]> git.proxmox.com Git - mirror_spl.git/blob - module/spl/spl-kmem.c
kmem-cache: Use a taskq for async allocations
[mirror_spl.git] / module / spl / spl-kmem.c
1 /*****************************************************************************\
2 * Copyright (C) 2007-2010 Lawrence Livermore National Security, LLC.
3 * Copyright (C) 2007 The Regents of the University of California.
4 * Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER).
5 * Written by Brian Behlendorf <behlendorf1@llnl.gov>.
6 * UCRL-CODE-235197
7 *
8 * This file is part of the SPL, Solaris Porting Layer.
9 * For details, see <http://github.com/behlendorf/spl/>.
10 *
11 * The SPL is free software; you can redistribute it and/or modify it
12 * under the terms of the GNU General Public License as published by the
13 * Free Software Foundation; either version 2 of the License, or (at your
14 * option) any later version.
15 *
16 * The SPL is distributed in the hope that it will be useful, but WITHOUT
17 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
18 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
19 * for more details.
20 *
21 * You should have received a copy of the GNU General Public License along
22 * with the SPL. If not, see <http://www.gnu.org/licenses/>.
23 *****************************************************************************
24 * Solaris Porting Layer (SPL) Kmem Implementation.
25 \*****************************************************************************/
26
27 #include <sys/kmem.h>
28 #include <spl-debug.h>
29
30 #ifdef SS_DEBUG_SUBSYS
31 #undef SS_DEBUG_SUBSYS
32 #endif
33
34 #define SS_DEBUG_SUBSYS SS_KMEM
35
36 /*
37 * The minimum amount of memory measured in pages to be free at all
38 * times on the system. This is similar to Linux's zone->pages_min
39 * multiplied by the number of zones and is sized based on that.
40 */
41 pgcnt_t minfree = 0;
42 EXPORT_SYMBOL(minfree);
43
44 /*
45 * The desired amount of memory measured in pages to be free at all
46 * times on the system. This is similar to Linux's zone->pages_low
47 * multiplied by the number of zones and is sized based on that.
48 * Assuming all zones are being used roughly equally, when we drop
49 * below this threshold asynchronous page reclamation is triggered.
50 */
51 pgcnt_t desfree = 0;
52 EXPORT_SYMBOL(desfree);
53
54 /*
55 * When above this amount of memory measures in pages the system is
56 * determined to have enough free memory. This is similar to Linux's
57 * zone->pages_high multiplied by the number of zones and is sized based
58 * on that. Assuming all zones are being used roughly equally, when
59 * asynchronous page reclamation reaches this threshold it stops.
60 */
61 pgcnt_t lotsfree = 0;
62 EXPORT_SYMBOL(lotsfree);
63
64 /* Unused always 0 in this implementation */
65 pgcnt_t needfree = 0;
66 EXPORT_SYMBOL(needfree);
67
68 pgcnt_t swapfs_minfree = 0;
69 EXPORT_SYMBOL(swapfs_minfree);
70
71 pgcnt_t swapfs_reserve = 0;
72 EXPORT_SYMBOL(swapfs_reserve);
73
74 vmem_t *heap_arena = NULL;
75 EXPORT_SYMBOL(heap_arena);
76
77 vmem_t *zio_alloc_arena = NULL;
78 EXPORT_SYMBOL(zio_alloc_arena);
79
80 vmem_t *zio_arena = NULL;
81 EXPORT_SYMBOL(zio_arena);
82
83 #ifndef HAVE_GET_VMALLOC_INFO
84 get_vmalloc_info_t get_vmalloc_info_fn = SYMBOL_POISON;
85 EXPORT_SYMBOL(get_vmalloc_info_fn);
86 #endif /* HAVE_GET_VMALLOC_INFO */
87
88 #ifdef HAVE_PGDAT_HELPERS
89 # ifndef HAVE_FIRST_ONLINE_PGDAT
90 first_online_pgdat_t first_online_pgdat_fn = SYMBOL_POISON;
91 EXPORT_SYMBOL(first_online_pgdat_fn);
92 # endif /* HAVE_FIRST_ONLINE_PGDAT */
93
94 # ifndef HAVE_NEXT_ONLINE_PGDAT
95 next_online_pgdat_t next_online_pgdat_fn = SYMBOL_POISON;
96 EXPORT_SYMBOL(next_online_pgdat_fn);
97 # endif /* HAVE_NEXT_ONLINE_PGDAT */
98
99 # ifndef HAVE_NEXT_ZONE
100 next_zone_t next_zone_fn = SYMBOL_POISON;
101 EXPORT_SYMBOL(next_zone_fn);
102 # endif /* HAVE_NEXT_ZONE */
103
104 #else /* HAVE_PGDAT_HELPERS */
105
106 # ifndef HAVE_PGDAT_LIST
107 struct pglist_data *pgdat_list_addr = SYMBOL_POISON;
108 EXPORT_SYMBOL(pgdat_list_addr);
109 # endif /* HAVE_PGDAT_LIST */
110
111 #endif /* HAVE_PGDAT_HELPERS */
112
113 #ifdef NEED_GET_ZONE_COUNTS
114 # ifndef HAVE_GET_ZONE_COUNTS
115 get_zone_counts_t get_zone_counts_fn = SYMBOL_POISON;
116 EXPORT_SYMBOL(get_zone_counts_fn);
117 # endif /* HAVE_GET_ZONE_COUNTS */
118
119 unsigned long
120 spl_global_page_state(spl_zone_stat_item_t item)
121 {
122 unsigned long active;
123 unsigned long inactive;
124 unsigned long free;
125
126 get_zone_counts(&active, &inactive, &free);
127 switch (item) {
128 case SPL_NR_FREE_PAGES: return free;
129 case SPL_NR_INACTIVE: return inactive;
130 case SPL_NR_ACTIVE: return active;
131 default: ASSERT(0); /* Unsupported */
132 }
133
134 return 0;
135 }
136 #else
137 # ifdef HAVE_GLOBAL_PAGE_STATE
138 unsigned long
139 spl_global_page_state(spl_zone_stat_item_t item)
140 {
141 unsigned long pages = 0;
142
143 switch (item) {
144 case SPL_NR_FREE_PAGES:
145 # ifdef HAVE_ZONE_STAT_ITEM_NR_FREE_PAGES
146 pages += global_page_state(NR_FREE_PAGES);
147 # endif
148 break;
149 case SPL_NR_INACTIVE:
150 # ifdef HAVE_ZONE_STAT_ITEM_NR_INACTIVE
151 pages += global_page_state(NR_INACTIVE);
152 # endif
153 # ifdef HAVE_ZONE_STAT_ITEM_NR_INACTIVE_ANON
154 pages += global_page_state(NR_INACTIVE_ANON);
155 # endif
156 # ifdef HAVE_ZONE_STAT_ITEM_NR_INACTIVE_FILE
157 pages += global_page_state(NR_INACTIVE_FILE);
158 # endif
159 break;
160 case SPL_NR_ACTIVE:
161 # ifdef HAVE_ZONE_STAT_ITEM_NR_ACTIVE
162 pages += global_page_state(NR_ACTIVE);
163 # endif
164 # ifdef HAVE_ZONE_STAT_ITEM_NR_ACTIVE_ANON
165 pages += global_page_state(NR_ACTIVE_ANON);
166 # endif
167 # ifdef HAVE_ZONE_STAT_ITEM_NR_ACTIVE_FILE
168 pages += global_page_state(NR_ACTIVE_FILE);
169 # endif
170 break;
171 default:
172 ASSERT(0); /* Unsupported */
173 }
174
175 return pages;
176 }
177 # else
178 # error "Both global_page_state() and get_zone_counts() unavailable"
179 # endif /* HAVE_GLOBAL_PAGE_STATE */
180 #endif /* NEED_GET_ZONE_COUNTS */
181 EXPORT_SYMBOL(spl_global_page_state);
182
183 #if !defined(HAVE_INVALIDATE_INODES) && !defined(HAVE_INVALIDATE_INODES_CHECK)
184 invalidate_inodes_t invalidate_inodes_fn = SYMBOL_POISON;
185 EXPORT_SYMBOL(invalidate_inodes_fn);
186 #endif /* !HAVE_INVALIDATE_INODES && !HAVE_INVALIDATE_INODES_CHECK */
187
188 #ifndef HAVE_SHRINK_DCACHE_MEMORY
189 shrink_dcache_memory_t shrink_dcache_memory_fn = SYMBOL_POISON;
190 EXPORT_SYMBOL(shrink_dcache_memory_fn);
191 #endif /* HAVE_SHRINK_DCACHE_MEMORY */
192
193 #ifndef HAVE_SHRINK_ICACHE_MEMORY
194 shrink_icache_memory_t shrink_icache_memory_fn = SYMBOL_POISON;
195 EXPORT_SYMBOL(shrink_icache_memory_fn);
196 #endif /* HAVE_SHRINK_ICACHE_MEMORY */
197
198 pgcnt_t
199 spl_kmem_availrmem(void)
200 {
201 /* The amount of easily available memory */
202 return (spl_global_page_state(SPL_NR_FREE_PAGES) +
203 spl_global_page_state(SPL_NR_INACTIVE));
204 }
205 EXPORT_SYMBOL(spl_kmem_availrmem);
206
207 size_t
208 vmem_size(vmem_t *vmp, int typemask)
209 {
210 struct vmalloc_info vmi;
211 size_t size = 0;
212
213 ASSERT(vmp == NULL);
214 ASSERT(typemask & (VMEM_ALLOC | VMEM_FREE));
215
216 get_vmalloc_info(&vmi);
217 if (typemask & VMEM_ALLOC)
218 size += (size_t)vmi.used;
219
220 if (typemask & VMEM_FREE)
221 size += (size_t)(VMALLOC_TOTAL - vmi.used);
222
223 return size;
224 }
225 EXPORT_SYMBOL(vmem_size);
226
227 int
228 kmem_debugging(void)
229 {
230 return 0;
231 }
232 EXPORT_SYMBOL(kmem_debugging);
233
234 #ifndef HAVE_KVASPRINTF
235 /* Simplified asprintf. */
236 char *kvasprintf(gfp_t gfp, const char *fmt, va_list ap)
237 {
238 unsigned int len;
239 char *p;
240 va_list aq;
241
242 va_copy(aq, ap);
243 len = vsnprintf(NULL, 0, fmt, aq);
244 va_end(aq);
245
246 p = kmalloc(len+1, gfp);
247 if (!p)
248 return NULL;
249
250 vsnprintf(p, len+1, fmt, ap);
251
252 return p;
253 }
254 EXPORT_SYMBOL(kvasprintf);
255 #endif /* HAVE_KVASPRINTF */
256
257 char *
258 kmem_vasprintf(const char *fmt, va_list ap)
259 {
260 va_list aq;
261 char *ptr;
262
263 do {
264 va_copy(aq, ap);
265 ptr = kvasprintf(GFP_KERNEL, fmt, aq);
266 va_end(aq);
267 } while (ptr == NULL);
268
269 return ptr;
270 }
271 EXPORT_SYMBOL(kmem_vasprintf);
272
273 char *
274 kmem_asprintf(const char *fmt, ...)
275 {
276 va_list ap;
277 char *ptr;
278
279 do {
280 va_start(ap, fmt);
281 ptr = kvasprintf(GFP_KERNEL, fmt, ap);
282 va_end(ap);
283 } while (ptr == NULL);
284
285 return ptr;
286 }
287 EXPORT_SYMBOL(kmem_asprintf);
288
289 static char *
290 __strdup(const char *str, int flags)
291 {
292 char *ptr;
293 int n;
294
295 n = strlen(str);
296 ptr = kmalloc_nofail(n + 1, flags);
297 if (ptr)
298 memcpy(ptr, str, n + 1);
299
300 return ptr;
301 }
302
303 char *
304 strdup(const char *str)
305 {
306 return __strdup(str, KM_SLEEP);
307 }
308 EXPORT_SYMBOL(strdup);
309
310 void
311 strfree(char *str)
312 {
313 kfree(str);
314 }
315 EXPORT_SYMBOL(strfree);
316
317 /*
318 * Memory allocation interfaces and debugging for basic kmem_*
319 * and vmem_* style memory allocation. When DEBUG_KMEM is enabled
320 * the SPL will keep track of the total memory allocated, and
321 * report any memory leaked when the module is unloaded.
