]> git.proxmox.com Git - mirror_spl-debian.git/blob - module/spl/spl-kmem.c
kmem-cache: Fix slab ageing soft lockup
[mirror_spl-debian.git] / module / spl / spl-kmem.c
1 /*****************************************************************************\
2 * Copyright (C) 2007-2010 Lawrence Livermore National Security, LLC.
3 * Copyright (C) 2007 The Regents of the University of California.
4 * Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER).
5 * Written by Brian Behlendorf <behlendorf1@llnl.gov>.
6 * UCRL-CODE-235197
7 *
8 * This file is part of the SPL, Solaris Porting Layer.
9 * For details, see <http://github.com/behlendorf/spl/>.
10 *
11 * The SPL is free software; you can redistribute it and/or modify it
12 * under the terms of the GNU General Public License as published by the
13 * Free Software Foundation; either version 2 of the License, or (at your
14 * option) any later version.
15 *
16 * The SPL is distributed in the hope that it will be useful, but WITHOUT
17 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
18 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
19 * for more details.
20 *
21 * You should have received a copy of the GNU General Public License along
22 * with the SPL. If not, see <http://www.gnu.org/licenses/>.
23 *****************************************************************************
24 * Solaris Porting Layer (SPL) Kmem Implementation.
25 \*****************************************************************************/
26
27 #include <sys/kmem.h>
28 #include <spl-debug.h>
29
30 #ifdef SS_DEBUG_SUBSYS
31 #undef SS_DEBUG_SUBSYS
32 #endif
33
34 #define SS_DEBUG_SUBSYS SS_KMEM
35
36 /*
37 * The minimum amount of memory measured in pages to be free at all
38 * times on the system. This is similar to Linux's zone->pages_min
39 * multiplied by the number of zones and is sized based on that.
40 */
41 pgcnt_t minfree = 0;
42 EXPORT_SYMBOL(minfree);
43
44 /*
45 * The desired amount of memory measured in pages to be free at all
46 * times on the system. This is similar to Linux's zone->pages_low
47 * multiplied by the number of zones and is sized based on that.
48 * Assuming all zones are being used roughly equally, when we drop
49 * below this threshold asynchronous page reclamation is triggered.
50 */
51 pgcnt_t desfree = 0;
52 EXPORT_SYMBOL(desfree);
53
54 /*
55 * When above this amount of memory measures in pages the system is
56 * determined to have enough free memory. This is similar to Linux's
57 * zone->pages_high multiplied by the number of zones and is sized based
58 * on that. Assuming all zones are being used roughly equally, when
59 * asynchronous page reclamation reaches this threshold it stops.
60 */
61 pgcnt_t lotsfree = 0;
62 EXPORT_SYMBOL(lotsfree);
63
64 /* Unused always 0 in this implementation */
65 pgcnt_t needfree = 0;
66 EXPORT_SYMBOL(needfree);
67
68 pgcnt_t swapfs_minfree = 0;
69 EXPORT_SYMBOL(swapfs_minfree);
70
71 pgcnt_t swapfs_reserve = 0;
72 EXPORT_SYMBOL(swapfs_reserve);
73
74 vmem_t *heap_arena = NULL;
75 EXPORT_SYMBOL(heap_arena);
76
77 vmem_t *zio_alloc_arena = NULL;
78 EXPORT_SYMBOL(zio_alloc_arena);
79
80 vmem_t *zio_arena = NULL;
81 EXPORT_SYMBOL(zio_arena);
82
83 #ifndef HAVE_GET_VMALLOC_INFO
84 get_vmalloc_info_t get_vmalloc_info_fn = SYMBOL_POISON;
85 EXPORT_SYMBOL(get_vmalloc_info_fn);
86 #endif /* HAVE_GET_VMALLOC_INFO */
87
88 #ifdef HAVE_PGDAT_HELPERS
89 # ifndef HAVE_FIRST_ONLINE_PGDAT
90 first_online_pgdat_t first_online_pgdat_fn = SYMBOL_POISON;
91 EXPORT_SYMBOL(first_online_pgdat_fn);
92 # endif /* HAVE_FIRST_ONLINE_PGDAT */
93
94 # ifndef HAVE_NEXT_ONLINE_PGDAT
95 next_online_pgdat_t next_online_pgdat_fn = SYMBOL_POISON;
96 EXPORT_SYMBOL(next_online_pgdat_fn);
97 # endif /* HAVE_NEXT_ONLINE_PGDAT */
98
99 # ifndef HAVE_NEXT_ZONE
100 next_zone_t next_zone_fn = SYMBOL_POISON;
101 EXPORT_SYMBOL(next_zone_fn);
102 # endif /* HAVE_NEXT_ZONE */
103
104 #else /* HAVE_PGDAT_HELPERS */
105
106 # ifndef HAVE_PGDAT_LIST
107 struct pglist_data *pgdat_list_addr = SYMBOL_POISON;
108 EXPORT_SYMBOL(pgdat_list_addr);
109 # endif /* HAVE_PGDAT_LIST */
110
111 #endif /* HAVE_PGDAT_HELPERS */
112
113 #ifdef NEED_GET_ZONE_COUNTS
114 # ifndef HAVE_GET_ZONE_COUNTS
115 get_zone_counts_t get_zone_counts_fn = SYMBOL_POISON;
116 EXPORT_SYMBOL(get_zone_counts_fn);
117 # endif /* HAVE_GET_ZONE_COUNTS */
118
119 unsigned long
120 spl_global_page_state(spl_zone_stat_item_t item)
121 {
122 unsigned long active;
123 unsigned long inactive;
124 unsigned long free;
125
126 get_zone_counts(&active, &inactive, &free);
127 switch (item) {
128 case SPL_NR_FREE_PAGES: return free;
129 case SPL_NR_INACTIVE: return inactive;
130 case SPL_NR_ACTIVE: return active;
131 default: ASSERT(0); /* Unsupported */
132 }
133
134 return 0;
135 }
136 #else
137 # ifdef HAVE_GLOBAL_PAGE_STATE
138 unsigned long
139 spl_global_page_state(spl_zone_stat_item_t item)
140 {
141 unsigned long pages = 0;
142
143 switch (item) {
144 case SPL_NR_FREE_PAGES:
145 # ifdef HAVE_ZONE_STAT_ITEM_NR_FREE_PAGES
146 pages += global_page_state(NR_FREE_PAGES);
147 # endif
148 break;
149 case SPL_NR_INACTIVE:
150 # ifdef HAVE_ZONE_STAT_ITEM_NR_INACTIVE
151 pages += global_page_state(NR_INACTIVE);
152 # endif
153 # ifdef HAVE_ZONE_STAT_ITEM_NR_INACTIVE_ANON
154 pages += global_page_state(NR_INACTIVE_ANON);
155 # endif
156 # ifdef HAVE_ZONE_STAT_ITEM_NR_INACTIVE_FILE
157 pages += global_page_state(NR_INACTIVE_FILE);
158 # endif
159 break;
160 case SPL_NR_ACTIVE:
161 # ifdef HAVE_ZONE_STAT_ITEM_NR_ACTIVE
162 pages += global_page_state(NR_ACTIVE);
163 # endif
164 # ifdef HAVE_ZONE_STAT_ITEM_NR_ACTIVE_ANON
165 pages += global_page_state(NR_ACTIVE_ANON);
166 # endif
167 # ifdef HAVE_ZONE_STAT_ITEM_NR_ACTIVE_FILE
168 pages += global_page_state(NR_ACTIVE_FILE);
169 # endif
170 break;
171 default:
172 ASSERT(0); /* Unsupported */
173 }
174
175 return pages;
176 }
177 # else
178 # error "Both global_page_state() and get_zone_counts() unavailable"
179 # endif /* HAVE_GLOBAL_PAGE_STATE */
180 #endif /* NEED_GET_ZONE_COUNTS */
181 EXPORT_SYMBOL(spl_global_page_state);
182
183 #if !defined(HAVE_INVALIDATE_INODES) && !defined(HAVE_INVALIDATE_INODES_CHECK)
184 invalidate_inodes_t invalidate_inodes_fn = SYMBOL_POISON;
185 EXPORT_SYMBOL(invalidate_inodes_fn);
186 #endif /* !HAVE_INVALIDATE_INODES && !HAVE_INVALIDATE_INODES_CHECK */
187
188 #ifndef HAVE_SHRINK_DCACHE_MEMORY
189 shrink_dcache_memory_t shrink_dcache_memory_fn = SYMBOL_POISON;
190 EXPORT_SYMBOL(shrink_dcache_memory_fn);
191 #endif /* HAVE_SHRINK_DCACHE_MEMORY */
192
193 #ifndef HAVE_SHRINK_ICACHE_MEMORY
194 shrink_icache_memory_t shrink_icache_memory_fn = SYMBOL_POISON;
195 EXPORT_SYMBOL(shrink_icache_memory_fn);
196 #endif /* HAVE_SHRINK_ICACHE_MEMORY */
197
198 pgcnt_t
199 spl_kmem_availrmem(void)
200 {
201 /* The amount of easily available memory */
202 return (spl_global_page_state(SPL_NR_FREE_PAGES) +
203 spl_global_page_state(SPL_NR_INACTIVE));
204 }
205 EXPORT_SYMBOL(spl_kmem_availrmem);
206
207 size_t
208 vmem_size(vmem_t *vmp, int typemask)
209 {
210 struct vmalloc_info vmi;
211 size_t size = 0;
212
213 ASSERT(vmp == NULL);
214 ASSERT(typemask & (VMEM_ALLOC | VMEM_FREE));
215
216 get_vmalloc_info(&vmi);
217 if (typemask & VMEM_ALLOC)
218 size += (size_t)vmi.used;
219
220 if (typemask & VMEM_FREE)
221 size += (size_t)(VMALLOC_TOTAL - vmi.used);
222
223 return size;
224 }
225 EXPORT_SYMBOL(vmem_size);
226
227 int
228 kmem_debugging(void)
229 {
230 return 0;
231 }
232 EXPORT_SYMBOL(kmem_debugging);
233
234 #ifndef HAVE_KVASPRINTF
235 /* Simplified asprintf. */
236 char *kvasprintf(gfp_t gfp, const char *fmt, va_list ap)
237 {
238 unsigned int len;
239 char *p;
240 va_list aq;
241
242 va_copy(aq, ap);
243 len = vsnprintf(NULL, 0, fmt, aq);
244 va_end(aq);
245
246 p = kmalloc(len+1, gfp);
247 if (!p)
248 return NULL;
249
250 vsnprintf(p, len+1, fmt, ap);
251
252 return p;
253 }
254 EXPORT_SYMBOL(kvasprintf);
255 #endif /* HAVE_KVASPRINTF */
256
257 char *
258 kmem_vasprintf(const char *fmt, va_list ap)
259 {
260 va_list aq;
261 char *ptr;
262
263 do {
264 va_copy(aq, ap);
265 ptr = kvasprintf(GFP_KERNEL, fmt, aq);
266 va_end(aq);
267 } while (ptr == NULL);
268
269 return ptr;
270 }
271 EXPORT_SYMBOL(kmem_vasprintf);
272
273 char *
274 kmem_asprintf(const char *fmt, ...)
275 {
276 va_list ap;
277 char *ptr;
278
279 do {
280 va_start(ap, fmt);
281 ptr = kvasprintf(GFP_KERNEL, fmt, ap);
282 va_end(ap);
283 } while (ptr == NULL);
284
285 return ptr;
286 }
287 EXPORT_SYMBOL(kmem_asprintf);
288
289 static char *
290 __strdup(const char *str, int flags)
291 {
292 char *ptr;
293 int n;
294
295 n = strlen(str);
296 ptr = kmalloc_nofail(n + 1, flags);
297 if (ptr)
298 memcpy(ptr, str, n + 1);
299
300 return ptr;
301 }
302
303 char *
304 strdup(const char *str)
305 {
306 return __strdup(str, KM_SLEEP);
307 }
308 EXPORT_SYMBOL(strdup);
309
310 void
311 strfree(char *str)
312 {
313 kfree(str);
314 }
315 EXPORT_SYMBOL(strfree);
316
317 /*
318 * Memory allocation interfaces and debugging for basic kmem_*
319 * and vmem_* style memory allocation. When DEBUG_KMEM is enabled
320 * the SPL will keep track of the total memory allocated, and
321 * report any memory leaked when the module is unloaded.
