]> git.proxmox.com Git - mirror_spl-debian.git/blob - module/spl/spl-kmem.c
Track emergency object in rbtree
[mirror_spl-debian.git] / module / spl / spl-kmem.c
1 /*****************************************************************************\
2 * Copyright (C) 2007-2010 Lawrence Livermore National Security, LLC.
3 * Copyright (C) 2007 The Regents of the University of California.
4 * Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER).
5 * Written by Brian Behlendorf <behlendorf1@llnl.gov>.
6 * UCRL-CODE-235197
7 *
8 * This file is part of the SPL, Solaris Porting Layer.
9 * For details, see <http://github.com/behlendorf/spl/>.
10 *
11 * The SPL is free software; you can redistribute it and/or modify it
12 * under the terms of the GNU General Public License as published by the
13 * Free Software Foundation; either version 2 of the License, or (at your
14 * option) any later version.
15 *
16 * The SPL is distributed in the hope that it will be useful, but WITHOUT
17 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
18 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
19 * for more details.
20 *
21 * You should have received a copy of the GNU General Public License along
22 * with the SPL. If not, see <http://www.gnu.org/licenses/>.
23 *****************************************************************************
24 * Solaris Porting Layer (SPL) Kmem Implementation.
25 \*****************************************************************************/
26
27 #include <sys/kmem.h>
28 #include <spl-debug.h>
29
30 #ifdef SS_DEBUG_SUBSYS
31 #undef SS_DEBUG_SUBSYS
32 #endif
33
34 #define SS_DEBUG_SUBSYS SS_KMEM
35
36 /*
37 * The minimum amount of memory measured in pages to be free at all
38 * times on the system. This is similar to Linux's zone->pages_min
39 * multiplied by the number of zones and is sized based on that.
40 */
41 pgcnt_t minfree = 0;
42 EXPORT_SYMBOL(minfree);
43
44 /*
45 * The desired amount of memory measured in pages to be free at all
46 * times on the system. This is similar to Linux's zone->pages_low
47 * multiplied by the number of zones and is sized based on that.
48 * Assuming all zones are being used roughly equally, when we drop
49 * below this threshold asynchronous page reclamation is triggered.
50 */
51 pgcnt_t desfree = 0;
52 EXPORT_SYMBOL(desfree);
53
54 /*
55 * When above this amount of memory measures in pages the system is
56 * determined to have enough free memory. This is similar to Linux's
57 * zone->pages_high multiplied by the number of zones and is sized based
58 * on that. Assuming all zones are being used roughly equally, when
59 * asynchronous page reclamation reaches this threshold it stops.
60 */
61 pgcnt_t lotsfree = 0;
62 EXPORT_SYMBOL(lotsfree);
63
64 /* Unused always 0 in this implementation */
65 pgcnt_t needfree = 0;
66 EXPORT_SYMBOL(needfree);
67
68 pgcnt_t swapfs_minfree = 0;
69 EXPORT_SYMBOL(swapfs_minfree);
70
71 pgcnt_t swapfs_reserve = 0;
72 EXPORT_SYMBOL(swapfs_reserve);
73
74 vmem_t *heap_arena = NULL;
75 EXPORT_SYMBOL(heap_arena);
76
77 vmem_t *zio_alloc_arena = NULL;
78 EXPORT_SYMBOL(zio_alloc_arena);
79
80 vmem_t *zio_arena = NULL;
81 EXPORT_SYMBOL(zio_arena);
82
83 #ifndef HAVE_GET_VMALLOC_INFO
84 get_vmalloc_info_t get_vmalloc_info_fn = SYMBOL_POISON;
85 EXPORT_SYMBOL(get_vmalloc_info_fn);
86 #endif /* HAVE_GET_VMALLOC_INFO */
87
88 #ifdef HAVE_PGDAT_HELPERS
89 # ifndef HAVE_FIRST_ONLINE_PGDAT
90 first_online_pgdat_t first_online_pgdat_fn = SYMBOL_POISON;
91 EXPORT_SYMBOL(first_online_pgdat_fn);
92 # endif /* HAVE_FIRST_ONLINE_PGDAT */
93
94 # ifndef HAVE_NEXT_ONLINE_PGDAT
95 next_online_pgdat_t next_online_pgdat_fn = SYMBOL_POISON;
96 EXPORT_SYMBOL(next_online_pgdat_fn);
97 # endif /* HAVE_NEXT_ONLINE_PGDAT */
98
99 # ifndef HAVE_NEXT_ZONE
100 next_zone_t next_zone_fn = SYMBOL_POISON;
101 EXPORT_SYMBOL(next_zone_fn);
102 # endif /* HAVE_NEXT_ZONE */
103
104 #else /* HAVE_PGDAT_HELPERS */
105
106 # ifndef HAVE_PGDAT_LIST
107 struct pglist_data *pgdat_list_addr = SYMBOL_POISON;
108 EXPORT_SYMBOL(pgdat_list_addr);
109 # endif /* HAVE_PGDAT_LIST */
110
111 #endif /* HAVE_PGDAT_HELPERS */
112
113 #ifdef NEED_GET_ZONE_COUNTS
114 # ifndef HAVE_GET_ZONE_COUNTS
115 get_zone_counts_t get_zone_counts_fn = SYMBOL_POISON;
116 EXPORT_SYMBOL(get_zone_counts_fn);
117 # endif /* HAVE_GET_ZONE_COUNTS */
118
119 unsigned long
120 spl_global_page_state(spl_zone_stat_item_t item)
121 {
122 unsigned long active;
123 unsigned long inactive;
124 unsigned long free;
125
126 get_zone_counts(&active, &inactive, &free);
127 switch (item) {
128 case SPL_NR_FREE_PAGES: return free;
129 case SPL_NR_INACTIVE: return inactive;
130 case SPL_NR_ACTIVE: return active;
131 default: ASSERT(0); /* Unsupported */
132 }
133
134 return 0;
135 }
136 #else
137 # ifdef HAVE_GLOBAL_PAGE_STATE
138 unsigned long
139 spl_global_page_state(spl_zone_stat_item_t item)
140 {
141 unsigned long pages = 0;
142
143 switch (item) {
144 case SPL_NR_FREE_PAGES:
145 # ifdef HAVE_ZONE_STAT_ITEM_NR_FREE_PAGES
146 pages += global_page_state(NR_FREE_PAGES);
147 # endif
148 break;
149 case SPL_NR_INACTIVE:
150 # ifdef HAVE_ZONE_STAT_ITEM_NR_INACTIVE
151 pages += global_page_state(NR_INACTIVE);
152 # endif
153 # ifdef HAVE_ZONE_STAT_ITEM_NR_INACTIVE_ANON
154 pages += global_page_state(NR_INACTIVE_ANON);
155 # endif
156 # ifdef HAVE_ZONE_STAT_ITEM_NR_INACTIVE_FILE
157 pages += global_page_state(NR_INACTIVE_FILE);
158 # endif
159 break;
160 case SPL_NR_ACTIVE:
161 # ifdef HAVE_ZONE_STAT_ITEM_NR_ACTIVE
162 pages += global_page_state(NR_ACTIVE);
163 # endif
164 # ifdef HAVE_ZONE_STAT_ITEM_NR_ACTIVE_ANON
165 pages += global_page_state(NR_ACTIVE_ANON);
166 # endif
167 # ifdef HAVE_ZONE_STAT_ITEM_NR_ACTIVE_FILE
168 pages += global_page_state(NR_ACTIVE_FILE);
169 # endif
170 break;
171 default:
172 ASSERT(0); /* Unsupported */
173 }
174
175 return pages;
176 }
177 # else
178 # error "Both global_page_state() and get_zone_counts() unavailable"
179 # endif /* HAVE_GLOBAL_PAGE_STATE */
180 #endif /* NEED_GET_ZONE_COUNTS */
181 EXPORT_SYMBOL(spl_global_page_state);
182
183 #if !defined(HAVE_INVALIDATE_INODES) && !defined(HAVE_INVALIDATE_INODES_CHECK)
184 invalidate_inodes_t invalidate_inodes_fn = SYMBOL_POISON;
185 EXPORT_SYMBOL(invalidate_inodes_fn);
186 #endif /* !HAVE_INVALIDATE_INODES && !HAVE_INVALIDATE_INODES_CHECK */
187
188 #ifndef HAVE_SHRINK_DCACHE_MEMORY
189 shrink_dcache_memory_t shrink_dcache_memory_fn = SYMBOL_POISON;
190 EXPORT_SYMBOL(shrink_dcache_memory_fn);
191 #endif /* HAVE_SHRINK_DCACHE_MEMORY */
192
193 #ifndef HAVE_SHRINK_ICACHE_MEMORY
194 shrink_icache_memory_t shrink_icache_memory_fn = SYMBOL_POISON;
195 EXPORT_SYMBOL(shrink_icache_memory_fn);
196 #endif /* HAVE_SHRINK_ICACHE_MEMORY */
197
198 pgcnt_t
199 spl_kmem_availrmem(void)
200 {
201 /* The amount of easily available memory */
202 return (spl_global_page_state(SPL_NR_FREE_PAGES) +
203 spl_global_page_state(SPL_NR_INACTIVE));
204 }
205 EXPORT_SYMBOL(spl_kmem_availrmem);
206
207 size_t
208 vmem_size(vmem_t *vmp, int typemask)
209 {
210 struct vmalloc_info vmi;
211 size_t size = 0;
212
213 ASSERT(vmp == NULL);
214 ASSERT(typemask & (VMEM_ALLOC | VMEM_FREE));
215
216 get_vmalloc_info(&vmi);
217 if (typemask & VMEM_ALLOC)
218 size += (size_t)vmi.used;
219
220 if (typemask & VMEM_FREE)
221 size += (size_t)(VMALLOC_TOTAL - vmi.used);
222
223 return size;
224 }
225 EXPORT_SYMBOL(vmem_size);
226
227 int
228 kmem_debugging(void)
229 {
230 return 0;
231 }
232 EXPORT_SYMBOL(kmem_debugging);
233
234 #ifndef HAVE_KVASPRINTF
235 /* Simplified asprintf. */
236 char *kvasprintf(gfp_t gfp, const char *fmt, va_list ap)
237 {
238 unsigned int len;
239 char *p;
240 va_list aq;
241
242 va_copy(aq, ap);
243 len = vsnprintf(NULL, 0, fmt, aq);
244 va_end(aq);
245
246 p = kmalloc(len+1, gfp);
247 if (!p)
248 return NULL;
249
250 vsnprintf(p, len+1, fmt, ap);
251
252 return p;
253 }
254 EXPORT_SYMBOL(kvasprintf);
255 #endif /* HAVE_KVASPRINTF */
256
257 char *
258 kmem_vasprintf(const char *fmt, va_list ap)
259 {
260 va_list aq;
261 char *ptr;
262
263 do {
264 va_copy(aq, ap);
265 ptr = kvasprintf(GFP_KERNEL, fmt, aq);
266 va_end(aq);
267 } while (ptr == NULL);
268
269 return ptr;
270 }
271 EXPORT_SYMBOL(kmem_vasprintf);
272
273 char *
274 kmem_asprintf(const char *fmt, ...)
275 {
276 va_list ap;
277 char *ptr;
278
279 do {
280 va_start(ap, fmt);
281 ptr = kvasprintf(GFP_KERNEL, fmt, ap);
282 va_end(ap);
283 } while (ptr == NULL);
284
285 return ptr;
286 }
287 EXPORT_SYMBOL(kmem_asprintf);
288
289 static char *
290 __strdup(const char *str, int flags)
291 {
292 char *ptr;
293 int n;
294
295 n = strlen(str);
296 ptr = kmalloc_nofail(n + 1, flags);
297 if (ptr)
298 memcpy(ptr, str, n + 1);
299
300 return ptr;
301 }
302
303 char *
304 strdup(const char *str)
305 {
306 return __strdup(str, KM_SLEEP);
307 }
308 EXPORT_SYMBOL(strdup);
309
310 void
311 strfree(char *str)
312 {
313 kfree(str);
314 }
315 EXPORT_SYMBOL(strfree);
316
317 /*
318 * Memory allocation interfaces and debugging for basic kmem_*
319 * and vmem_* style memory allocation. When DEBUG_KMEM is enabled
320 * the SPL will keep track of the total memory allocated, and
321 * report any memory leaked when the module is unloaded.
