]> git.proxmox.com Git - mirror_zfs.git/blob - module/os/linux/zfs/vdev_disk.c
a560bca918a82d329c00901647702845f0181439
[mirror_zfs.git] / module / os / linux / zfs / vdev_disk.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (C) 2008-2010 Lawrence Livermore National Security, LLC.
23 * Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER).
24 * Rewritten for Linux by Brian Behlendorf <behlendorf1@llnl.gov>.
25 * LLNL-CODE-403049.
26 * Copyright (c) 2012, 2019 by Delphix. All rights reserved.
27 * Copyright (c) 2023, 2024, Klara Inc.
28 */
29
30 #include <sys/zfs_context.h>
31 #include <sys/spa_impl.h>
32 #include <sys/vdev_disk.h>
33 #include <sys/vdev_impl.h>
34 #include <sys/vdev_trim.h>
35 #include <sys/abd.h>
36 #include <sys/fs/zfs.h>
37 #include <sys/zio.h>
38 #include <linux/blkpg.h>
39 #include <linux/msdos_fs.h>
40 #include <linux/vfs_compat.h>
41 #ifdef HAVE_LINUX_BLK_CGROUP_HEADER
42 #include <linux/blk-cgroup.h>
43 #endif
44
45 /*
46 * Linux 6.8.x uses a bdev_handle as an instance/refcount for an underlying
47 * block_device. Since it carries the block_device inside, its convenient to
48 * just use the handle as a proxy.
49 *
50 * Linux 6.9.x uses a file for the same purpose.
51 *
52 * For pre-6.8, we just emulate this with a cast, since we don't need any of
53 * the other fields inside the handle.
54 */
55 #if defined(HAVE_BDEV_OPEN_BY_PATH)
56 typedef struct bdev_handle zfs_bdev_handle_t;
57 #define BDH_BDEV(bdh) ((bdh)->bdev)
58 #define BDH_IS_ERR(bdh) (IS_ERR(bdh))
59 #define BDH_PTR_ERR(bdh) (PTR_ERR(bdh))
60 #define BDH_ERR_PTR(err) (ERR_PTR(err))
61 #elif defined(HAVE_BDEV_FILE_OPEN_BY_PATH)
62 typedef struct file zfs_bdev_handle_t;
63 #define BDH_BDEV(bdh) (file_bdev(bdh))
64 #define BDH_IS_ERR(bdh) (IS_ERR(bdh))
65 #define BDH_PTR_ERR(bdh) (PTR_ERR(bdh))
66 #define BDH_ERR_PTR(err) (ERR_PTR(err))
67 #else
68 typedef void zfs_bdev_handle_t;
69 #define BDH_BDEV(bdh) ((struct block_device *)bdh)
70 #define BDH_IS_ERR(bdh) (IS_ERR(BDH_BDEV(bdh)))
71 #define BDH_PTR_ERR(bdh) (PTR_ERR(BDH_BDEV(bdh)))
72 #define BDH_ERR_PTR(err) (ERR_PTR(err))
73 #endif
74
75 typedef struct vdev_disk {
76 zfs_bdev_handle_t *vd_bdh;
77 krwlock_t vd_lock;
78 } vdev_disk_t;
79
80 /*
81 * Maximum number of segments to add to a bio (min 4). If this is higher than
82 * the maximum allowed by the device queue or the kernel itself, it will be
83 * clamped. Setting it to zero will cause the kernel's ideal size to be used.
84 */
85 uint_t zfs_vdev_disk_max_segs = 0;
86
87 /*
88 * Unique identifier for the exclusive vdev holder.
89 */
90 static void *zfs_vdev_holder = VDEV_HOLDER;
91
92 /*
93 * Wait up to zfs_vdev_open_timeout_ms milliseconds before determining the
94 * device is missing. The missing path may be transient since the links
95 * can be briefly removed and recreated in response to udev events.
96 */
97 static uint_t zfs_vdev_open_timeout_ms = 1000;
98
99 /*
100 * Size of the "reserved" partition, in blocks.
101 */
102 #define EFI_MIN_RESV_SIZE (16 * 1024)
103
104 /*
105 * BIO request failfast mask.
106 */
107
108 static unsigned int zfs_vdev_failfast_mask = 1;
109
110 /*
111 * Convert SPA mode flags into bdev open mode flags.
112 */
113 #ifdef HAVE_BLK_MODE_T
114 typedef blk_mode_t vdev_bdev_mode_t;
115 #define VDEV_BDEV_MODE_READ BLK_OPEN_READ
116 #define VDEV_BDEV_MODE_WRITE BLK_OPEN_WRITE
117 #define VDEV_BDEV_MODE_EXCL BLK_OPEN_EXCL
118 #define VDEV_BDEV_MODE_MASK (BLK_OPEN_READ|BLK_OPEN_WRITE|BLK_OPEN_EXCL)
119 #else
120 typedef fmode_t vdev_bdev_mode_t;
121 #define VDEV_BDEV_MODE_READ FMODE_READ
122 #define VDEV_BDEV_MODE_WRITE FMODE_WRITE
123 #define VDEV_BDEV_MODE_EXCL FMODE_EXCL
124 #define VDEV_BDEV_MODE_MASK (FMODE_READ|FMODE_WRITE|FMODE_EXCL)
125 #endif
126
127 static vdev_bdev_mode_t
128 vdev_bdev_mode(spa_mode_t smode)
129 {
130 ASSERT3U(smode, !=, SPA_MODE_UNINIT);
131 ASSERT0(smode & ~(SPA_MODE_READ|SPA_MODE_WRITE));
132
133 vdev_bdev_mode_t bmode = VDEV_BDEV_MODE_EXCL;
134
135 if (smode & SPA_MODE_READ)
136 bmode |= VDEV_BDEV_MODE_READ;
137
138 if (smode & SPA_MODE_WRITE)
139 bmode |= VDEV_BDEV_MODE_WRITE;
140
141 ASSERT(bmode & VDEV_BDEV_MODE_MASK);
142 ASSERT0(bmode & ~VDEV_BDEV_MODE_MASK);
143
144 return (bmode);
145 }
146
147 /*
148 * Returns the usable capacity (in bytes) for the partition or disk.
149 */
150 static uint64_t
151 bdev_capacity(struct block_device *bdev)
152 {
153 return (i_size_read(bdev->bd_inode));
154 }
155
156 #if !defined(HAVE_BDEV_WHOLE)
157 static inline struct block_device *
158 bdev_whole(struct block_device *bdev)
159 {
160 return (bdev->bd_contains);
161 }
162 #endif
163
164 #if defined(HAVE_BDEVNAME)
165 #define vdev_bdevname(bdev, name) bdevname(bdev, name)
166 #else
167 static inline void
168 vdev_bdevname(struct block_device *bdev, char *name)
169 {
170 snprintf(name, BDEVNAME_SIZE, "%pg", bdev);
171 }
172 #endif
173
174 /*
175 * Returns the maximum expansion capacity of the block device (in bytes).
176 *
177 * It is possible to expand a vdev when it has been created as a wholedisk
178 * and the containing block device has increased in capacity. Or when the
179 * partition containing the pool has been manually increased in size.
180 *
181 * This function is only responsible for calculating the potential expansion
182 * size so it can be reported by 'zpool list'. The efi_use_whole_disk() is
183 * responsible for verifying the expected partition layout in the wholedisk
184 * case, and updating the partition table if appropriate. Once the partition
185 * size has been increased the additional capacity will be visible using
186 * bdev_capacity().
187 *
188 * The returned maximum expansion capacity is always expected to be larger, or
189 * at the very least equal, to its usable capacity to prevent overestimating
190 * the pool expandsize.
191 */
192 static uint64_t
193 bdev_max_capacity(struct block_device *bdev, uint64_t wholedisk)
194 {
195 uint64_t psize;
196 int64_t available;
197
198 if (wholedisk && bdev != bdev_whole(bdev)) {
199 /*
200 * When reporting maximum expansion capacity for a wholedisk
201 * deduct any capacity which is expected to be lost due to
202 * alignment restrictions. Over reporting this value isn't
203 * harmful and would only result in slightly less capacity
204 * than expected post expansion.