322 */
323 #ifdef DEBUG_KMEM
324
325 /* Shim layer memory accounting */
326 # ifdef HAVE_ATOMIC64_T
327 atomic64_t kmem_alloc_used = ATOMIC64_INIT(0);
328 unsigned long long kmem_alloc_max = 0;
329 atomic64_t vmem_alloc_used = ATOMIC64_INIT(0);
330 unsigned long long vmem_alloc_max = 0;
331 # else /* HAVE_ATOMIC64_T */
332 atomic_t kmem_alloc_used = ATOMIC_INIT(0);
333 unsigned long long kmem_alloc_max = 0;
334 atomic_t vmem_alloc_used = ATOMIC_INIT(0);
335 unsigned long long vmem_alloc_max = 0;
336 # endif /* HAVE_ATOMIC64_T */
337
338 EXPORT_SYMBOL(kmem_alloc_used);
339 EXPORT_SYMBOL(kmem_alloc_max);
340 EXPORT_SYMBOL(vmem_alloc_used);
341 EXPORT_SYMBOL(vmem_alloc_max);
342
343 /* When DEBUG_KMEM_TRACKING is enabled not only will total bytes be tracked
344 * but also the location of every alloc and free. When the SPL module is
345 * unloaded a list of all leaked addresses and where they were allocated
346 * will be dumped to the console. Enabling this feature has a significant
347 * impact on performance but it makes finding memory leaks straight forward.
348 *
349 * Not surprisingly with debugging enabled the xmem_locks are very highly
350 * contended particularly on xfree(). If we want to run with this detailed
351 * debugging enabled for anything other than debugging we need to minimize
352 * the contention by moving to a lock per xmem_table entry model.
353 */
354 # ifdef DEBUG_KMEM_TRACKING
355
356 # define KMEM_HASH_BITS 10
357 # define KMEM_TABLE_SIZE (1 << KMEM_HASH_BITS)
358
359 # define VMEM_HASH_BITS 10
360 # define VMEM_TABLE_SIZE (1 << VMEM_HASH_BITS)
361
362 typedef struct kmem_debug {
363 struct hlist_node kd_hlist; /* Hash node linkage */
364 struct list_head kd_list; /* List of all allocations */
365 void *kd_addr; /* Allocation pointer */
366 size_t kd_size; /* Allocation size */
367 const char *kd_func; /* Allocation function */
368 int kd_line; /* Allocation line */
369 } kmem_debug_t;
370
371 spinlock_t kmem_lock;
372 struct hlist_head kmem_table[KMEM_TABLE_SIZE];
373 struct list_head kmem_list;
374
375 spinlock_t vmem_lock;
376 struct hlist_head vmem_table[VMEM_TABLE_SIZE];
377 struct list_head vmem_list;
378
379 EXPORT_SYMBOL(kmem_lock);
380 EXPORT_SYMBOL(kmem_table);
381 EXPORT_SYMBOL(kmem_list);
382
383 EXPORT_SYMBOL(vmem_lock);
384 EXPORT_SYMBOL(vmem_table);
385 EXPORT_SYMBOL(vmem_list);
386
387 static kmem_debug_t *
388 kmem_del_init(spinlock_t *lock, struct hlist_head *table, int bits, const void *addr)
389 {
390 struct hlist_head *head;
391 struct hlist_node *node;
392 struct kmem_debug *p;
393 unsigned long flags;
394 SENTRY;
395
396 spin_lock_irqsave(lock, flags);
397
398 head = &table[hash_ptr(addr, bits)];
399 hlist_for_each_entry_rcu(p, node, head, kd_hlist) {
400 if (p->kd_addr == addr) {
401 hlist_del_init(&p->kd_hlist);
402 list_del_init(&p->kd_list);
403 spin_unlock_irqrestore(lock, flags);
404 return p;
405 }
406 }
407
408 spin_unlock_irqrestore(lock, flags);
409
410 SRETURN(NULL);
411 }
412
413 void *
414 kmem_alloc_track(size_t size, int flags, const char *func, int line,
415 int node_alloc, int node)
416 {
417 void *ptr = NULL;
418 kmem_debug_t *dptr;
419 unsigned long irq_flags;
420 SENTRY;
421
422 /* Function may be called with KM_NOSLEEP so failure is possible */
423 dptr = (kmem_debug_t *) kmalloc_nofail(sizeof(kmem_debug_t),
424 flags & ~__GFP_ZERO);
425
426 if (unlikely(dptr == NULL)) {
427 SDEBUG_LIMIT(SD_CONSOLE | SD_WARNING, "debug "
428 "kmem_alloc(%ld, 0x%x) at %s:%d failed (%lld/%llu)\n",
429 sizeof(kmem_debug_t), flags, func, line,
430 kmem_alloc_used_read(), kmem_alloc_max);
431 } else {
432 /*
433 * Marked unlikely because we should never be doing this,
434 * we tolerate to up 2 pages but a single page is best.
435 */
436 if (unlikely((size > PAGE_SIZE*2) && !(flags & KM_NODEBUG))) {
437 SDEBUG_LIMIT(SD_CONSOLE | SD_WARNING, "large "
438 "kmem_alloc(%llu, 0x%x) at %s:%d (%lld/%llu)\n",
439 (unsigned long long) size, flags, func, line,
440 kmem_alloc_used_read(), kmem_alloc_max);
441 spl_debug_dumpstack(NULL);
442 }
443
444 /*
445 * We use __strdup() below because the string pointed to by
446 * __FUNCTION__ might not be available by the time we want
447 * to print it since the module might have been unloaded.
448 * This can only fail in the KM_NOSLEEP case.
449 */
450 dptr->kd_func = __strdup(func, flags & ~__GFP_ZERO);
451 if (unlikely(dptr->kd_func == NULL)) {
452 kfree(dptr);
453 SDEBUG_LIMIT(SD_CONSOLE | SD_WARNING,
454 "debug __strdup() at %s:%d failed (%lld/%llu)\n",
455 func, line, kmem_alloc_used_read(), kmem_alloc_max);
456 goto out;
457 }
458
459 /* Use the correct allocator */
460 if (node_alloc) {
461 ASSERT(!(flags & __GFP_ZERO));
462 ptr = kmalloc_node_nofail(size, flags, node);
463 } else if (flags & __GFP_ZERO) {
464 ptr = kzalloc_nofail(size, flags & ~__GFP_ZERO);
465 } else {
466 ptr = kmalloc_nofail(size, flags);
467 }
468
469 if (unlikely(ptr == NULL)) {
470 kfree(dptr->kd_func);
471 kfree(dptr);
472 SDEBUG_LIMIT(SD_CONSOLE | SD_WARNING, "kmem_alloc"
473 "(%llu, 0x%x) at %s:%d failed (%lld/%llu)\n",
474 (unsigned long long) size, flags, func, line,
475 kmem_alloc_used_read(), kmem_alloc_max);
476 goto out;
477 }
478
479 kmem_alloc_used_add(size);
480 if (unlikely(kmem_alloc_used_read() > kmem_alloc_max))
481 kmem_alloc_max = kmem_alloc_used_read();
482
483 INIT_HLIST_NODE(&dptr->kd_hlist);
484 INIT_LIST_HEAD(&dptr->kd_list);
485
486 dptr->kd_addr = ptr;
487 dptr->kd_size = size;
488 dptr->kd_line = line;
489
490 spin_lock_irqsave(&kmem_lock, irq_flags);
491 hlist_add_head_rcu(&dptr->kd_hlist,
492 &kmem_table[hash_ptr(ptr, KMEM_HASH_BITS)]);
493 list_add_tail(&dptr->kd_list, &kmem_list);
494 spin_unlock_irqrestore(&kmem_lock, irq_flags);
495
496 SDEBUG_LIMIT(SD_INFO,
497 "kmem_alloc(%llu, 0x%x) at %s:%d = %p (%lld/%llu)\n",
498 (unsigned long long) size, flags, func, line, ptr,
499 kmem_alloc_used_read(), kmem_alloc_max);
500 }
501 out:
502 SRETURN(ptr);
503 }
504 EXPORT_SYMBOL(kmem_alloc_track);
505
506 void
507 kmem_free_track(const void *ptr, size_t size)
508 {
509 kmem_debug_t *dptr;
510 SENTRY;
511
512 ASSERTF(ptr || size > 0, "ptr: %p, size: %llu", ptr,
513 (unsigned long long) size);
514
515 dptr = kmem_del_init(&kmem_lock, kmem_table, KMEM_HASH_BITS, ptr);
516
517 /* Must exist in hash due to kmem_alloc() */
518 ASSERT(dptr);
519
520 /* Size must match */
521 ASSERTF(dptr->kd_size == size, "kd_size (%llu) != size (%llu), "
522 "kd_func = %s, kd_line = %d\n", (unsigned long long) dptr->kd_size,
523 (unsigned long long) size, dptr->kd_func, dptr->kd_line);
524
525 kmem_alloc_used_sub(size);
526 SDEBUG_LIMIT(SD_INFO, "kmem_free(%p, %llu) (%lld/%llu)\n", ptr,
527 (unsigned long long) size, kmem_alloc_used_read(),
528 kmem_alloc_max);
529
530 kfree(dptr->kd_func);
531
532 memset(dptr, 0x5a, sizeof(kmem_debug_t));
533 kfree(dptr);
534
535 memset(ptr, 0x5a, size);
536 kfree(ptr);
537
538 SEXIT;
539 }
540 EXPORT_SYMBOL(kmem_free_track);
541
542 void *
543 vmem_alloc_track(size_t size, int flags, const char *func, int line)
544 {
545 void *ptr = NULL;
546 kmem_debug_t *dptr;
547 unsigned long irq_flags;
548 SENTRY;
549
550 ASSERT(flags & KM_SLEEP);
551
552 /* Function may be called with KM_NOSLEEP so failure is possible */
553 dptr = (kmem_debug_t *) kmalloc_nofail(sizeof(kmem_debug_t),
554 flags & ~__GFP_ZERO);
555 if (unlikely(dptr == NULL)) {
556 SDEBUG_LIMIT(SD_CONSOLE | SD_WARNING, "debug "
557 "vmem_alloc(%ld, 0x%x) at %s:%d failed (%lld/%llu)\n",
558 sizeof(kmem_debug_t), flags, func, line,
559 vmem_alloc_used_read(), vmem_alloc_max);
560 } else {
561 /*
562 * We use __strdup() below because the string pointed to by
563 * __FUNCTION__ might not be available by the time we want
564 * to print it, since the module might have been unloaded.
565 * This can never fail because we have already asserted
566 * that flags is KM_SLEEP.
567 */
568 dptr->kd_func = __strdup(func, flags & ~__GFP_ZERO);
569 if (unlikely(dptr->kd_func == NULL)) {
570 kfree(dptr);
571 SDEBUG_LIMIT(SD_CONSOLE | SD_WARNING,
572 "debug __strdup() at %s:%d failed (%lld/%llu)\n",
573 func, line, vmem_alloc_used_read(), vmem_alloc_max);
574 goto out;
575 }
576
577 /* Use the correct allocator */
578 if (flags & __GFP_ZERO) {
579 ptr = vzalloc_nofail(size, flags & ~__GFP_ZERO);
580 } else {
581 ptr = vmalloc_nofail(size, flags);
582 }
583
584 if (unlikely(ptr == NULL)) {
585 kfree(dptr->kd_func);
586 kfree(dptr);
587 SDEBUG_LIMIT(SD_CONSOLE | SD_WARNING, "vmem_alloc"
588 "(%llu, 0x%x) at %s:%d failed (%lld/%llu)\n",
589 (unsigned long long) size, flags, func, line,
590 vmem_alloc_used_read(), vmem_alloc_max);
591 goto out;
592 }
593
594 vmem_alloc_used_add(size);
595 if (unlikely(vmem_alloc_used_read() > vmem_alloc_max))
596 vmem_alloc_max = vmem_alloc_used_read();
597
598 INIT_HLIST_NODE(&dptr->kd_hlist);
599 INIT_LIST_HEAD(&dptr->kd_list);
600
601 dptr->kd_addr = ptr;
602 dptr->kd_size = size;
603 dptr->kd_line = line;
604
605 spin_lock_irqsave(&vmem_lock, irq_flags);
606 hlist_add_head_rcu(&dptr->kd_hlist,
607 &vmem_table[hash_ptr(ptr, VMEM_HASH_BITS)]);
608 list_add_tail(&dptr->kd_list, &vmem_list);
609 spin_unlock_irqrestore(&vmem_lock, irq_flags);
610
611 SDEBUG_LIMIT(SD_INFO,
612 "vmem_alloc(%llu, 0x%x) at %s:%d = %p (%lld/%llu)\n",
613 (unsigned long long) size, flags, func, line,
614 ptr, vmem_alloc_used_read(), vmem_alloc_max);
615 }
616 out:
617 SRETURN(ptr);
618 }
619 EXPORT_SYMBOL(vmem_alloc_track);
620
621 void
622 vmem_free_track(const void *ptr, size_t size)
623 {
624 kmem_debug_t *dptr;
625 SENTRY;
626
627 ASSERTF(ptr || size > 0, "ptr: %p, size: %llu", ptr,
628 (unsigned long long) size);
629
630 dptr = kmem_del_init(&vmem_lock, vmem_table, VMEM_HASH_BITS, ptr);
631
632 /* Must exist in hash due to vmem_alloc() */
633 ASSERT(dptr);
634
635 /* Size must match */
636 ASSERTF(dptr->kd_size == size, "kd_size (%llu) != size (%llu), "
637 "kd_func = %s, kd_line = %d\n", (unsigned long long) dptr->kd_size,
638 (unsigned long long) size, dptr->kd_func, dptr->kd_line);
639
640 vmem_alloc_used_sub(size);
641 SDEBUG_LIMIT(SD_INFO, "vmem_free(%p, %llu) (%lld/%llu)\n", ptr,
642 (unsigned long long) size, vmem_alloc_used_read(),
643 vmem_alloc_max);
644
645 kfree(dptr->kd_func);
646
647 memset(dptr, 0x5a, sizeof(kmem_debug_t));
648 kfree(dptr);
649
650 memset(ptr, 0x5a, size);
651 vfree(ptr);
652
653 SEXIT;
654 }
655 EXPORT_SYMBOL(vmem_free_track);
656
657 # else /* DEBUG_KMEM_TRACKING */
658
659 void *
660 kmem_alloc_debug(size_t size, int flags, const char *func, int line,
661 int node_alloc, int node)
662 {
663 void *ptr;
664 SENTRY;
665
666 /*
667 * Marked unlikely because we should never be doing this,
668 * we tolerate to up 2 pages but a single page is best.
