]> git.proxmox.com Git - mirror_spl-debian.git/blob - module/spl/spl-taskq.c
Fix taskq code to not drop tasks when TQ_SLEEP is used.
[mirror_spl-debian.git] / module / spl / spl-taskq.c
1 /*****************************************************************************\
2 * Copyright (C) 2007-2010 Lawrence Livermore National Security, LLC.
3 * Copyright (C) 2007 The Regents of the University of California.
4 * Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER).
5 * Written by Brian Behlendorf <behlendorf1@llnl.gov>.
6 * UCRL-CODE-235197
7 *
8 * This file is part of the SPL, Solaris Porting Layer.
9 * For details, see <http://github.com/behlendorf/spl/>.
10 *
11 * The SPL is free software; you can redistribute it and/or modify it
12 * under the terms of the GNU General Public License as published by the
13 * Free Software Foundation; either version 2 of the License, or (at your
14 * option) any later version.
15 *
16 * The SPL is distributed in the hope that it will be useful, but WITHOUT
17 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
18 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
19 * for more details.
20 *
21 * You should have received a copy of the GNU General Public License along
22 * with the SPL. If not, see <http://www.gnu.org/licenses/>.
23 *****************************************************************************
24 * Solaris Porting Layer (SPL) Task Queue Implementation.
25 \*****************************************************************************/
26
27 #include <sys/taskq.h>
28 #include <sys/kmem.h>
29 #include <spl-debug.h>
30
31 #ifdef SS_DEBUG_SUBSYS
32 #undef SS_DEBUG_SUBSYS
33 #endif
34
35 #define SS_DEBUG_SUBSYS SS_TASKQ
36
37 /* Global system-wide dynamic task queue available for all consumers */
38 taskq_t *system_taskq;
39 EXPORT_SYMBOL(system_taskq);
40
41 typedef struct spl_task {
42 spinlock_t t_lock;
43 struct list_head t_list;
44 taskqid_t t_id;
45 task_func_t *t_func;
46 void *t_arg;
47 } spl_task_t;
48
49 /*
50 * NOTE: Must be called with tq->tq_lock held, returns a list_t which
51 * is not attached to the free, work, or pending taskq lists.
52 */
53 static spl_task_t *
54 task_alloc(taskq_t *tq, uint_t flags)
55 {
56 spl_task_t *t;
57 int count = 0;
58 SENTRY;
59
60 ASSERT(tq);
61 ASSERT(flags & (TQ_SLEEP | TQ_NOSLEEP)); /* One set */
62 ASSERT(!((flags & TQ_SLEEP) && (flags & TQ_NOSLEEP))); /* Not both */
63 ASSERT(spin_is_locked(&tq->tq_lock));
64 retry:
65 /* Acquire spl_task_t's from free list if available */
66 if (!list_empty(&tq->tq_free_list) && !(flags & TQ_NEW)) {
67 t = list_entry(tq->tq_free_list.next, spl_task_t, t_list);
68 list_del_init(&t->t_list);
69 SRETURN(t);
70 }
71
72 /* Free list is empty and memory allocations are prohibited */
73 if (flags & TQ_NOALLOC)
74 SRETURN(NULL);
75
76 /* Hit maximum spl_task_t pool size */
77 if (tq->tq_nalloc >= tq->tq_maxalloc) {
78 if (flags & TQ_NOSLEEP)
79 SRETURN(NULL);
80
81 /*
82 * Sleep periodically polling the free list for an available
83 * spl_task_t. Dispatching with TQ_SLEEP should always succeed
84 * but we cannot block forever waiting for an spl_taskq_t to
85 * show up in the free list, otherwise a deadlock can happen.
86 *
87 * Therefore, we need to allocate a new task even if the number
88 * of allocated tasks is above tq->tq_maxalloc, but we still
89 * end up delaying the task allocation by one second, thereby
90 * throttling the task dispatch rate.
91 */
92 spin_unlock_irqrestore(&tq->tq_lock, tq->tq_lock_flags);
93 schedule_timeout(HZ / 100);
94 spin_lock_irqsave(&tq->tq_lock, tq->tq_lock_flags);
95 if (count < 100)
96 SGOTO(retry, count++);
97 }
98
99 spin_unlock_irqrestore(&tq->tq_lock, tq->tq_lock_flags);
100 t = kmem_alloc(sizeof(spl_task_t), flags & (TQ_SLEEP | TQ_NOSLEEP));
101 spin_lock_irqsave(&tq->tq_lock, tq->tq_lock_flags);
102
103 if (t) {
104 spin_lock_init(&t->t_lock);
105 INIT_LIST_HEAD(&t->t_list);
106 t->t_id = 0;
107 t->t_func = NULL;
108 t->t_arg = NULL;
109 tq->tq_nalloc++;
110 }
111
112 SRETURN(t);
113 }
114
115 /*
116 * NOTE: Must be called with tq->tq_lock held, expects the spl_task_t
117 * to already be removed from the free, work, or pending taskq lists.
