]> git.proxmox.com Git - mirror_spl.git/blob - module/spl/spl-kmem.c
Fix various typos in comments
[mirror_spl.git] / module / spl / spl-kmem.c
1 /*****************************************************************************\
2 * Copyright (C) 2007-2010 Lawrence Livermore National Security, LLC.
3 * Copyright (C) 2007 The Regents of the University of California.
4 * Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER).
5 * Written by Brian Behlendorf <behlendorf1@llnl.gov>.
6 * UCRL-CODE-235197
7 *
8 * This file is part of the SPL, Solaris Porting Layer.
9 * For details, see <http://github.com/behlendorf/spl/>.
10 *
11 * The SPL is free software; you can redistribute it and/or modify it
12 * under the terms of the GNU General Public License as published by the
13 * Free Software Foundation; either version 2 of the License, or (at your
14 * option) any later version.
15 *
16 * The SPL is distributed in the hope that it will be useful, but WITHOUT
17 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
18 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
19 * for more details.
20 *
21 * You should have received a copy of the GNU General Public License along
22 * with the SPL. If not, see <http://www.gnu.org/licenses/>.
23 *****************************************************************************
24 * Solaris Porting Layer (SPL) Kmem Implementation.
25 \*****************************************************************************/
26
27 #include <sys/kmem.h>
28 #include <spl-debug.h>
29
30 #ifdef SS_DEBUG_SUBSYS
31 #undef SS_DEBUG_SUBSYS
32 #endif
33
34 #define SS_DEBUG_SUBSYS SS_KMEM
35
36 /*
37 * The minimum amount of memory measured in pages to be free at all
38 * times on the system. This is similar to Linux's zone->pages_min
39 * multiplied by the number of zones and is sized based on that.
40 */
41 pgcnt_t minfree = 0;
42 EXPORT_SYMBOL(minfree);
43
44 /*
45 * The desired amount of memory measured in pages to be free at all
46 * times on the system. This is similar to Linux's zone->pages_low
47 * multiplied by the number of zones and is sized based on that.
48 * Assuming all zones are being used roughly equally, when we drop
49 * below this threshold asynchronous page reclamation is triggered.
50 */
51 pgcnt_t desfree = 0;
52 EXPORT_SYMBOL(desfree);
53
54 /*
55 * When above this amount of memory measures in pages the system is
56 * determined to have enough free memory. This is similar to Linux's
57 * zone->pages_high multiplied by the number of zones and is sized based
58 * on that. Assuming all zones are being used roughly equally, when
59 * asynchronous page reclamation reaches this threshold it stops.
60 */
61 pgcnt_t lotsfree = 0;
62 EXPORT_SYMBOL(lotsfree);
63
64 /* Unused always 0 in this implementation */
65 pgcnt_t needfree = 0;
66 EXPORT_SYMBOL(needfree);
67
68 pgcnt_t swapfs_minfree = 0;
69 EXPORT_SYMBOL(swapfs_minfree);
70
71 pgcnt_t swapfs_reserve = 0;
72 EXPORT_SYMBOL(swapfs_reserve);
73
74 vmem_t *heap_arena = NULL;
75 EXPORT_SYMBOL(heap_arena);
76
77 vmem_t *zio_alloc_arena = NULL;
78 EXPORT_SYMBOL(zio_alloc_arena);
79
80 vmem_t *zio_arena = NULL;
81 EXPORT_SYMBOL(zio_arena);
82
83 #ifndef HAVE_GET_VMALLOC_INFO
84 get_vmalloc_info_t get_vmalloc_info_fn = SYMBOL_POISON;
85 EXPORT_SYMBOL(get_vmalloc_info_fn);
86 #endif /* HAVE_GET_VMALLOC_INFO */
87
88 #ifdef HAVE_PGDAT_HELPERS
89 # ifndef HAVE_FIRST_ONLINE_PGDAT
90 first_online_pgdat_t first_online_pgdat_fn = SYMBOL_POISON;
91 EXPORT_SYMBOL(first_online_pgdat_fn);
92 # endif /* HAVE_FIRST_ONLINE_PGDAT */
93
94 # ifndef HAVE_NEXT_ONLINE_PGDAT
95 next_online_pgdat_t next_online_pgdat_fn = SYMBOL_POISON;
96 EXPORT_SYMBOL(next_online_pgdat_fn);
97 # endif /* HAVE_NEXT_ONLINE_PGDAT */
98
99 # ifndef HAVE_NEXT_ZONE
100 next_zone_t next_zone_fn = SYMBOL_POISON;
101 EXPORT_SYMBOL(next_zone_fn);
102 # endif /* HAVE_NEXT_ZONE */
103
104 #else /* HAVE_PGDAT_HELPERS */
105
106 # ifndef HAVE_PGDAT_LIST
107 struct pglist_data *pgdat_list_addr = SYMBOL_POISON;
108 EXPORT_SYMBOL(pgdat_list_addr);
109 # endif /* HAVE_PGDAT_LIST */
110
111 #endif /* HAVE_PGDAT_HELPERS */
112
113 #ifdef NEED_GET_ZONE_COUNTS
114 # ifndef HAVE_GET_ZONE_COUNTS
115 get_zone_counts_t get_zone_counts_fn = SYMBOL_POISON;
116 EXPORT_SYMBOL(get_zone_counts_fn);
117 # endif /* HAVE_GET_ZONE_COUNTS */
118
119 unsigned long
120 spl_global_page_state(spl_zone_stat_item_t item)
121 {
122 unsigned long active;
123 unsigned long inactive;
124 unsigned long free;
125
126 get_zone_counts(&active, &inactive, &free);
127 switch (item) {
128 case SPL_NR_FREE_PAGES: return free;
129 case SPL_NR_INACTIVE: return inactive;
130 case SPL_NR_ACTIVE: return active;
131 default: ASSERT(0); /* Unsupported */
132 }
133
134 return 0;
135 }
136 #else
137 # ifdef HAVE_GLOBAL_PAGE_STATE
138 unsigned long
139 spl_global_page_state(spl_zone_stat_item_t item)
140 {
141 unsigned long pages = 0;
142
143 switch (item) {
144 case SPL_NR_FREE_PAGES:
145 # ifdef HAVE_ZONE_STAT_ITEM_NR_FREE_PAGES
146 pages += global_page_state(NR_FREE_PAGES);
147 # endif
148 break;
149 case SPL_NR_INACTIVE:
150 # ifdef HAVE_ZONE_STAT_ITEM_NR_INACTIVE
151 pages += global_page_state(NR_INACTIVE);
152 # endif
153 # ifdef HAVE_ZONE_STAT_ITEM_NR_INACTIVE_ANON
154 pages += global_page_state(NR_INACTIVE_ANON);
155 # endif
156 # ifdef HAVE_ZONE_STAT_ITEM_NR_INACTIVE_FILE
157 pages += global_page_state(NR_INACTIVE_FILE);
158 # endif
159 break;
160 case SPL_NR_ACTIVE:
161 # ifdef HAVE_ZONE_STAT_ITEM_NR_ACTIVE
162 pages += global_page_state(NR_ACTIVE);
163 # endif
164 # ifdef HAVE_ZONE_STAT_ITEM_NR_ACTIVE_ANON
165 pages += global_page_state(NR_ACTIVE_ANON);
166 # endif
167 # ifdef HAVE_ZONE_STAT_ITEM_NR_ACTIVE_FILE
168 pages += global_page_state(NR_ACTIVE_FILE);
169 # endif
170 break;
171 default:
172 ASSERT(0); /* Unsupported */
173 }
174
175 return pages;
176 }
177 # else
178 # error "Both global_page_state() and get_zone_counts() unavailable"
179 # endif /* HAVE_GLOBAL_PAGE_STATE */
180 #endif /* NEED_GET_ZONE_COUNTS */
181 EXPORT_SYMBOL(spl_global_page_state);
182
183 #ifndef HAVE_INVALIDATE_INODES
184 invalidate_inodes_t invalidate_inodes_fn = SYMBOL_POISON;
185 EXPORT_SYMBOL(invalidate_inodes_fn);
186 #endif /* HAVE_INVALIDATE_INODES */
187
188 #ifndef HAVE_SHRINK_DCACHE_MEMORY
189 shrink_dcache_memory_t shrink_dcache_memory_fn = SYMBOL_POISON;
190 EXPORT_SYMBOL(shrink_dcache_memory_fn);
191 #endif /* HAVE_SHRINK_DCACHE_MEMORY */
192
193 #ifndef HAVE_SHRINK_ICACHE_MEMORY
194 shrink_icache_memory_t shrink_icache_memory_fn = SYMBOL_POISON;
195 EXPORT_SYMBOL(shrink_icache_memory_fn);
196 #endif /* HAVE_SHRINK_ICACHE_MEMORY */
197
198 pgcnt_t
199 spl_kmem_availrmem(void)
200 {
201 /* The amount of easily available memory */
202 return (spl_global_page_state(SPL_NR_FREE_PAGES) +
203 spl_global_page_state(SPL_NR_INACTIVE));
204 }
205 EXPORT_SYMBOL(spl_kmem_availrmem);
206
207 size_t
208 vmem_size(vmem_t *vmp, int typemask)
209 {
210 struct vmalloc_info vmi;
211 size_t size = 0;
212
213 ASSERT(vmp == NULL);
214 ASSERT(typemask & (VMEM_ALLOC | VMEM_FREE));
215
216 get_vmalloc_info(&vmi);
217 if (typemask & VMEM_ALLOC)
218 size += (size_t)vmi.used;
219
220 if (typemask & VMEM_FREE)
221 size += (size_t)(VMALLOC_TOTAL - vmi.used);
222
223 return size;
224 }
225 EXPORT_SYMBOL(vmem_size);
226
227 int
228 kmem_debugging(void)
229 {
230 return 0;
231 }
232 EXPORT_SYMBOL(kmem_debugging);
233
234 #ifndef HAVE_KVASPRINTF
235 /* Simplified asprintf. */
236 char *kvasprintf(gfp_t gfp, const char *fmt, va_list ap)
237 {
238 unsigned int len;
239 char *p;
240 va_list aq;
241
242 va_copy(aq, ap);
243 len = vsnprintf(NULL, 0, fmt, aq);
244 va_end(aq);
245
246 p = kmalloc(len+1, gfp);
247 if (!p)
248 return NULL;
249
250 vsnprintf(p, len+1, fmt, ap);
251
252 return p;
253 }
254 EXPORT_SYMBOL(kvasprintf);
255 #endif /* HAVE_KVASPRINTF */
256
257 char *
258 kmem_vasprintf(const char *fmt, va_list ap)
259 {
260 va_list aq;
261 char *ptr;
262
263 do {
264 va_copy(aq, ap);
265 ptr = kvasprintf(GFP_KERNEL, fmt, aq);
266 va_end(aq);
267 } while (ptr == NULL);
268
269 return ptr;
270 }
271 EXPORT_SYMBOL(kmem_vasprintf);
272
273 char *
274 kmem_asprintf(const char *fmt, ...)
