]> git.proxmox.com Git - mirror_zfs.git/blob - module/os/linux/zfs/zpl_file.c
92b603e98a23540780bdf0439a513a9fc6570f7d
[mirror_zfs.git] / module / os / linux / zfs / zpl_file.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2011, Lawrence Livermore National Security, LLC.
23 * Copyright (c) 2015 by Chunwei Chen. All rights reserved.
24 */
25
26
27 #ifdef CONFIG_COMPAT
28 #include <linux/compat.h>
29 #endif
30 #include <linux/fs.h>
31 #include <sys/file.h>
32 #include <sys/dmu_objset.h>
33 #include <sys/zfs_znode.h>
34 #include <sys/zfs_vfsops.h>
35 #include <sys/zfs_vnops.h>
36 #include <sys/zfs_project.h>
37 #if defined(HAVE_VFS_SET_PAGE_DIRTY_NOBUFFERS) || \
38 defined(HAVE_VFS_FILEMAP_DIRTY_FOLIO)
39 #include <linux/pagemap.h>
40 #endif
41 #ifdef HAVE_FILE_FADVISE
42 #include <linux/fadvise.h>
43 #endif
44 #ifdef HAVE_VFS_FILEMAP_DIRTY_FOLIO
45 #include <linux/writeback.h>
46 #endif
47
48 /*
49 * When using fallocate(2) to preallocate space, inflate the requested
50 * capacity check by 10% to account for the required metadata blocks.
51 */
52 static unsigned int zfs_fallocate_reserve_percent = 110;
53
54 static int
55 zpl_open(struct inode *ip, struct file *filp)
56 {
57 cred_t *cr = CRED();
58 int error;
59 fstrans_cookie_t cookie;
60
61 error = generic_file_open(ip, filp);
62 if (error)
63 return (error);
64
65 crhold(cr);
66 cookie = spl_fstrans_mark();
67 error = -zfs_open(ip, filp->f_mode, filp->f_flags, cr);
68 spl_fstrans_unmark(cookie);
69 crfree(cr);
70 ASSERT3S(error, <=, 0);
71
72 return (error);
73 }
74
75 static int
76 zpl_release(struct inode *ip, struct file *filp)
77 {
78 cred_t *cr = CRED();
79 int error;
80 fstrans_cookie_t cookie;
81
82 cookie = spl_fstrans_mark();
83 if (ITOZ(ip)->z_atime_dirty)
84 zfs_mark_inode_dirty(ip);
85
86 crhold(cr);
87 error = -zfs_close(ip, filp->f_flags, cr);
88 spl_fstrans_unmark(cookie);
89 crfree(cr);
90 ASSERT3S(error, <=, 0);
91
92 return (error);
93 }
94
95 static int
96 zpl_iterate(struct file *filp, zpl_dir_context_t *ctx)
97 {
98 cred_t *cr = CRED();
99 int error;
100 fstrans_cookie_t cookie;
101
102 crhold(cr);
103 cookie = spl_fstrans_mark();
104 error = -zfs_readdir(file_inode(filp), ctx, cr);
105 spl_fstrans_unmark(cookie);
106 crfree(cr);
107 ASSERT3S(error, <=, 0);
108
109 return (error);
110 }
111
112 #if !defined(HAVE_VFS_ITERATE) && !defined(HAVE_VFS_ITERATE_SHARED)
113 static int
114 zpl_readdir(struct file *filp, void *dirent, filldir_t filldir)
115 {
116 zpl_dir_context_t ctx =
117 ZPL_DIR_CONTEXT_INIT(dirent, filldir, filp->f_pos);
118 int error;
119
120 error = zpl_iterate(filp, &ctx);
121 filp->f_pos = ctx.pos;
122
123 return (error);
124 }
125 #endif /* !HAVE_VFS_ITERATE && !HAVE_VFS_ITERATE_SHARED */
126
127 #if defined(HAVE_FSYNC_WITHOUT_DENTRY)
128 /*
129 * Linux 2.6.35 - 3.0 API,
130 * As of 2.6.35 the dentry argument to the fops->fsync() hook was deemed
131 * redundant. The dentry is still accessible via filp->f_path.dentry,
132 * and we are guaranteed that filp will never be NULL.
133 */
134 static int
135 zpl_fsync(struct file *filp, int datasync)
136 {
137 struct inode *inode = filp->f_mapping->host;
138 cred_t *cr = CRED();
139 int error;
140 fstrans_cookie_t cookie;
141
142 crhold(cr);
143 cookie = spl_fstrans_mark();
144 error = -zfs_fsync(ITOZ(inode), datasync, cr);
145 spl_fstrans_unmark(cookie);
146 crfree(cr);
147 ASSERT3S(error, <=, 0);
148
149 return (error);
150 }
151
152 #ifdef HAVE_FILE_AIO_FSYNC
153 static int
154 zpl_aio_fsync(struct kiocb *kiocb, int datasync)
155 {
156 return (zpl_fsync(kiocb->ki_filp, datasync));
157 }
158 #endif
159
160 #elif defined(HAVE_FSYNC_RANGE)
161 /*
162 * Linux 3.1 API,
163 * As of 3.1 the responsibility to call filemap_write_and_wait_range() has
164 * been pushed down in to the .fsync() vfs hook. Additionally, the i_mutex
165 * lock is no longer held by the caller, for zfs we don't require the lock
166 * to be held so we don't acquire it.
167 */
168 static int
169 zpl_fsync(struct file *filp, loff_t start, loff_t end, int datasync)
170 {
171 struct inode *inode = filp->f_mapping->host;
172 znode_t *zp = ITOZ(inode);
173 zfsvfs_t *zfsvfs = ITOZSB(inode);
174 cred_t *cr = CRED();
175 int error;
176 fstrans_cookie_t cookie;
177
178 /*
179 * The variables z_sync_writes_cnt and z_async_writes_cnt work in
180 * tandem so that sync writes can detect if there are any non-sync
181 * writes going on and vice-versa. The "vice-versa" part to this logic
182 * is located in zfs_putpage() where non-sync writes check if there are
183 * any ongoing sync writes. If any sync and non-sync writes overlap,
184 * we do a commit to complete the non-sync writes since the latter can
185 * potentially take several seconds to complete and thus block sync
186 * writes in the upcoming call to filemap_write_and_wait_range().
187 */
188 atomic_inc_32(&zp->z_sync_writes_cnt);
189 /*
190 * If the following check does not detect an overlapping non-sync write
191 * (say because it's just about to start), then it is guaranteed that
192 * the non-sync write will detect this sync write. This is because we
193 * always increment z_sync_writes_cnt / z_async_writes_cnt before doing
194 * the check on z_async_writes_cnt / z_sync_writes_cnt here and in
195 * zfs_putpage() respectively.
