]> git.proxmox.com Git - mirror_zfs.git/blob - module/nvpair/nvpair.c
512f9a998426c85f1b6d73de0051fe3c4d10825c
[mirror_zfs.git] / module / nvpair / nvpair.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2000, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2015, 2017 by Delphix. All rights reserved.
25 */
26
27 #include <sys/stropts.h>
28 #include <sys/debug.h>
29 #include <sys/isa_defs.h>
30 #include <sys/int_limits.h>
31 #include <sys/nvpair.h>
32 #include <sys/nvpair_impl.h>
33 #include <rpc/types.h>
34 #include <rpc/xdr.h>
35
36 #if defined(_KERNEL) && !defined(_BOOT)
37 #include <sys/varargs.h>
38 #include <sys/ddi.h>
39 #include <sys/sunddi.h>
40 #include <sys/sysmacros.h>
41 #else
42 #include <stdarg.h>
43 #include <stdlib.h>
44 #include <string.h>
45 #include <strings.h>
46 #include <stddef.h>
47 #endif
48
49 #define skip_whitespace(p) while ((*(p) == ' ') || (*(p) == '\t')) p++
50
51 /*
52 * nvpair.c - Provides kernel & userland interfaces for manipulating
53 * name-value pairs.
54 *
55 * Overview Diagram
56 *
57 * +--------------+
58 * | nvlist_t |
59 * |--------------|
60 * | nvl_version |
61 * | nvl_nvflag |
62 * | nvl_priv -+-+
63 * | nvl_flag | |
64 * | nvl_pad | |
65 * +--------------+ |
66 * V
67 * +--------------+ last i_nvp in list
68 * | nvpriv_t | +--------------------->
69 * |--------------| |
70 * +--+- nvp_list | | +------------+
71 * | | nvp_last -+--+ + nv_alloc_t |
72 * | | nvp_curr | |------------|
73 * | | nvp_nva -+----> | nva_ops |
74 * | | nvp_stat | | nva_arg |
75 * | +--------------+ +------------+
76 * |
77 * +-------+
78 * V
79 * +---------------------+ +-------------------+
80 * | i_nvp_t | +-->| i_nvp_t | +-->
81 * |---------------------| | |-------------------| |
82 * | nvi_next -+--+ | nvi_next -+--+
83 * | nvi_prev (NULL) | <----+ nvi_prev |
84 * | . . . . . . . . . . | | . . . . . . . . . |
85 * | nvp (nvpair_t) | | nvp (nvpair_t) |
86 * | - nvp_size | | - nvp_size |
87 * | - nvp_name_sz | | - nvp_name_sz |
88 * | - nvp_value_elem | | - nvp_value_elem |
89 * | - nvp_type | | - nvp_type |
90 * | - data ... | | - data ... |
91 * +---------------------+ +-------------------+
92 *
93 *
94 *
95 * +---------------------+ +---------------------+
96 * | i_nvp_t | +--> +-->| i_nvp_t (last) |
97 * |---------------------| | | |---------------------|
98 * | nvi_next -+--+ ... --+ | nvi_next (NULL) |
99 * <-+- nvi_prev |<-- ... <----+ nvi_prev |
100 * | . . . . . . . . . | | . . . . . . . . . |
101 * | nvp (nvpair_t) | | nvp (nvpair_t) |
102 * | - nvp_size | | - nvp_size |
103 * | - nvp_name_sz | | - nvp_name_sz |
104 * | - nvp_value_elem | | - nvp_value_elem |
105 * | - DATA_TYPE_NVLIST | | - nvp_type |
106 * | - data (embedded) | | - data ... |
107 * | nvlist name | +---------------------+
108 * | +--------------+ |
109 * | | nvlist_t | |
110 * | |--------------| |
111 * | | nvl_version | |
112 * | | nvl_nvflag | |
113 * | | nvl_priv --+---+---->
114 * | | nvl_flag | |
115 * | | nvl_pad | |
116 * | +--------------+ |
117 * +---------------------+
118 *
119 *
120 * N.B. nvpair_t may be aligned on 4 byte boundary, so +4 will
121 * allow value to be aligned on 8 byte boundary
122 *
123 * name_len is the length of the name string including the null terminator
124 * so it must be >= 1
125 */
126 #define NVP_SIZE_CALC(name_len, data_len) \
127 (NV_ALIGN((sizeof (nvpair_t)) + name_len) + NV_ALIGN(data_len))
128
129 static int i_get_value_size(data_type_t type, const void *data, uint_t nelem);
130 static int nvlist_add_common(nvlist_t *nvl, const char *name, data_type_t type,
131 uint_t nelem, const void *data);
132
133 #define NV_STAT_EMBEDDED 0x1
134 #define EMBEDDED_NVL(nvp) ((nvlist_t *)(void *)NVP_VALUE(nvp))
135 #define EMBEDDED_NVL_ARRAY(nvp) ((nvlist_t **)(void *)NVP_VALUE(nvp))
136
137 #define NVP_VALOFF(nvp) (NV_ALIGN(sizeof (nvpair_t) + (nvp)->nvp_name_sz))
138 #define NVPAIR2I_NVP(nvp) \
139 ((i_nvp_t *)((size_t)(nvp) - offsetof(i_nvp_t, nvi_nvp)))
140
141 #ifdef _KERNEL
142 int nvpair_max_recursion = 20;
143 #else
144 int nvpair_max_recursion = 100;
145 #endif
146
147 int
148 nv_alloc_init(nv_alloc_t *nva, const nv_alloc_ops_t *nvo, /* args */ ...)
149 {
150 va_list valist;
151 int err = 0;
152
153 nva->nva_ops = nvo;
154 nva->nva_arg = NULL;
155
156 va_start(valist, nvo);
157 if (nva->nva_ops->nv_ao_init != NULL)
158 err = nva->nva_ops->nv_ao_init(nva, valist);
159 va_end(valist);
160
161 return (err);
162 }
163
164 void
165 nv_alloc_reset(nv_alloc_t *nva)
166 {
167 if (nva->nva_ops->nv_ao_reset != NULL)
168 nva->nva_ops->nv_ao_reset(nva);
169 }
170
171 void
172 nv_alloc_fini(nv_alloc_t *nva)
173 {
174 if (nva->nva_ops->nv_ao_fini != NULL)
175 nva->nva_ops->nv_ao_fini(nva);
176 }
177
178 nv_alloc_t *
179 nvlist_lookup_nv_alloc(nvlist_t *nvl)
180 {
181 nvpriv_t *priv;
182
183 if (nvl == NULL ||
184 (priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv) == NULL)
185 return (NULL);
186
187 return (priv->nvp_nva);
188 }
189
190 static void *
191 nv_mem_zalloc(nvpriv_t *nvp, size_t size)
192 {
193 nv_alloc_t *nva = nvp->nvp_nva;
194 void *buf;
195
196 if ((buf = nva->nva_ops->nv_ao_alloc(nva, size)) != NULL)
197 bzero(buf, size);
198
199 return (buf);
200 }
201
202 static void
203 nv_mem_free(nvpriv_t *nvp, void *buf, size_t size)
204 {
205 nv_alloc_t *nva = nvp->nvp_nva;
206
207 nva->nva_ops->nv_ao_free(nva, buf, size);
208 }
209
210 static void
211 nv_priv_init(nvpriv_t *priv, nv_alloc_t *nva, uint32_t stat)
212 {
213 bzero(priv, sizeof (nvpriv_t));
214
215 priv->nvp_nva = nva;
216 priv->nvp_stat = stat;
217 }
218
219 static nvpriv_t *
220 nv_priv_alloc(nv_alloc_t *nva)
221 {
222 nvpriv_t *priv;
223
224 /*
225 * nv_mem_alloc() cannot called here because it needs the priv
226 * argument.
227 */
228 if ((priv = nva->nva_ops->nv_ao_alloc(nva, sizeof (nvpriv_t))) == NULL)
229 return (NULL);
230
231 nv_priv_init(priv, nva, 0);
232
233 return (priv);
234 }
235
236 /*
237 * Embedded lists need their own nvpriv_t's. We create a new
238 * nvpriv_t using the parameters and allocator from the parent
239 * list's nvpriv_t.
240 */
241 static nvpriv_t *
242 nv_priv_alloc_embedded(nvpriv_t *priv)
243 {
244 nvpriv_t *emb_priv;
245
246 if ((emb_priv = nv_mem_zalloc(priv, sizeof (nvpriv_t))) == NULL)
247 return (NULL);
248
249 nv_priv_init(emb_priv, priv->nvp_nva, NV_STAT_EMBEDDED);
250
251 return (emb_priv);
252 }
253
254 static void
255 nvlist_init(nvlist_t *nvl, uint32_t nvflag, nvpriv_t *priv)
256 {
257 nvl->nvl_version = NV_VERSION;
258 nvl->nvl_nvflag = nvflag & (NV_UNIQUE_NAME|NV_UNIQUE_NAME_TYPE);
259 nvl->nvl_priv = (uint64_t)(uintptr_t)priv;
260 nvl->nvl_flag = 0;
261 nvl->nvl_pad = 0;
262 }
263
264 uint_t
265 nvlist_nvflag(nvlist_t *nvl)
266 {
267 return (nvl->nvl_nvflag);
268 }
269
270 static nv_alloc_t *
271 nvlist_nv_alloc(int kmflag)
272 {
273 #if defined(_KERNEL) && !defined(_BOOT)
274 switch (kmflag) {
275 case KM_SLEEP:
276 return (nv_alloc_sleep);
277 case KM_PUSHPAGE:
278 return (nv_alloc_pushpage);
279 default:
280 return (nv_alloc_nosleep);
281 }
282 #else
283 return (nv_alloc_nosleep);
284 #endif /* _KERNEL && !_BOOT */
285 }
286
287 /*
288 * nvlist_alloc - Allocate nvlist.
289 */
290 int
291 nvlist_alloc(nvlist_t **nvlp, uint_t nvflag, int kmflag)
292 {
293 return (nvlist_xalloc(nvlp, nvflag, nvlist_nv_alloc(kmflag)));
294 }
295
296 int
297 nvlist_xalloc(nvlist_t **nvlp, uint_t nvflag, nv_alloc_t *nva)
298 {
299 nvpriv_t *priv;
300
301 if (nvlp == NULL || nva == NULL)
302 return (EINVAL);
303
304 if ((priv = nv_priv_alloc(nva)) == NULL)
305 return (ENOMEM);
306
307 if ((*nvlp = nv_mem_zalloc(priv,
308 NV_ALIGN(sizeof (nvlist_t)))) == NULL) {
309 nv_mem_free(priv, priv, sizeof (nvpriv_t));
310 return (ENOMEM);
311 }
312
313 nvlist_init(*nvlp, nvflag, priv);
314
315 return (0);
316 }
317
318 /*
319 * nvp_buf_alloc - Allocate i_nvp_t for storing a new nv pair.
320 */
321 static nvpair_t *
322 nvp_buf_alloc(nvlist_t *nvl, size_t len)
323 {
324 nvpriv_t *priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv;
325 i_nvp_t *buf;
326 nvpair_t *nvp;
327 size_t nvsize;
328
329 /*
330 * Allocate the buffer
331 */
332 nvsize = len + offsetof(i_nvp_t, nvi_nvp);
333
334 if ((buf = nv_mem_zalloc(priv, nvsize)) == NULL)
335 return (NULL);
336
337 nvp = &buf->nvi_nvp;
338 nvp->nvp_size = len;
339
340 return (nvp);
341 }
342
343 /*
344 * nvp_buf_free - de-Allocate an i_nvp_t.
345 */
346 static void
347 nvp_buf_free(nvlist_t *nvl, nvpair_t *nvp)
348 {
349 nvpriv_t *priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv;
350 size_t nvsize = nvp->nvp_size + offsetof(i_nvp_t, nvi_nvp);
351
352 nv_mem_free(priv, NVPAIR2I_NVP(nvp), nvsize);
353 }
354
355 /*
356 * nvp_buf_link - link a new nv pair into the nvlist.
357 */
358 static void
359 nvp_buf_link(nvlist_t *nvl, nvpair_t *nvp)
360 {
361 nvpriv_t *priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv;
362 i_nvp_t *curr = NVPAIR2I_NVP(nvp);
363
364 /* Put element at end of nvlist */
365 if (priv->nvp_list == NULL) {
366 priv->nvp_list = priv->nvp_last = curr;
367 } else {
368 curr->nvi_prev = priv->nvp_last;
369 priv->nvp_last->nvi_next = curr;
370 priv->nvp_last = curr;
371 }
372 }
373
374 /*
375 * nvp_buf_unlink - unlink an removed nvpair out of the nvlist.
376 */
377 static void
378 nvp_buf_unlink(nvlist_t *nvl, nvpair_t *nvp)
379 {
380 nvpriv_t *priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv;
381 i_nvp_t *curr = NVPAIR2I_NVP(nvp);
382
383 /*
384 * protect nvlist_next_nvpair() against walking on freed memory.
385 */
386 if (priv->nvp_curr == curr)
387 priv->nvp_curr = curr->nvi_next;
388
389 if (curr == priv->nvp_list)
390 priv->nvp_list = curr->nvi_next;
391 else
392 curr->nvi_prev->nvi_next = curr->nvi_next;
393
394 if (curr == priv->nvp_last)
395 priv->nvp_last = curr->nvi_prev;
396 else
397 curr->nvi_next->nvi_prev = curr->nvi_prev;
398 }
399
400 /*
401 * take a nvpair type and number of elements and make sure the are valid
402 */
403 static int
404 i_validate_type_nelem(data_type_t type, uint_t nelem)
405 {
406 switch (type) {
407 case DATA_TYPE_BOOLEAN:
408 if (nelem != 0)
409 return (EINVAL);
410 break;
411 case DATA_TYPE_BOOLEAN_VALUE:
412 case DATA_TYPE_BYTE:
413 case DATA_TYPE_INT8:
414 case DATA_TYPE_UINT8:
415 case DATA_TYPE_INT16:
416 case DATA_TYPE_UINT16:
417 case DATA_TYPE_INT32:
418 case DATA_TYPE_UINT32:
419 case DATA_TYPE_INT64:
420 case DATA_TYPE_UINT64:
421 case DATA_TYPE_STRING:
422 case DATA_TYPE_HRTIME:
423 case DATA_TYPE_NVLIST:
424 #if !defined(_KERNEL)
425 case DATA_TYPE_DOUBLE:
426 #endif
427 if (nelem != 1)
428 return (EINVAL);
429 break;
430 case DATA_TYPE_BOOLEAN_ARRAY:
431 case DATA_TYPE_BYTE_ARRAY:
432 case DATA_TYPE_INT8_ARRAY:
433 case DATA_TYPE_UINT8_ARRAY:
434 case DATA_TYPE_INT16_ARRAY:
435 case DATA_TYPE_UINT16_ARRAY:
436 case DATA_TYPE_INT32_ARRAY:
437 case DATA_TYPE_UINT32_ARRAY:
438 case DATA_TYPE_INT64_ARRAY:
439 case DATA_TYPE_UINT64_ARRAY:
440 case DATA_TYPE_STRING_ARRAY:
441 case DATA_TYPE_NVLIST_ARRAY:
442 /* we allow arrays with 0 elements */
443 break;
444 default:
445 return (EINVAL);
446 }
447 return (0);
448 }
449
450 /*
451 * Verify nvp_name_sz and check the name string length.
