret;
1480}
1481
1482/**
b291f000
NP
1483 * try_to_unmap_file - unmap/unlock file page using the object-based rmap method
1484 * @page: the page to unmap/unlock
14fa31b8 1485 * @flags: action and flags
1da177e4
LT
1486 *
1487 * Find all the mappings of a page using the mapping pointer and the vma chains
1488 * contained in the address_space struct it points to.
1489 *
b291f000
NP
1490 * This function is only called from try_to_unmap/try_to_munlock for
1491 * object-based pages.
1492 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1493 * where the page was found will be held for write. So, we won't recheck
1494 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1495 * 'LOCKED.
1da177e4 1496 */
14fa31b8 1497static int try_to_unmap_file(struct page *page, enum ttu_flags flags)
1da177e4
LT
1498{
1499 struct address_space *mapping = page->mapping;
1500 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1501 struct vm_area_struct *vma;
1da177e4
LT
1502 int ret = SWAP_AGAIN;
1503 unsigned long cursor;
1504 unsigned long max_nl_cursor = 0;
1505 unsigned long max_nl_size = 0;
1506 unsigned int mapcount;
1507
3d48ae45 1508 mutex_lock(&mapping->i_mmap_mutex);
6b2dbba8 1509 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
1cb1729b
HD
1510 unsigned long address = vma_address(page, vma);
1511 if (address == -EFAULT)
1512 continue;
1513 ret = try_to_unmap_one(page, vma, address, flags);
53f79acb
HD
1514 if (ret != SWAP_AGAIN || !page_mapped(page))
1515 goto out;
1da177e4
LT
1516 }
1517
1518 if (list_empty(&mapping->i_mmap_nonlinear))
1519 goto out;
1520
53f79acb
HD
1521 /*
1522 * We don't bother to try to find the munlocked page in nonlinears.
1523 * It's costly. Instead, later, page reclaim logic may call
1524 * try_to_unmap(TTU_MUNLOCK) and recover PG_mlocked lazily.
1525 */
1526 if (TTU_ACTION(flags) == TTU_MUNLOCK)
1527 goto out;
1528
1da177e4 1529 list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
6b2dbba8 1530 shared.nonlinear) {
1da177e4
LT
1531 cursor = (unsigned long) vma->vm_private_data;
1532 if (cursor > max_nl_cursor)
1533 max_nl_cursor = cursor;
1534 cursor = vma->vm_end - vma->vm_start;
1535 if (cursor > max_nl_size)
1536 max_nl_size = cursor;
1537 }
1538
b291f000 1539 if (max_nl_size == 0) { /* all nonlinears locked or reserved ? */
1da177e4
LT
1540 ret = SWAP_FAIL;
1541 goto out;
1542 }
1543
1544 /*
1545 * We don't try to search for this page in the nonlinear vmas,
1546 * and page_referenced wouldn't have found it anyway. Instead
1547 * just walk the nonlinear vmas trying to age and unmap some.
1548 * The mapcount of the page we came in with is irrelevant,
1549 * but even so use it as a guide to how hard we should try?
1550 */
1551 mapcount = page_mapcount(page);
1552 if (!mapcount)
1553 goto out;
3d48ae45 1554 cond_resched();
1da177e4
LT
1555
1556 max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
1557 if (max_nl_cursor == 0)
1558 max_nl_cursor = CLUSTER_SIZE;
1559
1560 do {
1561 list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
6b2dbba8 1562 shared.nonlinear) {
1da177e4 1563 cursor = (unsigned long) vma->vm_private_data;
839b9685 1564 while ( cursor < max_nl_cursor &&
1da177e4 1565 cursor < vma->vm_end - vma->vm_start) {
53f79acb
HD
1566 if (try_to_unmap_cluster(cursor, &mapcount,
1567 vma, page) == SWAP_MLOCK)
1568 ret = SWAP_MLOCK;
1da177e4
LT
1569 cursor += CLUSTER_SIZE;
1570 vma->vm_private_data = (void *) cursor;
1571 if ((int)mapcount <= 0)
1572 goto out;
1573 }
1574 vma->vm_private_data = (void *) max_nl_cursor;
1575 }
3d48ae45 1576 cond_resched();
1da177e4
LT
1577 max_nl_cursor += CLUSTER_SIZE;
1578 } while (max_nl_cursor <= max_nl_size);
1579
1580 /*
1581 * Don't loop forever (perhaps all the remaining pages are
1582 * in locked vmas). Reset cursor on all unreserved nonlinear
1583 * vmas, now forgetting on which ones it had fallen behind.
