]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - mm/rmap.c
mm/rmap: use rmap_walk() in page_referenced()
[mirror_ubuntu-bionic-kernel.git] / mm / rmap.c
CommitLineData
1da177e4
LT
1/*
2 * mm/rmap.c - physical to virtual reverse mappings
3 *
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
6 *
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
9 *
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
13 *
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
98f32602 17 * Contributions by Hugh Dickins 2003, 2004
1da177e4
LT
18 */
19
20/*
21 * Lock ordering in mm:
22 *
1b1dcc1b 23 * inode->i_mutex (while writing or truncating, not reading or faulting)
82591e6e
NP
24 * mm->mmap_sem
25 * page->flags PG_locked (lock_page)
3d48ae45 26 * mapping->i_mmap_mutex
5a505085 27 * anon_vma->rwsem
82591e6e
NP
28 * mm->page_table_lock or pte_lock
29 * zone->lru_lock (in mark_page_accessed, isolate_lru_page)
30 * swap_lock (in swap_duplicate, swap_info_get)
31 * mmlist_lock (in mmput, drain_mmlist and others)
32 * mapping->private_lock (in __set_page_dirty_buffers)
250df6ed 33 * inode->i_lock (in set_page_dirty's __mark_inode_dirty)
f758eeab 34 * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
82591e6e
NP
35 * sb_lock (within inode_lock in fs/fs-writeback.c)
36 * mapping->tree_lock (widely used, in set_page_dirty,
37 * in arch-dependent flush_dcache_mmap_lock,
f758eeab 38 * within bdi.wb->list_lock in __sync_single_inode)
6a46079c 39 *
5a505085 40 * anon_vma->rwsem,mapping->i_mutex (memory_failure, collect_procs_anon)
9b679320 41 * ->tasklist_lock
6a46079c 42 * pte map lock
1da177e4
LT
43 */
44
45#include <linux/mm.h>
46#include <linux/pagemap.h>
47#include <linux/swap.h>
48#include <linux/swapops.h>
49#include <linux/slab.h>
50#include <linux/init.h>
5ad64688 51#include <linux/ksm.h>
1da177e4
LT
52#include <linux/rmap.h>
53#include <linux/rcupdate.h>
b95f1b31 54#include <linux/export.h>
8a9f3ccd 55#include <linux/memcontrol.h>
cddb8a5c 56#include <linux/mmu_notifier.h>
64cdd548 57#include <linux/migrate.h>
0fe6e20b 58#include <linux/hugetlb.h>
ef5d437f 59#include <linux/backing-dev.h>
1da177e4
LT
60
61#include <asm/tlbflush.h>
62
b291f000
NP
63#include "internal.h"
64
fdd2e5f8 65static struct kmem_cache *anon_vma_cachep;
5beb4930 66static struct kmem_cache *anon_vma_chain_cachep;
fdd2e5f8
AB
67
68static inline struct anon_vma *anon_vma_alloc(void)
69{
01d8b20d
PZ
70 struct anon_vma *anon_vma;
71
72 anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
73 if (anon_vma) {
74 atomic_set(&anon_vma->refcount, 1);
75 /*
76 * Initialise the anon_vma root to point to itself. If called
77 * from fork, the root will be reset to the parents anon_vma.
78 */
79 anon_vma->root = anon_vma;
80 }
81
82 return anon_vma;
fdd2e5f8
AB
83}
84
01d8b20d 85static inline void anon_vma_free(struct anon_vma *anon_vma)
fdd2e5f8 86{
01d8b20d 87 VM_BUG_ON(atomic_read(&anon_vma->refcount));
88c22088
PZ
88
89 /*
4fc3f1d6 90 * Synchronize against page_lock_anon_vma_read() such that
88c22088
PZ
91 * we can safely hold the lock without the anon_vma getting
92 * freed.
93 *
94 * Relies on the full mb implied by the atomic_dec_and_test() from
95 * put_anon_vma() against the acquire barrier implied by
4fc3f1d6 96 * down_read_trylock() from page_lock_anon_vma_read(). This orders:
88c22088 97 *
4fc3f1d6
IM
98 * page_lock_anon_vma_read() VS put_anon_vma()
99 * down_read_trylock() atomic_dec_and_test()
88c22088 100 * LOCK MB
4fc3f1d6 101 * atomic_read() rwsem_is_locked()
88c22088
PZ
102 *
103 * LOCK should suffice since the actual taking of the lock must
104 * happen _before_ what follows.
105 */
5a505085 106 if (rwsem_is_locked(&anon_vma->root->rwsem)) {
4fc3f1d6 107 anon_vma_lock_write(anon_vma);
08b52706 108 anon_vma_unlock_write(anon_vma);
88c22088
PZ
109 }
110
fdd2e5f8
AB
111 kmem_cache_free(anon_vma_cachep, anon_vma);
112}
1da177e4 113
dd34739c 114static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
5beb4930 115{
dd34739c 116 return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
5beb4930
RR
117}
118
e574b5fd 119static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
5beb4930
RR
120{
121 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
122}
123
6583a843
KC
124static void anon_vma_chain_link(struct vm_area_struct *vma,
125 struct anon_vma_chain *avc,
126 struct anon_vma *anon_vma)
127{
128 avc->vma = vma;
129 avc->anon_vma = anon_vma;
130 list_add(&avc->same_vma, &vma->anon_vma_chain);
bf181b9f 131 anon_vma_interval_tree_insert(avc, &anon_vma->rb_root);
6583a843
KC
132}
133
d9d332e0
LT
134/**
135 * anon_vma_prepare - attach an anon_vma to a memory region
136 * @vma: the memory region in question
137 *
138 * This makes sure the memory mapping described by 'vma' has
139 * an 'anon_vma' attached to it, so that we can associate the
140 * anonymous pages mapped into it with that anon_vma.
141 *
142 * The common case will be that we already have one, but if
23a0790a 143 * not we either need to find an adjacent mapping that we
d9d332e0
LT
144 * can re-use the anon_vma from (very common when the only
145 * reason for splitting a vma has been mprotect()), or we
146 * allocate a new one.
147 *
148 * Anon-vma allocations are very subtle, because we may have
4fc3f1d6 149 * optimistically looked up an anon_vma in page_lock_anon_vma_read()
d9d332e0
LT
150 * and that may actually touch the spinlock even in the newly
151 * allocated vma (it depends on RCU to make sure that the
152 * anon_vma isn't actually destroyed).
153 *
154 * As a result, we need to do proper anon_vma locking even
155 * for the new allocation. At the same time, we do not want
156 * to do any locking for the common case of already having
157 * an anon_vma.
158 *
159 * This must be called with the mmap_sem held for reading.
160 */
1da177e4
LT
161int anon_vma_prepare(struct vm_area_struct *vma)
162{
163 struct anon_vma *anon_vma = vma->anon_vma;
5beb4930 164 struct anon_vma_chain *avc;
1da177e4
LT
165
166 might_sleep();
167 if (unlikely(!anon_vma)) {
168 struct mm_struct *mm = vma->vm_mm;
d9d332e0 169 struct anon_vma *allocated;
1da177e4 170
dd34739c 171 avc = anon_vma_chain_alloc(GFP_KERNEL);
5beb4930
RR
172 if (!avc)
173 goto out_enomem;
174
1da177e4 175 anon_vma = find_mergeable_anon_vma(vma);
d9d332e0
LT
176 allocated = NULL;
177 if (!anon_vma) {
1da177e4
LT
178 anon_vma = anon_vma_alloc();
179 if (unlikely(!anon_vma))
5beb4930 180 goto out_enomem_free_avc;
1da177e4 181 allocated = anon_vma;
1da177e4
LT
182 }
183
4fc3f1d6 184 anon_vma_lock_write(anon_vma);
1da177e4
LT
185 /* page_table_lock to protect against threads */
186 spin_lock(&mm->page_table_lock);
187 if (likely(!vma->anon_vma)) {
188 vma->anon_vma = anon_vma;
6583a843 189 anon_vma_chain_link(vma, avc, anon_vma);
1da177e4 190 allocated = NULL;
31f2b0eb 191 avc = NULL;
1da177e4
LT
192 }
193 spin_unlock(&mm->page_table_lock);
08b52706 194 anon_vma_unlock_write(anon_vma);
31f2b0eb
ON
195
196 if (unlikely(allocated))
01d8b20d 197 put_anon_vma(allocated);
31f2b0eb 198 if (unlikely(avc))
5beb4930 199 anon_vma_chain_free(avc);
1da177e4
LT
200 }
201 return 0;
5beb4930
RR
202
203 out_enomem_free_avc:
204 anon_vma_chain_free(avc);
205 out_enomem:
206 return -ENOMEM;
1da177e4
LT
207}
208
bb4aa396
LT
209/*
210 * This is a useful helper function for locking the anon_vma root as
211 * we traverse the vma->anon_vma_chain, looping over anon_vma's that
212 * have the same vma.