452 */
453 static int
454 i_validate_nvpair_name(nvpair_t *nvp)
455 {
456 if ((nvp->nvp_name_sz <= 0) ||
457 (nvp->nvp_size < NVP_SIZE_CALC(nvp->nvp_name_sz, 0)))
458 return (EFAULT);
459
460 /* verify the name string, make sure its terminated */
461 if (NVP_NAME(nvp)[nvp->nvp_name_sz - 1] != '\0')
462 return (EFAULT);
463
464 return (strlen(NVP_NAME(nvp)) == nvp->nvp_name_sz - 1 ? 0 : EFAULT);
465 }
466
467 static int
468 i_validate_nvpair_value(data_type_t type, uint_t nelem, const void *data)
469 {
470 switch (type) {
471 case DATA_TYPE_BOOLEAN_VALUE:
472 if (*(boolean_t *)data != B_TRUE &&
473 *(boolean_t *)data != B_FALSE)
474 return (EINVAL);
475 break;
476 case DATA_TYPE_BOOLEAN_ARRAY: {
477 int i;
478
479 for (i = 0; i < nelem; i++)
480 if (((boolean_t *)data)[i] != B_TRUE &&
481 ((boolean_t *)data)[i] != B_FALSE)
482 return (EINVAL);
483 break;
484 }
485 default:
486 break;
487 }
488
489 return (0);
490 }
491
492 /*
493 * This function takes a pointer to what should be a nvpair and it's size
494 * and then verifies that all the nvpair fields make sense and can be
495 * trusted. This function is used when decoding packed nvpairs.
496 */
497 static int
498 i_validate_nvpair(nvpair_t *nvp)
499 {
500 data_type_t type = NVP_TYPE(nvp);
501 int size1, size2;
502
503 /* verify nvp_name_sz, check the name string length */
504 if (i_validate_nvpair_name(nvp) != 0)
505 return (EFAULT);
506
507 if (i_validate_nvpair_value(type, NVP_NELEM(nvp), NVP_VALUE(nvp)) != 0)
508 return (EFAULT);
509
510 /*
511 * verify nvp_type, nvp_value_elem, and also possibly
512 * verify string values and get the value size.
513 */
514 size2 = i_get_value_size(type, NVP_VALUE(nvp), NVP_NELEM(nvp));
515 size1 = nvp->nvp_size - NVP_VALOFF(nvp);
516 if (size2 < 0 || size1 != NV_ALIGN(size2))
517 return (EFAULT);
518
519 return (0);
520 }
521
522 static int
523 nvlist_copy_pairs(nvlist_t *snvl, nvlist_t *dnvl)
524 {
525 nvpriv_t *priv;
526 i_nvp_t *curr;
527
528 if ((priv = (nvpriv_t *)(uintptr_t)snvl->nvl_priv) == NULL)
529 return (EINVAL);
530
531 for (curr = priv->nvp_list; curr != NULL; curr = curr->nvi_next) {
532 nvpair_t *nvp = &curr->nvi_nvp;
533 int err;
534
535 if ((err = nvlist_add_common(dnvl, NVP_NAME(nvp), NVP_TYPE(nvp),
536 NVP_NELEM(nvp), NVP_VALUE(nvp))) != 0)
537 return (err);
538 }
539
540 return (0);
541 }
542
543 /*
544 * Frees all memory allocated for an nvpair (like embedded lists) with
545 * the exception of the nvpair buffer itself.
546 */
547 static void
548 nvpair_free(nvpair_t *nvp)
549 {
550 switch (NVP_TYPE(nvp)) {
551 case DATA_TYPE_NVLIST:
552 nvlist_free(EMBEDDED_NVL(nvp));
553 break;
554 case DATA_TYPE_NVLIST_ARRAY: {
555 nvlist_t **nvlp = EMBEDDED_NVL_ARRAY(nvp);
556 int i;
557
558 for (i = 0; i < NVP_NELEM(nvp); i++)
559 if (nvlp[i] != NULL)
560 nvlist_free(nvlp[i]);
561 break;
562 }
563 default:
564 break;
565 }
566 }
567
568 /*
569 * nvlist_free - free an unpacked nvlist
570 */
571 void
572 nvlist_free(nvlist_t *nvl)
573 {
574 nvpriv_t *priv;
575 i_nvp_t *curr;
576
577 if (nvl == NULL ||
578 (priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv) == NULL)
579 return;
580
581 /*
582 * Unpacked nvlist are linked through i_nvp_t
583 */
584 curr = priv->nvp_list;
585 while (curr != NULL) {
586 nvpair_t *nvp = &curr->nvi_nvp;
587 curr = curr->nvi_next;
588
589 nvpair_free(nvp);
590 nvp_buf_free(nvl, nvp);
591 }
592
593 if (!(priv->nvp_stat & NV_STAT_EMBEDDED))
594 nv_mem_free(priv, nvl, NV_ALIGN(sizeof (nvlist_t)));
595 else
596 nvl->nvl_priv = 0;
597
598 nv_mem_free(priv, priv, sizeof (nvpriv_t));
599 }
600
601 static int
602 nvlist_contains_nvp(nvlist_t *nvl, nvpair_t *nvp)
603 {
604 nvpriv_t *priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv;
605 i_nvp_t *curr;
606
607 if (nvp == NULL)
608 return (0);
609
610 for (curr = priv->nvp_list; curr != NULL; curr = curr->nvi_next)
611 if (&curr->nvi_nvp == nvp)
612 return (1);
613
614 return (0);
615 }
616
617 /*
618 * Make a copy of nvlist
619 */
620 int
621 nvlist_dup(nvlist_t *nvl, nvlist_t **nvlp, int kmflag)
622 {
623 return (nvlist_xdup(nvl, nvlp, nvlist_nv_alloc(kmflag)));
624 }
625
626 int
627 nvlist_xdup(nvlist_t *nvl, nvlist_t **nvlp, nv_alloc_t *nva)
628 {
629 int err;
630 nvlist_t *ret;
631
632 if (nvl == NULL || nvlp == NULL)
633 return (EINVAL);
634
635 if ((err = nvlist_xalloc(&ret, nvl->nvl_nvflag, nva)) != 0)
636 return (err);
637
638 if ((err = nvlist_copy_pairs(nvl, ret)) != 0)
639 nvlist_free(ret);
640 else
641 *nvlp = ret;
642
643 return (err);
644 }
645
646 /*
647 * Remove all with matching name
648 */
649 int
650 nvlist_remove_all(nvlist_t *nvl, const char *name)
651 {
652 nvpriv_t *priv;
653 i_nvp_t *curr;
654 int error = ENOENT;
655
656 if (nvl == NULL || name == NULL ||
657 (priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv) == NULL)
658 return (EINVAL);
659
660 curr = priv->nvp_list;
661 while (curr != NULL) {
662 nvpair_t *nvp = &curr->nvi_nvp;
663
664 curr = curr->nvi_next;
665 if (strcmp(name, NVP_NAME(nvp)) != 0)
666 continue;
667
668 nvp_buf_unlink(nvl, nvp);
669 nvpair_free(nvp);
670 nvp_buf_free(nvl, nvp);
671
672 error = 0;
673 }
674
675 return (error);
676 }
677
678 /*
679 * Remove first one with matching name and type
680 */
681 int
682 nvlist_remove(nvlist_t *nvl, const char *name, data_type_t type)
683 {
684 nvpriv_t *priv;
685 i_nvp_t *curr;
686
687 if (nvl == NULL || name == NULL ||
688 (priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv) == NULL)
689 return (EINVAL);
690
691 curr = priv->nvp_list;
692 while (curr != NULL) {
693 nvpair_t *nvp = &curr->nvi_nvp;
694
695 if (strcmp(name, NVP_NAME(nvp)) == 0 && NVP_TYPE(nvp) == type) {
696 nvp_buf_unlink(nvl, nvp);
697 nvpair_free(nvp);
698 nvp_buf_free(nvl, nvp);
699
700 return (0);
701 }
702 curr = curr->nvi_next;
703 }
704
705 return (ENOENT);
706 }
707
708 int
709 nvlist_remove_nvpair(nvlist_t *nvl, nvpair_t *nvp)
710 {
711 if (nvl == NULL || nvp == NULL)
712 return (EINVAL);
713
714 nvp_buf_unlink(nvl, nvp);
715 nvpair_free(nvp);
716 nvp_buf_free(nvl, nvp);
717 return (0);
718 }
719
720 /*
721 * This function calculates the size of an nvpair value.
722 *
723 * The data argument controls the behavior in case of the data types
724 * DATA_TYPE_STRING and
725 * DATA_TYPE_STRING_ARRAY
726 * Is data == NULL then the size of the string(s) is excluded.
727 */
728 static int
729 i_get_value_size(data_type_t type, const void *data, uint_t nelem)
730 {
731 uint64_t value_sz;
732
733 if (i_validate_type_nelem(type, nelem) != 0)
734 return (-1);
735
736 /* Calculate required size for holding value */
737 switch (type) {
738 case DATA_TYPE_BOOLEAN:
739 value_sz = 0;
740 break;
741 case DATA_TYPE_BOOLEAN_VALUE:
742 value_sz = sizeof (boolean_t);
743 break;
744 case DATA_TYPE_BYTE:
745 value_sz = sizeof (uchar_t);
746 break;
747 case DATA_TYPE_INT8:
748 value_sz = sizeof (int8_t);
749 break;
750 case DATA_TYPE_UINT8:
751 value_sz = sizeof (uint8_t);
752 break;
753 case DATA_TYPE_INT16:
754 value_sz = sizeof (int16_t);
755 break;
756 case DATA_TYPE_UINT16:
757 value_sz = sizeof (uint16_t);
758 break;
759 case DATA_TYPE_INT32:
760 value_sz = sizeof (int32_t);
761 break;
762 case DATA_TYPE_UINT32:
763 value_sz = sizeof (uint32_t);
764 break;
765 case DATA_TYPE_INT64:
766 value_sz = sizeof (int64_t);
767 break;
768 case DATA_TYPE_UINT64:
769 value_sz = sizeof (uint64_t);
770 break;
771 #if !defined(_KERNEL)
772 case DATA_TYPE_DOUBLE:
773 value_sz = sizeof (double);
774 break;
775 #endif
776 case DATA_TYPE_STRING:
777 if (data == NULL)
778 value_sz = 0;
779 else
780 value_sz = strlen(data) + 1;
781 break;
782 case DATA_TYPE_BOOLEAN_ARRAY:
783 value_sz = (uint64_t)nelem * sizeof (boolean_t);
784 break;
785 case DATA_TYPE_BYTE_ARRAY:
786 value_sz = (uint64_t)nelem * sizeof (uchar_t);
787 break;
788 case DATA_TYPE_INT8_ARRAY:
789 value_sz = (uint64_t)nelem * sizeof (int8_t);
790 break;
791 case DATA_TYPE_UINT8_ARRAY:
792 value_sz = (uint64_t)nelem * sizeof (uint8_t);
793 break;
794 case DATA_TYPE_INT16_ARRAY:
795 value_sz = (uint64_t)nelem * sizeof (int16_t);
796 break;
797 case DATA_TYPE_UINT16_ARRAY:
798 value_sz = (uint64_t)nelem * sizeof (uint16_t);
799 break;
800 case DATA_TYPE_INT32_ARRAY:
801 value_sz = (uint64_t)nelem * sizeof (int32_t);
802 break;
803 case DATA_TYPE_UINT32_ARRAY:
804 value_sz = (uint64_t)nelem * sizeof (uint32_t);
805 break;
806 case DATA_TYPE_INT64_ARRAY:
807 value_sz = (uint64_t)nelem * sizeof (int64_t);
808 break;
809 case DATA_TYPE_UINT64_ARRAY:
810 value_sz = (uint64_t)nelem * sizeof (uint64_t);
811 break;
812 case DATA_TYPE_STRING_ARRAY:
813 value_sz = (uint64_t)nelem * sizeof (uint64_t);
814
815 if (data != NULL) {
816 char *const *strs = data;
817 uint_t i;
818
819 /* no alignment requirement for strings */
820 for (i = 0; i < nelem; i++) {
821 if (strs[i] == NULL)
822 return (-1);
823 value_sz += strlen(strs[i]) + 1;
824 }
825 }
826 break;
827 case DATA_TYPE_HRTIME:
828 value_sz = sizeof (hrtime_t);
829 break;
830 case DATA_TYPE_NVLIST:
831 value_sz = NV_ALIGN(sizeof (nvlist_t));
832 break;
833 case DATA_TYPE_NVLIST_ARRAY:
834 value_sz = (uint64_t)nelem * sizeof (uint64_t) +
835 (uint64_t)nelem * NV_ALIGN(sizeof (nvlist_t));
836 break;
837 default:
838 return (-1);
839 }
840
841 return (value_sz > INT32_MAX ? -1 : (int)value_sz);
842 }
843
844 static int
845 nvlist_copy_embedded(nvlist_t *nvl, nvlist_t *onvl, nvlist_t *emb_nvl)
846 {
847 nvpriv_t *priv;
848 int err;
849
850 if ((priv = nv_priv_alloc_embedded((nvpriv_t *)(uintptr_t)
851 nvl->nvl_priv)) == NULL)
852 return (ENOMEM);
853
854 nvlist_init(emb_nvl, onvl->nvl_nvflag, priv);
855
856 if ((err = nvlist_copy_pairs(onvl, emb_nvl)) != 0) {
857 nvlist_free(emb_nvl);
858 emb_nvl->nvl_priv = 0;
859 }
860
861 return (err);
862 }
863
864 /*
865 * nvlist_add_common - Add new <name,value> pair to nvlist
866 */
867 static int
868 nvlist_add_common(nvlist_t *nvl, const char *name,
869 data_type_t type, uint_t nelem, const void *data)
870 {
871 nvpair_t *nvp;
872 uint_t i;
873
874 int nvp_sz, name_sz, value_sz;
875 int err = 0;
876
877 if (name == NULL || nvl == NULL || nvl->nvl_priv == 0)
878 return (EINVAL);
879
880 if (nelem != 0 && data == NULL)
881 return (EINVAL);
882
883 /*
884 * Verify type and nelem and get the value size.
885 * In case of data types DATA_TYPE_STRING and DATA_TYPE_STRING_ARRAY
886 * is the size of the string(s) included.
887 */
888 if ((value_sz = i_get_value_size(type, data, nelem)) < 0)
889 return (EINVAL);
890
891 if (i_validate_nvpair_value(type, nelem, data) != 0)
892 return (EINVAL);
893
894 /*
895 * If we're adding an nvlist or nvlist array, ensure that we are not
896 * adding the input nvlist to itself, which would cause recursion,
897 * and ensure that no NULL nvlist pointers are present.
