]> git.proxmox.com Git - mirror_zfs.git/blob - module/os/linux/zfs/zfs_vnops_os.c
c6115b530ff524f4b251ba1aa3ba1d6c65d37d38
[mirror_zfs.git] / module / os / linux / zfs / zfs_vnops_os.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2012, 2018 by Delphix. All rights reserved.
25 * Copyright (c) 2015 by Chunwei Chen. All rights reserved.
26 * Copyright 2017 Nexenta Systems, Inc.
27 */
28
29 /* Portions Copyright 2007 Jeremy Teo */
30 /* Portions Copyright 2010 Robert Milkowski */
31
32
33 #include <sys/types.h>
34 #include <sys/param.h>
35 #include <sys/time.h>
36 #include <sys/sysmacros.h>
37 #include <sys/vfs.h>
38 #include <sys/file.h>
39 #include <sys/stat.h>
40 #include <sys/kmem.h>
41 #include <sys/taskq.h>
42 #include <sys/uio.h>
43 #include <sys/vmsystm.h>
44 #include <sys/atomic.h>
45 #include <sys/pathname.h>
46 #include <sys/cmn_err.h>
47 #include <sys/errno.h>
48 #include <sys/zfs_dir.h>
49 #include <sys/zfs_acl.h>
50 #include <sys/zfs_ioctl.h>
51 #include <sys/fs/zfs.h>
52 #include <sys/dmu.h>
53 #include <sys/dmu_objset.h>
54 #include <sys/spa.h>
55 #include <sys/txg.h>
56 #include <sys/dbuf.h>
57 #include <sys/zap.h>
58 #include <sys/sa.h>
59 #include <sys/policy.h>
60 #include <sys/sunddi.h>
61 #include <sys/sid.h>
62 #include <sys/zfs_ctldir.h>
63 #include <sys/zfs_fuid.h>
64 #include <sys/zfs_quota.h>
65 #include <sys/zfs_sa.h>
66 #include <sys/zfs_vnops.h>
67 #include <sys/zfs_rlock.h>
68 #include <sys/cred.h>
69 #include <sys/zpl.h>
70 #include <sys/zil.h>
71 #include <sys/sa_impl.h>
72
73 /*
74 * Programming rules.
75 *
76 * Each vnode op performs some logical unit of work. To do this, the ZPL must
77 * properly lock its in-core state, create a DMU transaction, do the work,
78 * record this work in the intent log (ZIL), commit the DMU transaction,
79 * and wait for the intent log to commit if it is a synchronous operation.
80 * Moreover, the vnode ops must work in both normal and log replay context.
81 * The ordering of events is important to avoid deadlocks and references
82 * to freed memory. The example below illustrates the following Big Rules:
83 *
84 * (1) A check must be made in each zfs thread for a mounted file system.
85 * This is done avoiding races using ZFS_ENTER(zfsvfs).
86 * A ZFS_EXIT(zfsvfs) is needed before all returns. Any znodes
87 * must be checked with ZFS_VERIFY_ZP(zp). Both of these macros
88 * can return EIO from the calling function.
89 *
90 * (2) zrele() should always be the last thing except for zil_commit() (if
91 * necessary) and ZFS_EXIT(). This is for 3 reasons: First, if it's the
92 * last reference, the vnode/znode can be freed, so the zp may point to
93 * freed memory. Second, the last reference will call zfs_zinactive(),
94 * which may induce a lot of work -- pushing cached pages (which acquires
95 * range locks) and syncing out cached atime changes. Third,
96 * zfs_zinactive() may require a new tx, which could deadlock the system
97 * if you were already holding one. This deadlock occurs because the tx
98 * currently being operated on prevents a txg from syncing, which
99 * prevents the new tx from progressing, resulting in a deadlock. If you
100 * must call zrele() within a tx, use zfs_zrele_async(). Note that iput()
101 * is a synonym for zrele().
102 *
103 * (3) All range locks must be grabbed before calling dmu_tx_assign(),
104 * as they can span dmu_tx_assign() calls.
105 *
106 * (4) If ZPL locks are held, pass TXG_NOWAIT as the second argument to
107 * dmu_tx_assign(). This is critical because we don't want to block
108 * while holding locks.
109 *
110 * If no ZPL locks are held (aside from ZFS_ENTER()), use TXG_WAIT. This
111 * reduces lock contention and CPU usage when we must wait (note that if
112 * throughput is constrained by the storage, nearly every transaction
113 * must wait).
114 *
115 * Note, in particular, that if a lock is sometimes acquired before
116 * the tx assigns, and sometimes after (e.g. z_lock), then failing
117 * to use a non-blocking assign can deadlock the system. The scenario:
118 *
119 * Thread A has grabbed a lock before calling dmu_tx_assign().
120 * Thread B is in an already-assigned tx, and blocks for this lock.
121 * Thread A calls dmu_tx_assign(TXG_WAIT) and blocks in txg_wait_open()
122 * forever, because the previous txg can't quiesce until B's tx commits.
123 *
124 * If dmu_tx_assign() returns ERESTART and zfsvfs->z_assign is TXG_NOWAIT,
125 * then drop all locks, call dmu_tx_wait(), and try again. On subsequent
126 * calls to dmu_tx_assign(), pass TXG_NOTHROTTLE in addition to TXG_NOWAIT,
127 * to indicate that this operation has already called dmu_tx_wait().
128 * This will ensure that we don't retry forever, waiting a short bit
129 * each time.
130 *
131 * (5) If the operation succeeded, generate the intent log entry for it
132 * before dropping locks. This ensures that the ordering of events
133 * in the intent log matches the order in which they actually occurred.
134 * During ZIL replay the zfs_log_* functions will update the sequence
135 * number to indicate the zil transaction has replayed.
136 *
137 * (6) At the end of each vnode op, the DMU tx must always commit,
138 * regardless of whether there were any errors.
139 *
140 * (7) After dropping all locks, invoke zil_commit(zilog, foid)
141 * to ensure that synchronous semantics are provided when necessary.
142 *
143 * In general, this is how things should be ordered in each vnode op:
144 *
145 * ZFS_ENTER(zfsvfs); // exit if unmounted
146 * top:
147 * zfs_dirent_lock(&dl, ...) // lock directory entry (may igrab())
148 * rw_enter(...); // grab any other locks you need
149 * tx = dmu_tx_create(...); // get DMU tx
150 * dmu_tx_hold_*(); // hold each object you might modify
151 * error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
152 * if (error) {
153 * rw_exit(...); // drop locks
154 * zfs_dirent_unlock(dl); // unlock directory entry
155 * zrele(...); // release held znodes
156 * if (error == ERESTART) {
157 * waited = B_TRUE;
158 * dmu_tx_wait(tx);
159 * dmu_tx_abort(tx);
160 * goto top;
161 * }
162 * dmu_tx_abort(tx); // abort DMU tx
163 * ZFS_EXIT(zfsvfs); // finished in zfs
164 * return (error); // really out of space
165 * }
166 * error = do_real_work(); // do whatever this VOP does
167 * if (error == 0)
168 * zfs_log_*(...); // on success, make ZIL entry
169 * dmu_tx_commit(tx); // commit DMU tx -- error or not
170 * rw_exit(...); // drop locks
171 * zfs_dirent_unlock(dl); // unlock directory entry
172 * zrele(...); // release held znodes
173 * zil_commit(zilog, foid); // synchronous when necessary
174 * ZFS_EXIT(zfsvfs); // finished in zfs
175 * return (error); // done, report error
176 */
177
178 /* ARGSUSED */
179 int
180 zfs_open(struct inode *ip, int mode, int flag, cred_t *cr)
181 {
182 znode_t *zp = ITOZ(ip);
183 zfsvfs_t *zfsvfs = ITOZSB(ip);
184
185 ZFS_ENTER(zfsvfs);
186 ZFS_VERIFY_ZP(zp);
187
188 /* Honor ZFS_APPENDONLY file attribute */
189 if ((mode & FMODE_WRITE) && (zp->z_pflags & ZFS_APPENDONLY) &&
190 ((flag & O_APPEND) == 0)) {
191 ZFS_EXIT(zfsvfs);
192 return (SET_ERROR(EPERM));
193 }
194
195 /* Keep a count of the synchronous opens in the znode */
196 if (flag & O_SYNC)
197 atomic_inc_32(&zp->z_sync_cnt);
198
199 ZFS_EXIT(zfsvfs);
200 return (0);
201 }
202
203 /* ARGSUSED */
204 int
205 zfs_close(struct inode *ip, int flag, cred_t *cr)
206 {
207 znode_t *zp = ITOZ(ip);
208 zfsvfs_t *zfsvfs = ITOZSB(ip);
209
210 ZFS_ENTER(zfsvfs);
211 ZFS_VERIFY_ZP(zp);
212
213 /* Decrement the synchronous opens in the znode */
214 if (flag & O_SYNC)
215 atomic_dec_32(&zp->z_sync_cnt);
216
217 ZFS_EXIT(zfsvfs);
218 return (0);
219 }
220
221 #if defined(_KERNEL)
222 /*
223 * When a file is memory mapped, we must keep the IO data synchronized
224 * between the DMU cache and the memory mapped pages. What this means:
225 *
226 * On Write: If we find a memory mapped page, we write to *both*
227 * the page and the dmu buffer.
228 */
229 void
230 update_pages(znode_t *zp, int64_t start, int len, objset_t *os)
231 {
232 struct inode *ip = ZTOI(zp);
233 struct address_space *mp = ip->i_mapping;
234 struct page *pp;
235 uint64_t nbytes;
236 int64_t off;
237 void *pb;
238
239 off = start & (PAGE_SIZE-1);
240 for (start &= PAGE_MASK; len > 0; start += PAGE_SIZE) {
241 nbytes = MIN(PAGE_SIZE - off, len);
242
243 pp = find_lock_page(mp, start >> PAGE_SHIFT);
244 if (pp) {
245 if (mapping_writably_mapped(mp))
246 flush_dcache_page(pp);
247
248 pb = kmap(pp);
249 (void) dmu_read(os, zp->z_id, start + off, nbytes,
250 pb + off, DMU_READ_PREFETCH);
251 kunmap(pp);
252
253 if (mapping_writably_mapped(mp))
254 flush_dcache_page(pp);
255
256 mark_page_accessed(pp);
257 SetPageUptodate(pp);
258 ClearPageError(pp);
259 unlock_page(pp);
260 put_page(pp);
261 }
262
263 len -= nbytes;
264 off = 0;
265 }
266 }
267
268 /*
269 * When a file is memory mapped, we must keep the IO data synchronized
270 * between the DMU cache and the memory mapped pages. What this means:
271 *
272 * On Read: We "read" preferentially from memory mapped pages,
273 * else we default from the dmu buffer.
274 *
275 * NOTE: We will always "break up" the IO into PAGESIZE uiomoves when
276 * the file is memory mapped.
277 */
278 int
279 mappedread(znode_t *zp, int nbytes, zfs_uio_t *uio)
280 {
281 struct inode *ip = ZTOI(zp);
282 struct address_space *mp = ip->i_mapping;
283 struct page *pp;
284 int64_t start, off;
285 uint64_t bytes;
286 int len = nbytes;
287 int error = 0;
288 void *pb;
289
290 start = uio->uio_loffset;
291 off = start & (PAGE_SIZE-1);
292 for (start &= PAGE_MASK; len > 0; start += PAGE_SIZE) {
293 bytes = MIN(PAGE_SIZE - off, len);
294
295 pp = find_lock_page(mp, start >> PAGE_SHIFT);
296 if (pp) {
297 ASSERT(PageUptodate(pp));
298 unlock_page(pp);
299
300 pb = kmap(pp);
301 error = zfs_uiomove(pb + off, bytes, UIO_READ, uio);
302 kunmap(pp);
303
304 if (mapping_writably_mapped(mp))
305 flush_dcache_page(pp);
306
307 mark_page_accessed(pp);
308 put_page(pp);
309 } else {
310 error = dmu_read_uio_dbuf(sa_get_db(zp->z_sa_hdl),
311 uio, bytes);
312 }
313
314 len -= bytes;
315 off = 0;
316 if (error)
317 break;
318 }
319 return (error);
320 }
321 #endif /* _KERNEL */
322
323 static unsigned long zfs_delete_blocks = DMU_MAX_DELETEBLKCNT;
324
325 /*
326 * Write the bytes to a file.
327 *
328 * IN: zp - znode of file to be written to
329 * data - bytes to write
330 * len - number of bytes to write
331 * pos - offset to start writing at
332 *
333 * OUT: resid - remaining bytes to write
334 *
335 * RETURN: 0 if success
336 * positive error code if failure. EIO is returned
337 * for a short write when residp isn't provided.
338 *
339 * Timestamps:
340 * zp - ctime|mtime updated if byte count > 0
341 */
342 int
343 zfs_write_simple(znode_t *zp, const void *data, size_t len,
344 loff_t pos, size_t *residp)
345 {
346 fstrans_cookie_t cookie;
347 int error;
348
349 struct iovec iov;
350 iov.iov_base = (void *)data;
351 iov.iov_len = len;
352
353 zfs_uio_t uio;
354 zfs_uio_iovec_init(&uio, &iov, 1, pos, UIO_SYSSPACE, len, 0);
355
356 cookie = spl_fstrans_mark();
357 error = zfs_write(zp, &uio, 0, kcred);
358 spl_fstrans_unmark(cookie);
359
360 if (error == 0) {
361 if (residp != NULL)
362 *residp = zfs_uio_resid(&uio);
363 else if (zfs_uio_resid(&uio) != 0)
364 error = SET_ERROR(EIO);
365 }
366
367 return (error);
368 }
369
370 static void
371 zfs_rele_async_task(void *arg)
372 {
373 iput(arg);
374 }
375
376 void
377 zfs_zrele_async(znode_t *zp)
378 {
379 struct inode *ip = ZTOI(zp);
380 objset_t *os = ITOZSB(ip)->z_os;
381
382 ASSERT(atomic_read(&ip->i_count) > 0);
383 ASSERT(os != NULL);
384
385 /*
386 * If decrementing the count would put us at 0, we can't do it inline
387 * here, because that would be synchronous. Instead, dispatch an iput
388 * to run later.
389 *
390 * For more information on the dangers of a synchronous iput, see the
391 * header comment of this file.
392 */
393 if (!atomic_add_unless(&ip->i_count, -1, 1)) {
394 VERIFY(taskq_dispatch(dsl_pool_zrele_taskq(dmu_objset_pool(os)),
395 zfs_rele_async_task, ip, TQ_SLEEP) != TASKQID_INVALID);
396 }
397 }
398
399
400 /*
401 * Lookup an entry in a directory, or an extended attribute directory.
402 * If it exists, return a held inode reference for it.
403 *
404 * IN: zdp - znode of directory to search.
405 * nm - name of entry to lookup.
406 * flags - LOOKUP_XATTR set if looking for an attribute.
407 * cr - credentials of caller.
408 * direntflags - directory lookup flags
409 * realpnp - returned pathname.
410 *
411 * OUT: zpp - znode of located entry, NULL if not found.
412 *
413 * RETURN: 0 on success, error code on failure.
414 *
415 * Timestamps:
416 * NA
417 */
418 /* ARGSUSED */
419 int
420 zfs_lookup(znode_t *zdp, char *nm, znode_t **zpp, int flags, cred_t *cr,
421 int *direntflags, pathname_t *realpnp)
422 {
423 zfsvfs_t *zfsvfs = ZTOZSB(zdp);
424 int error = 0;
425
426 /*
427 * Fast path lookup, however we must skip DNLC lookup
428 * for case folding or normalizing lookups because the
429 * DNLC code only stores the passed in name. This means
430 * creating 'a' and removing 'A' on a case insensitive
431 * file system would work, but DNLC still thinks 'a'
432 * exists and won't let you create it again on the next
433 * pass through fast path.
434 */
435 if (!(flags & (LOOKUP_XATTR | FIGNORECASE))) {
436
437 if (!S_ISDIR(ZTOI(zdp)->i_mode)) {
438 return (SET_ERROR(ENOTDIR));
439 } else if (zdp->z_sa_hdl == NULL) {
440 return (SET_ERROR(EIO));
441 }
442
443 if (nm[0] == 0 || (nm[0] == '.' && nm[1] == '\0')) {
444 error = zfs_fastaccesschk_execute(zdp, cr);
445 if (!error) {
446 *zpp = zdp;
447 zhold(*zpp);
448 return (0);
449 }
450 return (error);
451 }
452 }
453
454 ZFS_ENTER(zfsvfs);
455 ZFS_VERIFY_ZP(zdp);
456
457 *zpp = NULL;
458
459 if (flags & LOOKUP_XATTR) {
460 /*
461 * We don't allow recursive attributes..
462 * Maybe someday we will.
463 */
464 if (zdp->z_pflags & ZFS_XATTR) {
465 ZFS_EXIT(zfsvfs);
466 return (SET_ERROR(EINVAL));
467 }
468
469 if ((error = zfs_get_xattrdir(zdp, zpp, cr, flags))) {
470 ZFS_EXIT(zfsvfs);
471 return (error);
472 }
473
474 /*
475 * Do we have permission to get into attribute directory?
476 */
477
478 if ((error = zfs_zaccess(*zpp, ACE_EXECUTE, 0,
479 B_FALSE, cr))) {
480 zrele(*zpp);
481 *zpp = NULL;
482 }
483
484 ZFS_EXIT(zfsvfs);
485 return (error);
486 }
487
488 if (!S_ISDIR(ZTOI(zdp)->i_mode)) {
489 ZFS_EXIT(zfsvfs);
490 return (SET_ERROR(ENOTDIR));
491 }
492
493 /*
494 * Check accessibility of directory.
495 */
496
497 if ((error = zfs_zaccess(zdp, ACE_EXECUTE, 0, B_FALSE, cr))) {
498 ZFS_EXIT(zfsvfs);
499 return (error);
500 }
501
502 if (zfsvfs->z_utf8 && u8_validate(nm, strlen(nm),
503 NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
504 ZFS_EXIT(zfsvfs);
505 return (SET_ERROR(EILSEQ));
506 }
507
508 error = zfs_dirlook(zdp, nm, zpp, flags, direntflags, realpnp);
509 if ((error == 0) && (*zpp))
510 zfs_znode_update_vfs(*zpp);
511
512 ZFS_EXIT(zfsvfs);
513 return (error);
514 }
515
516 /*
517 * Attempt to create a new entry in a directory. If the entry
518 * already exists, truncate the file if permissible, else return
519 * an error. Return the ip of the created or trunc'd file.