213 *
214 * Such anon_vma's should have the same root, so you'd expect to see
215 * just a single mutex_lock for the whole traversal.
216 */
217static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
218{
219 struct anon_vma *new_root = anon_vma->root;
220 if (new_root != root) {
221 if (WARN_ON_ONCE(root))
5a505085 222 up_write(&root->rwsem);
bb4aa396 223 root = new_root;
5a505085 224 down_write(&root->rwsem);
bb4aa396
LT
225 }
226 return root;
227}
228
229static inline void unlock_anon_vma_root(struct anon_vma *root)
230{
231 if (root)
5a505085 232 up_write(&root->rwsem);
bb4aa396
LT
233}
234
5beb4930
RR
235/*
236 * Attach the anon_vmas from src to dst.
237 * Returns 0 on success, -ENOMEM on failure.
238 */
239int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
1da177e4 240{
5beb4930 241 struct anon_vma_chain *avc, *pavc;
bb4aa396 242 struct anon_vma *root = NULL;
5beb4930 243
646d87b4 244 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
bb4aa396
LT
245 struct anon_vma *anon_vma;
246
dd34739c
LT
247 avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
248 if (unlikely(!avc)) {
249 unlock_anon_vma_root(root);
250 root = NULL;
251 avc = anon_vma_chain_alloc(GFP_KERNEL);
252 if (!avc)
253 goto enomem_failure;
254 }
bb4aa396
LT
255 anon_vma = pavc->anon_vma;
256 root = lock_anon_vma_root(root, anon_vma);
257 anon_vma_chain_link(dst, avc, anon_vma);
5beb4930 258 }
bb4aa396 259 unlock_anon_vma_root(root);
5beb4930 260 return 0;
1da177e4 261
5beb4930
RR
262 enomem_failure:
263 unlink_anon_vmas(dst);
264 return -ENOMEM;
1da177e4
LT
265}
266
5beb4930
RR
267/*
268 * Attach vma to its own anon_vma, as well as to the anon_vmas that
269 * the corresponding VMA in the parent process is attached to.
270 * Returns 0 on success, non-zero on failure.
271 */
272int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
1da177e4 273{
5beb4930
RR
274 struct anon_vma_chain *avc;
275 struct anon_vma *anon_vma;
1da177e4 276
5beb4930
RR
277 /* Don't bother if the parent process has no anon_vma here. */
278 if (!pvma->anon_vma)
279 return 0;
280
281 /*
282 * First, attach the new VMA to the parent VMA's anon_vmas,
283 * so rmap can find non-COWed pages in child processes.
284 */
285 if (anon_vma_clone(vma, pvma))
286 return -ENOMEM;
287
288 /* Then add our own anon_vma. */
289 anon_vma = anon_vma_alloc();
290 if (!anon_vma)
291 goto out_error;
dd34739c 292 avc = anon_vma_chain_alloc(GFP_KERNEL);
5beb4930
RR
293 if (!avc)
294 goto out_error_free_anon_vma;
5c341ee1
RR
295
296 /*
297 * The root anon_vma's spinlock is the lock actually used when we
298 * lock any of the anon_vmas in this anon_vma tree.
299 */
300 anon_vma->root = pvma->anon_vma->root;
76545066 301 /*
01d8b20d
PZ
302 * With refcounts, an anon_vma can stay around longer than the
303 * process it belongs to. The root anon_vma needs to be pinned until
304 * this anon_vma is freed, because the lock lives in the root.
76545066
RR
305 */
306 get_anon_vma(anon_vma->root);
5beb4930
RR
307 /* Mark this anon_vma as the one where our new (COWed) pages go. */
308 vma->anon_vma = anon_vma;
4fc3f1d6 309 anon_vma_lock_write(anon_vma);
5c341ee1 310 anon_vma_chain_link(vma, avc, anon_vma);
08b52706 311 anon_vma_unlock_write(anon_vma);
5beb4930
RR
312
313 return 0;
314
315 out_error_free_anon_vma:
01d8b20d 316 put_anon_vma(anon_vma);
5beb4930 317 out_error:
4946d54c 318 unlink_anon_vmas(vma);
5beb4930 319 return -ENOMEM;
1da177e4
LT
320}
321
5beb4930
RR
322void unlink_anon_vmas(struct vm_area_struct *vma)
323{
324 struct anon_vma_chain *avc, *next;
eee2acba 325 struct anon_vma *root = NULL;
5beb4930 326
5c341ee1
RR
327 /*
328 * Unlink each anon_vma chained to the VMA. This list is ordered
329 * from newest to oldest, ensuring the root anon_vma gets freed last.
330 */
5beb4930 331 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
eee2acba
PZ
332 struct anon_vma *anon_vma = avc->anon_vma;
333
334 root = lock_anon_vma_root(root, anon_vma);
bf181b9f 335 anon_vma_interval_tree_remove(avc, &anon_vma->rb_root);
eee2acba
PZ
336
337 /*
338 * Leave empty anon_vmas on the list - we'll need
339 * to free them outside the lock.
340 */
bf181b9f 341 if (RB_EMPTY_ROOT(&anon_vma->rb_root))
eee2acba
PZ
342 continue;
343
344 list_del(&avc->same_vma);
345 anon_vma_chain_free(avc);
346 }
347 unlock_anon_vma_root(root);
348
349 /*
350 * Iterate the list once more, it now only contains empty and unlinked
351 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
5a505085 352 * needing to write-acquire the anon_vma->root->rwsem.
eee2acba
PZ
353 */
354 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
355 struct anon_vma *anon_vma = avc->anon_vma;
356
357 put_anon_vma(anon_vma);
358
5beb4930
RR
359 list_del(&avc->same_vma);
360 anon_vma_chain_free(avc);
361 }
362}
363
51cc5068 364static void anon_vma_ctor(void *data)
1da177e4 365{
a35afb83 366 struct anon_vma *anon_vma = data;
1da177e4 367
5a505085 368 init_rwsem(&anon_vma->rwsem);
83813267 369 atomic_set(&anon_vma->refcount, 0);
bf181b9f 370 anon_vma->rb_root = RB_ROOT;
1da177e4
LT
371}
372
373void __init anon_vma_init(void)
374{
375 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
20c2df83 376 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);
5beb4930 377 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, SLAB_PANIC);
1da177e4
LT
378}
379
380/*
6111e4ca
PZ
381 * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
382 *
383 * Since there is no serialization what so ever against page_remove_rmap()
384 * the best this function can do is return a locked anon_vma that might
385 * have been relevant to this page.
386 *
387 * The page might have been remapped to a different anon_vma or the anon_vma
388 * returned may already be freed (and even reused).
389 *
bc658c96
PZ
390 * In case it was remapped to a different anon_vma, the new anon_vma will be a
391 * child of the old anon_vma, and the anon_vma lifetime rules will therefore
392 * ensure that any anon_vma obtained from the page will still be valid for as
393 * long as we observe page_mapped() [ hence all those page_mapped() tests ].
394 *
6111e4ca
PZ
395 * All users of this function must be very careful when walking the anon_vma
396 * chain and verify that the page in question is indeed mapped in it
397 * [ something equivalent to page_mapped_in_vma() ].
398 *
399 * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap()
400 * that the anon_vma pointer from page->mapping is valid if there is a
401 * mapcount, we can dereference the anon_vma after observing those.
1da177e4 402 */
746b18d4 403struct anon_vma *page_get_anon_vma(struct page *page)
1da177e4 404{
746b18d4 405 struct anon_vma *anon_vma = NULL;
1da177e4
LT
406 unsigned long anon_mapping;
407
408 rcu_read_lock();
80e14822 409 anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
3ca7b3c5 410 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
1da177e4
LT
411 goto out;
412 if (!page_mapped(page))
413 goto out;
414
415 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
746b18d4
PZ
416 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
417 anon_vma = NULL;
418 goto out;
419 }
f1819427
HD
420
421 /*
422 * If this page is still mapped, then its anon_vma cannot have been
746b18d4
PZ
423 * freed. But if it has been unmapped, we have no security against the
424 * anon_vma structure being freed and reused (for another anon_vma:
425 * SLAB_DESTROY_BY_RCU guarantees that - so the atomic_inc_not_zero()
426 * above cannot corrupt).
f1819427 427 */
746b18d4
PZ
428 if (!page_mapped(page)) {
429 put_anon_vma(anon_vma);
430 anon_vma = NULL;
431 }
1da177e4
LT
432out:
433 rcu_read_unlock();
746b18d4
PZ
434
435 return anon_vma;
436}
437
88c22088
PZ
438/*
439 * Similar to page_get_anon_vma() except it locks the anon_vma.
440 *
441 * Its a little more complex as it tries to keep the fast path to a single
442 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
443 * reference like with page_get_anon_vma() and then block on the mutex.