118 */
119 static void
120 task_free(taskq_t *tq, spl_task_t *t)
121 {
122 SENTRY;
123
124 ASSERT(tq);
125 ASSERT(t);
126 ASSERT(spin_is_locked(&tq->tq_lock));
127 ASSERT(list_empty(&t->t_list));
128
129 kmem_free(t, sizeof(spl_task_t));
130 tq->tq_nalloc--;
131
132 SEXIT;
133 }
134
135 /*
136 * NOTE: Must be called with tq->tq_lock held, either destroys the
137 * spl_task_t if too many exist or moves it to the free list for later use.
138 */
139 static void
140 task_done(taskq_t *tq, spl_task_t *t)
141 {
142 SENTRY;
143 ASSERT(tq);
144 ASSERT(t);
145 ASSERT(spin_is_locked(&tq->tq_lock));
146
147 list_del_init(&t->t_list);
148
149 if (tq->tq_nalloc <= tq->tq_minalloc) {
150 t->t_id = 0;
151 t->t_func = NULL;
152 t->t_arg = NULL;
153 list_add_tail(&t->t_list, &tq->tq_free_list);
154 } else {
155 task_free(tq, t);
156 }
157
158 SEXIT;
159 }
160
161 /*
162 * As tasks are submitted to the task queue they are assigned a
163 * monotonically increasing taskqid and added to the tail of the pending
164 * list. As worker threads become available the tasks are removed from
165 * the head of the pending or priority list, giving preference to the
166 * priority list. The tasks are then added to the work list, preserving
167 * the ordering by taskqid. Finally, as tasks complete they are removed
168 * from the work list. This means that the pending and work lists are
169 * always kept sorted by taskqid. Thus the lowest outstanding
170 * incomplete taskqid can be determined simply by checking the min
171 * taskqid for each head item on the pending, priority, and work list.
172 * This value is stored in tq->tq_lowest_id and only updated to the new
173 * lowest id when the previous lowest id completes. All taskqids lower
174 * than tq->tq_lowest_id must have completed. It is also possible
175 * larger taskqid's have completed because they may be processed in
176 * parallel by several worker threads. However, this is not a problem
177 * because the behavior of taskq_wait_id() is to block until all
178 * previously submitted taskqid's have completed.
179 *
180 * XXX: Taskqid_t wrapping is not handled. However, taskqid_t's are
181 * 64-bit values so even if a taskq is processing 2^24 (16,777,216)
182 * taskqid_ts per second it will still take 2^40 seconds, 34,865 years,
183 * before the wrap occurs. I can live with that for now.
184 */
185 static int
186 taskq_wait_check(taskq_t *tq, taskqid_t id)
187 {
188 int rc;
189
190 spin_lock_irqsave(&tq->tq_lock, tq->tq_lock_flags);
191 rc = (id < tq->tq_lowest_id);
192 spin_unlock_irqrestore(&tq->tq_lock, tq->tq_lock_flags);
193
194 SRETURN(rc);
195 }
196
197 void
198 __taskq_wait_id(taskq_t *tq, taskqid_t id)
199 {
200 SENTRY;
201 ASSERT(tq);
202
203 wait_event(tq->tq_wait_waitq, taskq_wait_check(tq, id));
204
205 SEXIT;
206 }
207 EXPORT_SYMBOL(__taskq_wait_id);
208
209 void
210 __taskq_wait(taskq_t *tq)
211 {
212 taskqid_t id;
213 SENTRY;
214 ASSERT(tq);
215
216 /* Wait for the largest outstanding taskqid */