669 */
670 if (unlikely((size > PAGE_SIZE * 2) && !(flags & KM_NODEBUG))) {
671 SDEBUG(SD_CONSOLE | SD_WARNING,
672 "large kmem_alloc(%llu, 0x%x) at %s:%d (%lld/%llu)\n",
673 (unsigned long long) size, flags, func, line,
674 kmem_alloc_used_read(), kmem_alloc_max);
675 dump_stack();
676 }
677
678 /* Use the correct allocator */
679 if (node_alloc) {
680 ASSERT(!(flags & __GFP_ZERO));
681 ptr = kmalloc_node_nofail(size, flags, node);
682 } else if (flags & __GFP_ZERO) {
683 ptr = kzalloc_nofail(size, flags & (~__GFP_ZERO));
684 } else {
685 ptr = kmalloc_nofail(size, flags);
686 }
687
688 if (unlikely(ptr == NULL)) {
689 SDEBUG_LIMIT(SD_CONSOLE | SD_WARNING,
690 "kmem_alloc(%llu, 0x%x) at %s:%d failed (%lld/%llu)\n",
691 (unsigned long long) size, flags, func, line,
692 kmem_alloc_used_read(), kmem_alloc_max);
693 } else {
694 kmem_alloc_used_add(size);
695 if (unlikely(kmem_alloc_used_read() > kmem_alloc_max))
696 kmem_alloc_max = kmem_alloc_used_read();
697
698 SDEBUG_LIMIT(SD_INFO,
699 "kmem_alloc(%llu, 0x%x) at %s:%d = %p (%lld/%llu)\n",
700 (unsigned long long) size, flags, func, line, ptr,
701 kmem_alloc_used_read(), kmem_alloc_max);
702 }
703
704 SRETURN(ptr);
705 }
706 EXPORT_SYMBOL(kmem_alloc_debug);
707
708 void
709 kmem_free_debug(const void *ptr, size_t size)
710 {
711 SENTRY;
712
713 ASSERTF(ptr || size > 0, "ptr: %p, size: %llu", ptr,
714 (unsigned long long) size);
715
716 kmem_alloc_used_sub(size);
717 SDEBUG_LIMIT(SD_INFO, "kmem_free(%p, %llu) (%lld/%llu)\n", ptr,
718 (unsigned long long) size, kmem_alloc_used_read(),
719 kmem_alloc_max);
720 kfree(ptr);
721
722 SEXIT;
723 }
724 EXPORT_SYMBOL(kmem_free_debug);
725
726 void *
727 vmem_alloc_debug(size_t size, int flags, const char *func, int line)
728 {
729 void *ptr;
730 SENTRY;
731
732 ASSERT(flags & KM_SLEEP);
733
734 /* Use the correct allocator */
735 if (flags & __GFP_ZERO) {
736 ptr = vzalloc_nofail(size, flags & (~__GFP_ZERO));
737 } else {
738 ptr = vmalloc_nofail(size, flags);
739 }
740
741 if (unlikely(ptr == NULL)) {
742 SDEBUG_LIMIT(SD_CONSOLE | SD_WARNING,
743 "vmem_alloc(%llu, 0x%x) at %s:%d failed (%lld/%llu)\n",
744 (unsigned long long) size, flags, func, line,
745 vmem_alloc_used_read(), vmem_alloc_max);
746 } else {
747 vmem_alloc_used_add(size);
748 if (unlikely(vmem_alloc_used_read() > vmem_alloc_max))
749 vmem_alloc_max = vmem_alloc_used_read();
750
751 SDEBUG_LIMIT(SD_INFO, "vmem_alloc(%llu, 0x%x) = %p "
752 "(%lld/%llu)\n", (unsigned long long) size, flags, ptr,
753 vmem_alloc_used_read(), vmem_alloc_max);
754 }
755
756 SRETURN(ptr);
757 }
758 EXPORT_SYMBOL(vmem_alloc_debug);
759
760 void
761 vmem_free_debug(const void *ptr, size_t size)
762 {
763 SENTRY;
764
765 ASSERTF(ptr || size > 0, "ptr: %p, size: %llu", ptr,
766 (unsigned long long) size);
767
768 vmem_alloc_used_sub(size);
769 SDEBUG_LIMIT(SD_INFO, "vmem_free(%p, %llu) (%lld/%llu)\n", ptr,
770 (unsigned long long) size, vmem_alloc_used_read(),
771 vmem_alloc_max);
772 vfree(ptr);
773
774 SEXIT;
775 }
776 EXPORT_SYMBOL(vmem_free_debug);
777
778 # endif /* DEBUG_KMEM_TRACKING */
779 #endif /* DEBUG_KMEM */
780
781 /*
782 * Slab allocation interfaces
783 *
784 * While the Linux slab implementation was inspired by the Solaris
785 * implementation I cannot use it to emulate the Solaris APIs. I
786 * require two features which are not provided by the Linux slab.
787 *
788 * 1) Constructors AND destructors. Recent versions of the Linux
789 * kernel have removed support for destructors. This is a deal
790 * breaker for the SPL which contains particularly expensive
791 * initializers for mutex's, condition variables, etc. We also
792 * require a minimal level of cleanup for these data types unlike
793 * many Linux data type which do need to be explicitly destroyed.
794 *
795 * 2) Virtual address space backed slab. Callers of the Solaris slab
796 * expect it to work well for both small are very large allocations.
797 * Because of memory fragmentation the Linux slab which is backed
798 * by kmalloc'ed memory performs very badly when confronted with
799 * large numbers of large allocations. Basing the slab on the
800 * virtual address space removes the need for contiguous pages
801 * and greatly improve performance for large allocations.
802 *
803 * For these reasons, the SPL has its own slab implementation with
804 * the needed features. It is not as highly optimized as either the
805 * Solaris or Linux slabs, but it should get me most of what is
806 * needed until it can be optimized or obsoleted by another approach.
807 *
808 * One serious concern I do have about this method is the relatively
809 * small virtual address space on 32bit arches. This will seriously
810 * constrain the size of the slab caches and their performance.
811 *
812 * XXX: Improve the partial slab list by carefully maintaining a
813 * strict ordering of fullest to emptiest slabs based on
814 * the slab reference count. This guarantees the when freeing
815 * slabs back to the system we need only linearly traverse the
816 * last N slabs in the list to discover all the freeable slabs.
817 *
818 * XXX: NUMA awareness for optionally allocating memory close to a
819 * particular core. This can be advantageous if you know the slab
820 * object will be short lived and primarily accessed from one core.
821 *
822 * XXX: Slab coloring may also yield performance improvements and would
823 * be desirable to implement.
824 */
825
826 struct list_head spl_kmem_cache_list; /* List of caches */
827 struct rw_semaphore spl_kmem_cache_sem; /* Cache list lock */
828 taskq_t *spl_kmem_cache_taskq; /* Task queue for ageing / reclaim */
829
830 static void spl_cache_shrink(spl_kmem_cache_t *skc, void *obj);
831
832 SPL_SHRINKER_CALLBACK_FWD_DECLARE(spl_kmem_cache_generic_shrinker);
833 SPL_SHRINKER_DECLARE(spl_kmem_cache_shrinker,
834 spl_kmem_cache_generic_shrinker, KMC_DEFAULT_SEEKS);
835
836 static void *
837 kv_alloc(spl_kmem_cache_t *skc, int size, int flags)
838 {
839 void *ptr;
840
841 ASSERT(ISP2(size));
842
843 if (skc->skc_flags & KMC_KMEM)
844 ptr = (void *)__get_free_pages(flags, get_order(size));
845 else
846 ptr = __vmalloc(size, flags | __GFP_HIGHMEM, PAGE_KERNEL);
847
848 /* Resulting allocated memory will be page aligned */
849 ASSERT(IS_P2ALIGNED(ptr, PAGE_SIZE));
850
851 return ptr;
852 }
853
854 static void
855 kv_free(spl_kmem_cache_t *skc, void *ptr, int size)
856 {
857 ASSERT(IS_P2ALIGNED(ptr, PAGE_SIZE));
858 ASSERT(ISP2(size));
859
860 /*
861 * The Linux direct reclaim path uses this out of band value to
862 * determine if forward progress is being made. Normally this is
863 * incremented by kmem_freepages() which is part of the various
864 * Linux slab implementations. However, since we are using none
865 * of that infrastructure we are responsible for incrementing it.
866 */
867 if (current->reclaim_state)
868 current->reclaim_state->reclaimed_slab += size >> PAGE_SHIFT;
869
870 if (skc->skc_flags & KMC_KMEM)
871 free_pages((unsigned long)ptr, get_order(size));
872 else
873 vfree(ptr);
874 }
875
876 /*
877 * Required space for each aligned sks.
878 */
879 static inline uint32_t
880 spl_sks_size(spl_kmem_cache_t *skc)
881 {
882 return P2ROUNDUP_TYPED(sizeof(spl_kmem_slab_t),
883 skc->skc_obj_align, uint32_t);
884 }
885
886 /*
887 * Required space for each aligned object.
888 */
889 static inline uint32_t
890 spl_obj_size(spl_kmem_cache_t *skc)
891 {
892 uint32_t align = skc->skc_obj_align;
893
894 return P2ROUNDUP_TYPED(skc->skc_obj_size, align, uint32_t) +
895 P2ROUNDUP_TYPED(sizeof(spl_kmem_obj_t), align, uint32_t);
896 }
897
898 /*
899 * Lookup the spl_kmem_object_t for an object given that object.
900 */
901 static inline spl_kmem_obj_t *
902 spl_sko_from_obj(spl_kmem_cache_t *skc, void *obj)
903 {
904 return obj + P2ROUNDUP_TYPED(skc->skc_obj_size,
905 skc->skc_obj_align, uint32_t);
906 }
907
908 /*
909 * Required space for each offslab object taking in to account alignment
910 * restrictions and the power-of-two requirement of kv_alloc().
911 */
912 static inline uint32_t
913 spl_offslab_size(spl_kmem_cache_t *skc)
914 {
915 return 1UL << (highbit(spl_obj_size(skc)) + 1);
916 }
917
918 /*
919 * It's important that we pack the spl_kmem_obj_t structure and the
920 * actual objects in to one large address space to minimize the number
921 * of calls to the allocator. It is far better to do a few large
922 * allocations and then subdivide it ourselves. Now which allocator
923 * we use requires balancing a few trade offs.
924 *
925 * For small objects we use kmem_alloc() because as long as you are
926 * only requesting a small number of pages (ideally just one) its cheap.
927 * However, when you start requesting multiple pages with kmem_alloc()
928 * it gets increasingly expensive since it requires contiguous pages.