444 */
4fc3f1d6 445struct anon_vma *page_lock_anon_vma_read(struct page *page)
746b18d4 446{
88c22088 447 struct anon_vma *anon_vma = NULL;
eee0f252 448 struct anon_vma *root_anon_vma;
88c22088 449 unsigned long anon_mapping;
746b18d4 450
88c22088
PZ
451 rcu_read_lock();
452 anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
453 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
454 goto out;
455 if (!page_mapped(page))
456 goto out;
457
458 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
eee0f252 459 root_anon_vma = ACCESS_ONCE(anon_vma->root);
4fc3f1d6 460 if (down_read_trylock(&root_anon_vma->rwsem)) {
88c22088 461 /*
eee0f252
HD
462 * If the page is still mapped, then this anon_vma is still
463 * its anon_vma, and holding the mutex ensures that it will
bc658c96 464 * not go away, see anon_vma_free().
88c22088 465 */
eee0f252 466 if (!page_mapped(page)) {
4fc3f1d6 467 up_read(&root_anon_vma->rwsem);
88c22088
PZ
468 anon_vma = NULL;
469 }
470 goto out;
471 }
746b18d4 472
88c22088
PZ
473 /* trylock failed, we got to sleep */
474 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
475 anon_vma = NULL;
476 goto out;
477 }
478
479 if (!page_mapped(page)) {
480 put_anon_vma(anon_vma);
481 anon_vma = NULL;
482 goto out;
483 }
484
485 /* we pinned the anon_vma, its safe to sleep */
486 rcu_read_unlock();
4fc3f1d6 487 anon_vma_lock_read(anon_vma);
88c22088
PZ
488
489 if (atomic_dec_and_test(&anon_vma->refcount)) {
490 /*
491 * Oops, we held the last refcount, release the lock
492 * and bail -- can't simply use put_anon_vma() because
4fc3f1d6 493 * we'll deadlock on the anon_vma_lock_write() recursion.
88c22088 494 */
4fc3f1d6 495 anon_vma_unlock_read(anon_vma);
88c22088
PZ
496 __put_anon_vma(anon_vma);
497 anon_vma = NULL;
498 }
499
500 return anon_vma;
501
502out:
503 rcu_read_unlock();
746b18d4 504 return anon_vma;
34bbd704
ON
505}
506
4fc3f1d6 507void page_unlock_anon_vma_read(struct anon_vma *anon_vma)
34bbd704 508{
4fc3f1d6 509 anon_vma_unlock_read(anon_vma);
1da177e4
LT
510}
511
512/*
3ad33b24 513 * At what user virtual address is page expected in @vma?
1da177e4 514 */
86c2ad19
ML
515static inline unsigned long
516__vma_address(struct page *page, struct vm_area_struct *vma)
1da177e4
LT
517{
518 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1da177e4 519
0fe6e20b
NH
520 if (unlikely(is_vm_hugetlb_page(vma)))
521 pgoff = page->index << huge_page_order(page_hstate(page));
86c2ad19
ML
522
523 return vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
524}
525
526inline unsigned long
527vma_address(struct page *page, struct vm_area_struct *vma)
528{
529 unsigned long address = __vma_address(page, vma);
530
531 /* page should be within @vma mapping range */
532 VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
533
1da177e4
LT
534 return address;
535}
536
537/*
bf89c8c8 538 * At what user virtual address is page expected in vma?
ab941e0f 539 * Caller should check the page is actually part of the vma.
1da177e4
LT
540 */
541unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
542{
86c2ad19 543 unsigned long address;
21d0d443 544 if (PageAnon(page)) {
4829b906
HD
545 struct anon_vma *page__anon_vma = page_anon_vma(page);
546 /*
547 * Note: swapoff's unuse_vma() is more efficient with this
548 * check, and needs it to match anon_vma when KSM is active.
549 */
550 if (!vma->anon_vma || !page__anon_vma ||
551 vma->anon_vma->root != page__anon_vma->root)
21d0d443
AA
552 return -EFAULT;
553 } else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
ee498ed7
HD
554 if (!vma->vm_file ||
555 vma->vm_file->f_mapping != page->mapping)
1da177e4
LT
556 return -EFAULT;
557 } else
558 return -EFAULT;
86c2ad19
ML
559 address = __vma_address(page, vma);
560 if (unlikely(address < vma->vm_start || address >= vma->vm_end))
561 return -EFAULT;
562 return address;
1da177e4
LT
563}
564
6219049a
BL
565pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address)
566{
567 pgd_t *pgd;
568 pud_t *pud;
569 pmd_t *pmd = NULL;
570
571 pgd = pgd_offset(mm, address);
572 if (!pgd_present(*pgd))
573 goto out;
574
575 pud = pud_offset(pgd, address);
576 if (!pud_present(*pud))
577 goto out;
578
579 pmd = pmd_offset(pud, address);
580 if (!pmd_present(*pmd))
581 pmd = NULL;
582out:
583 return pmd;
584}
585
81b4082d
ND
586/*
587 * Check that @page is mapped at @address into @mm.
588 *
479db0bf
NP
589 * If @sync is false, page_check_address may perform a racy check to avoid
590 * the page table lock when the pte is not present (helpful when reclaiming
591 * highly shared pages).
592 *
b8072f09 593 * On success returns with pte mapped and locked.
81b4082d 594 */
e9a81a82 595pte_t *__page_check_address(struct page *page, struct mm_struct *mm,
479db0bf 596 unsigned long address, spinlock_t **ptlp, int sync)
81b4082d 597{
81b4082d
ND
598 pmd_t *pmd;
599 pte_t *pte;
c0718806 600 spinlock_t *ptl;
81b4082d 601
0fe6e20b 602 if (unlikely(PageHuge(page))) {
98398c32 603 /* when pud is not present, pte will be NULL */
0fe6e20b 604 pte = huge_pte_offset(mm, address);
98398c32
JW
605 if (!pte)
606 return NULL;
607
cb900f41 608 ptl = huge_pte_lockptr(page_hstate(page), mm, pte);
0fe6e20b
NH
609 goto check;
610 }
611
6219049a
BL
612 pmd = mm_find_pmd(mm, address);
613 if (!pmd)
c0718806
HD
614 return NULL;
615
71e3aac0
AA
616 if (pmd_trans_huge(*pmd))
617 return NULL;
c0718806
HD
618
619 pte = pte_offset_map(pmd, address);
620 /* Make a quick check before getting the lock */
479db0bf 621 if (!sync && !pte_present(*pte)) {
c0718806
HD
622 pte_unmap(pte);
623 return NULL;
624 }
625
4c21e2f2 626 ptl = pte_lockptr(mm, pmd);
0fe6e20b 627check:
c0718806
HD
628 spin_lock(ptl);
629 if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
630 *ptlp = ptl;
631 return pte;
81b4082d 632 }
c0718806
HD
633 pte_unmap_unlock(pte, ptl);
634 return NULL;
81b4082d
ND
635}
636
b291f000
NP
637/**
638 * page_mapped_in_vma - check whether a page is really mapped in a VMA
639 * @page: the page to test
640 * @vma: the VMA to test
641 *
642 * Returns 1 if the page is mapped into the page tables of the VMA, 0
643 * if the page is not mapped into the page tables of this VMA. Only
644 * valid for normal file or anonymous VMAs.
645 */
6a46079c 646int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
b291f000
NP
647{
648 unsigned long address;
649 pte_t *pte;
650 spinlock_t *ptl;
651
86c2ad19
ML
652 address = __vma_address(page, vma);
653 if (unlikely(address < vma->vm_start || address >= vma->vm_end))
b291f000
NP
654 return 0;
655 pte = page_check_address(page, vma->vm_mm, address, &ptl, 1);
656 if (!pte) /* the page is not in this mm */
657 return 0;
658 pte_unmap_unlock(pte, ptl);
659
660 return 1;
661}
662
9f32624b
JK
663struct page_referenced_arg {
664 int mapcount;
665 int referenced;
666 unsigned long vm_flags;
667 struct mem_cgroup *memcg;
668};
1da177e4 669/*
9f32624b 670 * arg: page_referenced_arg will be passed
1da177e4 671 */
5ad64688 672int page_referenced_one(struct page *page, struct vm_area_struct *vma,
9f32624b 673 unsigned long address, void *arg)
1da177e4
LT
674{
675 struct mm_struct *mm = vma->vm_mm;
117b0791 676 spinlock_t *ptl;
1da177e4 677 int referenced = 0;
9f32624b 678 struct page_referenced_arg *pra = arg;
1da177e4 679
71e3aac0
AA
680 if (unlikely(PageTransHuge(page))) {
681 pmd_t *pmd;
682
2da28bfd
AA
683 /*
684 * rmap might return false positives; we must filter
685 * these out using page_check_address_pmd().