898 */
899 switch (type) {
900 case DATA_TYPE_NVLIST:
901 if (data == nvl || data == NULL)
902 return (EINVAL);
903 break;
904 case DATA_TYPE_NVLIST_ARRAY: {
905 nvlist_t **onvlp = (nvlist_t **)data;
906 for (i = 0; i < nelem; i++) {
907 if (onvlp[i] == nvl || onvlp[i] == NULL)
908 return (EINVAL);
909 }
910 break;
911 }
912 default:
913 break;
914 }
915
916 /* calculate sizes of the nvpair elements and the nvpair itself */
917 name_sz = strlen(name) + 1;
918 if (name_sz >= 1ULL << (sizeof (nvp->nvp_name_sz) * NBBY - 1))
919 return (EINVAL);
920
921 nvp_sz = NVP_SIZE_CALC(name_sz, value_sz);
922
923 if ((nvp = nvp_buf_alloc(nvl, nvp_sz)) == NULL)
924 return (ENOMEM);
925
926 ASSERT(nvp->nvp_size == nvp_sz);
927 nvp->nvp_name_sz = name_sz;
928 nvp->nvp_value_elem = nelem;
929 nvp->nvp_type = type;
930 bcopy(name, NVP_NAME(nvp), name_sz);
931
932 switch (type) {
933 case DATA_TYPE_BOOLEAN:
934 break;
935 case DATA_TYPE_STRING_ARRAY: {
936 char *const *strs = data;
937 char *buf = NVP_VALUE(nvp);
938 char **cstrs = (void *)buf;
939
940 /* skip pre-allocated space for pointer array */
941 buf += nelem * sizeof (uint64_t);
942 for (i = 0; i < nelem; i++) {
943 int slen = strlen(strs[i]) + 1;
944 bcopy(strs[i], buf, slen);
945 cstrs[i] = buf;
946 buf += slen;
947 }
948 break;
949 }
950 case DATA_TYPE_NVLIST: {
951 nvlist_t *nnvl = EMBEDDED_NVL(nvp);
952 nvlist_t *onvl = (nvlist_t *)data;
953
954 if ((err = nvlist_copy_embedded(nvl, onvl, nnvl)) != 0) {
955 nvp_buf_free(nvl, nvp);
956 return (err);
957 }
958 break;
959 }
960 case DATA_TYPE_NVLIST_ARRAY: {
961 nvlist_t **onvlp = (nvlist_t **)data;
962 nvlist_t **nvlp = EMBEDDED_NVL_ARRAY(nvp);
963 nvlist_t *embedded = (nvlist_t *)
964 ((uintptr_t)nvlp + nelem * sizeof (uint64_t));
965
966 for (i = 0; i < nelem; i++) {
967 if ((err = nvlist_copy_embedded(nvl,
968 onvlp[i], embedded)) != 0) {
969 /*
970 * Free any successfully created lists
971 */
972 nvpair_free(nvp);
973 nvp_buf_free(nvl, nvp);
974 return (err);
975 }
976
977 nvlp[i] = embedded++;
978 }
979 break;
980 }
981 default:
982 bcopy(data, NVP_VALUE(nvp), value_sz);
983 }
984
985 /* if unique name, remove before add */
986 if (nvl->nvl_nvflag & NV_UNIQUE_NAME)
987 (void) nvlist_remove_all(nvl, name);
988 else if (nvl->nvl_nvflag & NV_UNIQUE_NAME_TYPE)
989 (void) nvlist_remove(nvl, name, type);
990
991 nvp_buf_link(nvl, nvp);
992
993 return (0);
994 }
995
996 int
997 nvlist_add_boolean(nvlist_t *nvl, const char *name)
998 {
999 return (nvlist_add_common(nvl, name, DATA_TYPE_BOOLEAN, 0, NULL));
1000 }
1001
1002 int
1003 nvlist_add_boolean_value(nvlist_t *nvl, const char *name, boolean_t val)
1004 {
1005 return (nvlist_add_common(nvl, name, DATA_TYPE_BOOLEAN_VALUE, 1, &val));
1006 }
1007
1008 int
1009 nvlist_add_byte(nvlist_t *nvl, const char *name, uchar_t val)
1010 {
1011 return (nvlist_add_common(nvl, name, DATA_TYPE_BYTE, 1, &val));
1012 }
1013
1014 int
1015 nvlist_add_int8(nvlist_t *nvl, const char *name, int8_t val)
1016 {
1017 return (nvlist_add_common(nvl, name, DATA_TYPE_INT8, 1, &val));
1018 }
1019
1020 int
1021 nvlist_add_uint8(nvlist_t *nvl, const char *name, uint8_t val)
1022 {
1023 return (nvlist_add_common(nvl, name, DATA_TYPE_UINT8, 1, &val));
1024 }
1025
1026 int
1027 nvlist_add_int16(nvlist_t *nvl, const char *name, int16_t val)
1028 {
1029 return (nvlist_add_common(nvl, name, DATA_TYPE_INT16, 1, &val));
1030 }
1031
1032 int
1033 nvlist_add_uint16(nvlist_t *nvl, const char *name, uint16_t val)
1034 {
1035 return (nvlist_add_common(nvl, name, DATA_TYPE_UINT16, 1, &val));
1036 }
1037
1038 int
1039 nvlist_add_int32(nvlist_t *nvl, const char *name, int32_t val)
1040 {
1041 return (nvlist_add_common(nvl, name, DATA_TYPE_INT32, 1, &val));
1042 }
1043
1044 int
1045 nvlist_add_uint32(nvlist_t *nvl, const char *name, uint32_t val)
1046 {
1047 return (nvlist_add_common(nvl, name, DATA_TYPE_UINT32, 1, &val));
1048 }
1049
1050 int
1051 nvlist_add_int64(nvlist_t *nvl, const char *name, int64_t val)
1052 {
1053 return (nvlist_add_common(nvl, name, DATA_TYPE_INT64, 1, &val));
1054 }
1055
1056 int
1057 nvlist_add_uint64(nvlist_t *nvl, const char *name, uint64_t val)
1058 {
1059 return (nvlist_add_common(nvl, name, DATA_TYPE_UINT64, 1, &val));
1060 }
1061
1062 #if !defined(_KERNEL)
1063 int
1064 nvlist_add_double(nvlist_t *nvl, const char *name, double val)
1065 {
1066 return (nvlist_add_common(nvl, name, DATA_TYPE_DOUBLE, 1, &val));
1067 }
1068 #endif
1069
1070 int
1071 nvlist_add_string(nvlist_t *nvl, const char *name, const char *val)
1072 {
1073 return (nvlist_add_common(nvl, name, DATA_TYPE_STRING, 1, (void *)val));
1074 }
1075
1076 int
1077 nvlist_add_boolean_array(nvlist_t *nvl, const char *name,
1078 boolean_t *a, uint_t n)
1079 {
1080 return (nvlist_add_common(nvl, name, DATA_TYPE_BOOLEAN_ARRAY, n, a));
1081 }
1082
1083 int
1084 nvlist_add_byte_array(nvlist_t *nvl, const char *name, uchar_t *a, uint_t n)
1085 {
1086 return (nvlist_add_common(nvl, name, DATA_TYPE_BYTE_ARRAY, n, a));
1087 }
1088
1089 int
1090 nvlist_add_int8_array(nvlist_t *nvl, const char *name, int8_t *a, uint_t n)
1091 {
1092 return (nvlist_add_common(nvl, name, DATA_TYPE_INT8_ARRAY, n, a));
1093 }
1094
1095 int
1096 nvlist_add_uint8_array(nvlist_t *nvl, const char *name, uint8_t *a, uint_t n)
1097 {
1098 return (nvlist_add_common(nvl, name, DATA_TYPE_UINT8_ARRAY, n, a));
1099 }
1100
1101 int
1102 nvlist_add_int16_array(nvlist_t *nvl, const char *name, int16_t *a, uint_t n)
1103 {
1104 return (nvlist_add_common(nvl, name, DATA_TYPE_INT16_ARRAY, n, a));
1105 }
1106
1107 int
1108 nvlist_add_uint16_array(nvlist_t *nvl, const char *name, uint16_t *a, uint_t n)
1109 {
1110 return (nvlist_add_common(nvl, name, DATA_TYPE_UINT16_ARRAY, n, a));
1111 }
1112
1113 int
1114 nvlist_add_int32_array(nvlist_t *nvl, const char *name, int32_t *a, uint_t n)
1115 {
1116 return (nvlist_add_common(nvl, name, DATA_TYPE_INT32_ARRAY, n, a));
1117 }
1118
1119 int
1120 nvlist_add_uint32_array(nvlist_t *nvl, const char *name, uint32_t *a, uint_t n)
1121 {
1122 return (nvlist_add_common(nvl, name, DATA_TYPE_UINT32_ARRAY, n, a));
1123 }
1124
1125 int
1126 nvlist_add_int64_array(nvlist_t *nvl, const char *name, int64_t *a, uint_t n)
1127 {
1128 return (nvlist_add_common(nvl, name, DATA_TYPE_INT64_ARRAY, n, a));
1129 }
1130
1131 int
1132 nvlist_add_uint64_array(nvlist_t *nvl, const char *name, uint64_t *a, uint_t n)
1133 {
1134 return (nvlist_add_common(nvl, name, DATA_TYPE_UINT64_ARRAY, n, a));
1135 }
1136
1137 int
1138 nvlist_add_string_array(nvlist_t *nvl, const char *name,
1139 char *const *a, uint_t n)
1140 {
1141 return (nvlist_add_common(nvl, name, DATA_TYPE_STRING_ARRAY, n, a));
1142 }
1143
1144 int
1145 nvlist_add_hrtime(nvlist_t *nvl, const char *name, hrtime_t val)
1146 {
1147 return (nvlist_add_common(nvl, name, DATA_TYPE_HRTIME, 1, &val));
1148 }
1149
1150 int
1151 nvlist_add_nvlist(nvlist_t *nvl, const char *name, nvlist_t *val)
1152 {
1153 return (nvlist_add_common(nvl, name, DATA_TYPE_NVLIST, 1, val));
1154 }
1155
1156 int
1157 nvlist_add_nvlist_array(nvlist_t *nvl, const char *name, nvlist_t **a, uint_t n)
1158 {
1159 return (nvlist_add_common(nvl, name, DATA_TYPE_NVLIST_ARRAY, n, a));
1160 }
1161
1162 /* reading name-value pairs */
1163 nvpair_t *
1164 nvlist_next_nvpair(nvlist_t *nvl, nvpair_t *nvp)
1165 {
1166 nvpriv_t *priv;
1167 i_nvp_t *curr;
1168
1169 if (nvl == NULL ||
1170 (priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv) == NULL)
1171 return (NULL);
1172
1173 curr = NVPAIR2I_NVP(nvp);
1174
1175 /*
1176 * Ensure that nvp is a valid nvpair on this nvlist.
1177 * NB: nvp_curr is used only as a hint so that we don't always
1178 * have to walk the list to determine if nvp is still on the list.
1179 */
1180 if (nvp == NULL)
1181 curr = priv->nvp_list;
1182 else if (priv->nvp_curr == curr || nvlist_contains_nvp(nvl, nvp))
1183 curr = curr->nvi_next;
1184 else
1185 curr = NULL;
1186
1187 priv->nvp_curr = curr;
1188
1189 return (curr != NULL ? &curr->nvi_nvp : NULL);
1190 }
1191
1192 nvpair_t *
1193 nvlist_prev_nvpair(nvlist_t *nvl, nvpair_t *nvp)
1194 {
1195 nvpriv_t *priv;
1196 i_nvp_t *curr;
1197
1198 if (nvl == NULL ||
1199 (priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv) == NULL)
1200 return (NULL);
1201
1202 curr = NVPAIR2I_NVP(nvp);
1203
1204 if (nvp == NULL)
1205 curr = priv->nvp_last;
1206 else if (priv->nvp_curr == curr || nvlist_contains_nvp(nvl, nvp))
1207 curr = curr->nvi_prev;
1208 else
1209 curr = NULL;
1210
1211 priv->nvp_curr = curr;
1212
1213 return (curr != NULL ? &curr->nvi_nvp : NULL);
1214 }
1215
1216 boolean_t
1217 nvlist_empty(nvlist_t *nvl)
1218 {
1219 nvpriv_t *priv;
1220
1221 if (nvl == NULL ||
1222 (priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv) == NULL)
1223 return (B_TRUE);
1224
1225 return (priv->nvp_list == NULL);
1226 }
1227
1228 char *
1229 nvpair_name(nvpair_t *nvp)
1230 {
1231 return (NVP_NAME(nvp));
1232 }
1233
1234 data_type_t
1235 nvpair_type(nvpair_t *nvp)
1236 {
1237 return (NVP_TYPE(nvp));
1238 }
1239
1240 int
1241 nvpair_type_is_array(nvpair_t *nvp)
1242 {
1243 data_type_t type = NVP_TYPE(nvp);
1244
1245 if ((type == DATA_TYPE_BYTE_ARRAY) ||
1246 (type == DATA_TYPE_INT8_ARRAY) ||
1247 (type == DATA_TYPE_UINT8_ARRAY) ||
1248 (type == DATA_TYPE_INT16_ARRAY) ||
1249 (type == DATA_TYPE_UINT16_ARRAY) ||
1250 (type == DATA_TYPE_INT32_ARRAY) ||
1251 (type == DATA_TYPE_UINT32_ARRAY) ||
1252 (type == DATA_TYPE_INT64_ARRAY) ||
1253 (type == DATA_TYPE_UINT64_ARRAY) ||
1254 (type == DATA_TYPE_BOOLEAN_ARRAY) ||
1255 (type == DATA_TYPE_STRING_ARRAY) ||
1256 (type == DATA_TYPE_NVLIST_ARRAY))
1257 return (1);
1258 return (0);
1259
1260 }
1261
1262 static int
1263 nvpair_value_common(nvpair_t *nvp, data_type_t type, uint_t *nelem, void *data)
1264 {
1265 int value_sz;
1266
1267 if (nvp == NULL || nvpair_type(nvp) != type)
1268 return (EINVAL);
1269
1270 /*
1271 * For non-array types, we copy the data.
1272 * For array types (including string), we set a pointer.