929 * For this reason we shift to vmem_alloc() for slabs of large objects
930 * which removes the need for contiguous pages. We do not use
931 * vmem_alloc() in all cases because there is significant locking
932 * overhead in __get_vm_area_node(). This function takes a single
933 * global lock when acquiring an available virtual address range which
934 * serializes all vmem_alloc()'s for all slab caches. Using slightly
935 * different allocation functions for small and large objects should
936 * give us the best of both worlds.
937 *
938 * KMC_ONSLAB KMC_OFFSLAB
939 *
940 * +------------------------+ +-----------------+
941 * | spl_kmem_slab_t --+-+ | | spl_kmem_slab_t |---+-+
942 * | skc_obj_size <-+ | | +-----------------+ | |
943 * | spl_kmem_obj_t | | | |
944 * | skc_obj_size <---+ | +-----------------+ | |
945 * | spl_kmem_obj_t | | | skc_obj_size | <-+ |
946 * | ... v | | spl_kmem_obj_t | |
947 * +------------------------+ +-----------------+ v
948 */
949 static spl_kmem_slab_t *
950 spl_slab_alloc(spl_kmem_cache_t *skc, int flags)
951 {
952 spl_kmem_slab_t *sks;
953 spl_kmem_obj_t *sko, *n;
954 void *base, *obj;
955 uint32_t obj_size, offslab_size = 0;
956 int i, rc = 0;
957
958 base = kv_alloc(skc, skc->skc_slab_size, flags);
959 if (base == NULL)
960 SRETURN(NULL);
961
962 sks = (spl_kmem_slab_t *)base;
963 sks->sks_magic = SKS_MAGIC;
964 sks->sks_objs = skc->skc_slab_objs;
965 sks->sks_age = jiffies;
966 sks->sks_cache = skc;
967 INIT_LIST_HEAD(&sks->sks_list);
968 INIT_LIST_HEAD(&sks->sks_free_list);
969 sks->sks_ref = 0;
970 obj_size = spl_obj_size(skc);
971
972 if (skc->skc_flags & KMC_OFFSLAB)
973 offslab_size = spl_offslab_size(skc);
974
975 for (i = 0; i < sks->sks_objs; i++) {
976 if (skc->skc_flags & KMC_OFFSLAB) {
977 obj = kv_alloc(skc, offslab_size, flags);
978 if (!obj)
979 SGOTO(out, rc = -ENOMEM);
980 } else {
981 obj = base + spl_sks_size(skc) + (i * obj_size);
982 }
983
984 ASSERT(IS_P2ALIGNED(obj, skc->skc_obj_align));
985 sko = spl_sko_from_obj(skc, obj);
986 sko->sko_addr = obj;
987 sko->sko_magic = SKO_MAGIC;
988 sko->sko_slab = sks;
989 INIT_LIST_HEAD(&sko->sko_list);
990 list_add_tail(&sko->sko_list, &sks->sks_free_list);
991 }
992
993 list_for_each_entry(sko, &sks->sks_free_list, sko_list)
994 if (skc->skc_ctor)
995 skc->skc_ctor(sko->sko_addr, skc->skc_private, flags);
996 out:
997 if (rc) {
998 if (skc->skc_flags & KMC_OFFSLAB)
999 list_for_each_entry_safe(sko, n, &sks->sks_free_list,
1000 sko_list)
1001 kv_free(skc, sko->sko_addr, offslab_size);
1002
1003 kv_free(skc, base, skc->skc_slab_size);
1004 sks = NULL;
1005 }
1006
1007 SRETURN(sks);
1008 }
1009
1010 /*
1011 * Remove a slab from complete or partial list, it must be called with
1012 * the 'skc->skc_lock' held but the actual free must be performed
1013 * outside the lock to prevent deadlocking on vmem addresses.
1014 */
1015 static void
1016 spl_slab_free(spl_kmem_slab_t *sks,
1017 struct list_head *sks_list, struct list_head *sko_list)
1018 {
1019 spl_kmem_cache_t *skc;
1020 SENTRY;
1021
1022 ASSERT(sks->sks_magic == SKS_MAGIC);
1023 ASSERT(sks->sks_ref == 0);
1024
1025 skc = sks->sks_cache;
1026 ASSERT(skc->skc_magic == SKC_MAGIC);
1027 ASSERT(spin_is_locked(&skc->skc_lock));
1028
1029 /*
1030 * Update slab/objects counters in the cache, then remove the
1031 * slab from the skc->skc_partial_list. Finally add the slab
1032 * and all its objects in to the private work lists where the
1033 * destructors will be called and the memory freed to the system.
1034 */
1035 skc->skc_obj_total -= sks->sks_objs;
1036 skc->skc_slab_total--;
1037 list_del(&sks->sks_list);
1038 list_add(&sks->sks_list, sks_list);
1039 list_splice_init(&sks->sks_free_list, sko_list);
1040
1041 SEXIT;
1042 }
1043
1044 /*
1045 * Traverses all the partial slabs attached to a cache and free those
1046 * which which are currently empty, and have not been touched for
1047 * skc_delay seconds to avoid thrashing. The count argument is
1048 * passed to optionally cap the number of slabs reclaimed, a count
1049 * of zero means try and reclaim everything. When flag is set we
1050 * always free an available slab regardless of age.
1051 */
1052 static void
1053 spl_slab_reclaim(spl_kmem_cache_t *skc, int count, int flag)
1054 {
1055 spl_kmem_slab_t *sks, *m;
1056 spl_kmem_obj_t *sko, *n;
1057 LIST_HEAD(sks_list);
1058 LIST_HEAD(sko_list);
1059 uint32_t size = 0;
1060 int i = 0;
1061 SENTRY;
1062
1063 /*
1064 * Move empty slabs and objects which have not been touched in
1065 * skc_delay seconds on to private lists to be freed outside
1066 * the spin lock. This delay time is important to avoid thrashing
1067 * however when flag is set the delay will not be used.
1068 */
1069 spin_lock(&skc->skc_lock);
1070 list_for_each_entry_safe_reverse(sks,m,&skc->skc_partial_list,sks_list){
1071 /*
1072 * All empty slabs are at the end of skc->skc_partial_list,
1073 * therefore once a non-empty slab is found we can stop
1074 * scanning. Additionally, stop when reaching the target
1075 * reclaim 'count' if a non-zero threshold is given.
1076 */
1077 if ((sks->sks_ref > 0) || (count && i >= count))
1078 break;
1079
1080 if (time_after(jiffies,sks->sks_age+skc->skc_delay*HZ)||flag) {
1081 spl_slab_free(sks, &sks_list, &sko_list);
1082 i++;
1083 }
1084 }
1085 spin_unlock(&skc->skc_lock);
1086
1087 /*
1088 * The following two loops ensure all the object destructors are
1089 * run, any offslab objects are freed, and the slabs themselves
1090 * are freed. This is all done outside the skc->skc_lock since
1091 * this allows the destructor to sleep, and allows us to perform
1092 * a conditional reschedule when a freeing a large number of
1093 * objects and slabs back to the system.
1094 */
1095 if (skc->skc_flags & KMC_OFFSLAB)
1096 size = spl_offslab_size(skc);
1097
1098 list_for_each_entry_safe(sko, n, &sko_list, sko_list) {
1099 ASSERT(sko->sko_magic == SKO_MAGIC);
1100
1101 if (skc->skc_dtor)
1102 skc->skc_dtor(sko->sko_addr, skc->skc_private);
1103
1104 if (skc->skc_flags & KMC_OFFSLAB)
1105 kv_free(skc, sko->sko_addr, size);
1106
1107 cond_resched();
1108 }
1109
1110 list_for_each_entry_safe(sks, m, &sks_list, sks_list) {
1111 ASSERT(sks->sks_magic == SKS_MAGIC);
1112 kv_free(skc, sks, skc->skc_slab_size);
1113 cond_resched();
1114 }
1115
1116 SEXIT;
1117 }
1118
1119 static spl_kmem_emergency_t *
1120 spl_emergency_search(struct rb_root *root, void *obj)
1121 {
1122 struct rb_node *node = root->rb_node;
1123 spl_kmem_emergency_t *ske;
1124 unsigned long address = (unsigned long)obj;
1125
1126 while (node) {
1127 ske = container_of(node, spl_kmem_emergency_t, ske_node);
1128
1129 if (address < (unsigned long)ske->ske_obj)
1130 node = node->rb_left;
1131 else if (address > (unsigned long)ske->ske_obj)
1132 node = node->rb_right;
1133 else
1134 return ske;
1135 }
1136
1137 return NULL;
1138 }
1139
1140 static int
1141 spl_emergency_insert(struct rb_root *root, spl_kmem_emergency_t *ske)
1142 {
1143 struct rb_node **new = &(root->rb_node), *parent = NULL;
1144 spl_kmem_emergency_t *ske_tmp;
1145 unsigned long address = (unsigned long)ske->ske_obj;
1146
1147 while (*new) {
1148 ske_tmp = container_of(*new, spl_kmem_emergency_t, ske_node);
1149
1150 parent = *new;
1151 if (address < (unsigned long)ske_tmp->ske_obj)
1152 new = &((*new)->rb_left);
1153 else if (address > (unsigned long)ske_tmp->ske_obj)
1154 new = &((*new)->rb_right);
1155 else
1156 return 0;
1157 }
1158
1159 rb_link_node(&ske->ske_node, parent, new);
1160 rb_insert_color(&ske->ske_node, root);
1161
1162 return 1;
1163 }
1164
1165 /*
1166 * Allocate a single emergency object and track it in a red black tree.
1167 */
1168 static int
1169 spl_emergency_alloc(spl_kmem_cache_t *skc, int flags, void **obj)
1170 {
1171 spl_kmem_emergency_t *ske;
1172 int empty;
1173 SENTRY;
1174
1175 /* Last chance use a partial slab if one now exists */
1176 spin_lock(&skc->skc_lock);
1177 empty = list_empty(&skc->skc_partial_list);
1178 spin_unlock(&skc->skc_lock);
1179 if (!empty)
1180 SRETURN(-EEXIST);
1181
1182 ske = kmalloc(sizeof(*ske), flags);
1183 if (ske == NULL)
1184 SRETURN(-ENOMEM);
1185
1186 ske->ske_obj = kmalloc(skc->skc_obj_size, flags);
1187 if (ske->ske_obj == NULL) {
1188 kfree(ske);
1189 SRETURN(-ENOMEM);
1190 }
1191
1192 spin_lock(&skc->skc_lock);
1193 empty = spl_emergency_insert(&skc->skc_emergency_tree, ske);
1194 if (likely(empty)) {
1195 skc->skc_obj_total++;
1196 skc->skc_obj_emergency++;
1197 if (skc->skc_obj_emergency > skc->skc_obj_emergency_max)
1198 skc->skc_obj_emergency_max = skc->skc_obj_emergency;
1199 }
1200 spin_unlock(&skc->skc_lock);
1201
1202 if (unlikely(!empty)) {
1203 kfree(ske->ske_obj);
1204 kfree(ske);
1205 SRETURN(-EINVAL);
1206 }
1207
1208 if (skc->skc_ctor)
1209 skc->skc_ctor(ske->ske_obj, skc->skc_private, flags);
1210
1211 *obj = ske->ske_obj;
1212
1213 SRETURN(0);
1214 }
1215
1216 /*
1217 * Locate the passed object in the red black tree and free it.
1218 */
1219 static int
1220 spl_emergency_free(spl_kmem_cache_t *skc, void *obj)
1221 {
1222 spl_kmem_emergency_t *ske;
1223 SENTRY;
1224
1225 spin_lock(&skc->skc_lock);
1226 ske = spl_emergency_search(&skc->skc_emergency_tree, obj);
1227 if (likely(ske)) {
1228 rb_erase(&ske->ske_node, &skc->skc_emergency_tree);
1229 skc->skc_obj_emergency--;
1230 skc->skc_obj_total--;
1231 }
1232 spin_unlock(&skc->skc_lock);
1233
1234 if (unlikely(ske == NULL))
1235 SRETURN(-ENOENT);
1236
1237 if (skc->skc_dtor)
1238 skc->skc_dtor(ske->ske_obj, skc->skc_private);
1239
1240 kfree(ske->ske_obj);
1241 kfree(ske);
1242
1243 SRETURN(0);
1244 }
1245
1246 /*
1247 * Release objects from the per-cpu magazine back to their slab. The flush
1248 * argument contains the max number of entries to remove from the magazine.