275 {
276 va_list ap;
277 char *ptr;
278
279 do {
280 va_start(ap, fmt);
281 ptr = kvasprintf(GFP_KERNEL, fmt, ap);
282 va_end(ap);
283 } while (ptr == NULL);
284
285 return ptr;
286 }
287 EXPORT_SYMBOL(kmem_asprintf);
288
289 static char *
290 __strdup(const char *str, int flags)
291 {
292 char *ptr;
293 int n;
294
295 n = strlen(str);
296 ptr = kmalloc_nofail(n + 1, flags);
297 if (ptr)
298 memcpy(ptr, str, n + 1);
299
300 return ptr;
301 }
302
303 char *
304 strdup(const char *str)
305 {
306 return __strdup(str, KM_SLEEP);
307 }
308 EXPORT_SYMBOL(strdup);
309
310 void
311 strfree(char *str)
312 {
313 kfree(str);
314 }
315 EXPORT_SYMBOL(strfree);
316
317 /*
318 * Memory allocation interfaces and debugging for basic kmem_*
319 * and vmem_* style memory allocation. When DEBUG_KMEM is enabled
320 * the SPL will keep track of the total memory allocated, and
321 * report any memory leaked when the module is unloaded.
322 */
323 #ifdef DEBUG_KMEM
324
325 /* Shim layer memory accounting */
326 # ifdef HAVE_ATOMIC64_T
327 atomic64_t kmem_alloc_used = ATOMIC64_INIT(0);
328 unsigned long long kmem_alloc_max = 0;
329 atomic64_t vmem_alloc_used = ATOMIC64_INIT(0);
330 unsigned long long vmem_alloc_max = 0;
331 # else /* HAVE_ATOMIC64_T */
332 atomic_t kmem_alloc_used = ATOMIC_INIT(0);
333 unsigned long long kmem_alloc_max = 0;
334 atomic_t vmem_alloc_used = ATOMIC_INIT(0);
335 unsigned long long vmem_alloc_max = 0;
336 # endif /* HAVE_ATOMIC64_T */
337
338 EXPORT_SYMBOL(kmem_alloc_used);
339 EXPORT_SYMBOL(kmem_alloc_max);
340 EXPORT_SYMBOL(vmem_alloc_used);
341 EXPORT_SYMBOL(vmem_alloc_max);
342
343 /* When DEBUG_KMEM_TRACKING is enabled not only will total bytes be tracked
344 * but also the location of every alloc and free. When the SPL module is
345 * unloaded a list of all leaked addresses and where they were allocated
346 * will be dumped to the console. Enabling this feature has a significant
347 * impact on performance but it makes finding memory leaks straight forward.
348 *
349 * Not surprisingly with debugging enabled the xmem_locks are very highly
350 * contended particularly on xfree(). If we want to run with this detailed
351 * debugging enabled for anything other than debugging we need to minimize
352 * the contention by moving to a lock per xmem_table entry model.
353 */
354 # ifdef DEBUG_KMEM_TRACKING
355
356 # define KMEM_HASH_BITS 10
357 # define KMEM_TABLE_SIZE (1 << KMEM_HASH_BITS)
358
359 # define VMEM_HASH_BITS 10
360 # define VMEM_TABLE_SIZE (1 << VMEM_HASH_BITS)
361
362 typedef struct kmem_debug {
363 struct hlist_node kd_hlist; /* Hash node linkage */
364 struct list_head kd_list; /* List of all allocations */
365 void *kd_addr; /* Allocation pointer */
366 size_t kd_size; /* Allocation size */
367 const char *kd_func; /* Allocation function */
368 int kd_line; /* Allocation line */
369 } kmem_debug_t;
370
371 spinlock_t kmem_lock;
372 struct hlist_head kmem_table[KMEM_TABLE_SIZE];
373 struct list_head kmem_list;
374
375 spinlock_t vmem_lock;
376 struct hlist_head vmem_table[VMEM_TABLE_SIZE];
377 struct list_head vmem_list;
378
379 EXPORT_SYMBOL(kmem_lock);
380 EXPORT_SYMBOL(kmem_table);
381 EXPORT_SYMBOL(kmem_list);
382
383 EXPORT_SYMBOL(vmem_lock);
384 EXPORT_SYMBOL(vmem_table);
385 EXPORT_SYMBOL(vmem_list);
386
387 static kmem_debug_t *
388 kmem_del_init(spinlock_t *lock, struct hlist_head *table, int bits, void *addr)
389 {
390 struct hlist_head *head;
391 struct hlist_node *node;
392 struct kmem_debug *p;
393 unsigned long flags;
394 SENTRY;
395
396 spin_lock_irqsave(lock, flags);
397
398 head = &table[hash_ptr(addr, bits)];
399 hlist_for_each_entry_rcu(p, node, head, kd_hlist) {
400 if (p->kd_addr == addr) {
401 hlist_del_init(&p->kd_hlist);
402 list_del_init(&p->kd_list);
403 spin_unlock_irqrestore(lock, flags);
404 return p;
405 }
406 }
407
408 spin_unlock_irqrestore(lock, flags);
409
410 SRETURN(NULL);
411 }
412
413 void *
414 kmem_alloc_track(size_t size, int flags, const char *func, int line,
415 int node_alloc, int node)
416 {
417 void *ptr = NULL;
418 kmem_debug_t *dptr;
419 unsigned long irq_flags;
420 SENTRY;
421
422 /* Function may be called with KM_NOSLEEP so failure is possible */
423 dptr = (kmem_debug_t *) kmalloc_nofail(sizeof(kmem_debug_t),
424 flags & ~__GFP_ZERO);
425
426 if (unlikely(dptr == NULL)) {
427 SDEBUG_LIMIT(SD_CONSOLE | SD_WARNING, "debug "
428 "kmem_alloc(%ld, 0x%x) at %s:%d failed (%lld/%llu)\n",
429 sizeof(kmem_debug_t), flags, func, line,
430 kmem_alloc_used_read(), kmem_alloc_max);
431 } else {
432 /*
433 * Marked unlikely because we should never be doing this,
434 * we tolerate to up 2 pages but a single page is best.
435 */
436 if (unlikely((size > PAGE_SIZE*2) && !(flags & KM_NODEBUG))) {
437 SDEBUG_LIMIT(SD_CONSOLE | SD_WARNING, "large "
438 "kmem_alloc(%llu, 0x%x) at %s:%d (%lld/%llu)\n",
439 (unsigned long long) size, flags, func, line,
440 kmem_alloc_used_read(), kmem_alloc_max);
441 spl_debug_dumpstack(NULL);
442 }
443
444 /*
445 * We use __strdup() below because the string pointed to by
446 * __FUNCTION__ might not be available by the time we want
447 * to print it since the module might have been unloaded.
448 * This can only fail in the KM_NOSLEEP case.
449 */
450 dptr->kd_func = __strdup(func, flags & ~__GFP_ZERO);
451 if (unlikely(dptr->kd_func == NULL)) {
452 kfree(dptr);
453 SDEBUG_LIMIT(SD_CONSOLE | SD_WARNING,
454 "debug __strdup() at %s:%d failed (%lld/%llu)\n",
455 func, line, kmem_alloc_used_read(), kmem_alloc_max);
456 goto out;
457 }
458
459 /* Use the correct allocator */
460 if (node_alloc) {
461 ASSERT(!(flags & __GFP_ZERO));
462 ptr = kmalloc_node_nofail(size, flags, node);
463 } else if (flags & __GFP_ZERO) {
464 ptr = kzalloc_nofail(size, flags & ~__GFP_ZERO);
465 } else {
466 ptr = kmalloc_nofail(size, flags);
467 }
468
469 if (unlikely(ptr == NULL)) {
470 kfree(dptr->kd_func);
471 kfree(dptr);
472 SDEBUG_LIMIT(SD_CONSOLE | SD_WARNING, "kmem_alloc"
473 "(%llu, 0x%x) at %s:%d failed (%lld/%llu)\n",
474 (unsigned long long) size, flags, func, line,
475 kmem_alloc_used_read(), kmem_alloc_max);
476 goto out;
477 }
478
479 kmem_alloc_used_add(size);
480 if (unlikely(kmem_alloc_used_read() > kmem_alloc_max))
481 kmem_alloc_max = kmem_alloc_used_read();
482
483 INIT_HLIST_NODE(&dptr->kd_hlist);
484 INIT_LIST_HEAD(&dptr->kd_list);
485
486 dptr->kd_addr = ptr;
487 dptr->kd_size = size;
488 dptr->kd_line = line;
489
490 spin_lock_irqsave(&kmem_lock, irq_flags);
491 hlist_add_head_rcu(&dptr->kd_hlist,
492 &kmem_table[hash_ptr(ptr, KMEM_HASH_BITS)]);
493 list_add_tail(&dptr->kd_list, &kmem_list);
494 spin_unlock_irqrestore(&kmem_lock, irq_flags);
495
496 SDEBUG_LIMIT(SD_INFO,
497 "kmem_alloc(%llu, 0x%x) at %s:%d = %p (%lld/%llu)\n",
498 (unsigned long long) size, flags, func, line, ptr,
499 kmem_alloc_used_read(), kmem_alloc_max);
500 }
501 out:
502 SRETURN(ptr);
503 }
504 EXPORT_SYMBOL(kmem_alloc_track);
505
506 void
507 kmem_free_track(void *ptr, size_t size)
508 {
509 kmem_debug_t *dptr;
510 SENTRY;
511
512 ASSERTF(ptr || size > 0, "ptr: %p, size: %llu", ptr,
513 (unsigned long long) size);
514
515 dptr = kmem_del_init(&kmem_lock, kmem_table, KMEM_HASH_BITS, ptr);
516
517 /* Must exist in hash due to kmem_alloc() */
518 ASSERT(dptr);
519
520 /* Size must match */
521 ASSERTF(dptr->kd_size == size, "kd_size (%llu) != size (%llu), "
522 "kd_func = %s, kd_line = %d\n", (unsigned long long) dptr->kd_size,
523 (unsigned long long) size, dptr->kd_func, dptr->kd_line);
524
525 kmem_alloc_used_sub(size);
526 SDEBUG_LIMIT(SD_INFO, "kmem_free(%p, %llu) (%lld/%llu)\n", ptr,
527 (unsigned long long) size, kmem_alloc_used_read(),
528 kmem_alloc_max);
529
530 kfree(dptr->kd_func);
531
532 memset(dptr, 0x5a, sizeof(kmem_debug_t));
533 kfree(dptr);
534
535 memset(ptr, 0x5a, size);
536 kfree(ptr);
537
538 SEXIT;
539 }
540 EXPORT_SYMBOL(kmem_free_track);
541
542 void *
543 vmem_alloc_track(size_t size, int flags, const char *func, int line)
544 {
545 void *ptr = NULL;
546 kmem_debug_t *dptr;
547 unsigned long irq_flags;
548 SENTRY;
549
550 ASSERT(flags & KM_SLEEP);
551
552 /* Function may be called with KM_NOSLEEP so failure is possible */
553 dptr = (kmem_debug_t *) kmalloc_nofail(sizeof(kmem_debug_t),
554 flags & ~__GFP_ZERO);
555 if (unlikely(dptr == NULL)) {
556 SDEBUG_LIMIT(SD_CONSOLE | SD_WARNING, "debug "
557 "vmem_alloc(%ld, 0x%x) at %s:%d failed (%lld/%llu)\n",
558 sizeof(kmem_debug_t), flags, func, line,
559 vmem_alloc_used_read(), vmem_alloc_max);
560 } else {
561 /*
562 * We use __strdup() below because the string pointed to by
563 * __FUNCTION__ might not be available by the time we want
564 * to print it, since the module might have been unloaded.