1273 */
1274 switch (type) {
1275 case DATA_TYPE_BOOLEAN:
1276 if (nelem != NULL)
1277 *nelem = 0;
1278 break;
1279
1280 case DATA_TYPE_BOOLEAN_VALUE:
1281 case DATA_TYPE_BYTE:
1282 case DATA_TYPE_INT8:
1283 case DATA_TYPE_UINT8:
1284 case DATA_TYPE_INT16:
1285 case DATA_TYPE_UINT16:
1286 case DATA_TYPE_INT32:
1287 case DATA_TYPE_UINT32:
1288 case DATA_TYPE_INT64:
1289 case DATA_TYPE_UINT64:
1290 case DATA_TYPE_HRTIME:
1291 #if !defined(_KERNEL)
1292 case DATA_TYPE_DOUBLE:
1293 #endif
1294 if (data == NULL)
1295 return (EINVAL);
1296 if ((value_sz = i_get_value_size(type, NULL, 1)) < 0)
1297 return (EINVAL);
1298 bcopy(NVP_VALUE(nvp), data, (size_t)value_sz);
1299 if (nelem != NULL)
1300 *nelem = 1;
1301 break;
1302
1303 case DATA_TYPE_NVLIST:
1304 case DATA_TYPE_STRING:
1305 if (data == NULL)
1306 return (EINVAL);
1307 *(void **)data = (void *)NVP_VALUE(nvp);
1308 if (nelem != NULL)
1309 *nelem = 1;
1310 break;
1311
1312 case DATA_TYPE_BOOLEAN_ARRAY:
1313 case DATA_TYPE_BYTE_ARRAY:
1314 case DATA_TYPE_INT8_ARRAY:
1315 case DATA_TYPE_UINT8_ARRAY:
1316 case DATA_TYPE_INT16_ARRAY:
1317 case DATA_TYPE_UINT16_ARRAY:
1318 case DATA_TYPE_INT32_ARRAY:
1319 case DATA_TYPE_UINT32_ARRAY:
1320 case DATA_TYPE_INT64_ARRAY:
1321 case DATA_TYPE_UINT64_ARRAY:
1322 case DATA_TYPE_STRING_ARRAY:
1323 case DATA_TYPE_NVLIST_ARRAY:
1324 if (nelem == NULL || data == NULL)
1325 return (EINVAL);
1326 if ((*nelem = NVP_NELEM(nvp)) != 0)
1327 *(void **)data = (void *)NVP_VALUE(nvp);
1328 else
1329 *(void **)data = NULL;
1330 break;
1331
1332 default:
1333 return (ENOTSUP);
1334 }
1335
1336 return (0);
1337 }
1338
1339 static int
1340 nvlist_lookup_common(nvlist_t *nvl, const char *name, data_type_t type,
1341 uint_t *nelem, void *data)
1342 {
1343 nvpriv_t *priv;
1344 nvpair_t *nvp;
1345 i_nvp_t *curr;
1346
1347 if (name == NULL || nvl == NULL ||
1348 (priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv) == NULL)
1349 return (EINVAL);
1350
1351 if (!(nvl->nvl_nvflag & (NV_UNIQUE_NAME | NV_UNIQUE_NAME_TYPE)))
1352 return (ENOTSUP);
1353
1354 for (curr = priv->nvp_list; curr != NULL; curr = curr->nvi_next) {
1355 nvp = &curr->nvi_nvp;
1356
1357 if (strcmp(name, NVP_NAME(nvp)) == 0 && NVP_TYPE(nvp) == type)
1358 return (nvpair_value_common(nvp, type, nelem, data));
1359 }
1360
1361 return (ENOENT);
1362 }
1363
1364 int
1365 nvlist_lookup_boolean(nvlist_t *nvl, const char *name)
1366 {
1367 return (nvlist_lookup_common(nvl, name, DATA_TYPE_BOOLEAN, NULL, NULL));
1368 }
1369
1370 int
1371 nvlist_lookup_boolean_value(nvlist_t *nvl, const char *name, boolean_t *val)
1372 {
1373 return (nvlist_lookup_common(nvl, name,
1374 DATA_TYPE_BOOLEAN_VALUE, NULL, val));
1375 }
1376
1377 int
1378 nvlist_lookup_byte(nvlist_t *nvl, const char *name, uchar_t *val)
1379 {
1380 return (nvlist_lookup_common(nvl, name, DATA_TYPE_BYTE, NULL, val));
1381 }
1382
1383 int
1384 nvlist_lookup_int8(nvlist_t *nvl, const char *name, int8_t *val)
1385 {
1386 return (nvlist_lookup_common(nvl, name, DATA_TYPE_INT8, NULL, val));
1387 }
1388
1389 int
1390 nvlist_lookup_uint8(nvlist_t *nvl, const char *name, uint8_t *val)
1391 {
1392 return (nvlist_lookup_common(nvl, name, DATA_TYPE_UINT8, NULL, val));
1393 }
1394
1395 int
1396 nvlist_lookup_int16(nvlist_t *nvl, const char *name, int16_t *val)
1397 {
1398 return (nvlist_lookup_common(nvl, name, DATA_TYPE_INT16, NULL, val));
1399 }
1400
1401 int
1402 nvlist_lookup_uint16(nvlist_t *nvl, const char *name, uint16_t *val)
1403 {
1404 return (nvlist_lookup_common(nvl, name, DATA_TYPE_UINT16, NULL, val));
1405 }
1406
1407 int
1408 nvlist_lookup_int32(nvlist_t *nvl, const char *name, int32_t *val)
1409 {
1410 return (nvlist_lookup_common(nvl, name, DATA_TYPE_INT32, NULL, val));
1411 }
1412
1413 int
1414 nvlist_lookup_uint32(nvlist_t *nvl, const char *name, uint32_t *val)
1415 {
1416 return (nvlist_lookup_common(nvl, name, DATA_TYPE_UINT32, NULL, val));
1417 }
1418
1419 int
1420 nvlist_lookup_int64(nvlist_t *nvl, const char *name, int64_t *val)
1421 {
1422 return (nvlist_lookup_common(nvl, name, DATA_TYPE_INT64, NULL, val));
1423 }
1424
1425 int
1426 nvlist_lookup_uint64(nvlist_t *nvl, const char *name, uint64_t *val)
1427 {
1428 return (nvlist_lookup_common(nvl, name, DATA_TYPE_UINT64, NULL, val));
1429 }
1430
1431 #if !defined(_KERNEL)
1432 int
1433 nvlist_lookup_double(nvlist_t *nvl, const char *name, double *val)
1434 {
1435 return (nvlist_lookup_common(nvl, name, DATA_TYPE_DOUBLE, NULL, val));
1436 }
1437 #endif
1438
1439 int
1440 nvlist_lookup_string(nvlist_t *nvl, const char *name, char **val)
1441 {
1442 return (nvlist_lookup_common(nvl, name, DATA_TYPE_STRING, NULL, val));
1443 }
1444
1445 int
1446 nvlist_lookup_nvlist(nvlist_t *nvl, const char *name, nvlist_t **val)
1447 {
1448 return (nvlist_lookup_common(nvl, name, DATA_TYPE_NVLIST, NULL, val));
1449 }
1450
1451 int
1452 nvlist_lookup_boolean_array(nvlist_t *nvl, const char *name,
1453 boolean_t **a, uint_t *n)
1454 {
1455 return (nvlist_lookup_common(nvl, name,
1456 DATA_TYPE_BOOLEAN_ARRAY, n, a));
1457 }
1458
1459 int
1460 nvlist_lookup_byte_array(nvlist_t *nvl, const char *name,
1461 uchar_t **a, uint_t *n)
1462 {
1463 return (nvlist_lookup_common(nvl, name, DATA_TYPE_BYTE_ARRAY, n, a));
1464 }
1465
1466 int
1467 nvlist_lookup_int8_array(nvlist_t *nvl, const char *name, int8_t **a, uint_t *n)
1468 {
1469 return (nvlist_lookup_common(nvl, name, DATA_TYPE_INT8_ARRAY, n, a));
1470 }
1471
1472 int
1473 nvlist_lookup_uint8_array(nvlist_t *nvl, const char *name,
1474 uint8_t **a, uint_t *n)
1475 {
1476 return (nvlist_lookup_common(nvl, name, DATA_TYPE_UINT8_ARRAY, n, a));
1477 }
1478
1479 int
1480 nvlist_lookup_int16_array(nvlist_t *nvl, const char *name,
1481 int16_t **a, uint_t *n)
1482 {
1483 return (nvlist_lookup_common(nvl, name, DATA_TYPE_INT16_ARRAY, n, a));
1484 }
1485
1486 int
1487 nvlist_lookup_uint16_array(nvlist_t *nvl, const char *name,
1488 uint16_t **a, uint_t *n)
1489 {
1490 return (nvlist_lookup_common(nvl, name, DATA_TYPE_UINT16_ARRAY, n, a));
1491 }
1492
1493 int
1494 nvlist_lookup_int32_array(nvlist_t *nvl, const char *name,
1495 int32_t **a, uint_t *n)
1496 {
1497 return (nvlist_lookup_common(nvl, name, DATA_TYPE_INT32_ARRAY, n, a));
1498 }
1499
1500 int
1501 nvlist_lookup_uint32_array(nvlist_t *nvl, const char *name,
1502 uint32_t **a, uint_t *n)
1503 {
1504 return (nvlist_lookup_common(nvl, name, DATA_TYPE_UINT32_ARRAY, n, a));
1505 }
1506
1507 int
1508 nvlist_lookup_int64_array(nvlist_t *nvl, const char *name,
1509 int64_t **a, uint_t *n)
1510 {
1511 return (nvlist_lookup_common(nvl, name, DATA_TYPE_INT64_ARRAY, n, a));
1512 }
1513
1514 int
1515 nvlist_lookup_uint64_array(nvlist_t *nvl, const char *name,
1516 uint64_t **a, uint_t *n)
1517 {
1518 return (nvlist_lookup_common(nvl, name, DATA_TYPE_UINT64_ARRAY, n, a));
1519 }
1520
1521 int
1522 nvlist_lookup_string_array(nvlist_t *nvl, const char *name,
1523 char ***a, uint_t *n)
1524 {
1525 return (nvlist_lookup_common(nvl, name, DATA_TYPE_STRING_ARRAY, n, a));
1526 }
1527
1528 int
1529 nvlist_lookup_nvlist_array(nvlist_t *nvl, const char *name,
1530 nvlist_t ***a, uint_t *n)
1531 {
1532 return (nvlist_lookup_common(nvl, name, DATA_TYPE_NVLIST_ARRAY, n, a));
1533 }
1534
1535 int
1536 nvlist_lookup_hrtime(nvlist_t *nvl, const char *name, hrtime_t *val)
1537 {
1538 return (nvlist_lookup_common(nvl, name, DATA_TYPE_HRTIME, NULL, val));
1539 }
1540
1541 int
1542 nvlist_lookup_pairs(nvlist_t *nvl, int flag, ...)
1543 {
1544 va_list ap;
1545 char *name;
1546 int noentok = (flag & NV_FLAG_NOENTOK ? 1 : 0);
1547 int ret = 0;
1548
1549 va_start(ap, flag);
1550 while (ret == 0 && (name = va_arg(ap, char *)) != NULL) {
1551 data_type_t type;
1552 void *val;
1553 uint_t *nelem;
1554
1555 switch (type = va_arg(ap, data_type_t)) {
1556 case DATA_TYPE_BOOLEAN:
1557 ret = nvlist_lookup_common(nvl, name, type, NULL, NULL);
1558 break;
1559
1560 case DATA_TYPE_BOOLEAN_VALUE:
1561 case DATA_TYPE_BYTE:
1562 case DATA_TYPE_INT8:
1563 case DATA_TYPE_UINT8:
1564 case DATA_TYPE_INT16:
1565 case DATA_TYPE_UINT16:
1566 case DATA_TYPE_INT32:
1567 case DATA_TYPE_UINT32:
1568 case DATA_TYPE_INT64:
1569 case DATA_TYPE_UINT64:
1570 case DATA_TYPE_HRTIME:
1571 case DATA_TYPE_STRING:
1572 case DATA_TYPE_NVLIST:
1573 #if !defined(_KERNEL)
1574 case DATA_TYPE_DOUBLE:
1575 #endif
1576 val = va_arg(ap, void *);
1577 ret = nvlist_lookup_common(nvl, name, type, NULL, val);
1578 break;
1579
1580 case DATA_TYPE_BYTE_ARRAY:
1581 case DATA_TYPE_BOOLEAN_ARRAY:
1582 case DATA_TYPE_INT8_ARRAY:
1583 case DATA_TYPE_UINT8_ARRAY:
1584 case DATA_TYPE_INT16_ARRAY:
1585 case DATA_TYPE_UINT16_ARRAY:
1586 case DATA_TYPE_INT32_ARRAY:
1587 case DATA_TYPE_UINT32_ARRAY:
1588 case DATA_TYPE_INT64_ARRAY:
1589 case DATA_TYPE_UINT64_ARRAY:
1590 case DATA_TYPE_STRING_ARRAY:
1591 case DATA_TYPE_NVLIST_ARRAY:
1592 val = va_arg(ap, void *);
1593 nelem = va_arg(ap, uint_t *);
1594 ret = nvlist_lookup_common(nvl, name, type, nelem, val);
1595 break;
1596
1597 default:
1598 ret = EINVAL;
1599 }
1600
1601 if (ret == ENOENT && noentok)
1602 ret = 0;
1603 }
1604 va_end(ap);
1605
1606 return (ret);
1607 }
1608
1609 /*
1610 * Find the 'name'ed nvpair in the nvlist 'nvl'. If 'name' found, the function
1611 * returns zero and a pointer to the matching nvpair is returned in '*ret'
1612 * (given 'ret' is non-NULL). If 'sep' is specified then 'name' will penitrate
1613 * multiple levels of embedded nvlists, with 'sep' as the separator. As an
1614 * example, if sep is '.', name might look like: "a" or "a.b" or "a.c[3]" or
1615 * "a.d[3].e[1]". This matches the C syntax for array embed (for convience,
1616 * code also supports "a.d[3]e[1]" syntax).
1617 *
1618 * If 'ip' is non-NULL and the last name component is an array, return the
1619 * value of the "...[index]" array index in *ip. For an array reference that
1620 * is not indexed, *ip will be returned as -1. If there is a syntax error in
1621 * 'name', and 'ep' is non-NULL then *ep will be set to point to the location
1622 * inside the 'name' string where the syntax error was detected.
1623 */
1624 static int
1625 nvlist_lookup_nvpair_ei_sep(nvlist_t *nvl, const char *name, const char sep,
1626 nvpair_t **ret, int *ip, char **ep)
1627 {
1628 nvpair_t *nvp;
1629 const char *np;
1630 char *sepp = NULL;
1631 char *idxp, *idxep;
1632 nvlist_t **nva;
1633 long idx = 0;
1634 int n;
1635
1636 if (ip)
1637 *ip = -1; /* not indexed */
1638 if (ep)
1639 *ep = NULL;
1640
1641 if ((nvl == NULL) || (name == NULL))
1642 return (EINVAL);
1643
1644 sepp = NULL;
1645 idx = 0;
1646 /* step through components of name */
1647 for (np = name; np && *np; np = sepp) {
1648 /* ensure unique names */
1649 if (!(nvl->nvl_nvflag & NV_UNIQUE_NAME))
1650 return (ENOTSUP);
1651
1652 /* skip white space */
1653 skip_whitespace(np);
1654 if (*np == 0)
1655 break;
1656
1657 /* set 'sepp' to end of current component 'np' */
1658 if (sep)
1659 sepp = strchr(np, sep);
1660 else
1661 sepp = NULL;
1662
1663 /* find start of next "[ index ]..." */
1664 idxp = strchr(np, '[');
1665
1666 /* if sepp comes first, set idxp to NULL */
1667 if (sepp && idxp && (sepp < idxp))
1668 idxp = NULL;
1669
1670 /*
1671 * At this point 'idxp' is set if there is an index
1672 * expected for the current component.
1673 */
1674 if (idxp) {
1675 /* set 'n' to length of current 'np' name component */
1676 n = idxp++ - np;
1677
1678 /* keep sepp up to date for *ep use as we advance */
1679 skip_whitespace(idxp);
1680 sepp = idxp;
1681
1682 /* determine the index value */
1683 #if defined(_KERNEL) && !defined(_BOOT)
1684 if (ddi_strtol(idxp, &idxep, 0, &idx))
1685 goto fail;
1686 #else
1687 idx = strtol(idxp, &idxep, 0);
1688 #endif
1689 if (idxep == idxp)
1690 goto fail;
1691
1692 /* keep sepp up to date for *ep use as we advance */
1693 sepp = idxep;
1694
1695 /* skip white space index value and check for ']' */
1696 skip_whitespace(sepp);
1697 if (*sepp++ != ']')
1698 goto fail;
1699
1700 /* for embedded arrays, support C syntax: "a[1].b" */
1701 skip_whitespace(sepp);
1702 if (sep && (*sepp == sep))
1703 sepp++;
1704 } else if (sepp) {
1705 n = sepp++ - np;
1706 } else {
1707 n = strlen(np);
1708 }
1709
1710 /* trim trailing whitespace by reducing length of 'np' */
1711 if (n == 0)
1712 goto fail;
1713 for (n--; (np[n] == ' ') || (np[n] == '\t'); n--)
1714 ;
1715 n++;
1716
1717 /* skip whitespace, and set sepp to NULL if complete */
1718 if (sepp) {
1719 skip_whitespace(sepp);
1720 if (*sepp == 0)
1721 sepp = NULL;
1722 }
1723
1724 /*
1725 * At this point:
1726 * o 'n' is the length of current 'np' component.
1727 * o 'idxp' is set if there was an index, and value 'idx'.
1728 * o 'sepp' is set to the beginning of the next component,
1729 * and set to NULL if we have no more components.
1730 *
1731 * Search for nvpair with matching component name.
1732 */
1733 for (nvp = nvlist_next_nvpair(nvl, NULL); nvp != NULL;
1734 nvp = nvlist_next_nvpair(nvl, nvp)) {
1735
1736 /* continue if no match on name */
1737 if (strncmp(np, nvpair_name(nvp), n) ||
1738 (strlen(nvpair_name(nvp)) != n))
1739 continue;
1740
1741 /* if indexed, verify type is array oriented */
1742 if (idxp && !nvpair_type_is_array(nvp))
1743 goto fail;
1744
1745 /*
1746 * Full match found, return nvp and idx if this
1747 * was the last component.
1748 */
1749 if (sepp == NULL) {
1750 if (ret)
1751 *ret = nvp;
1752 if (ip && idxp)
1753 *ip = (int)idx; /* return index */
1754 return (0); /* found */
1755 }
1756
1757 /*
1758 * More components: current match must be
1759 * of DATA_TYPE_NVLIST or DATA_TYPE_NVLIST_ARRAY
1760 * to support going deeper.
1761 */
1762 if (nvpair_type(nvp) == DATA_TYPE_NVLIST) {
1763 nvl = EMBEDDED_NVL(nvp);
1764 break;
1765 } else if (nvpair_type(nvp) == DATA_TYPE_NVLIST_ARRAY) {
1766 (void) nvpair_value_nvlist_array(nvp,
1767 &nva, (uint_t *)&n);
1768 if ((n < 0) || (idx >= n))
1769 goto fail;
1770 nvl = nva[idx];
1771 break;
1772 }
1773
1774 /* type does not support more levels */
1775 goto fail;
1776 }
1777 if (nvp == NULL)
1778 goto fail; /* 'name' not found */
1779
1780 /* search for match of next component in embedded 'nvl' list */
1781 }
1782
1783 fail: if (ep && sepp)
1784 *ep = sepp;
1785 return (EINVAL);
1786 }
1787
1788 /*
1789 * Return pointer to nvpair with specified 'name'.