520 *
521 * IN: dzp - znode of directory to put new file entry in.
522 * name - name of new file entry.
523 * vap - attributes of new file.
524 * excl - flag indicating exclusive or non-exclusive mode.
525 * mode - mode to open file with.
526 * cr - credentials of caller.
527 * flag - file flag.
528 * vsecp - ACL to be set
529 *
530 * OUT: zpp - znode of created or trunc'd entry.
531 *
532 * RETURN: 0 on success, error code on failure.
533 *
534 * Timestamps:
535 * dzp - ctime|mtime updated if new entry created
536 * zp - ctime|mtime always, atime if new
537 */
538
539 /* ARGSUSED */
540 int
541 zfs_create(znode_t *dzp, char *name, vattr_t *vap, int excl,
542 int mode, znode_t **zpp, cred_t *cr, int flag, vsecattr_t *vsecp)
543 {
544 znode_t *zp;
545 zfsvfs_t *zfsvfs = ZTOZSB(dzp);
546 zilog_t *zilog;
547 objset_t *os;
548 zfs_dirlock_t *dl;
549 dmu_tx_t *tx;
550 int error;
551 uid_t uid;
552 gid_t gid;
553 zfs_acl_ids_t acl_ids;
554 boolean_t fuid_dirtied;
555 boolean_t have_acl = B_FALSE;
556 boolean_t waited = B_FALSE;
557
558 /*
559 * If we have an ephemeral id, ACL, or XVATTR then
560 * make sure file system is at proper version
561 */
562
563 gid = crgetgid(cr);
564 uid = crgetuid(cr);
565
566 if (zfsvfs->z_use_fuids == B_FALSE &&
567 (vsecp || IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid)))
568 return (SET_ERROR(EINVAL));
569
570 if (name == NULL)
571 return (SET_ERROR(EINVAL));
572
573 ZFS_ENTER(zfsvfs);
574 ZFS_VERIFY_ZP(dzp);
575 os = zfsvfs->z_os;
576 zilog = zfsvfs->z_log;
577
578 if (zfsvfs->z_utf8 && u8_validate(name, strlen(name),
579 NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
580 ZFS_EXIT(zfsvfs);
581 return (SET_ERROR(EILSEQ));
582 }
583
584 if (vap->va_mask & ATTR_XVATTR) {
585 if ((error = secpolicy_xvattr((xvattr_t *)vap,
586 crgetuid(cr), cr, vap->va_mode)) != 0) {
587 ZFS_EXIT(zfsvfs);
588 return (error);
589 }
590 }
591
592 top:
593 *zpp = NULL;
594 if (*name == '\0') {
595 /*
596 * Null component name refers to the directory itself.
597 */
598 zhold(dzp);
599 zp = dzp;
600 dl = NULL;
601 error = 0;
602 } else {
603 /* possible igrab(zp) */
604 int zflg = 0;
605
606 if (flag & FIGNORECASE)
607 zflg |= ZCILOOK;
608
609 error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
610 NULL, NULL);
611 if (error) {
612 if (have_acl)
613 zfs_acl_ids_free(&acl_ids);
614 if (strcmp(name, "..") == 0)
615 error = SET_ERROR(EISDIR);
616 ZFS_EXIT(zfsvfs);
617 return (error);
618 }
619 }
620
621 if (zp == NULL) {
622 uint64_t txtype;
623 uint64_t projid = ZFS_DEFAULT_PROJID;
624
625 /*
626 * Create a new file object and update the directory
627 * to reference it.
628 */
629 if ((error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr))) {
630 if (have_acl)
631 zfs_acl_ids_free(&acl_ids);
632 goto out;
633 }
634
635 /*
636 * We only support the creation of regular files in
637 * extended attribute directories.
638 */
639
640 if ((dzp->z_pflags & ZFS_XATTR) && !S_ISREG(vap->va_mode)) {
641 if (have_acl)
642 zfs_acl_ids_free(&acl_ids);
643 error = SET_ERROR(EINVAL);
644 goto out;
645 }
646
647 if (!have_acl && (error = zfs_acl_ids_create(dzp, 0, vap,
648 cr, vsecp, &acl_ids)) != 0)
649 goto out;
650 have_acl = B_TRUE;
651
652 if (S_ISREG(vap->va_mode) || S_ISDIR(vap->va_mode))
653 projid = zfs_inherit_projid(dzp);
654 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids, projid)) {
655 zfs_acl_ids_free(&acl_ids);
656 error = SET_ERROR(EDQUOT);
657 goto out;
658 }
659
660 tx = dmu_tx_create(os);
661
662 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
663 ZFS_SA_BASE_ATTR_SIZE);
664
665 fuid_dirtied = zfsvfs->z_fuid_dirty;
666 if (fuid_dirtied)
667 zfs_fuid_txhold(zfsvfs, tx);
668 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
669 dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE);
670 if (!zfsvfs->z_use_sa &&
671 acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
672 dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
673 0, acl_ids.z_aclp->z_acl_bytes);
674 }
675
676 error = dmu_tx_assign(tx,
677 (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
678 if (error) {
679 zfs_dirent_unlock(dl);
680 if (error == ERESTART) {
681 waited = B_TRUE;
682 dmu_tx_wait(tx);
683 dmu_tx_abort(tx);
684 goto top;
685 }
686 zfs_acl_ids_free(&acl_ids);
687 dmu_tx_abort(tx);
688 ZFS_EXIT(zfsvfs);
689 return (error);
690 }
691 zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
692
693 error = zfs_link_create(dl, zp, tx, ZNEW);
694 if (error != 0) {
695 /*
696 * Since, we failed to add the directory entry for it,
697 * delete the newly created dnode.
698 */
699 zfs_znode_delete(zp, tx);
700 remove_inode_hash(ZTOI(zp));
701 zfs_acl_ids_free(&acl_ids);
702 dmu_tx_commit(tx);
703 goto out;
704 }
705
706 if (fuid_dirtied)
707 zfs_fuid_sync(zfsvfs, tx);
708
709 txtype = zfs_log_create_txtype(Z_FILE, vsecp, vap);
710 if (flag & FIGNORECASE)
711 txtype |= TX_CI;
712 zfs_log_create(zilog, tx, txtype, dzp, zp, name,
713 vsecp, acl_ids.z_fuidp, vap);
714 zfs_acl_ids_free(&acl_ids);
715 dmu_tx_commit(tx);
716 } else {
717 int aflags = (flag & O_APPEND) ? V_APPEND : 0;
718
719 if (have_acl)
720 zfs_acl_ids_free(&acl_ids);
721 have_acl = B_FALSE;
722
723 /*
724 * A directory entry already exists for this name.
725 */
726 /*
727 * Can't truncate an existing file if in exclusive mode.
728 */
729 if (excl) {
730 error = SET_ERROR(EEXIST);
731 goto out;
732 }
733 /*
734 * Can't open a directory for writing.
735 */
736 if (S_ISDIR(ZTOI(zp)->i_mode)) {
737 error = SET_ERROR(EISDIR);
738 goto out;
739 }
740 /*
741 * Verify requested access to file.
742 */
743 if (mode && (error = zfs_zaccess_rwx(zp, mode, aflags, cr))) {
744 goto out;
745 }
746
747 mutex_enter(&dzp->z_lock);
748 dzp->z_seq++;
749 mutex_exit(&dzp->z_lock);
750
751 /*
752 * Truncate regular files if requested.
753 */
754 if (S_ISREG(ZTOI(zp)->i_mode) &&
755 (vap->va_mask & ATTR_SIZE) && (vap->va_size == 0)) {
756 /* we can't hold any locks when calling zfs_freesp() */
757 if (dl) {
758 zfs_dirent_unlock(dl);
759 dl = NULL;
760 }
761 error = zfs_freesp(zp, 0, 0, mode, TRUE);
762 }
763 }
764 out:
765
766 if (dl)
767 zfs_dirent_unlock(dl);
768
769 if (error) {
770 if (zp)
771 zrele(zp);
772 } else {
773 zfs_znode_update_vfs(dzp);
774 zfs_znode_update_vfs(zp);
775 *zpp = zp;
776 }
777
778 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
779 zil_commit(zilog, 0);
780
781 ZFS_EXIT(zfsvfs);
782 return (error);
783 }
784
785 /* ARGSUSED */
786 int
787 zfs_tmpfile(struct inode *dip, vattr_t *vap, int excl,
788 int mode, struct inode **ipp, cred_t *cr, int flag, vsecattr_t *vsecp)
789 {
790 znode_t *zp = NULL, *dzp = ITOZ(dip);
791 zfsvfs_t *zfsvfs = ITOZSB(dip);
792 objset_t *os;
793 dmu_tx_t *tx;
794 int error;
795 uid_t uid;
796 gid_t gid;
797 zfs_acl_ids_t acl_ids;
798 uint64_t projid = ZFS_DEFAULT_PROJID;
799 boolean_t fuid_dirtied;
800 boolean_t have_acl = B_FALSE;
801 boolean_t waited = B_FALSE;
802
803 /*
804 * If we have an ephemeral id, ACL, or XVATTR then
805 * make sure file system is at proper version
806 */
807
808 gid = crgetgid(cr);
809 uid = crgetuid(cr);
810
811 if (zfsvfs->z_use_fuids == B_FALSE &&
812 (vsecp || IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid)))
813 return (SET_ERROR(EINVAL));
814
815 ZFS_ENTER(zfsvfs);
816 ZFS_VERIFY_ZP(dzp);
817 os = zfsvfs->z_os;
818
819 if (vap->va_mask & ATTR_XVATTR) {
820 if ((error = secpolicy_xvattr((xvattr_t *)vap,
821 crgetuid(cr), cr, vap->va_mode)) != 0) {
822 ZFS_EXIT(zfsvfs);
823 return (error);
824 }
825 }
826
827 top:
828 *ipp = NULL;
829
830 /*
831 * Create a new file object and update the directory
832 * to reference it.
833 */
834 if ((error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr))) {
835 if (have_acl)
836 zfs_acl_ids_free(&acl_ids);
837 goto out;
838 }
839
840 if (!have_acl && (error = zfs_acl_ids_create(dzp, 0, vap,
841 cr, vsecp, &acl_ids)) != 0)
842 goto out;
843 have_acl = B_TRUE;
844
845 if (S_ISREG(vap->va_mode) || S_ISDIR(vap->va_mode))
846 projid = zfs_inherit_projid(dzp);
847 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids, projid)) {
848 zfs_acl_ids_free(&acl_ids);
849 error = SET_ERROR(EDQUOT);
850 goto out;
851 }
852
853 tx = dmu_tx_create(os);
854
855 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
856 ZFS_SA_BASE_ATTR_SIZE);
857 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
858
859 fuid_dirtied = zfsvfs->z_fuid_dirty;
860 if (fuid_dirtied)
861 zfs_fuid_txhold(zfsvfs, tx);
862 if (!zfsvfs->z_use_sa &&
863 acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
864 dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
865 0, acl_ids.z_aclp->z_acl_bytes);
866 }
867 error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
868 if (error) {
869 if (error == ERESTART) {
870 waited = B_TRUE;
871 dmu_tx_wait(tx);
872 dmu_tx_abort(tx);
873 goto top;
874 }
875 zfs_acl_ids_free(&acl_ids);
876 dmu_tx_abort(tx);
877 ZFS_EXIT(zfsvfs);
878 return (error);
879 }
880 zfs_mknode(dzp, vap, tx, cr, IS_TMPFILE, &zp, &acl_ids);
881
882 if (fuid_dirtied)
883 zfs_fuid_sync(zfsvfs, tx);
884
885 /* Add to unlinked set */
886 zp->z_unlinked = B_TRUE;
887 zfs_unlinked_add(zp, tx);
888 zfs_acl_ids_free(&acl_ids);
889 dmu_tx_commit(tx);
890 out:
891
892 if (error) {
893 if (zp)
894 zrele(zp);
895 } else {
896 zfs_znode_update_vfs(dzp);
897 zfs_znode_update_vfs(zp);
898 *ipp = ZTOI(zp);
899 }
900
901 ZFS_EXIT(zfsvfs);
902 return (error);
903 }
904
905 /*
906 * Remove an entry from a directory.
907 *
908 * IN: dzp - znode of directory to remove entry from.
909 * name - name of entry to remove.
910 * cr - credentials of caller.
911 * flags - case flags.
912 *
913 * RETURN: 0 if success
914 * error code if failure
915 *
916 * Timestamps:
917 * dzp - ctime|mtime
918 * ip - ctime (if nlink > 0)
919 */
920
921 uint64_t null_xattr = 0;
922
923 /*ARGSUSED*/
924 int
925 zfs_remove(znode_t *dzp, char *name, cred_t *cr, int flags)
926 {
927 znode_t *zp;
928 znode_t *xzp;
929 zfsvfs_t *zfsvfs = ZTOZSB(dzp);
930 zilog_t *zilog;
931 uint64_t acl_obj, xattr_obj;
932 uint64_t xattr_obj_unlinked = 0;
933 uint64_t obj = 0;
934 uint64_t links;
935 zfs_dirlock_t *dl;
936 dmu_tx_t *tx;
937 boolean_t may_delete_now, delete_now = FALSE;
938 boolean_t unlinked, toobig = FALSE;
939 uint64_t txtype;
940 pathname_t *realnmp = NULL;
941 pathname_t realnm;
942 int error;
943 int zflg = ZEXISTS;
944 boolean_t waited = B_FALSE;
945
946 if (name == NULL)
947 return (SET_ERROR(EINVAL));
948
949 ZFS_ENTER(zfsvfs);
950 ZFS_VERIFY_ZP(dzp);
951 zilog = zfsvfs->z_log;
952
953 if (flags & FIGNORECASE) {
954 zflg |= ZCILOOK;
955 pn_alloc(&realnm);
956 realnmp = &realnm;
957 }
958
959 top:
960 xattr_obj = 0;
961 xzp = NULL;
962 /*
963 * Attempt to lock directory; fail if entry doesn't exist.
964 */
965 if ((error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
966 NULL, realnmp))) {
967 if (realnmp)
968 pn_free(realnmp);
969 ZFS_EXIT(zfsvfs);
970 return (error);
971 }
972
973 if ((error = zfs_zaccess_delete(dzp, zp, cr))) {
974 goto out;
975 }
976
977 /*
978 * Need to use rmdir for removing directories.
979 */
980 if (S_ISDIR(ZTOI(zp)->i_mode)) {
981 error = SET_ERROR(EPERM);
982 goto out;
983 }
984
985 mutex_enter(&zp->z_lock);
986 may_delete_now = atomic_read(&ZTOI(zp)->i_count) == 1 &&
987 !(zp->z_is_mapped);
988 mutex_exit(&zp->z_lock);
989
990 /*
991 * We may delete the znode now, or we may put it in the unlinked set;
992 * it depends on whether we're the last link, and on whether there are
993 * other holds on the inode. So we dmu_tx_hold() the right things to
994 * allow for either case.
995 */
996 obj = zp->z_id;
997 tx = dmu_tx_create(zfsvfs->z_os);
998 dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name);
999 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
1000 zfs_sa_upgrade_txholds(tx, zp);
1001 zfs_sa_upgrade_txholds(tx, dzp);
1002 if (may_delete_now) {
1003 toobig = zp->z_size > zp->z_blksz * zfs_delete_blocks;
1004 /* if the file is too big, only hold_free a token amount */
1005 dmu_tx_hold_free(tx, zp->z_id, 0,
1006 (toobig ? DMU_MAX_ACCESS : DMU_OBJECT_END));
1007 }
1008
1009 /* are there any extended attributes? */
1010 error = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
1011 &xattr_obj, sizeof (xattr_obj));
1012 if (error == 0 && xattr_obj) {
1013 error = zfs_zget(zfsvfs, xattr_obj, &xzp);
1014 ASSERT0(error);
1015 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
1016 dmu_tx_hold_sa(tx, xzp->z_sa_hdl, B_FALSE);
1017 }
1018
1019 mutex_enter(&zp->z_lock);
1020 if ((acl_obj = zfs_external_acl(zp)) != 0 && may_delete_now)
1021 dmu_tx_hold_free(tx, acl_obj, 0, DMU_OBJECT_END);
1022 mutex_exit(&zp->z_lock);
1023
1024 /* charge as an update -- would be nice not to charge at all */
1025 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
1026
1027 /*
1028 * Mark this transaction as typically resulting in a net free of space
1029 */
1030 dmu_tx_mark_netfree(tx);
1031
1032 error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
1033 if (error) {
1034 zfs_dirent_unlock(dl);
1035 if (error == ERESTART) {
1036 waited = B_TRUE;
1037 dmu_tx_wait(tx);
1038 dmu_tx_abort(tx);
1039 zrele(zp);
1040 if (xzp)
1041 zrele(xzp);
1042 goto top;
1043 }
1044 if (realnmp)
1045 pn_free(realnmp);
1046 dmu_tx_abort(tx);
1047 zrele(zp);
1048 if (xzp)
1049 zrele(xzp);
1050 ZFS_EXIT(zfsvfs);
1051 return (error);
1052 }
1053
1054 /*
1055 * Remove the directory entry.
1056 */
1057 error = zfs_link_destroy(dl, zp, tx, zflg, &unlinked);
1058
1059 if (error) {
1060 dmu_tx_commit(tx);
1061 goto out;
1062 }
1063
1064 if (unlinked) {
1065 /*
1066 * Hold z_lock so that we can make sure that the ACL obj
1067 * hasn't changed. Could have been deleted due to
1068 * zfs_sa_upgrade().