322 */
323 #ifdef DEBUG_KMEM
324
325 /* Shim layer memory accounting */
326 # ifdef HAVE_ATOMIC64_T
327 atomic64_t kmem_alloc_used = ATOMIC64_INIT(0);
328 unsigned long long kmem_alloc_max = 0;
329 atomic64_t vmem_alloc_used = ATOMIC64_INIT(0);
330 unsigned long long vmem_alloc_max = 0;
331 # else /* HAVE_ATOMIC64_T */
332 atomic_t kmem_alloc_used = ATOMIC_INIT(0);
333 unsigned long long kmem_alloc_max = 0;
334 atomic_t vmem_alloc_used = ATOMIC_INIT(0);
335 unsigned long long vmem_alloc_max = 0;
336 # endif /* HAVE_ATOMIC64_T */
337
338 EXPORT_SYMBOL(kmem_alloc_used);
339 EXPORT_SYMBOL(kmem_alloc_max);
340 EXPORT_SYMBOL(vmem_alloc_used);
341 EXPORT_SYMBOL(vmem_alloc_max);
342
343 /* When DEBUG_KMEM_TRACKING is enabled not only will total bytes be tracked
344 * but also the location of every alloc and free. When the SPL module is
345 * unloaded a list of all leaked addresses and where they were allocated
346 * will be dumped to the console. Enabling this feature has a significant
347 * impact on performance but it makes finding memory leaks straight forward.
348 *
349 * Not surprisingly with debugging enabled the xmem_locks are very highly
350 * contended particularly on xfree(). If we want to run with this detailed
351 * debugging enabled for anything other than debugging we need to minimize
352 * the contention by moving to a lock per xmem_table entry model.
353 */
354 # ifdef DEBUG_KMEM_TRACKING
355
356 # define KMEM_HASH_BITS 10
357 # define KMEM_TABLE_SIZE (1 << KMEM_HASH_BITS)
358
359 # define VMEM_HASH_BITS 10
360 # define VMEM_TABLE_SIZE (1 << VMEM_HASH_BITS)
361
362 typedef struct kmem_debug {
363 struct hlist_node kd_hlist; /* Hash node linkage */
364 struct list_head kd_list; /* List of all allocations */
365 void *kd_addr; /* Allocation pointer */
366 size_t kd_size; /* Allocation size */
367 const char *kd_func; /* Allocation function */
368 int kd_line; /* Allocation line */
369 } kmem_debug_t;
370
371 spinlock_t kmem_lock;
372 struct hlist_head kmem_table[KMEM_TABLE_SIZE];
373 struct list_head kmem_list;
374
375 spinlock_t vmem_lock;
376 struct hlist_head vmem_table[VMEM_TABLE_SIZE];
377 struct list_head vmem_list;
378
379 EXPORT_SYMBOL(kmem_lock);
380 EXPORT_SYMBOL(kmem_table);
381 EXPORT_SYMBOL(kmem_list);
382
383 EXPORT_SYMBOL(vmem_lock);
384 EXPORT_SYMBOL(vmem_table);
385 EXPORT_SYMBOL(vmem_list);
386
387 static kmem_debug_t *
388 kmem_del_init(spinlock_t *lock, struct hlist_head *table, int bits, const void *addr)
389 {
390 struct hlist_head *head;
391 struct hlist_node *node;
392 struct kmem_debug *p;
393 unsigned long flags;
394 SENTRY;
395
396 spin_lock_irqsave(lock, flags);
397
398 head = &table[hash_ptr(addr, bits)];
399 hlist_for_each_entry_rcu(p, node, head, kd_hlist) {
400 if (p->kd_addr == addr) {
401 hlist_del_init(&p->kd_hlist);
402 list_del_init(&p->kd_list);
403 spin_unlock_irqrestore(lock, flags);
404 return p;
405 }
406 }
407
408 spin_unlock_irqrestore(lock, flags);
409
410 SRETURN(NULL);
411 }
412
413 void *
414 kmem_alloc_track(size_t size, int flags, const char *func, int line,
415 int node_alloc, int node)
416 {
417 void *ptr = NULL;
418 kmem_debug_t *dptr;
419 unsigned long irq_flags;
420 SENTRY;
421
422 /* Function may be called with KM_NOSLEEP so failure is possible */
423 dptr = (kmem_debug_t *) kmalloc_nofail(sizeof(kmem_debug_t),
424 flags & ~__GFP_ZERO);
425
426 if (unlikely(dptr == NULL)) {
427 SDEBUG_LIMIT(SD_CONSOLE | SD_WARNING, "debug "
428 "kmem_alloc(%ld, 0x%x) at %s:%d failed (%lld/%llu)\n",
429 sizeof(kmem_debug_t), flags, func, line,
430 kmem_alloc_used_read(), kmem_alloc_max);
431 } else {
432 /*
433 * Marked unlikely because we should never be doing this,
434 * we tolerate to up 2 pages but a single page is best.
435 */
436 if (unlikely((size > PAGE_SIZE*2) && !(flags & KM_NODEBUG))) {
437 SDEBUG_LIMIT(SD_CONSOLE | SD_WARNING, "large "
438 "kmem_alloc(%llu, 0x%x) at %s:%d (%lld/%llu)\n",
439 (unsigned long long) size, flags, func, line,
440 kmem_alloc_used_read(), kmem_alloc_max);
441 spl_debug_dumpstack(NULL);
442 }
443
444 /*
445 * We use __strdup() below because the string pointed to by
446 * __FUNCTION__ might not be available by the time we want
447 * to print it since the module might have been unloaded.
448 * This can only fail in the KM_NOSLEEP case.
449 */
450 dptr->kd_func = __strdup(func, flags & ~__GFP_ZERO);
451 if (unlikely(dptr->kd_func == NULL)) {
452 kfree(dptr);
453 SDEBUG_LIMIT(SD_CONSOLE | SD_WARNING,
454 "debug __strdup() at %s:%d failed (%lld/%llu)\n",
455 func, line, kmem_alloc_used_read(), kmem_alloc_max);
456 goto out;
457 }
458
459 /* Use the correct allocator */
460 if (node_alloc) {
461 ASSERT(!(flags & __GFP_ZERO));
462 ptr = kmalloc_node_nofail(size, flags, node);
463 } else if (flags & __GFP_ZERO) {
464 ptr = kzalloc_nofail(size, flags & ~__GFP_ZERO);
465 } else {
466 ptr = kmalloc_nofail(size, flags);
467 }
468
469 if (unlikely(ptr == NULL)) {
470 kfree(dptr->kd_func);
471 kfree(dptr);
472 SDEBUG_LIMIT(SD_CONSOLE | SD_WARNING, "kmem_alloc"
473 "(%llu, 0x%x) at %s:%d failed (%lld/%llu)\n",
474 (unsigned long long) size, flags, func, line,
475 kmem_alloc_used_read(), kmem_alloc_max);
476 goto out;
477 }
478
479 kmem_alloc_used_add(size);
480 if (unlikely(kmem_alloc_used_read() > kmem_alloc_max))
481 kmem_alloc_max = kmem_alloc_used_read();
482
483 INIT_HLIST_NODE(&dptr->kd_hlist);
484 INIT_LIST_HEAD(&dptr->kd_list);
485
486 dptr->kd_addr = ptr;
487 dptr->kd_size = size;
488 dptr->kd_line = line;
489
490 spin_lock_irqsave(&kmem_lock, irq_flags);
491 hlist_add_head_rcu(&dptr->kd_hlist,
492 &kmem_table[hash_ptr(ptr, KMEM_HASH_BITS)]);
493 list_add_tail(&dptr->kd_list, &kmem_list);
494 spin_unlock_irqrestore(&kmem_lock, irq_flags);
495
496 SDEBUG_LIMIT(SD_INFO,
497 "kmem_alloc(%llu, 0x%x) at %s:%d = %p (%lld/%llu)\n",
498 (unsigned long long) size, flags, func, line, ptr,
499 kmem_alloc_used_read(), kmem_alloc_max);
500 }
501 out:
502 SRETURN(ptr);
503 }
504 EXPORT_SYMBOL(kmem_alloc_track);
505
506 void
507 kmem_free_track(const void *ptr, size_t size)
508 {
509 kmem_debug_t *dptr;
510 SENTRY;
511
512 ASSERTF(ptr || size > 0, "ptr: %p, size: %llu", ptr,
513 (unsigned long long) size);
514
515 dptr = kmem_del_init(&kmem_lock, kmem_table, KMEM_HASH_BITS, ptr);
516
517 /* Must exist in hash due to kmem_alloc() */
518 ASSERT(dptr);
519
520 /* Size must match */
521 ASSERTF(dptr->kd_size == size, "kd_size (%llu) != size (%llu), "
522 "kd_func = %s, kd_line = %d\n", (unsigned long long) dptr->kd_size,
523 (unsigned long long) size, dptr->kd_func, dptr->kd_line);
524
525 kmem_alloc_used_sub(size);
526 SDEBUG_LIMIT(SD_INFO, "kmem_free(%p, %llu) (%lld/%llu)\n", ptr,
527 (unsigned long long) size, kmem_alloc_used_read(),
528 kmem_alloc_max);
529
530 kfree(dptr->kd_func);
531
532 memset(dptr, 0x5a, sizeof(kmem_debug_t));
533 kfree(dptr);
534
535 memset(ptr, 0x5a, size);
536 kfree(ptr);
537
538 SEXIT;
539 }
540 EXPORT_SYMBOL(kmem_free_track);
541
542 void *
543 vmem_alloc_track(size_t size, int flags, const char *func, int line)
544 {
545 void *ptr = NULL;
546 kmem_debug_t *dptr;
547 unsigned long irq_flags;
548 SENTRY;
549
550 ASSERT(flags & KM_SLEEP);
551
552 /* Function may be called with KM_NOSLEEP so failure is possible */
553 dptr = (kmem_debug_t *) kmalloc_nofail(sizeof(kmem_debug_t),
554 flags & ~__GFP_ZERO);
555 if (unlikely(dptr == NULL)) {
556 SDEBUG_LIMIT(SD_CONSOLE | SD_WARNING, "debug "
557 "vmem_alloc(%ld, 0x%x) at %s:%d failed (%lld/%llu)\n",
558 sizeof(kmem_debug_t), flags, func, line,
559 vmem_alloc_used_read(), vmem_alloc_max);
560 } else {
561 /*
562 * We use __strdup() below because the string pointed to by
563 * __FUNCTION__ might not be available by the time we want
564 * to print it, since the module might have been unloaded.
565 * This can never fail because we have already asserted
566 * that flags is KM_SLEEP.
567 */
568 dptr->kd_func = __strdup(func, flags & ~__GFP_ZERO);
569 if (unlikely(dptr->kd_func == NULL)) {
570 kfree(dptr);
571 SDEBUG_LIMIT(SD_CONSOLE | SD_WARNING,
572 "debug __strdup() at %s:%d failed (%lld/%llu)\n",
573 func, line, vmem_alloc_used_read(), vmem_alloc_max);
574 goto out;
575 }
576
577 /* Use the correct allocator */
578 if (flags & __GFP_ZERO) {
579 ptr = vzalloc_nofail(size, flags & ~__GFP_ZERO);
580 } else {
581 ptr = vmalloc_nofail(size, flags);
582 }
583
584 if (unlikely(ptr == NULL)) {
585 kfree(dptr->kd_func);
586 kfree(dptr);
587 SDEBUG_LIMIT(SD_CONSOLE | SD_WARNING, "vmem_alloc"
588 "(%llu, 0x%x) at %s:%d failed (%lld/%llu)\n",
589 (unsigned long long) size, flags, func, line,
590 vmem_alloc_used_read(), vmem_alloc_max);
591 goto out;
592 }
593
594 vmem_alloc_used_add(size);
595 if (unlikely(vmem_alloc_used_read() > vmem_alloc_max))
596 vmem_alloc_max = vmem_alloc_used_read();
597
598 INIT_HLIST_NODE(&dptr->kd_hlist);
599 INIT_LIST_HEAD(&dptr->kd_list);
600
601 dptr->kd_addr = ptr;
602 dptr->kd_size = size;
603 dptr->kd_line = line;
604
605 spin_lock_irqsave(&vmem_lock, irq_flags);
606 hlist_add_head_rcu(&dptr->kd_hlist,
607 &vmem_table[hash_ptr(ptr, VMEM_HASH_BITS)]);
608 list_add_tail(&dptr->kd_list, &vmem_list);
609 spin_unlock_irqrestore(&vmem_lock, irq_flags);
610
611 SDEBUG_LIMIT(SD_INFO,
612 "vmem_alloc(%llu, 0x%x) at %s:%d = %p (%lld/%llu)\n",
613 (unsigned long long) size, flags, func, line,
614 ptr, vmem_alloc_used_read(), vmem_alloc_max);
615 }
616 out:
617 SRETURN(ptr);
618 }
619 EXPORT_SYMBOL(vmem_alloc_track);
620
621 void
622 vmem_free_track(const void *ptr, size_t size)
623 {
624 kmem_debug_t *dptr;
625 SENTRY;
626
627 ASSERTF(ptr || size > 0, "ptr: %p, size: %llu", ptr,
628 (unsigned long long) size);
629
630 dptr = kmem_del_init(&vmem_lock, vmem_table, VMEM_HASH_BITS, ptr);
631
632 /* Must exist in hash due to vmem_alloc() */
633 ASSERT(dptr);
634
635 /* Size must match */
636 ASSERTF(dptr->kd_size == size, "kd_size (%llu) != size (%llu), "
637 "kd_func = %s, kd_line = %d\n", (unsigned long long) dptr->kd_size,
638 (unsigned long long) size, dptr->kd_func, dptr->kd_line);
639
640 vmem_alloc_used_sub(size);
641 SDEBUG_LIMIT(SD_INFO, "vmem_free(%p, %llu) (%lld/%llu)\n", ptr,
642 (unsigned long long) size, vmem_alloc_used_read(),
643 vmem_alloc_max);
644
645 kfree(dptr->kd_func);
646
647 memset(dptr, 0x5a, sizeof(kmem_debug_t));
648 kfree(dptr);
649
650 memset(ptr, 0x5a, size);
651 vfree(ptr);
652
653 SEXIT;
654 }
655 EXPORT_SYMBOL(vmem_free_track);
656
657 # else /* DEBUG_KMEM_TRACKING */
658
659 void *
660 kmem_alloc_debug(size_t size, int flags, const char *func, int line,
661 int node_alloc, int node)
662 {
663 void *ptr;
664 SENTRY;
665
666 /*
667 * Marked unlikely because we should never be doing this,
668 * we tolerate to up 2 pages but a single page is best.