205 * The estimated available space may be slightly smaller than
206 * bdev_capacity() for devices where the number of sectors is
207 * not a multiple of the alignment size and the partition layout
208 * is keeping less than PARTITION_END_ALIGNMENT bytes after the
209 * "reserved" EFI partition: in such cases return the device
210 * usable capacity.
211 */
212 available = i_size_read(bdev_whole(bdev)->bd_inode) -
213 ((EFI_MIN_RESV_SIZE + NEW_START_BLOCK +
214 PARTITION_END_ALIGNMENT) << SECTOR_BITS);
215 psize = MAX(available, bdev_capacity(bdev));
216 } else {
217 psize = bdev_capacity(bdev);
218 }
219
220 return (psize);
221 }
222
223 static void
224 vdev_disk_error(zio_t *zio)
225 {
226 /*
227 * This function can be called in interrupt context, for instance while
228 * handling IRQs coming from a misbehaving disk device; use printk()
229 * which is safe from any context.
230 */
231 printk(KERN_WARNING "zio pool=%s vdev=%s error=%d type=%d "
232 "offset=%llu size=%llu flags=%llu\n", spa_name(zio->io_spa),
233 zio->io_vd->vdev_path, zio->io_error, zio->io_type,
234 (u_longlong_t)zio->io_offset, (u_longlong_t)zio->io_size,
235 zio->io_flags);
236 }
237
238 static void
239 vdev_disk_kobj_evt_post(vdev_t *v)
240 {
241 vdev_disk_t *vd = v->vdev_tsd;
242 if (vd && vd->vd_bdh) {
243 spl_signal_kobj_evt(BDH_BDEV(vd->vd_bdh));
244 } else {
245 vdev_dbgmsg(v, "vdev_disk_t is NULL for VDEV:%s\n",
246 v->vdev_path);
247 }
248 }
249
250 static zfs_bdev_handle_t *
251 vdev_blkdev_get_by_path(const char *path, spa_mode_t smode, void *holder)
252 {
253 vdev_bdev_mode_t bmode = vdev_bdev_mode(smode);
254
255 #if defined(HAVE_BDEV_FILE_OPEN_BY_PATH)
256 return (bdev_file_open_by_path(path, bmode, holder, NULL));
257 #elif defined(HAVE_BDEV_OPEN_BY_PATH)
258 return (bdev_open_by_path(path, bmode, holder, NULL));
259 #elif defined(HAVE_BLKDEV_GET_BY_PATH_4ARG)
260 return (blkdev_get_by_path(path, bmode, holder, NULL));
261 #else
262 return (blkdev_get_by_path(path, bmode, holder));
263 #endif
264 }
265
266 static void
267 vdev_blkdev_put(zfs_bdev_handle_t *bdh, spa_mode_t smode, void *holder)
268 {
269 #if defined(HAVE_BDEV_RELEASE)
270 return (bdev_release(bdh));
271 #elif defined(HAVE_BLKDEV_PUT_HOLDER)
272 return (blkdev_put(BDH_BDEV(bdh), holder));
273 #elif defined(HAVE_BLKDEV_PUT)
274 return (blkdev_put(BDH_BDEV(bdh), vdev_bdev_mode(smode)));
275 #else
276 fput(bdh);
277 #endif
278 }
279
280 static int
281 vdev_disk_open(vdev_t *v, uint64_t *psize, uint64_t *max_psize,
282 uint64_t *logical_ashift, uint64_t *physical_ashift)
283 {
284 zfs_bdev_handle_t *bdh;
285 spa_mode_t smode = spa_mode(v->vdev_spa);
286 hrtime_t timeout = MSEC2NSEC(zfs_vdev_open_timeout_ms);
287 vdev_disk_t *vd;
288
289 /* Must have a pathname and it must be absolute. */
290 if (v->vdev_path == NULL || v->vdev_path[0] != '/') {
291 v->vdev_stat.vs_aux = VDEV_AUX_BAD_LABEL;
292 vdev_dbgmsg(v, "invalid vdev_path");
293 return (SET_ERROR(EINVAL));
294 }
295
296 /*
297 * Reopen the device if it is currently open. When expanding a
298 * partition force re-scanning the partition table if userland
299 * did not take care of this already. We need to do this while closed
300 * in order to get an accurate updated block device size. Then
301 * since udev may need to recreate the device links increase the
302 * open retry timeout before reporting the device as unavailable.
303 */
304 vd = v->vdev_tsd;
305 if (vd) {
306 char disk_name[BDEVNAME_SIZE + 6] = "/dev/";
307 boolean_t reread_part = B_FALSE;
308
309 rw_enter(&vd->vd_lock, RW_WRITER);
310 bdh = vd->vd_bdh;
311 vd->vd_bdh = NULL;
312
313 if (bdh) {
314 struct block_device *bdev = BDH_BDEV(bdh);
315 if (v->vdev_expanding && bdev != bdev_whole(bdev)) {
316 vdev_bdevname(bdev_whole(bdev), disk_name + 5);
317 /*
318 * If userland has BLKPG_RESIZE_PARTITION,
319 * then it should have updated the partition
320 * table already. We can detect this by
321 * comparing our current physical size
322 * with that of the device. If they are
323 * the same, then we must not have
324 * BLKPG_RESIZE_PARTITION or it failed to
325 * update the partition table online. We
326 * fallback to rescanning the partition
327 * table from the kernel below. However,
328 * if the capacity already reflects the
329 * updated partition, then we skip
330 * rescanning the partition table here.
331 */
332 if (v->vdev_psize == bdev_capacity(bdev))
333 reread_part = B_TRUE;
334 }
335
336 vdev_blkdev_put(bdh, smode, zfs_vdev_holder);
337 }
338
339 if (reread_part) {
340 bdh = vdev_blkdev_get_by_path(disk_name, smode,
341 zfs_vdev_holder);
342 if (!BDH_IS_ERR(bdh)) {
343 int error =
344 vdev_bdev_reread_part(BDH_BDEV(bdh));
345 vdev_blkdev_put(bdh, smode, zfs_vdev_holder);
346 if (error == 0) {
347 timeout = MSEC2NSEC(
348 zfs_vdev_open_timeout_ms * 2);
349 }
350 }
351 }
352 } else {
353 vd = kmem_zalloc(sizeof (vdev_disk_t), KM_SLEEP);
354
355 rw_init(&vd->vd_lock, NULL, RW_DEFAULT, NULL);
356 rw_enter(&vd->vd_lock, RW_WRITER);
357 }
358
359 /*
360 * Devices are always opened by the path provided at configuration
361 * time. This means that if the provided path is a udev by-id path
362 * then drives may be re-cabled without an issue. If the provided
363 * path is a udev by-path path, then the physical location information
364 * will be preserved. This can be critical for more complicated
365 * configurations where drives are located in specific physical
366 * locations to maximize the systems tolerance to component failure.
367 *
368 * Alternatively, you can provide your own udev rule to flexibly map
369 * the drives as you see fit. It is not advised that you use the
370 * /dev/[hd]d devices which may be reordered due to probing order.
371 * Devices in the wrong locations will be detected by the higher
372 * level vdev validation.
373 *
374 * The specified paths may be briefly removed and recreated in
375 * response to udev events. This should be exceptionally unlikely
376 * because the zpool command makes every effort to verify these paths
377 * have already settled prior to reaching this point. Therefore,
378 * a ENOENT failure at this point is highly likely to be transient
379 * and it is reasonable to sleep and retry before giving up. In
380 * practice delays have been observed to be on the order of 100ms.
381 *
382 * When ERESTARTSYS is returned it indicates the block device is
383 * a zvol which could not be opened due to the deadlock detection
384 * logic in zvol_open(). Extend the timeout and retry the open
385 * subsequent attempts are expected to eventually succeed.