565 * This can never fail because we have already asserted
566 * that flags is KM_SLEEP.
567 */
568 dptr->kd_func = __strdup(func, flags & ~__GFP_ZERO);
569 if (unlikely(dptr->kd_func == NULL)) {
570 kfree(dptr);
571 SDEBUG_LIMIT(SD_CONSOLE | SD_WARNING,
572 "debug __strdup() at %s:%d failed (%lld/%llu)\n",
573 func, line, vmem_alloc_used_read(), vmem_alloc_max);
574 goto out;
575 }
576
577 /* Use the correct allocator */
578 if (flags & __GFP_ZERO) {
579 ptr = vzalloc_nofail(size, flags & ~__GFP_ZERO);
580 } else {
581 ptr = vmalloc_nofail(size, flags);
582 }
583
584 if (unlikely(ptr == NULL)) {
585 kfree(dptr->kd_func);
586 kfree(dptr);
587 SDEBUG_LIMIT(SD_CONSOLE | SD_WARNING, "vmem_alloc"
588 "(%llu, 0x%x) at %s:%d failed (%lld/%llu)\n",
589 (unsigned long long) size, flags, func, line,
590 vmem_alloc_used_read(), vmem_alloc_max);
591 goto out;
592 }
593
594 vmem_alloc_used_add(size);
595 if (unlikely(vmem_alloc_used_read() > vmem_alloc_max))
596 vmem_alloc_max = vmem_alloc_used_read();
597
598 INIT_HLIST_NODE(&dptr->kd_hlist);
599 INIT_LIST_HEAD(&dptr->kd_list);
600
601 dptr->kd_addr = ptr;
602 dptr->kd_size = size;
603 dptr->kd_line = line;
604
605 spin_lock_irqsave(&vmem_lock, irq_flags);
606 hlist_add_head_rcu(&dptr->kd_hlist,
607 &vmem_table[hash_ptr(ptr, VMEM_HASH_BITS)]);
608 list_add_tail(&dptr->kd_list, &vmem_list);
609 spin_unlock_irqrestore(&vmem_lock, irq_flags);
610
611 SDEBUG_LIMIT(SD_INFO,
612 "vmem_alloc(%llu, 0x%x) at %s:%d = %p (%lld/%llu)\n",
613 (unsigned long long) size, flags, func, line,
614 ptr, vmem_alloc_used_read(), vmem_alloc_max);
615 }
616 out:
617 SRETURN(ptr);
618 }
619 EXPORT_SYMBOL(vmem_alloc_track);
620
621 void
622 vmem_free_track(void *ptr, size_t size)
623 {
624 kmem_debug_t *dptr;
625 SENTRY;
626
627 ASSERTF(ptr || size > 0, "ptr: %p, size: %llu", ptr,
628 (unsigned long long) size);
629
630 dptr = kmem_del_init(&vmem_lock, vmem_table, VMEM_HASH_BITS, ptr);
631
632 /* Must exist in hash due to vmem_alloc() */
633 ASSERT(dptr);
634
635 /* Size must match */
636 ASSERTF(dptr->kd_size == size, "kd_size (%llu) != size (%llu), "
637 "kd_func = %s, kd_line = %d\n", (unsigned long long) dptr->kd_size,
638 (unsigned long long) size, dptr->kd_func, dptr->kd_line);
639
640 vmem_alloc_used_sub(size);
641 SDEBUG_LIMIT(SD_INFO, "vmem_free(%p, %llu) (%lld/%llu)\n", ptr,
642 (unsigned long long) size, vmem_alloc_used_read(),
643 vmem_alloc_max);
644
645 kfree(dptr->kd_func);
646
647 memset(dptr, 0x5a, sizeof(kmem_debug_t));
648 kfree(dptr);
649
650 memset(ptr, 0x5a, size);
651 vfree(ptr);
652
653 SEXIT;
654 }
655 EXPORT_SYMBOL(vmem_free_track);
656
657 # else /* DEBUG_KMEM_TRACKING */
658
659 void *
660 kmem_alloc_debug(size_t size, int flags, const char *func, int line,
661 int node_alloc, int node)
662 {
663 void *ptr;
664 SENTRY;
665
666 /*
667 * Marked unlikely because we should never be doing this,
668 * we tolerate to up 2 pages but a single page is best.
669 */
670 if (unlikely((size > PAGE_SIZE * 2) && !(flags & KM_NODEBUG))) {
671 SDEBUG(SD_CONSOLE | SD_WARNING,
672 "large kmem_alloc(%llu, 0x%x) at %s:%d (%lld/%llu)\n",
673 (unsigned long long) size, flags, func, line,
674 kmem_alloc_used_read(), kmem_alloc_max);
675 spl_debug_dumpstack(NULL);
676 }
677
678 /* Use the correct allocator */
679 if (node_alloc) {
680 ASSERT(!(flags & __GFP_ZERO));
681 ptr = kmalloc_node_nofail(size, flags, node);
682 } else if (flags & __GFP_ZERO) {
683 ptr = kzalloc_nofail(size, flags & (~__GFP_ZERO));
684 } else {
685 ptr = kmalloc_nofail(size, flags);
686 }
687
688 if (unlikely(ptr == NULL)) {
689 SDEBUG_LIMIT(SD_CONSOLE | SD_WARNING,
690 "kmem_alloc(%llu, 0x%x) at %s:%d failed (%lld/%llu)\n",
691 (unsigned long long) size, flags, func, line,
692 kmem_alloc_used_read(), kmem_alloc_max);
693 } else {
694 kmem_alloc_used_add(size);
695 if (unlikely(kmem_alloc_used_read() > kmem_alloc_max))
696 kmem_alloc_max = kmem_alloc_used_read();
697
698 SDEBUG_LIMIT(SD_INFO,
699 "kmem_alloc(%llu, 0x%x) at %s:%d = %p (%lld/%llu)\n",
700 (unsigned long long) size, flags, func, line, ptr,
701 kmem_alloc_used_read(), kmem_alloc_max);
702 }
703
704 SRETURN(ptr);
705 }
706 EXPORT_SYMBOL(kmem_alloc_debug);
707
708 void
709 kmem_free_debug(void *ptr, size_t size)
710 {
711 SENTRY;
712
713 ASSERTF(ptr || size > 0, "ptr: %p, size: %llu", ptr,
714 (unsigned long long) size);
715
716 kmem_alloc_used_sub(size);
717 SDEBUG_LIMIT(SD_INFO, "kmem_free(%p, %llu) (%lld/%llu)\n", ptr,
718 (unsigned long long) size, kmem_alloc_used_read(),
719 kmem_alloc_max);
720 kfree(ptr);
721
722 SEXIT;
723 }
724 EXPORT_SYMBOL(kmem_free_debug);
725
726 void *
727 vmem_alloc_debug(size_t size, int flags, const char *func, int line)
728 {
729 void *ptr;
730 SENTRY;
731
732 ASSERT(flags & KM_SLEEP);
733
734 /* Use the correct allocator */
735 if (flags & __GFP_ZERO) {
736 ptr = vzalloc_nofail(size, flags & (~__GFP_ZERO));
737 } else {
738 ptr = vmalloc_nofail(size, flags);
739 }
740
741 if (unlikely(ptr == NULL)) {
742 SDEBUG_LIMIT(SD_CONSOLE | SD_WARNING,
743 "vmem_alloc(%llu, 0x%x) at %s:%d failed (%lld/%llu)\n",
744 (unsigned long long) size, flags, func, line,
745 vmem_alloc_used_read(), vmem_alloc_max);
746 } else {
747 vmem_alloc_used_add(size);
748 if (unlikely(vmem_alloc_used_read() > vmem_alloc_max))
749 vmem_alloc_max = vmem_alloc_used_read();
750
751 SDEBUG_LIMIT(SD_INFO, "vmem_alloc(%llu, 0x%x) = %p "
752 "(%lld/%llu)\n", (unsigned long long) size, flags, ptr,
753 vmem_alloc_used_read(), vmem_alloc_max);
754 }
755
756 SRETURN(ptr);
757 }
758 EXPORT_SYMBOL(vmem_alloc_debug);
759
760 void
761 vmem_free_debug(void *ptr, size_t size)
762 {
763 SENTRY;
764
765 ASSERTF(ptr || size > 0, "ptr: %p, size: %llu", ptr,
766 (unsigned long long) size);
767
768 vmem_alloc_used_sub(size);
769 SDEBUG_LIMIT(SD_INFO, "vmem_free(%p, %llu) (%lld/%llu)\n", ptr,
770 (unsigned long long) size, vmem_alloc_used_read(),
771 vmem_alloc_max);
772 vfree(ptr);
773
774 SEXIT;
775 }
776 EXPORT_SYMBOL(vmem_free_debug);
777
778 # endif /* DEBUG_KMEM_TRACKING */
779 #endif /* DEBUG_KMEM */
780
781 /*
782 * Slab allocation interfaces
783 *
784 * While the Linux slab implementation was inspired by the Solaris
785 * implementation I cannot use it to emulate the Solaris APIs. I
786 * require two features which are not provided by the Linux slab.
787 *
788 * 1) Constructors AND destructors. Recent versions of the Linux
789 * kernel have removed support for destructors. This is a deal
790 * breaker for the SPL which contains particularly expensive
791 * initializers for mutex's, condition variables, etc. We also
792 * require a minimal level of cleanup for these data types unlike
793 * many Linux data type which do need to be explicitly destroyed.
794 *
795 * 2) Virtual address space backed slab. Callers of the Solaris slab
796 * expect it to work well for both small are very large allocations.
797 * Because of memory fragmentation the Linux slab which is backed
798 * by kmalloc'ed memory performs very badly when confronted with
799 * large numbers of large allocations. Basing the slab on the
800 * virtual address space removes the need for contiguous pages
801 * and greatly improve performance for large allocations.
802 *
803 * For these reasons, the SPL has its own slab implementation with
804 * the needed features. It is not as highly optimized as either the
805 * Solaris or Linux slabs, but it should get me most of what is
806 * needed until it can be optimized or obsoleted by another approach.
807 *
808 * One serious concern I do have about this method is the relatively
809 * small virtual address space on 32bit arches. This will seriously
810 * constrain the size of the slab caches and their performance.
811 *
812 * XXX: Improve the partial slab list by carefully maintaining a
813 * strict ordering of fullest to emptiest slabs based on
814 * the slab reference count. This guarantees the when freeing
815 * slabs back to the system we need only linearly traverse the
816 * last N slabs in the list to discover all the freeable slabs.
817 *
818 * XXX: NUMA awareness for optionally allocating memory close to a
819 * particular core. This can be advantageous if you know the slab
820 * object will be short lived and primarily accessed from one core.
821 *
822 * XXX: Slab coloring may also yield performance improvements and would
823 * be desirable to implement.