322 */
323 #ifdef DEBUG_KMEM
324
325 /* Shim layer memory accounting */
326 # ifdef HAVE_ATOMIC64_T
327 atomic64_t kmem_alloc_used = ATOMIC64_INIT(0);
328 unsigned long long kmem_alloc_max = 0;
329 atomic64_t vmem_alloc_used = ATOMIC64_INIT(0);
330 unsigned long long vmem_alloc_max = 0;
331 # else /* HAVE_ATOMIC64_T */
332 atomic_t kmem_alloc_used = ATOMIC_INIT(0);
333 unsigned long long kmem_alloc_max = 0;
334 atomic_t vmem_alloc_used = ATOMIC_INIT(0);
335 unsigned long long vmem_alloc_max = 0;
336 # endif /* HAVE_ATOMIC64_T */
337
338 EXPORT_SYMBOL(kmem_alloc_used);
339 EXPORT_SYMBOL(kmem_alloc_max);
340 EXPORT_SYMBOL(vmem_alloc_used);
341 EXPORT_SYMBOL(vmem_alloc_max);
342
343 /* When DEBUG_KMEM_TRACKING is enabled not only will total bytes be tracked
344 * but also the location of every alloc and free. When the SPL module is
345 * unloaded a list of all leaked addresses and where they were allocated
346 * will be dumped to the console. Enabling this feature has a significant
347 * impact on performance but it makes finding memory leaks straight forward.
348 *
349 * Not surprisingly with debugging enabled the xmem_locks are very highly
350 * contended particularly on xfree(). If we want to run with this detailed
351 * debugging enabled for anything other than debugging we need to minimize
352 * the contention by moving to a lock per xmem_table entry model.
353 */
354 # ifdef DEBUG_KMEM_TRACKING
355
356 # define KMEM_HASH_BITS 10
357 # define KMEM_TABLE_SIZE (1 << KMEM_HASH_BITS)
358
359 # define VMEM_HASH_BITS 10
360 # define VMEM_TABLE_SIZE (1 << VMEM_HASH_BITS)
361
362 typedef struct kmem_debug {
363 struct hlist_node kd_hlist; /* Hash node linkage */
364 struct list_head kd_list; /* List of all allocations */
365 void *kd_addr; /* Allocation pointer */
366 size_t kd_size; /* Allocation size */
367 const char *kd_func; /* Allocation function */
368 int kd_line; /* Allocation line */
369 } kmem_debug_t;
370
371 spinlock_t kmem_lock;
372 struct hlist_head kmem_table[KMEM_TABLE_SIZE];
373 struct list_head kmem_list;
374
375 spinlock_t vmem_lock;
376 struct hlist_head vmem_table[VMEM_TABLE_SIZE];
377 struct list_head vmem_list;
378
379 EXPORT_SYMBOL(kmem_lock);
380 EXPORT_SYMBOL(kmem_table);
381 EXPORT_SYMBOL(kmem_list);
382
383 EXPORT_SYMBOL(vmem_lock);
384 EXPORT_SYMBOL(vmem_table);
385 EXPORT_SYMBOL(vmem_list);
386
387 static kmem_debug_t *
388 kmem_del_init(spinlock_t *lock, struct hlist_head *table, int bits, const void *addr)
389 {
390 struct hlist_head *head;
391 struct hlist_node *node;
392 struct kmem_debug *p;
393 unsigned long flags;
394 SENTRY;
395
396 spin_lock_irqsave(lock, flags);
397
398 head = &table[hash_ptr(addr, bits)];
399 hlist_for_each_entry_rcu(p, node, head, kd_hlist) {
400 if (p->kd_addr == addr) {
401 hlist_del_init(&p->kd_hlist);
402 list_del_init(&p->kd_list);
403 spin_unlock_irqrestore(lock, flags);
404 return p;
405 }
406 }
407
408 spin_unlock_irqrestore(lock, flags);
409
410 SRETURN(NULL);
411 }
412
413 void *
414 kmem_alloc_track(size_t size, int flags, const char *func, int line,
415 int node_alloc, int node)
416 {
417 void *ptr = NULL;
418 kmem_debug_t *dptr;
419 unsigned long irq_flags;
420 SENTRY;
421
422 /* Function may be called with KM_NOSLEEP so failure is possible */
423 dptr = (kmem_debug_t *) kmalloc_nofail(sizeof(kmem_debug_t),
424 flags & ~__GFP_ZERO);
425
426 if (unlikely(dptr == NULL)) {
427 SDEBUG_LIMIT(SD_CONSOLE | SD_WARNING, "debug "
428 "kmem_alloc(%ld, 0x%x) at %s:%d failed (%lld/%llu)\n",
429 sizeof(kmem_debug_t), flags, func, line,
430 kmem_alloc_used_read(), kmem_alloc_max);
431 } else {
432 /*
433 * Marked unlikely because we should never be doing this,
434 * we tolerate to up 2 pages but a single page is best.
435 */
436 if (unlikely((size > PAGE_SIZE*2) && !(flags & KM_NODEBUG))) {
437 SDEBUG_LIMIT(SD_CONSOLE | SD_WARNING, "large "
438 "kmem_alloc(%llu, 0x%x) at %s:%d (%lld/%llu)\n",
439 (unsigned long long) size, flags, func, line,
440 kmem_alloc_used_read(), kmem_alloc_max);
441 spl_debug_dumpstack(NULL);
442 }
443
444 /*
445 * We use __strdup() below because the string pointed to by
446 * __FUNCTION__ might not be available by the time we want
447 * to print it since the module might have been unloaded.
448 * This can only fail in the KM_NOSLEEP case.
449 */
450 dptr->kd_func = __strdup(func, flags & ~__GFP_ZERO);
451 if (unlikely(dptr->kd_func == NULL)) {
452 kfree(dptr);
453 SDEBUG_LIMIT(SD_CONSOLE | SD_WARNING,
454 "debug __strdup() at %s:%d failed (%lld/%llu)\n",
455 func, line, kmem_alloc_used_read(), kmem_alloc_max);
456 goto out;
457 }
458
459 /* Use the correct allocator */
460 if (node_alloc) {
461 ASSERT(!(flags & __GFP_ZERO));
462 ptr = kmalloc_node_nofail(size, flags, node);
463 } else if (flags & __GFP_ZERO) {
464 ptr = kzalloc_nofail(size, flags & ~__GFP_ZERO);
465 } else {
466 ptr = kmalloc_nofail(size, flags);
467 }
468
469 if (unlikely(ptr == NULL)) {
470 kfree(dptr->kd_func);
471 kfree(dptr);
472 SDEBUG_LIMIT(SD_CONSOLE | SD_WARNING, "kmem_alloc"
473 "(%llu, 0x%x) at %s:%d failed (%lld/%llu)\n",
474 (unsigned long long) size, flags, func, line,
475 kmem_alloc_used_read(), kmem_alloc_max);
476 goto out;
477 }
478
479 kmem_alloc_used_add(size);
480 if (unlikely(kmem_alloc_used_read() > kmem_alloc_max))
481 kmem_alloc_max = kmem_alloc_used_read();
482
483 INIT_HLIST_NODE(&dptr->kd_hlist);
484 INIT_LIST_HEAD(&dptr->kd_list);
485
486 dptr->kd_addr = ptr;
487 dptr->kd_size = size;
488 dptr->kd_line = line;
489
490 spin_lock_irqsave(&kmem_lock, irq_flags);
491 hlist_add_head_rcu(&dptr->kd_hlist,
492 &kmem_table[hash_ptr(ptr, KMEM_HASH_BITS)]);
493 list_add_tail(&dptr->kd_list, &kmem_list);
494 spin_unlock_irqrestore(&kmem_lock, irq_flags);
495
496 SDEBUG_LIMIT(SD_INFO,
497 "kmem_alloc(%llu, 0x%x) at %s:%d = %p (%lld/%llu)\n",
498 (unsigned long long) size, flags, func, line, ptr,
499 kmem_alloc_used_read(), kmem_alloc_max);
500 }
501 out:
502 SRETURN(ptr);
503 }
504 EXPORT_SYMBOL(kmem_alloc_track);
505
506 void
507 kmem_free_track(const void *ptr, size_t size)
508 {
509 kmem_debug_t *dptr;
510 SENTRY;
511
512 ASSERTF(ptr || size > 0, "ptr: %p, size: %llu", ptr,
513 (unsigned long long) size);
514
515 dptr = kmem_del_init(&kmem_lock, kmem_table, KMEM_HASH_BITS, ptr);
516
517 /* Must exist in hash due to kmem_alloc() */
518 ASSERT(dptr);
519
520 /* Size must match */
521 ASSERTF(dptr->kd_size == size, "kd_size (%llu) != size (%llu), "
522 "kd_func = %s, kd_line = %d\n", (unsigned long long) dptr->kd_size,
523 (unsigned long long) size, dptr->kd_func, dptr->kd_line);
524
525 kmem_alloc_used_sub(size);
526 SDEBUG_LIMIT(SD_INFO, "kmem_free(%p, %llu) (%lld/%llu)\n", ptr,
527 (unsigned long long) size, kmem_alloc_used_read(),
528 kmem_alloc_max);
529
530 kfree(dptr->kd_func);
531
532 memset(dptr, 0x5a, sizeof(kmem_debug_t));
533 kfree(dptr);
534
535 memset(ptr, 0x5a, size);
536 kfree(ptr);
537
538 SEXIT;
539 }
540 EXPORT_SYMBOL(kmem_free_track);
541
542 void *
543 vmem_alloc_track(size_t size, int flags, const char *func, int line)
544 {
545 void *ptr = NULL;
546 kmem_debug_t *dptr;
547 unsigned long irq_flags;
548 SENTRY;
549
550 ASSERT(flags & KM_SLEEP);
551
552 /* Function may be called with KM_NOSLEEP so failure is possible */
553 dptr = (kmem_debug_t *) kmalloc_nofail(sizeof(kmem_debug_t),
554 flags & ~__GFP_ZERO);
555 if (unlikely(dptr == NULL)) {
556 SDEBUG_LIMIT(SD_CONSOLE | SD_WARNING, "debug "
557 "vmem_alloc(%ld, 0x%x) at %s:%d failed (%lld/%llu)\n",
558 sizeof(kmem_debug_t), flags, func, line,
559 vmem_alloc_used_read(), vmem_alloc_max);
560 } else {
561 /*
562 * We use __strdup() below because the string pointed to by
563 * __FUNCTION__ might not be available by the time we want
564 * to print it, since the module might have been unloaded.
565 * This can never fail because we have already asserted
566 * that flags is KM_SLEEP.