386 */
387 hrtime_t start = gethrtime();
388 bdh = BDH_ERR_PTR(-ENXIO);
389 while (BDH_IS_ERR(bdh) && ((gethrtime() - start) < timeout)) {
390 bdh = vdev_blkdev_get_by_path(v->vdev_path, smode,
391 zfs_vdev_holder);
392 if (unlikely(BDH_PTR_ERR(bdh) == -ENOENT)) {
393 /*
394 * There is no point of waiting since device is removed
395 * explicitly
396 */
397 if (v->vdev_removed)
398 break;
399
400 schedule_timeout(MSEC_TO_TICK(10));
401 } else if (unlikely(BDH_PTR_ERR(bdh) == -ERESTARTSYS)) {
402 timeout = MSEC2NSEC(zfs_vdev_open_timeout_ms * 10);
403 continue;
404 } else if (BDH_IS_ERR(bdh)) {
405 break;
406 }
407 }
408
409 if (BDH_IS_ERR(bdh)) {
410 int error = -BDH_PTR_ERR(bdh);
411 vdev_dbgmsg(v, "open error=%d timeout=%llu/%llu", error,
412 (u_longlong_t)(gethrtime() - start),
413 (u_longlong_t)timeout);
414 vd->vd_bdh = NULL;
415 v->vdev_tsd = vd;
416 rw_exit(&vd->vd_lock);
417 return (SET_ERROR(error));
418 } else {
419 vd->vd_bdh = bdh;
420 v->vdev_tsd = vd;
421 rw_exit(&vd->vd_lock);
422 }
423
424 struct block_device *bdev = BDH_BDEV(vd->vd_bdh);
425
426 /* Determine the physical block size */
427 int physical_block_size = bdev_physical_block_size(bdev);
428
429 /* Determine the logical block size */
430 int logical_block_size = bdev_logical_block_size(bdev);
431
432 /* Clear the nowritecache bit, causes vdev_reopen() to try again. */
433 v->vdev_nowritecache = B_FALSE;
434
435 /* Set when device reports it supports TRIM. */
436 v->vdev_has_trim = bdev_discard_supported(bdev);
437
438 /* Set when device reports it supports secure TRIM. */
439 v->vdev_has_securetrim = bdev_secure_discard_supported(bdev);
440
441 /* Inform the ZIO pipeline that we are non-rotational */
442 v->vdev_nonrot = blk_queue_nonrot(bdev_get_queue(bdev));
443
444 /* Physical volume size in bytes for the partition */
445 *psize = bdev_capacity(bdev);
446
447 /* Physical volume size in bytes including possible expansion space */
448 *max_psize = bdev_max_capacity(bdev, v->vdev_wholedisk);
449
450 /* Based on the minimum sector size set the block size */
451 *physical_ashift = highbit64(MAX(physical_block_size,
452 SPA_MINBLOCKSIZE)) - 1;
453
454 *logical_ashift = highbit64(MAX(logical_block_size,
455 SPA_MINBLOCKSIZE)) - 1;
456
457 return (0);
458 }
459
460 static void
461 vdev_disk_close(vdev_t *v)
462 {
463 vdev_disk_t *vd = v->vdev_tsd;
464
465 if (v->vdev_reopening || vd == NULL)
466 return;
467
468 if (vd->vd_bdh != NULL)
469 vdev_blkdev_put(vd->vd_bdh, spa_mode(v->vdev_spa),
470 zfs_vdev_holder);
471
472 rw_destroy(&vd->vd_lock);
473 kmem_free(vd, sizeof (vdev_disk_t));
474 v->vdev_tsd = NULL;
475 }
476
477 static inline void
478 vdev_submit_bio_impl(struct bio *bio)
479 {
480 #ifdef HAVE_1ARG_SUBMIT_BIO
481 (void) submit_bio(bio);
482 #else
483 (void) submit_bio(bio_data_dir(bio), bio);
484 #endif
485 }
486
487 /*
488 * preempt_schedule_notrace is GPL-only which breaks the ZFS build, so
489 * replace it with preempt_schedule under the following condition:
490 */
491 #if defined(CONFIG_ARM64) && \
492 defined(CONFIG_PREEMPTION) && \
493 defined(CONFIG_BLK_CGROUP)
494 #define preempt_schedule_notrace(x) preempt_schedule(x)
495 #endif
496
497 /*
498 * As for the Linux 5.18 kernel bio_alloc() expects a block_device struct
499 * as an argument removing the need to set it with bio_set_dev(). This
500 * removes the need for all of the following compatibility code.
501 */
502 #if !defined(HAVE_BIO_ALLOC_4ARG)
503
504 #ifdef HAVE_BIO_SET_DEV
505 #if defined(CONFIG_BLK_CGROUP) && defined(HAVE_BIO_SET_DEV_GPL_ONLY)
506 /*
507 * The Linux 5.5 kernel updated percpu_ref_tryget() which is inlined by
508 * blkg_tryget() to use rcu_read_lock() instead of rcu_read_lock_sched().
509 * As a side effect the function was converted to GPL-only. Define our
510 * own version when needed which uses rcu_read_lock_sched().
511 *
512 * The Linux 5.17 kernel split linux/blk-cgroup.h into a private and a public
513 * part, moving blkg_tryget into the private one. Define our own version.
514 */
515 #if defined(HAVE_BLKG_TRYGET_GPL_ONLY) || !defined(HAVE_BLKG_TRYGET)
516 static inline bool
517 vdev_blkg_tryget(struct blkcg_gq *blkg)
518 {
519 struct percpu_ref *ref = &blkg->refcnt;
520 unsigned long __percpu *count;
521 bool rc;
522
523 rcu_read_lock_sched();
524
525 if (__ref_is_percpu(ref, &count)) {
526 this_cpu_inc(*count);
527 rc = true;
528 } else {
529 #ifdef ZFS_PERCPU_REF_COUNT_IN_DATA
530 rc = atomic_long_inc_not_zero(&ref->data->count);
531 #else
532 rc = atomic_long_inc_not_zero(&ref->count);
533 #endif
534 }
535
536 rcu_read_unlock_sched();
537
538 return (rc);
539 }
540 #else
541 #define vdev_blkg_tryget(bg) blkg_tryget(bg)
542 #endif
543 #ifdef HAVE_BIO_SET_DEV_MACRO
544 /*
545 * The Linux 5.0 kernel updated the bio_set_dev() macro so it calls the
546 * GPL-only bio_associate_blkg() symbol thus inadvertently converting
547 * the entire macro. Provide a minimal version which always assigns the
548 * request queue's root_blkg to the bio.
549 */
550 static inline void
551 vdev_bio_associate_blkg(struct bio *bio)
552 {
553 #if defined(HAVE_BIO_BDEV_DISK)
554 struct request_queue *q = bio->bi_bdev->bd_disk->queue;
555 #else
556 struct request_queue *q = bio->bi_disk->queue;
557 #endif
558
559 ASSERT3P(q, !=, NULL);
560 ASSERT3P(bio->bi_blkg, ==, NULL);
561
562 if (q->root_blkg && vdev_blkg_tryget(q->root_blkg))
563 bio->bi_blkg = q->root_blkg;
564 }
565
566 #define bio_associate_blkg vdev_bio_associate_blkg
567 #else
568 static inline void
569 vdev_bio_set_dev(struct bio *bio, struct block_device *bdev)
570 {
571 #if defined(HAVE_BIO_BDEV_DISK)
572 struct request_queue *q = bdev->bd_disk->queue;
573 #else
574 struct request_queue *q = bio->bi_disk->queue;
575 #endif
576 bio_clear_flag(bio, BIO_REMAPPED);
577 if (bio->bi_bdev != bdev)
578 bio_clear_flag(bio, BIO_THROTTLED);
579 bio->bi_bdev = bdev;
580
581 ASSERT3P(q, !=, NULL);
582 ASSERT3P(bio->bi_blkg, ==, NULL);
583
584 if (q->root_blkg && vdev_blkg_tryget(q->root_blkg))
585 bio->bi_blkg = q->root_blkg;
586 }
587 #define bio_set_dev vdev_bio_set_dev
588 #endif
589 #endif
590 #else
591 /*
592 * Provide a bio_set_dev() helper macro for pre-Linux 4.14 kernels.