196 */
197 if (atomic_load_32(&zp->z_async_writes_cnt) > 0) {
198 if ((error = zpl_enter(zfsvfs, FTAG)) != 0) {
199 atomic_dec_32(&zp->z_sync_writes_cnt);
200 return (error);
201 }
202 zil_commit(zfsvfs->z_log, zp->z_id);
203 zpl_exit(zfsvfs, FTAG);
204 }
205
206 error = filemap_write_and_wait_range(inode->i_mapping, start, end);
207
208 /*
209 * The sync write is not complete yet but we decrement
210 * z_sync_writes_cnt since zfs_fsync() increments and decrements
211 * it internally. If a non-sync write starts just after the decrement
212 * operation but before we call zfs_fsync(), it may not detect this
213 * overlapping sync write but it does not matter since we have already
214 * gone past filemap_write_and_wait_range() and we won't block due to
215 * the non-sync write.
216 */
217 atomic_dec_32(&zp->z_sync_writes_cnt);
218
219 if (error)
220 return (error);
221
222 crhold(cr);
223 cookie = spl_fstrans_mark();
224 error = -zfs_fsync(zp, datasync, cr);
225 spl_fstrans_unmark(cookie);
226 crfree(cr);
227 ASSERT3S(error, <=, 0);
228
229 return (error);
230 }
231
232 #ifdef HAVE_FILE_AIO_FSYNC
233 static int
234 zpl_aio_fsync(struct kiocb *kiocb, int datasync)
235 {
236 return (zpl_fsync(kiocb->ki_filp, kiocb->ki_pos, -1, datasync));
237 }
238 #endif
239
240 #else
241 #error "Unsupported fops->fsync() implementation"
242 #endif
243
244 static inline int
245 zfs_io_flags(struct kiocb *kiocb)
246 {
247 int flags = 0;
248
249 #if defined(IOCB_DSYNC)
250 if (kiocb->ki_flags & IOCB_DSYNC)
251 flags |= O_DSYNC;
252 #endif
253 #if defined(IOCB_SYNC)
254 if (kiocb->ki_flags & IOCB_SYNC)
255 flags |= O_SYNC;
256 #endif
257 #if defined(IOCB_APPEND)
258 if (kiocb->ki_flags & IOCB_APPEND)
259 flags |= O_APPEND;
260 #endif
261 #if defined(IOCB_DIRECT)
262 if (kiocb->ki_flags & IOCB_DIRECT)
263 flags |= O_DIRECT;
264 #endif
265 return (flags);
266 }
267
268 /*
269 * If relatime is enabled, call file_accessed() if zfs_relatime_need_update()
270 * is true. This is needed since datasets with inherited "relatime" property
271 * aren't necessarily mounted with the MNT_RELATIME flag (e.g. after
272 * `zfs set relatime=...`), which is what relatime test in VFS by
273 * relatime_need_update() is based on.
274 */
275 static inline void
276 zpl_file_accessed(struct file *filp)
277 {
278 struct inode *ip = filp->f_mapping->host;
279
280 if (!IS_NOATIME(ip) && ITOZSB(ip)->z_relatime) {
281 if (zfs_relatime_need_update(ip))
282 file_accessed(filp);
283 } else {
284 file_accessed(filp);
285 }
286 }
287
288 #if defined(HAVE_VFS_RW_ITERATE)
289
290 /*
291 * When HAVE_VFS_IOV_ITER is defined the iov_iter structure supports
292 * iovecs, kvevs, bvecs and pipes, plus all the required interfaces to
293 * manipulate the iov_iter are available. In which case the full iov_iter
294 * can be attached to the uio and correctly handled in the lower layers.
295 * Otherwise, for older kernels extract the iovec and pass it instead.
296 */
297 static void
298 zpl_uio_init(zfs_uio_t *uio, struct kiocb *kiocb, struct iov_iter *to,
299 loff_t pos, ssize_t count, size_t skip)
300 {
301 #if defined(HAVE_VFS_IOV_ITER)
302 zfs_uio_iov_iter_init(uio, to, pos, count, skip);
303 #else
304 #ifdef HAVE_IOV_ITER_TYPE
305 zfs_uio_iovec_init(uio, to->iov, to->nr_segs, pos,
306 iov_iter_type(to) & ITER_KVEC ? UIO_SYSSPACE : UIO_USERSPACE,
307 count, skip);
308 #else
309 zfs_uio_iovec_init(uio, to->iov, to->nr_segs, pos,
310 to->type & ITER_KVEC ? UIO_SYSSPACE : UIO_USERSPACE,
311 count, skip);
312 #endif
313 #endif
314 }
315
316 static ssize_t
317 zpl_iter_read(struct kiocb *kiocb, struct iov_iter *to)
318 {
319 cred_t *cr = CRED();
320 fstrans_cookie_t cookie;
321 struct file *filp = kiocb->ki_filp;
322 ssize_t count = iov_iter_count(to);
323 zfs_uio_t uio;
324
325 zpl_uio_init(&uio, kiocb, to, kiocb->ki_pos, count, 0);
326
327 crhold(cr);
328 cookie = spl_fstrans_mark();
329
330 int error = -zfs_read(ITOZ(filp->f_mapping->host), &uio,
331 filp->f_flags | zfs_io_flags(kiocb), cr);
332
333 spl_fstrans_unmark(cookie);
334 crfree(cr);
335
336 if (error < 0)
337 return (error);
338
339 ssize_t read = count - uio.uio_resid;
340 kiocb->ki_pos += read;
341
342 zpl_file_accessed(filp);
343
344 return (read);
345 }
346
347 static inline ssize_t
348 zpl_generic_write_checks(struct kiocb *kiocb, struct iov_iter *from,
349 size_t *countp)
350 {
351 #ifdef HAVE_GENERIC_WRITE_CHECKS_KIOCB
352 ssize_t ret = generic_write_checks(kiocb, from);
353 if (ret <= 0)
354 return (ret);
355
356 *countp = ret;
357 #else
358 struct file *file = kiocb->ki_filp;
359 struct address_space *mapping = file->f_mapping;
360 struct inode *ip = mapping->host;
361 int isblk = S_ISBLK(ip->i_mode);
362
363 *countp = iov_iter_count(from);
364 ssize_t ret = generic_write_checks(file, &kiocb->ki_pos, countp, isblk);
365 if (ret)
366 return (ret);
367 #endif
368
369 return (0);
370 }
371
372 static ssize_t
373 zpl_iter_write(struct kiocb *kiocb, struct iov_iter *from)
374 {
375 cred_t *cr = CRED();
376 fstrans_cookie_t cookie;
377 struct file *filp = kiocb->ki_filp;
378 struct inode *ip = filp->f_mapping->host;
379 zfs_uio_t uio;
380 size_t count = 0;
381 ssize_t ret;
382
383 ret = zpl_generic_write_checks(kiocb, from, &count);