1069 */
1070 mutex_enter(&zp->z_lock);
1071 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
1072 &xattr_obj_unlinked, sizeof (xattr_obj_unlinked));
1073 delete_now = may_delete_now && !toobig &&
1074 atomic_read(&ZTOI(zp)->i_count) == 1 &&
1075 !(zp->z_is_mapped) && xattr_obj == xattr_obj_unlinked &&
1076 zfs_external_acl(zp) == acl_obj;
1077 }
1078
1079 if (delete_now) {
1080 if (xattr_obj_unlinked) {
1081 ASSERT3U(ZTOI(xzp)->i_nlink, ==, 2);
1082 mutex_enter(&xzp->z_lock);
1083 xzp->z_unlinked = B_TRUE;
1084 clear_nlink(ZTOI(xzp));
1085 links = 0;
1086 error = sa_update(xzp->z_sa_hdl, SA_ZPL_LINKS(zfsvfs),
1087 &links, sizeof (links), tx);
1088 ASSERT3U(error, ==, 0);
1089 mutex_exit(&xzp->z_lock);
1090 zfs_unlinked_add(xzp, tx);
1091
1092 if (zp->z_is_sa)
1093 error = sa_remove(zp->z_sa_hdl,
1094 SA_ZPL_XATTR(zfsvfs), tx);
1095 else
1096 error = sa_update(zp->z_sa_hdl,
1097 SA_ZPL_XATTR(zfsvfs), &null_xattr,
1098 sizeof (uint64_t), tx);
1099 ASSERT0(error);
1100 }
1101 /*
1102 * Add to the unlinked set because a new reference could be
1103 * taken concurrently resulting in a deferred destruction.
1104 */
1105 zfs_unlinked_add(zp, tx);
1106 mutex_exit(&zp->z_lock);
1107 } else if (unlinked) {
1108 mutex_exit(&zp->z_lock);
1109 zfs_unlinked_add(zp, tx);
1110 }
1111
1112 txtype = TX_REMOVE;
1113 if (flags & FIGNORECASE)
1114 txtype |= TX_CI;
1115 zfs_log_remove(zilog, tx, txtype, dzp, name, obj, unlinked);
1116
1117 dmu_tx_commit(tx);
1118 out:
1119 if (realnmp)
1120 pn_free(realnmp);
1121
1122 zfs_dirent_unlock(dl);
1123 zfs_znode_update_vfs(dzp);
1124 zfs_znode_update_vfs(zp);
1125
1126 if (delete_now)
1127 zrele(zp);
1128 else
1129 zfs_zrele_async(zp);
1130
1131 if (xzp) {
1132 zfs_znode_update_vfs(xzp);
1133 zfs_zrele_async(xzp);
1134 }
1135
1136 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1137 zil_commit(zilog, 0);
1138
1139 ZFS_EXIT(zfsvfs);
1140 return (error);
1141 }
1142
1143 /*
1144 * Create a new directory and insert it into dzp using the name
1145 * provided. Return a pointer to the inserted directory.
1146 *
1147 * IN: dzp - znode of directory to add subdir to.
1148 * dirname - name of new directory.
1149 * vap - attributes of new directory.
1150 * cr - credentials of caller.
1151 * flags - case flags.
1152 * vsecp - ACL to be set
1153 *
1154 * OUT: zpp - znode of created directory.
1155 *
1156 * RETURN: 0 if success
1157 * error code if failure
1158 *
1159 * Timestamps:
1160 * dzp - ctime|mtime updated
1161 * zpp - ctime|mtime|atime updated
1162 */
1163 /*ARGSUSED*/
1164 int
1165 zfs_mkdir(znode_t *dzp, char *dirname, vattr_t *vap, znode_t **zpp,
1166 cred_t *cr, int flags, vsecattr_t *vsecp)
1167 {
1168 znode_t *zp;
1169 zfsvfs_t *zfsvfs = ZTOZSB(dzp);
1170 zilog_t *zilog;
1171 zfs_dirlock_t *dl;
1172 uint64_t txtype;
1173 dmu_tx_t *tx;
1174 int error;
1175 int zf = ZNEW;
1176 uid_t uid;
1177 gid_t gid = crgetgid(cr);
1178 zfs_acl_ids_t acl_ids;
1179 boolean_t fuid_dirtied;
1180 boolean_t waited = B_FALSE;
1181
1182 ASSERT(S_ISDIR(vap->va_mode));
1183
1184 /*
1185 * If we have an ephemeral id, ACL, or XVATTR then
1186 * make sure file system is at proper version
1187 */
1188
1189 uid = crgetuid(cr);
1190 if (zfsvfs->z_use_fuids == B_FALSE &&
1191 (vsecp || IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid)))
1192 return (SET_ERROR(EINVAL));
1193
1194 if (dirname == NULL)
1195 return (SET_ERROR(EINVAL));
1196
1197 ZFS_ENTER(zfsvfs);
1198 ZFS_VERIFY_ZP(dzp);
1199 zilog = zfsvfs->z_log;
1200
1201 if (dzp->z_pflags & ZFS_XATTR) {
1202 ZFS_EXIT(zfsvfs);
1203 return (SET_ERROR(EINVAL));
1204 }
1205
1206 if (zfsvfs->z_utf8 && u8_validate(dirname,
1207 strlen(dirname), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1208 ZFS_EXIT(zfsvfs);
1209 return (SET_ERROR(EILSEQ));
1210 }
1211 if (flags & FIGNORECASE)
1212 zf |= ZCILOOK;
1213
1214 if (vap->va_mask & ATTR_XVATTR) {
1215 if ((error = secpolicy_xvattr((xvattr_t *)vap,
1216 crgetuid(cr), cr, vap->va_mode)) != 0) {
1217 ZFS_EXIT(zfsvfs);
1218 return (error);
1219 }
1220 }
1221
1222 if ((error = zfs_acl_ids_create(dzp, 0, vap, cr,
1223 vsecp, &acl_ids)) != 0) {
1224 ZFS_EXIT(zfsvfs);
1225 return (error);
1226 }
1227 /*
1228 * First make sure the new directory doesn't exist.
1229 *
1230 * Existence is checked first to make sure we don't return
1231 * EACCES instead of EEXIST which can cause some applications
1232 * to fail.
1233 */
1234 top:
1235 *zpp = NULL;
1236
1237 if ((error = zfs_dirent_lock(&dl, dzp, dirname, &zp, zf,
1238 NULL, NULL))) {
1239 zfs_acl_ids_free(&acl_ids);
1240 ZFS_EXIT(zfsvfs);
1241 return (error);
1242 }
1243
1244 if ((error = zfs_zaccess(dzp, ACE_ADD_SUBDIRECTORY, 0, B_FALSE, cr))) {
1245 zfs_acl_ids_free(&acl_ids);
1246 zfs_dirent_unlock(dl);
1247 ZFS_EXIT(zfsvfs);
1248 return (error);
1249 }
1250
1251 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids, zfs_inherit_projid(dzp))) {
1252 zfs_acl_ids_free(&acl_ids);
1253 zfs_dirent_unlock(dl);
1254 ZFS_EXIT(zfsvfs);
1255 return (SET_ERROR(EDQUOT));
1256 }
1257
1258 /*
1259 * Add a new entry to the directory.
1260 */
1261 tx = dmu_tx_create(zfsvfs->z_os);
1262 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, dirname);
1263 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL);
1264 fuid_dirtied = zfsvfs->z_fuid_dirty;
1265 if (fuid_dirtied)
1266 zfs_fuid_txhold(zfsvfs, tx);
1267 if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
1268 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
1269 acl_ids.z_aclp->z_acl_bytes);
1270 }
1271
1272 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
1273 ZFS_SA_BASE_ATTR_SIZE);
1274
1275 error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
1276 if (error) {
1277 zfs_dirent_unlock(dl);
1278 if (error == ERESTART) {
1279 waited = B_TRUE;
1280 dmu_tx_wait(tx);
1281 dmu_tx_abort(tx);
1282 goto top;
1283 }
1284 zfs_acl_ids_free(&acl_ids);
1285 dmu_tx_abort(tx);
1286 ZFS_EXIT(zfsvfs);
1287 return (error);
1288 }
1289
1290 /*
1291 * Create new node.
1292 */
1293 zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
1294
1295 /*
1296 * Now put new name in parent dir.
1297 */
1298 error = zfs_link_create(dl, zp, tx, ZNEW);
1299 if (error != 0) {
1300 zfs_znode_delete(zp, tx);
1301 remove_inode_hash(ZTOI(zp));
1302 goto out;
1303 }
1304
1305 if (fuid_dirtied)
1306 zfs_fuid_sync(zfsvfs, tx);
1307
1308 *zpp = zp;
1309
1310 txtype = zfs_log_create_txtype(Z_DIR, vsecp, vap);
1311 if (flags & FIGNORECASE)
1312 txtype |= TX_CI;
1313 zfs_log_create(zilog, tx, txtype, dzp, zp, dirname, vsecp,
1314 acl_ids.z_fuidp, vap);
1315
1316 out:
1317 zfs_acl_ids_free(&acl_ids);
1318
1319 dmu_tx_commit(tx);
1320
1321 zfs_dirent_unlock(dl);
1322
1323 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1324 zil_commit(zilog, 0);
1325
1326 if (error != 0) {
1327 zrele(zp);
1328 } else {
1329 zfs_znode_update_vfs(dzp);
1330 zfs_znode_update_vfs(zp);
1331 }
1332 ZFS_EXIT(zfsvfs);
1333 return (error);
1334 }
1335
1336 /*
1337 * Remove a directory subdir entry. If the current working
1338 * directory is the same as the subdir to be removed, the
1339 * remove will fail.
1340 *
1341 * IN: dzp - znode of directory to remove from.
1342 * name - name of directory to be removed.
1343 * cwd - inode of current working directory.
1344 * cr - credentials of caller.
1345 * flags - case flags
1346 *
1347 * RETURN: 0 on success, error code on failure.
1348 *
1349 * Timestamps:
1350 * dzp - ctime|mtime updated
1351 */
1352 /*ARGSUSED*/
1353 int
1354 zfs_rmdir(znode_t *dzp, char *name, znode_t *cwd, cred_t *cr,
1355 int flags)
1356 {
1357 znode_t *zp;
1358 zfsvfs_t *zfsvfs = ZTOZSB(dzp);
1359 zilog_t *zilog;
1360 zfs_dirlock_t *dl;
1361 dmu_tx_t *tx;
1362 int error;
1363 int zflg = ZEXISTS;
1364 boolean_t waited = B_FALSE;
1365
1366 if (name == NULL)
1367 return (SET_ERROR(EINVAL));
1368
1369 ZFS_ENTER(zfsvfs);
1370 ZFS_VERIFY_ZP(dzp);
1371 zilog = zfsvfs->z_log;
1372
1373 if (flags & FIGNORECASE)
1374 zflg |= ZCILOOK;
1375 top:
1376 zp = NULL;
1377
1378 /*
1379 * Attempt to lock directory; fail if entry doesn't exist.
1380 */
1381 if ((error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
1382 NULL, NULL))) {
1383 ZFS_EXIT(zfsvfs);
1384 return (error);
1385 }
1386
1387 if ((error = zfs_zaccess_delete(dzp, zp, cr))) {
1388 goto out;
1389 }
1390
1391 if (!S_ISDIR(ZTOI(zp)->i_mode)) {
1392 error = SET_ERROR(ENOTDIR);
1393 goto out;
1394 }
1395
1396 if (zp == cwd) {
1397 error = SET_ERROR(EINVAL);
1398 goto out;
1399 }
1400
1401 /*
1402 * Grab a lock on the directory to make sure that no one is
1403 * trying to add (or lookup) entries while we are removing it.
1404 */
1405 rw_enter(&zp->z_name_lock, RW_WRITER);
1406
1407 /*
1408 * Grab a lock on the parent pointer to make sure we play well
1409 * with the treewalk and directory rename code.
1410 */
1411 rw_enter(&zp->z_parent_lock, RW_WRITER);
1412
1413 tx = dmu_tx_create(zfsvfs->z_os);
1414 dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name);
1415 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
1416 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
1417 zfs_sa_upgrade_txholds(tx, zp);
1418 zfs_sa_upgrade_txholds(tx, dzp);
1419 dmu_tx_mark_netfree(tx);
1420 error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
1421 if (error) {
1422 rw_exit(&zp->z_parent_lock);
1423 rw_exit(&zp->z_name_lock);
1424 zfs_dirent_unlock(dl);
1425 if (error == ERESTART) {
1426 waited = B_TRUE;
1427 dmu_tx_wait(tx);
1428 dmu_tx_abort(tx);
1429 zrele(zp);
1430 goto top;
1431 }
1432 dmu_tx_abort(tx);
1433 zrele(zp);
1434 ZFS_EXIT(zfsvfs);
1435 return (error);
1436 }
1437
1438 error = zfs_link_destroy(dl, zp, tx, zflg, NULL);
1439
1440 if (error == 0) {
1441 uint64_t txtype = TX_RMDIR;
1442 if (flags & FIGNORECASE)
1443 txtype |= TX_CI;
1444 zfs_log_remove(zilog, tx, txtype, dzp, name, ZFS_NO_OBJECT,
1445 B_FALSE);
1446 }
1447
1448 dmu_tx_commit(tx);
1449
1450 rw_exit(&zp->z_parent_lock);
1451 rw_exit(&zp->z_name_lock);
1452 out:
1453 zfs_dirent_unlock(dl);
1454
1455 zfs_znode_update_vfs(dzp);
1456 zfs_znode_update_vfs(zp);
1457 zrele(zp);
1458
1459 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1460 zil_commit(zilog, 0);
1461
1462 ZFS_EXIT(zfsvfs);
1463 return (error);
1464 }
1465
1466 /*
1467 * Read directory entries from the given directory cursor position and emit
1468 * name and position for each entry.
1469 *
1470 * IN: ip - inode of directory to read.
1471 * ctx - directory entry context.
1472 * cr - credentials of caller.
1473 *
1474 * RETURN: 0 if success
1475 * error code if failure
1476 *
1477 * Timestamps:
1478 * ip - atime updated
1479 *
1480 * Note that the low 4 bits of the cookie returned by zap is always zero.
1481 * This allows us to use the low range for "special" directory entries:
1482 * We use 0 for '.', and 1 for '..'. If this is the root of the filesystem,
1483 * we use the offset 2 for the '.zfs' directory.
1484 */
1485 /* ARGSUSED */
1486 int
1487 zfs_readdir(struct inode *ip, zpl_dir_context_t *ctx, cred_t *cr)
1488 {
1489 znode_t *zp = ITOZ(ip);
1490 zfsvfs_t *zfsvfs = ITOZSB(ip);
1491 objset_t *os;
1492 zap_cursor_t zc;
1493 zap_attribute_t zap;
1494 int error;
1495 uint8_t prefetch;
1496 uint8_t type;
1497 int done = 0;
1498 uint64_t parent;
1499 uint64_t offset; /* must be unsigned; checks for < 1 */
1500
1501 ZFS_ENTER(zfsvfs);
1502 ZFS_VERIFY_ZP(zp);
1503
1504 if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs),
1505 &parent, sizeof (parent))) != 0)
1506 goto out;
1507
1508 /*
1509 * Quit if directory has been removed (posix)
1510 */
1511 if (zp->z_unlinked)
1512 goto out;
1513
1514 error = 0;
1515 os = zfsvfs->z_os;
1516 offset = ctx->pos;
1517 prefetch = zp->z_zn_prefetch;
1518
1519 /*
1520 * Initialize the iterator cursor.
1521 */
1522 if (offset <= 3) {
1523 /*
1524 * Start iteration from the beginning of the directory.
1525 */
1526 zap_cursor_init(&zc, os, zp->z_id);
1527 } else {
1528 /*
1529 * The offset is a serialized cursor.
1530 */
1531 zap_cursor_init_serialized(&zc, os, zp->z_id, offset);
1532 }
1533
1534 /*
1535 * Transform to file-system independent format
1536 */
1537 while (!done) {
1538 uint64_t objnum;
1539 /*
1540 * Special case `.', `..', and `.zfs'.
1541 */
1542 if (offset == 0) {
1543 (void) strcpy(zap.za_name, ".");
1544 zap.za_normalization_conflict = 0;
1545 objnum = zp->z_id;
1546 type = DT_DIR;
1547 } else if (offset == 1) {
1548 (void) strcpy(zap.za_name, "..");
1549 zap.za_normalization_conflict = 0;
1550 objnum = parent;
1551 type = DT_DIR;
1552 } else if (offset == 2 && zfs_show_ctldir(zp)) {
1553 (void) strcpy(zap.za_name, ZFS_CTLDIR_NAME);
1554 zap.za_normalization_conflict = 0;
1555 objnum = ZFSCTL_INO_ROOT;
1556 type = DT_DIR;
1557 } else {
1558 /*
1559 * Grab next entry.
1560 */
1561 if ((error = zap_cursor_retrieve(&zc, &zap))) {
1562 if (error == ENOENT)
1563 break;
1564 else
1565 goto update;
1566 }
1567
1568 /*
1569 * Allow multiple entries provided the first entry is
1570 * the object id. Non-zpl consumers may safely make
1571 * use of the additional space.
1572 *
1573 * XXX: This should be a feature flag for compatibility
1574 */
1575 if (zap.za_integer_length != 8 ||
1576 zap.za_num_integers == 0) {
1577 cmn_err(CE_WARN, "zap_readdir: bad directory "
1578 "entry, obj = %lld, offset = %lld, "
1579 "length = %d, num = %lld\n",
1580 (u_longlong_t)zp->z_id,
1581 (u_longlong_t)offset,
1582 zap.za_integer_length,
1583 (u_longlong_t)zap.za_num_integers);
1584 error = SET_ERROR(ENXIO);
1585 goto update;
1586 }
1587
1588 objnum = ZFS_DIRENT_OBJ(zap.za_first_integer);
1589 type = ZFS_DIRENT_TYPE(zap.za_first_integer);
1590 }
1591
1592 done = !zpl_dir_emit(ctx, zap.za_name, strlen(zap.za_name),
1593 objnum, type);
1594 if (done)
1595 break;
1596
1597 /* Prefetch znode */
1598 if (prefetch) {
1599 dmu_prefetch(os, objnum, 0, 0, 0,
1600 ZIO_PRIORITY_SYNC_READ);
1601 }
1602
1603 /*
1604 * Move to the next entry, fill in the previous offset.