686 */
71e3aac0 687 pmd = page_check_address_pmd(page, mm, address,
117b0791
KS
688 PAGE_CHECK_ADDRESS_PMD_FLAG, &ptl);
689 if (!pmd)
9f32624b 690 return SWAP_AGAIN;
2da28bfd
AA
691
692 if (vma->vm_flags & VM_LOCKED) {
117b0791 693 spin_unlock(ptl);
9f32624b
JK
694 pra->vm_flags |= VM_LOCKED;
695 return SWAP_FAIL; /* To break the loop */
2da28bfd
AA
696 }
697
698 /* go ahead even if the pmd is pmd_trans_splitting() */
699 if (pmdp_clear_flush_young_notify(vma, address, pmd))
71e3aac0 700 referenced++;
117b0791 701 spin_unlock(ptl);
71e3aac0
AA
702 } else {
703 pte_t *pte;
71e3aac0 704
2da28bfd
AA
705 /*
706 * rmap might return false positives; we must filter
707 * these out using page_check_address().
708 */
71e3aac0
AA
709 pte = page_check_address(page, mm, address, &ptl, 0);
710 if (!pte)
9f32624b 711 return SWAP_AGAIN;
71e3aac0 712
2da28bfd
AA
713 if (vma->vm_flags & VM_LOCKED) {
714 pte_unmap_unlock(pte, ptl);
9f32624b
JK
715 pra->vm_flags |= VM_LOCKED;
716 return SWAP_FAIL; /* To break the loop */
2da28bfd
AA
717 }
718
71e3aac0
AA
719 if (ptep_clear_flush_young_notify(vma, address, pte)) {
720 /*
721 * Don't treat a reference through a sequentially read
722 * mapping as such. If the page has been used in
723 * another mapping, we will catch it; if this other
724 * mapping is already gone, the unmap path will have
725 * set PG_referenced or activated the page.
726 */
64363aad 727 if (likely(!(vma->vm_flags & VM_SEQ_READ)))
71e3aac0
AA
728 referenced++;
729 }
730 pte_unmap_unlock(pte, ptl);
731 }
732
9f32624b
JK
733 if (referenced) {
734 pra->referenced++;
735 pra->vm_flags |= vma->vm_flags;
1da177e4 736 }
34bbd704 737
9f32624b
JK
738 pra->mapcount--;
739 if (!pra->mapcount)
740 return SWAP_SUCCESS; /* To break the loop */
741
742 return SWAP_AGAIN;
1da177e4
LT
743}
744
9f32624b 745static bool invalid_page_referenced_vma(struct vm_area_struct *vma, void *arg)
1da177e4 746{
9f32624b
JK
747 struct page_referenced_arg *pra = arg;
748 struct mem_cgroup *memcg = pra->memcg;
1da177e4 749
9f32624b
JK
750 if (!mm_match_cgroup(vma->vm_mm, memcg))
751 return true;
1da177e4 752
9f32624b 753 return false;
1da177e4
LT
754}
755
756/**
757 * page_referenced - test if the page was referenced
758 * @page: the page to test
759 * @is_locked: caller holds lock on the page
72835c86 760 * @memcg: target memory cgroup
6fe6b7e3 761 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
1da177e4
LT
762 *
763 * Quick test_and_clear_referenced for all mappings to a page,
764 * returns the number of ptes which referenced the page.
765 */
6fe6b7e3
WF
766int page_referenced(struct page *page,
767 int is_locked,
72835c86 768 struct mem_cgroup *memcg,
6fe6b7e3 769 unsigned long *vm_flags)
1da177e4 770{
9f32624b 771 int ret;
5ad64688 772 int we_locked = 0;
9f32624b
JK
773 struct page_referenced_arg pra = {
774 .mapcount = page_mapcount(page),
775 .memcg = memcg,
776 };
777 struct rmap_walk_control rwc = {
778 .rmap_one = page_referenced_one,
779 .arg = (void *)&pra,
780 .anon_lock = page_lock_anon_vma_read,
781 };
1da177e4 782
6fe6b7e3 783 *vm_flags = 0;
9f32624b
JK
784 if (!page_mapped(page))
785 return 0;
786
787 if (!page_rmapping(page))
788 return 0;
789
790 if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
791 we_locked = trylock_page(page);
792 if (!we_locked)
793 return 1;
1da177e4 794 }
9f32624b
JK
795
796 /*
797 * If we are reclaiming on behalf of a cgroup, skip
798 * counting on behalf of references from different
799 * cgroups
800 */
801 if (memcg) {
802 rwc.invalid_vma = invalid_page_referenced_vma;
803 }
804
805 ret = rmap_walk(page, &rwc);
806 *vm_flags = pra.vm_flags;
807
808 if (we_locked)
809 unlock_page(page);
810
811 return pra.referenced;
1da177e4
LT
812}
813
1cb1729b
HD
814static int page_mkclean_one(struct page *page, struct vm_area_struct *vma,
815 unsigned long address)
d08b3851
PZ
816{
817 struct mm_struct *mm = vma->vm_mm;
c2fda5fe 818 pte_t *pte;
d08b3851
PZ
819 spinlock_t *ptl;
820 int ret = 0;
821
479db0bf 822 pte = page_check_address(page, mm, address, &ptl, 1);
d08b3851
PZ
823 if (!pte)
824 goto out;
825
c2fda5fe
PZ
826 if (pte_dirty(*pte) || pte_write(*pte)) {
827 pte_t entry;
d08b3851 828
c2fda5fe 829 flush_cache_page(vma, address, pte_pfn(*pte));
2ec74c3e 830 entry = ptep_clear_flush(vma, address, pte);
c2fda5fe
PZ
831 entry = pte_wrprotect(entry);
832 entry = pte_mkclean(entry);
d6e88e67 833 set_pte_at(mm, address, pte, entry);
c2fda5fe
PZ
834 ret = 1;
835 }
d08b3851 836
d08b3851 837 pte_unmap_unlock(pte, ptl);
2ec74c3e
SG
838
839 if (ret)
840 mmu_notifier_invalidate_page(mm, address);
d08b3851
PZ
841out:
842 return ret;
843}
844
845static int page_mkclean_file(struct address_space *mapping, struct page *page)
846{
847 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
848 struct vm_area_struct *vma;
d08b3851
PZ
849 int ret = 0;
850
851 BUG_ON(PageAnon(page));
852
3d48ae45 853 mutex_lock(&mapping->i_mmap_mutex);
6b2dbba8 854 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
1cb1729b
HD
855 if (vma->vm_flags & VM_SHARED) {
856 unsigned long address = vma_address(page, vma);
1cb1729b
HD
857 ret += page_mkclean_one(page, vma, address);
858 }
d08b3851 859 }
3d48ae45 860 mutex_unlock(&mapping->i_mmap_mutex);
d08b3851
PZ
861 return ret;
862}
863
864int page_mkclean(struct page *page)
865{
866 int ret = 0;
867
868 BUG_ON(!PageLocked(page));
869
870 if (page_mapped(page)) {
871 struct address_space *mapping = page_mapping(page);
ef5d437f 872 if (mapping)
d08b3851
PZ
873 ret = page_mkclean_file(mapping, page);
874 }
875
876 return ret;
877}
60b59bea 878EXPORT_SYMBOL_GPL(page_mkclean);
d08b3851 879
c44b6743
RR
880/**
881 * page_move_anon_rmap - move a page to our anon_vma
882 * @page: the page to move to our anon_vma
883 * @vma: the vma the page belongs to
884 * @address: the user virtual address mapped
885 *
886 * When a page belongs exclusively to one process after a COW event,
887 * that page can be moved into the anon_vma that belongs to just that
888 * process, so the rmap code will not search the parent or sibling
889 * processes.
890 */
891void page_move_anon_rmap(struct page *page,
892 struct vm_area_struct *vma, unsigned long address)
893{
894 struct anon_vma *anon_vma = vma->anon_vma;
895
896 VM_BUG_ON(!PageLocked(page));
897 VM_BUG_ON(!anon_vma);
898 VM_BUG_ON(page->index != linear_page_index(vma, address));
899
900 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
901 page->mapping = (struct address_space *) anon_vma;
902}
903
9617d95e 904/**
4e1c1975
AK
905 * __page_set_anon_rmap - set up new anonymous rmap
906 * @page: Page to add to rmap
907 * @vma: VM area to add page to.