1249 */
1250 static void
1251 __spl_cache_flush(spl_kmem_cache_t *skc, spl_kmem_magazine_t *skm, int flush)
1252 {
1253 int i, count = MIN(flush, skm->skm_avail);
1254 SENTRY;
1255
1256 ASSERT(skc->skc_magic == SKC_MAGIC);
1257 ASSERT(skm->skm_magic == SKM_MAGIC);
1258 ASSERT(spin_is_locked(&skc->skc_lock));
1259
1260 for (i = 0; i < count; i++)
1261 spl_cache_shrink(skc, skm->skm_objs[i]);
1262
1263 skm->skm_avail -= count;
1264 memmove(skm->skm_objs, &(skm->skm_objs[count]),
1265 sizeof(void *) * skm->skm_avail);
1266
1267 SEXIT;
1268 }
1269
1270 static void
1271 spl_cache_flush(spl_kmem_cache_t *skc, spl_kmem_magazine_t *skm, int flush)
1272 {
1273 spin_lock(&skc->skc_lock);
1274 __spl_cache_flush(skc, skm, flush);
1275 spin_unlock(&skc->skc_lock);
1276 }
1277
1278 static void
1279 spl_magazine_age(void *data)
1280 {
1281 spl_kmem_cache_t *skc = (spl_kmem_cache_t *)data;
1282 spl_kmem_magazine_t *skm = skc->skc_mag[smp_processor_id()];
1283
1284 ASSERT(skm->skm_magic == SKM_MAGIC);
1285 ASSERT(skm->skm_cpu == smp_processor_id());
1286 ASSERT(irqs_disabled());
1287
1288 /* There are no available objects or they are too young to age out */
1289 if ((skm->skm_avail == 0) ||
1290 time_before(jiffies, skm->skm_age + skc->skc_delay * HZ))
1291 return;
1292
1293 /*
1294 * Because we're executing in interrupt context we may have
1295 * interrupted the holder of this lock. To avoid a potential
1296 * deadlock return if the lock is contended.
1297 */
1298 if (!spin_trylock(&skc->skc_lock))
1299 return;
1300
1301 __spl_cache_flush(skc, skm, skm->skm_refill);
1302 spin_unlock(&skc->skc_lock);
1303 }
1304
1305 /*
1306 * Called regularly to keep a downward pressure on the cache.
1307 *
1308 * Objects older than skc->skc_delay seconds in the per-cpu magazines will
1309 * be returned to the caches. This is done to prevent idle magazines from
1310 * holding memory which could be better used elsewhere. The delay is
1311 * present to prevent thrashing the magazine.
1312 *
1313 * The newly released objects may result in empty partial slabs. Those
1314 * slabs should be released to the system. Otherwise moving the objects
1315 * out of the magazines is just wasted work.
1316 */
1317 static void
1318 spl_cache_age(void *data)
1319 {
1320 spl_kmem_cache_t *skc = (spl_kmem_cache_t *)data;
1321 taskqid_t id = 0;
1322
1323 ASSERT(skc->skc_magic == SKC_MAGIC);
1324
1325 atomic_inc(&skc->skc_ref);
1326 spl_on_each_cpu(spl_magazine_age, skc, 1);
1327 spl_slab_reclaim(skc, skc->skc_reap, 0);
1328
1329 while (!test_bit(KMC_BIT_DESTROY, &skc->skc_flags) && !id) {
1330 id = taskq_dispatch_delay(
1331 spl_kmem_cache_taskq, spl_cache_age, skc, TQ_SLEEP,
1332 ddi_get_lbolt() + skc->skc_delay / 3 * HZ);
1333
1334 /* Destroy issued after dispatch immediately cancel it */
1335 if (test_bit(KMC_BIT_DESTROY, &skc->skc_flags) && id)
1336 taskq_cancel_id(spl_kmem_cache_taskq, id);
1337 }
1338
1339 spin_lock(&skc->skc_lock);
1340 skc->skc_taskqid = id;
1341 spin_unlock(&skc->skc_lock);
1342
1343 atomic_dec(&skc->skc_ref);
1344 }
1345
1346 /*
1347 * Size a slab based on the size of each aligned object plus spl_kmem_obj_t.
1348 * When on-slab we want to target SPL_KMEM_CACHE_OBJ_PER_SLAB. However,
1349 * for very small objects we may end up with more than this so as not
1350 * to waste space in the minimal allocation of a single page. Also for
1351 * very large objects we may use as few as SPL_KMEM_CACHE_OBJ_PER_SLAB_MIN,
1352 * lower than this and we will fail.
1353 */
1354 static int
1355 spl_slab_size(spl_kmem_cache_t *skc, uint32_t *objs, uint32_t *size)
1356 {
1357 uint32_t sks_size, obj_size, max_size;
1358
1359 if (skc->skc_flags & KMC_OFFSLAB) {
1360 *objs = SPL_KMEM_CACHE_OBJ_PER_SLAB;
1361 *size = sizeof(spl_kmem_slab_t);
1362 } else {
1363 sks_size = spl_sks_size(skc);
1364 obj_size = spl_obj_size(skc);
1365
1366 if (skc->skc_flags & KMC_KMEM)
1367 max_size = ((uint32_t)1 << (MAX_ORDER-3)) * PAGE_SIZE;
1368 else
1369 max_size = (32 * 1024 * 1024);
1370
1371 /* Power of two sized slab */
1372 for (*size = PAGE_SIZE; *size <= max_size; *size *= 2) {
1373 *objs = (*size - sks_size) / obj_size;
1374 if (*objs >= SPL_KMEM_CACHE_OBJ_PER_SLAB)
1375 SRETURN(0);
1376 }
1377
1378 /*
1379 * Unable to satisfy target objects per slab, fall back to
1380 * allocating a maximally sized slab and assuming it can
1381 * contain the minimum objects count use it. If not fail.
1382 */
1383 *size = max_size;
1384 *objs = (*size - sks_size) / obj_size;
1385 if (*objs >= SPL_KMEM_CACHE_OBJ_PER_SLAB_MIN)
1386 SRETURN(0);
1387 }
1388
1389 SRETURN(-ENOSPC);
1390 }
1391
1392 /*
1393 * Make a guess at reasonable per-cpu magazine size based on the size of
1394 * each object and the cost of caching N of them in each magazine. Long
1395 * term this should really adapt based on an observed usage heuristic.
1396 */
1397 static int
1398 spl_magazine_size(spl_kmem_cache_t *skc)
1399 {
1400 uint32_t obj_size = spl_obj_size(skc);
1401 int size;
1402 SENTRY;
1403
1404 /* Per-magazine sizes below assume a 4Kib page size */
1405 if (obj_size > (PAGE_SIZE * 256))
1406 size = 4; /* Minimum 4Mib per-magazine */
1407 else if (obj_size > (PAGE_SIZE * 32))
1408 size = 16; /* Minimum 2Mib per-magazine */
1409 else if (obj_size > (PAGE_SIZE))
1410 size = 64; /* Minimum 256Kib per-magazine */
1411 else if (obj_size > (PAGE_SIZE / 4))
1412 size = 128; /* Minimum 128Kib per-magazine */
1413 else
1414 size = 256;
1415
1416 SRETURN(size);
1417 }
1418
1419 /*
1420 * Allocate a per-cpu magazine to associate with a specific core.
1421 */
1422 static spl_kmem_magazine_t *
1423 spl_magazine_alloc(spl_kmem_cache_t *skc, int cpu)
1424 {
1425 spl_kmem_magazine_t *skm;
1426 int size = sizeof(spl_kmem_magazine_t) +
1427 sizeof(void *) * skc->skc_mag_size;
1428 SENTRY;
1429
1430 skm = kmem_alloc_node(size, KM_SLEEP, cpu_to_node(cpu));
1431 if (skm) {
1432 skm->skm_magic = SKM_MAGIC;
1433 skm->skm_avail = 0;
1434 skm->skm_size = skc->skc_mag_size;
1435 skm->skm_refill = skc->skc_mag_refill;
1436 skm->skm_cache = skc;
1437 skm->skm_age = jiffies;
1438 skm->skm_cpu = cpu;
1439 }
1440
1441 SRETURN(skm);
1442 }
1443
1444 /*
1445 * Free a per-cpu magazine associated with a specific core.
1446 */
1447 static void
1448 spl_magazine_free(spl_kmem_magazine_t *skm)
1449 {
1450 int size = sizeof(spl_kmem_magazine_t) +
1451 sizeof(void *) * skm->skm_size;
1452
1453 SENTRY;
1454 ASSERT(skm->skm_magic == SKM_MAGIC);
1455 ASSERT(skm->skm_avail == 0);
1456
1457 kmem_free(skm, size);
1458 SEXIT;
1459 }
1460
1461 /*
1462 * Create all pre-cpu magazines of reasonable sizes.
1463 */
1464 static int
1465 spl_magazine_create(spl_kmem_cache_t *skc)
1466 {
1467 int i;
1468 SENTRY;
1469
1470 skc->skc_mag_size = spl_magazine_size(skc);
1471 skc->skc_mag_refill = (skc->skc_mag_size + 1) / 2;
1472
1473 for_each_online_cpu(i) {
1474 skc->skc_mag[i] = spl_magazine_alloc(skc, i);
1475 if (!skc->skc_mag[i]) {
1476 for (i--; i >= 0; i--)
1477 spl_magazine_free(skc->skc_mag[i]);
1478
1479 SRETURN(-ENOMEM);
1480 }
1481 }
1482
1483 SRETURN(0);
1484 }
1485
1486 /*
1487 * Destroy all pre-cpu magazines.
1488 */
1489 static void
1490 spl_magazine_destroy(spl_kmem_cache_t *skc)
1491 {
1492 spl_kmem_magazine_t *skm;
1493 int i;
1494 SENTRY;
1495
1496 for_each_online_cpu(i) {
1497 skm = skc->skc_mag[i];
1498 spl_cache_flush(skc, skm, skm->skm_avail);
1499 spl_magazine_free(skm);
1500 }
1501
1502 SEXIT;
1503 }
1504
1505 /*
1506 * Create a object cache based on the following arguments:
1507 * name cache name
1508 * size cache object size
1509 * align cache object alignment
1510 * ctor cache object constructor
1511 * dtor cache object destructor
1512 * reclaim cache object reclaim
1513 * priv cache private data for ctor/dtor/reclaim
1514 * vmp unused must be NULL
1515 * flags
1516 * KMC_NOTOUCH Disable cache object aging (unsupported)
1517 * KMC_NODEBUG Disable debugging (unsupported)
1518 * KMC_NOMAGAZINE Disable magazine (unsupported)
1519 * KMC_NOHASH Disable hashing (unsupported)
1520 * KMC_QCACHE Disable qcache (unsupported)
1521 * KMC_KMEM Force kmem backed cache
1522 * KMC_VMEM Force vmem backed cache
1523 * KMC_OFFSLAB Locate objects off the slab
1524 */
1525 spl_kmem_cache_t *
1526 spl_kmem_cache_create(char *name, size_t size, size_t align,
1527 spl_kmem_ctor_t ctor,
1528 spl_kmem_dtor_t dtor,
1529 spl_kmem_reclaim_t reclaim,
1530 void *priv, void *vmp, int flags)
1531 {
1532 spl_kmem_cache_t *skc;
1533 int rc;
1534 SENTRY;
1535
1536 ASSERTF(!(flags & KMC_NOMAGAZINE), "Bad KMC_NOMAGAZINE (%x)\n", flags);
1537 ASSERTF(!(flags & KMC_NOHASH), "Bad KMC_NOHASH (%x)\n", flags);
1538 ASSERTF(!(flags & KMC_QCACHE), "Bad KMC_QCACHE (%x)\n", flags);
1539 ASSERT(vmp == NULL);
1540
1541 might_sleep();
1542
1543 /*
1544 * Allocate memory for a new cache an initialize it. Unfortunately,
1545 * this usually ends up being a large allocation of ~32k because
1546 * we need to allocate enough memory for the worst case number of
1547 * cpus in the magazine, skc_mag[NR_CPUS]. Because of this we
1548 * explicitly pass KM_NODEBUG to suppress the kmem warning
1549 */
1550 skc = kmem_zalloc(sizeof(*skc), KM_SLEEP| KM_NODEBUG);
1551 if (skc == NULL)
1552 SRETURN(NULL);
1553
1554 skc->skc_magic = SKC_MAGIC;
1555 skc->skc_name_size = strlen(name) + 1;
1556 skc->skc_name = (char *)kmem_alloc(skc->skc_name_size, KM_SLEEP);
1557 if (skc->skc_name == NULL) {
1558 kmem_free(skc, sizeof(*skc));
1559 SRETURN(NULL);
1560 }
1561 strncpy(skc->skc_name, name, skc->skc_name_size);
1562
1563 skc->skc_ctor = ctor;
1564 skc->skc_dtor = dtor;
1565 skc->skc_reclaim = reclaim;
1566 skc->skc_private = priv;
1567 skc->skc_vmp = vmp;
1568 skc->skc_flags = flags;
1569 skc->skc_obj_size = size;
1570 skc->skc_obj_align = SPL_KMEM_CACHE_ALIGN;
1571 skc->skc_delay = SPL_KMEM_CACHE_DELAY;
1572 skc->skc_reap = SPL_KMEM_CACHE_REAP;
1573 atomic_set(&skc->skc_ref, 0);
1574
1575 INIT_LIST_HEAD(&skc->skc_list);
1576 INIT_LIST_HEAD(&skc->skc_complete_list);
1577 INIT_LIST_HEAD(&skc->skc_partial_list);
1578 skc->skc_emergency_tree = RB_ROOT;
1579 spin_lock_init(&skc->skc_lock);
1580 init_waitqueue_head(&skc->skc_waitq);
1581 skc->skc_slab_fail = 0;
1582 skc->skc_slab_create = 0;
1583 skc->skc_slab_destroy = 0;
1584 skc->skc_slab_total = 0;
1585 skc->skc_slab_alloc = 0;
1586 skc->skc_slab_max = 0;
1587 skc->skc_obj_total = 0;
1588 skc->skc_obj_alloc = 0;
1589 skc->skc_obj_max = 0;
1590 skc->skc_obj_deadlock = 0;
1591 skc->skc_obj_emergency = 0;
1592 skc->skc_obj_emergency_max = 0;
1593
1594 if (align) {
1595 VERIFY(ISP2(align));
1596 VERIFY3U(align, >=, SPL_KMEM_CACHE_ALIGN); /* Min alignment */
1597 VERIFY3U(align, <=, PAGE_SIZE); /* Max alignment */
1598 skc->skc_obj_align = align;
1599 }
1600
1601 /* If none passed select a cache type based on object size */
1602 if (!(skc->skc_flags & (KMC_KMEM | KMC_VMEM))) {
1603 if (spl_obj_size(skc) < (PAGE_SIZE / 8))
1604 skc->skc_flags |= KMC_KMEM;
1605 else
1606 skc->skc_flags |= KMC_VMEM;
1607 }
1608
1609 rc = spl_slab_size(skc, &skc->skc_slab_objs, &skc->skc_slab_size);
1610 if (rc)
1611 SGOTO(out, rc);
1612
1613 rc = spl_magazine_create(skc);
1614 if (rc)
1615 SGOTO(out, rc);
1616
1617 skc->skc_taskqid = taskq_dispatch_delay(spl_kmem_cache_taskq,
1618 spl_cache_age, skc, TQ_SLEEP,
1619 ddi_get_lbolt() + skc->skc_delay / 3 * HZ);
1620
1621 down_write(&spl_kmem_cache_sem);
1622 list_add_tail(&skc->skc_list, &spl_kmem_cache_list);
1623 up_write(&spl_kmem_cache_sem);
1624
1625 SRETURN(skc);
1626 out:
1627 kmem_free(skc->skc_name, skc->skc_name_size);
1628 kmem_free(skc, sizeof(*skc));
1629 SRETURN(NULL);
1630 }
1631 EXPORT_SYMBOL(spl_kmem_cache_create);
1632
1633 /*
1634 * Register a move callback to for cache defragmentation.