1790 */
1791 int
1792 nvlist_lookup_nvpair(nvlist_t *nvl, const char *name, nvpair_t **ret)
1793 {
1794 return (nvlist_lookup_nvpair_ei_sep(nvl, name, 0, ret, NULL, NULL));
1795 }
1796
1797 /*
1798 * Determine if named nvpair exists in nvlist (use embedded separator of '.'
1799 * and return array index). See nvlist_lookup_nvpair_ei_sep for more detailed
1800 * description.
1801 */
1802 int nvlist_lookup_nvpair_embedded_index(nvlist_t *nvl,
1803 const char *name, nvpair_t **ret, int *ip, char **ep)
1804 {
1805 return (nvlist_lookup_nvpair_ei_sep(nvl, name, '.', ret, ip, ep));
1806 }
1807
1808 boolean_t
1809 nvlist_exists(nvlist_t *nvl, const char *name)
1810 {
1811 nvpriv_t *priv;
1812 nvpair_t *nvp;
1813 i_nvp_t *curr;
1814
1815 if (name == NULL || nvl == NULL ||
1816 (priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv) == NULL)
1817 return (B_FALSE);
1818
1819 for (curr = priv->nvp_list; curr != NULL; curr = curr->nvi_next) {
1820 nvp = &curr->nvi_nvp;
1821
1822 if (strcmp(name, NVP_NAME(nvp)) == 0)
1823 return (B_TRUE);
1824 }
1825
1826 return (B_FALSE);
1827 }
1828
1829 int
1830 nvpair_value_boolean_value(nvpair_t *nvp, boolean_t *val)
1831 {
1832 return (nvpair_value_common(nvp, DATA_TYPE_BOOLEAN_VALUE, NULL, val));
1833 }
1834
1835 int
1836 nvpair_value_byte(nvpair_t *nvp, uchar_t *val)
1837 {
1838 return (nvpair_value_common(nvp, DATA_TYPE_BYTE, NULL, val));
1839 }
1840
1841 int
1842 nvpair_value_int8(nvpair_t *nvp, int8_t *val)
1843 {
1844 return (nvpair_value_common(nvp, DATA_TYPE_INT8, NULL, val));
1845 }
1846
1847 int
1848 nvpair_value_uint8(nvpair_t *nvp, uint8_t *val)
1849 {
1850 return (nvpair_value_common(nvp, DATA_TYPE_UINT8, NULL, val));
1851 }
1852
1853 int
1854 nvpair_value_int16(nvpair_t *nvp, int16_t *val)
1855 {
1856 return (nvpair_value_common(nvp, DATA_TYPE_INT16, NULL, val));
1857 }
1858
1859 int
1860 nvpair_value_uint16(nvpair_t *nvp, uint16_t *val)
1861 {
1862 return (nvpair_value_common(nvp, DATA_TYPE_UINT16, NULL, val));
1863 }
1864
1865 int
1866 nvpair_value_int32(nvpair_t *nvp, int32_t *val)
1867 {
1868 return (nvpair_value_common(nvp, DATA_TYPE_INT32, NULL, val));
1869 }
1870
1871 int
1872 nvpair_value_uint32(nvpair_t *nvp, uint32_t *val)
1873 {
1874 return (nvpair_value_common(nvp, DATA_TYPE_UINT32, NULL, val));
1875 }
1876
1877 int
1878 nvpair_value_int64(nvpair_t *nvp, int64_t *val)
1879 {
1880 return (nvpair_value_common(nvp, DATA_TYPE_INT64, NULL, val));
1881 }
1882
1883 int
1884 nvpair_value_uint64(nvpair_t *nvp, uint64_t *val)
1885 {
1886 return (nvpair_value_common(nvp, DATA_TYPE_UINT64, NULL, val));
1887 }
1888
1889 #if !defined(_KERNEL)
1890 int
1891 nvpair_value_double(nvpair_t *nvp, double *val)
1892 {
1893 return (nvpair_value_common(nvp, DATA_TYPE_DOUBLE, NULL, val));
1894 }
1895 #endif
1896
1897 int
1898 nvpair_value_string(nvpair_t *nvp, char **val)
1899 {
1900 return (nvpair_value_common(nvp, DATA_TYPE_STRING, NULL, val));
1901 }
1902
1903 int
1904 nvpair_value_nvlist(nvpair_t *nvp, nvlist_t **val)
1905 {
1906 return (nvpair_value_common(nvp, DATA_TYPE_NVLIST, NULL, val));
1907 }
1908
1909 int
1910 nvpair_value_boolean_array(nvpair_t *nvp, boolean_t **val, uint_t *nelem)
1911 {
1912 return (nvpair_value_common(nvp, DATA_TYPE_BOOLEAN_ARRAY, nelem, val));
1913 }
1914
1915 int
1916 nvpair_value_byte_array(nvpair_t *nvp, uchar_t **val, uint_t *nelem)
1917 {
1918 return (nvpair_value_common(nvp, DATA_TYPE_BYTE_ARRAY, nelem, val));
1919 }
1920
1921 int
1922 nvpair_value_int8_array(nvpair_t *nvp, int8_t **val, uint_t *nelem)
1923 {
1924 return (nvpair_value_common(nvp, DATA_TYPE_INT8_ARRAY, nelem, val));
1925 }
1926
1927 int
1928 nvpair_value_uint8_array(nvpair_t *nvp, uint8_t **val, uint_t *nelem)
1929 {
1930 return (nvpair_value_common(nvp, DATA_TYPE_UINT8_ARRAY, nelem, val));
1931 }
1932
1933 int
1934 nvpair_value_int16_array(nvpair_t *nvp, int16_t **val, uint_t *nelem)
1935 {
1936 return (nvpair_value_common(nvp, DATA_TYPE_INT16_ARRAY, nelem, val));
1937 }
1938
1939 int
1940 nvpair_value_uint16_array(nvpair_t *nvp, uint16_t **val, uint_t *nelem)
1941 {
1942 return (nvpair_value_common(nvp, DATA_TYPE_UINT16_ARRAY, nelem, val));
1943 }
1944
1945 int
1946 nvpair_value_int32_array(nvpair_t *nvp, int32_t **val, uint_t *nelem)
1947 {
1948 return (nvpair_value_common(nvp, DATA_TYPE_INT32_ARRAY, nelem, val));
1949 }
1950
1951 int
1952 nvpair_value_uint32_array(nvpair_t *nvp, uint32_t **val, uint_t *nelem)
1953 {
1954 return (nvpair_value_common(nvp, DATA_TYPE_UINT32_ARRAY, nelem, val));
1955 }
1956
1957 int
1958 nvpair_value_int64_array(nvpair_t *nvp, int64_t **val, uint_t *nelem)
1959 {
1960 return (nvpair_value_common(nvp, DATA_TYPE_INT64_ARRAY, nelem, val));
1961 }
1962
1963 int
1964 nvpair_value_uint64_array(nvpair_t *nvp, uint64_t **val, uint_t *nelem)
1965 {
1966 return (nvpair_value_common(nvp, DATA_TYPE_UINT64_ARRAY, nelem, val));
1967 }
1968
1969 int
1970 nvpair_value_string_array(nvpair_t *nvp, char ***val, uint_t *nelem)
1971 {
1972 return (nvpair_value_common(nvp, DATA_TYPE_STRING_ARRAY, nelem, val));
1973 }
1974
1975 int
1976 nvpair_value_nvlist_array(nvpair_t *nvp, nvlist_t ***val, uint_t *nelem)
1977 {
1978 return (nvpair_value_common(nvp, DATA_TYPE_NVLIST_ARRAY, nelem, val));
1979 }
1980
1981 int
1982 nvpair_value_hrtime(nvpair_t *nvp, hrtime_t *val)
1983 {
1984 return (nvpair_value_common(nvp, DATA_TYPE_HRTIME, NULL, val));
1985 }
1986
1987 /*
1988 * Add specified pair to the list.
1989 */
1990 int
1991 nvlist_add_nvpair(nvlist_t *nvl, nvpair_t *nvp)
1992 {
1993 if (nvl == NULL || nvp == NULL)
1994 return (EINVAL);
1995
1996 return (nvlist_add_common(nvl, NVP_NAME(nvp), NVP_TYPE(nvp),
1997 NVP_NELEM(nvp), NVP_VALUE(nvp)));
1998 }
1999
2000 /*
2001 * Merge the supplied nvlists and put the result in dst.
2002 * The merged list will contain all names specified in both lists,
2003 * the values are taken from nvl in the case of duplicates.
2004 * Return 0 on success.
2005 */
2006 /*ARGSUSED*/
2007 int
2008 nvlist_merge(nvlist_t *dst, nvlist_t *nvl, int flag)
2009 {
2010 if (nvl == NULL || dst == NULL)
2011 return (EINVAL);
2012
2013 if (dst != nvl)
2014 return (nvlist_copy_pairs(nvl, dst));
2015
2016 return (0);
2017 }
2018
2019 /*
2020 * Encoding related routines
2021 */
2022 #define NVS_OP_ENCODE 0
2023 #define NVS_OP_DECODE 1
2024 #define NVS_OP_GETSIZE 2
2025
2026 typedef struct nvs_ops nvs_ops_t;
2027
2028 typedef struct {
2029 int nvs_op;
2030 const nvs_ops_t *nvs_ops;
2031 void *nvs_private;
2032 nvpriv_t *nvs_priv;
2033 int nvs_recursion;
2034 } nvstream_t;
2035
2036 /*
2037 * nvs operations are:
2038 * - nvs_nvlist
2039 * encoding / decoding of an nvlist header (nvlist_t)
2040 * calculates the size used for header and end detection
2041 *
2042 * - nvs_nvpair
2043 * responsible for the first part of encoding / decoding of an nvpair
2044 * calculates the decoded size of an nvpair
2045 *
2046 * - nvs_nvp_op
2047 * second part of encoding / decoding of an nvpair
2048 *
2049 * - nvs_nvp_size
2050 * calculates the encoding size of an nvpair
2051 *
2052 * - nvs_nvl_fini
2053 * encodes the end detection mark (zeros).
2054 */
2055 struct nvs_ops {
2056 int (*nvs_nvlist)(nvstream_t *, nvlist_t *, size_t *);
2057 int (*nvs_nvpair)(nvstream_t *, nvpair_t *, size_t *);
2058 int (*nvs_nvp_op)(nvstream_t *, nvpair_t *);
2059 int (*nvs_nvp_size)(nvstream_t *, nvpair_t *, size_t *);
2060 int (*nvs_nvl_fini)(nvstream_t *);
2061 };
2062
2063 typedef struct {
2064 char nvh_encoding; /* nvs encoding method */
2065 char nvh_endian; /* nvs endian */
2066 char nvh_reserved1; /* reserved for future use */
2067 char nvh_reserved2; /* reserved for future use */
2068 } nvs_header_t;
2069
2070 static int
2071 nvs_encode_pairs(nvstream_t *nvs, nvlist_t *nvl)
2072 {
2073 nvpriv_t *priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv;
2074 i_nvp_t *curr;
2075
2076 /*
2077 * Walk nvpair in list and encode each nvpair
2078 */
2079 for (curr = priv->nvp_list; curr != NULL; curr = curr->nvi_next)
2080 if (nvs->nvs_ops->nvs_nvpair(nvs, &curr->nvi_nvp, NULL) != 0)
2081 return (EFAULT);
2082
2083 return (nvs->nvs_ops->nvs_nvl_fini(nvs));
2084 }
2085
2086 static int
2087 nvs_decode_pairs(nvstream_t *nvs, nvlist_t *nvl)
2088 {
2089 nvpair_t *nvp;
2090 size_t nvsize;
2091 int err;
2092
2093 /*
2094 * Get decoded size of next pair in stream, alloc
2095 * memory for nvpair_t, then decode the nvpair
2096 */
2097 while ((err = nvs->nvs_ops->nvs_nvpair(nvs, NULL, &nvsize)) == 0) {
2098 if (nvsize == 0) /* end of list */
2099 break;
2100
2101 /* make sure len makes sense */
2102 if (nvsize < NVP_SIZE_CALC(1, 0))
2103 return (EFAULT);
2104
2105 if ((nvp = nvp_buf_alloc(nvl, nvsize)) == NULL)
2106 return (ENOMEM);
2107
2108 if ((err = nvs->nvs_ops->nvs_nvp_op(nvs, nvp)) != 0) {
2109 nvp_buf_free(nvl, nvp);
2110 return (err);
2111 }
2112
2113 if (i_validate_nvpair(nvp) != 0) {
2114 nvpair_free(nvp);
2115 nvp_buf_free(nvl, nvp);
2116 return (EFAULT);
2117 }
2118
2119 nvp_buf_link(nvl, nvp);
2120 }
2121 return (err);
2122 }
2123
2124 static int
2125 nvs_getsize_pairs(nvstream_t *nvs, nvlist_t *nvl, size_t *buflen)
2126 {
2127 nvpriv_t *priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv;
2128 i_nvp_t *curr;
2129 uint64_t nvsize = *buflen;
2130 size_t size;
2131
2132 /*
2133 * Get encoded size of nvpairs in nvlist
2134 */
2135 for (curr = priv->nvp_list; curr != NULL; curr = curr->nvi_next) {
2136 if (nvs->nvs_ops->nvs_nvp_size(nvs, &curr->nvi_nvp, &size) != 0)
2137 return (EINVAL);
2138
2139 if ((nvsize += size) > INT32_MAX)
2140 return (EINVAL);
2141 }
2142
2143 *buflen = nvsize;
2144 return (0);
2145 }
2146
2147 static int
2148 nvs_operation(nvstream_t *nvs, nvlist_t *nvl, size_t *buflen)
2149 {
2150 int err;
2151
2152 if (nvl->nvl_priv == 0)
2153 return (EFAULT);
2154
2155 /*
2156 * Perform the operation, starting with header, then each nvpair
2157 */
2158 if ((err = nvs->nvs_ops->nvs_nvlist(nvs, nvl, buflen)) != 0)
2159 return (err);
2160
2161 switch (nvs->nvs_op) {
2162 case NVS_OP_ENCODE:
2163 err = nvs_encode_pairs(nvs, nvl);
2164 break;
2165
2166 case NVS_OP_DECODE:
2167 err = nvs_decode_pairs(nvs, nvl);
2168 break;
2169
2170 case NVS_OP_GETSIZE:
2171 err = nvs_getsize_pairs(nvs, nvl, buflen);
2172 break;
2173
2174 default:
2175 err = EINVAL;
2176 }
2177
2178 return (err);
2179 }
2180
2181 static int
2182 nvs_embedded(nvstream_t *nvs, nvlist_t *embedded)
2183 {
2184 switch (nvs->nvs_op) {
2185 case NVS_OP_ENCODE: {
2186 int err;
2187
2188 if (nvs->nvs_recursion >= nvpair_max_recursion)
2189 return (EINVAL);
2190 nvs->nvs_recursion++;
2191 err = nvs_operation(nvs, embedded, NULL);
2192 nvs->nvs_recursion--;
2193 return (err);
2194 }
2195 case NVS_OP_DECODE: {
2196 nvpriv_t *priv;
2197 int err;
2198
2199 if (embedded->nvl_version != NV_VERSION)
2200 return (ENOTSUP);
2201
2202 if ((priv = nv_priv_alloc_embedded(nvs->nvs_priv)) == NULL)
2203 return (ENOMEM);
2204
2205 nvlist_init(embedded, embedded->nvl_nvflag, priv);
2206
2207 if (nvs->nvs_recursion >= nvpair_max_recursion) {
2208 nvlist_free(embedded);
2209 return (EINVAL);
2210 }
2211 nvs->nvs_recursion++;
2212 if ((err = nvs_operation(nvs, embedded, NULL)) != 0)
2213 nvlist_free(embedded);
2214 nvs->nvs_recursion--;
2215 return (err);
2216 }
2217 default:
2218 break;
2219 }
2220
2221 return (EINVAL);
2222 }
2223
2224 static int
2225 nvs_embedded_nvl_array(nvstream_t *nvs, nvpair_t *nvp, size_t *size)
2226 {
2227 size_t nelem = NVP_NELEM(nvp);
2228 nvlist_t **nvlp = EMBEDDED_NVL_ARRAY(nvp);
2229 int i;
2230
2231 switch (nvs->nvs_op) {
2232 case NVS_OP_ENCODE:
2233 for (i = 0; i < nelem; i++)
2234 if (nvs_embedded(nvs, nvlp[i]) != 0)
2235 return (EFAULT);
2236 break;
2237
2238 case NVS_OP_DECODE: {
2239 size_t len = nelem * sizeof (uint64_t);
2240 nvlist_t *embedded = (nvlist_t *)((uintptr_t)nvlp + len);
2241
2242 bzero(nvlp, len); /* don't trust packed data */
2243 for (i = 0; i < nelem; i++) {
2244 if (nvs_embedded(nvs, embedded) != 0) {
2245 nvpair_free(nvp);
2246 return (EFAULT);
2247 }
2248
2249 nvlp[i] = embedded++;
2250 }
2251 break;
2252 }
2253 case NVS_OP_GETSIZE: {
2254 uint64_t nvsize = 0;
2255
2256 for (i = 0; i < nelem; i++) {
2257 size_t nvp_sz = 0;
2258
2259 if (nvs_operation(nvs, nvlp[i], &nvp_sz) != 0)
2260 return (EINVAL);
2261
2262 if ((nvsize += nvp_sz) > INT32_MAX)
2263 return (EINVAL);
2264 }
2265
2266 *size = nvsize;
2267 break;
2268 }
2269 default:
2270 return (EINVAL);
2271 }
2272
2273 return (0);
2274 }
2275
2276 static int nvs_native(nvstream_t *, nvlist_t *, char *, size_t *);
2277 static int nvs_xdr(nvstream_t *, nvlist_t *, char *, size_t *);
2278
2279 /*
2280 * Common routine for nvlist operations:
2281 * encode, decode, getsize (encoded size).