593 */
594 static inline void
595 bio_set_dev(struct bio *bio, struct block_device *bdev)
596 {
597 bio->bi_bdev = bdev;
598 }
599 #endif /* HAVE_BIO_SET_DEV */
600 #endif /* !HAVE_BIO_ALLOC_4ARG */
601
602 static inline void
603 vdev_submit_bio(struct bio *bio)
604 {
605 struct bio_list *bio_list = current->bio_list;
606 current->bio_list = NULL;
607 vdev_submit_bio_impl(bio);
608 current->bio_list = bio_list;
609 }
610
611 static inline struct bio *
612 vdev_bio_alloc(struct block_device *bdev, gfp_t gfp_mask,
613 unsigned short nr_vecs)
614 {
615 struct bio *bio;
616
617 #ifdef HAVE_BIO_ALLOC_4ARG
618 bio = bio_alloc(bdev, nr_vecs, 0, gfp_mask);
619 #else
620 bio = bio_alloc(gfp_mask, nr_vecs);
621 if (likely(bio != NULL))
622 bio_set_dev(bio, bdev);
623 #endif
624
625 return (bio);
626 }
627
628 static inline uint_t
629 vdev_bio_max_segs(struct block_device *bdev)
630 {
631 /*
632 * Smallest of the device max segs and the tuneable max segs. Minimum
633 * 4, so there's room to finish split pages if they come up.
634 */
635 const uint_t dev_max_segs = queue_max_segments(bdev_get_queue(bdev));
636 const uint_t tune_max_segs = (zfs_vdev_disk_max_segs > 0) ?
637 MAX(4, zfs_vdev_disk_max_segs) : dev_max_segs;
638 const uint_t max_segs = MIN(tune_max_segs, dev_max_segs);
639
640 #ifdef HAVE_BIO_MAX_SEGS
641 return (bio_max_segs(max_segs));
642 #else
643 return (MIN(max_segs, BIO_MAX_PAGES));
644 #endif
645 }
646
647 static inline uint_t
648 vdev_bio_max_bytes(struct block_device *bdev)
649 {
650 return (queue_max_sectors(bdev_get_queue(bdev)) << 9);
651 }
652
653
654 /*
655 * Virtual block IO object (VBIO)
656 *
657 * Linux block IO (BIO) objects have a limit on how many data segments (pages)
658 * they can hold. Depending on how they're allocated and structured, a large
659 * ZIO can require more than one BIO to be submitted to the kernel, which then
660 * all have to complete before we can return the completed ZIO back to ZFS.
661 *
662 * A VBIO is a wrapper around multiple BIOs, carrying everything needed to
663 * translate a ZIO down into the kernel block layer and back again.
664 *
665 * Note that these are only used for data ZIOs (read/write). Meta-operations
666 * (flush/trim) don't need multiple BIOs and so can just make the call
667 * directly.
668 */
669 typedef struct {
670 zio_t *vbio_zio; /* parent zio */
671
672 struct block_device *vbio_bdev; /* blockdev to submit bios to */
673
674 abd_t *vbio_abd; /* abd carrying borrowed linear buf */
675
676 uint_t vbio_max_segs; /* max segs per bio */
677
678 uint_t vbio_max_bytes; /* max bytes per bio */
679 uint_t vbio_lbs_mask; /* logical block size mask */
680
681 uint64_t vbio_offset; /* start offset of next bio */
682
683 struct bio *vbio_bio; /* pointer to the current bio */
684 int vbio_flags; /* bio flags */
685 } vbio_t;
686
687 static vbio_t *
688 vbio_alloc(zio_t *zio, struct block_device *bdev, int flags)
689 {
690 vbio_t *vbio = kmem_zalloc(sizeof (vbio_t), KM_SLEEP);
691
692 vbio->vbio_zio = zio;
693 vbio->vbio_bdev = bdev;
694 vbio->vbio_abd = NULL;
695 vbio->vbio_max_segs = vdev_bio_max_segs(bdev);
696 vbio->vbio_max_bytes = vdev_bio_max_bytes(bdev);
697 vbio->vbio_lbs_mask = ~(bdev_logical_block_size(bdev)-1);
698 vbio->vbio_offset = zio->io_offset;
699 vbio->vbio_bio = NULL;
700 vbio->vbio_flags = flags;
701
702 return (vbio);
703 }
704
705 BIO_END_IO_PROTO(vbio_completion, bio, error);
706
707 static int
708 vbio_add_page(vbio_t *vbio, struct page *page, uint_t size, uint_t offset)
709 {
710 struct bio *bio = vbio->vbio_bio;
711 uint_t ssize;
712
713 while (size > 0) {
714 if (bio == NULL) {
715 /* New BIO, allocate and set up */
716 bio = vdev_bio_alloc(vbio->vbio_bdev, GFP_NOIO,
717 vbio->vbio_max_segs);
718 VERIFY(bio);
719
720 BIO_BI_SECTOR(bio) = vbio->vbio_offset >> 9;
721 bio_set_op_attrs(bio,
722 vbio->vbio_zio->io_type == ZIO_TYPE_WRITE ?
723 WRITE : READ, vbio->vbio_flags);
724
725 if (vbio->vbio_bio) {
726 bio_chain(vbio->vbio_bio, bio);
727 vdev_submit_bio(vbio->vbio_bio);
728 }
729 vbio->vbio_bio = bio;
730 }
731
732 /*
733 * Only load as much of the current page data as will fit in
734 * the space left in the BIO, respecting lbs alignment. Older
735 * kernels will error if we try to overfill the BIO, while
736 * newer ones will accept it and split the BIO. This ensures
737 * everything works on older kernels, and avoids an additional
738 * overhead on the new.
739 */
740 ssize = MIN(size, (vbio->vbio_max_bytes - BIO_BI_SIZE(bio)) &
741 vbio->vbio_lbs_mask);
742 if (ssize > 0 &&
743 bio_add_page(bio, page, ssize, offset) == ssize) {
744 /* Accepted, adjust and load any remaining. */
745 size -= ssize;
746 offset += ssize;
747 continue;
748 }
749
750 /* No room, set up for a new BIO and loop */
751 vbio->vbio_offset += BIO_BI_SIZE(bio);
752
753 /* Signal new BIO allocation wanted */
754 bio = NULL;
755 }
756
757 return (0);
758 }
759
760 /* Iterator callback to submit ABD pages to the vbio. */
761 static int
762 vbio_fill_cb(struct page *page, size_t off, size_t len, void *priv)
763 {
764 vbio_t *vbio = priv;
765 return (vbio_add_page(vbio, page, len, off));
766 }
767
768 /* Create some BIOs, fill them with data and submit them */
769 static void
770 vbio_submit(vbio_t *vbio, abd_t *abd, uint64_t size)
771 {
772 /*
773 * We plug so we can submit the BIOs as we go and only unplug them when
774 * they are fully created and submitted. This is important; if we don't
775 * plug, then the kernel may start executing earlier BIOs while we're
776 * still creating and executing later ones, and if the device goes
777 * away while that's happening, older kernels can get confused and
778 * trample memory.
779 */
780 struct blk_plug plug;
781 blk_start_plug(&plug);
782
783 (void) abd_iterate_page_func(abd, 0, size, vbio_fill_cb, vbio);
784 ASSERT(vbio->vbio_bio);
785
786 vbio->vbio_bio->bi_end_io = vbio_completion;
787 vbio->vbio_bio->bi_private = vbio;
788
789 /*
790 * Once submitted, vbio_bio now owns vbio (through bi_private) and we
791 * can't touch it again. The bio may complete and vbio_completion() be
792 * called and free the vbio before this task is run again, so we must
793 * consider it invalid from this point.