669 */
670 if (unlikely((size > PAGE_SIZE * 2) && !(flags & KM_NODEBUG))) {
671 SDEBUG(SD_CONSOLE | SD_WARNING,
672 "large kmem_alloc(%llu, 0x%x) at %s:%d (%lld/%llu)\n",
673 (unsigned long long) size, flags, func, line,
674 kmem_alloc_used_read(), kmem_alloc_max);
675 dump_stack();
676 }
677
678 /* Use the correct allocator */
679 if (node_alloc) {
680 ASSERT(!(flags & __GFP_ZERO));
681 ptr = kmalloc_node_nofail(size, flags, node);
682 } else if (flags & __GFP_ZERO) {
683 ptr = kzalloc_nofail(size, flags & (~__GFP_ZERO));
684 } else {
685 ptr = kmalloc_nofail(size, flags);
686 }
687
688 if (unlikely(ptr == NULL)) {
689 SDEBUG_LIMIT(SD_CONSOLE | SD_WARNING,
690 "kmem_alloc(%llu, 0x%x) at %s:%d failed (%lld/%llu)\n",
691 (unsigned long long) size, flags, func, line,
692 kmem_alloc_used_read(), kmem_alloc_max);
693 } else {
694 kmem_alloc_used_add(size);
695 if (unlikely(kmem_alloc_used_read() > kmem_alloc_max))
696 kmem_alloc_max = kmem_alloc_used_read();
697
698 SDEBUG_LIMIT(SD_INFO,
699 "kmem_alloc(%llu, 0x%x) at %s:%d = %p (%lld/%llu)\n",
700 (unsigned long long) size, flags, func, line, ptr,
701 kmem_alloc_used_read(), kmem_alloc_max);
702 }
703
704 SRETURN(ptr);
705 }
706 EXPORT_SYMBOL(kmem_alloc_debug);
707
708 void
709 kmem_free_debug(const void *ptr, size_t size)
710 {
711 SENTRY;
712
713 ASSERTF(ptr || size > 0, "ptr: %p, size: %llu", ptr,
714 (unsigned long long) size);
715
716 kmem_alloc_used_sub(size);
717 SDEBUG_LIMIT(SD_INFO, "kmem_free(%p, %llu) (%lld/%llu)\n", ptr,
718 (unsigned long long) size, kmem_alloc_used_read(),
719 kmem_alloc_max);
720 kfree(ptr);
721
722 SEXIT;
723 }
724 EXPORT_SYMBOL(kmem_free_debug);
725
726 void *
727 vmem_alloc_debug(size_t size, int flags, const char *func, int line)
728 {
729 void *ptr;
730 SENTRY;
731
732 ASSERT(flags & KM_SLEEP);
733
734 /* Use the correct allocator */
735 if (flags & __GFP_ZERO) {
736 ptr = vzalloc_nofail(size, flags & (~__GFP_ZERO));
737 } else {
738 ptr = vmalloc_nofail(size, flags);
739 }
740
741 if (unlikely(ptr == NULL)) {
742 SDEBUG_LIMIT(SD_CONSOLE | SD_WARNING,
743 "vmem_alloc(%llu, 0x%x) at %s:%d failed (%lld/%llu)\n",
744 (unsigned long long) size, flags, func, line,
745 vmem_alloc_used_read(), vmem_alloc_max);
746 } else {
747 vmem_alloc_used_add(size);
748 if (unlikely(vmem_alloc_used_read() > vmem_alloc_max))
749 vmem_alloc_max = vmem_alloc_used_read();
750
751 SDEBUG_LIMIT(SD_INFO, "vmem_alloc(%llu, 0x%x) = %p "
752 "(%lld/%llu)\n", (unsigned long long) size, flags, ptr,
753 vmem_alloc_used_read(), vmem_alloc_max);
754 }
755
756 SRETURN(ptr);
757 }
758 EXPORT_SYMBOL(vmem_alloc_debug);
759
760 void
761 vmem_free_debug(const void *ptr, size_t size)
762 {
763 SENTRY;
764
765 ASSERTF(ptr || size > 0, "ptr: %p, size: %llu", ptr,
766 (unsigned long long) size);
767
768 vmem_alloc_used_sub(size);
769 SDEBUG_LIMIT(SD_INFO, "vmem_free(%p, %llu) (%lld/%llu)\n", ptr,
770 (unsigned long long) size, vmem_alloc_used_read(),
771 vmem_alloc_max);
772 vfree(ptr);
773
774 SEXIT;
775 }
776 EXPORT_SYMBOL(vmem_free_debug);
777
778 # endif /* DEBUG_KMEM_TRACKING */
779 #endif /* DEBUG_KMEM */
780
781 /*
782 * Slab allocation interfaces
783 *
784 * While the Linux slab implementation was inspired by the Solaris
785 * implementation I cannot use it to emulate the Solaris APIs. I
786 * require two features which are not provided by the Linux slab.
787 *
788 * 1) Constructors AND destructors. Recent versions of the Linux
789 * kernel have removed support for destructors. This is a deal
790 * breaker for the SPL which contains particularly expensive
791 * initializers for mutex's, condition variables, etc. We also
792 * require a minimal level of cleanup for these data types unlike
793 * many Linux data type which do need to be explicitly destroyed.
794 *
795 * 2) Virtual address space backed slab. Callers of the Solaris slab
796 * expect it to work well for both small are very large allocations.
797 * Because of memory fragmentation the Linux slab which is backed
798 * by kmalloc'ed memory performs very badly when confronted with
799 * large numbers of large allocations. Basing the slab on the
800 * virtual address space removes the need for contiguous pages
801 * and greatly improve performance for large allocations.
802 *
803 * For these reasons, the SPL has its own slab implementation with
804 * the needed features. It is not as highly optimized as either the
805 * Solaris or Linux slabs, but it should get me most of what is
806 * needed until it can be optimized or obsoleted by another approach.
807 *
808 * One serious concern I do have about this method is the relatively
809 * small virtual address space on 32bit arches. This will seriously
810 * constrain the size of the slab caches and their performance.
811 *
812 * XXX: Improve the partial slab list by carefully maintaining a
813 * strict ordering of fullest to emptiest slabs based on
814 * the slab reference count. This guarantees the when freeing
815 * slabs back to the system we need only linearly traverse the
816 * last N slabs in the list to discover all the freeable slabs.
817 *
818 * XXX: NUMA awareness for optionally allocating memory close to a
819 * particular core. This can be advantageous if you know the slab
820 * object will be short lived and primarily accessed from one core.
821 *
822 * XXX: Slab coloring may also yield performance improvements and would
823 * be desirable to implement.
824 */
825
826 struct list_head spl_kmem_cache_list; /* List of caches */
827 struct rw_semaphore spl_kmem_cache_sem; /* Cache list lock */
828 taskq_t *spl_kmem_cache_taskq; /* Task queue for ageing / reclaim */
829
830 static int spl_cache_flush(spl_kmem_cache_t *skc,
831 spl_kmem_magazine_t *skm, int flush);
832
833 SPL_SHRINKER_CALLBACK_FWD_DECLARE(spl_kmem_cache_generic_shrinker);
834 SPL_SHRINKER_DECLARE(spl_kmem_cache_shrinker,
835 spl_kmem_cache_generic_shrinker, KMC_DEFAULT_SEEKS);
836
837 static void *
838 kv_alloc(spl_kmem_cache_t *skc, int size, int flags)
839 {
840 void *ptr;
841
842 ASSERT(ISP2(size));
843
844 if (skc->skc_flags & KMC_KMEM)
845 ptr = (void *)__get_free_pages(flags, get_order(size));
846 else
847 ptr = __vmalloc(size, flags | __GFP_HIGHMEM, PAGE_KERNEL);
848
849 /* Resulting allocated memory will be page aligned */
850 ASSERT(IS_P2ALIGNED(ptr, PAGE_SIZE));
851
852 return ptr;
853 }
854
855 static void
856 kv_free(spl_kmem_cache_t *skc, void *ptr, int size)
857 {
858 ASSERT(IS_P2ALIGNED(ptr, PAGE_SIZE));
859 ASSERT(ISP2(size));
860
861 /*
862 * The Linux direct reclaim path uses this out of band value to
863 * determine if forward progress is being made. Normally this is
864 * incremented by kmem_freepages() which is part of the various
865 * Linux slab implementations. However, since we are using none
866 * of that infrastructure we are responsible for incrementing it.
867 */
868 if (current->reclaim_state)
869 current->reclaim_state->reclaimed_slab += size >> PAGE_SHIFT;
870
871 if (skc->skc_flags & KMC_KMEM)
872 free_pages((unsigned long)ptr, get_order(size));
873 else
874 vfree(ptr);
875 }
876
877 /*
878 * Required space for each aligned sks.
879 */
880 static inline uint32_t
881 spl_sks_size(spl_kmem_cache_t *skc)
882 {
883 return P2ROUNDUP_TYPED(sizeof(spl_kmem_slab_t),
884 skc->skc_obj_align, uint32_t);
885 }
886
887 /*
888 * Required space for each aligned object.
889 */
890 static inline uint32_t
891 spl_obj_size(spl_kmem_cache_t *skc)
892 {
893 uint32_t align = skc->skc_obj_align;
894
895 return P2ROUNDUP_TYPED(skc->skc_obj_size, align, uint32_t) +
896 P2ROUNDUP_TYPED(sizeof(spl_kmem_obj_t), align, uint32_t);
897 }
898
899 /*
900 * Lookup the spl_kmem_object_t for an object given that object.
901 */
902 static inline spl_kmem_obj_t *
903 spl_sko_from_obj(spl_kmem_cache_t *skc, void *obj)
904 {
905 return obj + P2ROUNDUP_TYPED(skc->skc_obj_size,
906 skc->skc_obj_align, uint32_t);
907 }
908
909 /*
910 * Required space for each offslab object taking in to account alignment
911 * restrictions and the power-of-two requirement of kv_alloc().
912 */
913 static inline uint32_t
914 spl_offslab_size(spl_kmem_cache_t *skc)
915 {
916 return 1UL << (highbit(spl_obj_size(skc)) + 1);
917 }
918
919 /*
920 * It's important that we pack the spl_kmem_obj_t structure and the
921 * actual objects in to one large address space to minimize the number
922 * of calls to the allocator. It is far better to do a few large
923 * allocations and then subdivide it ourselves. Now which allocator
924 * we use requires balancing a few trade offs.
925 *
926 * For small objects we use kmem_alloc() because as long as you are
927 * only requesting a small number of pages (ideally just one) its cheap.
928 * However, when you start requesting multiple pages with kmem_alloc()
929 * it gets increasingly expensive since it requires contiguous pages.