824 */
825
826 struct list_head spl_kmem_cache_list; /* List of caches */
827 struct rw_semaphore spl_kmem_cache_sem; /* Cache list lock */
828
829 static int spl_cache_flush(spl_kmem_cache_t *skc,
830 spl_kmem_magazine_t *skm, int flush);
831
832 SPL_SHRINKER_CALLBACK_FWD_DECLARE(spl_kmem_cache_generic_shrinker);
833 SPL_SHRINKER_DECLARE(spl_kmem_cache_shrinker,
834 spl_kmem_cache_generic_shrinker, KMC_DEFAULT_SEEKS);
835
836 static void *
837 kv_alloc(spl_kmem_cache_t *skc, int size, int flags)
838 {
839 void *ptr;
840
841 ASSERT(ISP2(size));
842
843 if (skc->skc_flags & KMC_KMEM) {
844 ptr = (void *)__get_free_pages(flags, get_order(size));
845 } else {
846 /*
847 * As part of vmalloc() an __pte_alloc_kernel() allocation
848 * may occur. This internal allocation does not honor the
849 * gfp flags passed to vmalloc(). This means even when
850 * vmalloc(GFP_NOFS) is called it is possible synchronous
851 * reclaim will occur. This reclaim can trigger file IO
852 * which can result in a deadlock. This issue can be avoided
853 * by explicitly setting PF_MEMALLOC on the process to
854 * subvert synchronous reclaim. The following bug has
855 * been filed at kernel.org to track the issue.
856 *
857 * https://bugzilla.kernel.org/show_bug.cgi?id=30702
858 */
859 if (!(flags & __GFP_FS))
860 current->flags |= PF_MEMALLOC;
861
862 ptr = __vmalloc(size, flags | __GFP_HIGHMEM, PAGE_KERNEL);
863
864 if (!(flags & __GFP_FS))
865 current->flags &= ~PF_MEMALLOC;
866 }
867
868 /* Resulting allocated memory will be page aligned */
869 ASSERT(IS_P2ALIGNED(ptr, PAGE_SIZE));
870
871 return ptr;
872 }
873
874 static void
875 kv_free(spl_kmem_cache_t *skc, void *ptr, int size)
876 {
877 ASSERT(IS_P2ALIGNED(ptr, PAGE_SIZE));
878 ASSERT(ISP2(size));
879
880 if (skc->skc_flags & KMC_KMEM)
881 free_pages((unsigned long)ptr, get_order(size));
882 else
883 vfree(ptr);
884 }
885
886 /*
887 * Required space for each aligned sks.
888 */
889 static inline uint32_t
890 spl_sks_size(spl_kmem_cache_t *skc)
891 {
892 return P2ROUNDUP_TYPED(sizeof(spl_kmem_slab_t),
893 skc->skc_obj_align, uint32_t);
894 }
895
896 /*
897 * Required space for each aligned object.
898 */
899 static inline uint32_t
900 spl_obj_size(spl_kmem_cache_t *skc)
901 {
902 uint32_t align = skc->skc_obj_align;
903
904 return P2ROUNDUP_TYPED(skc->skc_obj_size, align, uint32_t) +
905 P2ROUNDUP_TYPED(sizeof(spl_kmem_obj_t), align, uint32_t);
906 }
907
908 /*
909 * Lookup the spl_kmem_object_t for an object given that object.
910 */
911 static inline spl_kmem_obj_t *
912 spl_sko_from_obj(spl_kmem_cache_t *skc, void *obj)
913 {
914 return obj + P2ROUNDUP_TYPED(skc->skc_obj_size,
915 skc->skc_obj_align, uint32_t);
916 }
917
918 /*
919 * Required space for each offslab object taking in to account alignment
920 * restrictions and the power-of-two requirement of kv_alloc().
921 */
922 static inline uint32_t
923 spl_offslab_size(spl_kmem_cache_t *skc)
924 {
925 return 1UL << (highbit(spl_obj_size(skc)) + 1);
926 }
927
928 /*
929 * It's important that we pack the spl_kmem_obj_t structure and the
930 * actual objects in to one large address space to minimize the number
931 * of calls to the allocator. It is far better to do a few large
932 * allocations and then subdivide it ourselves. Now which allocator
933 * we use requires balancing a few trade offs.
934 *
935 * For small objects we use kmem_alloc() because as long as you are
936 * only requesting a small number of pages (ideally just one) its cheap.
937 * However, when you start requesting multiple pages with kmem_alloc()
938 * it gets increasingly expensive since it requires contiguous pages.
939 * For this reason we shift to vmem_alloc() for slabs of large objects
940 * which removes the need for contiguous pages. We do not use
941 * vmem_alloc() in all cases because there is significant locking
942 * overhead in __get_vm_area_node(). This function takes a single
943 * global lock when acquiring an available virtual address range which
944 * serializes all vmem_alloc()'s for all slab caches. Using slightly
945 * different allocation functions for small and large objects should
946 * give us the best of both worlds.
947 *
948 * KMC_ONSLAB KMC_OFFSLAB
949 *
950 * +------------------------+ +-----------------+
951 * | spl_kmem_slab_t --+-+ | | spl_kmem_slab_t |---+-+
952 * | skc_obj_size <-+ | | +-----------------+ | |
953 * | spl_kmem_obj_t | | | |
954 * | skc_obj_size <---+ | +-----------------+ | |
955 * | spl_kmem_obj_t | | | skc_obj_size | <-+ |
956 * | ... v | | spl_kmem_obj_t | |
957 * +------------------------+ +-----------------+ v
958 */
959 static spl_kmem_slab_t *
960 spl_slab_alloc(spl_kmem_cache_t *skc, int flags)
961 {
962 spl_kmem_slab_t *sks;
963 spl_kmem_obj_t *sko, *n;
964 void *base, *obj;
965 uint32_t obj_size, offslab_size = 0;
966 int i, rc = 0;
967
968 base = kv_alloc(skc, skc->skc_slab_size, flags);
969 if (base == NULL)
970 SRETURN(NULL);
971
972 sks = (spl_kmem_slab_t *)base;
973 sks->sks_magic = SKS_MAGIC;
974 sks->sks_objs = skc->skc_slab_objs;
975 sks->sks_age = jiffies;
976 sks->sks_cache = skc;
977 INIT_LIST_HEAD(&sks->sks_list);
978 INIT_LIST_HEAD(&sks->sks_free_list);
979 sks->sks_ref = 0;
980 obj_size = spl_obj_size(skc);
981
982 if (skc->skc_flags & KMC_OFFSLAB)
983 offslab_size = spl_offslab_size(skc);
984
985 for (i = 0; i < sks->sks_objs; i++) {
986 if (skc->skc_flags & KMC_OFFSLAB) {
987 obj = kv_alloc(skc, offslab_size, flags);
988 if (!obj)
989 SGOTO(out, rc = -ENOMEM);
990 } else {
991 obj = base + spl_sks_size(skc) + (i * obj_size);
992 }
993
994 ASSERT(IS_P2ALIGNED(obj, skc->skc_obj_align));
995 sko = spl_sko_from_obj(skc, obj);
996 sko->sko_addr = obj;
997 sko->sko_magic = SKO_MAGIC;
998 sko->sko_slab = sks;
999 INIT_LIST_HEAD(&sko->sko_list);
1000 list_add_tail(&sko->sko_list, &sks->sks_free_list);
1001 }
1002
1003 list_for_each_entry(sko, &sks->sks_free_list, sko_list)
1004 if (skc->skc_ctor)
1005 skc->skc_ctor(sko->sko_addr, skc->skc_private, flags);
1006 out:
1007 if (rc) {
1008 if (skc->skc_flags & KMC_OFFSLAB)
1009 list_for_each_entry_safe(sko, n, &sks->sks_free_list,
1010 sko_list)
1011 kv_free(skc, sko->sko_addr, offslab_size);
1012
1013 kv_free(skc, base, skc->skc_slab_size);
1014 sks = NULL;
1015 }
1016
1017 SRETURN(sks);
1018 }
1019
1020 /*
1021 * Remove a slab from complete or partial list, it must be called with
1022 * the 'skc->skc_lock' held but the actual free must be performed
1023 * outside the lock to prevent deadlocking on vmem addresses.
1024 */
1025 static void
1026 spl_slab_free(spl_kmem_slab_t *sks,
1027 struct list_head *sks_list, struct list_head *sko_list)
1028 {
1029 spl_kmem_cache_t *skc;
1030 SENTRY;
1031
1032 ASSERT(sks->sks_magic == SKS_MAGIC);
1033 ASSERT(sks->sks_ref == 0);
1034
1035 skc = sks->sks_cache;
1036 ASSERT(skc->skc_magic == SKC_MAGIC);
1037 ASSERT(spin_is_locked(&skc->skc_lock));
1038
1039 /*
1040 * Update slab/objects counters in the cache, then remove the
1041 * slab from the skc->skc_partial_list. Finally add the slab
1042 * and all its objects in to the private work lists where the
1043 * destructors will be called and the memory freed to the system.
1044 */
1045 skc->skc_obj_total -= sks->sks_objs;
1046 skc->skc_slab_total--;
1047 list_del(&sks->sks_list);
1048 list_add(&sks->sks_list, sks_list);
1049 list_splice_init(&sks->sks_free_list, sko_list);
1050
1051 SEXIT;
1052 }
1053
1054 /*
1055 * Traverses all the partial slabs attached to a cache and free those
1056 * which which are currently empty, and have not been touched for
1057 * skc_delay seconds to avoid thrashing. The count argument is
1058 * passed to optionally cap the number of slabs reclaimed, a count
1059 * of zero means try and reclaim everything. When flag is set we
1060 * always free an available slab regardless of age.
1061 */
1062 static void
1063 spl_slab_reclaim(spl_kmem_cache_t *skc, int count, int flag)
1064 {
1065 spl_kmem_slab_t *sks, *m;
1066 spl_kmem_obj_t *sko, *n;
1067 LIST_HEAD(sks_list);
1068 LIST_HEAD(sko_list);
1069 uint32_t size = 0;
1070 int i = 0;
1071 SENTRY;
1072
1073 /*
1074 * Move empty slabs and objects which have not been touched in
1075 * skc_delay seconds on to private lists to be freed outside
1076 * the spin lock. This delay time is important to avoid thrashing
1077 * however when flag is set the delay will not be used.
1078 */
1079 spin_lock(&skc->skc_lock);
1080 list_for_each_entry_safe_reverse(sks,m,&skc->skc_partial_list,sks_list){
1081 /*
1082 * All empty slabs are at the end of skc->skc_partial_list,
1083 * therefore once a non-empty slab is found we can stop
1084 * scanning. Additionally, stop when reaching the target
1085 * reclaim 'count' if a non-zero threshold is given.
1086 */
1087 if ((sks->sks_ref > 0) || (count && i > count))
1088 break;
1089
1090 if (time_after(jiffies,sks->sks_age+skc->skc_delay*HZ)||flag) {
1091 spl_slab_free(sks, &sks_list, &sko_list);
1092 i++;
1093 }
1094 }
1095 spin_unlock(&skc->skc_lock);
1096
1097 /*
1098 * The following two loops ensure all the object destructors are
1099 * run, any offslab objects are freed, and the slabs themselves
1100 * are freed. This is all done outside the skc->skc_lock since
1101 * this allows the destructor to sleep, and allows us to perform
1102 * a conditional reschedule when a freeing a large number of
1103 * objects and slabs back to the system.
