]> git.proxmox.com Git - mirror_zfs.git/blob - module/os/linux/zfs/arc_os.c
55cdbba5b5ebd9265251a57a1a9196e14d3c10f0
[mirror_zfs.git] / module / os / linux / zfs / arc_os.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2018, Joyent, Inc.
24 * Copyright (c) 2011, 2019 by Delphix. All rights reserved.
25 * Copyright (c) 2014 by Saso Kiselkov. All rights reserved.
26 * Copyright 2017 Nexenta Systems, Inc. All rights reserved.
27 */
28
29 #include <sys/spa.h>
30 #include <sys/zio.h>
31 #include <sys/spa_impl.h>
32 #include <sys/zio_compress.h>
33 #include <sys/zio_checksum.h>
34 #include <sys/zfs_context.h>
35 #include <sys/arc.h>
36 #include <sys/zfs_refcount.h>
37 #include <sys/vdev.h>
38 #include <sys/vdev_trim.h>
39 #include <sys/vdev_impl.h>
40 #include <sys/dsl_pool.h>
41 #include <sys/multilist.h>
42 #include <sys/abd.h>
43 #include <sys/zil.h>
44 #include <sys/fm/fs/zfs.h>
45 #ifdef _KERNEL
46 #include <sys/shrinker.h>
47 #include <sys/vmsystm.h>
48 #include <sys/zpl.h>
49 #include <linux/page_compat.h>
50 #include <linux/notifier.h>
51 #include <linux/memory.h>
52 #endif
53 #include <sys/callb.h>
54 #include <sys/kstat.h>
55 #include <sys/zthr.h>
56 #include <zfs_fletcher.h>
57 #include <sys/arc_impl.h>
58 #include <sys/trace_zfs.h>
59 #include <sys/aggsum.h>
60
61 /*
62 * This is a limit on how many pages the ARC shrinker makes available for
63 * eviction in response to one page allocation attempt. Note that in
64 * practice, the kernel's shrinker can ask us to evict up to about 4x this
65 * for one allocation attempt.
66 *
67 * The default limit of 10,000 (in practice, 160MB per allocation attempt
68 * with 4K pages) limits the amount of time spent attempting to reclaim ARC
69 * memory to less than 100ms per allocation attempt, even with a small
70 * average compressed block size of ~8KB.
71 *
72 * See also the comment in arc_shrinker_count().
73 * Set to 0 to disable limit.
74 */
75 int zfs_arc_shrinker_limit = 10000;
76
77 #ifdef CONFIG_MEMORY_HOTPLUG
78 static struct notifier_block arc_hotplug_callback_mem_nb;
79 #endif
80
81 /*
82 * Return a default max arc size based on the amount of physical memory.
83 * This may be overridden by tuning the zfs_arc_max module parameter.
84 */
85 uint64_t
86 arc_default_max(uint64_t min, uint64_t allmem)
87 {
88 uint64_t size;
89
90 if (allmem >= 1 << 30)
91 size = allmem - (1 << 30);
92 else
93 size = min;
94 return (MAX(allmem * 5 / 8, size));
95 }
96
97 #ifdef _KERNEL
98 /*
99 * Return maximum amount of memory that we could possibly use. Reduced
100 * to half of all memory in user space which is primarily used for testing.
101 */
102 uint64_t
103 arc_all_memory(void)
104 {
105 #ifdef CONFIG_HIGHMEM
106 return (ptob(zfs_totalram_pages - zfs_totalhigh_pages));
107 #else
108 return (ptob(zfs_totalram_pages));
109 #endif /* CONFIG_HIGHMEM */
110 }
111
112 /*
113 * Return the amount of memory that is considered free. In user space
114 * which is primarily used for testing we pretend that free memory ranges
115 * from 0-20% of all memory.
116 */
117 uint64_t
118 arc_free_memory(void)
119 {
120 #ifdef CONFIG_HIGHMEM
121 struct sysinfo si;
122 si_meminfo(&si);
123 return (ptob(si.freeram - si.freehigh));
124 #else
125 return (ptob(nr_free_pages() +
126 nr_inactive_file_pages()));
127 #endif /* CONFIG_HIGHMEM */
128 }
129
130 /*
131 * Return the amount of memory that can be consumed before reclaim will be
132 * needed. Positive if there is sufficient free memory, negative indicates
133 * the amount of memory that needs to be freed up.