384 if (ret)
385 return (ret);
386
387 zpl_uio_init(&uio, kiocb, from, kiocb->ki_pos, count, from->iov_offset);
388
389 crhold(cr);
390 cookie = spl_fstrans_mark();
391
392 int error = -zfs_write(ITOZ(ip), &uio,
393 filp->f_flags | zfs_io_flags(kiocb), cr);
394
395 spl_fstrans_unmark(cookie);
396 crfree(cr);
397
398 if (error < 0)
399 return (error);
400
401 ssize_t wrote = count - uio.uio_resid;
402 kiocb->ki_pos += wrote;
403
404 return (wrote);
405 }
406
407 #else /* !HAVE_VFS_RW_ITERATE */
408
409 static ssize_t
410 zpl_aio_read(struct kiocb *kiocb, const struct iovec *iov,
411 unsigned long nr_segs, loff_t pos)
412 {
413 cred_t *cr = CRED();
414 fstrans_cookie_t cookie;
415 struct file *filp = kiocb->ki_filp;
416 size_t count;
417 ssize_t ret;
418
419 ret = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
420 if (ret)
421 return (ret);
422
423 zfs_uio_t uio;
424 zfs_uio_iovec_init(&uio, iov, nr_segs, kiocb->ki_pos, UIO_USERSPACE,
425 count, 0);
426
427 crhold(cr);
428 cookie = spl_fstrans_mark();
429
430 int error = -zfs_read(ITOZ(filp->f_mapping->host), &uio,
431 filp->f_flags | zfs_io_flags(kiocb), cr);
432
433 spl_fstrans_unmark(cookie);
434 crfree(cr);
435
436 if (error < 0)
437 return (error);
438
439 ssize_t read = count - uio.uio_resid;
440 kiocb->ki_pos += read;
441
442 zpl_file_accessed(filp);
443
444 return (read);
445 }
446
447 static ssize_t
448 zpl_aio_write(struct kiocb *kiocb, const struct iovec *iov,
449 unsigned long nr_segs, loff_t pos)
450 {
451 cred_t *cr = CRED();
452 fstrans_cookie_t cookie;
453 struct file *filp = kiocb->ki_filp;
454 struct inode *ip = filp->f_mapping->host;
455 size_t count;
456 ssize_t ret;
457
458 ret = generic_segment_checks(iov, &nr_segs, &count, VERIFY_READ);
459 if (ret)
460 return (ret);
461
462 ret = generic_write_checks(filp, &pos, &count, S_ISBLK(ip->i_mode));
463 if (ret)
464 return (ret);
465
466 kiocb->ki_pos = pos;
467
468 zfs_uio_t uio;
469 zfs_uio_iovec_init(&uio, iov, nr_segs, kiocb->ki_pos, UIO_USERSPACE,
470 count, 0);
471
472 crhold(cr);
473 cookie = spl_fstrans_mark();
474
475 int error = -zfs_write(ITOZ(ip), &uio,
476 filp->f_flags | zfs_io_flags(kiocb), cr);
477
478 spl_fstrans_unmark(cookie);
479 crfree(cr);
480
481 if (error < 0)
482 return (error);
483
484 ssize_t wrote = count - uio.uio_resid;
485 kiocb->ki_pos += wrote;
486
487 return (wrote);
488 }
489 #endif /* HAVE_VFS_RW_ITERATE */
490
491 #if defined(HAVE_VFS_RW_ITERATE)
492 static ssize_t
493 zpl_direct_IO_impl(int rw, struct kiocb *kiocb, struct iov_iter *iter)
494 {
495 if (rw == WRITE)
496 return (zpl_iter_write(kiocb, iter));
497 else
498 return (zpl_iter_read(kiocb, iter));
499 }
500 #if defined(HAVE_VFS_DIRECT_IO_ITER)
501 static ssize_t
502 zpl_direct_IO(struct kiocb *kiocb, struct iov_iter *iter)
503 {
504 return (zpl_direct_IO_impl(iov_iter_rw(iter), kiocb, iter));
505 }
506 #elif defined(HAVE_VFS_DIRECT_IO_ITER_OFFSET)
507 static ssize_t
508 zpl_direct_IO(struct kiocb *kiocb, struct iov_iter *iter, loff_t pos)
509 {
510 ASSERT3S(pos, ==, kiocb->ki_pos);
511 return (zpl_direct_IO_impl(iov_iter_rw(iter), kiocb, iter));
512 }
513 #elif defined(HAVE_VFS_DIRECT_IO_ITER_RW_OFFSET)
514 static ssize_t
515 zpl_direct_IO(int rw, struct kiocb *kiocb, struct iov_iter *iter, loff_t pos)
516 {
517 ASSERT3S(pos, ==, kiocb->ki_pos);
518 return (zpl_direct_IO_impl(rw, kiocb, iter));
519 }
520 #else
521 #error "Unknown direct IO interface"
522 #endif
523
524 #else /* HAVE_VFS_RW_ITERATE */
525
526 #if defined(HAVE_VFS_DIRECT_IO_IOVEC)
527 static ssize_t
528 zpl_direct_IO(int rw, struct kiocb *kiocb, const struct iovec *iov,
529 loff_t pos, unsigned long nr_segs)
530 {
531 if (rw == WRITE)
532 return (zpl_aio_write(kiocb, iov, nr_segs, pos));
533 else
534 return (zpl_aio_read(kiocb, iov, nr_segs, pos));
535 }
536 #elif defined(HAVE_VFS_DIRECT_IO_ITER_RW_OFFSET)
537 static ssize_t
538 zpl_direct_IO(int rw, struct kiocb *kiocb, struct iov_iter *iter, loff_t pos)
539 {
540 const struct iovec *iovp = iov_iter_iovec(iter);
541 unsigned long nr_segs = iter->nr_segs;
542
543 ASSERT3S(pos, ==, kiocb->ki_pos);
544 if (rw == WRITE)
545 return (zpl_aio_write(kiocb, iovp, nr_segs, pos));
546 else
547 return (zpl_aio_read(kiocb, iovp, nr_segs, pos));
548 }
549 #else
550 #error "Unknown direct IO interface"
551 #endif
552
553 #endif /* HAVE_VFS_RW_ITERATE */
554
555 static loff_t
556 zpl_llseek(struct file *filp, loff_t offset, int whence)
557 {
558 #if defined(SEEK_HOLE) && defined(SEEK_DATA)
559 fstrans_cookie_t cookie;
560
561 if (whence == SEEK_DATA || whence == SEEK_HOLE) {
562 struct inode *ip = filp->f_mapping->host;
563 loff_t maxbytes = ip->i_sb->s_maxbytes;
564 loff_t error;
565
566 spl_inode_lock_shared(ip);
567 cookie = spl_fstrans_mark();
568 error = -zfs_holey(ITOZ(ip), whence, &offset);
569 spl_fstrans_unmark(cookie);
570 if (error == 0)
571 error = lseek_execute(filp, ip, offset, maxbytes);
572 spl_inode_unlock_shared(ip);
573
574 return (error);
575 }
576 #endif /* SEEK_HOLE && SEEK_DATA */
577
578 return (generic_file_llseek(filp, offset, whence));
579 }
580
581 /*
582 * It's worth taking a moment to describe how mmap is implemented
583 * for zfs because it differs considerably from other Linux filesystems.