930 * For this reason we shift to vmem_alloc() for slabs of large objects
931 * which removes the need for contiguous pages. We do not use
932 * vmem_alloc() in all cases because there is significant locking
933 * overhead in __get_vm_area_node(). This function takes a single
934 * global lock when acquiring an available virtual address range which
935 * serializes all vmem_alloc()'s for all slab caches. Using slightly
936 * different allocation functions for small and large objects should
937 * give us the best of both worlds.
938 *
939 * KMC_ONSLAB KMC_OFFSLAB
940 *
941 * +------------------------+ +-----------------+
942 * | spl_kmem_slab_t --+-+ | | spl_kmem_slab_t |---+-+
943 * | skc_obj_size <-+ | | +-----------------+ | |
944 * | spl_kmem_obj_t | | | |
945 * | skc_obj_size <---+ | +-----------------+ | |
946 * | spl_kmem_obj_t | | | skc_obj_size | <-+ |
947 * | ... v | | spl_kmem_obj_t | |
948 * +------------------------+ +-----------------+ v
949 */
950 static spl_kmem_slab_t *
951 spl_slab_alloc(spl_kmem_cache_t *skc, int flags)
952 {
953 spl_kmem_slab_t *sks;
954 spl_kmem_obj_t *sko, *n;
955 void *base, *obj;
956 uint32_t obj_size, offslab_size = 0;
957 int i, rc = 0;
958
959 base = kv_alloc(skc, skc->skc_slab_size, flags);
960 if (base == NULL)
961 SRETURN(NULL);
962
963 sks = (spl_kmem_slab_t *)base;
964 sks->sks_magic = SKS_MAGIC;
965 sks->sks_objs = skc->skc_slab_objs;
966 sks->sks_age = jiffies;
967 sks->sks_cache = skc;
968 INIT_LIST_HEAD(&sks->sks_list);
969 INIT_LIST_HEAD(&sks->sks_free_list);
970 sks->sks_ref = 0;
971 obj_size = spl_obj_size(skc);
972
973 if (skc->skc_flags & KMC_OFFSLAB)
974 offslab_size = spl_offslab_size(skc);
975
976 for (i = 0; i < sks->sks_objs; i++) {
977 if (skc->skc_flags & KMC_OFFSLAB) {
978 obj = kv_alloc(skc, offslab_size, flags);
979 if (!obj)
980 SGOTO(out, rc = -ENOMEM);
981 } else {
982 obj = base + spl_sks_size(skc) + (i * obj_size);
983 }
984
985 ASSERT(IS_P2ALIGNED(obj, skc->skc_obj_align));
986 sko = spl_sko_from_obj(skc, obj);
987 sko->sko_addr = obj;
988 sko->sko_magic = SKO_MAGIC;
989 sko->sko_slab = sks;
990 INIT_LIST_HEAD(&sko->sko_list);
991 list_add_tail(&sko->sko_list, &sks->sks_free_list);
992 }
993
994 list_for_each_entry(sko, &sks->sks_free_list, sko_list)
995 if (skc->skc_ctor)
996 skc->skc_ctor(sko->sko_addr, skc->skc_private, flags);
997 out:
998 if (rc) {
999 if (skc->skc_flags & KMC_OFFSLAB)
1000 list_for_each_entry_safe(sko, n, &sks->sks_free_list,
1001 sko_list)
1002 kv_free(skc, sko->sko_addr, offslab_size);
1003
1004 kv_free(skc, base, skc->skc_slab_size);
1005 sks = NULL;
1006 }
1007
1008 SRETURN(sks);
1009 }
1010
1011 /*
1012 * Remove a slab from complete or partial list, it must be called with
1013 * the 'skc->skc_lock' held but the actual free must be performed
1014 * outside the lock to prevent deadlocking on vmem addresses.
1015 */
1016 static void
1017 spl_slab_free(spl_kmem_slab_t *sks,
1018 struct list_head *sks_list, struct list_head *sko_list)
1019 {
1020 spl_kmem_cache_t *skc;
1021 SENTRY;
1022
1023 ASSERT(sks->sks_magic == SKS_MAGIC);
1024 ASSERT(sks->sks_ref == 0);
1025
1026 skc = sks->sks_cache;
1027 ASSERT(skc->skc_magic == SKC_MAGIC);
1028 ASSERT(spin_is_locked(&skc->skc_lock));
1029
1030 /*
1031 * Update slab/objects counters in the cache, then remove the
1032 * slab from the skc->skc_partial_list. Finally add the slab
1033 * and all its objects in to the private work lists where the
1034 * destructors will be called and the memory freed to the system.
1035 */
1036 skc->skc_obj_total -= sks->sks_objs;
1037 skc->skc_slab_total--;
1038 list_del(&sks->sks_list);
1039 list_add(&sks->sks_list, sks_list);
1040 list_splice_init(&sks->sks_free_list, sko_list);
1041
1042 SEXIT;
1043 }
1044
1045 /*
1046 * Traverses all the partial slabs attached to a cache and free those
1047 * which which are currently empty, and have not been touched for
1048 * skc_delay seconds to avoid thrashing. The count argument is
1049 * passed to optionally cap the number of slabs reclaimed, a count
1050 * of zero means try and reclaim everything. When flag is set we
1051 * always free an available slab regardless of age.
1052 */
1053 static void
1054 spl_slab_reclaim(spl_kmem_cache_t *skc, int count, int flag)
1055 {
1056 spl_kmem_slab_t *sks, *m;
1057 spl_kmem_obj_t *sko, *n;
1058 LIST_HEAD(sks_list);
1059 LIST_HEAD(sko_list);
1060 uint32_t size = 0;
1061 int i = 0;
1062 SENTRY;
1063
1064 /*
1065 * Move empty slabs and objects which have not been touched in
1066 * skc_delay seconds on to private lists to be freed outside
1067 * the spin lock. This delay time is important to avoid thrashing
1068 * however when flag is set the delay will not be used.
1069 */
1070 spin_lock(&skc->skc_lock);
1071 list_for_each_entry_safe_reverse(sks,m,&skc->skc_partial_list,sks_list){
1072 /*
1073 * All empty slabs are at the end of skc->skc_partial_list,
1074 * therefore once a non-empty slab is found we can stop
1075 * scanning. Additionally, stop when reaching the target
1076 * reclaim 'count' if a non-zero threshold is given.
1077 */
1078 if ((sks->sks_ref > 0) || (count && i >= count))
1079 break;
1080
1081 if (time_after(jiffies,sks->sks_age+skc->skc_delay*HZ)||flag) {
1082 spl_slab_free(sks, &sks_list, &sko_list);
1083 i++;
1084 }
1085 }
1086 spin_unlock(&skc->skc_lock);
1087
1088 /*
1089 * The following two loops ensure all the object destructors are
1090 * run, any offslab objects are freed, and the slabs themselves
1091 * are freed. This is all done outside the skc->skc_lock since
1092 * this allows the destructor to sleep, and allows us to perform
1093 * a conditional reschedule when a freeing a large number of
1094 * objects and slabs back to the system.
1095 */
1096 if (skc->skc_flags & KMC_OFFSLAB)
1097 size = spl_offslab_size(skc);
1098
1099 list_for_each_entry_safe(sko, n, &sko_list, sko_list) {
1100 ASSERT(sko->sko_magic == SKO_MAGIC);
1101
1102 if (skc->skc_dtor)
1103 skc->skc_dtor(sko->sko_addr, skc->skc_private);
1104
1105 if (skc->skc_flags & KMC_OFFSLAB)
1106 kv_free(skc, sko->sko_addr, size);
1107
1108 cond_resched();
1109 }
1110
1111 list_for_each_entry_safe(sks, m, &sks_list, sks_list) {
1112 ASSERT(sks->sks_magic == SKS_MAGIC);
1113 kv_free(skc, sks, skc->skc_slab_size);
1114 cond_resched();
1115 }
1116
1117 SEXIT;
1118 }
1119
1120 static spl_kmem_emergency_t *
1121 spl_emergency_search(struct rb_root *root, void *obj)
1122 {
1123 struct rb_node *node = root->rb_node;
1124 spl_kmem_emergency_t *ske;
1125 unsigned long address = (unsigned long)obj;
1126
1127 while (node) {
1128 ske = container_of(node, spl_kmem_emergency_t, ske_node);
1129
1130 if (address < (unsigned long)ske->ske_obj)
1131 node = node->rb_left;
1132 else if (address > (unsigned long)ske->ske_obj)
1133 node = node->rb_right;
1134 else
1135 return ske;
1136 }
1137
1138 return NULL;
1139 }
1140
1141 static int
1142 spl_emergency_insert(struct rb_root *root, spl_kmem_emergency_t *ske)
1143 {
1144 struct rb_node **new = &(root->rb_node), *parent = NULL;
1145 spl_kmem_emergency_t *ske_tmp;
1146 unsigned long address = (unsigned long)ske->ske_obj;
1147
1148 while (*new) {
1149 ske_tmp = container_of(*new, spl_kmem_emergency_t, ske_node);
1150
1151 parent = *new;
1152 if (address < (unsigned long)ske_tmp->ske_obj)
1153 new = &((*new)->rb_left);
1154 else if (address > (unsigned long)ske_tmp->ske_obj)
1155 new = &((*new)->rb_right);
1156 else
1157 return 0;
1158 }
1159
1160 rb_link_node(&ske->ske_node, parent, new);
1161 rb_insert_color(&ske->ske_node, root);
1162
1163 return 1;
1164 }
1165
1166 /*
1167 * Allocate a single emergency object and track it in a red black tree.
1168 */
1169 static int
1170 spl_emergency_alloc(spl_kmem_cache_t *skc, int flags, void **obj)
1171 {
1172 spl_kmem_emergency_t *ske;
1173 int empty;
1174 SENTRY;
1175
1176 /* Last chance use a partial slab if one now exists */
1177 spin_lock(&skc->skc_lock);
1178 empty = list_empty(&skc->skc_partial_list);
1179 spin_unlock(&skc->skc_lock);
1180 if (!empty)
1181 SRETURN(-EEXIST);
1182
1183 ske = kmalloc(sizeof(*ske), flags);
1184 if (ske == NULL)
1185 SRETURN(-ENOMEM);
1186
1187 ske->ske_obj = kmalloc(skc->skc_obj_size, flags);
1188 if (ske->ske_obj == NULL) {
1189 kfree(ske);
1190 SRETURN(-ENOMEM);
1191 }
1192
1193 spin_lock(&skc->skc_lock);
1194 empty = spl_emergency_insert(&skc->skc_emergency_tree, ske);
1195 if (likely(empty)) {
1196 skc->skc_obj_total++;
1197 skc->skc_obj_emergency++;
1198 if (skc->skc_obj_emergency > skc->skc_obj_emergency_max)
1199 skc->skc_obj_emergency_max = skc->skc_obj_emergency;
1200 }
1201 spin_unlock(&skc->skc_lock);
1202
1203 if (unlikely(!empty)) {
1204 kfree(ske->ske_obj);
1205 kfree(ske);
1206 SRETURN(-EINVAL);
1207 }
1208
1209 if (skc->skc_ctor)
1210 skc->skc_ctor(ske->ske_obj, skc->skc_private, flags);
1211
1212 *obj = ske->ske_obj;
1213
1214 SRETURN(0);
1215 }
1216
1217 /*
1218 * Locate the passed object in the red black tree and free it.
1219 */
1220 static int
1221 spl_emergency_free(spl_kmem_cache_t *skc, void *obj)
1222 {
1223 spl_kmem_emergency_t *ske;
1224 SENTRY;
1225
1226 spin_lock(&skc->skc_lock);
1227 ske = spl_emergency_search(&skc->skc_emergency_tree, obj);
1228 if (likely(ske)) {
1229 rb_erase(&ske->ske_node, &skc->skc_emergency_tree);
1230 skc->skc_obj_emergency--;
1231 skc->skc_obj_total--;
1232 }
1233 spin_unlock(&skc->skc_lock);
1234
1235 if (unlikely(ske == NULL))
1236 SRETURN(-ENOENT);
1237
1238 if (skc->skc_dtor)
1239 skc->skc_dtor(ske->ske_obj, skc->skc_private);
1240
1241 kfree(ske->ske_obj);
1242 kfree(ske);
1243
1244 SRETURN(0);
1245 }
1246
1247 static void
1248 spl_magazine_age(void *data)
1249 {
1250 spl_kmem_cache_t *skc = (spl_kmem_cache_t *)data;
1251 spl_kmem_magazine_t *skm = skc->skc_mag[smp_processor_id()];
1252
1253 ASSERT(skm->skm_magic == SKM_MAGIC);
1254 ASSERT(skm->skm_cpu == smp_processor_id());
1255
1256 if (skm->skm_avail > 0)
1257 if (time_after(jiffies, skm->skm_age + skc->skc_delay * HZ))
1258 (void) spl_cache_flush(skc, skm, skm->skm_refill);
1259 }
1260
1261 /*
1262 * Called regularly to keep a downward pressure on the cache.