1635 * XXX: Unimplemented but harmless to stub out for now.
1636 */
1637 void
1638 spl_kmem_cache_set_move(spl_kmem_cache_t *skc,
1639 kmem_cbrc_t (move)(void *, void *, size_t, void *))
1640 {
1641 ASSERT(move != NULL);
1642 }
1643 EXPORT_SYMBOL(spl_kmem_cache_set_move);
1644
1645 /*
1646 * Destroy a cache and all objects associated with the cache.
1647 */
1648 void
1649 spl_kmem_cache_destroy(spl_kmem_cache_t *skc)
1650 {
1651 DECLARE_WAIT_QUEUE_HEAD(wq);
1652 taskqid_t id;
1653 SENTRY;
1654
1655 ASSERT(skc->skc_magic == SKC_MAGIC);
1656
1657 down_write(&spl_kmem_cache_sem);
1658 list_del_init(&skc->skc_list);
1659 up_write(&spl_kmem_cache_sem);
1660
1661 /* Cancel any and wait for any pending delayed tasks */
1662 VERIFY(!test_and_set_bit(KMC_BIT_DESTROY, &skc->skc_flags));
1663
1664 spin_lock(&skc->skc_lock);
1665 id = skc->skc_taskqid;
1666 spin_unlock(&skc->skc_lock);
1667
1668 taskq_cancel_id(spl_kmem_cache_taskq, id);
1669
1670 /* Wait until all current callers complete, this is mainly
1671 * to catch the case where a low memory situation triggers a
1672 * cache reaping action which races with this destroy. */
1673 wait_event(wq, atomic_read(&skc->skc_ref) == 0);
1674
1675 spl_magazine_destroy(skc);
1676 spl_slab_reclaim(skc, 0, 1);
1677 spin_lock(&skc->skc_lock);
1678
1679 /* Validate there are no objects in use and free all the
1680 * spl_kmem_slab_t, spl_kmem_obj_t, and object buffers. */
1681 ASSERT3U(skc->skc_slab_alloc, ==, 0);
1682 ASSERT3U(skc->skc_obj_alloc, ==, 0);
1683 ASSERT3U(skc->skc_slab_total, ==, 0);
1684 ASSERT3U(skc->skc_obj_total, ==, 0);
1685 ASSERT3U(skc->skc_obj_emergency, ==, 0);
1686 ASSERT(list_empty(&skc->skc_complete_list));
1687
1688 kmem_free(skc->skc_name, skc->skc_name_size);
1689 spin_unlock(&skc->skc_lock);
1690
1691 kmem_free(skc, sizeof(*skc));
1692
1693 SEXIT;
1694 }
1695 EXPORT_SYMBOL(spl_kmem_cache_destroy);
1696
1697 /*
1698 * Allocate an object from a slab attached to the cache. This is used to
1699 * repopulate the per-cpu magazine caches in batches when they run low.
1700 */
1701 static void *
1702 spl_cache_obj(spl_kmem_cache_t *skc, spl_kmem_slab_t *sks)
1703 {
1704 spl_kmem_obj_t *sko;
1705
1706 ASSERT(skc->skc_magic == SKC_MAGIC);
1707 ASSERT(sks->sks_magic == SKS_MAGIC);
1708 ASSERT(spin_is_locked(&skc->skc_lock));
1709
1710 sko = list_entry(sks->sks_free_list.next, spl_kmem_obj_t, sko_list);
1711 ASSERT(sko->sko_magic == SKO_MAGIC);
1712 ASSERT(sko->sko_addr != NULL);
1713
1714 /* Remove from sks_free_list */
1715 list_del_init(&sko->sko_list);
1716
1717 sks->sks_age = jiffies;
1718 sks->sks_ref++;
1719 skc->skc_obj_alloc++;
1720
1721 /* Track max obj usage statistics */
1722 if (skc->skc_obj_alloc > skc->skc_obj_max)
1723 skc->skc_obj_max = skc->skc_obj_alloc;
1724
1725 /* Track max slab usage statistics */
1726 if (sks->sks_ref == 1) {
1727 skc->skc_slab_alloc++;
1728
1729 if (skc->skc_slab_alloc > skc->skc_slab_max)
1730 skc->skc_slab_max = skc->skc_slab_alloc;
1731 }
1732
1733 return sko->sko_addr;
1734 }
1735
1736 /*
1737 * Generic slab allocation function to run by the global work queues.
1738 * It is responsible for allocating a new slab, linking it in to the list
1739 * of partial slabs, and then waking any waiters.
1740 */
1741 static void
1742 spl_cache_grow_work(void *data)
1743 {
1744 spl_kmem_alloc_t *ska = (spl_kmem_alloc_t *)data;
1745 spl_kmem_cache_t *skc = ska->ska_cache;
1746 spl_kmem_slab_t *sks;
1747
1748 sks = spl_slab_alloc(skc, ska->ska_flags | __GFP_NORETRY | KM_NODEBUG);
1749 spin_lock(&skc->skc_lock);
1750 if (sks) {
1751 skc->skc_slab_total++;
1752 skc->skc_obj_total += sks->sks_objs;
1753 list_add_tail(&sks->sks_list, &skc->skc_partial_list);
1754 }
1755
1756 atomic_dec(&skc->skc_ref);
1757 clear_bit(KMC_BIT_GROWING, &skc->skc_flags);
1758 clear_bit(KMC_BIT_DEADLOCKED, &skc->skc_flags);
1759 wake_up_all(&skc->skc_waitq);
1760 spin_unlock(&skc->skc_lock);
1761
1762 kfree(ska);
1763 }
1764
1765 /*
1766 * Returns non-zero when a new slab should be available.
1767 */
1768 static int
1769 spl_cache_grow_wait(spl_kmem_cache_t *skc)
1770 {
1771 return !test_bit(KMC_BIT_GROWING, &skc->skc_flags);
1772 }
1773
1774 static int
1775 spl_cache_reclaim_wait(void *word)
1776 {
1777 schedule();
1778 return 0;
1779 }
1780
1781 /*
1782 * No available objects on any slabs, create a new slab.
1783 */
1784 static int
1785 spl_cache_grow(spl_kmem_cache_t *skc, int flags, void **obj)
1786 {
1787 int remaining, rc;
1788 SENTRY;
1789
1790 ASSERT(skc->skc_magic == SKC_MAGIC);
1791 might_sleep();
1792 *obj = NULL;
1793
1794 /*
1795 * Before allocating a new slab wait for any reaping to complete and
1796 * then return so the local magazine can be rechecked for new objects.
1797 */
1798 if (test_bit(KMC_BIT_REAPING, &skc->skc_flags)) {
1799 rc = wait_on_bit(&skc->skc_flags, KMC_BIT_REAPING,
1800 spl_cache_reclaim_wait, TASK_UNINTERRUPTIBLE);
1801 SRETURN(rc ? rc : -EAGAIN);
1802 }
1803
1804 /*
1805 * This is handled by dispatching a work request to the global work
1806 * queue. This allows us to asynchronously allocate a new slab while
1807 * retaining the ability to safely fall back to a smaller synchronous
1808 * allocations to ensure forward progress is always maintained.
1809 */
1810 if (test_and_set_bit(KMC_BIT_GROWING, &skc->skc_flags) == 0) {
1811 spl_kmem_alloc_t *ska;
1812
1813 ska = kmalloc(sizeof(*ska), flags);
1814 if (ska == NULL) {
1815 clear_bit(KMC_BIT_GROWING, &skc->skc_flags);
1816 wake_up_all(&skc->skc_waitq);
1817 SRETURN(-ENOMEM);
1818 }
1819
1820 atomic_inc(&skc->skc_ref);
1821 ska->ska_cache = skc;
1822 ska->ska_flags = flags & ~__GFP_FS;
1823 taskq_init_ent(&ska->ska_tqe);
1824 taskq_dispatch_ent(spl_kmem_cache_taskq,
1825 spl_cache_grow_work, ska, 0, &ska->ska_tqe);
1826 }
1827
1828 /*
1829 * The goal here is to only detect the rare case where a virtual slab
1830 * allocation has deadlocked. We must be careful to minimize the use
1831 * of emergency objects which are more expensive to track. Therefore,
1832 * we set a very long timeout for the asynchronous allocation and if
1833 * the timeout is reached the cache is flagged as deadlocked. From
1834 * this point only new emergency objects will be allocated until the
1835 * asynchronous allocation completes and clears the deadlocked flag.
1836 */
1837 if (test_bit(KMC_BIT_DEADLOCKED, &skc->skc_flags)) {
1838 rc = spl_emergency_alloc(skc, flags, obj);
1839 } else {
1840 remaining = wait_event_timeout(skc->skc_waitq,
1841 spl_cache_grow_wait(skc), HZ);
1842
1843 if (!remaining && test_bit(KMC_BIT_VMEM, &skc->skc_flags)) {
1844 spin_lock(&skc->skc_lock);
1845 if (test_bit(KMC_BIT_GROWING, &skc->skc_flags)) {
1846 set_bit(KMC_BIT_DEADLOCKED, &skc->skc_flags);
1847 skc->skc_obj_deadlock++;
1848 }
1849 spin_unlock(&skc->skc_lock);
1850 }
1851
1852 rc = -ENOMEM;
1853 }
1854
1855 SRETURN(rc);
1856 }
1857
1858 /*
1859 * Refill a per-cpu magazine with objects from the slabs for this cache.