584 * However, this issue is handled the same way under OpenSolaris.
585 *
586 * The issue is that by design zfs bypasses the Linux page cache and
587 * leaves all caching up to the ARC. This has been shown to work
588 * well for the common read(2)/write(2) case. However, mmap(2)
589 * is problem because it relies on being tightly integrated with the
590 * page cache. To handle this we cache mmap'ed files twice, once in
591 * the ARC and a second time in the page cache. The code is careful
592 * to keep both copies synchronized.
593 *
594 * When a file with an mmap'ed region is written to using write(2)
595 * both the data in the ARC and existing pages in the page cache
596 * are updated. For a read(2) data will be read first from the page
597 * cache then the ARC if needed. Neither a write(2) or read(2) will
598 * will ever result in new pages being added to the page cache.
599 *
600 * New pages are added to the page cache only via .readpage() which
601 * is called when the vfs needs to read a page off disk to back the
602 * virtual memory region. These pages may be modified without
603 * notifying the ARC and will be written out periodically via
604 * .writepage(). This will occur due to either a sync or the usual
605 * page aging behavior. Note because a read(2) of a mmap'ed file
606 * will always check the page cache first even when the ARC is out
607 * of date correct data will still be returned.
608 *
609 * While this implementation ensures correct behavior it does have
610 * have some drawbacks. The most obvious of which is that it
611 * increases the required memory footprint when access mmap'ed
612 * files. It also adds additional complexity to the code keeping
613 * both caches synchronized.
614 *
615 * Longer term it may be possible to cleanly resolve this wart by
616 * mapping page cache pages directly on to the ARC buffers. The
617 * Linux address space operations are flexible enough to allow
618 * selection of which pages back a particular index. The trick
619 * would be working out the details of which subsystem is in
620 * charge, the ARC, the page cache, or both. It may also prove
621 * helpful to move the ARC buffers to a scatter-gather lists
622 * rather than a vmalloc'ed region.
623 */
624 static int
625 zpl_mmap(struct file *filp, struct vm_area_struct *vma)
626 {
627 struct inode *ip = filp->f_mapping->host;
628 int error;
629 fstrans_cookie_t cookie;
630
631 cookie = spl_fstrans_mark();
632 error = -zfs_map(ip, vma->vm_pgoff, (caddr_t *)vma->vm_start,
633 (size_t)(vma->vm_end - vma->vm_start), vma->vm_flags);
634 spl_fstrans_unmark(cookie);
635 if (error)
636 return (error);
637
638 error = generic_file_mmap(filp, vma);
639 if (error)
640 return (error);
641
642 #if !defined(HAVE_FILEMAP_RANGE_HAS_PAGE)
643 znode_t *zp = ITOZ(ip);
644 mutex_enter(&zp->z_lock);
645 zp->z_is_mapped = B_TRUE;
646 mutex_exit(&zp->z_lock);
647 #endif
648
649 return (error);
650 }
651
652 /*
653 * Populate a page with data for the Linux page cache. This function is
654 * only used to support mmap(2). There will be an identical copy of the
655 * data in the ARC which is kept up to date via .write() and .writepage().
656 */
657 static inline int
658 zpl_readpage_common(struct page *pp)
659 {
660 fstrans_cookie_t cookie;
661
662 ASSERT(PageLocked(pp));
663
664 cookie = spl_fstrans_mark();
665 int error = -zfs_getpage(pp->mapping->host, pp);
666 spl_fstrans_unmark(cookie);
667
668 unlock_page(pp);
669
670 return (error);
671 }
672
673 #ifdef HAVE_VFS_READ_FOLIO
674 static int
675 zpl_read_folio(struct file *filp, struct folio *folio)
676 {
677 return (zpl_readpage_common(&folio->page));
678 }
679 #else
680 static int
681 zpl_readpage(struct file *filp, struct page *pp)
682 {
683 return (zpl_readpage_common(pp));
684 }
685 #endif
686
687 static int
688 zpl_readpage_filler(void *data, struct page *pp)
689 {
690 return (zpl_readpage_common(pp));
691 }
692
693 /*
694 * Populate a set of pages with data for the Linux page cache. This
695 * function will only be called for read ahead and never for demand
696 * paging. For simplicity, the code relies on read_cache_pages() to
697 * correctly lock each page for IO and call zpl_readpage().