1263 *
1264 * Objects older than skc->skc_delay seconds in the per-cpu magazines will
1265 * be returned to the caches. This is done to prevent idle magazines from
1266 * holding memory which could be better used elsewhere. The delay is
1267 * present to prevent thrashing the magazine.
1268 *
1269 * The newly released objects may result in empty partial slabs. Those
1270 * slabs should be released to the system. Otherwise moving the objects
1271 * out of the magazines is just wasted work.
1272 */
1273 static void
1274 spl_cache_age(void *data)
1275 {
1276 spl_kmem_cache_t *skc = (spl_kmem_cache_t *)data;
1277 taskqid_t id = 0;
1278
1279 ASSERT(skc->skc_magic == SKC_MAGIC);
1280
1281 atomic_inc(&skc->skc_ref);
1282 spl_on_each_cpu(spl_magazine_age, skc, 1);
1283 spl_slab_reclaim(skc, skc->skc_reap, 0);
1284
1285 while (!test_bit(KMC_BIT_DESTROY, &skc->skc_flags) && !id) {
1286 id = taskq_dispatch_delay(
1287 spl_kmem_cache_taskq, spl_cache_age, skc, TQ_SLEEP,
1288 ddi_get_lbolt() + skc->skc_delay / 3 * HZ);
1289
1290 /* Destroy issued after dispatch immediately cancel it */
1291 if (test_bit(KMC_BIT_DESTROY, &skc->skc_flags) && id)
1292 taskq_cancel_id(spl_kmem_cache_taskq, id);
1293 }
1294
1295 spin_lock(&skc->skc_lock);
1296 skc->skc_taskqid = id;
1297 spin_unlock(&skc->skc_lock);
1298
1299 atomic_dec(&skc->skc_ref);
1300 }
1301
1302 /*
1303 * Size a slab based on the size of each aligned object plus spl_kmem_obj_t.
1304 * When on-slab we want to target SPL_KMEM_CACHE_OBJ_PER_SLAB. However,
1305 * for very small objects we may end up with more than this so as not
1306 * to waste space in the minimal allocation of a single page. Also for
1307 * very large objects we may use as few as SPL_KMEM_CACHE_OBJ_PER_SLAB_MIN,
1308 * lower than this and we will fail.
1309 */
1310 static int
1311 spl_slab_size(spl_kmem_cache_t *skc, uint32_t *objs, uint32_t *size)
1312 {
1313 uint32_t sks_size, obj_size, max_size;
1314
1315 if (skc->skc_flags & KMC_OFFSLAB) {
1316 *objs = SPL_KMEM_CACHE_OBJ_PER_SLAB;
1317 *size = sizeof(spl_kmem_slab_t);
1318 } else {
1319 sks_size = spl_sks_size(skc);
1320 obj_size = spl_obj_size(skc);
1321
1322 if (skc->skc_flags & KMC_KMEM)
1323 max_size = ((uint32_t)1 << (MAX_ORDER-3)) * PAGE_SIZE;
1324 else
1325 max_size = (32 * 1024 * 1024);
1326
1327 /* Power of two sized slab */
1328 for (*size = PAGE_SIZE; *size <= max_size; *size *= 2) {
1329 *objs = (*size - sks_size) / obj_size;
1330 if (*objs >= SPL_KMEM_CACHE_OBJ_PER_SLAB)
1331 SRETURN(0);
1332 }
1333
1334 /*
1335 * Unable to satisfy target objects per slab, fall back to
1336 * allocating a maximally sized slab and assuming it can
1337 * contain the minimum objects count use it. If not fail.
1338 */
1339 *size = max_size;
1340 *objs = (*size - sks_size) / obj_size;
1341 if (*objs >= SPL_KMEM_CACHE_OBJ_PER_SLAB_MIN)
1342 SRETURN(0);
1343 }
1344
1345 SRETURN(-ENOSPC);
1346 }
1347
1348 /*
1349 * Make a guess at reasonable per-cpu magazine size based on the size of
1350 * each object and the cost of caching N of them in each magazine. Long
1351 * term this should really adapt based on an observed usage heuristic.
1352 */
1353 static int
1354 spl_magazine_size(spl_kmem_cache_t *skc)
1355 {
1356 uint32_t obj_size = spl_obj_size(skc);
1357 int size;
1358 SENTRY;
1359
1360 /* Per-magazine sizes below assume a 4Kib page size */
1361 if (obj_size > (PAGE_SIZE * 256))
1362 size = 4; /* Minimum 4Mib per-magazine */
1363 else if (obj_size > (PAGE_SIZE * 32))
1364 size = 16; /* Minimum 2Mib per-magazine */
1365 else if (obj_size > (PAGE_SIZE))
1366 size = 64; /* Minimum 256Kib per-magazine */
1367 else if (obj_size > (PAGE_SIZE / 4))
1368 size = 128; /* Minimum 128Kib per-magazine */
1369 else
1370 size = 256;
1371
1372 SRETURN(size);
1373 }
1374
1375 /*
1376 * Allocate a per-cpu magazine to associate with a specific core.
1377 */
1378 static spl_kmem_magazine_t *
1379 spl_magazine_alloc(spl_kmem_cache_t *skc, int cpu)
1380 {
1381 spl_kmem_magazine_t *skm;
1382 int size = sizeof(spl_kmem_magazine_t) +
1383 sizeof(void *) * skc->skc_mag_size;
1384 SENTRY;
1385
1386 skm = kmem_alloc_node(size, KM_SLEEP, cpu_to_node(cpu));
1387 if (skm) {
1388 skm->skm_magic = SKM_MAGIC;
1389 skm->skm_avail = 0;
1390 skm->skm_size = skc->skc_mag_size;
1391 skm->skm_refill = skc->skc_mag_refill;
1392 skm->skm_cache = skc;
1393 skm->skm_age = jiffies;
1394 skm->skm_cpu = cpu;
1395 }
1396
1397 SRETURN(skm);
1398 }
1399
1400 /*
1401 * Free a per-cpu magazine associated with a specific core.
1402 */
1403 static void
1404 spl_magazine_free(spl_kmem_magazine_t *skm)
1405 {
1406 int size = sizeof(spl_kmem_magazine_t) +
1407 sizeof(void *) * skm->skm_size;
1408
1409 SENTRY;
1410 ASSERT(skm->skm_magic == SKM_MAGIC);
1411 ASSERT(skm->skm_avail == 0);
1412
1413 kmem_free(skm, size);
1414 SEXIT;
1415 }
1416
1417 /*
1418 * Create all pre-cpu magazines of reasonable sizes.
1419 */
1420 static int
1421 spl_magazine_create(spl_kmem_cache_t *skc)
1422 {
1423 int i;
1424 SENTRY;
1425
1426 skc->skc_mag_size = spl_magazine_size(skc);
1427 skc->skc_mag_refill = (skc->skc_mag_size + 1) / 2;
1428
1429 for_each_online_cpu(i) {
1430 skc->skc_mag[i] = spl_magazine_alloc(skc, i);
1431 if (!skc->skc_mag[i]) {
1432 for (i--; i >= 0; i--)
1433 spl_magazine_free(skc->skc_mag[i]);
1434
1435 SRETURN(-ENOMEM);
1436 }
1437 }
1438
1439 SRETURN(0);
1440 }
1441
1442 /*
1443 * Destroy all pre-cpu magazines.
1444 */
1445 static void
1446 spl_magazine_destroy(spl_kmem_cache_t *skc)
1447 {
1448 spl_kmem_magazine_t *skm;
1449 int i;
1450 SENTRY;
1451
1452 for_each_online_cpu(i) {
1453 skm = skc->skc_mag[i];
1454 (void)spl_cache_flush(skc, skm, skm->skm_avail);
1455 spl_magazine_free(skm);
1456 }
1457
1458 SEXIT;
1459 }
1460
1461 /*
1462 * Create a object cache based on the following arguments:
1463 * name cache name
1464 * size cache object size
1465 * align cache object alignment
1466 * ctor cache object constructor
1467 * dtor cache object destructor
1468 * reclaim cache object reclaim
1469 * priv cache private data for ctor/dtor/reclaim
1470 * vmp unused must be NULL
1471 * flags
1472 * KMC_NOTOUCH Disable cache object aging (unsupported)
1473 * KMC_NODEBUG Disable debugging (unsupported)
1474 * KMC_NOMAGAZINE Disable magazine (unsupported)
1475 * KMC_NOHASH Disable hashing (unsupported)
1476 * KMC_QCACHE Disable qcache (unsupported)
1477 * KMC_KMEM Force kmem backed cache
1478 * KMC_VMEM Force vmem backed cache
1479 * KMC_OFFSLAB Locate objects off the slab
1480 */
1481 spl_kmem_cache_t *
1482 spl_kmem_cache_create(char *name, size_t size, size_t align,
1483 spl_kmem_ctor_t ctor,
1484 spl_kmem_dtor_t dtor,
1485 spl_kmem_reclaim_t reclaim,
1486 void *priv, void *vmp, int flags)
1487 {
1488 spl_kmem_cache_t *skc;
1489 int rc;
1490 SENTRY;
1491
1492 ASSERTF(!(flags & KMC_NOMAGAZINE), "Bad KMC_NOMAGAZINE (%x)\n", flags);
1493 ASSERTF(!(flags & KMC_NOHASH), "Bad KMC_NOHASH (%x)\n", flags);
1494 ASSERTF(!(flags & KMC_QCACHE), "Bad KMC_QCACHE (%x)\n", flags);
1495 ASSERT(vmp == NULL);
1496
1497 might_sleep();
1498
1499 /*
1500 * Allocate memory for a new cache an initialize it. Unfortunately,
1501 * this usually ends up being a large allocation of ~32k because
1502 * we need to allocate enough memory for the worst case number of
1503 * cpus in the magazine, skc_mag[NR_CPUS]. Because of this we
1504 * explicitly pass KM_NODEBUG to suppress the kmem warning
1505 */
1506 skc = kmem_zalloc(sizeof(*skc), KM_SLEEP| KM_NODEBUG);
1507 if (skc == NULL)
1508 SRETURN(NULL);
1509
1510 skc->skc_magic = SKC_MAGIC;
1511 skc->skc_name_size = strlen(name) + 1;
1512 skc->skc_name = (char *)kmem_alloc(skc->skc_name_size, KM_SLEEP);
1513 if (skc->skc_name == NULL) {
1514 kmem_free(skc, sizeof(*skc));
1515 SRETURN(NULL);
1516 }
1517 strncpy(skc->skc_name, name, skc->skc_name_size);
1518
1519 skc->skc_ctor = ctor;
1520 skc->skc_dtor = dtor;
1521 skc->skc_reclaim = reclaim;
1522 skc->skc_private = priv;
1523 skc->skc_vmp = vmp;
1524 skc->skc_flags = flags;
1525 skc->skc_obj_size = size;
1526 skc->skc_obj_align = SPL_KMEM_CACHE_ALIGN;
1527 skc->skc_delay = SPL_KMEM_CACHE_DELAY;
1528 skc->skc_reap = SPL_KMEM_CACHE_REAP;
1529 atomic_set(&skc->skc_ref, 0);
1530
1531 INIT_LIST_HEAD(&skc->skc_list);
1532 INIT_LIST_HEAD(&skc->skc_complete_list);
1533 INIT_LIST_HEAD(&skc->skc_partial_list);
1534 skc->skc_emergency_tree = RB_ROOT;
1535 spin_lock_init(&skc->skc_lock);
1536 init_waitqueue_head(&skc->skc_waitq);
1537 skc->skc_slab_fail = 0;
1538 skc->skc_slab_create = 0;
1539 skc->skc_slab_destroy = 0;
1540 skc->skc_slab_total = 0;
1541 skc->skc_slab_alloc = 0;
1542 skc->skc_slab_max = 0;
1543 skc->skc_obj_total = 0;
1544 skc->skc_obj_alloc = 0;
1545 skc->skc_obj_max = 0;
1546 skc->skc_obj_deadlock = 0;
1547 skc->skc_obj_emergency = 0;
1548 skc->skc_obj_emergency_max = 0;
1549
1550 if (align) {
1551 VERIFY(ISP2(align));
1552 VERIFY3U(align, >=, SPL_KMEM_CACHE_ALIGN); /* Min alignment */
1553 VERIFY3U(align, <=, PAGE_SIZE); /* Max alignment */
1554 skc->skc_obj_align = align;
1555 }
1556
1557 /* If none passed select a cache type based on object size */
1558 if (!(skc->skc_flags & (KMC_KMEM | KMC_VMEM))) {
1559 if (spl_obj_size(skc) < (PAGE_SIZE / 8))
1560 skc->skc_flags |= KMC_KMEM;
1561 else
1562 skc->skc_flags |= KMC_VMEM;
1563 }
1564
1565 rc = spl_slab_size(skc, &skc->skc_slab_objs, &skc->skc_slab_size);
1566 if (rc)
1567 SGOTO(out, rc);
1568
1569 rc = spl_magazine_create(skc);
1570 if (rc)
1571 SGOTO(out, rc);
1572
1573 skc->skc_taskqid = taskq_dispatch_delay(spl_kmem_cache_taskq,
1574 spl_cache_age, skc, TQ_SLEEP,
1575 ddi_get_lbolt() + skc->skc_delay / 3 * HZ);
1576
1577 down_write(&spl_kmem_cache_sem);
1578 list_add_tail(&skc->skc_list, &spl_kmem_cache_list);
1579 up_write(&spl_kmem_cache_sem);
1580
1581 SRETURN(skc);
1582 out:
1583 kmem_free(skc->skc_name, skc->skc_name_size);
1584 kmem_free(skc, sizeof(*skc));
1585 SRETURN(NULL);
1586 }
1587 EXPORT_SYMBOL(spl_kmem_cache_create);
1588
1589 /*
1590 * Register a move callback to for cache defragmentation.