908 * @address: User virtual address of the mapping
e8a03feb 909 * @exclusive: the page is exclusively owned by the current process
9617d95e
NP
910 */
911static void __page_set_anon_rmap(struct page *page,
e8a03feb 912 struct vm_area_struct *vma, unsigned long address, int exclusive)
9617d95e 913{
e8a03feb 914 struct anon_vma *anon_vma = vma->anon_vma;
ea90002b 915
e8a03feb 916 BUG_ON(!anon_vma);
ea90002b 917
4e1c1975
AK
918 if (PageAnon(page))
919 return;
920
ea90002b 921 /*
e8a03feb
RR
922 * If the page isn't exclusively mapped into this vma,
923 * we must use the _oldest_ possible anon_vma for the
924 * page mapping!
ea90002b 925 */
4e1c1975 926 if (!exclusive)
288468c3 927 anon_vma = anon_vma->root;
9617d95e 928
9617d95e
NP
929 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
930 page->mapping = (struct address_space *) anon_vma;
9617d95e 931 page->index = linear_page_index(vma, address);
9617d95e
NP
932}
933
c97a9e10 934/**
43d8eac4 935 * __page_check_anon_rmap - sanity check anonymous rmap addition
c97a9e10
NP
936 * @page: the page to add the mapping to
937 * @vma: the vm area in which the mapping is added
938 * @address: the user virtual address mapped
939 */
940static void __page_check_anon_rmap(struct page *page,
941 struct vm_area_struct *vma, unsigned long address)
942{
943#ifdef CONFIG_DEBUG_VM
944 /*
945 * The page's anon-rmap details (mapping and index) are guaranteed to
946 * be set up correctly at this point.
947 *
948 * We have exclusion against page_add_anon_rmap because the caller
949 * always holds the page locked, except if called from page_dup_rmap,
950 * in which case the page is already known to be setup.
951 *
952 * We have exclusion against page_add_new_anon_rmap because those pages
953 * are initially only visible via the pagetables, and the pte is locked
954 * over the call to page_add_new_anon_rmap.
955 */
44ab57a0 956 BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root);
c97a9e10
NP
957 BUG_ON(page->index != linear_page_index(vma, address));
958#endif
959}
960
1da177e4
LT
961/**
962 * page_add_anon_rmap - add pte mapping to an anonymous page
963 * @page: the page to add the mapping to
964 * @vma: the vm area in which the mapping is added
965 * @address: the user virtual address mapped
966 *
5ad64688 967 * The caller needs to hold the pte lock, and the page must be locked in
80e14822
HD
968 * the anon_vma case: to serialize mapping,index checking after setting,
969 * and to ensure that PageAnon is not being upgraded racily to PageKsm
970 * (but PageKsm is never downgraded to PageAnon).
1da177e4
LT
971 */
972void page_add_anon_rmap(struct page *page,
973 struct vm_area_struct *vma, unsigned long address)
ad8c2ee8
RR
974{
975 do_page_add_anon_rmap(page, vma, address, 0);
976}
977
978/*
979 * Special version of the above for do_swap_page, which often runs
980 * into pages that are exclusively owned by the current process.
981 * Everybody else should continue to use page_add_anon_rmap above.
982 */
983void do_page_add_anon_rmap(struct page *page,
984 struct vm_area_struct *vma, unsigned long address, int exclusive)
1da177e4 985{
5ad64688 986 int first = atomic_inc_and_test(&page->_mapcount);
79134171 987 if (first) {
3cd14fcd 988 if (PageTransHuge(page))
79134171
AA
989 __inc_zone_page_state(page,
990 NR_ANON_TRANSPARENT_HUGEPAGES);
3cd14fcd
KS
991 __mod_zone_page_state(page_zone(page), NR_ANON_PAGES,
992 hpage_nr_pages(page));
79134171 993 }
5ad64688
HD
994 if (unlikely(PageKsm(page)))
995 return;
996
c97a9e10 997 VM_BUG_ON(!PageLocked(page));
5dbe0af4 998 /* address might be in next vma when migration races vma_adjust */
5ad64688 999 if (first)
ad8c2ee8 1000 __page_set_anon_rmap(page, vma, address, exclusive);
69029cd5 1001 else
c97a9e10 1002 __page_check_anon_rmap(page, vma, address);
1da177e4
LT
1003}
1004
43d8eac4 1005/**
9617d95e
NP
1006 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
1007 * @page: the page to add the mapping to
1008 * @vma: the vm area in which the mapping is added
1009 * @address: the user virtual address mapped
1010 *
1011 * Same as page_add_anon_rmap but must only be called on *new* pages.
1012 * This means the inc-and-test can be bypassed.
c97a9e10 1013 * Page does not have to be locked.
9617d95e
NP
1014 */
1015void page_add_new_anon_rmap(struct page *page,
1016 struct vm_area_struct *vma, unsigned long address)
1017{
b5934c53 1018 VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
cbf84b7a
HD
1019 SetPageSwapBacked(page);
1020 atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */
3cd14fcd 1021 if (PageTransHuge(page))
79134171 1022 __inc_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
3cd14fcd
KS
1023 __mod_zone_page_state(page_zone(page), NR_ANON_PAGES,
1024 hpage_nr_pages(page));
e8a03feb 1025 __page_set_anon_rmap(page, vma, address, 1);
c53954a0
MG
1026 if (!mlocked_vma_newpage(vma, page)) {
1027 SetPageActive(page);
1028 lru_cache_add(page);
1029 } else
b5934c53 1030 add_page_to_unevictable_list(page);
9617d95e
NP
1031}
1032
1da177e4
LT
1033/**
1034 * page_add_file_rmap - add pte mapping to a file page
1035 * @page: the page to add the mapping to
1036 *
b8072f09 1037 * The caller needs to hold the pte lock.
1da177e4
LT
1038 */
1039void page_add_file_rmap(struct page *page)
1040{
89c06bd5
KH
1041 bool locked;
1042 unsigned long flags;
1043
1044 mem_cgroup_begin_update_page_stat(page, &locked, &flags);
d69b042f 1045 if (atomic_inc_and_test(&page->_mapcount)) {
65ba55f5 1046 __inc_zone_page_state(page, NR_FILE_MAPPED);
68b4876d 1047 mem_cgroup_inc_page_stat(page, MEM_CGROUP_STAT_FILE_MAPPED);
d69b042f 1048 }
89c06bd5 1049 mem_cgroup_end_update_page_stat(page, &locked, &flags);
1da177e4
LT
1050}
1051
1052/**
1053 * page_remove_rmap - take down pte mapping from a page
1054 * @page: page to remove mapping from
1055 *
b8072f09 1056 * The caller needs to hold the pte lock.
1da177e4 1057 */
edc315fd 1058void page_remove_rmap(struct page *page)
1da177e4 1059{
89c06bd5
KH
1060 bool anon = PageAnon(page);
1061 bool locked;
1062 unsigned long flags;
1063
1064 /*
1065 * The anon case has no mem_cgroup page_stat to update; but may
1066 * uncharge_page() below, where the lock ordering can deadlock if
1067 * we hold the lock against page_stat move: so avoid it on anon.
1068 */
1069 if (!anon)
1070 mem_cgroup_begin_update_page_stat(page, &locked, &flags);
1071
b904dcfe
KM
1072 /* page still mapped by someone else? */
1073 if (!atomic_add_negative(-1, &page->_mapcount))
89c06bd5 1074 goto out;
b904dcfe 1075
0fe6e20b
NH
1076 /*
1077 * Hugepages are not counted in NR_ANON_PAGES nor NR_FILE_MAPPED
1078 * and not charged by memcg for now.
1079 */
1080 if (unlikely(PageHuge(page)))
89c06bd5
KH
1081 goto out;
1082 if (anon) {
b904dcfe 1083 mem_cgroup_uncharge_page(page);
3cd14fcd 1084 if (PageTransHuge(page))
79134171
AA
1085 __dec_zone_page_state(page,
1086 NR_ANON_TRANSPARENT_HUGEPAGES);
3cd14fcd
KS
1087 __mod_zone_page_state(page_zone(page), NR_ANON_PAGES,
1088 -hpage_nr_pages(page));
b904dcfe
KM
1089 } else {
1090 __dec_zone_page_state(page, NR_FILE_MAPPED);
68b4876d 1091 mem_cgroup_dec_page_stat(page, MEM_CGROUP_STAT_FILE_MAPPED);
e6c509f8 1092 mem_cgroup_end_update_page_stat(page, &locked, &flags);
b904dcfe 1093 }
e6c509f8
HD
1094 if (unlikely(PageMlocked(page)))
1095 clear_page_mlock(page);
b904dcfe
KM
1096 /*
1097 * It would be tidy to reset the PageAnon mapping here,
1098 * but that might overwrite a racing page_add_anon_rmap
1099 * which increments mapcount after us but sets mapping
1100 * before us: so leave the reset to free_hot_cold_page,
1101 * and remember that it's only reliable while mapped.
1102 * Leaving it set also helps swapoff to reinstate ptes
1103 * faster for those pages still in swapcache.