2282 */
2283 static int
2284 nvlist_common(nvlist_t *nvl, char *buf, size_t *buflen, int encoding,
2285 int nvs_op)
2286 {
2287 int err = 0;
2288 nvstream_t nvs;
2289 int nvl_endian;
2290 #ifdef _LITTLE_ENDIAN
2291 int host_endian = 1;
2292 #else
2293 int host_endian = 0;
2294 #endif /* _LITTLE_ENDIAN */
2295 nvs_header_t *nvh = (void *)buf;
2296
2297 if (buflen == NULL || nvl == NULL ||
2298 (nvs.nvs_priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv) == NULL)
2299 return (EINVAL);
2300
2301 nvs.nvs_op = nvs_op;
2302 nvs.nvs_recursion = 0;
2303
2304 /*
2305 * For NVS_OP_ENCODE and NVS_OP_DECODE make sure an nvlist and
2306 * a buffer is allocated. The first 4 bytes in the buffer are
2307 * used for encoding method and host endian.
2308 */
2309 switch (nvs_op) {
2310 case NVS_OP_ENCODE:
2311 if (buf == NULL || *buflen < sizeof (nvs_header_t))
2312 return (EINVAL);
2313
2314 nvh->nvh_encoding = encoding;
2315 nvh->nvh_endian = nvl_endian = host_endian;
2316 nvh->nvh_reserved1 = 0;
2317 nvh->nvh_reserved2 = 0;
2318 break;
2319
2320 case NVS_OP_DECODE:
2321 if (buf == NULL || *buflen < sizeof (nvs_header_t))
2322 return (EINVAL);
2323
2324 /* get method of encoding from first byte */
2325 encoding = nvh->nvh_encoding;
2326 nvl_endian = nvh->nvh_endian;
2327 break;
2328
2329 case NVS_OP_GETSIZE:
2330 nvl_endian = host_endian;
2331
2332 /*
2333 * add the size for encoding
2334 */
2335 *buflen = sizeof (nvs_header_t);
2336 break;
2337
2338 default:
2339 return (ENOTSUP);
2340 }
2341
2342 /*
2343 * Create an nvstream with proper encoding method
2344 */
2345 switch (encoding) {
2346 case NV_ENCODE_NATIVE:
2347 /*
2348 * check endianness, in case we are unpacking
2349 * from a file
2350 */
2351 if (nvl_endian != host_endian)
2352 return (ENOTSUP);
2353 err = nvs_native(&nvs, nvl, buf, buflen);
2354 break;
2355 case NV_ENCODE_XDR:
2356 err = nvs_xdr(&nvs, nvl, buf, buflen);
2357 break;
2358 default:
2359 err = ENOTSUP;
2360 break;
2361 }
2362
2363 return (err);
2364 }
2365
2366 int
2367 nvlist_size(nvlist_t *nvl, size_t *size, int encoding)
2368 {
2369 return (nvlist_common(nvl, NULL, size, encoding, NVS_OP_GETSIZE));
2370 }
2371
2372 /*
2373 * Pack nvlist into contiguous memory
2374 */
2375 int
2376 nvlist_pack(nvlist_t *nvl, char **bufp, size_t *buflen, int encoding,
2377 int kmflag)
2378 {
2379 return (nvlist_xpack(nvl, bufp, buflen, encoding,
2380 nvlist_nv_alloc(kmflag)));
2381 }
2382
2383 int
2384 nvlist_xpack(nvlist_t *nvl, char **bufp, size_t *buflen, int encoding,
2385 nv_alloc_t *nva)
2386 {
2387 nvpriv_t nvpriv;
2388 size_t alloc_size;
2389 char *buf;
2390 int err;
2391
2392 if (nva == NULL || nvl == NULL || bufp == NULL || buflen == NULL)
2393 return (EINVAL);
2394
2395 if (*bufp != NULL)
2396 return (nvlist_common(nvl, *bufp, buflen, encoding,
2397 NVS_OP_ENCODE));
2398
2399 /*
2400 * Here is a difficult situation:
2401 * 1. The nvlist has fixed allocator properties.
2402 * All other nvlist routines (like nvlist_add_*, ...) use
2403 * these properties.
2404 * 2. When using nvlist_pack() the user can specify their own
2405 * allocator properties (e.g. by using KM_NOSLEEP).
2406 *
2407 * We use the user specified properties (2). A clearer solution
2408 * will be to remove the kmflag from nvlist_pack(), but we will
2409 * not change the interface.
2410 */
2411 nv_priv_init(&nvpriv, nva, 0);
2412
2413 if ((err = nvlist_size(nvl, &alloc_size, encoding)))
2414 return (err);
2415
2416 if ((buf = nv_mem_zalloc(&nvpriv, alloc_size)) == NULL)
2417 return (ENOMEM);
2418
2419 if ((err = nvlist_common(nvl, buf, &alloc_size, encoding,
2420 NVS_OP_ENCODE)) != 0) {
2421 nv_mem_free(&nvpriv, buf, alloc_size);
2422 } else {
2423 *buflen = alloc_size;
2424 *bufp = buf;
2425 }
2426
2427 return (err);
2428 }
2429
2430 /*
2431 * Unpack buf into an nvlist_t
2432 */
2433 int
2434 nvlist_unpack(char *buf, size_t buflen, nvlist_t **nvlp, int kmflag)
2435 {
2436 return (nvlist_xunpack(buf, buflen, nvlp, nvlist_nv_alloc(kmflag)));
2437 }
2438
2439 int
2440 nvlist_xunpack(char *buf, size_t buflen, nvlist_t **nvlp, nv_alloc_t *nva)
2441 {
2442 nvlist_t *nvl;
2443 int err;
2444
2445 if (nvlp == NULL)
2446 return (EINVAL);
2447
2448 if ((err = nvlist_xalloc(&nvl, 0, nva)) != 0)
2449 return (err);
2450
2451 if ((err = nvlist_common(nvl, buf, &buflen, 0, NVS_OP_DECODE)) != 0)
2452 nvlist_free(nvl);
2453 else
2454 *nvlp = nvl;
2455
2456 return (err);
2457 }
2458
2459 /*
2460 * Native encoding functions
2461 */
2462 typedef struct {
2463 /*
2464 * This structure is used when decoding a packed nvpair in
2465 * the native format. n_base points to a buffer containing the
2466 * packed nvpair. n_end is a pointer to the end of the buffer.
2467 * (n_end actually points to the first byte past the end of the
2468 * buffer.) n_curr is a pointer that lies between n_base and n_end.
2469 * It points to the current data that we are decoding.
2470 * The amount of data left in the buffer is equal to n_end - n_curr.
2471 * n_flag is used to recognize a packed embedded list.
2472 */
2473 caddr_t n_base;
2474 caddr_t n_end;
2475 caddr_t n_curr;
2476 uint_t n_flag;
2477 } nvs_native_t;
2478
2479 static int
2480 nvs_native_create(nvstream_t *nvs, nvs_native_t *native, char *buf,
2481 size_t buflen)
2482 {
2483 switch (nvs->nvs_op) {
2484 case NVS_OP_ENCODE:
2485 case NVS_OP_DECODE:
2486 nvs->nvs_private = native;
2487 native->n_curr = native->n_base = buf;
2488 native->n_end = buf + buflen;
2489 native->n_flag = 0;
2490 return (0);
2491
2492 case NVS_OP_GETSIZE:
2493 nvs->nvs_private = native;
2494 native->n_curr = native->n_base = native->n_end = NULL;
2495 native->n_flag = 0;
2496 return (0);
2497 default:
2498 return (EINVAL);
2499 }
2500 }
2501
2502 /*ARGSUSED*/
2503 static void
2504 nvs_native_destroy(nvstream_t *nvs)
2505 {
2506 }
2507
2508 static int
2509 native_cp(nvstream_t *nvs, void *buf, size_t size)
2510 {
2511 nvs_native_t *native = (nvs_native_t *)nvs->nvs_private;
2512
2513 if (native->n_curr + size > native->n_end)
2514 return (EFAULT);
2515
2516 /*
2517 * The bcopy() below eliminates alignment requirement
2518 * on the buffer (stream) and is preferred over direct access.
2519 */
2520 switch (nvs->nvs_op) {
2521 case NVS_OP_ENCODE:
2522 bcopy(buf, native->n_curr, size);
2523 break;
2524 case NVS_OP_DECODE:
2525 bcopy(native->n_curr, buf, size);
2526 break;
2527 default:
2528 return (EINVAL);
2529 }
2530
2531 native->n_curr += size;
2532 return (0);
2533 }
2534
2535 /*
2536 * operate on nvlist_t header
2537 */
2538 static int
2539 nvs_native_nvlist(nvstream_t *nvs, nvlist_t *nvl, size_t *size)
2540 {
2541 nvs_native_t *native = nvs->nvs_private;
2542
2543 switch (nvs->nvs_op) {
2544 case NVS_OP_ENCODE:
2545 case NVS_OP_DECODE:
2546 if (native->n_flag)
2547 return (0); /* packed embedded list */
2548
2549 native->n_flag = 1;
2550
2551 /* copy version and nvflag of the nvlist_t */
2552 if (native_cp(nvs, &nvl->nvl_version, sizeof (int32_t)) != 0 ||
2553 native_cp(nvs, &nvl->nvl_nvflag, sizeof (int32_t)) != 0)
2554 return (EFAULT);
2555
2556 return (0);
2557
2558 case NVS_OP_GETSIZE:
2559 /*
2560 * if calculate for packed embedded list
2561 * 4 for end of the embedded list
2562 * else
2563 * 2 * sizeof (int32_t) for nvl_version and nvl_nvflag
2564 * and 4 for end of the entire list
2565 */
2566 if (native->n_flag) {
2567 *size += 4;
2568 } else {
2569 native->n_flag = 1;
2570 *size += 2 * sizeof (int32_t) + 4;
2571 }
2572
2573 return (0);
2574
2575 default:
2576 return (EINVAL);
2577 }
2578 }
2579
2580 static int
2581 nvs_native_nvl_fini(nvstream_t *nvs)
2582 {
2583 if (nvs->nvs_op == NVS_OP_ENCODE) {
2584 nvs_native_t *native = (nvs_native_t *)nvs->nvs_private;
2585 /*
2586 * Add 4 zero bytes at end of nvlist. They are used
2587 * for end detection by the decode routine.
2588 */
2589 if (native->n_curr + sizeof (int) > native->n_end)
2590 return (EFAULT);
2591
2592 bzero(native->n_curr, sizeof (int));
2593 native->n_curr += sizeof (int);
2594 }
2595
2596 return (0);
2597 }
2598
2599 static int
2600 nvpair_native_embedded(nvstream_t *nvs, nvpair_t *nvp)
2601 {
2602 if (nvs->nvs_op == NVS_OP_ENCODE) {
2603 nvs_native_t *native = (nvs_native_t *)nvs->nvs_private;
2604 nvlist_t *packed = (void *)
2605 (native->n_curr - nvp->nvp_size + NVP_VALOFF(nvp));
2606 /*
2607 * Null out the pointer that is meaningless in the packed
2608 * structure. The address may not be aligned, so we have
2609 * to use bzero.
2610 */
2611 bzero((char *)packed + offsetof(nvlist_t, nvl_priv),
2612 sizeof (uint64_t));
2613 }
2614
2615 return (nvs_embedded(nvs, EMBEDDED_NVL(nvp)));
2616 }
2617
2618 static int
2619 nvpair_native_embedded_array(nvstream_t *nvs, nvpair_t *nvp)
2620 {
2621 if (nvs->nvs_op == NVS_OP_ENCODE) {
2622 nvs_native_t *native = (nvs_native_t *)nvs->nvs_private;
2623 char *value = native->n_curr - nvp->nvp_size + NVP_VALOFF(nvp);
2624 size_t len = NVP_NELEM(nvp) * sizeof (uint64_t);
2625 nvlist_t *packed = (nvlist_t *)((uintptr_t)value + len);
2626 int i;
2627 /*
2628 * Null out pointers that are meaningless in the packed
2629 * structure. The addresses may not be aligned, so we have
2630 * to use bzero.
2631 */
2632 bzero(value, len);
2633
2634 for (i = 0; i < NVP_NELEM(nvp); i++, packed++)
2635 /*
2636 * Null out the pointer that is meaningless in the
2637 * packed structure. The address may not be aligned,
2638 * so we have to use bzero.
2639 */
2640 bzero((char *)packed + offsetof(nvlist_t, nvl_priv),
2641 sizeof (uint64_t));
2642 }
2643
2644 return (nvs_embedded_nvl_array(nvs, nvp, NULL));
2645 }
2646
2647 static void
2648 nvpair_native_string_array(nvstream_t *nvs, nvpair_t *nvp)
2649 {
2650 switch (nvs->nvs_op) {
2651 case NVS_OP_ENCODE: {
2652 nvs_native_t *native = (nvs_native_t *)nvs->nvs_private;
2653 uint64_t *strp = (void *)
2654 (native->n_curr - nvp->nvp_size + NVP_VALOFF(nvp));
2655 /*
2656 * Null out pointers that are meaningless in the packed
2657 * structure. The addresses may not be aligned, so we have
2658 * to use bzero.
2659 */
2660 bzero(strp, NVP_NELEM(nvp) * sizeof (uint64_t));
2661 break;
2662 }
2663 case NVS_OP_DECODE: {
2664 char **strp = (void *)NVP_VALUE(nvp);
2665 char *buf = ((char *)strp + NVP_NELEM(nvp) * sizeof (uint64_t));
2666 int i;
2667
2668 for (i = 0; i < NVP_NELEM(nvp); i++) {
2669 strp[i] = buf;
2670 buf += strlen(buf) + 1;
2671 }
2672 break;
2673 }
2674 }
2675 }
2676
2677 static int
2678 nvs_native_nvp_op(nvstream_t *nvs, nvpair_t *nvp)
2679 {
2680 data_type_t type;
2681 int value_sz;
2682 int ret = 0;
2683
2684 /*
2685 * We do the initial bcopy of the data before we look at
2686 * the nvpair type, because when we're decoding, we won't
2687 * have the correct values for the pair until we do the bcopy.