1605 */
1606 if (offset > 2 || (offset == 2 && !zfs_show_ctldir(zp))) {
1607 zap_cursor_advance(&zc);
1608 offset = zap_cursor_serialize(&zc);
1609 } else {
1610 offset += 1;
1611 }
1612 ctx->pos = offset;
1613 }
1614 zp->z_zn_prefetch = B_FALSE; /* a lookup will re-enable pre-fetching */
1615
1616 update:
1617 zap_cursor_fini(&zc);
1618 if (error == ENOENT)
1619 error = 0;
1620 out:
1621 ZFS_EXIT(zfsvfs);
1622
1623 return (error);
1624 }
1625
1626 /*
1627 * Get the basic file attributes and place them in the provided kstat
1628 * structure. The inode is assumed to be the authoritative source
1629 * for most of the attributes. However, the znode currently has the
1630 * authoritative atime, blksize, and block count.
1631 *
1632 * IN: ip - inode of file.
1633 *
1634 * OUT: sp - kstat values.
1635 *
1636 * RETURN: 0 (always succeeds)
1637 */
1638 /* ARGSUSED */
1639 int
1640 zfs_getattr_fast(struct user_namespace *user_ns, struct inode *ip,
1641 struct kstat *sp)
1642 {
1643 znode_t *zp = ITOZ(ip);
1644 zfsvfs_t *zfsvfs = ITOZSB(ip);
1645 uint32_t blksize;
1646 u_longlong_t nblocks;
1647
1648 ZFS_ENTER(zfsvfs);
1649 ZFS_VERIFY_ZP(zp);
1650
1651 mutex_enter(&zp->z_lock);
1652
1653 zpl_generic_fillattr(user_ns, ip, sp);
1654 /*
1655 * +1 link count for root inode with visible '.zfs' directory.
1656 */
1657 if ((zp->z_id == zfsvfs->z_root) && zfs_show_ctldir(zp))
1658 if (sp->nlink < ZFS_LINK_MAX)
1659 sp->nlink++;
1660
1661 sa_object_size(zp->z_sa_hdl, &blksize, &nblocks);
1662 sp->blksize = blksize;
1663 sp->blocks = nblocks;
1664
1665 if (unlikely(zp->z_blksz == 0)) {
1666 /*
1667 * Block size hasn't been set; suggest maximal I/O transfers.
1668 */
1669 sp->blksize = zfsvfs->z_max_blksz;
1670 }
1671
1672 mutex_exit(&zp->z_lock);
1673
1674 /*
1675 * Required to prevent NFS client from detecting different inode
1676 * numbers of snapshot root dentry before and after snapshot mount.
1677 */
1678 if (zfsvfs->z_issnap) {
1679 if (ip->i_sb->s_root->d_inode == ip)
1680 sp->ino = ZFSCTL_INO_SNAPDIRS -
1681 dmu_objset_id(zfsvfs->z_os);
1682 }
1683
1684 ZFS_EXIT(zfsvfs);
1685
1686 return (0);
1687 }
1688
1689 /*
1690 * For the operation of changing file's user/group/project, we need to
1691 * handle not only the main object that is assigned to the file directly,
1692 * but also the ones that are used by the file via hidden xattr directory.
1693 *
1694 * Because the xattr directory may contains many EA entries, as to it may
1695 * be impossible to change all of them via the transaction of changing the
1696 * main object's user/group/project attributes. Then we have to change them
1697 * via other multiple independent transactions one by one. It may be not good
1698 * solution, but we have no better idea yet.
1699 */
1700 static int
1701 zfs_setattr_dir(znode_t *dzp)
1702 {
1703 struct inode *dxip = ZTOI(dzp);
1704 struct inode *xip = NULL;
1705 zfsvfs_t *zfsvfs = ZTOZSB(dzp);
1706 objset_t *os = zfsvfs->z_os;
1707 zap_cursor_t zc;
1708 zap_attribute_t zap;
1709 zfs_dirlock_t *dl;
1710 znode_t *zp = NULL;
1711 dmu_tx_t *tx = NULL;
1712 uint64_t uid, gid;
1713 sa_bulk_attr_t bulk[4];
1714 int count;
1715 int err;
1716
1717 zap_cursor_init(&zc, os, dzp->z_id);
1718 while ((err = zap_cursor_retrieve(&zc, &zap)) == 0) {
1719 count = 0;
1720 if (zap.za_integer_length != 8 || zap.za_num_integers != 1) {
1721 err = ENXIO;
1722 break;
1723 }
1724
1725 err = zfs_dirent_lock(&dl, dzp, (char *)zap.za_name, &zp,
1726 ZEXISTS, NULL, NULL);
1727 if (err == ENOENT)
1728 goto next;
1729 if (err)
1730 break;
1731
1732 xip = ZTOI(zp);
1733 if (KUID_TO_SUID(xip->i_uid) == KUID_TO_SUID(dxip->i_uid) &&
1734 KGID_TO_SGID(xip->i_gid) == KGID_TO_SGID(dxip->i_gid) &&
1735 zp->z_projid == dzp->z_projid)
1736 goto next;
1737
1738 tx = dmu_tx_create(os);
1739 if (!(zp->z_pflags & ZFS_PROJID))
1740 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
1741 else
1742 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
1743
1744 err = dmu_tx_assign(tx, TXG_WAIT);
1745 if (err)
1746 break;
1747
1748 mutex_enter(&dzp->z_lock);
1749
1750 if (KUID_TO_SUID(xip->i_uid) != KUID_TO_SUID(dxip->i_uid)) {
1751 xip->i_uid = dxip->i_uid;
1752 uid = zfs_uid_read(dxip);
1753 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL,
1754 &uid, sizeof (uid));
1755 }
1756
1757 if (KGID_TO_SGID(xip->i_gid) != KGID_TO_SGID(dxip->i_gid)) {
1758 xip->i_gid = dxip->i_gid;
1759 gid = zfs_gid_read(dxip);
1760 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs), NULL,
1761 &gid, sizeof (gid));
1762 }
1763
1764 if (zp->z_projid != dzp->z_projid) {
1765 if (!(zp->z_pflags & ZFS_PROJID)) {
1766 zp->z_pflags |= ZFS_PROJID;
1767 SA_ADD_BULK_ATTR(bulk, count,
1768 SA_ZPL_FLAGS(zfsvfs), NULL, &zp->z_pflags,
1769 sizeof (zp->z_pflags));
1770 }
1771
1772 zp->z_projid = dzp->z_projid;
1773 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_PROJID(zfsvfs),
1774 NULL, &zp->z_projid, sizeof (zp->z_projid));
1775 }
1776
1777 mutex_exit(&dzp->z_lock);
1778
1779 if (likely(count > 0)) {
1780 err = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
1781 dmu_tx_commit(tx);
1782 } else {
1783 dmu_tx_abort(tx);
1784 }
1785 tx = NULL;
1786 if (err != 0 && err != ENOENT)
1787 break;
1788
1789 next:
1790 if (zp) {
1791 zrele(zp);
1792 zp = NULL;
1793 zfs_dirent_unlock(dl);
1794 }
1795 zap_cursor_advance(&zc);
1796 }
1797
1798 if (tx)
1799 dmu_tx_abort(tx);
1800 if (zp) {
1801 zrele(zp);
1802 zfs_dirent_unlock(dl);
1803 }
1804 zap_cursor_fini(&zc);
1805
1806 return (err == ENOENT ? 0 : err);
1807 }
1808
1809 /*
1810 * Set the file attributes to the values contained in the
1811 * vattr structure.
1812 *
1813 * IN: zp - znode of file to be modified.
1814 * vap - new attribute values.
1815 * If ATTR_XVATTR set, then optional attrs are being set
1816 * flags - ATTR_UTIME set if non-default time values provided.
1817 * - ATTR_NOACLCHECK (CIFS context only).
1818 * cr - credentials of caller.
1819 *
1820 * RETURN: 0 if success
1821 * error code if failure
1822 *
1823 * Timestamps:
1824 * ip - ctime updated, mtime updated if size changed.
1825 */
1826 /* ARGSUSED */
1827 int
1828 zfs_setattr(znode_t *zp, vattr_t *vap, int flags, cred_t *cr)
1829 {
1830 struct inode *ip;
1831 zfsvfs_t *zfsvfs = ZTOZSB(zp);
1832 objset_t *os = zfsvfs->z_os;
1833 zilog_t *zilog;
1834 dmu_tx_t *tx;
1835 vattr_t oldva;
1836 xvattr_t *tmpxvattr;
1837 uint_t mask = vap->va_mask;
1838 uint_t saved_mask = 0;
1839 int trim_mask = 0;
1840 uint64_t new_mode;
1841 uint64_t new_kuid = 0, new_kgid = 0, new_uid, new_gid;
1842 uint64_t xattr_obj;
1843 uint64_t mtime[2], ctime[2], atime[2];
1844 uint64_t projid = ZFS_INVALID_PROJID;
1845 znode_t *attrzp;
1846 int need_policy = FALSE;
1847 int err, err2 = 0;
1848 zfs_fuid_info_t *fuidp = NULL;
1849 xvattr_t *xvap = (xvattr_t *)vap; /* vap may be an xvattr_t * */
1850 xoptattr_t *xoap;
1851 zfs_acl_t *aclp;
1852 boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
1853 boolean_t fuid_dirtied = B_FALSE;
1854 boolean_t handle_eadir = B_FALSE;
1855 sa_bulk_attr_t *bulk, *xattr_bulk;
1856 int count = 0, xattr_count = 0, bulks = 8;
1857
1858 if (mask == 0)
1859 return (0);
1860
1861 ZFS_ENTER(zfsvfs);
1862 ZFS_VERIFY_ZP(zp);
1863 ip = ZTOI(zp);
1864
1865 /*
1866 * If this is a xvattr_t, then get a pointer to the structure of
1867 * optional attributes. If this is NULL, then we have a vattr_t.
1868 */
1869 xoap = xva_getxoptattr(xvap);
1870 if (xoap != NULL && (mask & ATTR_XVATTR)) {
1871 if (XVA_ISSET_REQ(xvap, XAT_PROJID)) {
1872 if (!dmu_objset_projectquota_enabled(os) ||
1873 (!S_ISREG(ip->i_mode) && !S_ISDIR(ip->i_mode))) {
1874 ZFS_EXIT(zfsvfs);
1875 return (SET_ERROR(ENOTSUP));
1876 }
1877
1878 projid = xoap->xoa_projid;
1879 if (unlikely(projid == ZFS_INVALID_PROJID)) {
1880 ZFS_EXIT(zfsvfs);
1881 return (SET_ERROR(EINVAL));
1882 }
1883
1884 if (projid == zp->z_projid && zp->z_pflags & ZFS_PROJID)
1885 projid = ZFS_INVALID_PROJID;
1886 else
1887 need_policy = TRUE;
1888 }
1889
1890 if (XVA_ISSET_REQ(xvap, XAT_PROJINHERIT) &&
1891 (xoap->xoa_projinherit !=
1892 ((zp->z_pflags & ZFS_PROJINHERIT) != 0)) &&
1893 (!dmu_objset_projectquota_enabled(os) ||
1894 (!S_ISREG(ip->i_mode) && !S_ISDIR(ip->i_mode)))) {
1895 ZFS_EXIT(zfsvfs);
1896 return (SET_ERROR(ENOTSUP));
1897 }
1898 }
1899
1900 zilog = zfsvfs->z_log;
1901
1902 /*
1903 * Make sure that if we have ephemeral uid/gid or xvattr specified
1904 * that file system is at proper version level
1905 */
1906
1907 if (zfsvfs->z_use_fuids == B_FALSE &&
1908 (((mask & ATTR_UID) && IS_EPHEMERAL(vap->va_uid)) ||
1909 ((mask & ATTR_GID) && IS_EPHEMERAL(vap->va_gid)) ||
1910 (mask & ATTR_XVATTR))) {
1911 ZFS_EXIT(zfsvfs);
1912 return (SET_ERROR(EINVAL));
1913 }
1914
1915 if (mask & ATTR_SIZE && S_ISDIR(ip->i_mode)) {
1916 ZFS_EXIT(zfsvfs);
1917 return (SET_ERROR(EISDIR));
1918 }
1919
1920 if (mask & ATTR_SIZE && !S_ISREG(ip->i_mode) && !S_ISFIFO(ip->i_mode)) {
1921 ZFS_EXIT(zfsvfs);
1922 return (SET_ERROR(EINVAL));
1923 }
1924
1925 tmpxvattr = kmem_alloc(sizeof (xvattr_t), KM_SLEEP);
1926 xva_init(tmpxvattr);
1927
1928 bulk = kmem_alloc(sizeof (sa_bulk_attr_t) * bulks, KM_SLEEP);
1929 xattr_bulk = kmem_alloc(sizeof (sa_bulk_attr_t) * bulks, KM_SLEEP);
1930
1931 /*
1932 * Immutable files can only alter immutable bit and atime
1933 */
1934 if ((zp->z_pflags & ZFS_IMMUTABLE) &&
1935 ((mask & (ATTR_SIZE|ATTR_UID|ATTR_GID|ATTR_MTIME|ATTR_MODE)) ||
1936 ((mask & ATTR_XVATTR) && XVA_ISSET_REQ(xvap, XAT_CREATETIME)))) {
1937 err = SET_ERROR(EPERM);
1938 goto out3;
1939 }
1940
1941 if ((mask & ATTR_SIZE) && (zp->z_pflags & ZFS_READONLY)) {
1942 err = SET_ERROR(EPERM);
1943 goto out3;
1944 }
1945
1946 /*
1947 * Verify timestamps doesn't overflow 32 bits.
1948 * ZFS can handle large timestamps, but 32bit syscalls can't
1949 * handle times greater than 2039. This check should be removed
1950 * once large timestamps are fully supported.
1951 */
1952 if (mask & (ATTR_ATIME | ATTR_MTIME)) {
1953 if (((mask & ATTR_ATIME) &&
1954 TIMESPEC_OVERFLOW(&vap->va_atime)) ||
1955 ((mask & ATTR_MTIME) &&
1956 TIMESPEC_OVERFLOW(&vap->va_mtime))) {
1957 err = SET_ERROR(EOVERFLOW);
1958 goto out3;
1959 }
1960 }
1961
1962 top:
1963 attrzp = NULL;
1964 aclp = NULL;
1965
1966 /* Can this be moved to before the top label? */
1967 if (zfs_is_readonly(zfsvfs)) {
1968 err = SET_ERROR(EROFS);
1969 goto out3;
1970 }
1971
1972 /*
1973 * First validate permissions
1974 */
1975
1976 if (mask & ATTR_SIZE) {
1977 err = zfs_zaccess(zp, ACE_WRITE_DATA, 0, skipaclchk, cr);
1978 if (err)
1979 goto out3;
1980
1981 /*
1982 * XXX - Note, we are not providing any open
1983 * mode flags here (like FNDELAY), so we may
1984 * block if there are locks present... this
1985 * should be addressed in openat().
1986 */
1987 /* XXX - would it be OK to generate a log record here? */
1988 err = zfs_freesp(zp, vap->va_size, 0, 0, FALSE);
1989 if (err)
1990 goto out3;
1991 }
1992
1993 if (mask & (ATTR_ATIME|ATTR_MTIME) ||
1994 ((mask & ATTR_XVATTR) && (XVA_ISSET_REQ(xvap, XAT_HIDDEN) ||
1995 XVA_ISSET_REQ(xvap, XAT_READONLY) ||
1996 XVA_ISSET_REQ(xvap, XAT_ARCHIVE) ||
1997 XVA_ISSET_REQ(xvap, XAT_OFFLINE) ||
1998 XVA_ISSET_REQ(xvap, XAT_SPARSE) ||
1999 XVA_ISSET_REQ(xvap, XAT_CREATETIME) ||
2000 XVA_ISSET_REQ(xvap, XAT_SYSTEM)))) {
2001 need_policy = zfs_zaccess(zp, ACE_WRITE_ATTRIBUTES, 0,
2002 skipaclchk, cr);
2003 }
2004
2005 if (mask & (ATTR_UID|ATTR_GID)) {
2006 int idmask = (mask & (ATTR_UID|ATTR_GID));
2007 int take_owner;
2008 int take_group;
2009
2010 /*
2011 * NOTE: even if a new mode is being set,
2012 * we may clear S_ISUID/S_ISGID bits.
2013 */
2014
2015 if (!(mask & ATTR_MODE))
2016 vap->va_mode = zp->z_mode;
2017
2018 /*
2019 * Take ownership or chgrp to group we are a member of
2020 */
2021
2022 take_owner = (mask & ATTR_UID) && (vap->va_uid == crgetuid(cr));
2023 take_group = (mask & ATTR_GID) &&
2024 zfs_groupmember(zfsvfs, vap->va_gid, cr);
2025
2026 /*
2027 * If both ATTR_UID and ATTR_GID are set then take_owner and
2028 * take_group must both be set in order to allow taking
2029 * ownership.
2030 *
2031 * Otherwise, send the check through secpolicy_vnode_setattr()
2032 *
2033 */
2034
2035 if (((idmask == (ATTR_UID|ATTR_GID)) &&
2036 take_owner && take_group) ||
2037 ((idmask == ATTR_UID) && take_owner) ||
2038 ((idmask == ATTR_GID) && take_group)) {
2039 if (zfs_zaccess(zp, ACE_WRITE_OWNER, 0,
2040 skipaclchk, cr) == 0) {
2041 /*
2042 * Remove setuid/setgid for non-privileged users
2043 */
2044 (void) secpolicy_setid_clear(vap, cr);
2045 trim_mask = (mask & (ATTR_UID|ATTR_GID));
2046 } else {
2047 need_policy = TRUE;
2048 }
2049 } else {
2050 need_policy = TRUE;
2051 }
2052 }
2053
2054 mutex_enter(&zp->z_lock);
2055 oldva.va_mode = zp->z_mode;
2056 zfs_fuid_map_ids(zp, cr, &oldva.va_uid, &oldva.va_gid);
2057 if (mask & ATTR_XVATTR) {
2058 /*
2059 * Update xvattr mask to include only those attributes
2060 * that are actually changing.
2061 *
2062 * the bits will be restored prior to actually setting
2063 * the attributes so the caller thinks they were set.