1860 * Ideally the magazine can be repopulated using existing objects which have
1861 * been released, however if we are unable to locate enough free objects new
1862 * slabs of objects will be created. On success NULL is returned, otherwise
1863 * the address of a single emergency object is returned for use by the caller.
1864 */
1865 static void *
1866 spl_cache_refill(spl_kmem_cache_t *skc, spl_kmem_magazine_t *skm, int flags)
1867 {
1868 spl_kmem_slab_t *sks;
1869 int count = 0, rc, refill;
1870 void *obj = NULL;
1871 SENTRY;
1872
1873 ASSERT(skc->skc_magic == SKC_MAGIC);
1874 ASSERT(skm->skm_magic == SKM_MAGIC);
1875
1876 refill = MIN(skm->skm_refill, skm->skm_size - skm->skm_avail);
1877 spin_lock(&skc->skc_lock);
1878
1879 while (refill > 0) {
1880 /* No slabs available we may need to grow the cache */
1881 if (list_empty(&skc->skc_partial_list)) {
1882 spin_unlock(&skc->skc_lock);
1883
1884 local_irq_enable();
1885 rc = spl_cache_grow(skc, flags, &obj);
1886 local_irq_disable();
1887
1888 /* Emergency object for immediate use by caller */
1889 if (rc == 0 && obj != NULL)
1890 SRETURN(obj);
1891
1892 if (rc)
1893 SGOTO(out, rc);
1894
1895 /* Rescheduled to different CPU skm is not local */
1896 if (skm != skc->skc_mag[smp_processor_id()])
1897 SGOTO(out, rc);
1898
1899 /* Potentially rescheduled to the same CPU but
1900 * allocations may have occurred from this CPU while
1901 * we were sleeping so recalculate max refill. */
1902 refill = MIN(refill, skm->skm_size - skm->skm_avail);
1903
1904 spin_lock(&skc->skc_lock);
1905 continue;
1906 }
1907
1908 /* Grab the next available slab */
1909 sks = list_entry((&skc->skc_partial_list)->next,
1910 spl_kmem_slab_t, sks_list);
1911 ASSERT(sks->sks_magic == SKS_MAGIC);
1912 ASSERT(sks->sks_ref < sks->sks_objs);
1913 ASSERT(!list_empty(&sks->sks_free_list));
1914
1915 /* Consume as many objects as needed to refill the requested
1916 * cache. We must also be careful not to overfill it. */
1917 while (sks->sks_ref < sks->sks_objs && refill-- > 0 && ++count) {
1918 ASSERT(skm->skm_avail < skm->skm_size);
1919 ASSERT(count < skm->skm_size);
1920 skm->skm_objs[skm->skm_avail++]=spl_cache_obj(skc,sks);
1921 }
1922
1923 /* Move slab to skc_complete_list when full */
1924 if (sks->sks_ref == sks->sks_objs) {
1925 list_del(&sks->sks_list);
1926 list_add(&sks->sks_list, &skc->skc_complete_list);
1927 }
1928 }
1929
1930 spin_unlock(&skc->skc_lock);
1931 out:
1932 SRETURN(NULL);
1933 }
1934
1935 /*
1936 * Release an object back to the slab from which it came.
1937 */
1938 static void
1939 spl_cache_shrink(spl_kmem_cache_t *skc, void *obj)
1940 {
1941 spl_kmem_slab_t *sks = NULL;
1942 spl_kmem_obj_t *sko = NULL;
1943 SENTRY;
1944
1945 ASSERT(skc->skc_magic == SKC_MAGIC);
1946 ASSERT(spin_is_locked(&skc->skc_lock));
1947
1948 sko = spl_sko_from_obj(skc, obj);
1949 ASSERT(sko->sko_magic == SKO_MAGIC);
1950 sks = sko->sko_slab;
1951 ASSERT(sks->sks_magic == SKS_MAGIC);
1952 ASSERT(sks->sks_cache == skc);
1953 list_add(&sko->sko_list, &sks->sks_free_list);
1954
1955 sks->sks_age = jiffies;
1956 sks->sks_ref--;
1957 skc->skc_obj_alloc--;
1958
1959 /* Move slab to skc_partial_list when no longer full. Slabs
1960 * are added to the head to keep the partial list is quasi-full
1961 * sorted order. Fuller at the head, emptier at the tail. */
1962 if (sks->sks_ref == (sks->sks_objs - 1)) {
1963 list_del(&sks->sks_list);
1964 list_add(&sks->sks_list, &skc->skc_partial_list);
1965 }
1966
1967 /* Move empty slabs to the end of the partial list so
1968 * they can be easily found and freed during reclamation. */
1969 if (sks->sks_ref == 0) {
1970 list_del(&sks->sks_list);
1971 list_add_tail(&sks->sks_list, &skc->skc_partial_list);
1972 skc->skc_slab_alloc--;
1973 }
1974
1975 SEXIT;
1976 }
1977
1978 /*
1979 * Allocate an object from the per-cpu magazine, or if the magazine
1980 * is empty directly allocate from a slab and repopulate the magazine.
1981 */
1982 void *
1983 spl_kmem_cache_alloc(spl_kmem_cache_t *skc, int flags)
1984 {
1985 spl_kmem_magazine_t *skm;
1986 unsigned long irq_flags;
1987 void *obj = NULL;
1988 SENTRY;
1989
1990 ASSERT(skc->skc_magic == SKC_MAGIC);
1991 ASSERT(!test_bit(KMC_BIT_DESTROY, &skc->skc_flags));
1992 ASSERT(flags & KM_SLEEP);
1993 atomic_inc(&skc->skc_ref);
1994 local_irq_save(irq_flags);
1995
1996 restart:
1997 /* Safe to update per-cpu structure without lock, but
1998 * in the restart case we must be careful to reacquire
1999 * the local magazine since this may have changed
2000 * when we need to grow the cache. */
2001 skm = skc->skc_mag[smp_processor_id()];
2002 ASSERTF(skm->skm_magic == SKM_MAGIC, "%x != %x: %s/%p/%p %x/%x/%x\n",
2003 skm->skm_magic, SKM_MAGIC, skc->skc_name, skc, skm,
2004 skm->skm_size, skm->skm_refill, skm->skm_avail);
2005
2006 if (likely(skm->skm_avail)) {
2007 /* Object available in CPU cache, use it */
2008 obj = skm->skm_objs[--skm->skm_avail];
2009 skm->skm_age = jiffies;
2010 } else {
2011 obj = spl_cache_refill(skc, skm, flags);
2012 if (obj == NULL)
2013 SGOTO(restart, obj = NULL);
2014 }
2015
2016 local_irq_restore(irq_flags);
2017 ASSERT(obj);
2018 ASSERT(IS_P2ALIGNED(obj, skc->skc_obj_align));
2019
2020 /* Pre-emptively migrate object to CPU L1 cache */
2021 prefetchw(obj);
2022 atomic_dec(&skc->skc_ref);
2023
2024 SRETURN(obj);
2025 }
2026 EXPORT_SYMBOL(spl_kmem_cache_alloc);
2027
2028 /*
2029 * Free an object back to the local per-cpu magazine, there is no
2030 * guarantee that this is the same magazine the object was originally
2031 * allocated from. We may need to flush entire from the magazine
2032 * back to the slabs to make space.
2033 */
2034 void
2035 spl_kmem_cache_free(spl_kmem_cache_t *skc, void *obj)
2036 {
2037 spl_kmem_magazine_t *skm;
2038 unsigned long flags;
2039 SENTRY;
2040
2041 ASSERT(skc->skc_magic == SKC_MAGIC);
2042 ASSERT(!test_bit(KMC_BIT_DESTROY, &skc->skc_flags));
2043 atomic_inc(&skc->skc_ref);
2044
2045 /*
2046 * Only virtual slabs may have emergency objects and these objects
2047 * are guaranteed to have physical addresses. They must be removed
2048 * from the tree of emergency objects and the freed.
2049 */
2050 if ((skc->skc_flags & KMC_VMEM) && !kmem_virt(obj))
2051 SGOTO(out, spl_emergency_free(skc, obj));
2052
2053 local_irq_save(flags);
2054
2055 /* Safe to update per-cpu structure without lock, but
2056 * no remote memory allocation tracking is being performed
2057 * it is entirely possible to allocate an object from one
2058 * CPU cache and return it to another. */
2059 skm = skc->skc_mag[smp_processor_id()];
2060 ASSERT(skm->skm_magic == SKM_MAGIC);
2061
2062 /* Per-CPU cache full, flush it to make space */
2063 if (unlikely(skm->skm_avail >= skm->skm_size))
2064 spl_cache_flush(skc, skm, skm->skm_refill);
2065
2066 /* Available space in cache, use it */
2067 skm->skm_objs[skm->skm_avail++] = obj;
2068
2069 local_irq_restore(flags);
2070 out:
2071 atomic_dec(&skc->skc_ref);
2072
2073 SEXIT;
2074 }
2075 EXPORT_SYMBOL(spl_kmem_cache_free);
2076
2077 /*
2078 * The generic shrinker function for all caches. Under Linux a shrinker
2079 * may not be tightly coupled with a slab cache. In fact Linux always
2080 * systematically tries calling all registered shrinker callbacks which
2081 * report that they contain unused objects. Because of this we only
2082 * register one shrinker function in the shim layer for all slab caches.
2083 * We always attempt to shrink all caches when this generic shrinker
2084 * is called. The shrinker should return the number of free objects
2085 * in the cache when called with nr_to_scan == 0 but not attempt to
2086 * free any objects. When nr_to_scan > 0 it is a request that nr_to_scan
2087 * objects should be freed, which differs from Solaris semantics.
2088 * Solaris semantics are to free all available objects which may (and
2089 * probably will) be more objects than the requested nr_to_scan.
2090 */
2091 static int
2092 __spl_kmem_cache_generic_shrinker(struct shrinker *shrink,
2093 struct shrink_control *sc)
2094 {
2095 spl_kmem_cache_t *skc;
2096 int unused = 0;
2097
2098 down_read(&spl_kmem_cache_sem);
2099 list_for_each_entry(skc, &spl_kmem_cache_list, skc_list) {
2100 if (sc->nr_to_scan)
2101 spl_kmem_cache_reap_now(skc,
2102 MAX(sc->nr_to_scan >> fls64(skc->skc_slab_objs), 1));
2103
2104 /*
2105 * Presume everything alloc'ed in reclaimable, this ensures
2106 * we are called again with nr_to_scan > 0 so can try and
2107 * reclaim. The exact number is not important either so
2108 * we forgo taking this already highly contented lock.
2109 */
2110 unused += skc->skc_obj_alloc;
2111 }
2112 up_read(&spl_kmem_cache_sem);
2113
2114 return (unused * sysctl_vfs_cache_pressure) / 100;
2115 }
2116
2117 SPL_SHRINKER_CALLBACK_WRAPPER(spl_kmem_cache_generic_shrinker);
2118
2119 /*
2120 * Call the registered reclaim function for a cache. Depending on how
2121 * many and which objects are released it may simply repopulate the
2122 * local magazine which will then need to age-out. Objects which cannot
2123 * fit in the magazine we will be released back to their slabs which will
2124 * also need to age out before being release. This is all just best
2125 * effort and we do not want to thrash creating and destroying slabs.
2126 */
2127 void
2128 spl_kmem_cache_reap_now(spl_kmem_cache_t *skc, int count)
2129 {
2130 SENTRY;
2131
2132 ASSERT(skc->skc_magic == SKC_MAGIC);
2133 ASSERT(!test_bit(KMC_BIT_DESTROY, &skc->skc_flags));
2134
2135 /* Prevent concurrent cache reaping when contended */
2136 if (test_and_set_bit(KMC_BIT_REAPING, &skc->skc_flags)) {
2137 SEXIT;
2138 return;
2139 }
2140
2141 atomic_inc(&skc->skc_ref);
2142
2143 /*
2144 * When a reclaim function is available it may be invoked repeatedly
2145 * until at least a single slab can be freed. This ensures that we
2146 * do free memory back to the system. This helps minimize the chance
2147 * of an OOM event when the bulk of memory is used by the slab.
2148 *
2149 * When free slabs are already available the reclaim callback will be
2150 * skipped. Additionally, if no forward progress is detected despite
2151 * a reclaim function the cache will be skipped to avoid deadlock.
2152 *
2153 * Longer term this would be the correct place to add the code which
2154 * repacks the slabs in order minimize fragmentation.