567 */
568 dptr->kd_func = __strdup(func, flags & ~__GFP_ZERO);
569 if (unlikely(dptr->kd_func == NULL)) {
570 kfree(dptr);
571 SDEBUG_LIMIT(SD_CONSOLE | SD_WARNING,
572 "debug __strdup() at %s:%d failed (%lld/%llu)\n",
573 func, line, vmem_alloc_used_read(), vmem_alloc_max);
574 goto out;
575 }
576
577 /* Use the correct allocator */
578 if (flags & __GFP_ZERO) {
579 ptr = vzalloc_nofail(size, flags & ~__GFP_ZERO);
580 } else {
581 ptr = vmalloc_nofail(size, flags);
582 }
583
584 if (unlikely(ptr == NULL)) {
585 kfree(dptr->kd_func);
586 kfree(dptr);
587 SDEBUG_LIMIT(SD_CONSOLE | SD_WARNING, "vmem_alloc"
588 "(%llu, 0x%x) at %s:%d failed (%lld/%llu)\n",
589 (unsigned long long) size, flags, func, line,
590 vmem_alloc_used_read(), vmem_alloc_max);
591 goto out;
592 }
593
594 vmem_alloc_used_add(size);
595 if (unlikely(vmem_alloc_used_read() > vmem_alloc_max))
596 vmem_alloc_max = vmem_alloc_used_read();
597
598 INIT_HLIST_NODE(&dptr->kd_hlist);
599 INIT_LIST_HEAD(&dptr->kd_list);
600
601 dptr->kd_addr = ptr;
602 dptr->kd_size = size;
603 dptr->kd_line = line;
604
605 spin_lock_irqsave(&vmem_lock, irq_flags);
606 hlist_add_head_rcu(&dptr->kd_hlist,
607 &vmem_table[hash_ptr(ptr, VMEM_HASH_BITS)]);
608 list_add_tail(&dptr->kd_list, &vmem_list);
609 spin_unlock_irqrestore(&vmem_lock, irq_flags);
610
611 SDEBUG_LIMIT(SD_INFO,
612 "vmem_alloc(%llu, 0x%x) at %s:%d = %p (%lld/%llu)\n",
613 (unsigned long long) size, flags, func, line,
614 ptr, vmem_alloc_used_read(), vmem_alloc_max);
615 }
616 out:
617 SRETURN(ptr);
618 }
619 EXPORT_SYMBOL(vmem_alloc_track);
620
621 void
622 vmem_free_track(const void *ptr, size_t size)
623 {
624 kmem_debug_t *dptr;
625 SENTRY;
626
627 ASSERTF(ptr || size > 0, "ptr: %p, size: %llu", ptr,
628 (unsigned long long) size);
629
630 dptr = kmem_del_init(&vmem_lock, vmem_table, VMEM_HASH_BITS, ptr);
631
632 /* Must exist in hash due to vmem_alloc() */
633 ASSERT(dptr);
634
635 /* Size must match */
636 ASSERTF(dptr->kd_size == size, "kd_size (%llu) != size (%llu), "
637 "kd_func = %s, kd_line = %d\n", (unsigned long long) dptr->kd_size,
638 (unsigned long long) size, dptr->kd_func, dptr->kd_line);
639
640 vmem_alloc_used_sub(size);
641 SDEBUG_LIMIT(SD_INFO, "vmem_free(%p, %llu) (%lld/%llu)\n", ptr,
642 (unsigned long long) size, vmem_alloc_used_read(),
643 vmem_alloc_max);
644
645 kfree(dptr->kd_func);
646
647 memset(dptr, 0x5a, sizeof(kmem_debug_t));
648 kfree(dptr);
649
650 memset(ptr, 0x5a, size);
651 vfree(ptr);
652
653 SEXIT;
654 }
655 EXPORT_SYMBOL(vmem_free_track);
656
657 # else /* DEBUG_KMEM_TRACKING */
658
659 void *
660 kmem_alloc_debug(size_t size, int flags, const char *func, int line,
661 int node_alloc, int node)
662 {
663 void *ptr;
664 SENTRY;
665
666 /*
667 * Marked unlikely because we should never be doing this,
668 * we tolerate to up 2 pages but a single page is best.
669 */
670 if (unlikely((size > PAGE_SIZE * 2) && !(flags & KM_NODEBUG))) {
671 SDEBUG(SD_CONSOLE | SD_WARNING,
672 "large kmem_alloc(%llu, 0x%x) at %s:%d (%lld/%llu)\n",
673 (unsigned long long) size, flags, func, line,
674 kmem_alloc_used_read(), kmem_alloc_max);
675 dump_stack();
676 }
677
678 /* Use the correct allocator */
679 if (node_alloc) {
680 ASSERT(!(flags & __GFP_ZERO));
681 ptr = kmalloc_node_nofail(size, flags, node);
682 } else if (flags & __GFP_ZERO) {
683 ptr = kzalloc_nofail(size, flags & (~__GFP_ZERO));
684 } else {
685 ptr = kmalloc_nofail(size, flags);
686 }
687
688 if (unlikely(ptr == NULL)) {
689 SDEBUG_LIMIT(SD_CONSOLE | SD_WARNING,
690 "kmem_alloc(%llu, 0x%x) at %s:%d failed (%lld/%llu)\n",
691 (unsigned long long) size, flags, func, line,
692 kmem_alloc_used_read(), kmem_alloc_max);
693 } else {
694 kmem_alloc_used_add(size);
695 if (unlikely(kmem_alloc_used_read() > kmem_alloc_max))
696 kmem_alloc_max = kmem_alloc_used_read();
697
698 SDEBUG_LIMIT(SD_INFO,
699 "kmem_alloc(%llu, 0x%x) at %s:%d = %p (%lld/%llu)\n",
700 (unsigned long long) size, flags, func, line, ptr,
701 kmem_alloc_used_read(), kmem_alloc_max);
702 }
703
704 SRETURN(ptr);
705 }
706 EXPORT_SYMBOL(kmem_alloc_debug);
707
708 void
709 kmem_free_debug(const void *ptr, size_t size)
710 {
711 SENTRY;
712
713 ASSERTF(ptr || size > 0, "ptr: %p, size: %llu", ptr,
714 (unsigned long long) size);
715
716 kmem_alloc_used_sub(size);
717 SDEBUG_LIMIT(SD_INFO, "kmem_free(%p, %llu) (%lld/%llu)\n", ptr,
718 (unsigned long long) size, kmem_alloc_used_read(),
719 kmem_alloc_max);
720 kfree(ptr);
721
722 SEXIT;
723 }
724 EXPORT_SYMBOL(kmem_free_debug);
725
726 void *
727 vmem_alloc_debug(size_t size, int flags, const char *func, int line)
728 {
729 void *ptr;
730 SENTRY;
731
732 ASSERT(flags & KM_SLEEP);
733
734 /* Use the correct allocator */
735 if (flags & __GFP_ZERO) {
736 ptr = vzalloc_nofail(size, flags & (~__GFP_ZERO));
737 } else {
738 ptr = vmalloc_nofail(size, flags);
739 }
740
741 if (unlikely(ptr == NULL)) {
742 SDEBUG_LIMIT(SD_CONSOLE | SD_WARNING,
743 "vmem_alloc(%llu, 0x%x) at %s:%d failed (%lld/%llu)\n",
744 (unsigned long long) size, flags, func, line,
745 vmem_alloc_used_read(), vmem_alloc_max);
746 } else {
747 vmem_alloc_used_add(size);
748 if (unlikely(vmem_alloc_used_read() > vmem_alloc_max))
749 vmem_alloc_max = vmem_alloc_used_read();
750
751 SDEBUG_LIMIT(SD_INFO, "vmem_alloc(%llu, 0x%x) = %p "
752 "(%lld/%llu)\n", (unsigned long long) size, flags, ptr,
753 vmem_alloc_used_read(), vmem_alloc_max);
754 }
755
756 SRETURN(ptr);
757 }
758 EXPORT_SYMBOL(vmem_alloc_debug);
759
760 void
761 vmem_free_debug(const void *ptr, size_t size)
762 {
763 SENTRY;
764
765 ASSERTF(ptr || size > 0, "ptr: %p, size: %llu", ptr,
766 (unsigned long long) size);
767
768 vmem_alloc_used_sub(size);
769 SDEBUG_LIMIT(SD_INFO, "vmem_free(%p, %llu) (%lld/%llu)\n", ptr,
770 (unsigned long long) size, vmem_alloc_used_read(),
771 vmem_alloc_max);
772 vfree(ptr);
773
774 SEXIT;
775 }
776 EXPORT_SYMBOL(vmem_free_debug);
777
778 # endif /* DEBUG_KMEM_TRACKING */
779 #endif /* DEBUG_KMEM */
780
781 /*
782 * Slab allocation interfaces
783 *
784 * While the Linux slab implementation was inspired by the Solaris
785 * implementation I cannot use it to emulate the Solaris APIs. I
786 * require two features which are not provided by the Linux slab.
787 *
788 * 1) Constructors AND destructors. Recent versions of the Linux
789 * kernel have removed support for destructors. This is a deal
790 * breaker for the SPL which contains particularly expensive
791 * initializers for mutex's, condition variables, etc. We also
792 * require a minimal level of cleanup for these data types unlike
793 * many Linux data type which do need to be explicitly destroyed.
794 *
795 * 2) Virtual address space backed slab. Callers of the Solaris slab
796 * expect it to work well for both small are very large allocations.
797 * Because of memory fragmentation the Linux slab which is backed
798 * by kmalloc'ed memory performs very badly when confronted with
799 * large numbers of large allocations. Basing the slab on the
800 * virtual address space removes the need for contiguous pages
801 * and greatly improve performance for large allocations.
802 *
803 * For these reasons, the SPL has its own slab implementation with
804 * the needed features. It is not as highly optimized as either the
805 * Solaris or Linux slabs, but it should get me most of what is
806 * needed until it can be optimized or obsoleted by another approach.
807 *
808 * One serious concern I do have about this method is the relatively
809 * small virtual address space on 32bit arches. This will seriously
810 * constrain the size of the slab caches and their performance.
811 *
812 * XXX: Improve the partial slab list by carefully maintaining a
813 * strict ordering of fullest to emptiest slabs based on
814 * the slab reference count. This guarantees the when freeing
815 * slabs back to the system we need only linearly traverse the
816 * last N slabs in the list to discover all the freeable slabs.
817 *
818 * XXX: NUMA awareness for optionally allocating memory close to a
819 * particular core. This can be advantageous if you know the slab
820 * object will be short lived and primarily accessed from one core.
821 *
822 * XXX: Slab coloring may also yield performance improvements and would
823 * be desirable to implement.
824 */
825
826 struct list_head spl_kmem_cache_list; /* List of caches */
827 struct rw_semaphore spl_kmem_cache_sem; /* Cache list lock */
828
829 static int spl_cache_flush(spl_kmem_cache_t *skc,
830 spl_kmem_magazine_t *skm, int flush);
831
832 SPL_SHRINKER_CALLBACK_FWD_DECLARE(spl_kmem_cache_generic_shrinker);
833 SPL_SHRINKER_DECLARE(spl_kmem_cache_shrinker,
834 spl_kmem_cache_generic_shrinker, KMC_DEFAULT_SEEKS);
835
836 static void *
837 kv_alloc(spl_kmem_cache_t *skc, int size, int flags)
838 {
839 void *ptr;
840
841 ASSERT(ISP2(size));
842
843 if (skc->skc_flags & KMC_KMEM)
844 ptr = (void *)__get_free_pages(flags, get_order(size));
845 else
846 ptr = __vmalloc(size, flags | __GFP_HIGHMEM, PAGE_KERNEL);
847
848 /* Resulting allocated memory will be page aligned */
849 ASSERT(IS_P2ALIGNED(ptr, PAGE_SIZE));
850
851 return ptr;
852 }
853
854 static void
855 kv_free(spl_kmem_cache_t *skc, void *ptr, int size)
856 {
857 ASSERT(IS_P2ALIGNED(ptr, PAGE_SIZE));
858 ASSERT(ISP2(size));
859
860 /*
861 * The Linux direct reclaim path uses this out of band value to
862 * determine if forward progress is being made. Normally this is
863 * incremented by kmem_freepages() which is part of the various
864 * Linux slab implementations. However, since we are using none
865 * of that infrastructure we are responsible for incrementing it.
866 */
867 if (current->reclaim_state)
868 current->reclaim_state->reclaimed_slab += size >> PAGE_SHIFT;
869
870 if (skc->skc_flags & KMC_KMEM)
871 free_pages((unsigned long)ptr, get_order(size));
872 else
873 vfree(ptr);
874 }
875
876 /*
877 * Required space for each aligned sks.
878 */
879 static inline uint32_t
880 spl_sks_size(spl_kmem_cache_t *skc)
881 {
882 return P2ROUNDUP_TYPED(sizeof(spl_kmem_slab_t),
883 skc->skc_obj_align, uint32_t);
884 }
885
886 /*
887 * Required space for each aligned object.
888 */
889 static inline uint32_t
890 spl_obj_size(spl_kmem_cache_t *skc)
891 {
892 uint32_t align = skc->skc_obj_align;
893
894 return P2ROUNDUP_TYPED(skc->skc_obj_size, align, uint32_t) +
895 P2ROUNDUP_TYPED(sizeof(spl_kmem_obj_t), align, uint32_t);
896 }
897
898 /*
899 * Lookup the spl_kmem_object_t for an object given that object.
900 */
901 static inline spl_kmem_obj_t *
902 spl_sko_from_obj(spl_kmem_cache_t *skc, void *obj)
903 {
904 return obj + P2ROUNDUP_TYPED(skc->skc_obj_size,
905 skc->skc_obj_align, uint32_t);
906 }
907
908 /*
909 * Required space for each offslab object taking in to account alignment
910 * restrictions and the power-of-two requirement of kv_alloc().
911 */
912 static inline uint32_t
913 spl_offslab_size(spl_kmem_cache_t *skc)
914 {
915 return 1UL << (highbit(spl_obj_size(skc)) + 1);
916 }
917
918 /*
919 * It's important that we pack the spl_kmem_obj_t structure and the
920 * actual objects in to one large address space to minimize the number
921 * of calls to the allocator. It is far better to do a few large
922 * allocations and then subdivide it ourselves. Now which allocator
923 * we use requires balancing a few trade offs.
924 *
925 * For small objects we use kmem_alloc() because as long as you are
926 * only requesting a small number of pages (ideally just one) its cheap.