1591 * XXX: Unimplemented but harmless to stub out for now.
1592 */
1593 void
1594 spl_kmem_cache_set_move(spl_kmem_cache_t *skc,
1595 kmem_cbrc_t (move)(void *, void *, size_t, void *))
1596 {
1597 ASSERT(move != NULL);
1598 }
1599 EXPORT_SYMBOL(spl_kmem_cache_set_move);
1600
1601 /*
1602 * Destroy a cache and all objects associated with the cache.
1603 */
1604 void
1605 spl_kmem_cache_destroy(spl_kmem_cache_t *skc)
1606 {
1607 DECLARE_WAIT_QUEUE_HEAD(wq);
1608 taskqid_t id;
1609 SENTRY;
1610
1611 ASSERT(skc->skc_magic == SKC_MAGIC);
1612
1613 down_write(&spl_kmem_cache_sem);
1614 list_del_init(&skc->skc_list);
1615 up_write(&spl_kmem_cache_sem);
1616
1617 /* Cancel any and wait for any pending delayed tasks */
1618 VERIFY(!test_and_set_bit(KMC_BIT_DESTROY, &skc->skc_flags));
1619
1620 spin_lock(&skc->skc_lock);
1621 id = skc->skc_taskqid;
1622 spin_unlock(&skc->skc_lock);
1623
1624 taskq_cancel_id(spl_kmem_cache_taskq, id);
1625
1626 /* Wait until all current callers complete, this is mainly
1627 * to catch the case where a low memory situation triggers a
1628 * cache reaping action which races with this destroy. */
1629 wait_event(wq, atomic_read(&skc->skc_ref) == 0);
1630
1631 spl_magazine_destroy(skc);
1632 spl_slab_reclaim(skc, 0, 1);
1633 spin_lock(&skc->skc_lock);
1634
1635 /* Validate there are no objects in use and free all the
1636 * spl_kmem_slab_t, spl_kmem_obj_t, and object buffers. */
1637 ASSERT3U(skc->skc_slab_alloc, ==, 0);
1638 ASSERT3U(skc->skc_obj_alloc, ==, 0);
1639 ASSERT3U(skc->skc_slab_total, ==, 0);
1640 ASSERT3U(skc->skc_obj_total, ==, 0);
1641 ASSERT3U(skc->skc_obj_emergency, ==, 0);
1642 ASSERT(list_empty(&skc->skc_complete_list));
1643
1644 kmem_free(skc->skc_name, skc->skc_name_size);
1645 spin_unlock(&skc->skc_lock);
1646
1647 kmem_free(skc, sizeof(*skc));
1648
1649 SEXIT;
1650 }
1651 EXPORT_SYMBOL(spl_kmem_cache_destroy);
1652
1653 /*
1654 * Allocate an object from a slab attached to the cache. This is used to
1655 * repopulate the per-cpu magazine caches in batches when they run low.
1656 */
1657 static void *
1658 spl_cache_obj(spl_kmem_cache_t *skc, spl_kmem_slab_t *sks)
1659 {
1660 spl_kmem_obj_t *sko;
1661
1662 ASSERT(skc->skc_magic == SKC_MAGIC);
1663 ASSERT(sks->sks_magic == SKS_MAGIC);
1664 ASSERT(spin_is_locked(&skc->skc_lock));
1665
1666 sko = list_entry(sks->sks_free_list.next, spl_kmem_obj_t, sko_list);
1667 ASSERT(sko->sko_magic == SKO_MAGIC);
1668 ASSERT(sko->sko_addr != NULL);
1669
1670 /* Remove from sks_free_list */
1671 list_del_init(&sko->sko_list);
1672
1673 sks->sks_age = jiffies;
1674 sks->sks_ref++;
1675 skc->skc_obj_alloc++;
1676
1677 /* Track max obj usage statistics */
1678 if (skc->skc_obj_alloc > skc->skc_obj_max)
1679 skc->skc_obj_max = skc->skc_obj_alloc;
1680
1681 /* Track max slab usage statistics */
1682 if (sks->sks_ref == 1) {
1683 skc->skc_slab_alloc++;
1684
1685 if (skc->skc_slab_alloc > skc->skc_slab_max)
1686 skc->skc_slab_max = skc->skc_slab_alloc;
1687 }
1688
1689 return sko->sko_addr;
1690 }
1691
1692 /*
1693 * Generic slab allocation function to run by the global work queues.
1694 * It is responsible for allocating a new slab, linking it in to the list
1695 * of partial slabs, and then waking any waiters.
1696 */
1697 static void
1698 spl_cache_grow_work(void *data)
1699 {
1700 spl_kmem_alloc_t *ska = (spl_kmem_alloc_t *)data;
1701 spl_kmem_cache_t *skc = ska->ska_cache;
1702 spl_kmem_slab_t *sks;
1703
1704 sks = spl_slab_alloc(skc, ska->ska_flags | __GFP_NORETRY | KM_NODEBUG);
1705 spin_lock(&skc->skc_lock);
1706 if (sks) {
1707 skc->skc_slab_total++;
1708 skc->skc_obj_total += sks->sks_objs;
1709 list_add_tail(&sks->sks_list, &skc->skc_partial_list);
1710 }
1711
1712 atomic_dec(&skc->skc_ref);
1713 clear_bit(KMC_BIT_GROWING, &skc->skc_flags);
1714 clear_bit(KMC_BIT_DEADLOCKED, &skc->skc_flags);
1715 wake_up_all(&skc->skc_waitq);
1716 spin_unlock(&skc->skc_lock);
1717
1718 kfree(ska);
1719 }
1720
1721 /*
1722 * Returns non-zero when a new slab should be available.
1723 */
1724 static int
1725 spl_cache_grow_wait(spl_kmem_cache_t *skc)
1726 {
1727 return !test_bit(KMC_BIT_GROWING, &skc->skc_flags);
1728 }
1729
1730 static int
1731 spl_cache_reclaim_wait(void *word)
1732 {
1733 schedule();
1734 return 0;
1735 }
1736
1737 /*
1738 * No available objects on any slabs, create a new slab.
1739 */
1740 static int
1741 spl_cache_grow(spl_kmem_cache_t *skc, int flags, void **obj)
1742 {
1743 int remaining, rc;
1744 SENTRY;
1745
1746 ASSERT(skc->skc_magic == SKC_MAGIC);
1747 might_sleep();
1748 *obj = NULL;
1749
1750 /*
1751 * Before allocating a new slab wait for any reaping to complete and
1752 * then return so the local magazine can be rechecked for new objects.
1753 */
1754 if (test_bit(KMC_BIT_REAPING, &skc->skc_flags)) {
1755 rc = wait_on_bit(&skc->skc_flags, KMC_BIT_REAPING,
1756 spl_cache_reclaim_wait, TASK_UNINTERRUPTIBLE);
1757 SRETURN(rc ? rc : -EAGAIN);
1758 }
1759
1760 /*
1761 * This is handled by dispatching a work request to the global work
1762 * queue. This allows us to asynchronously allocate a new slab while
1763 * retaining the ability to safely fall back to a smaller synchronous
1764 * allocations to ensure forward progress is always maintained.
1765 */
1766 if (test_and_set_bit(KMC_BIT_GROWING, &skc->skc_flags) == 0) {
1767 spl_kmem_alloc_t *ska;
1768
1769 ska = kmalloc(sizeof(*ska), flags);
1770 if (ska == NULL) {
1771 clear_bit(KMC_BIT_GROWING, &skc->skc_flags);
1772 wake_up_all(&skc->skc_waitq);
1773 SRETURN(-ENOMEM);
1774 }
1775
1776 atomic_inc(&skc->skc_ref);
1777 ska->ska_cache = skc;
1778 ska->ska_flags = flags & ~__GFP_FS;
1779 taskq_init_ent(&ska->ska_tqe);
1780 taskq_dispatch_ent(spl_kmem_cache_taskq,
1781 spl_cache_grow_work, ska, 0, &ska->ska_tqe);
1782 }
1783
1784 /*
1785 * The goal here is to only detect the rare case where a virtual slab
1786 * allocation has deadlocked. We must be careful to minimize the use
1787 * of emergency objects which are more expensive to track. Therefore,
1788 * we set a very long timeout for the asynchronous allocation and if
1789 * the timeout is reached the cache is flagged as deadlocked. From
1790 * this point only new emergency objects will be allocated until the
1791 * asynchronous allocation completes and clears the deadlocked flag.
1792 */
1793 if (test_bit(KMC_BIT_DEADLOCKED, &skc->skc_flags)) {
1794 rc = spl_emergency_alloc(skc, flags, obj);
1795 } else {
1796 remaining = wait_event_timeout(skc->skc_waitq,
1797 spl_cache_grow_wait(skc), HZ);
1798
1799 if (!remaining && test_bit(KMC_BIT_VMEM, &skc->skc_flags)) {
1800 spin_lock(&skc->skc_lock);
1801 if (test_bit(KMC_BIT_GROWING, &skc->skc_flags)) {
1802 set_bit(KMC_BIT_DEADLOCKED, &skc->skc_flags);
1803 skc->skc_obj_deadlock++;
1804 }
1805 spin_unlock(&skc->skc_lock);
1806 }
1807
1808 rc = -ENOMEM;
1809 }
1810
1811 SRETURN(rc);
1812 }
1813
1814 /*
1815 * Refill a per-cpu magazine with objects from the slabs for this cache.
1816 * Ideally the magazine can be repopulated using existing objects which have
1817 * been released, however if we are unable to locate enough free objects new
1818 * slabs of objects will be created. On success NULL is returned, otherwise
1819 * the address of a single emergency object is returned for use by the caller.