1104 */
1105 if (skc->skc_flags & KMC_OFFSLAB)
1106 size = spl_offslab_size(skc);
1107
1108 list_for_each_entry_safe(sko, n, &sko_list, sko_list) {
1109 ASSERT(sko->sko_magic == SKO_MAGIC);
1110
1111 if (skc->skc_dtor)
1112 skc->skc_dtor(sko->sko_addr, skc->skc_private);
1113
1114 if (skc->skc_flags & KMC_OFFSLAB)
1115 kv_free(skc, sko->sko_addr, size);
1116
1117 cond_resched();
1118 }
1119
1120 list_for_each_entry_safe(sks, m, &sks_list, sks_list) {
1121 ASSERT(sks->sks_magic == SKS_MAGIC);
1122 kv_free(skc, sks, skc->skc_slab_size);
1123 cond_resched();
1124 }
1125
1126 SEXIT;
1127 }
1128
1129 /*
1130 * Called regularly on all caches to age objects out of the magazines
1131 * which have not been access in skc->skc_delay seconds. This prevents
1132 * idle magazines from holding memory which might be better used by
1133 * other caches or parts of the system. The delay is present to
1134 * prevent thrashing the magazine.
1135 */
1136 static void
1137 spl_magazine_age(void *data)
1138 {
1139 spl_kmem_magazine_t *skm =
1140 spl_get_work_data(data, spl_kmem_magazine_t, skm_work.work);
1141 spl_kmem_cache_t *skc = skm->skm_cache;
1142 int i = smp_processor_id();
1143
1144 ASSERT(skm->skm_magic == SKM_MAGIC);
1145 ASSERT(skc->skc_magic == SKC_MAGIC);
1146 ASSERT(skc->skc_mag[i] == skm);
1147
1148 if (skm->skm_avail > 0 &&
1149 time_after(jiffies, skm->skm_age + skc->skc_delay * HZ))
1150 (void)spl_cache_flush(skc, skm, skm->skm_refill);
1151
1152 if (!test_bit(KMC_BIT_DESTROY, &skc->skc_flags))
1153 schedule_delayed_work_on(i, &skm->skm_work,
1154 skc->skc_delay / 3 * HZ);
1155 }
1156
1157 /*
1158 * Called regularly to keep a downward pressure on the size of idle
1159 * magazines and to release free slabs from the cache. This function
1160 * never calls the registered reclaim function, that only occurs
1161 * under memory pressure or with a direct call to spl_kmem_reap().
1162 */
1163 static void
1164 spl_cache_age(void *data)
1165 {
1166 spl_kmem_cache_t *skc =
1167 spl_get_work_data(data, spl_kmem_cache_t, skc_work.work);
1168
1169 ASSERT(skc->skc_magic == SKC_MAGIC);
1170 spl_slab_reclaim(skc, skc->skc_reap, 0);
1171
1172 if (!test_bit(KMC_BIT_DESTROY, &skc->skc_flags))
1173 schedule_delayed_work(&skc->skc_work, skc->skc_delay / 3 * HZ);
1174 }
1175
1176 /*
1177 * Size a slab based on the size of each aligned object plus spl_kmem_obj_t.
1178 * When on-slab we want to target SPL_KMEM_CACHE_OBJ_PER_SLAB. However,
1179 * for very small objects we may end up with more than this so as not
1180 * to waste space in the minimal allocation of a single page. Also for
1181 * very large objects we may use as few as SPL_KMEM_CACHE_OBJ_PER_SLAB_MIN,
1182 * lower than this and we will fail.
1183 */
1184 static int
1185 spl_slab_size(spl_kmem_cache_t *skc, uint32_t *objs, uint32_t *size)
1186 {
1187 uint32_t sks_size, obj_size, max_size;
1188
1189 if (skc->skc_flags & KMC_OFFSLAB) {
1190 *objs = SPL_KMEM_CACHE_OBJ_PER_SLAB;
1191 *size = sizeof(spl_kmem_slab_t);
1192 } else {
1193 sks_size = spl_sks_size(skc);
1194 obj_size = spl_obj_size(skc);
1195
1196 if (skc->skc_flags & KMC_KMEM)
1197 max_size = ((uint32_t)1 << (MAX_ORDER-3)) * PAGE_SIZE;
1198 else
1199 max_size = (32 * 1024 * 1024);
1200
1201 /* Power of two sized slab */
1202 for (*size = PAGE_SIZE; *size <= max_size; *size *= 2) {
1203 *objs = (*size - sks_size) / obj_size;
1204 if (*objs >= SPL_KMEM_CACHE_OBJ_PER_SLAB)
1205 SRETURN(0);
1206 }
1207
1208 /*
1209 * Unable to satisfy target objects per slab, fall back to
1210 * allocating a maximally sized slab and assuming it can
1211 * contain the minimum objects count use it. If not fail.
1212 */
1213 *size = max_size;
1214 *objs = (*size - sks_size) / obj_size;
1215 if (*objs >= SPL_KMEM_CACHE_OBJ_PER_SLAB_MIN)
1216 SRETURN(0);
1217 }
1218
1219 SRETURN(-ENOSPC);
1220 }
1221
1222 /*
1223 * Make a guess at reasonable per-cpu magazine size based on the size of
1224 * each object and the cost of caching N of them in each magazine. Long
1225 * term this should really adapt based on an observed usage heuristic.
1226 */
1227 static int
1228 spl_magazine_size(spl_kmem_cache_t *skc)
1229 {
1230 uint32_t obj_size = spl_obj_size(skc);
1231 int size;
1232 SENTRY;
1233
1234 /* Per-magazine sizes below assume a 4Kib page size */
1235 if (obj_size > (PAGE_SIZE * 256))
1236 size = 4; /* Minimum 4Mib per-magazine */
1237 else if (obj_size > (PAGE_SIZE * 32))
1238 size = 16; /* Minimum 2Mib per-magazine */
1239 else if (obj_size > (PAGE_SIZE))
1240 size = 64; /* Minimum 256Kib per-magazine */
1241 else if (obj_size > (PAGE_SIZE / 4))
1242 size = 128; /* Minimum 128Kib per-magazine */
1243 else
1244 size = 256;
1245
1246 SRETURN(size);
1247 }
1248
1249 /*
1250 * Allocate a per-cpu magazine to associate with a specific core.
1251 */
1252 static spl_kmem_magazine_t *
1253 spl_magazine_alloc(spl_kmem_cache_t *skc, int node)
1254 {
1255 spl_kmem_magazine_t *skm;
1256 int size = sizeof(spl_kmem_magazine_t) +
1257 sizeof(void *) * skc->skc_mag_size;
1258 SENTRY;
1259
1260 skm = kmem_alloc_node(size, KM_SLEEP, node);
1261 if (skm) {
1262 skm->skm_magic = SKM_MAGIC;
1263 skm->skm_avail = 0;
1264 skm->skm_size = skc->skc_mag_size;
1265 skm->skm_refill = skc->skc_mag_refill;
1266 skm->skm_cache = skc;
1267 spl_init_delayed_work(&skm->skm_work, spl_magazine_age, skm);
1268 skm->skm_age = jiffies;
1269 }
1270
1271 SRETURN(skm);
1272 }
1273
1274 /*
1275 * Free a per-cpu magazine associated with a specific core.
1276 */
1277 static void
1278 spl_magazine_free(spl_kmem_magazine_t *skm)
1279 {
1280 int size = sizeof(spl_kmem_magazine_t) +
1281 sizeof(void *) * skm->skm_size;
1282
1283 SENTRY;
1284 ASSERT(skm->skm_magic == SKM_MAGIC);
1285 ASSERT(skm->skm_avail == 0);
1286
1287 kmem_free(skm, size);
1288 SEXIT;
1289 }
1290
1291 /*
1292 * Create all pre-cpu magazines of reasonable sizes.
1293 */
1294 static int
1295 spl_magazine_create(spl_kmem_cache_t *skc)
1296 {
1297 int i;
1298 SENTRY;
1299
1300 skc->skc_mag_size = spl_magazine_size(skc);
1301 skc->skc_mag_refill = (skc->skc_mag_size + 1) / 2;
1302
1303 for_each_online_cpu(i) {
1304 skc->skc_mag[i] = spl_magazine_alloc(skc, cpu_to_node(i));
1305 if (!skc->skc_mag[i]) {
1306 for (i--; i >= 0; i--)
1307 spl_magazine_free(skc->skc_mag[i]);
1308
1309 SRETURN(-ENOMEM);
1310 }
1311 }
1312
1313 /* Only after everything is allocated schedule magazine work */
1314 for_each_online_cpu(i)
1315 schedule_delayed_work_on(i, &skc->skc_mag[i]->skm_work,
1316 skc->skc_delay / 3 * HZ);
1317
1318 SRETURN(0);
1319 }
1320
1321 /*
1322 * Destroy all pre-cpu magazines.
1323 */
1324 static void
1325 spl_magazine_destroy(spl_kmem_cache_t *skc)
1326 {
1327 spl_kmem_magazine_t *skm;
1328 int i;
1329 SENTRY;
1330
1331 for_each_online_cpu(i) {
1332 skm = skc->skc_mag[i];
1333 (void)spl_cache_flush(skc, skm, skm->skm_avail);
1334 spl_magazine_free(skm);
1335 }
1336
1337 SEXIT;
1338 }
1339
1340 /*
1341 * Create a object cache based on the following arguments:
1342 * name cache name
1343 * size cache object size
1344 * align cache object alignment
1345 * ctor cache object constructor
1346 * dtor cache object destructor
1347 * reclaim cache object reclaim
1348 * priv cache private data for ctor/dtor/reclaim
1349 * vmp unused must be NULL
1350 * flags
1351 * KMC_NOTOUCH Disable cache object aging (unsupported)
1352 * KMC_NODEBUG Disable debugging (unsupported)
1353 * KMC_NOMAGAZINE Disable magazine (unsupported)
1354 * KMC_NOHASH Disable hashing (unsupported)
1355 * KMC_QCACHE Disable qcache (unsupported)
1356 * KMC_KMEM Force kmem backed cache
1357 * KMC_VMEM Force vmem backed cache
1358 * KMC_OFFSLAB Locate objects off the slab
1359 */
1360 spl_kmem_cache_t *
1361 spl_kmem_cache_create(char *name, size_t size, size_t align,
1362 spl_kmem_ctor_t ctor,
1363 spl_kmem_dtor_t dtor,
1364 spl_kmem_reclaim_t reclaim,
1365 void *priv, void *vmp, int flags)
1366 {
1367 spl_kmem_cache_t *skc;
1368 int rc, kmem_flags = KM_SLEEP;
1369 SENTRY;
1370
1371 ASSERTF(!(flags & KMC_NOMAGAZINE), "Bad KMC_NOMAGAZINE (%x)\n", flags);
1372 ASSERTF(!(flags & KMC_NOHASH), "Bad KMC_NOHASH (%x)\n", flags);
1373 ASSERTF(!(flags & KMC_QCACHE), "Bad KMC_QCACHE (%x)\n", flags);
1374 ASSERT(vmp == NULL);
1375
1376 /* We may be called when there is a non-zero preempt_count or
1377 * interrupts are disabled is which case we must not sleep.