794 */
795 vdev_submit_bio(vbio->vbio_bio);
796
797 blk_finish_plug(&plug);
798 }
799
800 /* IO completion callback */
801 BIO_END_IO_PROTO(vbio_completion, bio, error)
802 {
803 vbio_t *vbio = bio->bi_private;
804 zio_t *zio = vbio->vbio_zio;
805
806 ASSERT(zio);
807
808 /* Capture and log any errors */
809 #ifdef HAVE_1ARG_BIO_END_IO_T
810 zio->io_error = BIO_END_IO_ERROR(bio);
811 #else
812 zio->io_error = 0;
813 if (error)
814 zio->io_error = -(error);
815 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
816 zio->io_error = EIO;
817 #endif
818 ASSERT3U(zio->io_error, >=, 0);
819
820 if (zio->io_error)
821 vdev_disk_error(zio);
822
823 /* Return the BIO to the kernel */
824 bio_put(bio);
825
826 /*
827 * If we copied the ABD before issuing it, clean up and return the copy
828 * to the ADB, with changes if appropriate.
829 */
830 if (vbio->vbio_abd != NULL) {
831 void *buf = abd_to_buf(vbio->vbio_abd);
832 abd_free(vbio->vbio_abd);
833 vbio->vbio_abd = NULL;
834
835 if (zio->io_type == ZIO_TYPE_READ)
836 abd_return_buf_copy(zio->io_abd, buf, zio->io_size);
837 else
838 abd_return_buf(zio->io_abd, buf, zio->io_size);
839 }
840
841 /* Final cleanup */
842 kmem_free(vbio, sizeof (vbio_t));
843
844 /* All done, submit for processing */
845 zio_delay_interrupt(zio);
846 }
847
848 /*
849 * Iterator callback to count ABD pages and check their size & alignment.
850 *
851 * On Linux, each BIO segment can take a page pointer, and an offset+length of
852 * the data within that page. A page can be arbitrarily large ("compound"
853 * pages) but we still have to ensure the data portion is correctly sized and
854 * aligned to the logical block size, to ensure that if the kernel wants to
855 * split the BIO, the two halves will still be properly aligned.
856 */
857 typedef struct {
858 uint_t bmask;
859 uint_t npages;
860 uint_t end;
861 } vdev_disk_check_pages_t;
862
863 static int
864 vdev_disk_check_pages_cb(struct page *page, size_t off, size_t len, void *priv)
865 {
866 vdev_disk_check_pages_t *s = priv;
867
868 /*
869 * If we didn't finish on a block size boundary last time, then there
870 * would be a gap if we tried to use this ABD as-is, so abort.
871 */
872 if (s->end != 0)
873 return (1);
874
875 /*
876 * Note if we're taking less than a full block, so we can check it
877 * above on the next call.
878 */
879 s->end = len & s->bmask;
880
881 /* All blocks after the first must start on a block size boundary. */
882 if (s->npages != 0 && (off & s->bmask) != 0)
883 return (1);
884
885 s->npages++;
886 return (0);
887 }
888
889 /*
890 * Check if we can submit the pages in this ABD to the kernel as-is. Returns
891 * the number of pages, or 0 if it can't be submitted like this.
892 */
893 static boolean_t
894 vdev_disk_check_pages(abd_t *abd, uint64_t size, struct block_device *bdev)
895 {
896 vdev_disk_check_pages_t s = {
897 .bmask = bdev_logical_block_size(bdev)-1,
898 .npages = 0,
899 .end = 0,
900 };
901
902 if (abd_iterate_page_func(abd, 0, size, vdev_disk_check_pages_cb, &s))
903 return (B_FALSE);
904
905 return (B_TRUE);
906 }
907
908 static int
909 vdev_disk_io_rw(zio_t *zio)
910 {
911 vdev_t *v = zio->io_vd;
912 vdev_disk_t *vd = v->vdev_tsd;
913 struct block_device *bdev = BDH_BDEV(vd->vd_bdh);
914 int flags = 0;
915
916 /*
917 * Accessing outside the block device is never allowed.
918 */
919 if (zio->io_offset + zio->io_size > bdev->bd_inode->i_size) {
920 vdev_dbgmsg(zio->io_vd,
921 "Illegal access %llu size %llu, device size %llu",
922 (u_longlong_t)zio->io_offset,
923 (u_longlong_t)zio->io_size,
924 (u_longlong_t)i_size_read(bdev->bd_inode));
925 return (SET_ERROR(EIO));
926 }
927
928 if (!(zio->io_flags & (ZIO_FLAG_IO_RETRY | ZIO_FLAG_TRYHARD)) &&
929 v->vdev_failfast == B_TRUE) {
930 bio_set_flags_failfast(bdev, &flags, zfs_vdev_failfast_mask & 1,
931 zfs_vdev_failfast_mask & 2, zfs_vdev_failfast_mask & 4);
932 }
933
934 /*
935 * Check alignment of the incoming ABD. If any part of it would require
936 * submitting a page that is not aligned to the logical block size,
937 * then we take a copy into a linear buffer and submit that instead.
938 * This should be impossible on a 512b LBS, and fairly rare on 4K,
939 * usually requiring abnormally-small data blocks (eg gang blocks)
940 * mixed into the same ABD as larger ones (eg aggregated).
941 */
942 abd_t *abd = zio->io_abd;
943 if (!vdev_disk_check_pages(abd, zio->io_size, bdev)) {
944 void *buf;
945 if (zio->io_type == ZIO_TYPE_READ)
946 buf = abd_borrow_buf(zio->io_abd, zio->io_size);
947 else
948 buf = abd_borrow_buf_copy(zio->io_abd, zio->io_size);
949
950 /*
951 * Wrap the copy in an abd_t, so we can use the same iterators
952 * to count and fill the vbio later.
953 */
954 abd = abd_get_from_buf(buf, zio->io_size);
955
956 /*
957 * False here would mean the borrowed copy has an invalid
958 * alignment too, which would mean we've somehow been passed a
959 * linear ABD with an interior page that has a non-zero offset
960 * or a size not a multiple of PAGE_SIZE. This is not possible.
961 * It would mean either zio_buf_alloc() or its underlying
962 * allocators have done something extremely strange, or our
963 * math in vdev_disk_check_pages() is wrong. In either case,
964 * something in seriously wrong and its not safe to continue.
965 */
966 VERIFY(vdev_disk_check_pages(abd, zio->io_size, bdev));
967 }
968
969 /* Allocate vbio, with a pointer to the borrowed ABD if necessary */
970 vbio_t *vbio = vbio_alloc(zio, bdev, flags);
971 if (abd != zio->io_abd)
972 vbio->vbio_abd = abd;
973
974 /* Fill it with data pages and submit it to the kernel */
975 vbio_submit(vbio, abd, zio->io_size);
976 return (0);
977 }
978
979 /* ========== */
980
981 /*
982 * This is the classic, battle-tested BIO submission code. Until we're totally
983 * sure that the new code is safe and correct in all cases, this will remain
984 * available and can be enabled by setting zfs_vdev_disk_classic=1 at module
985 * load time.
986 *
987 * These functions have been renamed to vdev_classic_* to make it clear what
988 * they belong to, but their implementations are unchanged.
989 */
990
991 /*
992 * Virtual device vector for disks.