134 */
135 int64_t
136 arc_available_memory(void)
137 {
138 return (arc_free_memory() - arc_sys_free);
139 }
140
141 static uint64_t
142 arc_evictable_memory(void)
143 {
144 int64_t asize = aggsum_value(&arc_sums.arcstat_size);
145 uint64_t arc_clean =
146 zfs_refcount_count(&arc_mru->arcs_esize[ARC_BUFC_DATA]) +
147 zfs_refcount_count(&arc_mru->arcs_esize[ARC_BUFC_METADATA]) +
148 zfs_refcount_count(&arc_mfu->arcs_esize[ARC_BUFC_DATA]) +
149 zfs_refcount_count(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]);
150 uint64_t arc_dirty = MAX((int64_t)asize - (int64_t)arc_clean, 0);
151
152 /*
153 * Scale reported evictable memory in proportion to page cache, cap
154 * at specified min/max.
155 */
156 uint64_t min = (ptob(nr_file_pages()) / 100) * zfs_arc_pc_percent;
157 min = MAX(arc_c_min, MIN(arc_c_max, min));
158
159 if (arc_dirty >= min)
160 return (arc_clean);
161
162 return (MAX((int64_t)asize - (int64_t)min, 0));
163 }
164
165 /*
166 * The _count() function returns the number of free-able objects.
167 * The _scan() function returns the number of objects that were freed.
168 */
169 static unsigned long
170 arc_shrinker_count(struct shrinker *shrink, struct shrink_control *sc)
171 {
172 /*
173 * __GFP_FS won't be set if we are called from ZFS code (see
174 * kmem_flags_convert(), which removes it). To avoid a deadlock, we
175 * don't allow evicting in this case. We return 0 rather than
176 * SHRINK_STOP so that the shrinker logic doesn't accumulate a
177 * deficit against us.
178 */
179 if (!(sc->gfp_mask & __GFP_FS)) {
180 return (0);
181 }
182
183 /*
184 * This code is reached in the "direct reclaim" case, where the
185 * kernel (outside ZFS) is trying to allocate a page, and the system
186 * is low on memory.
187 *
188 * The kernel's shrinker code doesn't understand how many pages the
189 * ARC's callback actually frees, so it may ask the ARC to shrink a
190 * lot for one page allocation. This is problematic because it may
191 * take a long time, thus delaying the page allocation, and because
192 * it may force the ARC to unnecessarily shrink very small.
193 *
194 * Therefore, we limit the amount of data that we say is evictable,
195 * which limits the amount that the shrinker will ask us to evict for
196 * one page allocation attempt.
197 *
198 * In practice, we may be asked to shrink 4x the limit to satisfy one
199 * page allocation, before the kernel's shrinker code gives up on us.
200 * When that happens, we rely on the kernel code to find the pages
201 * that we freed before invoking the OOM killer. This happens in
202 * __alloc_pages_slowpath(), which retries and finds the pages we
203 * freed when it calls get_page_from_freelist().
204 *
205 * See also the comment above zfs_arc_shrinker_limit.
206 */
207 int64_t limit = zfs_arc_shrinker_limit != 0 ?
208 zfs_arc_shrinker_limit : INT64_MAX;
209 return (MIN(limit, btop((int64_t)arc_evictable_memory())));
210 }
211
212 static unsigned long
213 arc_shrinker_scan(struct shrinker *shrink, struct shrink_control *sc)
214 {
215 ASSERT((sc->gfp_mask & __GFP_FS) != 0);
216
217 /* The arc is considered warm once reclaim has occurred */
218 if (unlikely(arc_warm == B_FALSE))
219 arc_warm = B_TRUE;
220
221 /*
222 * Evict the requested number of pages by reducing arc_c and waiting
223 * for the requested amount of data to be evicted.
224 */
225 arc_reduce_target_size(ptob(sc->nr_to_scan));
226 arc_wait_for_eviction(ptob(sc->nr_to_scan), B_FALSE);
227 if (current->reclaim_state != NULL)
228 #ifdef HAVE_RECLAIM_STATE_RECLAIMED
229 current->reclaim_state->reclaimed += sc->nr_to_scan;
230 #else
231 current->reclaim_state->reclaimed_slab += sc->nr_to_scan;
232 #endif
233
234 /*
235 * We are experiencing memory pressure which the arc_evict_zthr was
236 * unable to keep up with. Set arc_no_grow to briefly pause arc
237 * growth to avoid compounding the memory pressure.