2064 */
2065 if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) {
2066 if (xoap->xoa_appendonly !=
2067 ((zp->z_pflags & ZFS_APPENDONLY) != 0)) {
2068 need_policy = TRUE;
2069 } else {
2070 XVA_CLR_REQ(xvap, XAT_APPENDONLY);
2071 XVA_SET_REQ(tmpxvattr, XAT_APPENDONLY);
2072 }
2073 }
2074
2075 if (XVA_ISSET_REQ(xvap, XAT_PROJINHERIT)) {
2076 if (xoap->xoa_projinherit !=
2077 ((zp->z_pflags & ZFS_PROJINHERIT) != 0)) {
2078 need_policy = TRUE;
2079 } else {
2080 XVA_CLR_REQ(xvap, XAT_PROJINHERIT);
2081 XVA_SET_REQ(tmpxvattr, XAT_PROJINHERIT);
2082 }
2083 }
2084
2085 if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) {
2086 if (xoap->xoa_nounlink !=
2087 ((zp->z_pflags & ZFS_NOUNLINK) != 0)) {
2088 need_policy = TRUE;
2089 } else {
2090 XVA_CLR_REQ(xvap, XAT_NOUNLINK);
2091 XVA_SET_REQ(tmpxvattr, XAT_NOUNLINK);
2092 }
2093 }
2094
2095 if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) {
2096 if (xoap->xoa_immutable !=
2097 ((zp->z_pflags & ZFS_IMMUTABLE) != 0)) {
2098 need_policy = TRUE;
2099 } else {
2100 XVA_CLR_REQ(xvap, XAT_IMMUTABLE);
2101 XVA_SET_REQ(tmpxvattr, XAT_IMMUTABLE);
2102 }
2103 }
2104
2105 if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) {
2106 if (xoap->xoa_nodump !=
2107 ((zp->z_pflags & ZFS_NODUMP) != 0)) {
2108 need_policy = TRUE;
2109 } else {
2110 XVA_CLR_REQ(xvap, XAT_NODUMP);
2111 XVA_SET_REQ(tmpxvattr, XAT_NODUMP);
2112 }
2113 }
2114
2115 if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) {
2116 if (xoap->xoa_av_modified !=
2117 ((zp->z_pflags & ZFS_AV_MODIFIED) != 0)) {
2118 need_policy = TRUE;
2119 } else {
2120 XVA_CLR_REQ(xvap, XAT_AV_MODIFIED);
2121 XVA_SET_REQ(tmpxvattr, XAT_AV_MODIFIED);
2122 }
2123 }
2124
2125 if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) {
2126 if ((!S_ISREG(ip->i_mode) &&
2127 xoap->xoa_av_quarantined) ||
2128 xoap->xoa_av_quarantined !=
2129 ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0)) {
2130 need_policy = TRUE;
2131 } else {
2132 XVA_CLR_REQ(xvap, XAT_AV_QUARANTINED);
2133 XVA_SET_REQ(tmpxvattr, XAT_AV_QUARANTINED);
2134 }
2135 }
2136
2137 if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) {
2138 mutex_exit(&zp->z_lock);
2139 err = SET_ERROR(EPERM);
2140 goto out3;
2141 }
2142
2143 if (need_policy == FALSE &&
2144 (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) ||
2145 XVA_ISSET_REQ(xvap, XAT_OPAQUE))) {
2146 need_policy = TRUE;
2147 }
2148 }
2149
2150 mutex_exit(&zp->z_lock);
2151
2152 if (mask & ATTR_MODE) {
2153 if (zfs_zaccess(zp, ACE_WRITE_ACL, 0, skipaclchk, cr) == 0) {
2154 err = secpolicy_setid_setsticky_clear(ip, vap,
2155 &oldva, cr);
2156 if (err)
2157 goto out3;
2158
2159 trim_mask |= ATTR_MODE;
2160 } else {
2161 need_policy = TRUE;
2162 }
2163 }
2164
2165 if (need_policy) {
2166 /*
2167 * If trim_mask is set then take ownership
2168 * has been granted or write_acl is present and user
2169 * has the ability to modify mode. In that case remove
2170 * UID|GID and or MODE from mask so that
2171 * secpolicy_vnode_setattr() doesn't revoke it.
2172 */
2173
2174 if (trim_mask) {
2175 saved_mask = vap->va_mask;
2176 vap->va_mask &= ~trim_mask;
2177 }
2178 err = secpolicy_vnode_setattr(cr, ip, vap, &oldva, flags,
2179 (int (*)(void *, int, cred_t *))zfs_zaccess_unix, zp);
2180 if (err)
2181 goto out3;
2182
2183 if (trim_mask)
2184 vap->va_mask |= saved_mask;
2185 }
2186
2187 /*
2188 * secpolicy_vnode_setattr, or take ownership may have
2189 * changed va_mask
2190 */
2191 mask = vap->va_mask;
2192
2193 if ((mask & (ATTR_UID | ATTR_GID)) || projid != ZFS_INVALID_PROJID) {
2194 handle_eadir = B_TRUE;
2195 err = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
2196 &xattr_obj, sizeof (xattr_obj));
2197
2198 if (err == 0 && xattr_obj) {
2199 err = zfs_zget(ZTOZSB(zp), xattr_obj, &attrzp);
2200 if (err)
2201 goto out2;
2202 }
2203 if (mask & ATTR_UID) {
2204 new_kuid = zfs_fuid_create(zfsvfs,
2205 (uint64_t)vap->va_uid, cr, ZFS_OWNER, &fuidp);
2206 if (new_kuid != KUID_TO_SUID(ZTOI(zp)->i_uid) &&
2207 zfs_id_overquota(zfsvfs, DMU_USERUSED_OBJECT,
2208 new_kuid)) {
2209 if (attrzp)
2210 zrele(attrzp);
2211 err = SET_ERROR(EDQUOT);
2212 goto out2;
2213 }
2214 }
2215
2216 if (mask & ATTR_GID) {
2217 new_kgid = zfs_fuid_create(zfsvfs,
2218 (uint64_t)vap->va_gid, cr, ZFS_GROUP, &fuidp);
2219 if (new_kgid != KGID_TO_SGID(ZTOI(zp)->i_gid) &&
2220 zfs_id_overquota(zfsvfs, DMU_GROUPUSED_OBJECT,
2221 new_kgid)) {
2222 if (attrzp)
2223 zrele(attrzp);
2224 err = SET_ERROR(EDQUOT);
2225 goto out2;
2226 }
2227 }
2228
2229 if (projid != ZFS_INVALID_PROJID &&
2230 zfs_id_overquota(zfsvfs, DMU_PROJECTUSED_OBJECT, projid)) {
2231 if (attrzp)
2232 zrele(attrzp);
2233 err = EDQUOT;
2234 goto out2;
2235 }
2236 }
2237 tx = dmu_tx_create(os);
2238
2239 if (mask & ATTR_MODE) {
2240 uint64_t pmode = zp->z_mode;
2241 uint64_t acl_obj;
2242 new_mode = (pmode & S_IFMT) | (vap->va_mode & ~S_IFMT);
2243
2244 if (ZTOZSB(zp)->z_acl_mode == ZFS_ACL_RESTRICTED &&
2245 !(zp->z_pflags & ZFS_ACL_TRIVIAL)) {
2246 err = EPERM;
2247 goto out;
2248 }
2249
2250 if ((err = zfs_acl_chmod_setattr(zp, &aclp, new_mode)))
2251 goto out;
2252
2253 mutex_enter(&zp->z_lock);
2254 if (!zp->z_is_sa && ((acl_obj = zfs_external_acl(zp)) != 0)) {
2255 /*
2256 * Are we upgrading ACL from old V0 format
2257 * to V1 format?
2258 */
2259 if (zfsvfs->z_version >= ZPL_VERSION_FUID &&
2260 zfs_znode_acl_version(zp) ==
2261 ZFS_ACL_VERSION_INITIAL) {
2262 dmu_tx_hold_free(tx, acl_obj, 0,
2263 DMU_OBJECT_END);
2264 dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
2265 0, aclp->z_acl_bytes);
2266 } else {
2267 dmu_tx_hold_write(tx, acl_obj, 0,
2268 aclp->z_acl_bytes);
2269 }
2270 } else if (!zp->z_is_sa && aclp->z_acl_bytes > ZFS_ACE_SPACE) {
2271 dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
2272 0, aclp->z_acl_bytes);
2273 }
2274 mutex_exit(&zp->z_lock);
2275 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
2276 } else {
2277 if (((mask & ATTR_XVATTR) &&
2278 XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP)) ||
2279 (projid != ZFS_INVALID_PROJID &&
2280 !(zp->z_pflags & ZFS_PROJID)))
2281 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
2282 else
2283 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
2284 }
2285
2286 if (attrzp) {
2287 dmu_tx_hold_sa(tx, attrzp->z_sa_hdl, B_FALSE);
2288 }
2289
2290 fuid_dirtied = zfsvfs->z_fuid_dirty;
2291 if (fuid_dirtied)
2292 zfs_fuid_txhold(zfsvfs, tx);
2293
2294 zfs_sa_upgrade_txholds(tx, zp);
2295
2296 err = dmu_tx_assign(tx, TXG_WAIT);
2297 if (err)
2298 goto out;
2299
2300 count = 0;
2301 /*
2302 * Set each attribute requested.
2303 * We group settings according to the locks they need to acquire.
2304 *
2305 * Note: you cannot set ctime directly, although it will be
2306 * updated as a side-effect of calling this function.
2307 */
2308
2309 if (projid != ZFS_INVALID_PROJID && !(zp->z_pflags & ZFS_PROJID)) {
2310 /*
2311 * For the existed object that is upgraded from old system,
2312 * its on-disk layout has no slot for the project ID attribute.
2313 * But quota accounting logic needs to access related slots by
2314 * offset directly. So we need to adjust old objects' layout
2315 * to make the project ID to some unified and fixed offset.
2316 */
2317 if (attrzp)
2318 err = sa_add_projid(attrzp->z_sa_hdl, tx, projid);
2319 if (err == 0)
2320 err = sa_add_projid(zp->z_sa_hdl, tx, projid);
2321
2322 if (unlikely(err == EEXIST))
2323 err = 0;
2324 else if (err != 0)
2325 goto out;
2326 else
2327 projid = ZFS_INVALID_PROJID;
2328 }
2329
2330 if (mask & (ATTR_UID|ATTR_GID|ATTR_MODE))
2331 mutex_enter(&zp->z_acl_lock);
2332 mutex_enter(&zp->z_lock);
2333
2334 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
2335 &zp->z_pflags, sizeof (zp->z_pflags));
2336
2337 if (attrzp) {
2338 if (mask & (ATTR_UID|ATTR_GID|ATTR_MODE))
2339 mutex_enter(&attrzp->z_acl_lock);
2340 mutex_enter(&attrzp->z_lock);
2341 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
2342 SA_ZPL_FLAGS(zfsvfs), NULL, &attrzp->z_pflags,
2343 sizeof (attrzp->z_pflags));
2344 if (projid != ZFS_INVALID_PROJID) {
2345 attrzp->z_projid = projid;
2346 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
2347 SA_ZPL_PROJID(zfsvfs), NULL, &attrzp->z_projid,
2348 sizeof (attrzp->z_projid));
2349 }
2350 }
2351
2352 if (mask & (ATTR_UID|ATTR_GID)) {
2353
2354 if (mask & ATTR_UID) {
2355 ZTOI(zp)->i_uid = SUID_TO_KUID(new_kuid);
2356 new_uid = zfs_uid_read(ZTOI(zp));
2357 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL,
2358 &new_uid, sizeof (new_uid));
2359 if (attrzp) {
2360 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
2361 SA_ZPL_UID(zfsvfs), NULL, &new_uid,
2362 sizeof (new_uid));
2363 ZTOI(attrzp)->i_uid = SUID_TO_KUID(new_uid);
2364 }
2365 }
2366
2367 if (mask & ATTR_GID) {
2368 ZTOI(zp)->i_gid = SGID_TO_KGID(new_kgid);
2369 new_gid = zfs_gid_read(ZTOI(zp));
2370 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs),
2371 NULL, &new_gid, sizeof (new_gid));
2372 if (attrzp) {
2373 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
2374 SA_ZPL_GID(zfsvfs), NULL, &new_gid,
2375 sizeof (new_gid));
2376 ZTOI(attrzp)->i_gid = SGID_TO_KGID(new_kgid);
2377 }
2378 }
2379 if (!(mask & ATTR_MODE)) {
2380 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs),
2381 NULL, &new_mode, sizeof (new_mode));
2382 new_mode = zp->z_mode;
2383 }
2384 err = zfs_acl_chown_setattr(zp);
2385 ASSERT(err == 0);
2386 if (attrzp) {
2387 err = zfs_acl_chown_setattr(attrzp);
2388 ASSERT(err == 0);
2389 }
2390 }
2391
2392 if (mask & ATTR_MODE) {
2393 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), NULL,
2394 &new_mode, sizeof (new_mode));
2395 zp->z_mode = ZTOI(zp)->i_mode = new_mode;
2396 ASSERT3P(aclp, !=, NULL);
2397 err = zfs_aclset_common(zp, aclp, cr, tx);
2398 ASSERT0(err);
2399 if (zp->z_acl_cached)
2400 zfs_acl_free(zp->z_acl_cached);
2401 zp->z_acl_cached = aclp;
2402 aclp = NULL;
2403 }
2404
2405 if ((mask & ATTR_ATIME) || zp->z_atime_dirty) {
2406 zp->z_atime_dirty = B_FALSE;
2407 ZFS_TIME_ENCODE(&ip->i_atime, atime);
2408 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zfsvfs), NULL,
2409 &atime, sizeof (atime));
2410 }
2411
2412 if (mask & (ATTR_MTIME | ATTR_SIZE)) {
2413 ZFS_TIME_ENCODE(&vap->va_mtime, mtime);
2414 ZTOI(zp)->i_mtime = zpl_inode_timestamp_truncate(
2415 vap->va_mtime, ZTOI(zp));
2416
2417 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL,
2418 mtime, sizeof (mtime));
2419 }
2420
2421 if (mask & (ATTR_CTIME | ATTR_SIZE)) {
2422 ZFS_TIME_ENCODE(&vap->va_ctime, ctime);
2423 ZTOI(zp)->i_ctime = zpl_inode_timestamp_truncate(vap->va_ctime,
2424 ZTOI(zp));
2425 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
2426 ctime, sizeof (ctime));
2427 }
2428
2429 if (projid != ZFS_INVALID_PROJID) {
2430 zp->z_projid = projid;
2431 SA_ADD_BULK_ATTR(bulk, count,
2432 SA_ZPL_PROJID(zfsvfs), NULL, &zp->z_projid,
2433 sizeof (zp->z_projid));
2434 }
2435
2436 if (attrzp && mask) {
2437 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
2438 SA_ZPL_CTIME(zfsvfs), NULL, &ctime,
2439 sizeof (ctime));
2440 }
2441
2442 /*
2443 * Do this after setting timestamps to prevent timestamp
2444 * update from toggling bit
2445 */
2446
2447 if (xoap && (mask & ATTR_XVATTR)) {
2448
2449 /*
2450 * restore trimmed off masks
2451 * so that return masks can be set for caller.
2452 */
2453
2454 if (XVA_ISSET_REQ(tmpxvattr, XAT_APPENDONLY)) {
2455 XVA_SET_REQ(xvap, XAT_APPENDONLY);
2456 }
2457 if (XVA_ISSET_REQ(tmpxvattr, XAT_NOUNLINK)) {
2458 XVA_SET_REQ(xvap, XAT_NOUNLINK);
2459 }
2460 if (XVA_ISSET_REQ(tmpxvattr, XAT_IMMUTABLE)) {
2461 XVA_SET_REQ(xvap, XAT_IMMUTABLE);
2462 }
2463 if (XVA_ISSET_REQ(tmpxvattr, XAT_NODUMP)) {
2464 XVA_SET_REQ(xvap, XAT_NODUMP);
2465 }
2466 if (XVA_ISSET_REQ(tmpxvattr, XAT_AV_MODIFIED)) {
2467 XVA_SET_REQ(xvap, XAT_AV_MODIFIED);
2468 }
2469 if (XVA_ISSET_REQ(tmpxvattr, XAT_AV_QUARANTINED)) {
2470 XVA_SET_REQ(xvap, XAT_AV_QUARANTINED);
2471 }
2472 if (XVA_ISSET_REQ(tmpxvattr, XAT_PROJINHERIT)) {
2473 XVA_SET_REQ(xvap, XAT_PROJINHERIT);
2474 }
2475
2476 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP))
2477 ASSERT(S_ISREG(ip->i_mode));
2478
2479 zfs_xvattr_set(zp, xvap, tx);
2480 }
2481
2482 if (fuid_dirtied)
2483 zfs_fuid_sync(zfsvfs, tx);
2484
2485 if (mask != 0)
2486 zfs_log_setattr(zilog, tx, TX_SETATTR, zp, vap, mask, fuidp);
2487
2488 mutex_exit(&zp->z_lock);
2489 if (mask & (ATTR_UID|ATTR_GID|ATTR_MODE))
2490 mutex_exit(&zp->z_acl_lock);
2491
2492 if (attrzp) {
2493 if (mask & (ATTR_UID|ATTR_GID|ATTR_MODE))
2494 mutex_exit(&attrzp->z_acl_lock);
2495 mutex_exit(&attrzp->z_lock);
2496 }
2497 out:
2498 if (err == 0 && xattr_count > 0) {
2499 err2 = sa_bulk_update(attrzp->z_sa_hdl, xattr_bulk,
2500 xattr_count, tx);
2501 ASSERT(err2 == 0);
2502 }
2503
2504 if (aclp)
2505 zfs_acl_free(aclp);
2506
2507 if (fuidp) {
2508 zfs_fuid_info_free(fuidp);
2509 fuidp = NULL;
2510 }
2511
2512 if (err) {
2513 dmu_tx_abort(tx);
2514 if (attrzp)
2515 zrele(attrzp);
2516 if (err == ERESTART)
2517 goto top;
2518 } else {
2519 if (count > 0)
2520 err2 = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
2521 dmu_tx_commit(tx);
2522 if (attrzp) {
2523 if (err2 == 0 && handle_eadir)
2524 err2 = zfs_setattr_dir(attrzp);
2525 zrele(attrzp);
2526 }
2527 zfs_znode_update_vfs(zp);
2528 }
2529
2530 out2:
2531 if (os->os_sync == ZFS_SYNC_ALWAYS)
2532 zil_commit(zilog, 0);
2533
2534 out3:
2535 kmem_free(xattr_bulk, sizeof (sa_bulk_attr_t) * bulks);
2536 kmem_free(bulk, sizeof (sa_bulk_attr_t) * bulks);
2537 kmem_free(tmpxvattr, sizeof (xvattr_t));
2538 ZFS_EXIT(zfsvfs);
2539 return (err);
2540 }
2541
2542 typedef struct zfs_zlock {
2543 krwlock_t *zl_rwlock; /* lock we acquired */
2544 znode_t *zl_znode; /* znode we held */
2545 struct zfs_zlock *zl_next; /* next in list */
2546 } zfs_zlock_t;
2547
2548 /*
2549 * Drop locks and release vnodes that were held by zfs_rename_lock().