1378 */
1379 if (current_thread_info()->preempt_count || irqs_disabled())
1380 kmem_flags = KM_NOSLEEP;
1381
1382 /* Allocate memory for a new cache an initialize it. Unfortunately,
1383 * this usually ends up being a large allocation of ~32k because
1384 * we need to allocate enough memory for the worst case number of
1385 * cpus in the magazine, skc_mag[NR_CPUS]. Because of this we
1386 * explicitly pass KM_NODEBUG to suppress the kmem warning */
1387 skc = (spl_kmem_cache_t *)kmem_zalloc(sizeof(*skc),
1388 kmem_flags | KM_NODEBUG);
1389 if (skc == NULL)
1390 SRETURN(NULL);
1391
1392 skc->skc_magic = SKC_MAGIC;
1393 skc->skc_name_size = strlen(name) + 1;
1394 skc->skc_name = (char *)kmem_alloc(skc->skc_name_size, kmem_flags);
1395 if (skc->skc_name == NULL) {
1396 kmem_free(skc, sizeof(*skc));
1397 SRETURN(NULL);
1398 }
1399 strncpy(skc->skc_name, name, skc->skc_name_size);
1400
1401 skc->skc_ctor = ctor;
1402 skc->skc_dtor = dtor;
1403 skc->skc_reclaim = reclaim;
1404 skc->skc_private = priv;
1405 skc->skc_vmp = vmp;
1406 skc->skc_flags = flags;
1407 skc->skc_obj_size = size;
1408 skc->skc_obj_align = SPL_KMEM_CACHE_ALIGN;
1409 skc->skc_delay = SPL_KMEM_CACHE_DELAY;
1410 skc->skc_reap = SPL_KMEM_CACHE_REAP;
1411 atomic_set(&skc->skc_ref, 0);
1412
1413 INIT_LIST_HEAD(&skc->skc_list);
1414 INIT_LIST_HEAD(&skc->skc_complete_list);
1415 INIT_LIST_HEAD(&skc->skc_partial_list);
1416 spin_lock_init(&skc->skc_lock);
1417 skc->skc_slab_fail = 0;
1418 skc->skc_slab_create = 0;
1419 skc->skc_slab_destroy = 0;
1420 skc->skc_slab_total = 0;
1421 skc->skc_slab_alloc = 0;
1422 skc->skc_slab_max = 0;
1423 skc->skc_obj_total = 0;
1424 skc->skc_obj_alloc = 0;
1425 skc->skc_obj_max = 0;
1426
1427 if (align) {
1428 VERIFY(ISP2(align));
1429 VERIFY3U(align, >=, SPL_KMEM_CACHE_ALIGN); /* Min alignment */
1430 VERIFY3U(align, <=, PAGE_SIZE); /* Max alignment */
1431 skc->skc_obj_align = align;
1432 }
1433
1434 /* If none passed select a cache type based on object size */
1435 if (!(skc->skc_flags & (KMC_KMEM | KMC_VMEM))) {
1436 if (spl_obj_size(skc) < (PAGE_SIZE / 8))
1437 skc->skc_flags |= KMC_KMEM;
1438 else
1439 skc->skc_flags |= KMC_VMEM;
1440 }
1441
1442 rc = spl_slab_size(skc, &skc->skc_slab_objs, &skc->skc_slab_size);
1443 if (rc)
1444 SGOTO(out, rc);
1445
1446 rc = spl_magazine_create(skc);
1447 if (rc)
1448 SGOTO(out, rc);
1449
1450 spl_init_delayed_work(&skc->skc_work, spl_cache_age, skc);
1451 schedule_delayed_work(&skc->skc_work, skc->skc_delay / 3 * HZ);
1452
1453 down_write(&spl_kmem_cache_sem);
1454 list_add_tail(&skc->skc_list, &spl_kmem_cache_list);
1455 up_write(&spl_kmem_cache_sem);
1456
1457 SRETURN(skc);
1458 out:
1459 kmem_free(skc->skc_name, skc->skc_name_size);
1460 kmem_free(skc, sizeof(*skc));
1461 SRETURN(NULL);
1462 }
1463 EXPORT_SYMBOL(spl_kmem_cache_create);
1464
1465 /*
1466 * Register a move callback to for cache defragmentation.
1467 * XXX: Unimplemented but harmless to stub out for now.
1468 */
1469 void
1470 spl_kmem_cache_set_move(kmem_cache_t *skc,
1471 kmem_cbrc_t (move)(void *, void *, size_t, void *))
1472 {
1473 ASSERT(move != NULL);
1474 }
1475 EXPORT_SYMBOL(spl_kmem_cache_set_move);
1476
1477 /*
1478 * Destroy a cache and all objects associated with the cache.
1479 */
1480 void
1481 spl_kmem_cache_destroy(spl_kmem_cache_t *skc)
1482 {
1483 DECLARE_WAIT_QUEUE_HEAD(wq);
1484 int i;
1485 SENTRY;
1486
1487 ASSERT(skc->skc_magic == SKC_MAGIC);
1488
1489 down_write(&spl_kmem_cache_sem);
1490 list_del_init(&skc->skc_list);
1491 up_write(&spl_kmem_cache_sem);
1492
1493 /* Cancel any and wait for any pending delayed work */
1494 VERIFY(!test_and_set_bit(KMC_BIT_DESTROY, &skc->skc_flags));
1495 cancel_delayed_work_sync(&skc->skc_work);
1496 for_each_online_cpu(i)
1497 cancel_delayed_work_sync(&skc->skc_mag[i]->skm_work);
1498
1499 flush_scheduled_work();
1500
1501 /* Wait until all current callers complete, this is mainly
1502 * to catch the case where a low memory situation triggers a
1503 * cache reaping action which races with this destroy. */
1504 wait_event(wq, atomic_read(&skc->skc_ref) == 0);
1505
1506 spl_magazine_destroy(skc);
1507 spl_slab_reclaim(skc, 0, 1);
1508 spin_lock(&skc->skc_lock);
1509
1510 /* Validate there are no objects in use and free all the
1511 * spl_kmem_slab_t, spl_kmem_obj_t, and object buffers. */
1512 ASSERT3U(skc->skc_slab_alloc, ==, 0);
1513 ASSERT3U(skc->skc_obj_alloc, ==, 0);
1514 ASSERT3U(skc->skc_slab_total, ==, 0);
1515 ASSERT3U(skc->skc_obj_total, ==, 0);
1516 ASSERT(list_empty(&skc->skc_complete_list));
1517
1518 kmem_free(skc->skc_name, skc->skc_name_size);
1519 spin_unlock(&skc->skc_lock);
1520
1521 kmem_free(skc, sizeof(*skc));
1522
1523 SEXIT;
1524 }
1525 EXPORT_SYMBOL(spl_kmem_cache_destroy);
1526
1527 /*
1528 * Allocate an object from a slab attached to the cache. This is used to
1529 * repopulate the per-cpu magazine caches in batches when they run low.
1530 */
1531 static void *
1532 spl_cache_obj(spl_kmem_cache_t *skc, spl_kmem_slab_t *sks)
1533 {
1534 spl_kmem_obj_t *sko;
1535
1536 ASSERT(skc->skc_magic == SKC_MAGIC);
1537 ASSERT(sks->sks_magic == SKS_MAGIC);
1538 ASSERT(spin_is_locked(&skc->skc_lock));
1539
1540 sko = list_entry(sks->sks_free_list.next, spl_kmem_obj_t, sko_list);
1541 ASSERT(sko->sko_magic == SKO_MAGIC);
1542 ASSERT(sko->sko_addr != NULL);
1543
1544 /* Remove from sks_free_list */
1545 list_del_init(&sko->sko_list);
1546
1547 sks->sks_age = jiffies;
1548 sks->sks_ref++;
1549 skc->skc_obj_alloc++;
1550
1551 /* Track max obj usage statistics */
1552 if (skc->skc_obj_alloc > skc->skc_obj_max)
1553 skc->skc_obj_max = skc->skc_obj_alloc;
1554
1555 /* Track max slab usage statistics */
1556 if (sks->sks_ref == 1) {
1557 skc->skc_slab_alloc++;
1558
1559 if (skc->skc_slab_alloc > skc->skc_slab_max)
1560 skc->skc_slab_max = skc->skc_slab_alloc;
1561 }
1562
1563 return sko->sko_addr;
1564 }
1565
1566 /*
1567 * No available objects on any slabs, create a new slab. Since this
1568 * is an expensive operation we do it without holding the spin lock and
1569 * only briefly acquire it when we link in the fully allocated and
1570 * constructed slab.
1571 */
1572 static spl_kmem_slab_t *
1573 spl_cache_grow(spl_kmem_cache_t *skc, int flags)
1574 {
1575 spl_kmem_slab_t *sks;
1576 SENTRY;
1577
1578 ASSERT(skc->skc_magic == SKC_MAGIC);
1579 local_irq_enable();
1580 might_sleep();
1581
1582 /*
1583 * Before allocating a new slab check if the slab is being reaped.
1584 * If it is there is a good chance we can wait until it finishes
1585 * and then use one of the newly freed but not aged-out slabs.
1586 */
1587 if (test_bit(KMC_BIT_REAPING, &skc->skc_flags)) {
1588 schedule();
1589 SGOTO(out, sks= NULL);
1590 }
1591
1592 /* Allocate a new slab for the cache */
1593 sks = spl_slab_alloc(skc, flags | __GFP_NORETRY | KM_NODEBUG);
1594 if (sks == NULL)
1595 SGOTO(out, sks = NULL);
1596
1597 /* Link the new empty slab in to the end of skc_partial_list. */
1598 spin_lock(&skc->skc_lock);
1599 skc->skc_slab_total++;
1600 skc->skc_obj_total += sks->sks_objs;
1601 list_add_tail(&sks->sks_list, &skc->skc_partial_list);
1602 spin_unlock(&skc->skc_lock);
1603 out:
1604 local_irq_disable();
1605
1606 SRETURN(sks);
1607 }
1608
1609 /*
1610 * Refill a per-cpu magazine with objects from the slabs for this
1611 * cache. Ideally the magazine can be repopulated using existing
1612 * objects which have been released, however if we are unable to
1613 * locate enough free objects new slabs of objects will be created.
1614 */
1615 static int
1616 spl_cache_refill(spl_kmem_cache_t *skc, spl_kmem_magazine_t *skm, int flags)
1617 {
1618 spl_kmem_slab_t *sks;
1619 int rc = 0, refill;
1620 SENTRY;
1621
1622 ASSERT(skc->skc_magic == SKC_MAGIC);
1623 ASSERT(skm->skm_magic == SKM_MAGIC);
1624
1625 refill = MIN(skm->skm_refill, skm->skm_size - skm->skm_avail);
1626 spin_lock(&skc->skc_lock);
1627
1628 while (refill > 0) {
1629 /* No slabs available we may need to grow the cache */
1630 if (list_empty(&skc->skc_partial_list)) {
1631 spin_unlock(&skc->skc_lock);
1632
1633 sks = spl_cache_grow(skc, flags);
1634 if (!sks)
1635 SGOTO(out, rc);
1636
1637 /* Rescheduled to different CPU skm is not local */
1638 if (skm != skc->skc_mag[smp_processor_id()])
1639 SGOTO(out, rc);
1640
1641 /* Potentially rescheduled to the same CPU but
1642 * allocations may have occurred from this CPU while
1643 * we were sleeping so recalculate max refill. */
1644 refill = MIN(refill, skm->skm_size - skm->skm_avail);
1645
1646 spin_lock(&skc->skc_lock);
1647 continue;
1648 }
1649
1650 /* Grab the next available slab */
1651 sks = list_entry((&skc->skc_partial_list)->next,
1652 spl_kmem_slab_t, sks_list);
1653 ASSERT(sks->sks_magic == SKS_MAGIC);
1654 ASSERT(sks->sks_ref < sks->sks_objs);
1655 ASSERT(!list_empty(&sks->sks_free_list));
1656
1657 /* Consume as many objects as needed to refill the requested
1658 * cache. We must also be careful not to overfill it. */
1659 while (sks->sks_ref < sks->sks_objs && refill-- > 0 && ++rc) {
1660 ASSERT(skm->skm_avail < skm->skm_size);
1661 ASSERT(rc < skm->skm_size);
1662 skm->skm_objs[skm->skm_avail++]=spl_cache_obj(skc,sks);
1663 }
1664
1665 /* Move slab to skc_complete_list when full */
1666 if (sks->sks_ref == sks->sks_objs) {
1667 list_del(&sks->sks_list);
1668 list_add(&sks->sks_list, &skc->skc_complete_list);
1669 }
1670 }
1671
1672 spin_unlock(&skc->skc_lock);
1673 out:
1674 /* Returns the number of entries added to cache */
1675 SRETURN(rc);
1676 }
1677
1678 /*
1679 * Release an object back to the slab from which it came.