698 */
699 #ifdef HAVE_VFS_READPAGES
700 static int
701 zpl_readpages(struct file *filp, struct address_space *mapping,
702 struct list_head *pages, unsigned nr_pages)
703 {
704 return (read_cache_pages(mapping, pages, zpl_readpage_filler, NULL));
705 }
706 #else
707 static void
708 zpl_readahead(struct readahead_control *ractl)
709 {
710 struct page *page;
711
712 while ((page = readahead_page(ractl)) != NULL) {
713 int ret;
714
715 ret = zpl_readpage_filler(NULL, page);
716 put_page(page);
717 if (ret)
718 break;
719 }
720 }
721 #endif
722
723 static int
724 zpl_putpage(struct page *pp, struct writeback_control *wbc, void *data)
725 {
726 boolean_t *for_sync = data;
727 fstrans_cookie_t cookie;
728
729 ASSERT(PageLocked(pp));
730 ASSERT(!PageWriteback(pp));
731
732 cookie = spl_fstrans_mark();
733 (void) zfs_putpage(pp->mapping->host, pp, wbc, *for_sync);
734 spl_fstrans_unmark(cookie);
735
736 return (0);
737 }
738
739 #ifdef HAVE_WRITEPAGE_T_FOLIO
740 static int
741 zpl_putfolio(struct folio *pp, struct writeback_control *wbc, void *data)
742 {
743 (void) zpl_putpage(&pp->page, wbc, data);
744 return (0);
745 }
746 #endif
747
748 static inline int
749 zpl_write_cache_pages(struct address_space *mapping,
750 struct writeback_control *wbc, void *data)
751 {
752 int result;
753
754 #ifdef HAVE_WRITEPAGE_T_FOLIO
755 result = write_cache_pages(mapping, wbc, zpl_putfolio, data);
756 #else
757 result = write_cache_pages(mapping, wbc, zpl_putpage, data);
758 #endif
759 return (result);
760 }
761
762 static int
763 zpl_writepages(struct address_space *mapping, struct writeback_control *wbc)
764 {
765 znode_t *zp = ITOZ(mapping->host);
766 zfsvfs_t *zfsvfs = ITOZSB(mapping->host);
767 enum writeback_sync_modes sync_mode;
768 int result;
769
770 if ((result = zpl_enter(zfsvfs, FTAG)) != 0)
771 return (result);
772 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
773 wbc->sync_mode = WB_SYNC_ALL;
774 zpl_exit(zfsvfs, FTAG);
775 sync_mode = wbc->sync_mode;
776
777 /*
778 * We don't want to run write_cache_pages() in SYNC mode here, because
779 * that would make putpage() wait for a single page to be committed to
780 * disk every single time, resulting in atrocious performance. Instead
781 * we run it once in non-SYNC mode so that the ZIL gets all the data,
782 * and then we commit it all in one go.
783 */
784 boolean_t for_sync = (sync_mode == WB_SYNC_ALL);
785 wbc->sync_mode = WB_SYNC_NONE;
786 result = zpl_write_cache_pages(mapping, wbc, &for_sync);
787 if (sync_mode != wbc->sync_mode) {
788 if ((result = zpl_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
789 return (result);
790 if (zfsvfs->z_log != NULL)
791 zil_commit(zfsvfs->z_log, zp->z_id);
792 zpl_exit(zfsvfs, FTAG);
793
794 /*
795 * We need to call write_cache_pages() again (we can't just
796 * return after the commit) because the previous call in
797 * non-SYNC mode does not guarantee that we got all the dirty
798 * pages (see the implementation of write_cache_pages() for
799 * details). That being said, this is a no-op in most cases.
800 */
801 wbc->sync_mode = sync_mode;
802 result = zpl_write_cache_pages(mapping, wbc, &for_sync);
803 }
804 return (result);
805 }
806
807 /*
808 * Write out dirty pages to the ARC, this function is only required to
809 * support mmap(2). Mapped pages may be dirtied by memory operations
810 * which never call .write(). These dirty pages are kept in sync with
811 * the ARC buffers via this hook.
812 */
813 static int
814 zpl_writepage(struct page *pp, struct writeback_control *wbc)
815 {
816 if (ITOZSB(pp->mapping->host)->z_os->os_sync == ZFS_SYNC_ALWAYS)
817 wbc->sync_mode = WB_SYNC_ALL;
818
819 boolean_t for_sync = (wbc->sync_mode == WB_SYNC_ALL);
820
821 return (zpl_putpage(pp, wbc, &for_sync));
822 }
823
824 /*
825 * The flag combination which matches the behavior of zfs_space() is
826 * FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE. The FALLOC_FL_PUNCH_HOLE
827 * flag was introduced in the 2.6.38 kernel.
828 *
829 * The original mode=0 (allocate space) behavior can be reasonably emulated
830 * by checking if enough space exists and creating a sparse file, as real
831 * persistent space reservation is not possible due to COW, snapshots, etc.
832 */
833 static long
834 zpl_fallocate_common(struct inode *ip, int mode, loff_t offset, loff_t len)
835 {
836 cred_t *cr = CRED();
837 loff_t olen;
838 fstrans_cookie_t cookie;
839 int error = 0;
840
841 int test_mode = FALLOC_FL_PUNCH_HOLE;
842 #ifdef HAVE_FALLOC_FL_ZERO_RANGE
843 test_mode |= FALLOC_FL_ZERO_RANGE;
844 #endif
845
846 if ((mode & ~(FALLOC_FL_KEEP_SIZE | test_mode)) != 0)
847 return (-EOPNOTSUPP);
848
849 if (offset < 0 || len <= 0)
850 return (-EINVAL);
851
852 spl_inode_lock(ip);
853 olen = i_size_read(ip);
854
855 crhold(cr);
856 cookie = spl_fstrans_mark();
857 if (mode & (test_mode)) {
858 flock64_t bf;
859
860 if (mode & FALLOC_FL_KEEP_SIZE) {
861 if (offset > olen)
862 goto out_unmark;
863
864 if (offset + len > olen)
865 len = olen - offset;
866 }
867 bf.l_type = F_WRLCK;
868 bf.l_whence = SEEK_SET;
869 bf.l_start = offset;
870 bf.l_len = len;
871 bf.l_pid = 0;
872
873 error = -zfs_space(ITOZ(ip), F_FREESP, &bf, O_RDWR, offset, cr);
874 } else if ((mode & ~FALLOC_FL_KEEP_SIZE) == 0) {
875 unsigned int percent = zfs_fallocate_reserve_percent;
876 struct kstatfs statfs;
877
878 /* Legacy mode, disable fallocate compatibility. */
879 if (percent == 0) {
880 error = -EOPNOTSUPP;
881 goto out_unmark;
882 }
883
884 /*
885 * Use zfs_statvfs() instead of dmu_objset_space() since it
886 * also checks project quota limits, which are relevant here.
887 */
888 error = zfs_statvfs(ip, &statfs);
889 if (error)
890 goto out_unmark;
891
892 /*
893 * Shrink available space a bit to account for overhead/races.
894 * We know the product previously fit into availbytes from
895 * dmu_objset_space(), so the smaller product will also fit.