1104 */
e6c509f8 1105 return;
89c06bd5
KH
1106out:
1107 if (!anon)
1108 mem_cgroup_end_update_page_stat(page, &locked, &flags);
1da177e4
LT
1109}
1110
1111/*
52629506 1112 * @arg: enum ttu_flags will be passed to this argument
1da177e4 1113 */
5ad64688 1114int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
52629506 1115 unsigned long address, void *arg)
1da177e4
LT
1116{
1117 struct mm_struct *mm = vma->vm_mm;
1da177e4
LT
1118 pte_t *pte;
1119 pte_t pteval;
c0718806 1120 spinlock_t *ptl;
1da177e4 1121 int ret = SWAP_AGAIN;
52629506 1122 enum ttu_flags flags = (enum ttu_flags)arg;
1da177e4 1123
479db0bf 1124 pte = page_check_address(page, mm, address, &ptl, 0);
c0718806 1125 if (!pte)
81b4082d 1126 goto out;
1da177e4
LT
1127
1128 /*
1129 * If the page is mlock()d, we cannot swap it out.
1130 * If it's recently referenced (perhaps page_referenced
1131 * skipped over this mm) then we should reactivate it.
1132 */
14fa31b8 1133 if (!(flags & TTU_IGNORE_MLOCK)) {
caed0f48
KM
1134 if (vma->vm_flags & VM_LOCKED)
1135 goto out_mlock;
1136
af8e3354 1137 if (TTU_ACTION(flags) == TTU_MUNLOCK)
53f79acb 1138 goto out_unmap;
14fa31b8
AK
1139 }
1140 if (!(flags & TTU_IGNORE_ACCESS)) {
b291f000
NP
1141 if (ptep_clear_flush_young_notify(vma, address, pte)) {
1142 ret = SWAP_FAIL;
1143 goto out_unmap;
1144 }
1145 }
1da177e4 1146
1da177e4
LT
1147 /* Nuke the page table entry. */
1148 flush_cache_page(vma, address, page_to_pfn(page));
2ec74c3e 1149 pteval = ptep_clear_flush(vma, address, pte);
1da177e4
LT
1150
1151 /* Move the dirty bit to the physical page now the pte is gone. */
1152 if (pte_dirty(pteval))
1153 set_page_dirty(page);
1154
365e9c87
HD
1155 /* Update high watermark before we lower rss */
1156 update_hiwater_rss(mm);
1157
888b9f7c 1158 if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
5f24ae58
NH
1159 if (!PageHuge(page)) {
1160 if (PageAnon(page))
1161 dec_mm_counter(mm, MM_ANONPAGES);
1162 else
1163 dec_mm_counter(mm, MM_FILEPAGES);
1164 }
888b9f7c 1165 set_pte_at(mm, address, pte,
5f24ae58 1166 swp_entry_to_pte(make_hwpoison_entry(page)));
888b9f7c 1167 } else if (PageAnon(page)) {
4c21e2f2 1168 swp_entry_t entry = { .val = page_private(page) };
179ef71c 1169 pte_t swp_pte;
0697212a
CL
1170
1171 if (PageSwapCache(page)) {
1172 /*
1173 * Store the swap location in the pte.
1174 * See handle_pte_fault() ...
1175 */
570a335b
HD
1176 if (swap_duplicate(entry) < 0) {
1177 set_pte_at(mm, address, pte, pteval);
1178 ret = SWAP_FAIL;
1179 goto out_unmap;
1180 }
0697212a
CL
1181 if (list_empty(&mm->mmlist)) {
1182 spin_lock(&mmlist_lock);
1183 if (list_empty(&mm->mmlist))
1184 list_add(&mm->mmlist, &init_mm.mmlist);
1185 spin_unlock(&mmlist_lock);
1186 }
d559db08 1187 dec_mm_counter(mm, MM_ANONPAGES);
b084d435 1188 inc_mm_counter(mm, MM_SWAPENTS);
ce1744f4 1189 } else if (IS_ENABLED(CONFIG_MIGRATION)) {
0697212a
CL
1190 /*
1191 * Store the pfn of the page in a special migration
1192 * pte. do_swap_page() will wait until the migration
1193 * pte is removed and then restart fault handling.
1194 */
14fa31b8 1195 BUG_ON(TTU_ACTION(flags) != TTU_MIGRATION);
0697212a 1196 entry = make_migration_entry(page, pte_write(pteval));
1da177e4 1197 }
179ef71c
CG
1198 swp_pte = swp_entry_to_pte(entry);
1199 if (pte_soft_dirty(pteval))
1200 swp_pte = pte_swp_mksoft_dirty(swp_pte);
1201 set_pte_at(mm, address, pte, swp_pte);
1da177e4 1202 BUG_ON(pte_file(*pte));
ce1744f4
KK
1203 } else if (IS_ENABLED(CONFIG_MIGRATION) &&
1204 (TTU_ACTION(flags) == TTU_MIGRATION)) {
04e62a29
CL
1205 /* Establish migration entry for a file page */
1206 swp_entry_t entry;
1207 entry = make_migration_entry(page, pte_write(pteval));
1208 set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
1209 } else
d559db08 1210 dec_mm_counter(mm, MM_FILEPAGES);
1da177e4 1211
edc315fd 1212 page_remove_rmap(page);
1da177e4
LT
1213 page_cache_release(page);
1214
1215out_unmap:
c0718806 1216 pte_unmap_unlock(pte, ptl);
2ec74c3e
SG
1217 if (ret != SWAP_FAIL)
1218 mmu_notifier_invalidate_page(mm, address);
caed0f48
KM
1219out:
1220 return ret;
53f79acb 1221
caed0f48
KM
1222out_mlock:
1223 pte_unmap_unlock(pte, ptl);
1224
1225
1226 /*
1227 * We need mmap_sem locking, Otherwise VM_LOCKED check makes
1228 * unstable result and race. Plus, We can't wait here because
5a505085 1229 * we now hold anon_vma->rwsem or mapping->i_mmap_mutex.
caed0f48
KM
1230 * if trylock failed, the page remain in evictable lru and later
1231 * vmscan could retry to move the page to unevictable lru if the
1232 * page is actually mlocked.
1233 */
1234 if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
1235 if (vma->vm_flags & VM_LOCKED) {
1236 mlock_vma_page(page);
1237 ret = SWAP_MLOCK;
53f79acb 1238 }
caed0f48 1239 up_read(&vma->vm_mm->mmap_sem);
53f79acb 1240 }
1da177e4
LT
1241 return ret;
1242}
1243
1244/*
1245 * objrmap doesn't work for nonlinear VMAs because the assumption that
1246 * offset-into-file correlates with offset-into-virtual-addresses does not hold.
1247 * Consequently, given a particular page and its ->index, we cannot locate the
1248 * ptes which are mapping that page without an exhaustive linear search.
1249 *
1250 * So what this code does is a mini "virtual scan" of each nonlinear VMA which
1251 * maps the file to which the target page belongs. The ->vm_private_data field
1252 * holds the current cursor into that scan. Successive searches will circulate
1253 * around the vma's virtual address space.
1254 *
1255 * So as more replacement pressure is applied to the pages in a nonlinear VMA,
1256 * more scanning pressure is placed against them as well. Eventually pages
1257 * will become fully unmapped and are eligible for eviction.
1258 *
1259 * For very sparsely populated VMAs this is a little inefficient - chances are
1260 * there there won't be many ptes located within the scan cluster. In this case
1261 * maybe we could scan further - to the end of the pte page, perhaps.
b291f000
NP
1262 *
1263 * Mlocked pages: check VM_LOCKED under mmap_sem held for read, if we can
1264 * acquire it without blocking. If vma locked, mlock the pages in the cluster,
1265 * rather than unmapping them. If we encounter the "check_page" that vmscan is
1266 * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN.
1da177e4
LT
1267 */
1268#define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE)
1269#define CLUSTER_MASK (~(CLUSTER_SIZE - 1))
1270
b291f000
NP
1271static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount,
1272 struct vm_area_struct *vma, struct page *check_page)
1da177e4
LT
1273{
1274 struct mm_struct *mm = vma->vm_mm;
1da177e4 1275 pmd_t *pmd;
c0718806 1276 pte_t *pte;
1da177e4 1277 pte_t pteval;
c0718806 1278 spinlock_t *ptl;
1da177e4
LT
1279 struct page *page;
1280 unsigned long address;
2ec74c3e
SG
1281 unsigned long mmun_start; /* For mmu_notifiers */
1282 unsigned long mmun_end; /* For mmu_notifiers */
1da177e4 1283 unsigned long end;
b291f000
NP
1284 int ret = SWAP_AGAIN;
1285 int locked_vma = 0;
1da177e4 1286
1da177e4
LT
1287 address = (vma->vm_start + cursor) & CLUSTER_MASK;
1288 end = address + CLUSTER_SIZE;
1289 if (address < vma->vm_start)
1290 address = vma->vm_start;
1291 if (end > vma->vm_end)
1292 end = vma->vm_end;
1293
6219049a
BL
1294 pmd = mm_find_pmd(mm, address);
1295 if (!pmd)
b291f000
NP
1296 return ret;
1297
2ec74c3e
SG
1298 mmun_start = address;
1299 mmun_end = end;
1300 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1301
b291f000 1302 /*
af8e3354 1303 * If we can acquire the mmap_sem for read, and vma is VM_LOCKED,
b291f000
NP
1304 * keep the sem while scanning the cluster for mlocking pages.