1820 */
1821 static void *
1822 spl_cache_refill(spl_kmem_cache_t *skc, spl_kmem_magazine_t *skm, int flags)
1823 {
1824 spl_kmem_slab_t *sks;
1825 int count = 0, rc, refill;
1826 void *obj = NULL;
1827 SENTRY;
1828
1829 ASSERT(skc->skc_magic == SKC_MAGIC);
1830 ASSERT(skm->skm_magic == SKM_MAGIC);
1831
1832 refill = MIN(skm->skm_refill, skm->skm_size - skm->skm_avail);
1833 spin_lock(&skc->skc_lock);
1834
1835 while (refill > 0) {
1836 /* No slabs available we may need to grow the cache */
1837 if (list_empty(&skc->skc_partial_list)) {
1838 spin_unlock(&skc->skc_lock);
1839
1840 local_irq_enable();
1841 rc = spl_cache_grow(skc, flags, &obj);
1842 local_irq_disable();
1843
1844 /* Emergency object for immediate use by caller */
1845 if (rc == 0 && obj != NULL)
1846 SRETURN(obj);
1847
1848 if (rc)
1849 SGOTO(out, rc);
1850
1851 /* Rescheduled to different CPU skm is not local */
1852 if (skm != skc->skc_mag[smp_processor_id()])
1853 SGOTO(out, rc);
1854
1855 /* Potentially rescheduled to the same CPU but
1856 * allocations may have occurred from this CPU while
1857 * we were sleeping so recalculate max refill. */
1858 refill = MIN(refill, skm->skm_size - skm->skm_avail);
1859
1860 spin_lock(&skc->skc_lock);
1861 continue;
1862 }
1863
1864 /* Grab the next available slab */
1865 sks = list_entry((&skc->skc_partial_list)->next,
1866 spl_kmem_slab_t, sks_list);
1867 ASSERT(sks->sks_magic == SKS_MAGIC);
1868 ASSERT(sks->sks_ref < sks->sks_objs);
1869 ASSERT(!list_empty(&sks->sks_free_list));
1870
1871 /* Consume as many objects as needed to refill the requested
1872 * cache. We must also be careful not to overfill it. */
1873 while (sks->sks_ref < sks->sks_objs && refill-- > 0 && ++count) {
1874 ASSERT(skm->skm_avail < skm->skm_size);
1875 ASSERT(count < skm->skm_size);
1876 skm->skm_objs[skm->skm_avail++]=spl_cache_obj(skc,sks);
1877 }
1878
1879 /* Move slab to skc_complete_list when full */
1880 if (sks->sks_ref == sks->sks_objs) {
1881 list_del(&sks->sks_list);
1882 list_add(&sks->sks_list, &skc->skc_complete_list);
1883 }
1884 }
1885
1886 spin_unlock(&skc->skc_lock);
1887 out:
1888 SRETURN(NULL);
1889 }
1890
1891 /*
1892 * Release an object back to the slab from which it came.
1893 */
1894 static void
1895 spl_cache_shrink(spl_kmem_cache_t *skc, void *obj)
1896 {
1897 spl_kmem_slab_t *sks = NULL;
1898 spl_kmem_obj_t *sko = NULL;
1899 SENTRY;
1900
1901 ASSERT(skc->skc_magic == SKC_MAGIC);
1902 ASSERT(spin_is_locked(&skc->skc_lock));
1903
1904 sko = spl_sko_from_obj(skc, obj);
1905 ASSERT(sko->sko_magic == SKO_MAGIC);
1906 sks = sko->sko_slab;
1907 ASSERT(sks->sks_magic == SKS_MAGIC);
1908 ASSERT(sks->sks_cache == skc);
1909 list_add(&sko->sko_list, &sks->sks_free_list);
1910
1911 sks->sks_age = jiffies;
1912 sks->sks_ref--;
1913 skc->skc_obj_alloc--;
1914
1915 /* Move slab to skc_partial_list when no longer full. Slabs
1916 * are added to the head to keep the partial list is quasi-full
1917 * sorted order. Fuller at the head, emptier at the tail. */
1918 if (sks->sks_ref == (sks->sks_objs - 1)) {
1919 list_del(&sks->sks_list);
1920 list_add(&sks->sks_list, &skc->skc_partial_list);
1921 }
1922
1923 /* Move empty slabs to the end of the partial list so
1924 * they can be easily found and freed during reclamation. */
1925 if (sks->sks_ref == 0) {
1926 list_del(&sks->sks_list);
1927 list_add_tail(&sks->sks_list, &skc->skc_partial_list);
1928 skc->skc_slab_alloc--;
1929 }
1930
1931 SEXIT;
1932 }
1933
1934 /*
1935 * Release a batch of objects from a per-cpu magazine back to their
1936 * respective slabs. This occurs when we exceed the magazine size,
1937 * are under memory pressure, when the cache is idle, or during
1938 * cache cleanup. The flush argument contains the number of entries
1939 * to remove from the magazine.
1940 */
1941 static int
1942 spl_cache_flush(spl_kmem_cache_t *skc, spl_kmem_magazine_t *skm, int flush)
1943 {
1944 int i, count = MIN(flush, skm->skm_avail);
1945 SENTRY;
1946
1947 ASSERT(skc->skc_magic == SKC_MAGIC);
1948 ASSERT(skm->skm_magic == SKM_MAGIC);
1949
1950 /*
1951 * XXX: Currently we simply return objects from the magazine to
1952 * the slabs in fifo order. The ideal thing to do from a memory
1953 * fragmentation standpoint is to cheaply determine the set of
1954 * objects in the magazine which will result in the largest
1955 * number of free slabs if released from the magazine.
1956 */
1957 spin_lock(&skc->skc_lock);
1958 for (i = 0; i < count; i++)
1959 spl_cache_shrink(skc, skm->skm_objs[i]);
1960
1961 skm->skm_avail -= count;
1962 memmove(skm->skm_objs, &(skm->skm_objs[count]),
1963 sizeof(void *) * skm->skm_avail);
1964
1965 spin_unlock(&skc->skc_lock);
1966
1967 SRETURN(count);
1968 }
1969
1970 /*
1971 * Allocate an object from the per-cpu magazine, or if the magazine
1972 * is empty directly allocate from a slab and repopulate the magazine.
1973 */
1974 void *
1975 spl_kmem_cache_alloc(spl_kmem_cache_t *skc, int flags)
1976 {
1977 spl_kmem_magazine_t *skm;
1978 unsigned long irq_flags;
1979 void *obj = NULL;
1980 SENTRY;
1981
1982 ASSERT(skc->skc_magic == SKC_MAGIC);
1983 ASSERT(!test_bit(KMC_BIT_DESTROY, &skc->skc_flags));
1984 ASSERT(flags & KM_SLEEP);
1985 atomic_inc(&skc->skc_ref);
1986 local_irq_save(irq_flags);
1987
1988 restart:
1989 /* Safe to update per-cpu structure without lock, but
1990 * in the restart case we must be careful to reacquire
1991 * the local magazine since this may have changed
1992 * when we need to grow the cache. */
1993 skm = skc->skc_mag[smp_processor_id()];
1994 ASSERTF(skm->skm_magic == SKM_MAGIC, "%x != %x: %s/%p/%p %x/%x/%x\n",
1995 skm->skm_magic, SKM_MAGIC, skc->skc_name, skc, skm,
1996 skm->skm_size, skm->skm_refill, skm->skm_avail);
1997
1998 if (likely(skm->skm_avail)) {
1999 /* Object available in CPU cache, use it */
2000 obj = skm->skm_objs[--skm->skm_avail];
2001 skm->skm_age = jiffies;
2002 } else {
2003 obj = spl_cache_refill(skc, skm, flags);
2004 if (obj == NULL)
2005 SGOTO(restart, obj = NULL);
2006 }
2007
2008 local_irq_restore(irq_flags);
2009 ASSERT(obj);
2010 ASSERT(IS_P2ALIGNED(obj, skc->skc_obj_align));
2011
2012 /* Pre-emptively migrate object to CPU L1 cache */
2013 prefetchw(obj);
2014 atomic_dec(&skc->skc_ref);
2015
2016 SRETURN(obj);
2017 }
2018 EXPORT_SYMBOL(spl_kmem_cache_alloc);
2019
2020 /*
2021 * Free an object back to the local per-cpu magazine, there is no
2022 * guarantee that this is the same magazine the object was originally
2023 * allocated from. We may need to flush entire from the magazine
2024 * back to the slabs to make space.
2025 */
2026 void
2027 spl_kmem_cache_free(spl_kmem_cache_t *skc, void *obj)
2028 {
2029 spl_kmem_magazine_t *skm;
2030 unsigned long flags;
2031 SENTRY;
2032
2033 ASSERT(skc->skc_magic == SKC_MAGIC);
2034 ASSERT(!test_bit(KMC_BIT_DESTROY, &skc->skc_flags));
2035 atomic_inc(&skc->skc_ref);
2036
2037 /*
2038 * Only virtual slabs may have emergency objects and these objects
2039 * are guaranteed to have physical addresses. They must be removed
2040 * from the tree of emergency objects and the freed.
2041 */
2042 if ((skc->skc_flags & KMC_VMEM) && !kmem_virt(obj))
2043 SGOTO(out, spl_emergency_free(skc, obj));
2044
2045 local_irq_save(flags);
2046
2047 /* Safe to update per-cpu structure without lock, but
2048 * no remote memory allocation tracking is being performed
2049 * it is entirely possible to allocate an object from one
2050 * CPU cache and return it to another. */
2051 skm = skc->skc_mag[smp_processor_id()];
2052 ASSERT(skm->skm_magic == SKM_MAGIC);
2053
2054 /* Per-CPU cache full, flush it to make space */
2055 if (unlikely(skm->skm_avail >= skm->skm_size))
2056 (void)spl_cache_flush(skc, skm, skm->skm_refill);
2057
2058 /* Available space in cache, use it */
2059 skm->skm_objs[skm->skm_avail++] = obj;
2060
2061 local_irq_restore(flags);
2062 out:
2063 atomic_dec(&skc->skc_ref);
2064
2065 SEXIT;
2066 }
2067 EXPORT_SYMBOL(spl_kmem_cache_free);
2068
2069 /*
2070 * The generic shrinker function for all caches. Under Linux a shrinker
2071 * may not be tightly coupled with a slab cache. In fact Linux always
2072 * systematically tries calling all registered shrinker callbacks which
2073 * report that they contain unused objects. Because of this we only
2074 * register one shrinker function in the shim layer for all slab caches.
2075 * We always attempt to shrink all caches when this generic shrinker
2076 * is called. The shrinker should return the number of free objects
2077 * in the cache when called with nr_to_scan == 0 but not attempt to
2078 * free any objects. When nr_to_scan > 0 it is a request that nr_to_scan
2079 * objects should be freed, which differs from Solaris semantics.
2080 * Solaris semantics are to free all available objects which may (and
2081 * probably will) be more objects than the requested nr_to_scan.
2082 */
2083 static int
2084 __spl_kmem_cache_generic_shrinker(struct shrinker *shrink,
2085 struct shrink_control *sc)
2086 {
2087 spl_kmem_cache_t *skc;
2088 int unused = 0;
2089
2090 down_read(&spl_kmem_cache_sem);
2091 list_for_each_entry(skc, &spl_kmem_cache_list, skc_list) {
2092 if (sc->nr_to_scan)
2093 spl_kmem_cache_reap_now(skc,
2094 MAX(sc->nr_to_scan >> fls64(skc->skc_slab_objs), 1));
2095
2096 /*
2097 * Presume everything alloc'ed in reclaimable, this ensures
2098 * we are called again with nr_to_scan > 0 so can try and
2099 * reclaim. The exact number is not important either so
2100 * we forgo taking this already highly contented lock.
2101 */
2102 unused += skc->skc_obj_alloc;
2103 }
2104 up_read(&spl_kmem_cache_sem);
2105
2106 return (unused * sysctl_vfs_cache_pressure) / 100;
2107 }
2108
2109 SPL_SHRINKER_CALLBACK_WRAPPER(spl_kmem_cache_generic_shrinker);
2110
2111 /*
2112 * Call the registered reclaim function for a cache. Depending on how
2113 * many and which objects are released it may simply repopulate the
2114 * local magazine which will then need to age-out. Objects which cannot
2115 * fit in the magazine we will be released back to their slabs which will
2116 * also need to age out before being release. This is all just best
2117 * effort and we do not want to thrash creating and destroying slabs.
2118 */
2119 void
2120 spl_kmem_cache_reap_now(spl_kmem_cache_t *skc, int count)
2121 {
2122 SENTRY;
2123
2124 ASSERT(skc->skc_magic == SKC_MAGIC);
2125 ASSERT(!test_bit(KMC_BIT_DESTROY, &skc->skc_flags));
2126
2127 /* Prevent concurrent cache reaping when contended */
2128 if (test_and_set_bit(KMC_BIT_REAPING, &skc->skc_flags)) {
2129 SEXIT;
2130 return;
2131 }
2132
2133 atomic_inc(&skc->skc_ref);
2134
2135 /*
2136 * When a reclaim function is available it may be invoked repeatedly
2137 * until at least a single slab can be freed. This ensures that we
2138 * do free memory back to the system. This helps minimize the chance
2139 * of an OOM event when the bulk of memory is used by the slab.
2140 *
2141 * When free slabs are already available the reclaim callback will be
2142 * skipped. Additionally, if no forward progress is detected despite
2143 * a reclaim function the cache will be skipped to avoid deadlock.
2144 *
2145 * Longer term this would be the correct place to add the code which
2146 * repacks the slabs in order minimize fragmentation.