927 * However, when you start requesting multiple pages with kmem_alloc()
928 * it gets increasingly expensive since it requires contiguous pages.
929 * For this reason we shift to vmem_alloc() for slabs of large objects
930 * which removes the need for contiguous pages. We do not use
931 * vmem_alloc() in all cases because there is significant locking
932 * overhead in __get_vm_area_node(). This function takes a single
933 * global lock when acquiring an available virtual address range which
934 * serializes all vmem_alloc()'s for all slab caches. Using slightly
935 * different allocation functions for small and large objects should
936 * give us the best of both worlds.
937 *
938 * KMC_ONSLAB KMC_OFFSLAB
939 *
940 * +------------------------+ +-----------------+
941 * | spl_kmem_slab_t --+-+ | | spl_kmem_slab_t |---+-+
942 * | skc_obj_size <-+ | | +-----------------+ | |
943 * | spl_kmem_obj_t | | | |
944 * | skc_obj_size <---+ | +-----------------+ | |
945 * | spl_kmem_obj_t | | | skc_obj_size | <-+ |
946 * | ... v | | spl_kmem_obj_t | |
947 * +------------------------+ +-----------------+ v
948 */
949 static spl_kmem_slab_t *
950 spl_slab_alloc(spl_kmem_cache_t *skc, int flags)
951 {
952 spl_kmem_slab_t *sks;
953 spl_kmem_obj_t *sko, *n;
954 void *base, *obj;
955 uint32_t obj_size, offslab_size = 0;
956 int i, rc = 0;
957
958 base = kv_alloc(skc, skc->skc_slab_size, flags);
959 if (base == NULL)
960 SRETURN(NULL);
961
962 sks = (spl_kmem_slab_t *)base;
963 sks->sks_magic = SKS_MAGIC;
964 sks->sks_objs = skc->skc_slab_objs;
965 sks->sks_age = jiffies;
966 sks->sks_cache = skc;
967 INIT_LIST_HEAD(&sks->sks_list);
968 INIT_LIST_HEAD(&sks->sks_free_list);
969 sks->sks_ref = 0;
970 obj_size = spl_obj_size(skc);
971
972 if (skc->skc_flags & KMC_OFFSLAB)
973 offslab_size = spl_offslab_size(skc);
974
975 for (i = 0; i < sks->sks_objs; i++) {
976 if (skc->skc_flags & KMC_OFFSLAB) {
977 obj = kv_alloc(skc, offslab_size, flags);
978 if (!obj)
979 SGOTO(out, rc = -ENOMEM);
980 } else {
981 obj = base + spl_sks_size(skc) + (i * obj_size);
982 }
983
984 ASSERT(IS_P2ALIGNED(obj, skc->skc_obj_align));
985 sko = spl_sko_from_obj(skc, obj);
986 sko->sko_addr = obj;
987 sko->sko_magic = SKO_MAGIC;
988 sko->sko_slab = sks;
989 INIT_LIST_HEAD(&sko->sko_list);
990 list_add_tail(&sko->sko_list, &sks->sks_free_list);
991 }
992
993 list_for_each_entry(sko, &sks->sks_free_list, sko_list)
994 if (skc->skc_ctor)
995 skc->skc_ctor(sko->sko_addr, skc->skc_private, flags);
996 out:
997 if (rc) {
998 if (skc->skc_flags & KMC_OFFSLAB)
999 list_for_each_entry_safe(sko, n, &sks->sks_free_list,
1000 sko_list)
1001 kv_free(skc, sko->sko_addr, offslab_size);
1002
1003 kv_free(skc, base, skc->skc_slab_size);
1004 sks = NULL;
1005 }
1006
1007 SRETURN(sks);
1008 }
1009
1010 /*
1011 * Remove a slab from complete or partial list, it must be called with
1012 * the 'skc->skc_lock' held but the actual free must be performed
1013 * outside the lock to prevent deadlocking on vmem addresses.
1014 */
1015 static void
1016 spl_slab_free(spl_kmem_slab_t *sks,
1017 struct list_head *sks_list, struct list_head *sko_list)
1018 {
1019 spl_kmem_cache_t *skc;
1020 SENTRY;
1021
1022 ASSERT(sks->sks_magic == SKS_MAGIC);
1023 ASSERT(sks->sks_ref == 0);
1024
1025 skc = sks->sks_cache;
1026 ASSERT(skc->skc_magic == SKC_MAGIC);
1027 ASSERT(spin_is_locked(&skc->skc_lock));
1028
1029 /*
1030 * Update slab/objects counters in the cache, then remove the
1031 * slab from the skc->skc_partial_list. Finally add the slab
1032 * and all its objects in to the private work lists where the
1033 * destructors will be called and the memory freed to the system.
1034 */
1035 skc->skc_obj_total -= sks->sks_objs;
1036 skc->skc_slab_total--;
1037 list_del(&sks->sks_list);
1038 list_add(&sks->sks_list, sks_list);
1039 list_splice_init(&sks->sks_free_list, sko_list);
1040
1041 SEXIT;
1042 }
1043
1044 /*
1045 * Traverses all the partial slabs attached to a cache and free those
1046 * which which are currently empty, and have not been touched for
1047 * skc_delay seconds to avoid thrashing. The count argument is
1048 * passed to optionally cap the number of slabs reclaimed, a count
1049 * of zero means try and reclaim everything. When flag is set we
1050 * always free an available slab regardless of age.
1051 */
1052 static void
1053 spl_slab_reclaim(spl_kmem_cache_t *skc, int count, int flag)
1054 {
1055 spl_kmem_slab_t *sks, *m;
1056 spl_kmem_obj_t *sko, *n;
1057 LIST_HEAD(sks_list);
1058 LIST_HEAD(sko_list);
1059 uint32_t size = 0;
1060 int i = 0;
1061 SENTRY;
1062
1063 /*
1064 * Move empty slabs and objects which have not been touched in
1065 * skc_delay seconds on to private lists to be freed outside
1066 * the spin lock. This delay time is important to avoid thrashing
1067 * however when flag is set the delay will not be used.
1068 */
1069 spin_lock(&skc->skc_lock);
1070 list_for_each_entry_safe_reverse(sks,m,&skc->skc_partial_list,sks_list){
1071 /*
1072 * All empty slabs are at the end of skc->skc_partial_list,
1073 * therefore once a non-empty slab is found we can stop
1074 * scanning. Additionally, stop when reaching the target
1075 * reclaim 'count' if a non-zero threshold is given.
1076 */
1077 if ((sks->sks_ref > 0) || (count && i >= count))
1078 break;
1079
1080 if (time_after(jiffies,sks->sks_age+skc->skc_delay*HZ)||flag) {
1081 spl_slab_free(sks, &sks_list, &sko_list);
1082 i++;
1083 }
1084 }
1085 spin_unlock(&skc->skc_lock);
1086
1087 /*
1088 * The following two loops ensure all the object destructors are
1089 * run, any offslab objects are freed, and the slabs themselves
1090 * are freed. This is all done outside the skc->skc_lock since
1091 * this allows the destructor to sleep, and allows us to perform
1092 * a conditional reschedule when a freeing a large number of
1093 * objects and slabs back to the system.
1094 */
1095 if (skc->skc_flags & KMC_OFFSLAB)
1096 size = spl_offslab_size(skc);
1097
1098 list_for_each_entry_safe(sko, n, &sko_list, sko_list) {
1099 ASSERT(sko->sko_magic == SKO_MAGIC);
1100
1101 if (skc->skc_dtor)
1102 skc->skc_dtor(sko->sko_addr, skc->skc_private);
1103
1104 if (skc->skc_flags & KMC_OFFSLAB)
1105 kv_free(skc, sko->sko_addr, size);
1106
1107 cond_resched();
1108 }
1109
1110 list_for_each_entry_safe(sks, m, &sks_list, sks_list) {
1111 ASSERT(sks->sks_magic == SKS_MAGIC);
1112 kv_free(skc, sks, skc->skc_slab_size);
1113 cond_resched();
1114 }
1115
1116 SEXIT;
1117 }
1118
1119 static spl_kmem_emergency_t *
1120 spl_emergency_search(struct rb_root *root, void *obj)
1121 {
1122 struct rb_node *node = root->rb_node;
1123 spl_kmem_emergency_t *ske;
1124 unsigned long address = (unsigned long)obj;
1125
1126 while (node) {
1127 ske = container_of(node, spl_kmem_emergency_t, ske_node);
1128
1129 if (address < (unsigned long)ske->ske_obj)
1130 node = node->rb_left;
1131 else if (address > (unsigned long)ske->ske_obj)
1132 node = node->rb_right;
1133 else
1134 return ske;
1135 }
1136
1137 return NULL;
1138 }
1139
1140 static int
1141 spl_emergency_insert(struct rb_root *root, spl_kmem_emergency_t *ske)
1142 {
1143 struct rb_node **new = &(root->rb_node), *parent = NULL;
1144 spl_kmem_emergency_t *ske_tmp;
1145 unsigned long address = (unsigned long)ske->ske_obj;
1146
1147 while (*new) {
1148 ske_tmp = container_of(*new, spl_kmem_emergency_t, ske_node);
1149
1150 parent = *new;
1151 if (address < (unsigned long)ske_tmp->ske_obj)
1152 new = &((*new)->rb_left);
1153 else if (address > (unsigned long)ske_tmp->ske_obj)
1154 new = &((*new)->rb_right);
1155 else
1156 return 0;
1157 }
1158
1159 rb_link_node(&ske->ske_node, parent, new);
1160 rb_insert_color(&ske->ske_node, root);
1161
1162 return 1;
1163 }
1164
1165 /*
1166 * Allocate a single emergency object and track it in a red black tree.
1167 */
1168 static int
1169 spl_emergency_alloc(spl_kmem_cache_t *skc, int flags, void **obj)
1170 {
1171 spl_kmem_emergency_t *ske;
1172 int empty;
1173 SENTRY;
1174
1175 /* Last chance use a partial slab if one now exists */
1176 spin_lock(&skc->skc_lock);
1177 empty = list_empty(&skc->skc_partial_list);
1178 spin_unlock(&skc->skc_lock);
1179 if (!empty)
1180 SRETURN(-EEXIST);
1181
1182 ske = kmalloc(sizeof(*ske), flags);
1183 if (ske == NULL)
1184 SRETURN(-ENOMEM);
1185
1186 ske->ske_obj = kmalloc(skc->skc_obj_size, flags);
1187 if (ske->ske_obj == NULL) {
1188 kfree(ske);
1189 SRETURN(-ENOMEM);
1190 }
1191
1192 spin_lock(&skc->skc_lock);
1193 empty = spl_emergency_insert(&skc->skc_emergency_tree, ske);
1194 if (likely(empty)) {
1195 skc->skc_obj_total++;
1196 skc->skc_obj_emergency++;
1197 if (skc->skc_obj_emergency > skc->skc_obj_emergency_max)
1198 skc->skc_obj_emergency_max = skc->skc_obj_emergency;
1199 }
1200 spin_unlock(&skc->skc_lock);
1201
1202 if (unlikely(!empty)) {
1203 kfree(ske->ske_obj);
1204 kfree(ske);
1205 SRETURN(-EINVAL);
1206 }
1207
1208 if (skc->skc_ctor)
1209 skc->skc_ctor(ske->ske_obj, skc->skc_private, flags);
1210
1211 *obj = ske->ske_obj;
1212
1213 SRETURN(0);
1214 }
1215
1216 /*
1217 * Locate the passed object in the red black tree and free it.
1218 */
1219 static int
1220 spl_emergency_free(spl_kmem_cache_t *skc, void *obj)
1221 {
1222 spl_kmem_emergency_t *ske;
1223 SENTRY;
1224
1225 spin_lock(&skc->skc_lock);
1226 ske = spl_emergency_search(&skc->skc_emergency_tree, obj);
1227 if (likely(ske)) {
1228 rb_erase(&ske->ske_node, &skc->skc_emergency_tree);
1229 skc->skc_obj_emergency--;
1230 skc->skc_obj_total--;
1231 }
1232 spin_unlock(&skc->skc_lock);
1233
1234 if (unlikely(ske == NULL))
1235 SRETURN(-ENOENT);
1236
1237 if (skc->skc_dtor)
1238 skc->skc_dtor(ske->ske_obj, skc->skc_private);
1239
1240 kfree(ske->ske_obj);
1241 kfree(ske);
1242
1243 SRETURN(0);
1244 }
1245
1246 /*
1247 * Called regularly on all caches to age objects out of the magazines
1248 * which have not been access in skc->skc_delay seconds. This prevents
1249 * idle magazines from holding memory which might be better used by
1250 * other caches or parts of the system. The delay is present to
1251 * prevent thrashing the magazine.