896 */
897 if (len > statfs.f_bavail * (statfs.f_bsize * 100 / percent)) {
898 error = -ENOSPC;
899 goto out_unmark;
900 }
901 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > olen)
902 error = zfs_freesp(ITOZ(ip), offset + len, 0, 0, FALSE);
903 }
904 out_unmark:
905 spl_fstrans_unmark(cookie);
906 spl_inode_unlock(ip);
907
908 crfree(cr);
909
910 return (error);
911 }
912
913 static long
914 zpl_fallocate(struct file *filp, int mode, loff_t offset, loff_t len)
915 {
916 return zpl_fallocate_common(file_inode(filp),
917 mode, offset, len);
918 }
919
920 static int
921 zpl_ioctl_getversion(struct file *filp, void __user *arg)
922 {
923 uint32_t generation = file_inode(filp)->i_generation;
924
925 return (copy_to_user(arg, &generation, sizeof (generation)));
926 }
927
928 #ifdef HAVE_FILE_FADVISE
929 static int
930 zpl_fadvise(struct file *filp, loff_t offset, loff_t len, int advice)
931 {
932 struct inode *ip = file_inode(filp);
933 znode_t *zp = ITOZ(ip);
934 zfsvfs_t *zfsvfs = ITOZSB(ip);
935 objset_t *os = zfsvfs->z_os;
936 int error = 0;
937
938 if (S_ISFIFO(ip->i_mode))
939 return (-ESPIPE);
940
941 if (offset < 0 || len < 0)
942 return (-EINVAL);
943
944 if ((error = zpl_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
945 return (error);
946
947 switch (advice) {
948 case POSIX_FADV_SEQUENTIAL:
949 case POSIX_FADV_WILLNEED:
950 #ifdef HAVE_GENERIC_FADVISE
951 if (zn_has_cached_data(zp, offset, offset + len - 1))
952 error = generic_fadvise(filp, offset, len, advice);
953 #endif
954 /*
955 * Pass on the caller's size directly, but note that
956 * dmu_prefetch_max will effectively cap it. If there
957 * really is a larger sequential access pattern, perhaps
958 * dmu_zfetch will detect it.
959 */
960 if (len == 0)
961 len = i_size_read(ip) - offset;
962
963 dmu_prefetch(os, zp->z_id, 0, offset, len,
964 ZIO_PRIORITY_ASYNC_READ);
965 break;
966 case POSIX_FADV_NORMAL:
967 case POSIX_FADV_RANDOM:
968 case POSIX_FADV_DONTNEED:
969 case POSIX_FADV_NOREUSE:
970 /* ignored for now */
971 break;
972 default:
973 error = -EINVAL;
974 break;
975 }
976
977 zfs_exit(zfsvfs, FTAG);
978
979 return (error);
980 }
981 #endif /* HAVE_FILE_FADVISE */
982
983 #define ZFS_FL_USER_VISIBLE (FS_FL_USER_VISIBLE | ZFS_PROJINHERIT_FL)
984 #define ZFS_FL_USER_MODIFIABLE (FS_FL_USER_MODIFIABLE | ZFS_PROJINHERIT_FL)
985
986 static uint32_t
987 __zpl_ioctl_getflags(struct inode *ip)
988 {
989 uint64_t zfs_flags = ITOZ(ip)->z_pflags;
990 uint32_t ioctl_flags = 0;
991
992 if (zfs_flags & ZFS_IMMUTABLE)
993 ioctl_flags |= FS_IMMUTABLE_FL;
994
995 if (zfs_flags & ZFS_APPENDONLY)
996 ioctl_flags |= FS_APPEND_FL;
997
998 if (zfs_flags & ZFS_NODUMP)
999 ioctl_flags |= FS_NODUMP_FL;
1000
1001 if (zfs_flags & ZFS_PROJINHERIT)
1002 ioctl_flags |= ZFS_PROJINHERIT_FL;
1003
1004 return (ioctl_flags & ZFS_FL_USER_VISIBLE);
1005 }
1006
1007 /*
1008 * Map zfs file z_pflags (xvattr_t) to linux file attributes. Only file
1009 * attributes common to both Linux and Solaris are mapped.
1010 */
1011 static int
1012 zpl_ioctl_getflags(struct file *filp, void __user *arg)
1013 {
1014 uint32_t flags;
1015 int err;
1016
1017 flags = __zpl_ioctl_getflags(file_inode(filp));
1018 err = copy_to_user(arg, &flags, sizeof (flags));
1019
1020 return (err);
1021 }
1022
1023 /*
1024 * fchange() is a helper macro to detect if we have been asked to change a
1025 * flag. This is ugly, but the requirement that we do this is a consequence of
1026 * how the Linux file attribute interface was designed. Another consequence is
1027 * that concurrent modification of files suffers from a TOCTOU race. Neither
1028 * are things we can fix without modifying the kernel-userland interface, which
1029 * is outside of our jurisdiction.
1030 */
1031
1032 #define fchange(f0, f1, b0, b1) (!((f0) & (b0)) != !((f1) & (b1)))
1033
1034 static int
1035 __zpl_ioctl_setflags(struct inode *ip, uint32_t ioctl_flags, xvattr_t *xva)
1036 {
1037 uint64_t zfs_flags = ITOZ(ip)->z_pflags;
1038 xoptattr_t *xoap;
1039
1040 if (ioctl_flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | FS_NODUMP_FL |
1041 ZFS_PROJINHERIT_FL))
1042 return (-EOPNOTSUPP);
1043
1044 if (ioctl_flags & ~ZFS_FL_USER_MODIFIABLE)
1045 return (-EACCES);
1046
1047 if ((fchange(ioctl_flags, zfs_flags, FS_IMMUTABLE_FL, ZFS_IMMUTABLE) ||
1048 fchange(ioctl_flags, zfs_flags, FS_APPEND_FL, ZFS_APPENDONLY)) &&
1049 !capable(CAP_LINUX_IMMUTABLE))
1050 return (-EPERM);
1051
1052 if (!zpl_inode_owner_or_capable(zfs_init_idmap, ip))
1053 return (-EACCES);
1054
1055 xva_init(xva);
1056 xoap = xva_getxoptattr(xva);
1057
1058 #define FLAG_CHANGE(iflag, zflag, xflag, xfield) do { \