993 */
994 typedef struct dio_request {
995 zio_t *dr_zio; /* Parent ZIO */
996 atomic_t dr_ref; /* References */
997 int dr_error; /* Bio error */
998 int dr_bio_count; /* Count of bio's */
999 struct bio *dr_bio[]; /* Attached bio's */
1000 } dio_request_t;
1001
1002 static dio_request_t *
1003 vdev_classic_dio_alloc(int bio_count)
1004 {
1005 dio_request_t *dr = kmem_zalloc(sizeof (dio_request_t) +
1006 sizeof (struct bio *) * bio_count, KM_SLEEP);
1007 atomic_set(&dr->dr_ref, 0);
1008 dr->dr_bio_count = bio_count;
1009 dr->dr_error = 0;
1010
1011 for (int i = 0; i < dr->dr_bio_count; i++)
1012 dr->dr_bio[i] = NULL;
1013
1014 return (dr);
1015 }
1016
1017 static void
1018 vdev_classic_dio_free(dio_request_t *dr)
1019 {
1020 int i;
1021
1022 for (i = 0; i < dr->dr_bio_count; i++)
1023 if (dr->dr_bio[i])
1024 bio_put(dr->dr_bio[i]);
1025
1026 kmem_free(dr, sizeof (dio_request_t) +
1027 sizeof (struct bio *) * dr->dr_bio_count);
1028 }
1029
1030 static void
1031 vdev_classic_dio_get(dio_request_t *dr)
1032 {
1033 atomic_inc(&dr->dr_ref);
1034 }
1035
1036 static void
1037 vdev_classic_dio_put(dio_request_t *dr)
1038 {
1039 int rc = atomic_dec_return(&dr->dr_ref);
1040
1041 /*
1042 * Free the dio_request when the last reference is dropped and
1043 * ensure zio_interpret is called only once with the correct zio
1044 */
1045 if (rc == 0) {
1046 zio_t *zio = dr->dr_zio;
1047 int error = dr->dr_error;
1048
1049 vdev_classic_dio_free(dr);
1050
1051 if (zio) {
1052 zio->io_error = error;
1053 ASSERT3S(zio->io_error, >=, 0);
1054 if (zio->io_error)
1055 vdev_disk_error(zio);
1056
1057 zio_delay_interrupt(zio);
1058 }
1059 }
1060 }
1061
1062 BIO_END_IO_PROTO(vdev_classic_physio_completion, bio, error)
1063 {
1064 dio_request_t *dr = bio->bi_private;
1065
1066 if (dr->dr_error == 0) {
1067 #ifdef HAVE_1ARG_BIO_END_IO_T
1068 dr->dr_error = BIO_END_IO_ERROR(bio);
1069 #else
1070 if (error)
1071 dr->dr_error = -(error);
1072 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
1073 dr->dr_error = EIO;
1074 #endif
1075 }
1076
1077 /* Drop reference acquired by vdev_classic_physio */
1078 vdev_classic_dio_put(dr);
1079 }
1080
1081 static inline unsigned int
1082 vdev_classic_bio_max_segs(zio_t *zio, int bio_size, uint64_t abd_offset)
1083 {
1084 unsigned long nr_segs = abd_nr_pages_off(zio->io_abd,
1085 bio_size, abd_offset);
1086
1087 #ifdef HAVE_BIO_MAX_SEGS
1088 return (bio_max_segs(nr_segs));
1089 #else
1090 return (MIN(nr_segs, BIO_MAX_PAGES));
1091 #endif
1092 }
1093
1094 static int
1095 vdev_classic_physio(zio_t *zio)
1096 {
1097 vdev_t *v = zio->io_vd;
1098 vdev_disk_t *vd = v->vdev_tsd;
1099 struct block_device *bdev = BDH_BDEV(vd->vd_bdh);
1100 size_t io_size = zio->io_size;
1101 uint64_t io_offset = zio->io_offset;
1102 int rw = zio->io_type == ZIO_TYPE_READ ? READ : WRITE;
1103 int flags = 0;
1104
1105 dio_request_t *dr;
1106 uint64_t abd_offset;
1107 uint64_t bio_offset;
1108 int bio_size;
1109 int bio_count = 16;
1110 int error = 0;
1111 struct blk_plug plug;
1112 unsigned short nr_vecs;
1113
1114 /*
1115 * Accessing outside the block device is never allowed.
1116 */
1117 if (io_offset + io_size > bdev->bd_inode->i_size) {
1118 vdev_dbgmsg(zio->io_vd,
1119 "Illegal access %llu size %llu, device size %llu",
1120 (u_longlong_t)io_offset,
1121 (u_longlong_t)io_size,
1122 (u_longlong_t)i_size_read(bdev->bd_inode));
1123 return (SET_ERROR(EIO));
1124 }
1125
1126 retry:
1127 dr = vdev_classic_dio_alloc(bio_count);
1128
1129 if (!(zio->io_flags & (ZIO_FLAG_IO_RETRY | ZIO_FLAG_TRYHARD)) &&
1130 zio->io_vd->vdev_failfast == B_TRUE) {
1131 bio_set_flags_failfast(bdev, &flags, zfs_vdev_failfast_mask & 1,
1132 zfs_vdev_failfast_mask & 2, zfs_vdev_failfast_mask & 4);
1133 }
1134
1135 dr->dr_zio = zio;
1136
1137 /*
1138 * Since bio's can have up to BIO_MAX_PAGES=256 iovec's, each of which
1139 * is at least 512 bytes and at most PAGESIZE (typically 4K), one bio
1140 * can cover at least 128KB and at most 1MB. When the required number
1141 * of iovec's exceeds this, we are forced to break the IO in multiple
1142 * bio's and wait for them all to complete. This is likely if the
1143 * recordsize property is increased beyond 1MB. The default
1144 * bio_count=16 should typically accommodate the maximum-size zio of
1145 * 16MB.
1146 */
1147
1148 abd_offset = 0;
1149 bio_offset = io_offset;
1150 bio_size = io_size;
1151 for (int i = 0; i <= dr->dr_bio_count; i++) {
1152
1153 /* Finished constructing bio's for given buffer */
1154 if (bio_size <= 0)
1155 break;
1156
1157 /*
1158 * If additional bio's are required, we have to retry, but
1159 * this should be rare - see the comment above.
1160 */
1161 if (dr->dr_bio_count == i) {
1162 vdev_classic_dio_free(dr);
1163 bio_count *= 2;
1164 goto retry;
1165 }
1166
1167 nr_vecs = vdev_classic_bio_max_segs(zio, bio_size, abd_offset);
1168 dr->dr_bio[i] = vdev_bio_alloc(bdev, GFP_NOIO, nr_vecs);
1169 if (unlikely(dr->dr_bio[i] == NULL)) {
1170 vdev_classic_dio_free(dr);
1171 return (SET_ERROR(ENOMEM));
1172 }
1173
1174 /* Matching put called by vdev_classic_physio_completion */
1175 vdev_classic_dio_get(dr);
1176
1177 BIO_BI_SECTOR(dr->dr_bio[i]) = bio_offset >> 9;
1178 dr->dr_bio[i]->bi_end_io = vdev_classic_physio_completion;
1179 dr->dr_bio[i]->bi_private = dr;
1180 bio_set_op_attrs(dr->dr_bio[i], rw, flags);
1181
1182 /* Remaining size is returned to become the new size */
1183 bio_size = abd_bio_map_off(dr->dr_bio[i], zio->io_abd,
1184 bio_size, abd_offset);
1185
1186 /* Advance in buffer and construct another bio if needed */
1187 abd_offset += BIO_BI_SIZE(dr->dr_bio[i]);
1188 bio_offset += BIO_BI_SIZE(dr->dr_bio[i]);
1189 }
1190
1191 /* Extra reference to protect dio_request during vdev_submit_bio */
1192 vdev_classic_dio_get(dr);
1193
1194 if (dr->dr_bio_count > 1)
1195 blk_start_plug(&plug);
1196
1197 /* Submit all bio's associated with this dio */
1198 for (int i = 0; i < dr->dr_bio_count; i++) {
1199 if (dr->dr_bio[i])
1200 vdev_submit_bio(dr->dr_bio[i]);
1201 }
1202
1203 if (dr->dr_bio_count > 1)
1204 blk_finish_plug(&plug);
1205
1206 vdev_classic_dio_put(dr);
1207
1208 return (error);
1209 }
1210
1211 /* ========== */
1212
1213 BIO_END_IO_PROTO(vdev_disk_io_flush_completion, bio, error)
1214 {
1215 zio_t *zio = bio->bi_private;
1216 #ifdef HAVE_1ARG_BIO_END_IO_T
1217 zio->io_error = BIO_END_IO_ERROR(bio);
1218 #else
1219 zio->io_error = -error;
1220 #endif
1221
1222 if (zio->io_error && (zio->io_error == EOPNOTSUPP))
1223 zio->io_vd->vdev_nowritecache = B_TRUE;
1224
1225 bio_put(bio);
1226 ASSERT3S(zio->io_error, >=, 0);
1227 if (zio->io_error)
1228 vdev_disk_error(zio);
1229 zio_interrupt(zio);
1230 }
1231
1232 static int
1233 vdev_disk_io_flush(struct block_device *bdev, zio_t *zio)
1234 {
1235 struct request_queue *q;
1236 struct bio *bio;
1237
1238 q = bdev_get_queue(bdev);
1239 if (!q)
1240 return (SET_ERROR(ENXIO));
1241
1242 bio = vdev_bio_alloc(bdev, GFP_NOIO, 0);
1243 if (unlikely(bio == NULL))
1244 return (SET_ERROR(ENOMEM));
1245
1246 bio->bi_end_io = vdev_disk_io_flush_completion;
1247 bio->bi_private = zio;
1248 bio_set_flush(bio);
1249 vdev_submit_bio(bio);
1250 invalidate_bdev(bdev);
1251
1252 return (0);
1253 }
1254
1255 BIO_END_IO_PROTO(vdev_disk_discard_end_io, bio, error)
1256 {
1257 zio_t *zio = bio->bi_private;
1258 #ifdef HAVE_1ARG_BIO_END_IO_T
1259 zio->io_error = BIO_END_IO_ERROR(bio);
1260 #else
1261 zio->io_error = -error;
1262 #endif
1263 bio_put(bio);
1264 if (zio->io_error)
1265 vdev_disk_error(zio);
1266 zio_interrupt(zio);
1267 }
1268
1269 /*
1270 * Wrappers for the different secure erase and discard APIs. We use async
1271 * when available; in this case, *biop is set to the last bio in the chain.