1584 */
6b2dbba8 1585 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.nonlinear)
101d2be7 1586 vma->vm_private_data = NULL;
1da177e4 1587out:
3d48ae45 1588 mutex_unlock(&mapping->i_mmap_mutex);
1da177e4
LT
1589 return ret;
1590}
1591
1592/**
1593 * try_to_unmap - try to remove all page table mappings to a page
1594 * @page: the page to get unmapped
14fa31b8 1595 * @flags: action and flags
1da177e4
LT
1596 *
1597 * Tries to remove all the page table entries which are mapping this
1598 * page, used in the pageout path. Caller must hold the page lock.
1599 * Return values are:
1600 *
1601 * SWAP_SUCCESS - we succeeded in removing all mappings
1602 * SWAP_AGAIN - we missed a mapping, try again later
1603 * SWAP_FAIL - the page is unswappable
b291f000 1604 * SWAP_MLOCK - page is mlocked.
1da177e4 1605 */
14fa31b8 1606int try_to_unmap(struct page *page, enum ttu_flags flags)
1da177e4
LT
1607{
1608 int ret;
1609
1da177e4 1610 BUG_ON(!PageLocked(page));
91600e9e 1611 VM_BUG_ON(!PageHuge(page) && PageTransHuge(page));
1da177e4 1612
5ad64688
HD
1613 if (unlikely(PageKsm(page)))
1614 ret = try_to_unmap_ksm(page, flags);
1615 else if (PageAnon(page))
14fa31b8 1616 ret = try_to_unmap_anon(page, flags);
1da177e4 1617 else
14fa31b8 1618 ret = try_to_unmap_file(page, flags);
b291f000 1619 if (ret != SWAP_MLOCK && !page_mapped(page))
1da177e4
LT
1620 ret = SWAP_SUCCESS;
1621 return ret;
1622}
81b4082d 1623
b291f000
NP
1624/**
1625 * try_to_munlock - try to munlock a page
1626 * @page: the page to be munlocked
1627 *
1628 * Called from munlock code. Checks all of the VMAs mapping the page
1629 * to make sure nobody else has this page mlocked. The page will be
1630 * returned with PG_mlocked cleared if no other vmas have it mlocked.
1631 *
1632 * Return values are:
1633 *
53f79acb 1634 * SWAP_AGAIN - no vma is holding page mlocked, or,
b291f000 1635 * SWAP_AGAIN - page mapped in mlocked vma -- couldn't acquire mmap sem
5ad64688 1636 * SWAP_FAIL - page cannot be located at present
b291f000
NP
1637 * SWAP_MLOCK - page is now mlocked.
1638 */
1639int try_to_munlock(struct page *page)
1640{
1641 VM_BUG_ON(!PageLocked(page) || PageLRU(page));
1642
5ad64688
HD
1643 if (unlikely(PageKsm(page)))
1644 return try_to_unmap_ksm(page, TTU_MUNLOCK);
1645 else if (PageAnon(page))
14fa31b8 1646 return try_to_unmap_anon(page, TTU_MUNLOCK);
b291f000 1647 else
14fa31b8 1648 return try_to_unmap_file(page, TTU_MUNLOCK);
b291f000 1649}
e9995ef9 1650
01d8b20d 1651void __put_anon_vma(struct anon_vma *anon_vma)
76545066 1652{
01d8b20d 1653 struct anon_vma *root = anon_vma->root;
76545066 1654
01d8b20d
PZ
1655 if (root != anon_vma && atomic_dec_and_test(&root->refcount))
1656 anon_vma_free(root);
76545066 1657
01d8b20d 1658 anon_vma_free(anon_vma);
76545066 1659}
76545066 1660
e9995ef9
HD
1661#ifdef CONFIG_MIGRATION
1662/*
1663 * rmap_walk() and its helpers rmap_walk_anon() and rmap_walk_file():
1664 * Called by migrate.c to remove migration ptes, but might be used more later.