1680 */
1681 static void
1682 spl_cache_shrink(spl_kmem_cache_t *skc, void *obj)
1683 {
1684 spl_kmem_slab_t *sks = NULL;
1685 spl_kmem_obj_t *sko = NULL;
1686 SENTRY;
1687
1688 ASSERT(skc->skc_magic == SKC_MAGIC);
1689 ASSERT(spin_is_locked(&skc->skc_lock));
1690
1691 sko = spl_sko_from_obj(skc, obj);
1692 ASSERT(sko->sko_magic == SKO_MAGIC);
1693 sks = sko->sko_slab;
1694 ASSERT(sks->sks_magic == SKS_MAGIC);
1695 ASSERT(sks->sks_cache == skc);
1696 list_add(&sko->sko_list, &sks->sks_free_list);
1697
1698 sks->sks_age = jiffies;
1699 sks->sks_ref--;
1700 skc->skc_obj_alloc--;
1701
1702 /* Move slab to skc_partial_list when no longer full. Slabs
1703 * are added to the head to keep the partial list is quasi-full
1704 * sorted order. Fuller at the head, emptier at the tail. */
1705 if (sks->sks_ref == (sks->sks_objs - 1)) {
1706 list_del(&sks->sks_list);
1707 list_add(&sks->sks_list, &skc->skc_partial_list);
1708 }
1709
1710 /* Move empty slabs to the end of the partial list so
1711 * they can be easily found and freed during reclamation. */
1712 if (sks->sks_ref == 0) {
1713 list_del(&sks->sks_list);
1714 list_add_tail(&sks->sks_list, &skc->skc_partial_list);
1715 skc->skc_slab_alloc--;
1716 }
1717
1718 SEXIT;
1719 }
1720
1721 /*
1722 * Release a batch of objects from a per-cpu magazine back to their
1723 * respective slabs. This occurs when we exceed the magazine size,
1724 * are under memory pressure, when the cache is idle, or during
1725 * cache cleanup. The flush argument contains the number of entries
1726 * to remove from the magazine.
1727 */
1728 static int
1729 spl_cache_flush(spl_kmem_cache_t *skc, spl_kmem_magazine_t *skm, int flush)
1730 {
1731 int i, count = MIN(flush, skm->skm_avail);
1732 SENTRY;
1733
1734 ASSERT(skc->skc_magic == SKC_MAGIC);
1735 ASSERT(skm->skm_magic == SKM_MAGIC);
1736
1737 /*
1738 * XXX: Currently we simply return objects from the magazine to
1739 * the slabs in fifo order. The ideal thing to do from a memory
1740 * fragmentation standpoint is to cheaply determine the set of
1741 * objects in the magazine which will result in the largest
1742 * number of free slabs if released from the magazine.
1743 */
1744 spin_lock(&skc->skc_lock);
1745 for (i = 0; i < count; i++)
1746 spl_cache_shrink(skc, skm->skm_objs[i]);
1747
1748 skm->skm_avail -= count;
1749 memmove(skm->skm_objs, &(skm->skm_objs[count]),
1750 sizeof(void *) * skm->skm_avail);
1751
1752 spin_unlock(&skc->skc_lock);
1753
1754 SRETURN(count);
1755 }
1756
1757 /*
1758 * Allocate an object from the per-cpu magazine, or if the magazine
1759 * is empty directly allocate from a slab and repopulate the magazine.
1760 */
1761 void *
1762 spl_kmem_cache_alloc(spl_kmem_cache_t *skc, int flags)
1763 {
1764 spl_kmem_magazine_t *skm;
1765 unsigned long irq_flags;
1766 void *obj = NULL;
1767 SENTRY;
1768
1769 ASSERT(skc->skc_magic == SKC_MAGIC);
1770 ASSERT(!test_bit(KMC_BIT_DESTROY, &skc->skc_flags));
1771 ASSERT(flags & KM_SLEEP);
1772 atomic_inc(&skc->skc_ref);
1773 local_irq_save(irq_flags);
1774
1775 restart:
1776 /* Safe to update per-cpu structure without lock, but
1777 * in the restart case we must be careful to reacquire
1778 * the local magazine since this may have changed
1779 * when we need to grow the cache. */
1780 skm = skc->skc_mag[smp_processor_id()];
1781 ASSERTF(skm->skm_magic == SKM_MAGIC, "%x != %x: %s/%p/%p %x/%x/%x\n",
1782 skm->skm_magic, SKM_MAGIC, skc->skc_name, skc, skm,
1783 skm->skm_size, skm->skm_refill, skm->skm_avail);
1784
1785 if (likely(skm->skm_avail)) {
1786 /* Object available in CPU cache, use it */
1787 obj = skm->skm_objs[--skm->skm_avail];
1788 skm->skm_age = jiffies;
1789 } else {
1790 /* Per-CPU cache empty, directly allocate from
1791 * the slab and refill the per-CPU cache. */
1792 (void)spl_cache_refill(skc, skm, flags);
1793 SGOTO(restart, obj = NULL);
1794 }
1795
1796 local_irq_restore(irq_flags);
1797 ASSERT(obj);
1798 ASSERT(IS_P2ALIGNED(obj, skc->skc_obj_align));
1799
1800 /* Pre-emptively migrate object to CPU L1 cache */
1801 prefetchw(obj);
1802 atomic_dec(&skc->skc_ref);
1803
1804 SRETURN(obj);
1805 }
1806 EXPORT_SYMBOL(spl_kmem_cache_alloc);
1807
1808 /*
1809 * Free an object back to the local per-cpu magazine, there is no
1810 * guarantee that this is the same magazine the object was originally
1811 * allocated from. We may need to flush entire from the magazine
1812 * back to the slabs to make space.
1813 */
1814 void
1815 spl_kmem_cache_free(spl_kmem_cache_t *skc, void *obj)
1816 {
1817 spl_kmem_magazine_t *skm;
1818 unsigned long flags;
1819 SENTRY;
1820
1821 ASSERT(skc->skc_magic == SKC_MAGIC);
1822 ASSERT(!test_bit(KMC_BIT_DESTROY, &skc->skc_flags));
1823 atomic_inc(&skc->skc_ref);
1824 local_irq_save(flags);
1825
1826 /* Safe to update per-cpu structure without lock, but
1827 * no remote memory allocation tracking is being performed
1828 * it is entirely possible to allocate an object from one
1829 * CPU cache and return it to another. */
1830 skm = skc->skc_mag[smp_processor_id()];
1831 ASSERT(skm->skm_magic == SKM_MAGIC);
1832
1833 /* Per-CPU cache full, flush it to make space */
1834 if (unlikely(skm->skm_avail >= skm->skm_size))
1835 (void)spl_cache_flush(skc, skm, skm->skm_refill);
1836
1837 /* Available space in cache, use it */
1838 skm->skm_objs[skm->skm_avail++] = obj;
1839
1840 local_irq_restore(flags);
1841 atomic_dec(&skc->skc_ref);
1842
1843 SEXIT;
1844 }
1845 EXPORT_SYMBOL(spl_kmem_cache_free);
1846
1847 /*
1848 * The generic shrinker function for all caches. Under Linux a shrinker
1849 * may not be tightly coupled with a slab cache. In fact Linux always
1850 * systematically tries calling all registered shrinker callbacks which
1851 * report that they contain unused objects. Because of this we only
1852 * register one shrinker function in the shim layer for all slab caches.
1853 * We always attempt to shrink all caches when this generic shrinker
1854 * is called. The shrinker should return the number of free objects
1855 * in the cache when called with nr_to_scan == 0 but not attempt to
1856 * free any objects. When nr_to_scan > 0 it is a request that nr_to_scan
1857 * objects should be freed, because Solaris semantics are to free
1858 * all available objects we may free more objects than requested.
1859 */
1860 static int
1861 __spl_kmem_cache_generic_shrinker(struct shrinker *shrink,
1862 struct shrink_control *sc)
1863 {
1864 spl_kmem_cache_t *skc;
1865 int unused = 0;
1866
1867 down_read(&spl_kmem_cache_sem);
1868 list_for_each_entry(skc, &spl_kmem_cache_list, skc_list) {
1869 if (sc->nr_to_scan)
1870 spl_kmem_cache_reap_now(skc);
1871
1872 /*
1873 * Presume everything alloc'ed in reclaimable, this ensures
1874 * we are called again with nr_to_scan > 0 so can try and
1875 * reclaim. The exact number is not important either so
1876 * we forgo taking this already highly contented lock.
1877 */
1878 unused += skc->skc_obj_alloc;
1879 }
1880 up_read(&spl_kmem_cache_sem);
1881
1882 return (unused * sysctl_vfs_cache_pressure) / 100;
1883 }
1884
1885 SPL_SHRINKER_CALLBACK_WRAPPER(spl_kmem_cache_generic_shrinker);
1886
1887 /*
1888 * Call the registered reclaim function for a cache. Depending on how
1889 * many and which objects are released it may simply repopulate the
1890 * local magazine which will then need to age-out. Objects which cannot
1891 * fit in the magazine we will be released back to their slabs which will
1892 * also need to age out before being release. This is all just best
1893 * effort and we do not want to thrash creating and destroying slabs.
1894 */
1895 void
1896 spl_kmem_cache_reap_now(spl_kmem_cache_t *skc)
1897 {
1898 SENTRY;
1899
1900 ASSERT(skc->skc_magic == SKC_MAGIC);
1901 ASSERT(!test_bit(KMC_BIT_DESTROY, &skc->skc_flags));
1902
1903 /* Prevent concurrent cache reaping when contended */
1904 if (test_and_set_bit(KMC_BIT_REAPING, &skc->skc_flags)) {
1905 SEXIT;
1906 return;
1907 }
1908
1909 atomic_inc(&skc->skc_ref);
1910
1911 if (skc->skc_reclaim)
1912 skc->skc_reclaim(skc->skc_private);
1913
1914 spl_slab_reclaim(skc, skc->skc_reap, 0);
1915 clear_bit(KMC_BIT_REAPING, &skc->skc_flags);
1916 atomic_dec(&skc->skc_ref);
1917
1918 SEXIT;
1919 }
1920 EXPORT_SYMBOL(spl_kmem_cache_reap_now);
1921
1922 /*
1923 * Reap all free slabs from all registered caches.