1272 */
1273 static int
1274 vdev_bdev_issue_secure_erase(zfs_bdev_handle_t *bdh, sector_t sector,
1275 sector_t nsect, struct bio **biop)
1276 {
1277 *biop = NULL;
1278 int error;
1279
1280 #if defined(HAVE_BLKDEV_ISSUE_SECURE_ERASE)
1281 error = blkdev_issue_secure_erase(BDH_BDEV(bdh),
1282 sector, nsect, GFP_NOFS);
1283 #elif defined(HAVE_BLKDEV_ISSUE_DISCARD_ASYNC_FLAGS)
1284 error = __blkdev_issue_discard(BDH_BDEV(bdh),
1285 sector, nsect, GFP_NOFS, BLKDEV_DISCARD_SECURE, biop);
1286 #elif defined(HAVE_BLKDEV_ISSUE_DISCARD_FLAGS)
1287 error = blkdev_issue_discard(BDH_BDEV(bdh),
1288 sector, nsect, GFP_NOFS, BLKDEV_DISCARD_SECURE);
1289 #else
1290 #error "unsupported kernel"
1291 #endif
1292
1293 return (error);
1294 }
1295
1296 static int
1297 vdev_bdev_issue_discard(zfs_bdev_handle_t *bdh, sector_t sector,
1298 sector_t nsect, struct bio **biop)
1299 {
1300 *biop = NULL;
1301 int error;
1302
1303 #if defined(HAVE_BLKDEV_ISSUE_DISCARD_ASYNC_FLAGS)
1304 error = __blkdev_issue_discard(BDH_BDEV(bdh),
1305 sector, nsect, GFP_NOFS, 0, biop);
1306 #elif defined(HAVE_BLKDEV_ISSUE_DISCARD_ASYNC_NOFLAGS)
1307 error = __blkdev_issue_discard(BDH_BDEV(bdh),
1308 sector, nsect, GFP_NOFS, biop);
1309 #elif defined(HAVE_BLKDEV_ISSUE_DISCARD_FLAGS)
1310 error = blkdev_issue_discard(BDH_BDEV(bdh),
1311 sector, nsect, GFP_NOFS, 0);
1312 #elif defined(HAVE_BLKDEV_ISSUE_DISCARD_NOFLAGS)
1313 error = blkdev_issue_discard(BDH_BDEV(bdh),
1314 sector, nsect, GFP_NOFS);
1315 #else
1316 #error "unsupported kernel"
1317 #endif
1318
1319 return (error);
1320 }
1321
1322 /*
1323 * Entry point for TRIM ops. This calls the right wrapper for secure erase or
1324 * discard, and then does the appropriate finishing work for error vs success
1325 * and async vs sync.
1326 */
1327 static int
1328 vdev_disk_io_trim(zio_t *zio)
1329 {
1330 int error;
1331 struct bio *bio;
1332
1333 zfs_bdev_handle_t *bdh = ((vdev_disk_t *)zio->io_vd->vdev_tsd)->vd_bdh;
1334 sector_t sector = zio->io_offset >> 9;
1335 sector_t nsects = zio->io_size >> 9;
1336
1337 if (zio->io_trim_flags & ZIO_TRIM_SECURE)
1338 error = vdev_bdev_issue_secure_erase(bdh, sector, nsects, &bio);
1339 else
1340 error = vdev_bdev_issue_discard(bdh, sector, nsects, &bio);
1341
1342 if (error != 0)
1343 return (SET_ERROR(-error));
1344
1345 if (bio == NULL) {
1346 /*
1347 * This was a synchronous op that completed successfully, so
1348 * return it to ZFS immediately.
1349 */
1350 zio_interrupt(zio);
1351 } else {
1352 /*
1353 * This was an asynchronous op; set up completion callback and
1354 * issue it.
1355 */
1356 bio->bi_private = zio;
1357 bio->bi_end_io = vdev_disk_discard_end_io;
1358 vdev_submit_bio(bio);
1359 }
1360
1361 return (0);
1362 }
1363
1364 int (*vdev_disk_io_rw_fn)(zio_t *zio) = NULL;
1365
1366 static void
1367 vdev_disk_io_start(zio_t *zio)
1368 {
1369 vdev_t *v = zio->io_vd;
1370 vdev_disk_t *vd = v->vdev_tsd;
1371 int error;
1372
1373 /*
1374 * If the vdev is closed, it's likely in the REMOVED or FAULTED state.
1375 * Nothing to be done here but return failure.
1376 */
1377 if (vd == NULL) {
1378 zio->io_error = ENXIO;
1379 zio_interrupt(zio);
1380 return;
1381 }
1382
1383 rw_enter(&vd->vd_lock, RW_READER);
1384
1385 /*
1386 * If the vdev is closed, it's likely due to a failed reopen and is
1387 * in the UNAVAIL state. Nothing to be done here but return failure.
1388 */
1389 if (vd->vd_bdh == NULL) {
1390 rw_exit(&vd->vd_lock);
1391 zio->io_error = ENXIO;
1392 zio_interrupt(zio);
1393 return;
1394 }
1395
1396 switch (zio->io_type) {
1397 case ZIO_TYPE_IOCTL:
1398
1399 if (!vdev_readable(v)) {
1400 rw_exit(&vd->vd_lock);
1401 zio->io_error = SET_ERROR(ENXIO);
1402 zio_interrupt(zio);
1403 return;
1404 }
1405
1406 switch (zio->io_cmd) {
1407 case DKIOCFLUSHWRITECACHE:
1408
1409 if (zfs_nocacheflush)
1410 break;
1411
1412 if (v->vdev_nowritecache) {
1413 zio->io_error = SET_ERROR(ENOTSUP);
1414 break;
1415 }
1416
1417 error = vdev_disk_io_flush(BDH_BDEV(vd->vd_bdh), zio);
1418 if (error == 0) {
1419 rw_exit(&vd->vd_lock);
1420 return;
1421 }
1422
1423 zio->io_error = error;
1424
1425 break;
1426
1427 default:
1428 zio->io_error = SET_ERROR(ENOTSUP);
1429 }
1430
1431 rw_exit(&vd->vd_lock);
1432 zio_execute(zio);
1433 return;
1434
1435 case ZIO_TYPE_TRIM:
1436 error = vdev_disk_io_trim(zio);
1437 rw_exit(&vd->vd_lock);
1438 if (error) {
1439 zio->io_error = error;
1440 zio_execute(zio);
1441 }
1442 return;
1443
1444 case ZIO_TYPE_READ:
1445 case ZIO_TYPE_WRITE:
1446 zio->io_target_timestamp = zio_handle_io_delay(zio);
1447 error = vdev_disk_io_rw_fn(zio);
1448 rw_exit(&vd->vd_lock);
1449 if (error) {
1450 zio->io_error = error;
1451 zio_interrupt(zio);
1452 }
1453 return;
1454
1455 default:
1456 /*
1457 * Getting here means our parent vdev has made a very strange
1458 * request of us, and shouldn't happen. Assert here to force a
1459 * crash in dev builds, but in production return the IO
1460 * unhandled. The pool will likely suspend anyway but that's
1461 * nicer than crashing the kernel.