1665 */
1666static int rmap_walk_anon(struct page *page, int (*rmap_one)(struct page *,
1667 struct vm_area_struct *, unsigned long, void *), void *arg)
1668{
1669 struct anon_vma *anon_vma;
bf181b9f 1670 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
5beb4930 1671 struct anon_vma_chain *avc;
e9995ef9
HD
1672 int ret = SWAP_AGAIN;
1673
1674 /*
1675 * Note: remove_migration_ptes() cannot use page_lock_anon_vma()
1676 * because that depends on page_mapped(); but not all its usages
3f6c8272
MG
1677 * are holding mmap_sem. Users without mmap_sem are required to
1678 * take a reference count to prevent the anon_vma disappearing
e9995ef9
HD
1679 */
1680 anon_vma = page_anon_vma(page);
1681 if (!anon_vma)
1682 return ret;
cba48b98 1683 anon_vma_lock(anon_vma);
bf181b9f 1684 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
5beb4930 1685 struct vm_area_struct *vma = avc->vma;
e9995ef9
HD
1686 unsigned long address = vma_address(page, vma);
1687 if (address == -EFAULT)
1688 continue;
1689 ret = rmap_one(page, vma, address, arg);
1690 if (ret != SWAP_AGAIN)
1691 break;
1692 }
cba48b98 1693 anon_vma_unlock(anon_vma);
e9995ef9
HD
1694 return ret;
1695}
1696
1697static int rmap_walk_file(struct page *page, int (*rmap_one)(struct page *,
1698 struct vm_area_struct *, unsigned long, void *), void *arg)
1699{
1700 struct address_space *mapping = page->mapping;
1701 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1702 struct vm_area_struct *vma;
e9995ef9
HD
1703 int ret = SWAP_AGAIN;
1704
1705 if (!mapping)
1706 return ret;
3d48ae45 1707 mutex_lock(&mapping->i_mmap_mutex);
6b2dbba8 1708 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
e9995ef9
HD
1709 unsigned long address = vma_address(page, vma);
1710 if (address == -EFAULT)
1711 continue;
1712 ret = rmap_one(page, vma, address, arg);
1713 if (ret != SWAP_AGAIN)
1714 break;
1715 }
1716 /*
1717 * No nonlinear handling: being always shared, nonlinear vmas
1718 * never contain migration ptes. Decide what to do about this
1719 * limitation to linear when we need rmap_walk() on nonlinear.
1720 */
3d48ae45 1721 mutex_unlock(&mapping->i_mmap_mutex);
e9995ef9
HD
1722 return ret;
1723}
1724
1725int rmap_walk(struct page *page, int (*rmap_one)(struct page *,
1726 struct vm_area_struct *, unsigned long, void *), void *arg)
1727{
1728 VM_BUG_ON(!PageLocked(page));
1729
1730 if (unlikely(PageKsm(page)))
1731 return rmap_walk_ksm(page, rmap_one, arg);
1732 else if (PageAnon(page))
1733 return rmap_walk_anon(page, rmap_one, arg);
1734 else
1735 return rmap_walk_file(page, rmap_one, arg);
1736}
1737#endif /* CONFIG_MIGRATION */
0fe6e20b 1738
e3390f67 1739#ifdef CONFIG_HUGETLB_PAGE
0fe6e20b
NH
1740/*
1741 * The following three functions are for anonymous (private mapped) hugepages.
1742 * Unlike common anonymous pages, anonymous hugepages have no accounting code
1743 * and no lru code, because we handle hugepages differently from common pages.
1744 */
1745static void __hugepage_set_anon_rmap(struct page *page,
1746 struct vm_area_struct *vma, unsigned long address, int exclusive)
1747{
1748 struct anon_vma *anon_vma = vma->anon_vma;
433abed6 1749
0fe6e20b 1750 BUG_ON(!anon_vma);
433abed6
NH
1751
1752 if (PageAnon(page))
1753 return;
1754 if (!exclusive)
1755 anon_vma = anon_vma->root;
1756
0fe6e20b
NH
1757 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1758 page->mapping = (struct address_space *) anon_vma;
1759 page->index = linear_page_index(vma, address);
1760}
1761
1762void hugepage_add_anon_rmap(struct page *page,
1763 struct vm_area_struct *vma, unsigned long address)
1764{
1765 struct anon_vma *anon_vma = vma->anon_vma;
1766 int first;
a850ea30
NH
1767
1768 BUG_ON(!PageLocked(page));
0fe6e20b 1769 BUG_ON(!anon_vma);
5dbe0af4 1770 /* address might be in next vma when migration races vma_adjust */
0fe6e20b
NH
1771 first = atomic_inc_and_test(&page->_mapcount);
1772 if (first)
1773 __hugepage_set_anon_rmap(page, vma, address, 0);
1774}
1775
1776void hugepage_add_new_anon_rmap(struct page *page,
1777 struct vm_area_struct *vma, unsigned long address)
1778{
1779 BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1780 atomic_set(&page->_mapcount, 0);
1781 __hugepage_set_anon_rmap(page, vma, address, 1);
1782}
e3390f67 1783#endif /* CONFIG_HUGETLB_PAGE */