1252 */
1253 static void
1254 spl_magazine_age(void *data)
1255 {
1256 spl_kmem_magazine_t *skm =
1257 spl_get_work_data(data, spl_kmem_magazine_t, skm_work.work);
1258 spl_kmem_cache_t *skc = skm->skm_cache;
1259
1260 ASSERT(skm->skm_magic == SKM_MAGIC);
1261 ASSERT(skc->skc_magic == SKC_MAGIC);
1262 ASSERT(skc->skc_mag[skm->skm_cpu] == skm);
1263
1264 if (skm->skm_avail > 0 &&
1265 time_after(jiffies, skm->skm_age + skc->skc_delay * HZ))
1266 (void)spl_cache_flush(skc, skm, skm->skm_refill);
1267
1268 if (!test_bit(KMC_BIT_DESTROY, &skc->skc_flags))
1269 schedule_delayed_work_on(skm->skm_cpu, &skm->skm_work,
1270 skc->skc_delay / 3 * HZ);
1271 }
1272
1273 /*
1274 * Called regularly to keep a downward pressure on the size of idle
1275 * magazines and to release free slabs from the cache. This function
1276 * never calls the registered reclaim function, that only occurs
1277 * under memory pressure or with a direct call to spl_kmem_reap().
1278 */
1279 static void
1280 spl_cache_age(void *data)
1281 {
1282 spl_kmem_cache_t *skc =
1283 spl_get_work_data(data, spl_kmem_cache_t, skc_work.work);
1284
1285 ASSERT(skc->skc_magic == SKC_MAGIC);
1286 spl_slab_reclaim(skc, skc->skc_reap, 0);
1287
1288 if (!test_bit(KMC_BIT_DESTROY, &skc->skc_flags))
1289 schedule_delayed_work(&skc->skc_work, skc->skc_delay / 3 * HZ);
1290 }
1291
1292 /*
1293 * Size a slab based on the size of each aligned object plus spl_kmem_obj_t.
1294 * When on-slab we want to target SPL_KMEM_CACHE_OBJ_PER_SLAB. However,
1295 * for very small objects we may end up with more than this so as not
1296 * to waste space in the minimal allocation of a single page. Also for
1297 * very large objects we may use as few as SPL_KMEM_CACHE_OBJ_PER_SLAB_MIN,
1298 * lower than this and we will fail.
1299 */
1300 static int
1301 spl_slab_size(spl_kmem_cache_t *skc, uint32_t *objs, uint32_t *size)
1302 {
1303 uint32_t sks_size, obj_size, max_size;
1304
1305 if (skc->skc_flags & KMC_OFFSLAB) {
1306 *objs = SPL_KMEM_CACHE_OBJ_PER_SLAB;
1307 *size = sizeof(spl_kmem_slab_t);
1308 } else {
1309 sks_size = spl_sks_size(skc);
1310 obj_size = spl_obj_size(skc);
1311
1312 if (skc->skc_flags & KMC_KMEM)
1313 max_size = ((uint32_t)1 << (MAX_ORDER-3)) * PAGE_SIZE;
1314 else
1315 max_size = (32 * 1024 * 1024);
1316
1317 /* Power of two sized slab */
1318 for (*size = PAGE_SIZE; *size <= max_size; *size *= 2) {
1319 *objs = (*size - sks_size) / obj_size;
1320 if (*objs >= SPL_KMEM_CACHE_OBJ_PER_SLAB)
1321 SRETURN(0);
1322 }
1323
1324 /*
1325 * Unable to satisfy target objects per slab, fall back to
1326 * allocating a maximally sized slab and assuming it can
1327 * contain the minimum objects count use it. If not fail.
1328 */
1329 *size = max_size;
1330 *objs = (*size - sks_size) / obj_size;
1331 if (*objs >= SPL_KMEM_CACHE_OBJ_PER_SLAB_MIN)
1332 SRETURN(0);
1333 }
1334
1335 SRETURN(-ENOSPC);
1336 }
1337
1338 /*
1339 * Make a guess at reasonable per-cpu magazine size based on the size of
1340 * each object and the cost of caching N of them in each magazine. Long
1341 * term this should really adapt based on an observed usage heuristic.
1342 */
1343 static int
1344 spl_magazine_size(spl_kmem_cache_t *skc)
1345 {
1346 uint32_t obj_size = spl_obj_size(skc);
1347 int size;
1348 SENTRY;
1349
1350 /* Per-magazine sizes below assume a 4Kib page size */
1351 if (obj_size > (PAGE_SIZE * 256))
1352 size = 4; /* Minimum 4Mib per-magazine */
1353 else if (obj_size > (PAGE_SIZE * 32))
1354 size = 16; /* Minimum 2Mib per-magazine */
1355 else if (obj_size > (PAGE_SIZE))
1356 size = 64; /* Minimum 256Kib per-magazine */
1357 else if (obj_size > (PAGE_SIZE / 4))
1358 size = 128; /* Minimum 128Kib per-magazine */
1359 else
1360 size = 256;
1361
1362 SRETURN(size);
1363 }
1364
1365 /*
1366 * Allocate a per-cpu magazine to associate with a specific core.
1367 */
1368 static spl_kmem_magazine_t *
1369 spl_magazine_alloc(spl_kmem_cache_t *skc, int cpu)
1370 {
1371 spl_kmem_magazine_t *skm;
1372 int size = sizeof(spl_kmem_magazine_t) +
1373 sizeof(void *) * skc->skc_mag_size;
1374 SENTRY;
1375
1376 skm = kmem_alloc_node(size, KM_SLEEP, cpu_to_node(cpu));
1377 if (skm) {
1378 skm->skm_magic = SKM_MAGIC;
1379 skm->skm_avail = 0;
1380 skm->skm_size = skc->skc_mag_size;
1381 skm->skm_refill = skc->skc_mag_refill;
1382 skm->skm_cache = skc;
1383 spl_init_delayed_work(&skm->skm_work, spl_magazine_age, skm);
1384 skm->skm_age = jiffies;
1385 skm->skm_cpu = cpu;
1386 }
1387
1388 SRETURN(skm);
1389 }
1390
1391 /*
1392 * Free a per-cpu magazine associated with a specific core.
1393 */
1394 static void
1395 spl_magazine_free(spl_kmem_magazine_t *skm)
1396 {
1397 int size = sizeof(spl_kmem_magazine_t) +
1398 sizeof(void *) * skm->skm_size;
1399
1400 SENTRY;
1401 ASSERT(skm->skm_magic == SKM_MAGIC);
1402 ASSERT(skm->skm_avail == 0);
1403
1404 kmem_free(skm, size);
1405 SEXIT;
1406 }
1407
1408 /*
1409 * Create all pre-cpu magazines of reasonable sizes.
1410 */
1411 static int
1412 spl_magazine_create(spl_kmem_cache_t *skc)
1413 {
1414 int i;
1415 SENTRY;
1416
1417 skc->skc_mag_size = spl_magazine_size(skc);
1418 skc->skc_mag_refill = (skc->skc_mag_size + 1) / 2;
1419
1420 for_each_online_cpu(i) {
1421 skc->skc_mag[i] = spl_magazine_alloc(skc, i);
1422 if (!skc->skc_mag[i]) {
1423 for (i--; i >= 0; i--)
1424 spl_magazine_free(skc->skc_mag[i]);
1425
1426 SRETURN(-ENOMEM);
1427 }
1428 }
1429
1430 /* Only after everything is allocated schedule magazine work */
1431 for_each_online_cpu(i)
1432 schedule_delayed_work_on(i, &skc->skc_mag[i]->skm_work,
1433 skc->skc_delay / 3 * HZ);
1434
1435 SRETURN(0);
1436 }
1437
1438 /*
1439 * Destroy all pre-cpu magazines.
1440 */
1441 static void
1442 spl_magazine_destroy(spl_kmem_cache_t *skc)
1443 {
1444 spl_kmem_magazine_t *skm;
1445 int i;
1446 SENTRY;
1447
1448 for_each_online_cpu(i) {
1449 skm = skc->skc_mag[i];
1450 (void)spl_cache_flush(skc, skm, skm->skm_avail);
1451 spl_magazine_free(skm);
1452 }
1453
1454 SEXIT;
1455 }
1456
1457 /*
1458 * Create a object cache based on the following arguments:
1459 * name cache name
1460 * size cache object size
1461 * align cache object alignment
1462 * ctor cache object constructor
1463 * dtor cache object destructor
1464 * reclaim cache object reclaim
1465 * priv cache private data for ctor/dtor/reclaim
1466 * vmp unused must be NULL
1467 * flags
1468 * KMC_NOTOUCH Disable cache object aging (unsupported)
1469 * KMC_NODEBUG Disable debugging (unsupported)
1470 * KMC_NOMAGAZINE Disable magazine (unsupported)
1471 * KMC_NOHASH Disable hashing (unsupported)
1472 * KMC_QCACHE Disable qcache (unsupported)
1473 * KMC_KMEM Force kmem backed cache
1474 * KMC_VMEM Force vmem backed cache
1475 * KMC_OFFSLAB Locate objects off the slab
1476 */
1477 spl_kmem_cache_t *
1478 spl_kmem_cache_create(char *name, size_t size, size_t align,
1479 spl_kmem_ctor_t ctor,
1480 spl_kmem_dtor_t dtor,
1481 spl_kmem_reclaim_t reclaim,
1482 void *priv, void *vmp, int flags)
1483 {
1484 spl_kmem_cache_t *skc;
1485 int rc, kmem_flags = KM_SLEEP;
1486 SENTRY;
1487
1488 ASSERTF(!(flags & KMC_NOMAGAZINE), "Bad KMC_NOMAGAZINE (%x)\n", flags);
1489 ASSERTF(!(flags & KMC_NOHASH), "Bad KMC_NOHASH (%x)\n", flags);
1490 ASSERTF(!(flags & KMC_QCACHE), "Bad KMC_QCACHE (%x)\n", flags);
1491 ASSERT(vmp == NULL);
1492
1493 /* We may be called when there is a non-zero preempt_count or
1494 * interrupts are disabled is which case we must not sleep.