1059 if (((ioctl_flags & (iflag)) && !(zfs_flags & (zflag))) || \
1060 ((zfs_flags & (zflag)) && !(ioctl_flags & (iflag)))) { \
1061 XVA_SET_REQ(xva, (xflag)); \
1062 (xfield) = ((ioctl_flags & (iflag)) != 0); \
1063 } \
1064 } while (0)
1065
1066 FLAG_CHANGE(FS_IMMUTABLE_FL, ZFS_IMMUTABLE, XAT_IMMUTABLE,
1067 xoap->xoa_immutable);
1068 FLAG_CHANGE(FS_APPEND_FL, ZFS_APPENDONLY, XAT_APPENDONLY,
1069 xoap->xoa_appendonly);
1070 FLAG_CHANGE(FS_NODUMP_FL, ZFS_NODUMP, XAT_NODUMP,
1071 xoap->xoa_nodump);
1072 FLAG_CHANGE(ZFS_PROJINHERIT_FL, ZFS_PROJINHERIT, XAT_PROJINHERIT,
1073 xoap->xoa_projinherit);
1074
1075 #undef FLAG_CHANGE
1076
1077 return (0);
1078 }
1079
1080 static int
1081 zpl_ioctl_setflags(struct file *filp, void __user *arg)
1082 {
1083 struct inode *ip = file_inode(filp);
1084 uint32_t flags;
1085 cred_t *cr = CRED();
1086 xvattr_t xva;
1087 int err;
1088 fstrans_cookie_t cookie;
1089
1090 if (copy_from_user(&flags, arg, sizeof (flags)))
1091 return (-EFAULT);
1092
1093 err = __zpl_ioctl_setflags(ip, flags, &xva);
1094 if (err)
1095 return (err);
1096
1097 crhold(cr);
1098 cookie = spl_fstrans_mark();
1099 err = -zfs_setattr(ITOZ(ip), (vattr_t *)&xva, 0, cr, zfs_init_idmap);
1100 spl_fstrans_unmark(cookie);
1101 crfree(cr);
1102
1103 return (err);
1104 }
1105
1106 static int
1107 zpl_ioctl_getxattr(struct file *filp, void __user *arg)
1108 {
1109 zfsxattr_t fsx = { 0 };
1110 struct inode *ip = file_inode(filp);
1111 int err;
1112
1113 fsx.fsx_xflags = __zpl_ioctl_getflags(ip);
1114 fsx.fsx_projid = ITOZ(ip)->z_projid;
1115 err = copy_to_user(arg, &fsx, sizeof (fsx));
1116
1117 return (err);
1118 }
1119
1120 static int
1121 zpl_ioctl_setxattr(struct file *filp, void __user *arg)
1122 {
1123 struct inode *ip = file_inode(filp);
1124 zfsxattr_t fsx;
1125 cred_t *cr = CRED();
1126 xvattr_t xva;
1127 xoptattr_t *xoap;
1128 int err;
1129 fstrans_cookie_t cookie;
1130
1131 if (copy_from_user(&fsx, arg, sizeof (fsx)))
1132 return (-EFAULT);
1133
1134 if (!zpl_is_valid_projid(fsx.fsx_projid))
1135 return (-EINVAL);
1136
1137 err = __zpl_ioctl_setflags(ip, fsx.fsx_xflags, &xva);
1138 if (err)
1139 return (err);
1140
1141 xoap = xva_getxoptattr(&xva);
1142 XVA_SET_REQ(&xva, XAT_PROJID);
1143 xoap->xoa_projid = fsx.fsx_projid;
1144
1145 crhold(cr);
1146 cookie = spl_fstrans_mark();
1147 err = -zfs_setattr(ITOZ(ip), (vattr_t *)&xva, 0, cr, zfs_init_idmap);
1148 spl_fstrans_unmark(cookie);
1149 crfree(cr);
1150
1151 return (err);
1152 }
1153
1154 /*
1155 * Expose Additional File Level Attributes of ZFS.
1156 */
1157 static int
1158 zpl_ioctl_getdosflags(struct file *filp, void __user *arg)
1159 {
1160 struct inode *ip = file_inode(filp);
1161 uint64_t dosflags = ITOZ(ip)->z_pflags;
1162 dosflags &= ZFS_DOS_FL_USER_VISIBLE;
1163 int err = copy_to_user(arg, &dosflags, sizeof (dosflags));
1164
1165 return (err);
1166 }
1167
1168 static int
1169 __zpl_ioctl_setdosflags(struct inode *ip, uint64_t ioctl_flags, xvattr_t *xva)
1170 {
1171 uint64_t zfs_flags = ITOZ(ip)->z_pflags;
1172 xoptattr_t *xoap;
1173
1174 if (ioctl_flags & (~ZFS_DOS_FL_USER_VISIBLE))
1175 return (-EOPNOTSUPP);
1176
1177 if ((fchange(ioctl_flags, zfs_flags, ZFS_IMMUTABLE, ZFS_IMMUTABLE) ||
1178 fchange(ioctl_flags, zfs_flags, ZFS_APPENDONLY, ZFS_APPENDONLY)) &&
1179 !capable(CAP_LINUX_IMMUTABLE))
1180 return (-EPERM);
1181
1182 if (!zpl_inode_owner_or_capable(zfs_init_idmap, ip))
1183 return (-EACCES);
1184
1185 xva_init(xva);
1186 xoap = xva_getxoptattr(xva);
1187
1188 #define FLAG_CHANGE(iflag, xflag, xfield) do { \
1189 if (((ioctl_flags & (iflag)) && !(zfs_flags & (iflag))) || \
1190 ((zfs_flags & (iflag)) && !(ioctl_flags & (iflag)))) { \
1191 XVA_SET_REQ(xva, (xflag)); \
1192 (xfield) = ((ioctl_flags & (iflag)) != 0); \
1193 } \
1194 } while (0)
1195
1196 FLAG_CHANGE(ZFS_IMMUTABLE, XAT_IMMUTABLE, xoap->xoa_immutable);
1197 FLAG_CHANGE(ZFS_APPENDONLY, XAT_APPENDONLY, xoap->xoa_appendonly);
1198 FLAG_CHANGE(ZFS_NODUMP, XAT_NODUMP, xoap->xoa_nodump);
1199 FLAG_CHANGE(ZFS_READONLY, XAT_READONLY, xoap->xoa_readonly);
1200 FLAG_CHANGE(ZFS_HIDDEN, XAT_HIDDEN, xoap->xoa_hidden);
1201 FLAG_CHANGE(ZFS_SYSTEM, XAT_SYSTEM, xoap->xoa_system);
1202 FLAG_CHANGE(ZFS_ARCHIVE, XAT_ARCHIVE, xoap->xoa_archive);
1203 FLAG_CHANGE(ZFS_NOUNLINK, XAT_NOUNLINK, xoap->xoa_nounlink);
1204 FLAG_CHANGE(ZFS_REPARSE, XAT_REPARSE, xoap->xoa_reparse);
1205 FLAG_CHANGE(ZFS_OFFLINE, XAT_OFFLINE, xoap->xoa_offline);
1206 FLAG_CHANGE(ZFS_SPARSE, XAT_SPARSE, xoap->xoa_sparse);
1207
1208 #undef FLAG_CHANGE
1209
1210 return (0);
1211 }
1212
1213 /*
1214 * Set Additional File Level Attributes of ZFS.