217 spin_lock_irqsave(&tq->tq_lock, tq->tq_lock_flags);
218 id = tq->tq_next_id - 1;
219 spin_unlock_irqrestore(&tq->tq_lock, tq->tq_lock_flags);
220
221 __taskq_wait_id(tq, id);
222
223 SEXIT;
224
225 }
226 EXPORT_SYMBOL(__taskq_wait);
227
228 int
229 __taskq_member(taskq_t *tq, void *t)
230 {
231 int i;
232 SENTRY;
233
234 ASSERT(tq);
235 ASSERT(t);
236
237 for (i = 0; i < tq->tq_nthreads; i++)
238 if (tq->tq_threads[i] == (struct task_struct *)t)
239 SRETURN(1);
240
241 SRETURN(0);
242 }
243 EXPORT_SYMBOL(__taskq_member);
244
245 taskqid_t
246 __taskq_dispatch(taskq_t *tq, task_func_t func, void *arg, uint_t flags)
247 {
248 spl_task_t *t;
249 taskqid_t rc = 0;
250 SENTRY;
251
252 ASSERT(tq);
253 ASSERT(func);
254
255 /* Solaris assumes TQ_SLEEP if not passed explicitly */
256 if (!(flags & (TQ_SLEEP | TQ_NOSLEEP)))
257 flags |= TQ_SLEEP;
258
259 if (unlikely(in_atomic() && (flags & TQ_SLEEP)))
260 PANIC("May schedule while atomic: %s/0x%08x/%d\n",
261 current->comm, preempt_count(), current->pid);
262
263 spin_lock_irqsave(&tq->tq_lock, tq->tq_lock_flags);
264
265 /* Taskq being destroyed and all tasks drained */
266 if (!(tq->tq_flags & TQ_ACTIVE))
267 SGOTO(out, rc = 0);
268
269 /* Do not queue the task unless there is idle thread for it */
270 ASSERT(tq->tq_nactive <= tq->tq_nthreads);
271 if ((flags & TQ_NOQUEUE) && (tq->tq_nactive == tq->tq_nthreads))
272 SGOTO(out, rc = 0);
273
274 if ((t = task_alloc(tq, flags)) == NULL)
275 SGOTO(out, rc = 0);
276
277 spin_lock(&t->t_lock);
278
279 /* Queue to the priority list instead of the pending list */
280 if (flags & TQ_FRONT)
281 list_add_tail(&t->t_list, &tq->tq_prio_list);
282 else
283 list_add_tail(&t->t_list, &tq->tq_pend_list);
284
285 t->t_id = rc = tq->tq_next_id;
286 tq->tq_next_id++;
287 t->t_func = func;
288 t->t_arg = arg;
289 spin_unlock(&t->t_lock);
290
291 wake_up(&tq->tq_work_waitq);
292 out:
293 spin_unlock_irqrestore(&tq->tq_lock, tq->tq_lock_flags);
294 SRETURN(rc);
295 }
296 EXPORT_SYMBOL(__taskq_dispatch);
297
298 /*
299 * Returns the lowest incomplete taskqid_t. The taskqid_t may
300 * be queued on the pending list, on the priority list, or on
301 * the work list currently being handled, but it is not 100%
302 * complete yet.
303 */
304 static taskqid_t
305 taskq_lowest_id(taskq_t *tq)
306 {
307 taskqid_t lowest_id = tq->tq_next_id;
308 spl_task_t *t;
309 SENTRY;
310
311 ASSERT(tq);
312 ASSERT(spin_is_locked(&tq->tq_lock));
313
314 if (!list_empty(&tq->tq_pend_list)) {
315 t = list_entry(tq->tq_pend_list.next, spl_task_t, t_list);
316 lowest_id = MIN(lowest_id, t->t_id);
317 }
318
319 if (!list_empty(&tq->tq_prio_list)) {
320 t = list_entry(tq->tq_prio_list.next, spl_task_t, t_list);
321 lowest_id = MIN(lowest_id, t->t_id);
322 }
323
324 if (!list_empty(&tq->tq_work_list)) {
325 t = list_entry(tq->tq_work_list.next, spl_task_t, t_list);
326 lowest_id = MIN(lowest_id, t->t_id);
327 }
328
329 SRETURN(lowest_id);
330 }
331
332 /*
333 * Insert a task into a list keeping the list sorted by increasing
334 * taskqid.