2550 */
2551 static void
2552 zfs_rename_unlock(zfs_zlock_t **zlpp)
2553 {
2554 zfs_zlock_t *zl;
2555
2556 while ((zl = *zlpp) != NULL) {
2557 if (zl->zl_znode != NULL)
2558 zfs_zrele_async(zl->zl_znode);
2559 rw_exit(zl->zl_rwlock);
2560 *zlpp = zl->zl_next;
2561 kmem_free(zl, sizeof (*zl));
2562 }
2563 }
2564
2565 /*
2566 * Search back through the directory tree, using the ".." entries.
2567 * Lock each directory in the chain to prevent concurrent renames.
2568 * Fail any attempt to move a directory into one of its own descendants.
2569 * XXX - z_parent_lock can overlap with map or grow locks
2570 */
2571 static int
2572 zfs_rename_lock(znode_t *szp, znode_t *tdzp, znode_t *sdzp, zfs_zlock_t **zlpp)
2573 {
2574 zfs_zlock_t *zl;
2575 znode_t *zp = tdzp;
2576 uint64_t rootid = ZTOZSB(zp)->z_root;
2577 uint64_t oidp = zp->z_id;
2578 krwlock_t *rwlp = &szp->z_parent_lock;
2579 krw_t rw = RW_WRITER;
2580
2581 /*
2582 * First pass write-locks szp and compares to zp->z_id.
2583 * Later passes read-lock zp and compare to zp->z_parent.
2584 */
2585 do {
2586 if (!rw_tryenter(rwlp, rw)) {
2587 /*
2588 * Another thread is renaming in this path.
2589 * Note that if we are a WRITER, we don't have any
2590 * parent_locks held yet.
2591 */
2592 if (rw == RW_READER && zp->z_id > szp->z_id) {
2593 /*
2594 * Drop our locks and restart
2595 */
2596 zfs_rename_unlock(&zl);
2597 *zlpp = NULL;
2598 zp = tdzp;
2599 oidp = zp->z_id;
2600 rwlp = &szp->z_parent_lock;
2601 rw = RW_WRITER;
2602 continue;
2603 } else {
2604 /*
2605 * Wait for other thread to drop its locks
2606 */
2607 rw_enter(rwlp, rw);
2608 }
2609 }
2610
2611 zl = kmem_alloc(sizeof (*zl), KM_SLEEP);
2612 zl->zl_rwlock = rwlp;
2613 zl->zl_znode = NULL;
2614 zl->zl_next = *zlpp;
2615 *zlpp = zl;
2616
2617 if (oidp == szp->z_id) /* We're a descendant of szp */
2618 return (SET_ERROR(EINVAL));
2619
2620 if (oidp == rootid) /* We've hit the top */
2621 return (0);
2622
2623 if (rw == RW_READER) { /* i.e. not the first pass */
2624 int error = zfs_zget(ZTOZSB(zp), oidp, &zp);
2625 if (error)
2626 return (error);
2627 zl->zl_znode = zp;
2628 }
2629 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(ZTOZSB(zp)),
2630 &oidp, sizeof (oidp));
2631 rwlp = &zp->z_parent_lock;
2632 rw = RW_READER;
2633
2634 } while (zp->z_id != sdzp->z_id);
2635
2636 return (0);
2637 }
2638
2639 /*
2640 * Move an entry from the provided source directory to the target
2641 * directory. Change the entry name as indicated.
2642 *
2643 * IN: sdzp - Source directory containing the "old entry".
2644 * snm - Old entry name.
2645 * tdzp - Target directory to contain the "new entry".
2646 * tnm - New entry name.
2647 * cr - credentials of caller.
2648 * flags - case flags
2649 *
2650 * RETURN: 0 on success, error code on failure.
2651 *
2652 * Timestamps:
2653 * sdzp,tdzp - ctime|mtime updated
2654 */
2655 /*ARGSUSED*/
2656 int
2657 zfs_rename(znode_t *sdzp, char *snm, znode_t *tdzp, char *tnm,
2658 cred_t *cr, int flags)
2659 {
2660 znode_t *szp, *tzp;
2661 zfsvfs_t *zfsvfs = ZTOZSB(sdzp);
2662 zilog_t *zilog;
2663 zfs_dirlock_t *sdl, *tdl;
2664 dmu_tx_t *tx;
2665 zfs_zlock_t *zl;
2666 int cmp, serr, terr;
2667 int error = 0;
2668 int zflg = 0;
2669 boolean_t waited = B_FALSE;
2670
2671 if (snm == NULL || tnm == NULL)
2672 return (SET_ERROR(EINVAL));
2673
2674 ZFS_ENTER(zfsvfs);
2675 ZFS_VERIFY_ZP(sdzp);
2676 zilog = zfsvfs->z_log;
2677
2678 ZFS_VERIFY_ZP(tdzp);
2679
2680 /*
2681 * We check i_sb because snapshots and the ctldir must have different
2682 * super blocks.
2683 */
2684 if (ZTOI(tdzp)->i_sb != ZTOI(sdzp)->i_sb ||
2685 zfsctl_is_node(ZTOI(tdzp))) {
2686 ZFS_EXIT(zfsvfs);
2687 return (SET_ERROR(EXDEV));
2688 }
2689
2690 if (zfsvfs->z_utf8 && u8_validate(tnm,
2691 strlen(tnm), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
2692 ZFS_EXIT(zfsvfs);
2693 return (SET_ERROR(EILSEQ));
2694 }
2695
2696 if (flags & FIGNORECASE)
2697 zflg |= ZCILOOK;
2698
2699 top:
2700 szp = NULL;
2701 tzp = NULL;
2702 zl = NULL;
2703
2704 /*
2705 * This is to prevent the creation of links into attribute space
2706 * by renaming a linked file into/outof an attribute directory.
2707 * See the comment in zfs_link() for why this is considered bad.
2708 */
2709 if ((tdzp->z_pflags & ZFS_XATTR) != (sdzp->z_pflags & ZFS_XATTR)) {
2710 ZFS_EXIT(zfsvfs);
2711 return (SET_ERROR(EINVAL));
2712 }
2713
2714 /*
2715 * Lock source and target directory entries. To prevent deadlock,
2716 * a lock ordering must be defined. We lock the directory with
2717 * the smallest object id first, or if it's a tie, the one with
2718 * the lexically first name.
2719 */
2720 if (sdzp->z_id < tdzp->z_id) {
2721 cmp = -1;
2722 } else if (sdzp->z_id > tdzp->z_id) {
2723 cmp = 1;
2724 } else {
2725 /*
2726 * First compare the two name arguments without
2727 * considering any case folding.
2728 */
2729 int nofold = (zfsvfs->z_norm & ~U8_TEXTPREP_TOUPPER);
2730
2731 cmp = u8_strcmp(snm, tnm, 0, nofold, U8_UNICODE_LATEST, &error);
2732 ASSERT(error == 0 || !zfsvfs->z_utf8);
2733 if (cmp == 0) {
2734 /*
2735 * POSIX: "If the old argument and the new argument
2736 * both refer to links to the same existing file,
2737 * the rename() function shall return successfully
2738 * and perform no other action."
2739 */
2740 ZFS_EXIT(zfsvfs);
2741 return (0);
2742 }
2743 /*
2744 * If the file system is case-folding, then we may
2745 * have some more checking to do. A case-folding file
2746 * system is either supporting mixed case sensitivity
2747 * access or is completely case-insensitive. Note
2748 * that the file system is always case preserving.
2749 *
2750 * In mixed sensitivity mode case sensitive behavior
2751 * is the default. FIGNORECASE must be used to
2752 * explicitly request case insensitive behavior.
2753 *
2754 * If the source and target names provided differ only
2755 * by case (e.g., a request to rename 'tim' to 'Tim'),
2756 * we will treat this as a special case in the
2757 * case-insensitive mode: as long as the source name
2758 * is an exact match, we will allow this to proceed as
2759 * a name-change request.
2760 */
2761 if ((zfsvfs->z_case == ZFS_CASE_INSENSITIVE ||
2762 (zfsvfs->z_case == ZFS_CASE_MIXED &&
2763 flags & FIGNORECASE)) &&
2764 u8_strcmp(snm, tnm, 0, zfsvfs->z_norm, U8_UNICODE_LATEST,
2765 &error) == 0) {
2766 /*
2767 * case preserving rename request, require exact
2768 * name matches
2769 */
2770 zflg |= ZCIEXACT;
2771 zflg &= ~ZCILOOK;
2772 }
2773 }
2774
2775 /*
2776 * If the source and destination directories are the same, we should
2777 * grab the z_name_lock of that directory only once.
2778 */
2779 if (sdzp == tdzp) {
2780 zflg |= ZHAVELOCK;
2781 rw_enter(&sdzp->z_name_lock, RW_READER);
2782 }
2783
2784 if (cmp < 0) {
2785 serr = zfs_dirent_lock(&sdl, sdzp, snm, &szp,
2786 ZEXISTS | zflg, NULL, NULL);
2787 terr = zfs_dirent_lock(&tdl,
2788 tdzp, tnm, &tzp, ZRENAMING | zflg, NULL, NULL);
2789 } else {
2790 terr = zfs_dirent_lock(&tdl,
2791 tdzp, tnm, &tzp, zflg, NULL, NULL);
2792 serr = zfs_dirent_lock(&sdl,
2793 sdzp, snm, &szp, ZEXISTS | ZRENAMING | zflg,
2794 NULL, NULL);
2795 }
2796
2797 if (serr) {
2798 /*
2799 * Source entry invalid or not there.
2800 */
2801 if (!terr) {
2802 zfs_dirent_unlock(tdl);
2803 if (tzp)
2804 zrele(tzp);
2805 }
2806
2807 if (sdzp == tdzp)
2808 rw_exit(&sdzp->z_name_lock);
2809
2810 if (strcmp(snm, "..") == 0)
2811 serr = EINVAL;
2812 ZFS_EXIT(zfsvfs);
2813 return (serr);
2814 }
2815 if (terr) {
2816 zfs_dirent_unlock(sdl);
2817 zrele(szp);
2818
2819 if (sdzp == tdzp)
2820 rw_exit(&sdzp->z_name_lock);
2821
2822 if (strcmp(tnm, "..") == 0)
2823 terr = EINVAL;
2824 ZFS_EXIT(zfsvfs);
2825 return (terr);
2826 }
2827
2828 /*
2829 * If we are using project inheritance, means if the directory has
2830 * ZFS_PROJINHERIT set, then its descendant directories will inherit
2831 * not only the project ID, but also the ZFS_PROJINHERIT flag. Under
2832 * such case, we only allow renames into our tree when the project
2833 * IDs are the same.
2834 */
2835 if (tdzp->z_pflags & ZFS_PROJINHERIT &&
2836 tdzp->z_projid != szp->z_projid) {
2837 error = SET_ERROR(EXDEV);
2838 goto out;
2839 }
2840
2841 /*
2842 * Must have write access at the source to remove the old entry
2843 * and write access at the target to create the new entry.
2844 * Note that if target and source are the same, this can be
2845 * done in a single check.
2846 */
2847
2848 if ((error = zfs_zaccess_rename(sdzp, szp, tdzp, tzp, cr)))
2849 goto out;
2850
2851 if (S_ISDIR(ZTOI(szp)->i_mode)) {
2852 /*
2853 * Check to make sure rename is valid.
2854 * Can't do a move like this: /usr/a/b to /usr/a/b/c/d
2855 */
2856 if ((error = zfs_rename_lock(szp, tdzp, sdzp, &zl)))
2857 goto out;
2858 }
2859
2860 /*
2861 * Does target exist?
2862 */
2863 if (tzp) {
2864 /*
2865 * Source and target must be the same type.
2866 */
2867 if (S_ISDIR(ZTOI(szp)->i_mode)) {
2868 if (!S_ISDIR(ZTOI(tzp)->i_mode)) {
2869 error = SET_ERROR(ENOTDIR);
2870 goto out;
2871 }
2872 } else {
2873 if (S_ISDIR(ZTOI(tzp)->i_mode)) {
2874 error = SET_ERROR(EISDIR);
2875 goto out;
2876 }
2877 }
2878 /*
2879 * POSIX dictates that when the source and target
2880 * entries refer to the same file object, rename
2881 * must do nothing and exit without error.
2882 */
2883 if (szp->z_id == tzp->z_id) {
2884 error = 0;
2885 goto out;
2886 }
2887 }
2888
2889 tx = dmu_tx_create(zfsvfs->z_os);
2890 dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE);
2891 dmu_tx_hold_sa(tx, sdzp->z_sa_hdl, B_FALSE);
2892 dmu_tx_hold_zap(tx, sdzp->z_id, FALSE, snm);
2893 dmu_tx_hold_zap(tx, tdzp->z_id, TRUE, tnm);
2894 if (sdzp != tdzp) {
2895 dmu_tx_hold_sa(tx, tdzp->z_sa_hdl, B_FALSE);
2896 zfs_sa_upgrade_txholds(tx, tdzp);
2897 }
2898 if (tzp) {
2899 dmu_tx_hold_sa(tx, tzp->z_sa_hdl, B_FALSE);
2900 zfs_sa_upgrade_txholds(tx, tzp);
2901 }
2902
2903 zfs_sa_upgrade_txholds(tx, szp);
2904 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
2905 error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
2906 if (error) {
2907 if (zl != NULL)
2908 zfs_rename_unlock(&zl);
2909 zfs_dirent_unlock(sdl);
2910 zfs_dirent_unlock(tdl);
2911
2912 if (sdzp == tdzp)
2913 rw_exit(&sdzp->z_name_lock);
2914
2915 if (error == ERESTART) {
2916 waited = B_TRUE;
2917 dmu_tx_wait(tx);
2918 dmu_tx_abort(tx);
2919 zrele(szp);
2920 if (tzp)
2921 zrele(tzp);
2922 goto top;
2923 }
2924 dmu_tx_abort(tx);
2925 zrele(szp);
2926 if (tzp)
2927 zrele(tzp);
2928 ZFS_EXIT(zfsvfs);
2929 return (error);
2930 }
2931
2932 if (tzp) /* Attempt to remove the existing target */
2933 error = zfs_link_destroy(tdl, tzp, tx, zflg, NULL);
2934
2935 if (error == 0) {
2936 error = zfs_link_create(tdl, szp, tx, ZRENAMING);
2937 if (error == 0) {
2938 szp->z_pflags |= ZFS_AV_MODIFIED;
2939 if (tdzp->z_pflags & ZFS_PROJINHERIT)
2940 szp->z_pflags |= ZFS_PROJINHERIT;
2941
2942 error = sa_update(szp->z_sa_hdl, SA_ZPL_FLAGS(zfsvfs),
2943 (void *)&szp->z_pflags, sizeof (uint64_t), tx);
2944 ASSERT0(error);
2945
2946 error = zfs_link_destroy(sdl, szp, tx, ZRENAMING, NULL);
2947 if (error == 0) {
2948 zfs_log_rename(zilog, tx, TX_RENAME |
2949 (flags & FIGNORECASE ? TX_CI : 0), sdzp,
2950 sdl->dl_name, tdzp, tdl->dl_name, szp);
2951 } else {
2952 /*
2953 * At this point, we have successfully created
2954 * the target name, but have failed to remove
2955 * the source name. Since the create was done
2956 * with the ZRENAMING flag, there are
2957 * complications; for one, the link count is
2958 * wrong. The easiest way to deal with this
2959 * is to remove the newly created target, and
2960 * return the original error. This must
2961 * succeed; fortunately, it is very unlikely to
2962 * fail, since we just created it.
2963 */
2964 VERIFY3U(zfs_link_destroy(tdl, szp, tx,
2965 ZRENAMING, NULL), ==, 0);
2966 }
2967 } else {
2968 /*
2969 * If we had removed the existing target, subsequent
2970 * call to zfs_link_create() to add back the same entry
2971 * but, the new dnode (szp) should not fail.
2972 */
2973 ASSERT(tzp == NULL);
2974 }
2975 }
2976
2977 dmu_tx_commit(tx);
2978 out:
2979 if (zl != NULL)
2980 zfs_rename_unlock(&zl);
2981
2982 zfs_dirent_unlock(sdl);
2983 zfs_dirent_unlock(tdl);
2984
2985 zfs_znode_update_vfs(sdzp);
2986 if (sdzp == tdzp)
2987 rw_exit(&sdzp->z_name_lock);
2988
2989 if (sdzp != tdzp)
2990 zfs_znode_update_vfs(tdzp);
2991
2992 zfs_znode_update_vfs(szp);
2993 zrele(szp);
2994 if (tzp) {
2995 zfs_znode_update_vfs(tzp);
2996 zrele(tzp);
2997 }
2998
2999 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
3000 zil_commit(zilog, 0);
3001
3002 ZFS_EXIT(zfsvfs);
3003 return (error);
3004 }
3005
3006 /*
3007 * Insert the indicated symbolic reference entry into the directory.
3008 *
3009 * IN: dzp - Directory to contain new symbolic link.
3010 * name - Name of directory entry in dip.
3011 * vap - Attributes of new entry.
3012 * link - Name for new symlink entry.
3013 * cr - credentials of caller.
3014 * flags - case flags
3015 *
3016 * OUT: zpp - Znode for new symbolic link.
3017 *
3018 * RETURN: 0 on success, error code on failure.