1305 */
af8e3354 1306 if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
b291f000
NP
1307 locked_vma = (vma->vm_flags & VM_LOCKED);
1308 if (!locked_vma)
1309 up_read(&vma->vm_mm->mmap_sem); /* don't need it */
1310 }
c0718806
HD
1311
1312 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1da177e4 1313
365e9c87
HD
1314 /* Update high watermark before we lower rss */
1315 update_hiwater_rss(mm);
1316
c0718806 1317 for (; address < end; pte++, address += PAGE_SIZE) {
1da177e4
LT
1318 if (!pte_present(*pte))
1319 continue;
6aab341e
LT
1320 page = vm_normal_page(vma, address, *pte);
1321 BUG_ON(!page || PageAnon(page));
1da177e4 1322
b291f000
NP
1323 if (locked_vma) {
1324 mlock_vma_page(page); /* no-op if already mlocked */
1325 if (page == check_page)
1326 ret = SWAP_MLOCK;
1327 continue; /* don't unmap */
1328 }
1329
cddb8a5c 1330 if (ptep_clear_flush_young_notify(vma, address, pte))
1da177e4
LT
1331 continue;
1332
1333 /* Nuke the page table entry. */
eca35133 1334 flush_cache_page(vma, address, pte_pfn(*pte));
2ec74c3e 1335 pteval = ptep_clear_flush(vma, address, pte);
1da177e4
LT
1336
1337 /* If nonlinear, store the file page offset in the pte. */
41bb3476
CG
1338 if (page->index != linear_page_index(vma, address)) {
1339 pte_t ptfile = pgoff_to_pte(page->index);
1340 if (pte_soft_dirty(pteval))
1341 pte_file_mksoft_dirty(ptfile);
1342 set_pte_at(mm, address, pte, ptfile);
1343 }
1da177e4
LT
1344
1345 /* Move the dirty bit to the physical page now the pte is gone. */
1346 if (pte_dirty(pteval))
1347 set_page_dirty(page);
1348
edc315fd 1349 page_remove_rmap(page);
1da177e4 1350 page_cache_release(page);
d559db08 1351 dec_mm_counter(mm, MM_FILEPAGES);
1da177e4
LT
1352 (*mapcount)--;
1353 }
c0718806 1354 pte_unmap_unlock(pte - 1, ptl);
2ec74c3e 1355 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
b291f000
NP
1356 if (locked_vma)
1357 up_read(&vma->vm_mm->mmap_sem);
1358 return ret;
1da177e4
LT
1359}
1360
0f843c6a
JK
1361static int try_to_unmap_nonlinear(struct page *page,
1362 struct address_space *mapping, struct vm_area_struct *vma)
1363{
1364 int ret = SWAP_AGAIN;
1365 unsigned long cursor;
1366 unsigned long max_nl_cursor = 0;
1367 unsigned long max_nl_size = 0;
1368 unsigned int mapcount;
1369
1370 list_for_each_entry(vma,
1371 &mapping->i_mmap_nonlinear, shared.nonlinear) {
1372
1373 cursor = (unsigned long) vma->vm_private_data;
1374 if (cursor > max_nl_cursor)
1375 max_nl_cursor = cursor;
1376 cursor = vma->vm_end - vma->vm_start;
1377 if (cursor > max_nl_size)
1378 max_nl_size = cursor;
1379 }
1380
1381 if (max_nl_size == 0) { /* all nonlinears locked or reserved ? */
1382 return SWAP_FAIL;
1383 }
1384
1385 /*
1386 * We don't try to search for this page in the nonlinear vmas,
1387 * and page_referenced wouldn't have found it anyway. Instead
1388 * just walk the nonlinear vmas trying to age and unmap some.
1389 * The mapcount of the page we came in with is irrelevant,
1390 * but even so use it as a guide to how hard we should try?
1391 */
1392 mapcount = page_mapcount(page);
1393 if (!mapcount)
1394 return ret;
1395
1396 cond_resched();
1397
1398 max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
1399 if (max_nl_cursor == 0)
1400 max_nl_cursor = CLUSTER_SIZE;
1401
1402 do {
1403 list_for_each_entry(vma,
1404 &mapping->i_mmap_nonlinear, shared.nonlinear) {
1405
1406 cursor = (unsigned long) vma->vm_private_data;
1407 while (cursor < max_nl_cursor &&
1408 cursor < vma->vm_end - vma->vm_start) {
1409 if (try_to_unmap_cluster(cursor, &mapcount,
1410 vma, page) == SWAP_MLOCK)
1411 ret = SWAP_MLOCK;
1412 cursor += CLUSTER_SIZE;
1413 vma->vm_private_data = (void *) cursor;
1414 if ((int)mapcount <= 0)
1415 return ret;
1416 }
1417 vma->vm_private_data = (void *) max_nl_cursor;
1418 }
1419 cond_resched();
1420 max_nl_cursor += CLUSTER_SIZE;
1421 } while (max_nl_cursor <= max_nl_size);
1422
1423 /*
1424 * Don't loop forever (perhaps all the remaining pages are
1425 * in locked vmas). Reset cursor on all unreserved nonlinear
1426 * vmas, now forgetting on which ones it had fallen behind.
1427 */
1428 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.nonlinear)
1429 vma->vm_private_data = NULL;
1430
1431 return ret;
1432}
1433
71e3aac0 1434bool is_vma_temporary_stack(struct vm_area_struct *vma)
a8bef8ff
MG
1435{
1436 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
1437
1438 if (!maybe_stack)
1439 return false;
1440
1441 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
1442 VM_STACK_INCOMPLETE_SETUP)
1443 return true;
1444
1445 return false;
1446}
1447
52629506
JK
1448static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg)
1449{
1450 return is_vma_temporary_stack(vma);
1451}
1452
52629506
JK
1453static int page_not_mapped(struct page *page)
1454{
1455 return !page_mapped(page);
1456};
1457
1da177e4
LT
1458/**
1459 * try_to_unmap - try to remove all page table mappings to a page
1460 * @page: the page to get unmapped
14fa31b8 1461 * @flags: action and flags
1da177e4
LT
1462 *
1463 * Tries to remove all the page table entries which are mapping this
1464 * page, used in the pageout path. Caller must hold the page lock.
1465 * Return values are:
1466 *
1467 * SWAP_SUCCESS - we succeeded in removing all mappings
1468 * SWAP_AGAIN - we missed a mapping, try again later
1469 * SWAP_FAIL - the page is unswappable
b291f000 1470 * SWAP_MLOCK - page is mlocked.
1da177e4 1471 */
14fa31b8 1472int try_to_unmap(struct page *page, enum ttu_flags flags)
1da177e4
LT
1473{
1474 int ret;
52629506
JK
1475 struct rmap_walk_control rwc = {
1476 .rmap_one = try_to_unmap_one,
1477 .arg = (void *)flags,
1478 .done = page_not_mapped,
1479 .file_nonlinear = try_to_unmap_nonlinear,
1480 .anon_lock = page_lock_anon_vma_read,
1481 };
1da177e4 1482
91600e9e 1483 VM_BUG_ON(!PageHuge(page) && PageTransHuge(page));
1da177e4 1484
52629506
JK
1485 /*
1486 * During exec, a temporary VMA is setup and later moved.
1487 * The VMA is moved under the anon_vma lock but not the
1488 * page tables leading to a race where migration cannot
1489 * find the migration ptes. Rather than increasing the
1490 * locking requirements of exec(), migration skips
1491 * temporary VMAs until after exec() completes.
1492 */
1493 if (flags & TTU_MIGRATION && !PageKsm(page) && PageAnon(page))
1494 rwc.invalid_vma = invalid_migration_vma;
1495
1496 ret = rmap_walk(page, &rwc);
1497
b291f000 1498 if (ret != SWAP_MLOCK && !page_mapped(page))
1da177e4
LT
1499 ret = SWAP_SUCCESS;
1500 return ret;
1501}
81b4082d 1502
b291f000
NP
1503/**
1504 * try_to_munlock - try to munlock a page
1505 * @page: the page to be munlocked
1506 *
1507 * Called from munlock code. Checks all of the VMAs mapping the page
1508 * to make sure nobody else has this page mlocked. The page will be
1509 * returned with PG_mlocked cleared if no other vmas have it mlocked.
1510 *
1511 * Return values are:
1512 *
53f79acb 1513 * SWAP_AGAIN - no vma is holding page mlocked, or,
b291f000 1514 * SWAP_AGAIN - page mapped in mlocked vma -- couldn't acquire mmap sem
5ad64688 1515 * SWAP_FAIL - page cannot be located at present
b291f000
NP
1516 * SWAP_MLOCK - page is now mlocked.