2688 */
2689 switch (nvs->nvs_op) {
2690 case NVS_OP_ENCODE:
2691 case NVS_OP_DECODE:
2692 if (native_cp(nvs, nvp, nvp->nvp_size) != 0)
2693 return (EFAULT);
2694 break;
2695 default:
2696 return (EINVAL);
2697 }
2698
2699 /* verify nvp_name_sz, check the name string length */
2700 if (i_validate_nvpair_name(nvp) != 0)
2701 return (EFAULT);
2702
2703 type = NVP_TYPE(nvp);
2704
2705 /*
2706 * Verify type and nelem and get the value size.
2707 * In case of data types DATA_TYPE_STRING and DATA_TYPE_STRING_ARRAY
2708 * is the size of the string(s) excluded.
2709 */
2710 if ((value_sz = i_get_value_size(type, NULL, NVP_NELEM(nvp))) < 0)
2711 return (EFAULT);
2712
2713 if (NVP_SIZE_CALC(nvp->nvp_name_sz, value_sz) > nvp->nvp_size)
2714 return (EFAULT);
2715
2716 switch (type) {
2717 case DATA_TYPE_NVLIST:
2718 ret = nvpair_native_embedded(nvs, nvp);
2719 break;
2720 case DATA_TYPE_NVLIST_ARRAY:
2721 ret = nvpair_native_embedded_array(nvs, nvp);
2722 break;
2723 case DATA_TYPE_STRING_ARRAY:
2724 nvpair_native_string_array(nvs, nvp);
2725 break;
2726 default:
2727 break;
2728 }
2729
2730 return (ret);
2731 }
2732
2733 static int
2734 nvs_native_nvp_size(nvstream_t *nvs, nvpair_t *nvp, size_t *size)
2735 {
2736 uint64_t nvp_sz = nvp->nvp_size;
2737
2738 switch (NVP_TYPE(nvp)) {
2739 case DATA_TYPE_NVLIST: {
2740 size_t nvsize = 0;
2741
2742 if (nvs_operation(nvs, EMBEDDED_NVL(nvp), &nvsize) != 0)
2743 return (EINVAL);
2744
2745 nvp_sz += nvsize;
2746 break;
2747 }
2748 case DATA_TYPE_NVLIST_ARRAY: {
2749 size_t nvsize;
2750
2751 if (nvs_embedded_nvl_array(nvs, nvp, &nvsize) != 0)
2752 return (EINVAL);
2753
2754 nvp_sz += nvsize;
2755 break;
2756 }
2757 default:
2758 break;
2759 }
2760
2761 if (nvp_sz > INT32_MAX)
2762 return (EINVAL);
2763
2764 *size = nvp_sz;
2765
2766 return (0);
2767 }
2768
2769 static int
2770 nvs_native_nvpair(nvstream_t *nvs, nvpair_t *nvp, size_t *size)
2771 {
2772 switch (nvs->nvs_op) {
2773 case NVS_OP_ENCODE:
2774 return (nvs_native_nvp_op(nvs, nvp));
2775
2776 case NVS_OP_DECODE: {
2777 nvs_native_t *native = (nvs_native_t *)nvs->nvs_private;
2778 int32_t decode_len;
2779
2780 /* try to read the size value from the stream */
2781 if (native->n_curr + sizeof (int32_t) > native->n_end)
2782 return (EFAULT);
2783 bcopy(native->n_curr, &decode_len, sizeof (int32_t));
2784
2785 /* sanity check the size value */
2786 if (decode_len < 0 ||
2787 decode_len > native->n_end - native->n_curr)
2788 return (EFAULT);
2789
2790 *size = decode_len;
2791
2792 /*
2793 * If at the end of the stream then move the cursor
2794 * forward, otherwise nvpair_native_op() will read
2795 * the entire nvpair at the same cursor position.
2796 */
2797 if (*size == 0)
2798 native->n_curr += sizeof (int32_t);
2799 break;
2800 }
2801
2802 default:
2803 return (EINVAL);
2804 }
2805
2806 return (0);
2807 }
2808
2809 static const nvs_ops_t nvs_native_ops = {
2810 .nvs_nvlist = nvs_native_nvlist,
2811 .nvs_nvpair = nvs_native_nvpair,
2812 .nvs_nvp_op = nvs_native_nvp_op,
2813 .nvs_nvp_size = nvs_native_nvp_size,
2814 .nvs_nvl_fini = nvs_native_nvl_fini
2815 };
2816
2817 static int
2818 nvs_native(nvstream_t *nvs, nvlist_t *nvl, char *buf, size_t *buflen)
2819 {
2820 nvs_native_t native;
2821 int err;
2822
2823 nvs->nvs_ops = &nvs_native_ops;
2824
2825 if ((err = nvs_native_create(nvs, &native, buf + sizeof (nvs_header_t),
2826 *buflen - sizeof (nvs_header_t))) != 0)
2827 return (err);
2828
2829 err = nvs_operation(nvs, nvl, buflen);
2830
2831 nvs_native_destroy(nvs);
2832
2833 return (err);
2834 }
2835
2836 /*
2837 * XDR encoding functions
2838 *
2839 * An xdr packed nvlist is encoded as:
2840 *
2841 * - encoding methode and host endian (4 bytes)
2842 * - nvl_version (4 bytes)
2843 * - nvl_nvflag (4 bytes)
2844 *
2845 * - encoded nvpairs, the format of one xdr encoded nvpair is:
2846 * - encoded size of the nvpair (4 bytes)
2847 * - decoded size of the nvpair (4 bytes)
2848 * - name string, (4 + sizeof(NV_ALIGN4(string))
2849 * a string is coded as size (4 bytes) and data
2850 * - data type (4 bytes)
2851 * - number of elements in the nvpair (4 bytes)
2852 * - data
2853 *
2854 * - 2 zero's for end of the entire list (8 bytes)
2855 */
2856 static int
2857 nvs_xdr_create(nvstream_t *nvs, XDR *xdr, char *buf, size_t buflen)
2858 {
2859 /* xdr data must be 4 byte aligned */
2860 if ((ulong_t)buf % 4 != 0)
2861 return (EFAULT);
2862
2863 switch (nvs->nvs_op) {
2864 case NVS_OP_ENCODE:
2865 xdrmem_create(xdr, buf, (uint_t)buflen, XDR_ENCODE);
2866 nvs->nvs_private = xdr;
2867 return (0);
2868 case NVS_OP_DECODE:
2869 xdrmem_create(xdr, buf, (uint_t)buflen, XDR_DECODE);
2870 nvs->nvs_private = xdr;
2871 return (0);
2872 case NVS_OP_GETSIZE:
2873 nvs->nvs_private = NULL;
2874 return (0);
2875 default:
2876 return (EINVAL);
2877 }
2878 }
2879
2880 static void
2881 nvs_xdr_destroy(nvstream_t *nvs)
2882 {
2883 switch (nvs->nvs_op) {
2884 case NVS_OP_ENCODE:
2885 case NVS_OP_DECODE:
2886 xdr_destroy((XDR *)nvs->nvs_private);
2887 break;
2888 default:
2889 break;
2890 }
2891 }
2892
2893 static int
2894 nvs_xdr_nvlist(nvstream_t *nvs, nvlist_t *nvl, size_t *size)
2895 {
2896 switch (nvs->nvs_op) {
2897 case NVS_OP_ENCODE:
2898 case NVS_OP_DECODE: {
2899 XDR *xdr = nvs->nvs_private;
2900
2901 if (!xdr_int(xdr, &nvl->nvl_version) ||
2902 !xdr_u_int(xdr, &nvl->nvl_nvflag))
2903 return (EFAULT);
2904 break;
2905 }
2906 case NVS_OP_GETSIZE: {
2907 /*
2908 * 2 * 4 for nvl_version + nvl_nvflag
2909 * and 8 for end of the entire list
2910 */
2911 *size += 2 * 4 + 8;
2912 break;
2913 }
2914 default:
2915 return (EINVAL);
2916 }
2917 return (0);
2918 }
2919
2920 static int
2921 nvs_xdr_nvl_fini(nvstream_t *nvs)
2922 {
2923 if (nvs->nvs_op == NVS_OP_ENCODE) {
2924 XDR *xdr = nvs->nvs_private;
2925 int zero = 0;
2926
2927 if (!xdr_int(xdr, &zero) || !xdr_int(xdr, &zero))
2928 return (EFAULT);
2929 }
2930
2931 return (0);
2932 }
2933
2934 /*
2935 * The format of xdr encoded nvpair is:
2936 * encode_size, decode_size, name string, data type, nelem, data
2937 */
2938 static int
2939 nvs_xdr_nvp_op(nvstream_t *nvs, nvpair_t *nvp)
2940 {
2941 data_type_t type;
2942 char *buf;
2943 char *buf_end = (char *)nvp + nvp->nvp_size;
2944 int value_sz;
2945 uint_t nelem, buflen;
2946 bool_t ret = FALSE;
2947 XDR *xdr = nvs->nvs_private;
2948
2949 ASSERT(xdr != NULL && nvp != NULL);
2950
2951 /* name string */
2952 if ((buf = NVP_NAME(nvp)) >= buf_end)
2953 return (EFAULT);
2954 buflen = buf_end - buf;
2955
2956 if (!xdr_string(xdr, &buf, buflen - 1))
2957 return (EFAULT);
2958 nvp->nvp_name_sz = strlen(buf) + 1;
2959
2960 /* type and nelem */
2961 if (!xdr_int(xdr, (int *)&nvp->nvp_type) ||
2962 !xdr_int(xdr, &nvp->nvp_value_elem))
2963 return (EFAULT);
2964
2965 type = NVP_TYPE(nvp);
2966 nelem = nvp->nvp_value_elem;
2967
2968 /*
2969 * Verify type and nelem and get the value size.
2970 * In case of data types DATA_TYPE_STRING and DATA_TYPE_STRING_ARRAY
2971 * is the size of the string(s) excluded.
2972 */
2973 if ((value_sz = i_get_value_size(type, NULL, nelem)) < 0)
2974 return (EFAULT);
2975
2976 /* if there is no data to extract then return */
2977 if (nelem == 0)
2978 return (0);
2979
2980 /* value */
2981 if ((buf = NVP_VALUE(nvp)) >= buf_end)
2982 return (EFAULT);
2983 buflen = buf_end - buf;
2984
2985 if (buflen < value_sz)
2986 return (EFAULT);
2987
2988 switch (type) {
2989 case DATA_TYPE_NVLIST:
2990 if (nvs_embedded(nvs, (void *)buf) == 0)
2991 return (0);
2992 break;
2993
2994 case DATA_TYPE_NVLIST_ARRAY:
2995 if (nvs_embedded_nvl_array(nvs, nvp, NULL) == 0)
2996 return (0);
2997 break;
2998
2999 case DATA_TYPE_BOOLEAN:
3000 ret = TRUE;
3001 break;
3002
3003 case DATA_TYPE_BYTE:
3004 case DATA_TYPE_INT8:
3005 case DATA_TYPE_UINT8:
3006 ret = xdr_char(xdr, buf);
3007 break;
3008
3009 case DATA_TYPE_INT16:
3010 ret = xdr_short(xdr, (void *)buf);
3011 break;
3012
3013 case DATA_TYPE_UINT16:
3014 ret = xdr_u_short(xdr, (void *)buf);
3015 break;
3016
3017 case DATA_TYPE_BOOLEAN_VALUE:
3018 case DATA_TYPE_INT32:
3019 ret = xdr_int(xdr, (void *)buf);
3020 break;
3021
3022 case DATA_TYPE_UINT32:
3023 ret = xdr_u_int(xdr, (void *)buf);
3024 break;
3025
3026 case DATA_TYPE_INT64:
3027 ret = xdr_longlong_t(xdr, (void *)buf);
3028 break;
3029
3030 case DATA_TYPE_UINT64:
3031 ret = xdr_u_longlong_t(xdr, (void *)buf);
3032 break;
3033
3034 case DATA_TYPE_HRTIME:
3035 /*
3036 * NOTE: must expose the definition of hrtime_t here
3037 */
3038 ret = xdr_longlong_t(xdr, (void *)buf);
3039 break;
3040 #if !defined(_KERNEL)
3041 case DATA_TYPE_DOUBLE:
3042 ret = xdr_double(xdr, (void *)buf);
3043 break;
3044 #endif
3045 case DATA_TYPE_STRING:
3046 ret = xdr_string(xdr, &buf, buflen - 1);
3047 break;
3048
3049 case DATA_TYPE_BYTE_ARRAY:
3050 ret = xdr_opaque(xdr, buf, nelem);
3051 break;
3052
3053 case DATA_TYPE_INT8_ARRAY:
3054 case DATA_TYPE_UINT8_ARRAY:
3055 ret = xdr_array(xdr, &buf, &nelem, buflen, sizeof (int8_t),
3056 (xdrproc_t)xdr_char);
3057 break;
3058
3059 case DATA_TYPE_INT16_ARRAY:
3060 ret = xdr_array(xdr, &buf, &nelem, buflen / sizeof (int16_t),
3061 sizeof (int16_t), (xdrproc_t)xdr_short);
3062 break;
3063
3064 case DATA_TYPE_UINT16_ARRAY:
3065 ret = xdr_array(xdr, &buf, &nelem, buflen / sizeof (uint16_t),
3066 sizeof (uint16_t), (xdrproc_t)xdr_u_short);
3067 break;
3068
3069 case DATA_TYPE_BOOLEAN_ARRAY:
3070 case DATA_TYPE_INT32_ARRAY:
3071 ret = xdr_array(xdr, &buf, &nelem, buflen / sizeof (int32_t),
3072 sizeof (int32_t), (xdrproc_t)xdr_int);
3073 break;
3074
3075 case DATA_TYPE_UINT32_ARRAY:
3076 ret = xdr_array(xdr, &buf, &nelem, buflen / sizeof (uint32_t),
3077 sizeof (uint32_t), (xdrproc_t)xdr_u_int);
3078 break;
3079
3080 case DATA_TYPE_INT64_ARRAY:
3081 ret = xdr_array(xdr, &buf, &nelem, buflen / sizeof (int64_t),
3082 sizeof (int64_t), (xdrproc_t)xdr_longlong_t);
3083 break;
3084
3085 case DATA_TYPE_UINT64_ARRAY:
3086 ret = xdr_array(xdr, &buf, &nelem, buflen / sizeof (uint64_t),
3087 sizeof (uint64_t), (xdrproc_t)xdr_u_longlong_t);
3088 break;
3089
3090 case DATA_TYPE_STRING_ARRAY: {
3091 size_t len = nelem * sizeof (uint64_t);
3092 char **strp = (void *)buf;
3093 int i;
3094
3095 if (nvs->nvs_op == NVS_OP_DECODE)
3096 bzero(buf, len); /* don't trust packed data */
3097
3098 for (i = 0; i < nelem; i++) {
3099 if (buflen <= len)
3100 return (EFAULT);
3101
3102 buf += len;
3103 buflen -= len;
3104
3105 if (xdr_string(xdr, &buf, buflen - 1) != TRUE)
3106 return (EFAULT);
3107
3108 if (nvs->nvs_op == NVS_OP_DECODE)
3109 strp[i] = buf;
3110 len = strlen(buf) + 1;
3111 }
3112 ret = TRUE;
3113 break;
3114 }
3115 default:
3116 break;
3117 }
3118
3119 return (ret == TRUE ? 0 : EFAULT);
3120 }
3121
3122 static int
3123 nvs_xdr_nvp_size(nvstream_t *nvs, nvpair_t *nvp, size_t *size)
3124 {
3125 data_type_t type = NVP_TYPE(nvp);
3126 /*
3127 * encode_size + decode_size + name string size + data type + nelem
3128 * where name string size = 4 + NV_ALIGN4(strlen(NVP_NAME(nvp)))
3129 */
3130 uint64_t nvp_sz = 4 + 4 + 4 + NV_ALIGN4(strlen(NVP_NAME(nvp))) + 4 + 4;
3131
3132 switch (type) {
3133 case DATA_TYPE_BOOLEAN:
3134 break;
3135
3136 case DATA_TYPE_BOOLEAN_VALUE:
3137 case DATA_TYPE_BYTE:
3138 case DATA_TYPE_INT8:
3139 case DATA_TYPE_UINT8:
3140 case DATA_TYPE_INT16:
3141 case DATA_TYPE_UINT16:
3142 case DATA_TYPE_INT32:
3143 case DATA_TYPE_UINT32:
3144 nvp_sz += 4; /* 4 is the minimum xdr unit */
3145 break;
3146
3147 case DATA_TYPE_INT64:
3148 case DATA_TYPE_UINT64:
3149 case DATA_TYPE_HRTIME:
3150 #if !defined(_KERNEL)
3151 case DATA_TYPE_DOUBLE:
3152 #endif
3153 nvp_sz += 8;
3154 break;
3155
3156 case DATA_TYPE_STRING:
3157 nvp_sz += 4 + NV_ALIGN4(strlen((char *)NVP_VALUE(nvp)));
3158 break;
3159
3160 case DATA_TYPE_BYTE_ARRAY:
3161 nvp_sz += NV_ALIGN4(NVP_NELEM(nvp));
3162 break;
3163
3164 case DATA_TYPE_BOOLEAN_ARRAY:
3165 case DATA_TYPE_INT8_ARRAY:
3166 case DATA_TYPE_UINT8_ARRAY:
3167 case DATA_TYPE_INT16_ARRAY:
3168 case DATA_TYPE_UINT16_ARRAY:
3169 case DATA_TYPE_INT32_ARRAY:
3170 case DATA_TYPE_UINT32_ARRAY:
3171 nvp_sz += 4 + 4 * (uint64_t)NVP_NELEM(nvp);
3172 break;
3173
3174 case DATA_TYPE_INT64_ARRAY:
3175 case DATA_TYPE_UINT64_ARRAY:
3176 nvp_sz += 4 + 8 * (uint64_t)NVP_NELEM(nvp);
3177 break;
3178
3179 case DATA_TYPE_STRING_ARRAY: {
3180 int i;
3181 char **strs = (void *)NVP_VALUE(nvp);
3182
3183 for (i = 0; i < NVP_NELEM(nvp); i++)
3184 nvp_sz += 4 + NV_ALIGN4(strlen(strs[i]));
3185
3186 break;
3187 }
3188
3189 case DATA_TYPE_NVLIST:
3190 case DATA_TYPE_NVLIST_ARRAY: {
3191 size_t nvsize = 0;
3192 int old_nvs_op = nvs->nvs_op;
3193 int err;
3194
3195 nvs->nvs_op = NVS_OP_GETSIZE;
3196 if (type == DATA_TYPE_NVLIST)
3197 err = nvs_operation(nvs, EMBEDDED_NVL(nvp), &nvsize);
3198 else
3199 err = nvs_embedded_nvl_array(nvs, nvp, &nvsize);
3200 nvs->nvs_op = old_nvs_op;
3201
3202 if (err != 0)
3203 return (EINVAL);
3204
3205 nvp_sz += nvsize;
3206 break;
3207 }
3208
3209 default:
3210 return (EINVAL);
3211 }
3212
3213 if (nvp_sz > INT32_MAX)
3214 return (EINVAL);
3215
3216 *size = nvp_sz;
3217
3218 return (0);
3219 }
3220
3221
3222 /*
3223 * The NVS_XDR_MAX_LEN macro takes a packed xdr buffer of size x and estimates
3224 * the largest nvpair that could be encoded in the buffer.