1495 */
1496 if (current_thread_info()->preempt_count || irqs_disabled())
1497 kmem_flags = KM_NOSLEEP;
1498
1499 /* Allocate memory for a new cache an initialize it. Unfortunately,
1500 * this usually ends up being a large allocation of ~32k because
1501 * we need to allocate enough memory for the worst case number of
1502 * cpus in the magazine, skc_mag[NR_CPUS]. Because of this we
1503 * explicitly pass KM_NODEBUG to suppress the kmem warning */
1504 skc = (spl_kmem_cache_t *)kmem_zalloc(sizeof(*skc),
1505 kmem_flags | KM_NODEBUG);
1506 if (skc == NULL)
1507 SRETURN(NULL);
1508
1509 skc->skc_magic = SKC_MAGIC;
1510 skc->skc_name_size = strlen(name) + 1;
1511 skc->skc_name = (char *)kmem_alloc(skc->skc_name_size, kmem_flags);
1512 if (skc->skc_name == NULL) {
1513 kmem_free(skc, sizeof(*skc));
1514 SRETURN(NULL);
1515 }
1516 strncpy(skc->skc_name, name, skc->skc_name_size);
1517
1518 skc->skc_ctor = ctor;
1519 skc->skc_dtor = dtor;
1520 skc->skc_reclaim = reclaim;
1521 skc->skc_private = priv;
1522 skc->skc_vmp = vmp;
1523 skc->skc_flags = flags;
1524 skc->skc_obj_size = size;
1525 skc->skc_obj_align = SPL_KMEM_CACHE_ALIGN;
1526 skc->skc_delay = SPL_KMEM_CACHE_DELAY;
1527 skc->skc_reap = SPL_KMEM_CACHE_REAP;
1528 atomic_set(&skc->skc_ref, 0);
1529
1530 INIT_LIST_HEAD(&skc->skc_list);
1531 INIT_LIST_HEAD(&skc->skc_complete_list);
1532 INIT_LIST_HEAD(&skc->skc_partial_list);
1533 skc->skc_emergency_tree = RB_ROOT;
1534 spin_lock_init(&skc->skc_lock);
1535 init_waitqueue_head(&skc->skc_waitq);
1536 skc->skc_slab_fail = 0;
1537 skc->skc_slab_create = 0;
1538 skc->skc_slab_destroy = 0;
1539 skc->skc_slab_total = 0;
1540 skc->skc_slab_alloc = 0;
1541 skc->skc_slab_max = 0;
1542 skc->skc_obj_total = 0;
1543 skc->skc_obj_alloc = 0;
1544 skc->skc_obj_max = 0;
1545 skc->skc_obj_deadlock = 0;
1546 skc->skc_obj_emergency = 0;
1547 skc->skc_obj_emergency_max = 0;
1548
1549 if (align) {
1550 VERIFY(ISP2(align));
1551 VERIFY3U(align, >=, SPL_KMEM_CACHE_ALIGN); /* Min alignment */
1552 VERIFY3U(align, <=, PAGE_SIZE); /* Max alignment */
1553 skc->skc_obj_align = align;
1554 }
1555
1556 /* If none passed select a cache type based on object size */
1557 if (!(skc->skc_flags & (KMC_KMEM | KMC_VMEM))) {
1558 if (spl_obj_size(skc) < (PAGE_SIZE / 8))
1559 skc->skc_flags |= KMC_KMEM;
1560 else
1561 skc->skc_flags |= KMC_VMEM;
1562 }
1563
1564 rc = spl_slab_size(skc, &skc->skc_slab_objs, &skc->skc_slab_size);
1565 if (rc)
1566 SGOTO(out, rc);
1567
1568 rc = spl_magazine_create(skc);
1569 if (rc)
1570 SGOTO(out, rc);
1571
1572 spl_init_delayed_work(&skc->skc_work, spl_cache_age, skc);
1573 schedule_delayed_work(&skc->skc_work, skc->skc_delay / 3 * HZ);
1574
1575 down_write(&spl_kmem_cache_sem);
1576 list_add_tail(&skc->skc_list, &spl_kmem_cache_list);
1577 up_write(&spl_kmem_cache_sem);
1578
1579 SRETURN(skc);
1580 out:
1581 kmem_free(skc->skc_name, skc->skc_name_size);
1582 kmem_free(skc, sizeof(*skc));
1583 SRETURN(NULL);
1584 }
1585 EXPORT_SYMBOL(spl_kmem_cache_create);
1586
1587 /*
1588 * Register a move callback to for cache defragmentation.
1589 * XXX: Unimplemented but harmless to stub out for now.
1590 */
1591 void
1592 spl_kmem_cache_set_move(spl_kmem_cache_t *skc,
1593 kmem_cbrc_t (move)(void *, void *, size_t, void *))
1594 {
1595 ASSERT(move != NULL);
1596 }
1597 EXPORT_SYMBOL(spl_kmem_cache_set_move);
1598
1599 /*
1600 * Destroy a cache and all objects associated with the cache.
1601 */
1602 void
1603 spl_kmem_cache_destroy(spl_kmem_cache_t *skc)
1604 {
1605 DECLARE_WAIT_QUEUE_HEAD(wq);
1606 int i;
1607 SENTRY;
1608
1609 ASSERT(skc->skc_magic == SKC_MAGIC);
1610
1611 down_write(&spl_kmem_cache_sem);
1612 list_del_init(&skc->skc_list);
1613 up_write(&spl_kmem_cache_sem);
1614
1615 /* Cancel any and wait for any pending delayed work */
1616 VERIFY(!test_and_set_bit(KMC_BIT_DESTROY, &skc->skc_flags));
1617 cancel_delayed_work_sync(&skc->skc_work);
1618 for_each_online_cpu(i)
1619 cancel_delayed_work_sync(&skc->skc_mag[i]->skm_work);
1620
1621 flush_scheduled_work();
1622
1623 /* Wait until all current callers complete, this is mainly
1624 * to catch the case where a low memory situation triggers a
1625 * cache reaping action which races with this destroy. */
1626 wait_event(wq, atomic_read(&skc->skc_ref) == 0);
1627
1628 spl_magazine_destroy(skc);
1629 spl_slab_reclaim(skc, 0, 1);
1630 spin_lock(&skc->skc_lock);
1631
1632 /* Validate there are no objects in use and free all the
1633 * spl_kmem_slab_t, spl_kmem_obj_t, and object buffers. */
1634 ASSERT3U(skc->skc_slab_alloc, ==, 0);
1635 ASSERT3U(skc->skc_obj_alloc, ==, 0);
1636 ASSERT3U(skc->skc_slab_total, ==, 0);
1637 ASSERT3U(skc->skc_obj_total, ==, 0);
1638 ASSERT3U(skc->skc_obj_emergency, ==, 0);
1639 ASSERT(list_empty(&skc->skc_complete_list));
1640
1641 kmem_free(skc->skc_name, skc->skc_name_size);
1642 spin_unlock(&skc->skc_lock);
1643
1644 kmem_free(skc, sizeof(*skc));
1645
1646 SEXIT;
1647 }
1648 EXPORT_SYMBOL(spl_kmem_cache_destroy);
1649
1650 /*
1651 * Allocate an object from a slab attached to the cache. This is used to
1652 * repopulate the per-cpu magazine caches in batches when they run low.
1653 */
1654 static void *
1655 spl_cache_obj(spl_kmem_cache_t *skc, spl_kmem_slab_t *sks)
1656 {
1657 spl_kmem_obj_t *sko;
1658
1659 ASSERT(skc->skc_magic == SKC_MAGIC);
1660 ASSERT(sks->sks_magic == SKS_MAGIC);
1661 ASSERT(spin_is_locked(&skc->skc_lock));
1662
1663 sko = list_entry(sks->sks_free_list.next, spl_kmem_obj_t, sko_list);
1664 ASSERT(sko->sko_magic == SKO_MAGIC);
1665 ASSERT(sko->sko_addr != NULL);
1666
1667 /* Remove from sks_free_list */
1668 list_del_init(&sko->sko_list);
1669
1670 sks->sks_age = jiffies;
1671 sks->sks_ref++;
1672 skc->skc_obj_alloc++;
1673
1674 /* Track max obj usage statistics */
1675 if (skc->skc_obj_alloc > skc->skc_obj_max)
1676 skc->skc_obj_max = skc->skc_obj_alloc;
1677
1678 /* Track max slab usage statistics */
1679 if (sks->sks_ref == 1) {
1680 skc->skc_slab_alloc++;
1681
1682 if (skc->skc_slab_alloc > skc->skc_slab_max)
1683 skc->skc_slab_max = skc->skc_slab_alloc;
1684 }
1685
1686 return sko->sko_addr;
1687 }
1688
1689 /*
1690 * Generic slab allocation function to run by the global work queues.
1691 * It is responsible for allocating a new slab, linking it in to the list
1692 * of partial slabs, and then waking any waiters.
1693 */
1694 static void
1695 spl_cache_grow_work(void *data)
1696 {
1697 spl_kmem_alloc_t *ska =
1698 spl_get_work_data(data, spl_kmem_alloc_t, ska_work.work);
1699 spl_kmem_cache_t *skc = ska->ska_cache;
1700 spl_kmem_slab_t *sks;
1701
1702 sks = spl_slab_alloc(skc, ska->ska_flags | __GFP_NORETRY | KM_NODEBUG);
1703 spin_lock(&skc->skc_lock);
1704 if (sks) {
1705 skc->skc_slab_total++;
1706 skc->skc_obj_total += sks->sks_objs;
1707 list_add_tail(&sks->sks_list, &skc->skc_partial_list);
1708 }
1709
1710 atomic_dec(&skc->skc_ref);
1711 clear_bit(KMC_BIT_GROWING, &skc->skc_flags);
1712 clear_bit(KMC_BIT_DEADLOCKED, &skc->skc_flags);
1713 wake_up_all(&skc->skc_waitq);
1714 spin_unlock(&skc->skc_lock);
1715
1716 kfree(ska);
1717 }
1718
1719 /*
1720 * Returns non-zero when a new slab should be available.
1721 */
1722 static int
1723 spl_cache_grow_wait(spl_kmem_cache_t *skc)
1724 {
1725 return !test_bit(KMC_BIT_GROWING, &skc->skc_flags);
1726 }
1727
1728 /*
1729 * No available objects on any slabs, create a new slab.
1730 */
1731 static int
1732 spl_cache_grow(spl_kmem_cache_t *skc, int flags, void **obj)
1733 {
1734 int remaining, rc;
1735 SENTRY;
1736
1737 ASSERT(skc->skc_magic == SKC_MAGIC);
1738 might_sleep();
1739 *obj = NULL;
1740
1741 /*
1742 * Before allocating a new slab check if the slab is being reaped.
1743 * If it is there is a good chance we can wait until it finishes
1744 * and then use one of the newly freed but not aged-out slabs.
1745 */
1746 if (test_bit(KMC_BIT_REAPING, &skc->skc_flags))
1747 SRETURN(-EAGAIN);
1748
1749 /*
1750 * This is handled by dispatching a work request to the global work
1751 * queue. This allows us to asynchronously allocate a new slab while
1752 * retaining the ability to safely fall back to a smaller synchronous
1753 * allocations to ensure forward progress is always maintained.
1754 */
1755 if (test_and_set_bit(KMC_BIT_GROWING, &skc->skc_flags) == 0) {
1756 spl_kmem_alloc_t *ska;
1757
1758 ska = kmalloc(sizeof(*ska), flags);
1759 if (ska == NULL) {
1760 clear_bit(KMC_BIT_GROWING, &skc->skc_flags);
1761 wake_up_all(&skc->skc_waitq);
1762 SRETURN(-ENOMEM);
1763 }
1764
1765 atomic_inc(&skc->skc_ref);
1766 ska->ska_cache = skc;
1767 ska->ska_flags = flags;
1768 spl_init_delayed_work(&ska->ska_work, spl_cache_grow_work, ska);
1769 schedule_delayed_work(&ska->ska_work, 0);
1770 }
1771
1772 /*
1773 * The goal here is to only detect the rare case where a virtual slab
1774 * allocation has deadlocked. We must be careful to minimize the use
1775 * of emergency objects which are more expensive to track. Therefore,
1776 * we set a very long timeout for the asynchronous allocation and if
1777 * the timeout is reached the cache is flagged as deadlocked. From
1778 * this point only new emergency objects will be allocated until the
1779 * asynchronous allocation completes and clears the deadlocked flag.
1780 */
1781 if (test_bit(KMC_BIT_DEADLOCKED, &skc->skc_flags)) {
1782 rc = spl_emergency_alloc(skc, flags, obj);
1783 } else {
1784 remaining = wait_event_timeout(skc->skc_waitq,
1785 spl_cache_grow_wait(skc), HZ);
1786
1787 if (!remaining && test_bit(KMC_BIT_VMEM, &skc->skc_flags)) {
1788 spin_lock(&skc->skc_lock);
1789 if (test_bit(KMC_BIT_GROWING, &skc->skc_flags)) {
1790 set_bit(KMC_BIT_DEADLOCKED, &skc->skc_flags);
1791 skc->skc_obj_deadlock++;
1792 }
1793 spin_unlock(&skc->skc_lock);
1794 }
1795
1796 rc = -ENOMEM;
1797 }
1798
1799 SRETURN(rc);
1800 }
1801
1802 /*
1803 * Refill a per-cpu magazine with objects from the slabs for this cache.
1804 * Ideally the magazine can be repopulated using existing objects which have
1805 * been released, however if we are unable to locate enough free objects new
1806 * slabs of objects will be created. On success NULL is returned, otherwise
1807 * the address of a single emergency object is returned for use by the caller.