1215 */
1216 static int
1217 zpl_ioctl_setdosflags(struct file *filp, void __user *arg)
1218 {
1219 struct inode *ip = file_inode(filp);
1220 uint64_t dosflags;
1221 cred_t *cr = CRED();
1222 xvattr_t xva;
1223 int err;
1224 fstrans_cookie_t cookie;
1225
1226 if (copy_from_user(&dosflags, arg, sizeof (dosflags)))
1227 return (-EFAULT);
1228
1229 err = __zpl_ioctl_setdosflags(ip, dosflags, &xva);
1230 if (err)
1231 return (err);
1232
1233 crhold(cr);
1234 cookie = spl_fstrans_mark();
1235 err = -zfs_setattr(ITOZ(ip), (vattr_t *)&xva, 0, cr, zfs_init_idmap);
1236 spl_fstrans_unmark(cookie);
1237 crfree(cr);
1238
1239 return (err);
1240 }
1241
1242 static long
1243 zpl_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
1244 {
1245 switch (cmd) {
1246 case FS_IOC_GETVERSION:
1247 return (zpl_ioctl_getversion(filp, (void *)arg));
1248 case FS_IOC_GETFLAGS:
1249 return (zpl_ioctl_getflags(filp, (void *)arg));
1250 case FS_IOC_SETFLAGS:
1251 return (zpl_ioctl_setflags(filp, (void *)arg));
1252 case ZFS_IOC_FSGETXATTR:
1253 return (zpl_ioctl_getxattr(filp, (void *)arg));
1254 case ZFS_IOC_FSSETXATTR:
1255 return (zpl_ioctl_setxattr(filp, (void *)arg));
1256 case ZFS_IOC_GETDOSFLAGS:
1257 return (zpl_ioctl_getdosflags(filp, (void *)arg));
1258 case ZFS_IOC_SETDOSFLAGS:
1259 return (zpl_ioctl_setdosflags(filp, (void *)arg));
1260 default:
1261 return (-ENOTTY);
1262 }
1263 }
1264
1265 #ifdef CONFIG_COMPAT
1266 static long
1267 zpl_compat_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
1268 {
1269 switch (cmd) {
1270 case FS_IOC32_GETVERSION:
1271 cmd = FS_IOC_GETVERSION;
1272 break;
1273 case FS_IOC32_GETFLAGS:
1274 cmd = FS_IOC_GETFLAGS;
1275 break;
1276 case FS_IOC32_SETFLAGS:
1277 cmd = FS_IOC_SETFLAGS;
1278 break;
1279 default:
1280 return (-ENOTTY);
1281 }
1282 return (zpl_ioctl(filp, cmd, (unsigned long)compat_ptr(arg)));
1283 }
1284 #endif /* CONFIG_COMPAT */
1285
1286 const struct address_space_operations zpl_address_space_operations = {
1287 #ifdef HAVE_VFS_READPAGES
1288 .readpages = zpl_readpages,
1289 #else
1290 .readahead = zpl_readahead,
1291 #endif
1292 #ifdef HAVE_VFS_READ_FOLIO
1293 .read_folio = zpl_read_folio,
1294 #else
1295 .readpage = zpl_readpage,
1296 #endif
1297 .writepage = zpl_writepage,
1298 .writepages = zpl_writepages,
1299 .direct_IO = zpl_direct_IO,
1300 #ifdef HAVE_VFS_SET_PAGE_DIRTY_NOBUFFERS
1301 .set_page_dirty = __set_page_dirty_nobuffers,
1302 #endif
1303 #ifdef HAVE_VFS_FILEMAP_DIRTY_FOLIO
1304 .dirty_folio = filemap_dirty_folio,
1305 #endif
1306 };
1307
1308 const struct file_operations zpl_file_operations = {
1309 .open = zpl_open,
1310 .release = zpl_release,
1311 .llseek = zpl_llseek,
1312 #ifdef HAVE_VFS_RW_ITERATE
1313 #ifdef HAVE_NEW_SYNC_READ
1314 .read = new_sync_read,
1315 .write = new_sync_write,
1316 #endif
1317 .read_iter = zpl_iter_read,
1318 .write_iter = zpl_iter_write,
1319 #ifdef HAVE_VFS_IOV_ITER
1320 .splice_read = generic_file_splice_read,
1321 .splice_write = iter_file_splice_write,
1322 #endif
1323 #else
1324 .read = do_sync_read,
1325 .write = do_sync_write,
1326 .aio_read = zpl_aio_read,
1327 .aio_write = zpl_aio_write,
1328 #endif
1329 .mmap = zpl_mmap,
1330 .fsync = zpl_fsync,
1331 #ifdef HAVE_FILE_AIO_FSYNC
1332 .aio_fsync = zpl_aio_fsync,
1333 #endif
1334 .fallocate = zpl_fallocate,
1335 #ifdef HAVE_VFS_COPY_FILE_RANGE
1336 .copy_file_range = zpl_copy_file_range,
1337 #endif
1338 #ifdef HAVE_VFS_REMAP_FILE_RANGE
1339 .remap_file_range = zpl_remap_file_range,
1340 #endif
1341 #ifdef HAVE_VFS_CLONE_FILE_RANGE
1342 .clone_file_range = zpl_clone_file_range,
1343 #endif
1344 #ifdef HAVE_VFS_DEDUPE_FILE_RANGE
1345 .dedupe_file_range = zpl_dedupe_file_range,
1346 #endif
1347 #ifdef HAVE_FILE_FADVISE
1348 .fadvise = zpl_fadvise,
1349 #endif
1350 .unlocked_ioctl = zpl_ioctl,
1351 #ifdef CONFIG_COMPAT
1352 .compat_ioctl = zpl_compat_ioctl,
1353 #endif
1354 };
1355
1356 const struct file_operations zpl_dir_file_operations = {
1357 .llseek = generic_file_llseek,
1358 .read = generic_read_dir,
1359 #if defined(HAVE_VFS_ITERATE_SHARED)
1360 .iterate_shared = zpl_iterate,
1361 #elif defined(HAVE_VFS_ITERATE)
1362 .iterate = zpl_iterate,
1363 #else
1364 .readdir = zpl_readdir,
1365 #endif
1366 .fsync = zpl_fsync,
1367 .unlocked_ioctl = zpl_ioctl,
1368 #ifdef CONFIG_COMPAT
1369 .compat_ioctl = zpl_compat_ioctl,
1370 #endif
1371 };
1372
1373 /* CSTYLED */
1374 module_param(zfs_fallocate_reserve_percent, uint, 0644);
1375 MODULE_PARM_DESC(zfs_fallocate_reserve_percent,
1376 "Percentage of length to use for the available capacity check");