3225 *
3226 * See comments above nvpair_xdr_op() for the format of xdr encoding.
3227 * The size of a xdr packed nvpair without any data is 5 words.
3228 *
3229 * Using the size of the data directly as an estimate would be ok
3230 * in all cases except one. If the data type is of DATA_TYPE_STRING_ARRAY
3231 * then the actual nvpair has space for an array of pointers to index
3232 * the strings. These pointers are not encoded into the packed xdr buffer.
3233 *
3234 * If the data is of type DATA_TYPE_STRING_ARRAY and all the strings are
3235 * of length 0, then each string is endcoded in xdr format as a single word.
3236 * Therefore when expanded to an nvpair there will be 2.25 word used for
3237 * each string. (a int64_t allocated for pointer usage, and a single char
3238 * for the null termination.)
3239 *
3240 * This is the calculation performed by the NVS_XDR_MAX_LEN macro.
3241 */
3242 #define NVS_XDR_HDR_LEN ((size_t)(5 * 4))
3243 #define NVS_XDR_DATA_LEN(y) (((size_t)(y) <= NVS_XDR_HDR_LEN) ? \
3244 0 : ((size_t)(y) - NVS_XDR_HDR_LEN))
3245 #define NVS_XDR_MAX_LEN(x) (NVP_SIZE_CALC(1, 0) + \
3246 (NVS_XDR_DATA_LEN(x) * 2) + \
3247 NV_ALIGN4((NVS_XDR_DATA_LEN(x) / 4)))
3248
3249 static int
3250 nvs_xdr_nvpair(nvstream_t *nvs, nvpair_t *nvp, size_t *size)
3251 {
3252 XDR *xdr = nvs->nvs_private;
3253 int32_t encode_len, decode_len;
3254
3255 switch (nvs->nvs_op) {
3256 case NVS_OP_ENCODE: {
3257 size_t nvsize;
3258
3259 if (nvs_xdr_nvp_size(nvs, nvp, &nvsize) != 0)
3260 return (EFAULT);
3261
3262 decode_len = nvp->nvp_size;
3263 encode_len = nvsize;
3264 if (!xdr_int(xdr, &encode_len) || !xdr_int(xdr, &decode_len))
3265 return (EFAULT);
3266
3267 return (nvs_xdr_nvp_op(nvs, nvp));
3268 }
3269 case NVS_OP_DECODE: {
3270 struct xdr_bytesrec bytesrec;
3271
3272 /* get the encode and decode size */
3273 if (!xdr_int(xdr, &encode_len) || !xdr_int(xdr, &decode_len))
3274 return (EFAULT);
3275 *size = decode_len;
3276
3277 /* are we at the end of the stream? */
3278 if (*size == 0)
3279 return (0);
3280
3281 /* sanity check the size parameter */
3282 if (!xdr_control(xdr, XDR_GET_BYTES_AVAIL, &bytesrec))
3283 return (EFAULT);
3284
3285 if (*size > NVS_XDR_MAX_LEN(bytesrec.xc_num_avail))
3286 return (EFAULT);
3287 break;
3288 }
3289
3290 default:
3291 return (EINVAL);
3292 }
3293 return (0);
3294 }
3295
3296 static const struct nvs_ops nvs_xdr_ops = {
3297 .nvs_nvlist = nvs_xdr_nvlist,
3298 .nvs_nvpair = nvs_xdr_nvpair,
3299 .nvs_nvp_op = nvs_xdr_nvp_op,
3300 .nvs_nvp_size = nvs_xdr_nvp_size,
3301 .nvs_nvl_fini = nvs_xdr_nvl_fini
3302 };
3303
3304 static int
3305 nvs_xdr(nvstream_t *nvs, nvlist_t *nvl, char *buf, size_t *buflen)
3306 {
3307 XDR xdr;
3308 int err;
3309
3310 nvs->nvs_ops = &nvs_xdr_ops;
3311
3312 if ((err = nvs_xdr_create(nvs, &xdr, buf + sizeof (nvs_header_t),
3313 *buflen - sizeof (nvs_header_t))) != 0)
3314 return (err);
3315
3316 err = nvs_operation(nvs, nvl, buflen);
3317
3318 nvs_xdr_destroy(nvs);
3319
3320 return (err);
3321 }
3322
3323 #if defined(_KERNEL) && defined(HAVE_SPL)
3324 static int __init
3325 nvpair_init(void)
3326 {
3327 return (0);
3328 }
3329
3330 static void __exit
3331 nvpair_fini(void)
3332 {
3333 }
3334
3335 module_init(nvpair_init);
3336 module_exit(nvpair_fini);
3337
3338 MODULE_DESCRIPTION("Generic name/value pair implementation");
3339 MODULE_AUTHOR(ZFS_META_AUTHOR);
3340 MODULE_LICENSE(ZFS_META_LICENSE);
3341 MODULE_VERSION(ZFS_META_VERSION "-" ZFS_META_RELEASE);
3342
3343 EXPORT_SYMBOL(nv_alloc_init);
3344 EXPORT_SYMBOL(nv_alloc_reset);
3345 EXPORT_SYMBOL(nv_alloc_fini);
3346
3347 /* list management */
3348 EXPORT_SYMBOL(nvlist_alloc);
3349 EXPORT_SYMBOL(nvlist_free);
3350 EXPORT_SYMBOL(nvlist_size);
3351 EXPORT_SYMBOL(nvlist_pack);
3352 EXPORT_SYMBOL(nvlist_unpack);
3353 EXPORT_SYMBOL(nvlist_dup);
3354 EXPORT_SYMBOL(nvlist_merge);
3355
3356 EXPORT_SYMBOL(nvlist_xalloc);
3357 EXPORT_SYMBOL(nvlist_xpack);
3358 EXPORT_SYMBOL(nvlist_xunpack);
3359 EXPORT_SYMBOL(nvlist_xdup);
3360 EXPORT_SYMBOL(nvlist_lookup_nv_alloc);
3361
3362 EXPORT_SYMBOL(nvlist_add_nvpair);
3363 EXPORT_SYMBOL(nvlist_add_boolean);
3364 EXPORT_SYMBOL(nvlist_add_boolean_value);
3365 EXPORT_SYMBOL(nvlist_add_byte);
3366 EXPORT_SYMBOL(nvlist_add_int8);
3367 EXPORT_SYMBOL(nvlist_add_uint8);
3368 EXPORT_SYMBOL(nvlist_add_int16);
3369 EXPORT_SYMBOL(nvlist_add_uint16);
3370 EXPORT_SYMBOL(nvlist_add_int32);
3371 EXPORT_SYMBOL(nvlist_add_uint32);
3372 EXPORT_SYMBOL(nvlist_add_int64);
3373 EXPORT_SYMBOL(nvlist_add_uint64);
3374 EXPORT_SYMBOL(nvlist_add_string);
3375 EXPORT_SYMBOL(nvlist_add_nvlist);
3376 EXPORT_SYMBOL(nvlist_add_boolean_array);
3377 EXPORT_SYMBOL(nvlist_add_byte_array);
3378 EXPORT_SYMBOL(nvlist_add_int8_array);
3379 EXPORT_SYMBOL(nvlist_add_uint8_array);
3380 EXPORT_SYMBOL(nvlist_add_int16_array);
3381 EXPORT_SYMBOL(nvlist_add_uint16_array);
3382 EXPORT_SYMBOL(nvlist_add_int32_array);
3383 EXPORT_SYMBOL(nvlist_add_uint32_array);
3384 EXPORT_SYMBOL(nvlist_add_int64_array);
3385 EXPORT_SYMBOL(nvlist_add_uint64_array);
3386 EXPORT_SYMBOL(nvlist_add_string_array);
3387 EXPORT_SYMBOL(nvlist_add_nvlist_array);
3388 EXPORT_SYMBOL(nvlist_next_nvpair);
3389 EXPORT_SYMBOL(nvlist_prev_nvpair);
3390 EXPORT_SYMBOL(nvlist_empty);
3391 EXPORT_SYMBOL(nvlist_add_hrtime);
3392
3393 EXPORT_SYMBOL(nvlist_remove);
3394 EXPORT_SYMBOL(nvlist_remove_nvpair);
3395 EXPORT_SYMBOL(nvlist_remove_all);
3396
3397 EXPORT_SYMBOL(nvlist_lookup_boolean);
3398 EXPORT_SYMBOL(nvlist_lookup_boolean_value);
3399 EXPORT_SYMBOL(nvlist_lookup_byte);
3400 EXPORT_SYMBOL(nvlist_lookup_int8);
3401 EXPORT_SYMBOL(nvlist_lookup_uint8);
3402 EXPORT_SYMBOL(nvlist_lookup_int16);
3403 EXPORT_SYMBOL(nvlist_lookup_uint16);
3404 EXPORT_SYMBOL(nvlist_lookup_int32);
3405 EXPORT_SYMBOL(nvlist_lookup_uint32);
3406 EXPORT_SYMBOL(nvlist_lookup_int64);
3407 EXPORT_SYMBOL(nvlist_lookup_uint64);
3408 EXPORT_SYMBOL(nvlist_lookup_string);
3409 EXPORT_SYMBOL(nvlist_lookup_nvlist);
3410 EXPORT_SYMBOL(nvlist_lookup_boolean_array);
3411 EXPORT_SYMBOL(nvlist_lookup_byte_array);
3412 EXPORT_SYMBOL(nvlist_lookup_int8_array);
3413 EXPORT_SYMBOL(nvlist_lookup_uint8_array);
3414 EXPORT_SYMBOL(nvlist_lookup_int16_array);
3415 EXPORT_SYMBOL(nvlist_lookup_uint16_array);
3416 EXPORT_SYMBOL(nvlist_lookup_int32_array);
3417 EXPORT_SYMBOL(nvlist_lookup_uint32_array);
3418 EXPORT_SYMBOL(nvlist_lookup_int64_array);
3419 EXPORT_SYMBOL(nvlist_lookup_uint64_array);
3420 EXPORT_SYMBOL(nvlist_lookup_string_array);
3421 EXPORT_SYMBOL(nvlist_lookup_nvlist_array);
3422 EXPORT_SYMBOL(nvlist_lookup_hrtime);
3423 EXPORT_SYMBOL(nvlist_lookup_pairs);
3424
3425 EXPORT_SYMBOL(nvlist_lookup_nvpair);
3426 EXPORT_SYMBOL(nvlist_exists);
3427
3428 /* processing nvpair */
3429 EXPORT_SYMBOL(nvpair_name);
3430 EXPORT_SYMBOL(nvpair_type);
3431 EXPORT_SYMBOL(nvpair_value_boolean_value);
3432 EXPORT_SYMBOL(nvpair_value_byte);
3433 EXPORT_SYMBOL(nvpair_value_int8);
3434 EXPORT_SYMBOL(nvpair_value_uint8);
3435 EXPORT_SYMBOL(nvpair_value_int16);
3436 EXPORT_SYMBOL(nvpair_value_uint16);
3437 EXPORT_SYMBOL(nvpair_value_int32);
3438 EXPORT_SYMBOL(nvpair_value_uint32);
3439 EXPORT_SYMBOL(nvpair_value_int64);
3440 EXPORT_SYMBOL(nvpair_value_uint64);
3441 EXPORT_SYMBOL(nvpair_value_string);
3442 EXPORT_SYMBOL(nvpair_value_nvlist);
3443 EXPORT_SYMBOL(nvpair_value_boolean_array);
3444 EXPORT_SYMBOL(nvpair_value_byte_array);
3445 EXPORT_SYMBOL(nvpair_value_int8_array);
3446 EXPORT_SYMBOL(nvpair_value_uint8_array);
3447 EXPORT_SYMBOL(nvpair_value_int16_array);
3448 EXPORT_SYMBOL(nvpair_value_uint16_array);
3449 EXPORT_SYMBOL(nvpair_value_int32_array);
3450 EXPORT_SYMBOL(nvpair_value_uint32_array);
3451 EXPORT_SYMBOL(nvpair_value_int64_array);
3452 EXPORT_SYMBOL(nvpair_value_uint64_array);
3453 EXPORT_SYMBOL(nvpair_value_string_array);
3454 EXPORT_SYMBOL(nvpair_value_nvlist_array);
3455 EXPORT_SYMBOL(nvpair_value_hrtime);
3456
3457 #endif