1808 */
1809 static void *
1810 spl_cache_refill(spl_kmem_cache_t *skc, spl_kmem_magazine_t *skm, int flags)
1811 {
1812 spl_kmem_slab_t *sks;
1813 int count = 0, rc, refill;
1814 void *obj = NULL;
1815 SENTRY;
1816
1817 ASSERT(skc->skc_magic == SKC_MAGIC);
1818 ASSERT(skm->skm_magic == SKM_MAGIC);
1819
1820 refill = MIN(skm->skm_refill, skm->skm_size - skm->skm_avail);
1821 spin_lock(&skc->skc_lock);
1822
1823 while (refill > 0) {
1824 /* No slabs available we may need to grow the cache */
1825 if (list_empty(&skc->skc_partial_list)) {
1826 spin_unlock(&skc->skc_lock);
1827
1828 local_irq_enable();
1829 rc = spl_cache_grow(skc, flags, &obj);
1830 local_irq_disable();
1831
1832 /* Emergency object for immediate use by caller */
1833 if (rc == 0 && obj != NULL)
1834 SRETURN(obj);
1835
1836 if (rc)
1837 SGOTO(out, rc);
1838
1839 /* Rescheduled to different CPU skm is not local */
1840 if (skm != skc->skc_mag[smp_processor_id()])
1841 SGOTO(out, rc);
1842
1843 /* Potentially rescheduled to the same CPU but
1844 * allocations may have occurred from this CPU while
1845 * we were sleeping so recalculate max refill. */
1846 refill = MIN(refill, skm->skm_size - skm->skm_avail);
1847
1848 spin_lock(&skc->skc_lock);
1849 continue;
1850 }
1851
1852 /* Grab the next available slab */
1853 sks = list_entry((&skc->skc_partial_list)->next,
1854 spl_kmem_slab_t, sks_list);
1855 ASSERT(sks->sks_magic == SKS_MAGIC);
1856 ASSERT(sks->sks_ref < sks->sks_objs);
1857 ASSERT(!list_empty(&sks->sks_free_list));
1858
1859 /* Consume as many objects as needed to refill the requested
1860 * cache. We must also be careful not to overfill it. */
1861 while (sks->sks_ref < sks->sks_objs && refill-- > 0 && ++count) {
1862 ASSERT(skm->skm_avail < skm->skm_size);
1863 ASSERT(count < skm->skm_size);
1864 skm->skm_objs[skm->skm_avail++]=spl_cache_obj(skc,sks);
1865 }
1866
1867 /* Move slab to skc_complete_list when full */
1868 if (sks->sks_ref == sks->sks_objs) {
1869 list_del(&sks->sks_list);
1870 list_add(&sks->sks_list, &skc->skc_complete_list);
1871 }
1872 }
1873
1874 spin_unlock(&skc->skc_lock);
1875 out:
1876 SRETURN(NULL);
1877 }
1878
1879 /*
1880 * Release an object back to the slab from which it came.
1881 */
1882 static void
1883 spl_cache_shrink(spl_kmem_cache_t *skc, void *obj)
1884 {
1885 spl_kmem_slab_t *sks = NULL;
1886 spl_kmem_obj_t *sko = NULL;
1887 SENTRY;
1888
1889 ASSERT(skc->skc_magic == SKC_MAGIC);
1890 ASSERT(spin_is_locked(&skc->skc_lock));
1891
1892 sko = spl_sko_from_obj(skc, obj);
1893 ASSERT(sko->sko_magic == SKO_MAGIC);
1894 sks = sko->sko_slab;
1895 ASSERT(sks->sks_magic == SKS_MAGIC);
1896 ASSERT(sks->sks_cache == skc);
1897 list_add(&sko->sko_list, &sks->sks_free_list);
1898
1899 sks->sks_age = jiffies;
1900 sks->sks_ref--;
1901 skc->skc_obj_alloc--;
1902
1903 /* Move slab to skc_partial_list when no longer full. Slabs
1904 * are added to the head to keep the partial list is quasi-full
1905 * sorted order. Fuller at the head, emptier at the tail. */
1906 if (sks->sks_ref == (sks->sks_objs - 1)) {
1907 list_del(&sks->sks_list);
1908 list_add(&sks->sks_list, &skc->skc_partial_list);
1909 }
1910
1911 /* Move empty slabs to the end of the partial list so
1912 * they can be easily found and freed during reclamation. */
1913 if (sks->sks_ref == 0) {
1914 list_del(&sks->sks_list);
1915 list_add_tail(&sks->sks_list, &skc->skc_partial_list);
1916 skc->skc_slab_alloc--;
1917 }
1918
1919 SEXIT;
1920 }
1921
1922 /*
1923 * Release a batch of objects from a per-cpu magazine back to their
1924 * respective slabs. This occurs when we exceed the magazine size,
1925 * are under memory pressure, when the cache is idle, or during
1926 * cache cleanup. The flush argument contains the number of entries
1927 * to remove from the magazine.
1928 */
1929 static int
1930 spl_cache_flush(spl_kmem_cache_t *skc, spl_kmem_magazine_t *skm, int flush)
1931 {
1932 int i, count = MIN(flush, skm->skm_avail);
1933 SENTRY;
1934
1935 ASSERT(skc->skc_magic == SKC_MAGIC);
1936 ASSERT(skm->skm_magic == SKM_MAGIC);
1937
1938 /*
1939 * XXX: Currently we simply return objects from the magazine to
1940 * the slabs in fifo order. The ideal thing to do from a memory
1941 * fragmentation standpoint is to cheaply determine the set of
1942 * objects in the magazine which will result in the largest
1943 * number of free slabs if released from the magazine.
1944 */
1945 spin_lock(&skc->skc_lock);
1946 for (i = 0; i < count; i++)
1947 spl_cache_shrink(skc, skm->skm_objs[i]);
1948
1949 skm->skm_avail -= count;
1950 memmove(skm->skm_objs, &(skm->skm_objs[count]),
1951 sizeof(void *) * skm->skm_avail);
1952
1953 spin_unlock(&skc->skc_lock);
1954
1955 SRETURN(count);
1956 }
1957
1958 /*
1959 * Allocate an object from the per-cpu magazine, or if the magazine
1960 * is empty directly allocate from a slab and repopulate the magazine.
1961 */
1962 void *
1963 spl_kmem_cache_alloc(spl_kmem_cache_t *skc, int flags)
1964 {
1965 spl_kmem_magazine_t *skm;
1966 unsigned long irq_flags;
1967 void *obj = NULL;
1968 SENTRY;
1969
1970 ASSERT(skc->skc_magic == SKC_MAGIC);
1971 ASSERT(!test_bit(KMC_BIT_DESTROY, &skc->skc_flags));
1972 ASSERT(flags & KM_SLEEP);
1973 atomic_inc(&skc->skc_ref);
1974 local_irq_save(irq_flags);
1975
1976 restart:
1977 /* Safe to update per-cpu structure without lock, but
1978 * in the restart case we must be careful to reacquire
1979 * the local magazine since this may have changed
1980 * when we need to grow the cache. */
1981 skm = skc->skc_mag[smp_processor_id()];
1982 ASSERTF(skm->skm_magic == SKM_MAGIC, "%x != %x: %s/%p/%p %x/%x/%x\n",
1983 skm->skm_magic, SKM_MAGIC, skc->skc_name, skc, skm,
1984 skm->skm_size, skm->skm_refill, skm->skm_avail);
1985
1986 if (likely(skm->skm_avail)) {
1987 /* Object available in CPU cache, use it */
1988 obj = skm->skm_objs[--skm->skm_avail];
1989 skm->skm_age = jiffies;
1990 } else {
1991 obj = spl_cache_refill(skc, skm, flags);
1992 if (obj == NULL)
1993 SGOTO(restart, obj = NULL);
1994 }
1995
1996 local_irq_restore(irq_flags);
1997 ASSERT(obj);
1998 ASSERT(IS_P2ALIGNED(obj, skc->skc_obj_align));
1999
2000 /* Pre-emptively migrate object to CPU L1 cache */
2001 prefetchw(obj);
2002 atomic_dec(&skc->skc_ref);
2003
2004 SRETURN(obj);
2005 }
2006 EXPORT_SYMBOL(spl_kmem_cache_alloc);
2007
2008 /*
2009 * Free an object back to the local per-cpu magazine, there is no
2010 * guarantee that this is the same magazine the object was originally
2011 * allocated from. We may need to flush entire from the magazine
2012 * back to the slabs to make space.
2013 */
2014 void
2015 spl_kmem_cache_free(spl_kmem_cache_t *skc, void *obj)
2016 {
2017 spl_kmem_magazine_t *skm;
2018 unsigned long flags;
2019 SENTRY;
2020
2021 ASSERT(skc->skc_magic == SKC_MAGIC);
2022 ASSERT(!test_bit(KMC_BIT_DESTROY, &skc->skc_flags));
2023 atomic_inc(&skc->skc_ref);
2024
2025 /*
2026 * Emergency objects are never part of the virtual address space
2027 * so if we get a virtual address we can optimize this check out.
2028 */
2029 if (!kmem_virt(obj) && !spl_emergency_free(skc, obj))
2030 SGOTO(out, 0);
2031
2032 local_irq_save(flags);
2033
2034 /* Safe to update per-cpu structure without lock, but
2035 * no remote memory allocation tracking is being performed
2036 * it is entirely possible to allocate an object from one
2037 * CPU cache and return it to another. */
2038 skm = skc->skc_mag[smp_processor_id()];
2039 ASSERT(skm->skm_magic == SKM_MAGIC);
2040
2041 /* Per-CPU cache full, flush it to make space */
2042 if (unlikely(skm->skm_avail >= skm->skm_size))
2043 (void)spl_cache_flush(skc, skm, skm->skm_refill);
2044
2045 /* Available space in cache, use it */
2046 skm->skm_objs[skm->skm_avail++] = obj;
2047
2048 local_irq_restore(flags);
2049 out:
2050 atomic_dec(&skc->skc_ref);
2051
2052 SEXIT;
2053 }
2054 EXPORT_SYMBOL(spl_kmem_cache_free);
2055
2056 /*
2057 * The generic shrinker function for all caches. Under Linux a shrinker
2058 * may not be tightly coupled with a slab cache. In fact Linux always
2059 * systematically tries calling all registered shrinker callbacks which
2060 * report that they contain unused objects. Because of this we only
2061 * register one shrinker function in the shim layer for all slab caches.
2062 * We always attempt to shrink all caches when this generic shrinker
2063 * is called. The shrinker should return the number of free objects
2064 * in the cache when called with nr_to_scan == 0 but not attempt to
2065 * free any objects. When nr_to_scan > 0 it is a request that nr_to_scan
2066 * objects should be freed, which differs from Solaris semantics.
2067 * Solaris semantics are to free all available objects which may (and
2068 * probably will) be more objects than the requested nr_to_scan.
2069 */
2070 static int
2071 __spl_kmem_cache_generic_shrinker(struct shrinker *shrink,
2072 struct shrink_control *sc)
2073 {
2074 spl_kmem_cache_t *skc;
2075 int unused = 0;
2076
2077 down_read(&spl_kmem_cache_sem);
2078 list_for_each_entry(skc, &spl_kmem_cache_list, skc_list) {
2079 if (sc->nr_to_scan)
2080 spl_kmem_cache_reap_now(skc,
2081 MAX(sc->nr_to_scan >> fls64(skc->skc_slab_objs), 1));
2082
2083 /*
2084 * Presume everything alloc'ed in reclaimable, this ensures
2085 * we are called again with nr_to_scan > 0 so can try and
2086 * reclaim. The exact number is not important either so
2087 * we forgo taking this already highly contented lock.
2088 */
2089 unused += skc->skc_obj_alloc;
2090 }
2091 up_read(&spl_kmem_cache_sem);
2092
2093 return (unused * sysctl_vfs_cache_pressure) / 100;
2094 }
2095
2096 SPL_SHRINKER_CALLBACK_WRAPPER(spl_kmem_cache_generic_shrinker);
2097
2098 /*
2099 * Call the registered reclaim function for a cache. Depending on how
2100 * many and which objects are released it may simply repopulate the
2101 * local magazine which will then need to age-out. Objects which cannot
2102 * fit in the magazine we will be released back to their slabs which will
2103 * also need to age out before being release. This is all just best
2104 * effort and we do not want to thrash creating and destroying slabs.
2105 */
2106 void
2107 spl_kmem_cache_reap_now(spl_kmem_cache_t *skc, int count)
2108 {
2109 SENTRY;
2110
2111 ASSERT(skc->skc_magic == SKC_MAGIC);
2112 ASSERT(!test_bit(KMC_BIT_DESTROY, &skc->skc_flags));
2113
2114 /* Prevent concurrent cache reaping when contended */
2115 if (test_and_set_bit(KMC_BIT_REAPING, &skc->skc_flags)) {
2116 SEXIT;
2117 return;
2118 }
2119
2120 atomic_inc(&skc->skc_ref);
2121
2122 /*
2123 * When a reclaim function is available it may be invoked repeatedly
2124 * until at least a single slab can be freed. This ensures that we
2125 * do free memory back to the system. This helps minimize the chance
2126 * of an OOM event when the bulk of memory is used by the slab.
2127 *
2128 * When free slabs are already available the reclaim callback will be
2129 * skipped. Additionally, if no forward progress is detected despite
2130 * a reclaim function the cache will be skipped to avoid deadlock.