238 */
239 arc_no_grow = B_TRUE;
240
241 /*
242 * When direct reclaim is observed it usually indicates a rapid
243 * increase in memory pressure. This occurs because the kswapd
244 * threads were unable to asynchronously keep enough free memory
245 * available.
246 */
247 if (current_is_kswapd()) {
248 ARCSTAT_BUMP(arcstat_memory_indirect_count);
249 } else {
250 ARCSTAT_BUMP(arcstat_memory_direct_count);
251 }
252
253 return (sc->nr_to_scan);
254 }
255
256 SPL_SHRINKER_DECLARE(arc_shrinker,
257 arc_shrinker_count, arc_shrinker_scan, DEFAULT_SEEKS);
258
259 int
260 arc_memory_throttle(spa_t *spa, uint64_t reserve, uint64_t txg)
261 {
262 uint64_t free_memory = arc_free_memory();
263
264 if (free_memory > arc_all_memory() * arc_lotsfree_percent / 100)
265 return (0);
266
267 if (txg > spa->spa_lowmem_last_txg) {
268 spa->spa_lowmem_last_txg = txg;
269 spa->spa_lowmem_page_load = 0;
270 }
271 /*
272 * If we are in pageout, we know that memory is already tight,
273 * the arc is already going to be evicting, so we just want to
274 * continue to let page writes occur as quickly as possible.
275 */
276 if (current_is_kswapd()) {
277 if (spa->spa_lowmem_page_load >
278 MAX(arc_sys_free / 4, free_memory) / 4) {
279 DMU_TX_STAT_BUMP(dmu_tx_memory_reclaim);
280 return (SET_ERROR(ERESTART));
281 }
282 /* Note: reserve is inflated, so we deflate */
283 atomic_add_64(&spa->spa_lowmem_page_load, reserve / 8);
284 return (0);
285 } else if (spa->spa_lowmem_page_load > 0 && arc_reclaim_needed()) {
286 /* memory is low, delay before restarting */
287 ARCSTAT_INCR(arcstat_memory_throttle_count, 1);
288 DMU_TX_STAT_BUMP(dmu_tx_memory_reclaim);
289 return (SET_ERROR(EAGAIN));
290 }
291 spa->spa_lowmem_page_load = 0;
292 return (0);
293 }
294
295 static void
296 arc_set_sys_free(uint64_t allmem)
297 {
298 /*
299 * The ARC tries to keep at least this much memory available for the
300 * system. This gives the ARC time to shrink in response to memory
301 * pressure, before running completely out of memory and invoking the
302 * direct-reclaim ARC shrinker.
303 *
304 * This should be more than twice high_wmark_pages(), so that
305 * arc_wait_for_eviction() will wait until at least the
306 * high_wmark_pages() are free (see arc_evict_state_impl()).
307 *
308 * Note: Even when the system is very low on memory, the kernel's
309 * shrinker code may only ask for one "batch" of pages (512KB) to be
310 * evicted. If concurrent allocations consume these pages, there may
311 * still be insufficient free pages, and the OOM killer takes action.
312 *
313 * By setting arc_sys_free large enough, and having
314 * arc_wait_for_eviction() wait until there is at least arc_sys_free/2
315 * free memory, it is much less likely that concurrent allocations can
316 * consume all the memory that was evicted before checking for
317 * OOM.
318 *
319 * It's hard to iterate the zones from a linux kernel module, which
320 * makes it difficult to determine the watermark dynamically. Instead
321 * we compute the maximum high watermark for this system, based
322 * on the amount of memory, assuming default parameters on Linux kernel
323 * 5.3.
324 */
325
326 /*
327 * Base wmark_low is 4 * the square root of Kbytes of RAM.
328 */
329 long wmark = 4 * int_sqrt(allmem/1024) * 1024;
330
331 /*
332 * Clamp to between 128K and 64MB.
333 */
334 wmark = MAX(wmark, 128 * 1024);
335 wmark = MIN(wmark, 64 * 1024 * 1024);
336
337 /*
338 * watermark_boost can increase the wmark by up to 150%.
339 */
340 wmark += wmark * 150 / 100;
341
342 /*
343 * arc_sys_free needs to be more than 2x the watermark, because
344 * arc_wait_for_eviction() waits for half of arc_sys_free. Bump this up
345 * to 3x to ensure we're above it.