1924 */
1925 void
1926 spl_kmem_reap(void)
1927 {
1928 struct shrink_control sc;
1929
1930 sc.nr_to_scan = KMC_REAP_CHUNK;
1931 sc.gfp_mask = GFP_KERNEL;
1932
1933 __spl_kmem_cache_generic_shrinker(NULL, &sc);
1934 }
1935 EXPORT_SYMBOL(spl_kmem_reap);
1936
1937 #if defined(DEBUG_KMEM) && defined(DEBUG_KMEM_TRACKING)
1938 static char *
1939 spl_sprintf_addr(kmem_debug_t *kd, char *str, int len, int min)
1940 {
1941 int size = ((len - 1) < kd->kd_size) ? (len - 1) : kd->kd_size;
1942 int i, flag = 1;
1943
1944 ASSERT(str != NULL && len >= 17);
1945 memset(str, 0, len);
1946
1947 /* Check for a fully printable string, and while we are at
1948 * it place the printable characters in the passed buffer. */
1949 for (i = 0; i < size; i++) {
1950 str[i] = ((char *)(kd->kd_addr))[i];
1951 if (isprint(str[i])) {
1952 continue;
1953 } else {
1954 /* Minimum number of printable characters found
1955 * to make it worthwhile to print this as ascii. */
1956 if (i > min)
1957 break;
1958
1959 flag = 0;
1960 break;
1961 }
1962 }
1963
1964 if (!flag) {
1965 sprintf(str, "%02x%02x%02x%02x%02x%02x%02x%02x",
1966 *((uint8_t *)kd->kd_addr),
1967 *((uint8_t *)kd->kd_addr + 2),
1968 *((uint8_t *)kd->kd_addr + 4),
1969 *((uint8_t *)kd->kd_addr + 6),
1970 *((uint8_t *)kd->kd_addr + 8),
1971 *((uint8_t *)kd->kd_addr + 10),
1972 *((uint8_t *)kd->kd_addr + 12),
1973 *((uint8_t *)kd->kd_addr + 14));
1974 }
1975
1976 return str;
1977 }
1978
1979 static int
1980 spl_kmem_init_tracking(struct list_head *list, spinlock_t *lock, int size)
1981 {
1982 int i;
1983 SENTRY;
1984
1985 spin_lock_init(lock);
1986 INIT_LIST_HEAD(list);
1987
1988 for (i = 0; i < size; i++)
1989 INIT_HLIST_HEAD(&kmem_table[i]);
1990
1991 SRETURN(0);
1992 }
1993
1994 static void
1995 spl_kmem_fini_tracking(struct list_head *list, spinlock_t *lock)
1996 {
1997 unsigned long flags;
1998 kmem_debug_t *kd;
1999 char str[17];
2000 SENTRY;
2001
2002 spin_lock_irqsave(lock, flags);
2003 if (!list_empty(list))
2004 printk(KERN_WARNING "%-16s %-5s %-16s %s:%s\n", "address",
2005 "size", "data", "func", "line");
2006
2007 list_for_each_entry(kd, list, kd_list)
2008 printk(KERN_WARNING "%p %-5d %-16s %s:%d\n", kd->kd_addr,
2009 (int)kd->kd_size, spl_sprintf_addr(kd, str, 17, 8),
2010 kd->kd_func, kd->kd_line);
2011
2012 spin_unlock_irqrestore(lock, flags);
2013 SEXIT;
2014 }
2015 #else /* DEBUG_KMEM && DEBUG_KMEM_TRACKING */
2016 #define spl_kmem_init_tracking(list, lock, size)
2017 #define spl_kmem_fini_tracking(list, lock)
2018 #endif /* DEBUG_KMEM && DEBUG_KMEM_TRACKING */
2019
2020 static void
2021 spl_kmem_init_globals(void)
2022 {
2023 struct zone *zone;
2024
2025 /* For now all zones are includes, it may be wise to restrict
2026 * this to normal and highmem zones if we see problems. */
2027 for_each_zone(zone) {
2028
2029 if (!populated_zone(zone))
2030 continue;
2031
2032 minfree += min_wmark_pages(zone);
2033 desfree += low_wmark_pages(zone);
2034 lotsfree += high_wmark_pages(zone);
2035 }
2036
2037 /* Solaris default values */
2038 swapfs_minfree = MAX(2*1024*1024 >> PAGE_SHIFT, physmem >> 3);
2039 swapfs_reserve = MIN(4*1024*1024 >> PAGE_SHIFT, physmem >> 4);
2040 }
2041
2042 /*
2043 * Called at module init when it is safe to use spl_kallsyms_lookup_name()
2044 */
2045 int
2046 spl_kmem_init_kallsyms_lookup(void)
2047 {
2048 #ifndef HAVE_GET_VMALLOC_INFO
2049 get_vmalloc_info_fn = (get_vmalloc_info_t)
2050 spl_kallsyms_lookup_name("get_vmalloc_info");
2051 if (!get_vmalloc_info_fn) {
2052 printk(KERN_ERR "Error: Unknown symbol get_vmalloc_info\n");
2053 return -EFAULT;
2054 }
2055 #endif /* HAVE_GET_VMALLOC_INFO */
2056
2057 #ifdef HAVE_PGDAT_HELPERS
2058 # ifndef HAVE_FIRST_ONLINE_PGDAT
2059 first_online_pgdat_fn = (first_online_pgdat_t)
2060 spl_kallsyms_lookup_name("first_online_pgdat");
2061 if (!first_online_pgdat_fn) {
2062 printk(KERN_ERR "Error: Unknown symbol first_online_pgdat\n");
2063 return -EFAULT;
2064 }
2065 # endif /* HAVE_FIRST_ONLINE_PGDAT */
2066
2067 # ifndef HAVE_NEXT_ONLINE_PGDAT
2068 next_online_pgdat_fn = (next_online_pgdat_t)
2069 spl_kallsyms_lookup_name("next_online_pgdat");
2070 if (!next_online_pgdat_fn) {
2071 printk(KERN_ERR "Error: Unknown symbol next_online_pgdat\n");
2072 return -EFAULT;
2073 }
2074 # endif /* HAVE_NEXT_ONLINE_PGDAT */
2075
2076 # ifndef HAVE_NEXT_ZONE
2077 next_zone_fn = (next_zone_t)
2078 spl_kallsyms_lookup_name("next_zone");
2079 if (!next_zone_fn) {
2080 printk(KERN_ERR "Error: Unknown symbol next_zone\n");
2081 return -EFAULT;
2082 }
2083 # endif /* HAVE_NEXT_ZONE */
2084
2085 #else /* HAVE_PGDAT_HELPERS */
2086
2087 # ifndef HAVE_PGDAT_LIST
2088 pgdat_list_addr = *(struct pglist_data **)
2089 spl_kallsyms_lookup_name("pgdat_list");
2090 if (!pgdat_list_addr) {
2091 printk(KERN_ERR "Error: Unknown symbol pgdat_list\n");
2092 return -EFAULT;
2093 }
2094 # endif /* HAVE_PGDAT_LIST */
2095 #endif /* HAVE_PGDAT_HELPERS */
2096
2097 #if defined(NEED_GET_ZONE_COUNTS) && !defined(HAVE_GET_ZONE_COUNTS)
2098 get_zone_counts_fn = (get_zone_counts_t)
2099 spl_kallsyms_lookup_name("get_zone_counts");
2100 if (!get_zone_counts_fn) {
2101 printk(KERN_ERR "Error: Unknown symbol get_zone_counts\n");
2102 return -EFAULT;
2103 }
2104 #endif /* NEED_GET_ZONE_COUNTS && !HAVE_GET_ZONE_COUNTS */
2105
2106 /*
2107 * It is now safe to initialize the global tunings which rely on
2108 * the use of the for_each_zone() macro. This macro in turns
2109 * depends on the *_pgdat symbols which are now available.
2110 */
2111 spl_kmem_init_globals();
2112
2113 #ifndef HAVE_INVALIDATE_INODES
2114 invalidate_inodes_fn = (invalidate_inodes_t)
2115 spl_kallsyms_lookup_name("invalidate_inodes");
2116 if (!invalidate_inodes_fn) {
2117 printk(KERN_ERR "Error: Unknown symbol invalidate_inodes\n");
2118 return -EFAULT;
2119 }
2120 #endif /* HAVE_INVALIDATE_INODES */
2121
2122 #ifndef HAVE_SHRINK_DCACHE_MEMORY
2123 shrink_dcache_memory_fn = (shrink_dcache_memory_t)
2124 spl_kallsyms_lookup_name("shrink_dcache_memory");
2125 if (!shrink_dcache_memory_fn) {
2126 printk(KERN_ERR "Error: Unknown symbol shrink_dcache_memory\n");
2127 return -EFAULT;
2128 }
2129 #endif /* HAVE_SHRINK_DCACHE_MEMORY */
2130
2131 #ifndef HAVE_SHRINK_ICACHE_MEMORY
2132 shrink_icache_memory_fn = (shrink_icache_memory_t)
2133 spl_kallsyms_lookup_name("shrink_icache_memory");
2134 if (!shrink_icache_memory_fn) {
2135 printk(KERN_ERR "Error: Unknown symbol shrink_icache_memory\n");
2136 return -EFAULT;
2137 }
2138 #endif /* HAVE_SHRINK_ICACHE_MEMORY */
2139
2140 return 0;
2141 }
2142
2143 int
2144 spl_kmem_init(void)
2145 {
2146 int rc = 0;
2147 SENTRY;
2148
2149 init_rwsem(&spl_kmem_cache_sem);
2150 INIT_LIST_HEAD(&spl_kmem_cache_list);
2151
2152 spl_register_shrinker(&spl_kmem_cache_shrinker);
2153
2154 #ifdef DEBUG_KMEM
2155 kmem_alloc_used_set(0);
2156 vmem_alloc_used_set(0);
2157
2158 spl_kmem_init_tracking(&kmem_list, &kmem_lock, KMEM_TABLE_SIZE);
2159 spl_kmem_init_tracking(&vmem_list, &vmem_lock, VMEM_TABLE_SIZE);
2160 #endif
2161 SRETURN(rc);
2162 }
2163
2164 void
2165 spl_kmem_fini(void)
2166 {
2167 #ifdef DEBUG_KMEM
2168 /* Display all unreclaimed memory addresses, including the
2169 * allocation size and the first few bytes of what's located
2170 * at that address to aid in debugging. Performance is not
2171 * a serious concern here since it is module unload time. */
2172 if (kmem_alloc_used_read() != 0)
2173 SDEBUG_LIMIT(SD_CONSOLE | SD_WARNING,
2174 "kmem leaked %ld/%ld bytes\n",
2175 kmem_alloc_used_read(), kmem_alloc_max);
2176
2177
2178 if (vmem_alloc_used_read() != 0)
2179 SDEBUG_LIMIT(SD_CONSOLE | SD_WARNING,
2180 "vmem leaked %ld/%ld bytes\n",
2181 vmem_alloc_used_read(), vmem_alloc_max);
2182
2183 spl_kmem_fini_tracking(&kmem_list, &kmem_lock);
2184 spl_kmem_fini_tracking(&vmem_list, &vmem_lock);
2185 #endif /* DEBUG_KMEM */
2186 SENTRY;
2187
2188 spl_unregister_shrinker(&spl_kmem_cache_shrinker);
2189
2190 SEXIT;
2191 }