335 */
336 static void
337 taskq_insert_in_order(taskq_t *tq, spl_task_t *t)
338 {
339 spl_task_t *w;
340 struct list_head *l;
341
342 SENTRY;
343 ASSERT(tq);
344 ASSERT(t);
345 ASSERT(spin_is_locked(&tq->tq_lock));
346
347 list_for_each_prev(l, &tq->tq_work_list) {
348 w = list_entry(l, spl_task_t, t_list);
349 if (w->t_id < t->t_id) {
350 list_add(&t->t_list, l);
351 break;
352 }
353 }
354 if (l == &tq->tq_work_list)
355 list_add(&t->t_list, &tq->tq_work_list);
356
357 SEXIT;
358 }
359
360 static int
361 taskq_thread(void *args)
362 {
363 DECLARE_WAITQUEUE(wait, current);
364 sigset_t blocked;
365 taskqid_t id;
366 taskq_t *tq = args;
367 spl_task_t *t;
368 struct list_head *pend_list;
369 SENTRY;
370
371 ASSERT(tq);
372 current->flags |= PF_NOFREEZE;
373
374 sigfillset(&blocked);
375 sigprocmask(SIG_BLOCK, &blocked, NULL);
376 flush_signals(current);
377
378 spin_lock_irqsave(&tq->tq_lock, tq->tq_lock_flags);
379 tq->tq_nthreads++;
380 wake_up(&tq->tq_wait_waitq);
381 set_current_state(TASK_INTERRUPTIBLE);
382
383 while (!kthread_should_stop()) {
384
385 add_wait_queue(&tq->tq_work_waitq, &wait);
386 if (list_empty(&tq->tq_pend_list) &&
387 list_empty(&tq->tq_prio_list)) {
388 spin_unlock_irqrestore(&tq->tq_lock, tq->tq_lock_flags);
389 schedule();
390 spin_lock_irqsave(&tq->tq_lock, tq->tq_lock_flags);
391 } else {
392 __set_current_state(TASK_RUNNING);
393 }
394
395 remove_wait_queue(&tq->tq_work_waitq, &wait);
396
397 if (!list_empty(&tq->tq_prio_list))
398 pend_list = &tq->tq_prio_list;
399 else if (!list_empty(&tq->tq_pend_list))
400 pend_list = &tq->tq_pend_list;
401 else
402 pend_list = NULL;
403
404 if (pend_list) {
405 t = list_entry(pend_list->next, spl_task_t, t_list);
406 list_del_init(&t->t_list);
407 taskq_insert_in_order(tq, t);
408 tq->tq_nactive++;
409 spin_unlock_irqrestore(&tq->tq_lock, tq->tq_lock_flags);
410
411 /* Perform the requested task */
412 t->t_func(t->t_arg);
413
414 spin_lock_irqsave(&tq->tq_lock, tq->tq_lock_flags);
415 tq->tq_nactive--;
416 id = t->t_id;
417 task_done(tq, t);
418
419 /* When the current lowest outstanding taskqid is
420 * done calculate the new lowest outstanding id */
421 if (tq->tq_lowest_id == id) {
422 tq->tq_lowest_id = taskq_lowest_id(tq);
423 ASSERT(tq->tq_lowest_id > id);
424 }
425
426 wake_up_all(&tq->tq_wait_waitq);
427 }
428
429 set_current_state(TASK_INTERRUPTIBLE);
430
431 }
432
433 __set_current_state(TASK_RUNNING);
434 tq->tq_nthreads--;
435 spin_unlock_irqrestore(&tq->tq_lock, tq->tq_lock_flags);
436
437 SRETURN(0);
438 }
439
440 taskq_t *
441 __taskq_create(const char *name, int nthreads, pri_t pri,
442 int minalloc, int maxalloc, uint_t flags)
443 {
444 taskq_t *tq;
445 struct task_struct *t;
446 int rc = 0, i, j = 0;
447 SENTRY;
448
449 ASSERT(name != NULL);
450 ASSERT(pri <= maxclsyspri);
451 ASSERT(minalloc >= 0);
452 ASSERT(maxalloc <= INT_MAX);
453 ASSERT(!(flags & (TASKQ_CPR_SAFE | TASKQ_DYNAMIC))); /* Unsupported */
454
455 /* Scale the number of threads using nthreads as a percentage */
456 if (flags & TASKQ_THREADS_CPU_PCT) {
457 ASSERT(nthreads <= 100);
458 ASSERT(nthreads >= 0);
459 nthreads = MIN(nthreads, 100);
460 nthreads = MAX(nthreads, 0);
461 nthreads = MAX((num_online_cpus() * nthreads) / 100, 1);
462 }
463
464 tq = kmem_alloc(sizeof(*tq), KM_SLEEP);