3019 *
3020 * Timestamps:
3021 * dip - ctime|mtime updated
3022 */
3023 /*ARGSUSED*/
3024 int
3025 zfs_symlink(znode_t *dzp, char *name, vattr_t *vap, char *link,
3026 znode_t **zpp, cred_t *cr, int flags)
3027 {
3028 znode_t *zp;
3029 zfs_dirlock_t *dl;
3030 dmu_tx_t *tx;
3031 zfsvfs_t *zfsvfs = ZTOZSB(dzp);
3032 zilog_t *zilog;
3033 uint64_t len = strlen(link);
3034 int error;
3035 int zflg = ZNEW;
3036 zfs_acl_ids_t acl_ids;
3037 boolean_t fuid_dirtied;
3038 uint64_t txtype = TX_SYMLINK;
3039 boolean_t waited = B_FALSE;
3040
3041 ASSERT(S_ISLNK(vap->va_mode));
3042
3043 if (name == NULL)
3044 return (SET_ERROR(EINVAL));
3045
3046 ZFS_ENTER(zfsvfs);
3047 ZFS_VERIFY_ZP(dzp);
3048 zilog = zfsvfs->z_log;
3049
3050 if (zfsvfs->z_utf8 && u8_validate(name, strlen(name),
3051 NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
3052 ZFS_EXIT(zfsvfs);
3053 return (SET_ERROR(EILSEQ));
3054 }
3055 if (flags & FIGNORECASE)
3056 zflg |= ZCILOOK;
3057
3058 if (len > MAXPATHLEN) {
3059 ZFS_EXIT(zfsvfs);
3060 return (SET_ERROR(ENAMETOOLONG));
3061 }
3062
3063 if ((error = zfs_acl_ids_create(dzp, 0,
3064 vap, cr, NULL, &acl_ids)) != 0) {
3065 ZFS_EXIT(zfsvfs);
3066 return (error);
3067 }
3068 top:
3069 *zpp = NULL;
3070
3071 /*
3072 * Attempt to lock directory; fail if entry already exists.
3073 */
3074 error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, NULL, NULL);
3075 if (error) {
3076 zfs_acl_ids_free(&acl_ids);
3077 ZFS_EXIT(zfsvfs);
3078 return (error);
3079 }
3080
3081 if ((error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr))) {
3082 zfs_acl_ids_free(&acl_ids);
3083 zfs_dirent_unlock(dl);
3084 ZFS_EXIT(zfsvfs);
3085 return (error);
3086 }
3087
3088 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids, ZFS_DEFAULT_PROJID)) {
3089 zfs_acl_ids_free(&acl_ids);
3090 zfs_dirent_unlock(dl);
3091 ZFS_EXIT(zfsvfs);
3092 return (SET_ERROR(EDQUOT));
3093 }
3094 tx = dmu_tx_create(zfsvfs->z_os);
3095 fuid_dirtied = zfsvfs->z_fuid_dirty;
3096 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, MAX(1, len));
3097 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
3098 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
3099 ZFS_SA_BASE_ATTR_SIZE + len);
3100 dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE);
3101 if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
3102 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
3103 acl_ids.z_aclp->z_acl_bytes);
3104 }
3105 if (fuid_dirtied)
3106 zfs_fuid_txhold(zfsvfs, tx);
3107 error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
3108 if (error) {
3109 zfs_dirent_unlock(dl);
3110 if (error == ERESTART) {
3111 waited = B_TRUE;
3112 dmu_tx_wait(tx);
3113 dmu_tx_abort(tx);
3114 goto top;
3115 }
3116 zfs_acl_ids_free(&acl_ids);
3117 dmu_tx_abort(tx);
3118 ZFS_EXIT(zfsvfs);
3119 return (error);
3120 }
3121
3122 /*
3123 * Create a new object for the symlink.
3124 * for version 4 ZPL datasets the symlink will be an SA attribute
3125 */
3126 zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
3127
3128 if (fuid_dirtied)
3129 zfs_fuid_sync(zfsvfs, tx);
3130
3131 mutex_enter(&zp->z_lock);
3132 if (zp->z_is_sa)
3133 error = sa_update(zp->z_sa_hdl, SA_ZPL_SYMLINK(zfsvfs),
3134 link, len, tx);
3135 else
3136 zfs_sa_symlink(zp, link, len, tx);
3137 mutex_exit(&zp->z_lock);
3138
3139 zp->z_size = len;
3140 (void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs),
3141 &zp->z_size, sizeof (zp->z_size), tx);
3142 /*
3143 * Insert the new object into the directory.
3144 */
3145 error = zfs_link_create(dl, zp, tx, ZNEW);
3146 if (error != 0) {
3147 zfs_znode_delete(zp, tx);
3148 remove_inode_hash(ZTOI(zp));
3149 } else {
3150 if (flags & FIGNORECASE)
3151 txtype |= TX_CI;
3152 zfs_log_symlink(zilog, tx, txtype, dzp, zp, name, link);
3153
3154 zfs_znode_update_vfs(dzp);
3155 zfs_znode_update_vfs(zp);
3156 }
3157
3158 zfs_acl_ids_free(&acl_ids);
3159
3160 dmu_tx_commit(tx);
3161
3162 zfs_dirent_unlock(dl);
3163
3164 if (error == 0) {
3165 *zpp = zp;
3166
3167 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
3168 zil_commit(zilog, 0);
3169 } else {
3170 zrele(zp);
3171 }
3172
3173 ZFS_EXIT(zfsvfs);
3174 return (error);
3175 }
3176
3177 /*
3178 * Return, in the buffer contained in the provided uio structure,
3179 * the symbolic path referred to by ip.
3180 *
3181 * IN: ip - inode of symbolic link
3182 * uio - structure to contain the link path.
3183 * cr - credentials of caller.
3184 *
3185 * RETURN: 0 if success
3186 * error code if failure
3187 *
3188 * Timestamps:
3189 * ip - atime updated
3190 */
3191 /* ARGSUSED */
3192 int
3193 zfs_readlink(struct inode *ip, zfs_uio_t *uio, cred_t *cr)
3194 {
3195 znode_t *zp = ITOZ(ip);
3196 zfsvfs_t *zfsvfs = ITOZSB(ip);
3197 int error;
3198
3199 ZFS_ENTER(zfsvfs);
3200 ZFS_VERIFY_ZP(zp);
3201
3202 mutex_enter(&zp->z_lock);
3203 if (zp->z_is_sa)
3204 error = sa_lookup_uio(zp->z_sa_hdl,
3205 SA_ZPL_SYMLINK(zfsvfs), uio);
3206 else
3207 error = zfs_sa_readlink(zp, uio);
3208 mutex_exit(&zp->z_lock);
3209
3210 ZFS_EXIT(zfsvfs);
3211 return (error);
3212 }
3213
3214 /*
3215 * Insert a new entry into directory tdzp referencing szp.
3216 *
3217 * IN: tdzp - Directory to contain new entry.
3218 * szp - znode of new entry.
3219 * name - name of new entry.
3220 * cr - credentials of caller.
3221 * flags - case flags.
3222 *
3223 * RETURN: 0 if success
3224 * error code if failure
3225 *
3226 * Timestamps:
3227 * tdzp - ctime|mtime updated
3228 * szp - ctime updated
3229 */
3230 /* ARGSUSED */
3231 int
3232 zfs_link(znode_t *tdzp, znode_t *szp, char *name, cred_t *cr,
3233 int flags)
3234 {
3235 struct inode *sip = ZTOI(szp);
3236 znode_t *tzp;
3237 zfsvfs_t *zfsvfs = ZTOZSB(tdzp);
3238 zilog_t *zilog;
3239 zfs_dirlock_t *dl;
3240 dmu_tx_t *tx;
3241 int error;
3242 int zf = ZNEW;
3243 uint64_t parent;
3244 uid_t owner;
3245 boolean_t waited = B_FALSE;
3246 boolean_t is_tmpfile = 0;
3247 uint64_t txg;
3248 #ifdef HAVE_TMPFILE
3249 is_tmpfile = (sip->i_nlink == 0 && (sip->i_state & I_LINKABLE));
3250 #endif
3251 ASSERT(S_ISDIR(ZTOI(tdzp)->i_mode));
3252
3253 if (name == NULL)
3254 return (SET_ERROR(EINVAL));
3255
3256 ZFS_ENTER(zfsvfs);
3257 ZFS_VERIFY_ZP(tdzp);
3258 zilog = zfsvfs->z_log;
3259
3260 /*
3261 * POSIX dictates that we return EPERM here.
3262 * Better choices include ENOTSUP or EISDIR.
3263 */
3264 if (S_ISDIR(sip->i_mode)) {
3265 ZFS_EXIT(zfsvfs);
3266 return (SET_ERROR(EPERM));
3267 }
3268
3269 ZFS_VERIFY_ZP(szp);
3270
3271 /*
3272 * If we are using project inheritance, means if the directory has
3273 * ZFS_PROJINHERIT set, then its descendant directories will inherit
3274 * not only the project ID, but also the ZFS_PROJINHERIT flag. Under
3275 * such case, we only allow hard link creation in our tree when the
3276 * project IDs are the same.
3277 */
3278 if (tdzp->z_pflags & ZFS_PROJINHERIT &&
3279 tdzp->z_projid != szp->z_projid) {
3280 ZFS_EXIT(zfsvfs);
3281 return (SET_ERROR(EXDEV));
3282 }
3283
3284 /*
3285 * We check i_sb because snapshots and the ctldir must have different
3286 * super blocks.
3287 */
3288 if (sip->i_sb != ZTOI(tdzp)->i_sb || zfsctl_is_node(sip)) {
3289 ZFS_EXIT(zfsvfs);
3290 return (SET_ERROR(EXDEV));
3291 }
3292
3293 /* Prevent links to .zfs/shares files */
3294
3295 if ((error = sa_lookup(szp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs),
3296 &parent, sizeof (uint64_t))) != 0) {
3297 ZFS_EXIT(zfsvfs);
3298 return (error);
3299 }
3300 if (parent == zfsvfs->z_shares_dir) {
3301 ZFS_EXIT(zfsvfs);
3302 return (SET_ERROR(EPERM));
3303 }
3304
3305 if (zfsvfs->z_utf8 && u8_validate(name,
3306 strlen(name), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
3307 ZFS_EXIT(zfsvfs);
3308 return (SET_ERROR(EILSEQ));
3309 }
3310 if (flags & FIGNORECASE)
3311 zf |= ZCILOOK;
3312
3313 /*
3314 * We do not support links between attributes and non-attributes
3315 * because of the potential security risk of creating links
3316 * into "normal" file space in order to circumvent restrictions
3317 * imposed in attribute space.
3318 */
3319 if ((szp->z_pflags & ZFS_XATTR) != (tdzp->z_pflags & ZFS_XATTR)) {
3320 ZFS_EXIT(zfsvfs);
3321 return (SET_ERROR(EINVAL));
3322 }
3323
3324 owner = zfs_fuid_map_id(zfsvfs, KUID_TO_SUID(sip->i_uid),
3325 cr, ZFS_OWNER);
3326 if (owner != crgetuid(cr) && secpolicy_basic_link(cr) != 0) {
3327 ZFS_EXIT(zfsvfs);
3328 return (SET_ERROR(EPERM));
3329 }
3330
3331 if ((error = zfs_zaccess(tdzp, ACE_ADD_FILE, 0, B_FALSE, cr))) {
3332 ZFS_EXIT(zfsvfs);
3333 return (error);
3334 }
3335
3336 top:
3337 /*
3338 * Attempt to lock directory; fail if entry already exists.
3339 */
3340 error = zfs_dirent_lock(&dl, tdzp, name, &tzp, zf, NULL, NULL);
3341 if (error) {
3342 ZFS_EXIT(zfsvfs);
3343 return (error);
3344 }
3345
3346 tx = dmu_tx_create(zfsvfs->z_os);
3347 dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE);
3348 dmu_tx_hold_zap(tx, tdzp->z_id, TRUE, name);
3349 if (is_tmpfile)
3350 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
3351
3352 zfs_sa_upgrade_txholds(tx, szp);
3353 zfs_sa_upgrade_txholds(tx, tdzp);
3354 error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
3355 if (error) {
3356 zfs_dirent_unlock(dl);
3357 if (error == ERESTART) {
3358 waited = B_TRUE;
3359 dmu_tx_wait(tx);
3360 dmu_tx_abort(tx);
3361 goto top;
3362 }
3363 dmu_tx_abort(tx);
3364 ZFS_EXIT(zfsvfs);
3365 return (error);
3366 }
3367 /* unmark z_unlinked so zfs_link_create will not reject */
3368 if (is_tmpfile)
3369 szp->z_unlinked = B_FALSE;
3370 error = zfs_link_create(dl, szp, tx, 0);
3371
3372 if (error == 0) {
3373 uint64_t txtype = TX_LINK;
3374 /*
3375 * tmpfile is created to be in z_unlinkedobj, so remove it.
3376 * Also, we don't log in ZIL, because all previous file
3377 * operation on the tmpfile are ignored by ZIL. Instead we
3378 * always wait for txg to sync to make sure all previous
3379 * operation are sync safe.
3380 */
3381 if (is_tmpfile) {
3382 VERIFY(zap_remove_int(zfsvfs->z_os,
3383 zfsvfs->z_unlinkedobj, szp->z_id, tx) == 0);
3384 } else {
3385 if (flags & FIGNORECASE)
3386 txtype |= TX_CI;
3387 zfs_log_link(zilog, tx, txtype, tdzp, szp, name);
3388 }
3389 } else if (is_tmpfile) {
3390 /* restore z_unlinked since when linking failed */
3391 szp->z_unlinked = B_TRUE;
3392 }
3393 txg = dmu_tx_get_txg(tx);
3394 dmu_tx_commit(tx);
3395
3396 zfs_dirent_unlock(dl);
3397
3398 if (!is_tmpfile && zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
3399 zil_commit(zilog, 0);
3400
3401 if (is_tmpfile && zfsvfs->z_os->os_sync != ZFS_SYNC_DISABLED)
3402 txg_wait_synced(dmu_objset_pool(zfsvfs->z_os), txg);
3403
3404 zfs_znode_update_vfs(tdzp);
3405 zfs_znode_update_vfs(szp);
3406 ZFS_EXIT(zfsvfs);
3407 return (error);
3408 }
3409
3410 static void
3411 zfs_putpage_commit_cb(void *arg)
3412 {
3413 struct page *pp = arg;
3414
3415 ClearPageError(pp);
3416 end_page_writeback(pp);
3417 }
3418
3419 /*
3420 * Push a page out to disk, once the page is on stable storage the
3421 * registered commit callback will be run as notification of completion.
3422 *
3423 * IN: ip - page mapped for inode.
3424 * pp - page to push (page is locked)
3425 * wbc - writeback control data
3426 *
3427 * RETURN: 0 if success
3428 * error code if failure
3429 *
3430 * Timestamps:
3431 * ip - ctime|mtime updated
3432 */
3433 /* ARGSUSED */
3434 int
3435 zfs_putpage(struct inode *ip, struct page *pp, struct writeback_control *wbc)
3436 {
3437 znode_t *zp = ITOZ(ip);
3438 zfsvfs_t *zfsvfs = ITOZSB(ip);
3439 loff_t offset;
3440 loff_t pgoff;
3441 unsigned int pglen;
3442 dmu_tx_t *tx;
3443 caddr_t va;
3444 int err = 0;
3445 uint64_t mtime[2], ctime[2];
3446 sa_bulk_attr_t bulk[3];
3447 int cnt = 0;
3448 struct address_space *mapping;
3449
3450 ZFS_ENTER(zfsvfs);
3451 ZFS_VERIFY_ZP(zp);
3452
3453 ASSERT(PageLocked(pp));
3454
3455 pgoff = page_offset(pp); /* Page byte-offset in file */
3456 offset = i_size_read(ip); /* File length in bytes */
3457 pglen = MIN(PAGE_SIZE, /* Page length in bytes */
3458 P2ROUNDUP(offset, PAGE_SIZE)-pgoff);
3459
3460 /* Page is beyond end of file */
3461 if (pgoff >= offset) {
3462 unlock_page(pp);
3463 ZFS_EXIT(zfsvfs);
3464 return (0);
3465 }
3466
3467 /* Truncate page length to end of file */
3468 if (pgoff + pglen > offset)
3469 pglen = offset - pgoff;
3470
3471 #if 0
3472 /*
3473 * FIXME: Allow mmap writes past its quota. The correct fix
3474 * is to register a page_mkwrite() handler to count the page
3475 * against its quota when it is about to be dirtied.
3476 */
3477 if (zfs_id_overblockquota(zfsvfs, DMU_USERUSED_OBJECT,
3478 KUID_TO_SUID(ip->i_uid)) ||
3479 zfs_id_overblockquota(zfsvfs, DMU_GROUPUSED_OBJECT,
3480 KGID_TO_SGID(ip->i_gid)) ||
3481 (zp->z_projid != ZFS_DEFAULT_PROJID &&
3482 zfs_id_overblockquota(zfsvfs, DMU_PROJECTUSED_OBJECT,
3483 zp->z_projid))) {
3484 err = EDQUOT;
3485 }
3486 #endif
3487
3488 /*
3489 * The ordering here is critical and must adhere to the following
3490 * rules in order to avoid deadlocking in either zfs_read() or
3491 * zfs_free_range() due to a lock inversion.
3492 *
3493 * 1) The page must be unlocked prior to acquiring the range lock.
3494 * This is critical because zfs_read() calls find_lock_page()
3495 * which may block on the page lock while holding the range lock.
3496 *
3497 * 2) Before setting or clearing write back on a page the range lock
3498 * must be held in order to prevent a lock inversion with the
3499 * zfs_free_range() function.
3500 *
3501 * This presents a problem because upon entering this function the
3502 * page lock is already held. To safely acquire the range lock the
3503 * page lock must be dropped. This creates a window where another
3504 * process could truncate, invalidate, dirty, or write out the page.
3505 *
3506 * Therefore, after successfully reacquiring the range and page locks
3507 * the current page state is checked. In the common case everything
3508 * will be as is expected and it can be written out. However, if
3509 * the page state has changed it must be handled accordingly.