1462 */
1463 ASSERT3S(zio->io_type, ==, -1);
1464
1465 rw_exit(&vd->vd_lock);
1466 zio->io_error = SET_ERROR(ENOTSUP);
1467 zio_interrupt(zio);
1468 return;
1469 }
1470
1471 __builtin_unreachable();
1472 }
1473
1474 static void
1475 vdev_disk_io_done(zio_t *zio)
1476 {
1477 /*
1478 * If the device returned EIO, we revalidate the media. If it is
1479 * determined the media has changed this triggers the asynchronous
1480 * removal of the device from the configuration.
1481 */
1482 if (zio->io_error == EIO) {
1483 vdev_t *v = zio->io_vd;
1484 vdev_disk_t *vd = v->vdev_tsd;
1485
1486 if (!zfs_check_disk_status(BDH_BDEV(vd->vd_bdh))) {
1487 invalidate_bdev(BDH_BDEV(vd->vd_bdh));
1488 v->vdev_remove_wanted = B_TRUE;
1489 spa_async_request(zio->io_spa, SPA_ASYNC_REMOVE);
1490 }
1491 }
1492 }
1493
1494 static void
1495 vdev_disk_hold(vdev_t *vd)
1496 {
1497 ASSERT(spa_config_held(vd->vdev_spa, SCL_STATE, RW_WRITER));
1498
1499 /* We must have a pathname, and it must be absolute. */
1500 if (vd->vdev_path == NULL || vd->vdev_path[0] != '/')
1501 return;
1502
1503 /*
1504 * Only prefetch path and devid info if the device has
1505 * never been opened.
1506 */
1507 if (vd->vdev_tsd != NULL)
1508 return;
1509
1510 }
1511
1512 static void
1513 vdev_disk_rele(vdev_t *vd)
1514 {
1515 ASSERT(spa_config_held(vd->vdev_spa, SCL_STATE, RW_WRITER));
1516
1517 /* XXX: Implement me as a vnode rele for the device */
1518 }
1519
1520 /*
1521 * BIO submission method. See comment above about vdev_classic.
1522 * Set zfs_vdev_disk_classic=0 for new, =1 for classic
1523 */
1524 static uint_t zfs_vdev_disk_classic = 0; /* default new */
1525
1526 /* Set submission function from module parameter */
1527 static int
1528 vdev_disk_param_set_classic(const char *buf, zfs_kernel_param_t *kp)
1529 {
1530 int err = param_set_uint(buf, kp);
1531 if (err < 0)
1532 return (SET_ERROR(err));
1533
1534 vdev_disk_io_rw_fn =
1535 zfs_vdev_disk_classic ? vdev_classic_physio : vdev_disk_io_rw;
1536
1537 printk(KERN_INFO "ZFS: forcing %s BIO submission\n",
1538 zfs_vdev_disk_classic ? "classic" : "new");
1539
1540 return (0);
1541 }
1542
1543 /*
1544 * At first use vdev use, set the submission function from the default value if
1545 * it hasn't been set already.
1546 */
1547 static int
1548 vdev_disk_init(spa_t *spa, nvlist_t *nv, void **tsd)
1549 {
1550 (void) spa;
1551 (void) nv;
1552 (void) tsd;
1553
1554 if (vdev_disk_io_rw_fn == NULL)
1555 vdev_disk_io_rw_fn = zfs_vdev_disk_classic ?
1556 vdev_classic_physio : vdev_disk_io_rw;
1557
1558 return (0);
1559 }
1560
1561 vdev_ops_t vdev_disk_ops = {
1562 .vdev_op_init = vdev_disk_init,
1563 .vdev_op_fini = NULL,
1564 .vdev_op_open = vdev_disk_open,
1565 .vdev_op_close = vdev_disk_close,
1566 .vdev_op_asize = vdev_default_asize,
1567 .vdev_op_min_asize = vdev_default_min_asize,
1568 .vdev_op_min_alloc = NULL,
1569 .vdev_op_io_start = vdev_disk_io_start,
1570 .vdev_op_io_done = vdev_disk_io_done,
1571 .vdev_op_state_change = NULL,
1572 .vdev_op_need_resilver = NULL,
1573 .vdev_op_hold = vdev_disk_hold,
1574 .vdev_op_rele = vdev_disk_rele,
1575 .vdev_op_remap = NULL,
1576 .vdev_op_xlate = vdev_default_xlate,
1577 .vdev_op_rebuild_asize = NULL,
1578 .vdev_op_metaslab_init = NULL,
1579 .vdev_op_config_generate = NULL,
1580 .vdev_op_nparity = NULL,
1581 .vdev_op_ndisks = NULL,
1582 .vdev_op_type = VDEV_TYPE_DISK, /* name of this vdev type */
1583 .vdev_op_leaf = B_TRUE, /* leaf vdev */
1584 .vdev_op_kobj_evt_post = vdev_disk_kobj_evt_post
1585 };
1586
1587 /*
1588 * The zfs_vdev_scheduler module option has been deprecated. Setting this
1589 * value no longer has any effect. It has not yet been entirely removed
1590 * to allow the module to be loaded if this option is specified in the
1591 * /etc/modprobe.d/zfs.conf file. The following warning will be logged.
1592 */
1593 static int
1594 param_set_vdev_scheduler(const char *val, zfs_kernel_param_t *kp)
1595 {
1596 int error = param_set_charp(val, kp);
1597 if (error == 0) {
1598 printk(KERN_INFO "The 'zfs_vdev_scheduler' module option "
1599 "is not supported.\n");
1600 }
1601
1602 return (error);
1603 }
1604
1605 static const char *zfs_vdev_scheduler = "unused";
1606 module_param_call(zfs_vdev_scheduler, param_set_vdev_scheduler,
1607 param_get_charp, &zfs_vdev_scheduler, 0644);
1608 MODULE_PARM_DESC(zfs_vdev_scheduler, "I/O scheduler");
1609
1610 int
1611 param_set_min_auto_ashift(const char *buf, zfs_kernel_param_t *kp)
1612 {
1613 uint_t val;
1614 int error;
1615
1616 error = kstrtouint(buf, 0, &val);
1617 if (error < 0)
1618 return (SET_ERROR(error));
1619
1620 if (val < ASHIFT_MIN || val > zfs_vdev_max_auto_ashift)
1621 return (SET_ERROR(-EINVAL));
1622
1623 error = param_set_uint(buf, kp);
1624 if (error < 0)
1625 return (SET_ERROR(error));
1626
1627 return (0);
1628 }
1629
1630 int
1631 param_set_max_auto_ashift(const char *buf, zfs_kernel_param_t *kp)
1632 {
1633 uint_t val;
1634 int error;
1635
1636 error = kstrtouint(buf, 0, &val);
1637 if (error < 0)
1638 return (SET_ERROR(error));
1639
1640 if (val > ASHIFT_MAX || val < zfs_vdev_min_auto_ashift)
1641 return (SET_ERROR(-EINVAL));
1642
1643 error = param_set_uint(buf, kp);
1644 if (error < 0)
1645 return (SET_ERROR(error));
1646
1647 return (0);
1648 }
1649
1650 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, open_timeout_ms, UINT, ZMOD_RW,
1651 "Timeout before determining that a device is missing");
1652
1653 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, failfast_mask, UINT, ZMOD_RW,
1654 "Defines failfast mask: 1 - device, 2 - transport, 4 - driver");
1655
1656 ZFS_MODULE_PARAM(zfs_vdev_disk, zfs_vdev_disk_, max_segs, UINT, ZMOD_RW,
1657 "Maximum number of data segments to add to an IO request (min 4)");
1658
1659 ZFS_MODULE_PARAM_CALL(zfs_vdev_disk, zfs_vdev_disk_, classic,
1660 vdev_disk_param_set_classic, param_get_uint, ZMOD_RD,
1661 "Use classic BIO submission method");