465 if (tq == NULL)
466 SRETURN(NULL);
467
468 tq->tq_threads = kmem_alloc(nthreads * sizeof(t), KM_SLEEP);
469 if (tq->tq_threads == NULL) {
470 kmem_free(tq, sizeof(*tq));
471 SRETURN(NULL);
472 }
473
474 spin_lock_init(&tq->tq_lock);
475 spin_lock_irqsave(&tq->tq_lock, tq->tq_lock_flags);
476 tq->tq_name = name;
477 tq->tq_nactive = 0;
478 tq->tq_nthreads = 0;
479 tq->tq_pri = pri;
480 tq->tq_minalloc = minalloc;
481 tq->tq_maxalloc = maxalloc;
482 tq->tq_nalloc = 0;
483 tq->tq_flags = (flags | TQ_ACTIVE);
484 tq->tq_next_id = 1;
485 tq->tq_lowest_id = 1;
486 INIT_LIST_HEAD(&tq->tq_free_list);
487 INIT_LIST_HEAD(&tq->tq_work_list);
488 INIT_LIST_HEAD(&tq->tq_pend_list);
489 INIT_LIST_HEAD(&tq->tq_prio_list);
490 init_waitqueue_head(&tq->tq_work_waitq);
491 init_waitqueue_head(&tq->tq_wait_waitq);
492
493 if (flags & TASKQ_PREPOPULATE)
494 for (i = 0; i < minalloc; i++)
495 task_done(tq, task_alloc(tq, TQ_SLEEP | TQ_NEW));
496
497 spin_unlock_irqrestore(&tq->tq_lock, tq->tq_lock_flags);
498
499 for (i = 0; i < nthreads; i++) {
500 t = kthread_create(taskq_thread, tq, "%s/%d", name, i);
501 if (t) {
502 tq->tq_threads[i] = t;
503 kthread_bind(t, i % num_online_cpus());
504 set_user_nice(t, PRIO_TO_NICE(pri));
505 wake_up_process(t);
506 j++;
507 } else {
508 tq->tq_threads[i] = NULL;
509 rc = 1;
510 }
511 }
512
513 /* Wait for all threads to be started before potential destroy */
514 wait_event(tq->tq_wait_waitq, tq->tq_nthreads == j);
515
516 if (rc) {
517 __taskq_destroy(tq);
518 tq = NULL;
519 }
520
521 SRETURN(tq);
522 }
523 EXPORT_SYMBOL(__taskq_create);
524
525 void
526 __taskq_destroy(taskq_t *tq)
527 {
528 spl_task_t *t;
529 int i, nthreads;
530 SENTRY;
531
532 ASSERT(tq);
533 spin_lock_irqsave(&tq->tq_lock, tq->tq_lock_flags);
534 tq->tq_flags &= ~TQ_ACTIVE;
535 spin_unlock_irqrestore(&tq->tq_lock, tq->tq_lock_flags);
536
537 /* TQ_ACTIVE cleared prevents new tasks being added to pending */
538 __taskq_wait(tq);
539
540 nthreads = tq->tq_nthreads;
541 for (i = 0; i < nthreads; i++)
542 if (tq->tq_threads[i])
543 kthread_stop(tq->tq_threads[i]);
544
545 spin_lock_irqsave(&tq->tq_lock, tq->tq_lock_flags);
546
547 while (!list_empty(&tq->tq_free_list)) {
548 t = list_entry(tq->tq_free_list.next, spl_task_t, t_list);
549 list_del_init(&t->t_list);
550 task_free(tq, t);
551 }
552
553 ASSERT(tq->tq_nthreads == 0);
554 ASSERT(tq->tq_nalloc == 0);
555 ASSERT(list_empty(&tq->tq_free_list));
556 ASSERT(list_empty(&tq->tq_work_list));
557 ASSERT(list_empty(&tq->tq_pend_list));
558 ASSERT(list_empty(&tq->tq_prio_list));
559
560 spin_unlock_irqrestore(&tq->tq_lock, tq->tq_lock_flags);
561 kmem_free(tq->tq_threads, nthreads * sizeof(spl_task_t *));
562 kmem_free(tq, sizeof(taskq_t));
563
564 SEXIT;
565 }
566 EXPORT_SYMBOL(__taskq_destroy);
567
568 int
569 spl_taskq_init(void)
570 {
571 SENTRY;
572
573 /* Solaris creates a dynamic taskq of up to 64 threads, however in
574 * a Linux environment 1 thread per-core is usually about right */
575 system_taskq = taskq_create("spl_system_taskq", num_online_cpus(),
576 minclsyspri, 4, 512, TASKQ_PREPOPULATE);
577 if (system_taskq == NULL)
578 SRETURN(1);
579
580 SRETURN(0);
581 }
582
583 void
584 spl_taskq_fini(void)
585 {
586 SENTRY;
587 taskq_destroy(system_taskq);
588 SEXIT;
589 }