2131 *
2132 * Longer term this would be the correct place to add the code which
2133 * repacks the slabs in order minimize fragmentation.
2134 */
2135 if (skc->skc_reclaim) {
2136 uint64_t objects = UINT64_MAX;
2137 int do_reclaim;
2138
2139 do {
2140 spin_lock(&skc->skc_lock);
2141 do_reclaim =
2142 (skc->skc_slab_total > 0) &&
2143 ((skc->skc_slab_total - skc->skc_slab_alloc) == 0) &&
2144 (skc->skc_obj_alloc < objects);
2145
2146 objects = skc->skc_obj_alloc;
2147 spin_unlock(&skc->skc_lock);
2148
2149 if (do_reclaim)
2150 skc->skc_reclaim(skc->skc_private);
2151
2152 } while (do_reclaim);
2153 }
2154
2155 /* Reclaim from the cache, ignoring it's age and delay. */
2156 spl_slab_reclaim(skc, count, 1);
2157 clear_bit(KMC_BIT_REAPING, &skc->skc_flags);
2158 atomic_dec(&skc->skc_ref);
2159
2160 SEXIT;
2161 }
2162 EXPORT_SYMBOL(spl_kmem_cache_reap_now);
2163
2164 /*
2165 * Reap all free slabs from all registered caches.
2166 */
2167 void
2168 spl_kmem_reap(void)
2169 {
2170 struct shrink_control sc;
2171
2172 sc.nr_to_scan = KMC_REAP_CHUNK;
2173 sc.gfp_mask = GFP_KERNEL;
2174
2175 __spl_kmem_cache_generic_shrinker(NULL, &sc);
2176 }
2177 EXPORT_SYMBOL(spl_kmem_reap);
2178
2179 #if defined(DEBUG_KMEM) && defined(DEBUG_KMEM_TRACKING)
2180 static char *
2181 spl_sprintf_addr(kmem_debug_t *kd, char *str, int len, int min)
2182 {
2183 int size = ((len - 1) < kd->kd_size) ? (len - 1) : kd->kd_size;
2184 int i, flag = 1;
2185
2186 ASSERT(str != NULL && len >= 17);
2187 memset(str, 0, len);
2188
2189 /* Check for a fully printable string, and while we are at
2190 * it place the printable characters in the passed buffer. */
2191 for (i = 0; i < size; i++) {
2192 str[i] = ((char *)(kd->kd_addr))[i];
2193 if (isprint(str[i])) {
2194 continue;
2195 } else {
2196 /* Minimum number of printable characters found
2197 * to make it worthwhile to print this as ascii. */
2198 if (i > min)
2199 break;
2200
2201 flag = 0;
2202 break;
2203 }
2204 }
2205
2206 if (!flag) {
2207 sprintf(str, "%02x%02x%02x%02x%02x%02x%02x%02x",
2208 *((uint8_t *)kd->kd_addr),
2209 *((uint8_t *)kd->kd_addr + 2),
2210 *((uint8_t *)kd->kd_addr + 4),
2211 *((uint8_t *)kd->kd_addr + 6),
2212 *((uint8_t *)kd->kd_addr + 8),
2213 *((uint8_t *)kd->kd_addr + 10),
2214 *((uint8_t *)kd->kd_addr + 12),
2215 *((uint8_t *)kd->kd_addr + 14));
2216 }
2217
2218 return str;
2219 }
2220
2221 static int
2222 spl_kmem_init_tracking(struct list_head *list, spinlock_t *lock, int size)
2223 {
2224 int i;
2225 SENTRY;
2226
2227 spin_lock_init(lock);
2228 INIT_LIST_HEAD(list);
2229
2230 for (i = 0; i < size; i++)
2231 INIT_HLIST_HEAD(&kmem_table[i]);
2232
2233 SRETURN(0);
2234 }
2235
2236 static void
2237 spl_kmem_fini_tracking(struct list_head *list, spinlock_t *lock)
2238 {
2239 unsigned long flags;
2240 kmem_debug_t *kd;
2241 char str[17];
2242 SENTRY;
2243
2244 spin_lock_irqsave(lock, flags);
2245 if (!list_empty(list))
2246 printk(KERN_WARNING "%-16s %-5s %-16s %s:%s\n", "address",
2247 "size", "data", "func", "line");
2248
2249 list_for_each_entry(kd, list, kd_list)
2250 printk(KERN_WARNING "%p %-5d %-16s %s:%d\n", kd->kd_addr,
2251 (int)kd->kd_size, spl_sprintf_addr(kd, str, 17, 8),
2252 kd->kd_func, kd->kd_line);
2253
2254 spin_unlock_irqrestore(lock, flags);
2255 SEXIT;
2256 }
2257 #else /* DEBUG_KMEM && DEBUG_KMEM_TRACKING */
2258 #define spl_kmem_init_tracking(list, lock, size)
2259 #define spl_kmem_fini_tracking(list, lock)
2260 #endif /* DEBUG_KMEM && DEBUG_KMEM_TRACKING */
2261
2262 static void
2263 spl_kmem_init_globals(void)
2264 {
2265 struct zone *zone;
2266
2267 /* For now all zones are includes, it may be wise to restrict
2268 * this to normal and highmem zones if we see problems. */
2269 for_each_zone(zone) {
2270
2271 if (!populated_zone(zone))
2272 continue;
2273
2274 minfree += min_wmark_pages(zone);
2275 desfree += low_wmark_pages(zone);
2276 lotsfree += high_wmark_pages(zone);
2277 }
2278
2279 /* Solaris default values */
2280 swapfs_minfree = MAX(2*1024*1024 >> PAGE_SHIFT, physmem >> 3);
2281 swapfs_reserve = MIN(4*1024*1024 >> PAGE_SHIFT, physmem >> 4);
2282 }
2283
2284 /*
2285 * Called at module init when it is safe to use spl_kallsyms_lookup_name()
2286 */
2287 int
2288 spl_kmem_init_kallsyms_lookup(void)
2289 {
2290 #ifndef HAVE_GET_VMALLOC_INFO
2291 get_vmalloc_info_fn = (get_vmalloc_info_t)
2292 spl_kallsyms_lookup_name("get_vmalloc_info");
2293 if (!get_vmalloc_info_fn) {
2294 printk(KERN_ERR "Error: Unknown symbol get_vmalloc_info\n");
2295 return -EFAULT;
2296 }
2297 #endif /* HAVE_GET_VMALLOC_INFO */
2298
2299 #ifdef HAVE_PGDAT_HELPERS
2300 # ifndef HAVE_FIRST_ONLINE_PGDAT
2301 first_online_pgdat_fn = (first_online_pgdat_t)
2302 spl_kallsyms_lookup_name("first_online_pgdat");
2303 if (!first_online_pgdat_fn) {
2304 printk(KERN_ERR "Error: Unknown symbol first_online_pgdat\n");
2305 return -EFAULT;
2306 }
2307 # endif /* HAVE_FIRST_ONLINE_PGDAT */
2308
2309 # ifndef HAVE_NEXT_ONLINE_PGDAT
2310 next_online_pgdat_fn = (next_online_pgdat_t)
2311 spl_kallsyms_lookup_name("next_online_pgdat");
2312 if (!next_online_pgdat_fn) {
2313 printk(KERN_ERR "Error: Unknown symbol next_online_pgdat\n");
2314 return -EFAULT;
2315 }
2316 # endif /* HAVE_NEXT_ONLINE_PGDAT */
2317
2318 # ifndef HAVE_NEXT_ZONE
2319 next_zone_fn = (next_zone_t)
2320 spl_kallsyms_lookup_name("next_zone");
2321 if (!next_zone_fn) {
2322 printk(KERN_ERR "Error: Unknown symbol next_zone\n");
2323 return -EFAULT;
2324 }
2325 # endif /* HAVE_NEXT_ZONE */
2326
2327 #else /* HAVE_PGDAT_HELPERS */
2328
2329 # ifndef HAVE_PGDAT_LIST
2330 pgdat_list_addr = *(struct pglist_data **)
2331 spl_kallsyms_lookup_name("pgdat_list");
2332 if (!pgdat_list_addr) {
2333 printk(KERN_ERR "Error: Unknown symbol pgdat_list\n");
2334 return -EFAULT;
2335 }
2336 # endif /* HAVE_PGDAT_LIST */
2337 #endif /* HAVE_PGDAT_HELPERS */
2338
2339 #if defined(NEED_GET_ZONE_COUNTS) && !defined(HAVE_GET_ZONE_COUNTS)
2340 get_zone_counts_fn = (get_zone_counts_t)
2341 spl_kallsyms_lookup_name("get_zone_counts");
2342 if (!get_zone_counts_fn) {
2343 printk(KERN_ERR "Error: Unknown symbol get_zone_counts\n");
2344 return -EFAULT;
2345 }
2346 #endif /* NEED_GET_ZONE_COUNTS && !HAVE_GET_ZONE_COUNTS */
2347
2348 /*
2349 * It is now safe to initialize the global tunings which rely on
2350 * the use of the for_each_zone() macro. This macro in turns
2351 * depends on the *_pgdat symbols which are now available.
2352 */
2353 spl_kmem_init_globals();
2354
2355 #if !defined(HAVE_INVALIDATE_INODES) && !defined(HAVE_INVALIDATE_INODES_CHECK)
2356 invalidate_inodes_fn = (invalidate_inodes_t)
2357 spl_kallsyms_lookup_name("invalidate_inodes");
2358 if (!invalidate_inodes_fn) {
2359 printk(KERN_ERR "Error: Unknown symbol invalidate_inodes\n");
2360 return -EFAULT;
2361 }
2362 #endif /* !HAVE_INVALIDATE_INODES && !HAVE_INVALIDATE_INODES_CHECK */
2363
2364 #ifndef HAVE_SHRINK_DCACHE_MEMORY
2365 /* When shrink_dcache_memory_fn == NULL support is disabled */
2366 shrink_dcache_memory_fn = (shrink_dcache_memory_t)
2367 spl_kallsyms_lookup_name("shrink_dcache_memory");
2368 #endif /* HAVE_SHRINK_DCACHE_MEMORY */
2369
2370 #ifndef HAVE_SHRINK_ICACHE_MEMORY
2371 /* When shrink_icache_memory_fn == NULL support is disabled */
2372 shrink_icache_memory_fn = (shrink_icache_memory_t)
2373 spl_kallsyms_lookup_name("shrink_icache_memory");
2374 #endif /* HAVE_SHRINK_ICACHE_MEMORY */
2375
2376 return 0;
2377 }
2378
2379 int
2380 spl_kmem_init(void)
2381 {
2382 int rc = 0;
2383 SENTRY;
2384
2385 init_rwsem(&spl_kmem_cache_sem);
2386 INIT_LIST_HEAD(&spl_kmem_cache_list);
2387
2388 spl_register_shrinker(&spl_kmem_cache_shrinker);
2389
2390 #ifdef DEBUG_KMEM
2391 kmem_alloc_used_set(0);
2392 vmem_alloc_used_set(0);
2393
2394 spl_kmem_init_tracking(&kmem_list, &kmem_lock, KMEM_TABLE_SIZE);
2395 spl_kmem_init_tracking(&vmem_list, &vmem_lock, VMEM_TABLE_SIZE);
2396 #endif
2397 SRETURN(rc);
2398 }
2399
2400 void
2401 spl_kmem_fini(void)
2402 {
2403 #ifdef DEBUG_KMEM
2404 /* Display all unreclaimed memory addresses, including the
2405 * allocation size and the first few bytes of what's located
2406 * at that address to aid in debugging. Performance is not
2407 * a serious concern here since it is module unload time. */
2408 if (kmem_alloc_used_read() != 0)
2409 SDEBUG_LIMIT(SD_CONSOLE | SD_WARNING,
2410 "kmem leaked %ld/%ld bytes\n",
2411 kmem_alloc_used_read(), kmem_alloc_max);
2412
2413
2414 if (vmem_alloc_used_read() != 0)
2415 SDEBUG_LIMIT(SD_CONSOLE | SD_WARNING,
2416 "vmem leaked %ld/%ld bytes\n",
2417 vmem_alloc_used_read(), vmem_alloc_max);
2418
2419 spl_kmem_fini_tracking(&kmem_list, &kmem_lock);
2420 spl_kmem_fini_tracking(&vmem_list, &vmem_lock);
2421 #endif /* DEBUG_KMEM */
2422 SENTRY;
2423
2424 spl_unregister_shrinker(&spl_kmem_cache_shrinker);
2425
2426 SEXIT;
2427 }