1517 */
1518int try_to_munlock(struct page *page)
1519{
e8351ac9
JK
1520 int ret;
1521 struct rmap_walk_control rwc = {
1522 .rmap_one = try_to_unmap_one,
1523 .arg = (void *)TTU_MUNLOCK,
1524 .done = page_not_mapped,
1525 /*
1526 * We don't bother to try to find the munlocked page in
1527 * nonlinears. It's costly. Instead, later, page reclaim logic
1528 * may call try_to_unmap() and recover PG_mlocked lazily.
1529 */
1530 .file_nonlinear = NULL,
1531 .anon_lock = page_lock_anon_vma_read,
1532
1533 };
1534
b291f000
NP
1535 VM_BUG_ON(!PageLocked(page) || PageLRU(page));
1536
e8351ac9
JK
1537 ret = rmap_walk(page, &rwc);
1538 return ret;
b291f000 1539}
e9995ef9 1540
01d8b20d 1541void __put_anon_vma(struct anon_vma *anon_vma)
76545066 1542{
01d8b20d 1543 struct anon_vma *root = anon_vma->root;
76545066 1544
01d8b20d
PZ
1545 if (root != anon_vma && atomic_dec_and_test(&root->refcount))
1546 anon_vma_free(root);
76545066 1547
01d8b20d 1548 anon_vma_free(anon_vma);
76545066 1549}
76545066 1550
0dd1c7bb
JK
1551static struct anon_vma *rmap_walk_anon_lock(struct page *page,
1552 struct rmap_walk_control *rwc)
faecd8dd
JK
1553{
1554 struct anon_vma *anon_vma;
1555
0dd1c7bb
JK
1556 if (rwc->anon_lock)
1557 return rwc->anon_lock(page);
1558
faecd8dd
JK
1559 /*
1560 * Note: remove_migration_ptes() cannot use page_lock_anon_vma_read()
1561 * because that depends on page_mapped(); but not all its usages
1562 * are holding mmap_sem. Users without mmap_sem are required to
1563 * take a reference count to prevent the anon_vma disappearing
1564 */
1565 anon_vma = page_anon_vma(page);
1566 if (!anon_vma)
1567 return NULL;
1568
1569 anon_vma_lock_read(anon_vma);
1570 return anon_vma;
1571}
1572
e9995ef9 1573/*
e8351ac9
JK
1574 * rmap_walk_anon - do something to anonymous page using the object-based
1575 * rmap method
1576 * @page: the page to be handled
1577 * @rwc: control variable according to each walk type
1578 *
1579 * Find all the mappings of a page using the mapping pointer and the vma chains
1580 * contained in the anon_vma struct it points to.
1581 *
1582 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1583 * where the page was found will be held for write. So, we won't recheck
1584 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1585 * LOCKED.
e9995ef9 1586 */
051ac83a 1587static int rmap_walk_anon(struct page *page, struct rmap_walk_control *rwc)
e9995ef9
HD
1588{
1589 struct anon_vma *anon_vma;
bf181b9f 1590 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
5beb4930 1591 struct anon_vma_chain *avc;
e9995ef9
HD
1592 int ret = SWAP_AGAIN;
1593
0dd1c7bb 1594 anon_vma = rmap_walk_anon_lock(page, rwc);
e9995ef9
HD
1595 if (!anon_vma)
1596 return ret;
faecd8dd 1597
bf181b9f 1598 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
5beb4930 1599 struct vm_area_struct *vma = avc->vma;
e9995ef9 1600 unsigned long address = vma_address(page, vma);
0dd1c7bb
JK
1601
1602 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1603 continue;
1604
051ac83a 1605 ret = rwc->rmap_one(page, vma, address, rwc->arg);
e9995ef9
HD
1606 if (ret != SWAP_AGAIN)
1607 break;
0dd1c7bb
JK
1608 if (rwc->done && rwc->done(page))
1609 break;
e9995ef9 1610 }
4fc3f1d6 1611 anon_vma_unlock_read(anon_vma);
e9995ef9
HD
1612 return ret;
1613}
1614
e8351ac9
JK
1615/*
1616 * rmap_walk_file - do something to file page using the object-based rmap method
1617 * @page: the page to be handled
1618 * @rwc: control variable according to each walk type
1619 *
1620 * Find all the mappings of a page using the mapping pointer and the vma chains
1621 * contained in the address_space struct it points to.
1622 *
1623 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1624 * where the page was found will be held for write. So, we won't recheck
1625 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1626 * LOCKED.
1627 */
051ac83a 1628static int rmap_walk_file(struct page *page, struct rmap_walk_control *rwc)
e9995ef9
HD
1629{
1630 struct address_space *mapping = page->mapping;
b854f711 1631 pgoff_t pgoff = page->index << compound_order(page);
e9995ef9 1632 struct vm_area_struct *vma;
e9995ef9
HD
1633 int ret = SWAP_AGAIN;
1634
9f32624b
JK
1635 /*
1636 * The page lock not only makes sure that page->mapping cannot
1637 * suddenly be NULLified by truncation, it makes sure that the
1638 * structure at mapping cannot be freed and reused yet,
1639 * so we can safely take mapping->i_mmap_mutex.
1640 */
1641 VM_BUG_ON(!PageLocked(page));
1642
e9995ef9
HD
1643 if (!mapping)
1644 return ret;
3d48ae45 1645 mutex_lock(&mapping->i_mmap_mutex);
6b2dbba8 1646 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
e9995ef9 1647 unsigned long address = vma_address(page, vma);
0dd1c7bb
JK
1648
1649 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1650 continue;
1651
051ac83a 1652 ret = rwc->rmap_one(page, vma, address, rwc->arg);
e9995ef9 1653 if (ret != SWAP_AGAIN)
0dd1c7bb
JK
1654 goto done;
1655 if (rwc->done && rwc->done(page))
1656 goto done;
e9995ef9 1657 }
0dd1c7bb
JK
1658
1659 if (!rwc->file_nonlinear)
1660 goto done;
1661
1662 if (list_empty(&mapping->i_mmap_nonlinear))
1663 goto done;
1664
1665 ret = rwc->file_nonlinear(page, mapping, vma);
1666
1667done:
3d48ae45 1668 mutex_unlock(&mapping->i_mmap_mutex);
e9995ef9
HD
1669 return ret;
1670}
1671
051ac83a 1672int rmap_walk(struct page *page, struct rmap_walk_control *rwc)
e9995ef9 1673{
e9995ef9 1674 if (unlikely(PageKsm(page)))
051ac83a 1675 return rmap_walk_ksm(page, rwc);
e9995ef9 1676 else if (PageAnon(page))
051ac83a 1677 return rmap_walk_anon(page, rwc);
e9995ef9 1678 else
051ac83a 1679 return rmap_walk_file(page, rwc);
e9995ef9 1680}
0fe6e20b 1681
e3390f67 1682#ifdef CONFIG_HUGETLB_PAGE
0fe6e20b
NH
1683/*
1684 * The following three functions are for anonymous (private mapped) hugepages.
1685 * Unlike common anonymous pages, anonymous hugepages have no accounting code
1686 * and no lru code, because we handle hugepages differently from common pages.
1687 */
1688static void __hugepage_set_anon_rmap(struct page *page,
1689 struct vm_area_struct *vma, unsigned long address, int exclusive)
1690{
1691 struct anon_vma *anon_vma = vma->anon_vma;
433abed6 1692
0fe6e20b 1693 BUG_ON(!anon_vma);
433abed6
NH
1694
1695 if (PageAnon(page))
1696 return;
1697 if (!exclusive)
1698 anon_vma = anon_vma->root;
1699
0fe6e20b
NH
1700 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1701 page->mapping = (struct address_space *) anon_vma;
1702 page->index = linear_page_index(vma, address);
1703}
1704
1705void hugepage_add_anon_rmap(struct page *page,
1706 struct vm_area_struct *vma, unsigned long address)
1707{
1708 struct anon_vma *anon_vma = vma->anon_vma;
1709 int first;
a850ea30
NH
1710
1711 BUG_ON(!PageLocked(page));
0fe6e20b 1712 BUG_ON(!anon_vma);
5dbe0af4 1713 /* address might be in next vma when migration races vma_adjust */
0fe6e20b
NH
1714 first = atomic_inc_and_test(&page->_mapcount);
1715 if (first)
1716 __hugepage_set_anon_rmap(page, vma, address, 0);
1717}
1718
1719void hugepage_add_new_anon_rmap(struct page *page,
1720 struct vm_area_struct *vma, unsigned long address)
1721{
1722 BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1723 atomic_set(&page->_mapcount, 0);
1724 __hugepage_set_anon_rmap(page, vma, address, 1);
1725}
e3390f67 1726#endif /* CONFIG_HUGETLB_PAGE */