2147 */
2148 if (skc->skc_reclaim) {
2149 uint64_t objects = UINT64_MAX;
2150 int do_reclaim;
2151
2152 do {
2153 spin_lock(&skc->skc_lock);
2154 do_reclaim =
2155 (skc->skc_slab_total > 0) &&
2156 ((skc->skc_slab_total - skc->skc_slab_alloc) == 0) &&
2157 (skc->skc_obj_alloc < objects);
2158
2159 objects = skc->skc_obj_alloc;
2160 spin_unlock(&skc->skc_lock);
2161
2162 if (do_reclaim)
2163 skc->skc_reclaim(skc->skc_private);
2164
2165 } while (do_reclaim);
2166 }
2167
2168 /* Reclaim from the cache, ignoring it's age and delay. */
2169 spl_slab_reclaim(skc, count, 1);
2170 clear_bit(KMC_BIT_REAPING, &skc->skc_flags);
2171 smp_mb__after_clear_bit();
2172 wake_up_bit(&skc->skc_flags, KMC_BIT_REAPING);
2173
2174 atomic_dec(&skc->skc_ref);
2175
2176 SEXIT;
2177 }
2178 EXPORT_SYMBOL(spl_kmem_cache_reap_now);
2179
2180 /*
2181 * Reap all free slabs from all registered caches.
2182 */
2183 void
2184 spl_kmem_reap(void)
2185 {
2186 struct shrink_control sc;
2187
2188 sc.nr_to_scan = KMC_REAP_CHUNK;
2189 sc.gfp_mask = GFP_KERNEL;
2190
2191 __spl_kmem_cache_generic_shrinker(NULL, &sc);
2192 }
2193 EXPORT_SYMBOL(spl_kmem_reap);
2194
2195 #if defined(DEBUG_KMEM) && defined(DEBUG_KMEM_TRACKING)
2196 static char *
2197 spl_sprintf_addr(kmem_debug_t *kd, char *str, int len, int min)
2198 {
2199 int size = ((len - 1) < kd->kd_size) ? (len - 1) : kd->kd_size;
2200 int i, flag = 1;
2201
2202 ASSERT(str != NULL && len >= 17);
2203 memset(str, 0, len);
2204
2205 /* Check for a fully printable string, and while we are at
2206 * it place the printable characters in the passed buffer. */
2207 for (i = 0; i < size; i++) {
2208 str[i] = ((char *)(kd->kd_addr))[i];
2209 if (isprint(str[i])) {
2210 continue;
2211 } else {
2212 /* Minimum number of printable characters found
2213 * to make it worthwhile to print this as ascii. */
2214 if (i > min)
2215 break;
2216
2217 flag = 0;
2218 break;
2219 }
2220 }
2221
2222 if (!flag) {
2223 sprintf(str, "%02x%02x%02x%02x%02x%02x%02x%02x",
2224 *((uint8_t *)kd->kd_addr),
2225 *((uint8_t *)kd->kd_addr + 2),
2226 *((uint8_t *)kd->kd_addr + 4),
2227 *((uint8_t *)kd->kd_addr + 6),
2228 *((uint8_t *)kd->kd_addr + 8),
2229 *((uint8_t *)kd->kd_addr + 10),
2230 *((uint8_t *)kd->kd_addr + 12),
2231 *((uint8_t *)kd->kd_addr + 14));
2232 }
2233
2234 return str;
2235 }
2236
2237 static int
2238 spl_kmem_init_tracking(struct list_head *list, spinlock_t *lock, int size)
2239 {
2240 int i;
2241 SENTRY;
2242
2243 spin_lock_init(lock);
2244 INIT_LIST_HEAD(list);
2245
2246 for (i = 0; i < size; i++)
2247 INIT_HLIST_HEAD(&kmem_table[i]);
2248
2249 SRETURN(0);
2250 }
2251
2252 static void
2253 spl_kmem_fini_tracking(struct list_head *list, spinlock_t *lock)
2254 {
2255 unsigned long flags;
2256 kmem_debug_t *kd;
2257 char str[17];
2258 SENTRY;
2259
2260 spin_lock_irqsave(lock, flags);
2261 if (!list_empty(list))
2262 printk(KERN_WARNING "%-16s %-5s %-16s %s:%s\n", "address",
2263 "size", "data", "func", "line");
2264
2265 list_for_each_entry(kd, list, kd_list)
2266 printk(KERN_WARNING "%p %-5d %-16s %s:%d\n", kd->kd_addr,
2267 (int)kd->kd_size, spl_sprintf_addr(kd, str, 17, 8),
2268 kd->kd_func, kd->kd_line);
2269
2270 spin_unlock_irqrestore(lock, flags);
2271 SEXIT;
2272 }
2273 #else /* DEBUG_KMEM && DEBUG_KMEM_TRACKING */
2274 #define spl_kmem_init_tracking(list, lock, size)
2275 #define spl_kmem_fini_tracking(list, lock)
2276 #endif /* DEBUG_KMEM && DEBUG_KMEM_TRACKING */
2277
2278 static void
2279 spl_kmem_init_globals(void)
2280 {
2281 struct zone *zone;
2282
2283 /* For now all zones are includes, it may be wise to restrict
2284 * this to normal and highmem zones if we see problems. */
2285 for_each_zone(zone) {
2286
2287 if (!populated_zone(zone))
2288 continue;
2289
2290 minfree += min_wmark_pages(zone);
2291 desfree += low_wmark_pages(zone);
2292 lotsfree += high_wmark_pages(zone);
2293 }
2294
2295 /* Solaris default values */
2296 swapfs_minfree = MAX(2*1024*1024 >> PAGE_SHIFT, physmem >> 3);
2297 swapfs_reserve = MIN(4*1024*1024 >> PAGE_SHIFT, physmem >> 4);
2298 }
2299
2300 /*
2301 * Called at module init when it is safe to use spl_kallsyms_lookup_name()
2302 */
2303 int
2304 spl_kmem_init_kallsyms_lookup(void)
2305 {
2306 #ifndef HAVE_GET_VMALLOC_INFO
2307 get_vmalloc_info_fn = (get_vmalloc_info_t)
2308 spl_kallsyms_lookup_name("get_vmalloc_info");
2309 if (!get_vmalloc_info_fn) {
2310 printk(KERN_ERR "Error: Unknown symbol get_vmalloc_info\n");
2311 return -EFAULT;
2312 }
2313 #endif /* HAVE_GET_VMALLOC_INFO */
2314
2315 #ifdef HAVE_PGDAT_HELPERS
2316 # ifndef HAVE_FIRST_ONLINE_PGDAT
2317 first_online_pgdat_fn = (first_online_pgdat_t)
2318 spl_kallsyms_lookup_name("first_online_pgdat");
2319 if (!first_online_pgdat_fn) {
2320 printk(KERN_ERR "Error: Unknown symbol first_online_pgdat\n");
2321 return -EFAULT;
2322 }
2323 # endif /* HAVE_FIRST_ONLINE_PGDAT */
2324
2325 # ifndef HAVE_NEXT_ONLINE_PGDAT
2326 next_online_pgdat_fn = (next_online_pgdat_t)
2327 spl_kallsyms_lookup_name("next_online_pgdat");
2328 if (!next_online_pgdat_fn) {
2329 printk(KERN_ERR "Error: Unknown symbol next_online_pgdat\n");
2330 return -EFAULT;
2331 }
2332 # endif /* HAVE_NEXT_ONLINE_PGDAT */
2333
2334 # ifndef HAVE_NEXT_ZONE
2335 next_zone_fn = (next_zone_t)
2336 spl_kallsyms_lookup_name("next_zone");
2337 if (!next_zone_fn) {
2338 printk(KERN_ERR "Error: Unknown symbol next_zone\n");
2339 return -EFAULT;
2340 }
2341 # endif /* HAVE_NEXT_ZONE */
2342
2343 #else /* HAVE_PGDAT_HELPERS */
2344
2345 # ifndef HAVE_PGDAT_LIST
2346 pgdat_list_addr = *(struct pglist_data **)
2347 spl_kallsyms_lookup_name("pgdat_list");
2348 if (!pgdat_list_addr) {
2349 printk(KERN_ERR "Error: Unknown symbol pgdat_list\n");
2350 return -EFAULT;
2351 }
2352 # endif /* HAVE_PGDAT_LIST */
2353 #endif /* HAVE_PGDAT_HELPERS */
2354
2355 #if defined(NEED_GET_ZONE_COUNTS) && !defined(HAVE_GET_ZONE_COUNTS)
2356 get_zone_counts_fn = (get_zone_counts_t)
2357 spl_kallsyms_lookup_name("get_zone_counts");
2358 if (!get_zone_counts_fn) {
2359 printk(KERN_ERR "Error: Unknown symbol get_zone_counts\n");
2360 return -EFAULT;
2361 }
2362 #endif /* NEED_GET_ZONE_COUNTS && !HAVE_GET_ZONE_COUNTS */
2363
2364 /*
2365 * It is now safe to initialize the global tunings which rely on
2366 * the use of the for_each_zone() macro. This macro in turns
2367 * depends on the *_pgdat symbols which are now available.
2368 */
2369 spl_kmem_init_globals();
2370
2371 #if !defined(HAVE_INVALIDATE_INODES) && !defined(HAVE_INVALIDATE_INODES_CHECK)
2372 invalidate_inodes_fn = (invalidate_inodes_t)
2373 spl_kallsyms_lookup_name("invalidate_inodes");
2374 if (!invalidate_inodes_fn) {
2375 printk(KERN_ERR "Error: Unknown symbol invalidate_inodes\n");
2376 return -EFAULT;
2377 }
2378 #endif /* !HAVE_INVALIDATE_INODES && !HAVE_INVALIDATE_INODES_CHECK */
2379
2380 #ifndef HAVE_SHRINK_DCACHE_MEMORY
2381 /* When shrink_dcache_memory_fn == NULL support is disabled */
2382 shrink_dcache_memory_fn = (shrink_dcache_memory_t)
2383 spl_kallsyms_lookup_name("shrink_dcache_memory");
2384 #endif /* HAVE_SHRINK_DCACHE_MEMORY */
2385
2386 #ifndef HAVE_SHRINK_ICACHE_MEMORY
2387 /* When shrink_icache_memory_fn == NULL support is disabled */
2388 shrink_icache_memory_fn = (shrink_icache_memory_t)
2389 spl_kallsyms_lookup_name("shrink_icache_memory");
2390 #endif /* HAVE_SHRINK_ICACHE_MEMORY */
2391
2392 return 0;
2393 }
2394
2395 int
2396 spl_kmem_init(void)
2397 {
2398 int rc = 0;
2399 SENTRY;
2400
2401 init_rwsem(&spl_kmem_cache_sem);
2402 INIT_LIST_HEAD(&spl_kmem_cache_list);
2403 spl_kmem_cache_taskq = taskq_create("spl_kmem_cache",
2404 1, maxclsyspri, 1, 32, TASKQ_PREPOPULATE);
2405
2406 spl_register_shrinker(&spl_kmem_cache_shrinker);
2407
2408 #ifdef DEBUG_KMEM
2409 kmem_alloc_used_set(0);
2410 vmem_alloc_used_set(0);
2411
2412 spl_kmem_init_tracking(&kmem_list, &kmem_lock, KMEM_TABLE_SIZE);
2413 spl_kmem_init_tracking(&vmem_list, &vmem_lock, VMEM_TABLE_SIZE);
2414 #endif
2415 SRETURN(rc);
2416 }
2417
2418 void
2419 spl_kmem_fini(void)
2420 {
2421 #ifdef DEBUG_KMEM
2422 /* Display all unreclaimed memory addresses, including the
2423 * allocation size and the first few bytes of what's located
2424 * at that address to aid in debugging. Performance is not
2425 * a serious concern here since it is module unload time. */
2426 if (kmem_alloc_used_read() != 0)
2427 SDEBUG_LIMIT(SD_CONSOLE | SD_WARNING,
2428 "kmem leaked %ld/%ld bytes\n",
2429 kmem_alloc_used_read(), kmem_alloc_max);
2430
2431
2432 if (vmem_alloc_used_read() != 0)
2433 SDEBUG_LIMIT(SD_CONSOLE | SD_WARNING,
2434 "vmem leaked %ld/%ld bytes\n",
2435 vmem_alloc_used_read(), vmem_alloc_max);
2436
2437 spl_kmem_fini_tracking(&kmem_list, &kmem_lock);
2438 spl_kmem_fini_tracking(&vmem_list, &vmem_lock);
2439 #endif /* DEBUG_KMEM */
2440 SENTRY;
2441
2442 spl_unregister_shrinker(&spl_kmem_cache_shrinker);
2443 taskq_destroy(spl_kmem_cache_taskq);
2444
2445 SEXIT;
2446 }