2155 */
2156 if (skc->skc_reclaim) {
2157 uint64_t objects = UINT64_MAX;
2158 int do_reclaim;
2159
2160 do {
2161 spin_lock(&skc->skc_lock);
2162 do_reclaim =
2163 (skc->skc_slab_total > 0) &&
2164 ((skc->skc_slab_total - skc->skc_slab_alloc) == 0) &&
2165 (skc->skc_obj_alloc < objects);
2166
2167 objects = skc->skc_obj_alloc;
2168 spin_unlock(&skc->skc_lock);
2169
2170 if (do_reclaim)
2171 skc->skc_reclaim(skc->skc_private);
2172
2173 } while (do_reclaim);
2174 }
2175
2176 /* Reclaim from the cache, ignoring it's age and delay. */
2177 spl_slab_reclaim(skc, count, 1);
2178 clear_bit(KMC_BIT_REAPING, &skc->skc_flags);
2179 smp_mb__after_clear_bit();
2180 wake_up_bit(&skc->skc_flags, KMC_BIT_REAPING);
2181
2182 atomic_dec(&skc->skc_ref);
2183
2184 SEXIT;
2185 }
2186 EXPORT_SYMBOL(spl_kmem_cache_reap_now);
2187
2188 /*
2189 * Reap all free slabs from all registered caches.
2190 */
2191 void
2192 spl_kmem_reap(void)
2193 {
2194 struct shrink_control sc;
2195
2196 sc.nr_to_scan = KMC_REAP_CHUNK;
2197 sc.gfp_mask = GFP_KERNEL;
2198
2199 __spl_kmem_cache_generic_shrinker(NULL, &sc);
2200 }
2201 EXPORT_SYMBOL(spl_kmem_reap);
2202
2203 #if defined(DEBUG_KMEM) && defined(DEBUG_KMEM_TRACKING)
2204 static char *
2205 spl_sprintf_addr(kmem_debug_t *kd, char *str, int len, int min)
2206 {
2207 int size = ((len - 1) < kd->kd_size) ? (len - 1) : kd->kd_size;
2208 int i, flag = 1;
2209
2210 ASSERT(str != NULL && len >= 17);
2211 memset(str, 0, len);
2212
2213 /* Check for a fully printable string, and while we are at
2214 * it place the printable characters in the passed buffer. */
2215 for (i = 0; i < size; i++) {
2216 str[i] = ((char *)(kd->kd_addr))[i];
2217 if (isprint(str[i])) {
2218 continue;
2219 } else {
2220 /* Minimum number of printable characters found
2221 * to make it worthwhile to print this as ascii. */
2222 if (i > min)
2223 break;
2224
2225 flag = 0;
2226 break;
2227 }
2228 }
2229
2230 if (!flag) {
2231 sprintf(str, "%02x%02x%02x%02x%02x%02x%02x%02x",
2232 *((uint8_t *)kd->kd_addr),
2233 *((uint8_t *)kd->kd_addr + 2),
2234 *((uint8_t *)kd->kd_addr + 4),
2235 *((uint8_t *)kd->kd_addr + 6),
2236 *((uint8_t *)kd->kd_addr + 8),
2237 *((uint8_t *)kd->kd_addr + 10),
2238 *((uint8_t *)kd->kd_addr + 12),
2239 *((uint8_t *)kd->kd_addr + 14));
2240 }
2241
2242 return str;
2243 }
2244
2245 static int
2246 spl_kmem_init_tracking(struct list_head *list, spinlock_t *lock, int size)
2247 {
2248 int i;
2249 SENTRY;
2250
2251 spin_lock_init(lock);
2252 INIT_LIST_HEAD(list);
2253
2254 for (i = 0; i < size; i++)
2255 INIT_HLIST_HEAD(&kmem_table[i]);
2256
2257 SRETURN(0);
2258 }
2259
2260 static void
2261 spl_kmem_fini_tracking(struct list_head *list, spinlock_t *lock)
2262 {
2263 unsigned long flags;
2264 kmem_debug_t *kd;
2265 char str[17];
2266 SENTRY;
2267
2268 spin_lock_irqsave(lock, flags);
2269 if (!list_empty(list))
2270 printk(KERN_WARNING "%-16s %-5s %-16s %s:%s\n", "address",
2271 "size", "data", "func", "line");
2272
2273 list_for_each_entry(kd, list, kd_list)
2274 printk(KERN_WARNING "%p %-5d %-16s %s:%d\n", kd->kd_addr,
2275 (int)kd->kd_size, spl_sprintf_addr(kd, str, 17, 8),
2276 kd->kd_func, kd->kd_line);
2277
2278 spin_unlock_irqrestore(lock, flags);
2279 SEXIT;
2280 }
2281 #else /* DEBUG_KMEM && DEBUG_KMEM_TRACKING */
2282 #define spl_kmem_init_tracking(list, lock, size)
2283 #define spl_kmem_fini_tracking(list, lock)
2284 #endif /* DEBUG_KMEM && DEBUG_KMEM_TRACKING */
2285
2286 static void
2287 spl_kmem_init_globals(void)
2288 {
2289 struct zone *zone;
2290
2291 /* For now all zones are includes, it may be wise to restrict
2292 * this to normal and highmem zones if we see problems. */
2293 for_each_zone(zone) {
2294
2295 if (!populated_zone(zone))
2296 continue;
2297
2298 minfree += min_wmark_pages(zone);
2299 desfree += low_wmark_pages(zone);
2300 lotsfree += high_wmark_pages(zone);
2301 }
2302
2303 /* Solaris default values */
2304 swapfs_minfree = MAX(2*1024*1024 >> PAGE_SHIFT, physmem >> 3);
2305 swapfs_reserve = MIN(4*1024*1024 >> PAGE_SHIFT, physmem >> 4);
2306 }
2307
2308 /*
2309 * Called at module init when it is safe to use spl_kallsyms_lookup_name()
2310 */
2311 int
2312 spl_kmem_init_kallsyms_lookup(void)
2313 {
2314 #ifndef HAVE_GET_VMALLOC_INFO
2315 get_vmalloc_info_fn = (get_vmalloc_info_t)
2316 spl_kallsyms_lookup_name("get_vmalloc_info");
2317 if (!get_vmalloc_info_fn) {
2318 printk(KERN_ERR "Error: Unknown symbol get_vmalloc_info\n");
2319 return -EFAULT;
2320 }
2321 #endif /* HAVE_GET_VMALLOC_INFO */
2322
2323 #ifdef HAVE_PGDAT_HELPERS
2324 # ifndef HAVE_FIRST_ONLINE_PGDAT
2325 first_online_pgdat_fn = (first_online_pgdat_t)
2326 spl_kallsyms_lookup_name("first_online_pgdat");
2327 if (!first_online_pgdat_fn) {
2328 printk(KERN_ERR "Error: Unknown symbol first_online_pgdat\n");
2329 return -EFAULT;
2330 }
2331 # endif /* HAVE_FIRST_ONLINE_PGDAT */
2332
2333 # ifndef HAVE_NEXT_ONLINE_PGDAT
2334 next_online_pgdat_fn = (next_online_pgdat_t)
2335 spl_kallsyms_lookup_name("next_online_pgdat");
2336 if (!next_online_pgdat_fn) {
2337 printk(KERN_ERR "Error: Unknown symbol next_online_pgdat\n");
2338 return -EFAULT;
2339 }
2340 # endif /* HAVE_NEXT_ONLINE_PGDAT */
2341
2342 # ifndef HAVE_NEXT_ZONE
2343 next_zone_fn = (next_zone_t)
2344 spl_kallsyms_lookup_name("next_zone");
2345 if (!next_zone_fn) {
2346 printk(KERN_ERR "Error: Unknown symbol next_zone\n");
2347 return -EFAULT;
2348 }
2349 # endif /* HAVE_NEXT_ZONE */
2350
2351 #else /* HAVE_PGDAT_HELPERS */
2352
2353 # ifndef HAVE_PGDAT_LIST
2354 pgdat_list_addr = *(struct pglist_data **)
2355 spl_kallsyms_lookup_name("pgdat_list");
2356 if (!pgdat_list_addr) {
2357 printk(KERN_ERR "Error: Unknown symbol pgdat_list\n");
2358 return -EFAULT;
2359 }
2360 # endif /* HAVE_PGDAT_LIST */
2361 #endif /* HAVE_PGDAT_HELPERS */
2362
2363 #if defined(NEED_GET_ZONE_COUNTS) && !defined(HAVE_GET_ZONE_COUNTS)
2364 get_zone_counts_fn = (get_zone_counts_t)
2365 spl_kallsyms_lookup_name("get_zone_counts");
2366 if (!get_zone_counts_fn) {
2367 printk(KERN_ERR "Error: Unknown symbol get_zone_counts\n");
2368 return -EFAULT;
2369 }
2370 #endif /* NEED_GET_ZONE_COUNTS && !HAVE_GET_ZONE_COUNTS */
2371
2372 /*
2373 * It is now safe to initialize the global tunings which rely on
2374 * the use of the for_each_zone() macro. This macro in turns
2375 * depends on the *_pgdat symbols which are now available.
2376 */
2377 spl_kmem_init_globals();
2378
2379 #if !defined(HAVE_INVALIDATE_INODES) && !defined(HAVE_INVALIDATE_INODES_CHECK)
2380 invalidate_inodes_fn = (invalidate_inodes_t)
2381 spl_kallsyms_lookup_name("invalidate_inodes");
2382 if (!invalidate_inodes_fn) {
2383 printk(KERN_ERR "Error: Unknown symbol invalidate_inodes\n");
2384 return -EFAULT;
2385 }
2386 #endif /* !HAVE_INVALIDATE_INODES && !HAVE_INVALIDATE_INODES_CHECK */
2387
2388 #ifndef HAVE_SHRINK_DCACHE_MEMORY
2389 /* When shrink_dcache_memory_fn == NULL support is disabled */
2390 shrink_dcache_memory_fn = (shrink_dcache_memory_t)
2391 spl_kallsyms_lookup_name("shrink_dcache_memory");
2392 #endif /* HAVE_SHRINK_DCACHE_MEMORY */
2393
2394 #ifndef HAVE_SHRINK_ICACHE_MEMORY
2395 /* When shrink_icache_memory_fn == NULL support is disabled */
2396 shrink_icache_memory_fn = (shrink_icache_memory_t)
2397 spl_kallsyms_lookup_name("shrink_icache_memory");
2398 #endif /* HAVE_SHRINK_ICACHE_MEMORY */
2399
2400 return 0;
2401 }
2402
2403 int
2404 spl_kmem_init(void)
2405 {
2406 int rc = 0;
2407 SENTRY;
2408
2409 init_rwsem(&spl_kmem_cache_sem);
2410 INIT_LIST_HEAD(&spl_kmem_cache_list);
2411 spl_kmem_cache_taskq = taskq_create("spl_kmem_cache",
2412 1, maxclsyspri, 1, 32, TASKQ_PREPOPULATE);
2413
2414 spl_register_shrinker(&spl_kmem_cache_shrinker);
2415
2416 #ifdef DEBUG_KMEM
2417 kmem_alloc_used_set(0);
2418 vmem_alloc_used_set(0);
2419
2420 spl_kmem_init_tracking(&kmem_list, &kmem_lock, KMEM_TABLE_SIZE);
2421 spl_kmem_init_tracking(&vmem_list, &vmem_lock, VMEM_TABLE_SIZE);
2422 #endif
2423 SRETURN(rc);
2424 }
2425
2426 void
2427 spl_kmem_fini(void)
2428 {
2429 #ifdef DEBUG_KMEM
2430 /* Display all unreclaimed memory addresses, including the
2431 * allocation size and the first few bytes of what's located
2432 * at that address to aid in debugging. Performance is not
2433 * a serious concern here since it is module unload time. */
2434 if (kmem_alloc_used_read() != 0)
2435 SDEBUG_LIMIT(SD_CONSOLE | SD_WARNING,
2436 "kmem leaked %ld/%ld bytes\n",
2437 kmem_alloc_used_read(), kmem_alloc_max);
2438
2439
2440 if (vmem_alloc_used_read() != 0)
2441 SDEBUG_LIMIT(SD_CONSOLE | SD_WARNING,
2442 "vmem leaked %ld/%ld bytes\n",
2443 vmem_alloc_used_read(), vmem_alloc_max);
2444
2445 spl_kmem_fini_tracking(&kmem_list, &kmem_lock);
2446 spl_kmem_fini_tracking(&vmem_list, &vmem_lock);
2447 #endif /* DEBUG_KMEM */
2448 SENTRY;
2449
2450 spl_unregister_shrinker(&spl_kmem_cache_shrinker);
2451 taskq_destroy(spl_kmem_cache_taskq);
2452
2453 SEXIT;
2454 }