3510 */
3511 mapping = pp->mapping;
3512 redirty_page_for_writepage(wbc, pp);
3513 unlock_page(pp);
3514
3515 zfs_locked_range_t *lr = zfs_rangelock_enter(&zp->z_rangelock,
3516 pgoff, pglen, RL_WRITER);
3517 lock_page(pp);
3518
3519 /* Page mapping changed or it was no longer dirty, we're done */
3520 if (unlikely((mapping != pp->mapping) || !PageDirty(pp))) {
3521 unlock_page(pp);
3522 zfs_rangelock_exit(lr);
3523 ZFS_EXIT(zfsvfs);
3524 return (0);
3525 }
3526
3527 /* Another process started write block if required */
3528 if (PageWriteback(pp)) {
3529 unlock_page(pp);
3530 zfs_rangelock_exit(lr);
3531
3532 if (wbc->sync_mode != WB_SYNC_NONE) {
3533 if (PageWriteback(pp))
3534 #ifdef HAVE_PAGEMAP_FOLIO_WAIT_BIT
3535 folio_wait_bit(page_folio(pp), PG_writeback);
3536 #else
3537 wait_on_page_bit(pp, PG_writeback);
3538 #endif
3539 }
3540
3541 ZFS_EXIT(zfsvfs);
3542 return (0);
3543 }
3544
3545 /* Clear the dirty flag the required locks are held */
3546 if (!clear_page_dirty_for_io(pp)) {
3547 unlock_page(pp);
3548 zfs_rangelock_exit(lr);
3549 ZFS_EXIT(zfsvfs);
3550 return (0);
3551 }
3552
3553 /*
3554 * Counterpart for redirty_page_for_writepage() above. This page
3555 * was in fact not skipped and should not be counted as if it were.
3556 */
3557 wbc->pages_skipped--;
3558 set_page_writeback(pp);
3559 unlock_page(pp);
3560
3561 tx = dmu_tx_create(zfsvfs->z_os);
3562 dmu_tx_hold_write(tx, zp->z_id, pgoff, pglen);
3563 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
3564 zfs_sa_upgrade_txholds(tx, zp);
3565
3566 err = dmu_tx_assign(tx, TXG_NOWAIT);
3567 if (err != 0) {
3568 if (err == ERESTART)
3569 dmu_tx_wait(tx);
3570
3571 dmu_tx_abort(tx);
3572 __set_page_dirty_nobuffers(pp);
3573 ClearPageError(pp);
3574 end_page_writeback(pp);
3575 zfs_rangelock_exit(lr);
3576 ZFS_EXIT(zfsvfs);
3577 return (err);
3578 }
3579
3580 va = kmap(pp);
3581 ASSERT3U(pglen, <=, PAGE_SIZE);
3582 dmu_write(zfsvfs->z_os, zp->z_id, pgoff, pglen, va, tx);
3583 kunmap(pp);
3584
3585 SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
3586 SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
3587 SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_FLAGS(zfsvfs), NULL,
3588 &zp->z_pflags, 8);
3589
3590 /* Preserve the mtime and ctime provided by the inode */
3591 ZFS_TIME_ENCODE(&ip->i_mtime, mtime);
3592 ZFS_TIME_ENCODE(&ip->i_ctime, ctime);
3593 zp->z_atime_dirty = B_FALSE;
3594 zp->z_seq++;
3595
3596 err = sa_bulk_update(zp->z_sa_hdl, bulk, cnt, tx);
3597
3598 zfs_log_write(zfsvfs->z_log, tx, TX_WRITE, zp, pgoff, pglen, 0,
3599 zfs_putpage_commit_cb, pp);
3600 dmu_tx_commit(tx);
3601
3602 zfs_rangelock_exit(lr);
3603
3604 if (wbc->sync_mode != WB_SYNC_NONE) {
3605 /*
3606 * Note that this is rarely called under writepages(), because
3607 * writepages() normally handles the entire commit for
3608 * performance reasons.
3609 */
3610 zil_commit(zfsvfs->z_log, zp->z_id);
3611 }
3612
3613 ZFS_EXIT(zfsvfs);
3614 return (err);
3615 }
3616
3617 /*
3618 * Update the system attributes when the inode has been dirtied. For the
3619 * moment we only update the mode, atime, mtime, and ctime.
3620 */
3621 int
3622 zfs_dirty_inode(struct inode *ip, int flags)
3623 {
3624 znode_t *zp = ITOZ(ip);
3625 zfsvfs_t *zfsvfs = ITOZSB(ip);
3626 dmu_tx_t *tx;
3627 uint64_t mode, atime[2], mtime[2], ctime[2];
3628 sa_bulk_attr_t bulk[4];
3629 int error = 0;
3630 int cnt = 0;
3631
3632 if (zfs_is_readonly(zfsvfs) || dmu_objset_is_snapshot(zfsvfs->z_os))
3633 return (0);
3634
3635 ZFS_ENTER(zfsvfs);
3636 ZFS_VERIFY_ZP(zp);
3637
3638 #ifdef I_DIRTY_TIME
3639 /*
3640 * This is the lazytime semantic introduced in Linux 4.0
3641 * This flag will only be called from update_time when lazytime is set.
3642 * (Note, I_DIRTY_SYNC will also set if not lazytime)
3643 * Fortunately mtime and ctime are managed within ZFS itself, so we
3644 * only need to dirty atime.
3645 */
3646 if (flags == I_DIRTY_TIME) {
3647 zp->z_atime_dirty = B_TRUE;
3648 goto out;
3649 }
3650 #endif
3651
3652 tx = dmu_tx_create(zfsvfs->z_os);
3653
3654 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
3655 zfs_sa_upgrade_txholds(tx, zp);
3656
3657 error = dmu_tx_assign(tx, TXG_WAIT);
3658 if (error) {
3659 dmu_tx_abort(tx);
3660 goto out;
3661 }
3662
3663 mutex_enter(&zp->z_lock);
3664 zp->z_atime_dirty = B_FALSE;
3665
3666 SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_MODE(zfsvfs), NULL, &mode, 8);
3667 SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_ATIME(zfsvfs), NULL, &atime, 16);
3668 SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
3669 SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
3670
3671 /* Preserve the mode, mtime and ctime provided by the inode */
3672 ZFS_TIME_ENCODE(&ip->i_atime, atime);
3673 ZFS_TIME_ENCODE(&ip->i_mtime, mtime);
3674 ZFS_TIME_ENCODE(&ip->i_ctime, ctime);
3675 mode = ip->i_mode;
3676
3677 zp->z_mode = mode;
3678
3679 error = sa_bulk_update(zp->z_sa_hdl, bulk, cnt, tx);
3680 mutex_exit(&zp->z_lock);
3681
3682 dmu_tx_commit(tx);
3683 out:
3684 ZFS_EXIT(zfsvfs);
3685 return (error);
3686 }
3687
3688 /*ARGSUSED*/
3689 void
3690 zfs_inactive(struct inode *ip)
3691 {
3692 znode_t *zp = ITOZ(ip);
3693 zfsvfs_t *zfsvfs = ITOZSB(ip);
3694 uint64_t atime[2];
3695 int error;
3696 int need_unlock = 0;
3697
3698 /* Only read lock if we haven't already write locked, e.g. rollback */
3699 if (!RW_WRITE_HELD(&zfsvfs->z_teardown_inactive_lock)) {
3700 need_unlock = 1;
3701 rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_READER);
3702 }
3703 if (zp->z_sa_hdl == NULL) {
3704 if (need_unlock)
3705 rw_exit(&zfsvfs->z_teardown_inactive_lock);
3706 return;
3707 }
3708
3709 if (zp->z_atime_dirty && zp->z_unlinked == B_FALSE) {
3710 dmu_tx_t *tx = dmu_tx_create(zfsvfs->z_os);
3711
3712 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
3713 zfs_sa_upgrade_txholds(tx, zp);
3714 error = dmu_tx_assign(tx, TXG_WAIT);
3715 if (error) {
3716 dmu_tx_abort(tx);
3717 } else {
3718 ZFS_TIME_ENCODE(&ip->i_atime, atime);
3719 mutex_enter(&zp->z_lock);
3720 (void) sa_update(zp->z_sa_hdl, SA_ZPL_ATIME(zfsvfs),
3721 (void *)&atime, sizeof (atime), tx);
3722 zp->z_atime_dirty = B_FALSE;
3723 mutex_exit(&zp->z_lock);
3724 dmu_tx_commit(tx);
3725 }
3726 }
3727
3728 zfs_zinactive(zp);
3729 if (need_unlock)
3730 rw_exit(&zfsvfs->z_teardown_inactive_lock);
3731 }
3732
3733 /*
3734 * Fill pages with data from the disk.
3735 */
3736 static int
3737 zfs_fillpage(struct inode *ip, struct page *pl[], int nr_pages)
3738 {
3739 znode_t *zp = ITOZ(ip);
3740 zfsvfs_t *zfsvfs = ITOZSB(ip);
3741 objset_t *os;
3742 struct page *cur_pp;
3743 u_offset_t io_off, total;
3744 size_t io_len;
3745 loff_t i_size;
3746 unsigned page_idx;
3747 int err;
3748
3749 os = zfsvfs->z_os;
3750 io_len = nr_pages << PAGE_SHIFT;
3751 i_size = i_size_read(ip);
3752 io_off = page_offset(pl[0]);
3753
3754 if (io_off + io_len > i_size)
3755 io_len = i_size - io_off;
3756
3757 /*
3758 * Iterate over list of pages and read each page individually.
3759 */
3760 page_idx = 0;
3761 for (total = io_off + io_len; io_off < total; io_off += PAGESIZE) {
3762 caddr_t va;
3763
3764 cur_pp = pl[page_idx++];
3765 va = kmap(cur_pp);
3766 err = dmu_read(os, zp->z_id, io_off, PAGESIZE, va,
3767 DMU_READ_PREFETCH);
3768 kunmap(cur_pp);
3769 if (err) {
3770 /* convert checksum errors into IO errors */
3771 if (err == ECKSUM)
3772 err = SET_ERROR(EIO);
3773 return (err);
3774 }
3775 }
3776
3777 return (0);
3778 }
3779
3780 /*
3781 * Uses zfs_fillpage to read data from the file and fill the pages.
3782 *
3783 * IN: ip - inode of file to get data from.
3784 * pl - list of pages to read
3785 * nr_pages - number of pages to read
3786 *
3787 * RETURN: 0 on success, error code on failure.
3788 *
3789 * Timestamps:
3790 * vp - atime updated
3791 */
3792 /* ARGSUSED */
3793 int
3794 zfs_getpage(struct inode *ip, struct page *pl[], int nr_pages)
3795 {
3796 znode_t *zp = ITOZ(ip);
3797 zfsvfs_t *zfsvfs = ITOZSB(ip);
3798 int err;
3799
3800 if (pl == NULL)
3801 return (0);
3802
3803 ZFS_ENTER(zfsvfs);
3804 ZFS_VERIFY_ZP(zp);
3805
3806 err = zfs_fillpage(ip, pl, nr_pages);
3807
3808 ZFS_EXIT(zfsvfs);
3809 return (err);
3810 }
3811
3812 /*
3813 * Check ZFS specific permissions to memory map a section of a file.
3814 *
3815 * IN: ip - inode of the file to mmap
3816 * off - file offset
3817 * addrp - start address in memory region
3818 * len - length of memory region
3819 * vm_flags- address flags
3820 *
3821 * RETURN: 0 if success
3822 * error code if failure
3823 */
3824 /*ARGSUSED*/
3825 int
3826 zfs_map(struct inode *ip, offset_t off, caddr_t *addrp, size_t len,
3827 unsigned long vm_flags)
3828 {
3829 znode_t *zp = ITOZ(ip);
3830 zfsvfs_t *zfsvfs = ITOZSB(ip);
3831
3832 ZFS_ENTER(zfsvfs);
3833 ZFS_VERIFY_ZP(zp);
3834
3835 if ((vm_flags & VM_WRITE) && (zp->z_pflags &
3836 (ZFS_IMMUTABLE | ZFS_READONLY | ZFS_APPENDONLY))) {
3837 ZFS_EXIT(zfsvfs);
3838 return (SET_ERROR(EPERM));
3839 }
3840
3841 if ((vm_flags & (VM_READ | VM_EXEC)) &&
3842 (zp->z_pflags & ZFS_AV_QUARANTINED)) {
3843 ZFS_EXIT(zfsvfs);
3844 return (SET_ERROR(EACCES));
3845 }
3846
3847 if (off < 0 || len > MAXOFFSET_T - off) {
3848 ZFS_EXIT(zfsvfs);
3849 return (SET_ERROR(ENXIO));
3850 }
3851
3852 ZFS_EXIT(zfsvfs);
3853 return (0);
3854 }
3855
3856 /*
3857 * Free or allocate space in a file. Currently, this function only
3858 * supports the `F_FREESP' command. However, this command is somewhat
3859 * misnamed, as its functionality includes the ability to allocate as
3860 * well as free space.
3861 *
3862 * IN: zp - znode of file to free data in.
3863 * cmd - action to take (only F_FREESP supported).
3864 * bfp - section of file to free/alloc.
3865 * flag - current file open mode flags.
3866 * offset - current file offset.
3867 * cr - credentials of caller.
3868 *
3869 * RETURN: 0 on success, error code on failure.
3870 *
3871 * Timestamps:
3872 * zp - ctime|mtime updated
3873 */
3874 /* ARGSUSED */
3875 int
3876 zfs_space(znode_t *zp, int cmd, flock64_t *bfp, int flag,
3877 offset_t offset, cred_t *cr)
3878 {
3879 zfsvfs_t *zfsvfs = ZTOZSB(zp);
3880 uint64_t off, len;
3881 int error;
3882
3883 ZFS_ENTER(zfsvfs);
3884 ZFS_VERIFY_ZP(zp);
3885
3886 if (cmd != F_FREESP) {
3887 ZFS_EXIT(zfsvfs);
3888 return (SET_ERROR(EINVAL));
3889 }
3890
3891 /*
3892 * Callers might not be able to detect properly that we are read-only,
3893 * so check it explicitly here.
3894 */
3895 if (zfs_is_readonly(zfsvfs)) {
3896 ZFS_EXIT(zfsvfs);
3897 return (SET_ERROR(EROFS));
3898 }
3899
3900 if (bfp->l_len < 0) {
3901 ZFS_EXIT(zfsvfs);
3902 return (SET_ERROR(EINVAL));
3903 }
3904
3905 /*
3906 * Permissions aren't checked on Solaris because on this OS
3907 * zfs_space() can only be called with an opened file handle.
3908 * On Linux we can get here through truncate_range() which
3909 * operates directly on inodes, so we need to check access rights.
3910 */
3911 if ((error = zfs_zaccess(zp, ACE_WRITE_DATA, 0, B_FALSE, cr))) {
3912 ZFS_EXIT(zfsvfs);
3913 return (error);
3914 }
3915
3916 off = bfp->l_start;
3917 len = bfp->l_len; /* 0 means from off to end of file */
3918
3919 error = zfs_freesp(zp, off, len, flag, TRUE);
3920
3921 ZFS_EXIT(zfsvfs);
3922 return (error);
3923 }
3924
3925 /*ARGSUSED*/
3926 int
3927 zfs_fid(struct inode *ip, fid_t *fidp)
3928 {
3929 znode_t *zp = ITOZ(ip);
3930 zfsvfs_t *zfsvfs = ITOZSB(ip);
3931 uint32_t gen;
3932 uint64_t gen64;
3933 uint64_t object = zp->z_id;
3934 zfid_short_t *zfid;
3935 int size, i, error;
3936
3937 ZFS_ENTER(zfsvfs);
3938
3939 if (fidp->fid_len < SHORT_FID_LEN) {
3940 fidp->fid_len = SHORT_FID_LEN;
3941 ZFS_EXIT(zfsvfs);
3942 return (SET_ERROR(ENOSPC));
3943 }
3944
3945 ZFS_VERIFY_ZP(zp);
3946
3947 if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs),
3948 &gen64, sizeof (uint64_t))) != 0) {
3949 ZFS_EXIT(zfsvfs);
3950 return (error);
3951 }
3952
3953 gen = (uint32_t)gen64;
3954
3955 size = SHORT_FID_LEN;
3956
3957 zfid = (zfid_short_t *)fidp;
3958
3959 zfid->zf_len = size;
3960
3961 for (i = 0; i < sizeof (zfid->zf_object); i++)
3962 zfid->zf_object[i] = (uint8_t)(object >> (8 * i));
3963
3964 /* Must have a non-zero generation number to distinguish from .zfs */
3965 if (gen == 0)
3966 gen = 1;
3967 for (i = 0; i < sizeof (zfid->zf_gen); i++)
3968 zfid->zf_gen[i] = (uint8_t)(gen >> (8 * i));
3969
3970 ZFS_EXIT(zfsvfs);
3971 return (0);
3972 }
3973
3974 #if defined(_KERNEL)
3975 EXPORT_SYMBOL(zfs_open);
3976 EXPORT_SYMBOL(zfs_close);
3977 EXPORT_SYMBOL(zfs_lookup);
3978 EXPORT_SYMBOL(zfs_create);
3979 EXPORT_SYMBOL(zfs_tmpfile);
3980 EXPORT_SYMBOL(zfs_remove);
3981 EXPORT_SYMBOL(zfs_mkdir);
3982 EXPORT_SYMBOL(zfs_rmdir);
3983 EXPORT_SYMBOL(zfs_readdir);
3984 EXPORT_SYMBOL(zfs_getattr_fast);
3985 EXPORT_SYMBOL(zfs_setattr);
3986 EXPORT_SYMBOL(zfs_rename);
3987 EXPORT_SYMBOL(zfs_symlink);
3988 EXPORT_SYMBOL(zfs_readlink);
3989 EXPORT_SYMBOL(zfs_link);
3990 EXPORT_SYMBOL(zfs_inactive);
3991 EXPORT_SYMBOL(zfs_space);
3992 EXPORT_SYMBOL(zfs_fid);
3993 EXPORT_SYMBOL(zfs_getpage);
3994 EXPORT_SYMBOL(zfs_putpage);
3995 EXPORT_SYMBOL(zfs_dirty_inode);
3996 EXPORT_SYMBOL(zfs_map);
3997
3998 /* CSTYLED */
3999 module_param(zfs_delete_blocks, ulong, 0644);
4000 MODULE_PARM_DESC(zfs_delete_blocks, "Delete files larger than N blocks async");
4001
4002 #endif