346 */
347 arc_sys_free = wmark * 3 + allmem / 32;
348 }
349
350 void
351 arc_lowmem_init(void)
352 {
353 uint64_t allmem = arc_all_memory();
354
355 /*
356 * Register a shrinker to support synchronous (direct) memory
357 * reclaim from the arc. This is done to prevent kswapd from
358 * swapping out pages when it is preferable to shrink the arc.
359 */
360 spl_register_shrinker(&arc_shrinker);
361 arc_set_sys_free(allmem);
362 }
363
364 void
365 arc_lowmem_fini(void)
366 {
367 spl_unregister_shrinker(&arc_shrinker);
368 }
369
370 int
371 param_set_arc_u64(const char *buf, zfs_kernel_param_t *kp)
372 {
373 int error;
374
375 error = spl_param_set_u64(buf, kp);
376 if (error < 0)
377 return (SET_ERROR(error));
378
379 arc_tuning_update(B_TRUE);
380
381 return (0);
382 }
383
384 int
385 param_set_arc_min(const char *buf, zfs_kernel_param_t *kp)
386 {
387 return (param_set_arc_u64(buf, kp));
388 }
389
390 int
391 param_set_arc_max(const char *buf, zfs_kernel_param_t *kp)
392 {
393 return (param_set_arc_u64(buf, kp));
394 }
395
396 int
397 param_set_arc_int(const char *buf, zfs_kernel_param_t *kp)
398 {
399 int error;
400
401 error = param_set_int(buf, kp);
402 if (error < 0)
403 return (SET_ERROR(error));
404
405 arc_tuning_update(B_TRUE);
406
407 return (0);
408 }
409
410 #ifdef CONFIG_MEMORY_HOTPLUG
411 static int
412 arc_hotplug_callback(struct notifier_block *self, unsigned long action,
413 void *arg)
414 {
415 (void) self, (void) arg;
416 uint64_t allmem = arc_all_memory();
417 if (action != MEM_ONLINE)
418 return (NOTIFY_OK);
419
420 arc_set_limits(allmem);
421
422 #ifdef __LP64__
423 if (zfs_dirty_data_max_max == 0)
424 zfs_dirty_data_max_max = MIN(4ULL * 1024 * 1024 * 1024,
425 allmem * zfs_dirty_data_max_max_percent / 100);
426 #else
427 if (zfs_dirty_data_max_max == 0)
428 zfs_dirty_data_max_max = MIN(1ULL * 1024 * 1024 * 1024,
429 allmem * zfs_dirty_data_max_max_percent / 100);
430 #endif
431
432 arc_set_sys_free(allmem);
433 return (NOTIFY_OK);
434 }
435 #endif
436
437 void
438 arc_register_hotplug(void)
439 {
440 #ifdef CONFIG_MEMORY_HOTPLUG
441 arc_hotplug_callback_mem_nb.notifier_call = arc_hotplug_callback;
442 /* There is no significance to the value 100 */
443 arc_hotplug_callback_mem_nb.priority = 100;
444 register_memory_notifier(&arc_hotplug_callback_mem_nb);
445 #endif
446 }
447
448 void
449 arc_unregister_hotplug(void)
450 {
451 #ifdef CONFIG_MEMORY_HOTPLUG
452 unregister_memory_notifier(&arc_hotplug_callback_mem_nb);
453 #endif
454 }
455 #else /* _KERNEL */
456 int64_t
457 arc_available_memory(void)
458 {
459 int64_t lowest = INT64_MAX;
460
461 /* Every 100 calls, free a small amount */
462 if (random_in_range(100) == 0)
463 lowest = -1024;
464
465 return (lowest);
466 }
467
468 int
469 arc_memory_throttle(spa_t *spa, uint64_t reserve, uint64_t txg)
470 {
471 (void) spa, (void) reserve, (void) txg;
472 return (0);
473 }
474
475 uint64_t
476 arc_all_memory(void)
477 {
478 return (ptob(physmem) / 2);
479 }
480
481 uint64_t
482 arc_free_memory(void)
483 {
484 return (random_in_range(arc_all_memory() * 20 / 100));
485 }
486
487 void
488 arc_register_hotplug(void)
489 {
490 }
491
492 void
493 arc_unregister_hotplug(void)
494 {
495 }
496 #endif /* _KERNEL */
497
498 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, shrinker_limit, INT, ZMOD_RW,
499 "Limit on number of pages that ARC shrinker can reclaim at once");