]> git.proxmox.com Git - mirror_spl-debian.git/blob - module/spl/spl-taskq.c
Implement taskq_dispatch_prealloc() interface
[mirror_spl-debian.git] / module / spl / spl-taskq.c
1 /*****************************************************************************\
2 * Copyright (C) 2007-2010 Lawrence Livermore National Security, LLC.
3 * Copyright (C) 2007 The Regents of the University of California.
4 * Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER).
5 * Written by Brian Behlendorf <behlendorf1@llnl.gov>.
6 * UCRL-CODE-235197
7 *
8 * This file is part of the SPL, Solaris Porting Layer.
9 * For details, see <http://github.com/behlendorf/spl/>.
10 *
11 * The SPL is free software; you can redistribute it and/or modify it
12 * under the terms of the GNU General Public License as published by the
13 * Free Software Foundation; either version 2 of the License, or (at your
14 * option) any later version.
15 *
16 * The SPL is distributed in the hope that it will be useful, but WITHOUT
17 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
18 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
19 * for more details.
20 *
21 * You should have received a copy of the GNU General Public License along
22 * with the SPL. If not, see <http://www.gnu.org/licenses/>.
23 *****************************************************************************
24 * Solaris Porting Layer (SPL) Task Queue Implementation.
25 \*****************************************************************************/
26
27 #include <sys/taskq.h>
28 #include <sys/kmem.h>
29 #include <spl-debug.h>
30
31 #ifdef SS_DEBUG_SUBSYS
32 #undef SS_DEBUG_SUBSYS
33 #endif
34
35 #define SS_DEBUG_SUBSYS SS_TASKQ
36
37 /* Global system-wide dynamic task queue available for all consumers */
38 taskq_t *system_taskq;
39 EXPORT_SYMBOL(system_taskq);
40
41 /*
42 * NOTE: Must be called with tq->tq_lock held, returns a list_t which
43 * is not attached to the free, work, or pending taskq lists.
44 */
45 static taskq_ent_t *
46 task_alloc(taskq_t *tq, uint_t flags)
47 {
48 taskq_ent_t *t;
49 int count = 0;
50 SENTRY;
51
52 ASSERT(tq);
53 ASSERT(flags & (TQ_SLEEP | TQ_NOSLEEP)); /* One set */
54 ASSERT(!((flags & TQ_SLEEP) && (flags & TQ_NOSLEEP))); /* Not both */
55 ASSERT(spin_is_locked(&tq->tq_lock));
56 retry:
57 /* Acquire taskq_ent_t's from free list if available */
58 if (!list_empty(&tq->tq_free_list) && !(flags & TQ_NEW)) {
59 t = list_entry(tq->tq_free_list.next, taskq_ent_t, tqent_list);
60
61 ASSERT(!(t->tqent_flags & TQENT_FLAG_PREALLOC));
62
63 list_del_init(&t->tqent_list);
64 SRETURN(t);
65 }
66
67 /* Free list is empty and memory allocations are prohibited */
68 if (flags & TQ_NOALLOC)
69 SRETURN(NULL);
70
71 /* Hit maximum taskq_ent_t pool size */
72 if (tq->tq_nalloc >= tq->tq_maxalloc) {
73 if (flags & TQ_NOSLEEP)
74 SRETURN(NULL);
75
76 /*
77 * Sleep periodically polling the free list for an available
78 * taskq_ent_t. Dispatching with TQ_SLEEP should always succeed
79 * but we cannot block forever waiting for an taskq_entq_t to
80 * show up in the free list, otherwise a deadlock can happen.
81 *
82 * Therefore, we need to allocate a new task even if the number
83 * of allocated tasks is above tq->tq_maxalloc, but we still
84 * end up delaying the task allocation by one second, thereby
85 * throttling the task dispatch rate.
86 */
87 spin_unlock_irqrestore(&tq->tq_lock, tq->tq_lock_flags);
88 schedule_timeout(HZ / 100);
89 spin_lock_irqsave(&tq->tq_lock, tq->tq_lock_flags);
90 if (count < 100)
91 SGOTO(retry, count++);
92 }
93
94 spin_unlock_irqrestore(&tq->tq_lock, tq->tq_lock_flags);
95 t = kmem_alloc(sizeof(taskq_ent_t), flags & (TQ_SLEEP | TQ_NOSLEEP));
96 spin_lock_irqsave(&tq->tq_lock, tq->tq_lock_flags);
97
98 if (t) {
99 taskq_init_ent(t);
100 tq->tq_nalloc++;
101 }
102
103 SRETURN(t);
104 }
105
106 /*
107 * NOTE: Must be called with tq->tq_lock held, expects the taskq_ent_t
108 * to already be removed from the free, work, or pending taskq lists.
109 */
110 static void
111 task_free(taskq_t *tq, taskq_ent_t *t)
112 {
113 SENTRY;
114
115 ASSERT(tq);
116 ASSERT(t);
117 ASSERT(spin_is_locked(&tq->tq_lock));
118 ASSERT(list_empty(&t->tqent_list));
119
120 kmem_free(t, sizeof(taskq_ent_t));
121 tq->tq_nalloc--;
122
123 SEXIT;
124 }
125
126 /*
127 * NOTE: Must be called with tq->tq_lock held, either destroys the
128 * taskq_ent_t if too many exist or moves it to the free list for later use.
129 */
130 static void
131 task_done(taskq_t *tq, taskq_ent_t *t)
132 {
133 SENTRY;
134 ASSERT(tq);
135 ASSERT(t);
136 ASSERT(spin_is_locked(&tq->tq_lock));
137
138 /* For prealloc'd tasks, we don't free anything. */
139 if ((!(tq->tq_flags & TASKQ_DYNAMIC)) &&
140 (t->tqent_flags & TQENT_FLAG_PREALLOC))
141 return;
142
143 list_del_init(&t->tqent_list);
144
145 if (tq->tq_nalloc <= tq->tq_minalloc) {
146 t->tqent_id = 0;
147 t->tqent_func = NULL;
148 t->tqent_arg = NULL;
149 t->tqent_flags = 0;
150 list_add_tail(&t->tqent_list, &tq->tq_free_list);
151 } else {
152 task_free(tq, t);
153 }
154
155 SEXIT;
156 }
157
158 /*
159 * As tasks are submitted to the task queue they are assigned a
160 * monotonically increasing taskqid and added to the tail of the pending
161 * list. As worker threads become available the tasks are removed from
162 * the head of the pending or priority list, giving preference to the
163 * priority list. The tasks are then added to the work list, preserving
164 * the ordering by taskqid. Finally, as tasks complete they are removed
165 * from the work list. This means that the pending and work lists are
166 * always kept sorted by taskqid. Thus the lowest outstanding
167 * incomplete taskqid can be determined simply by checking the min
168 * taskqid for each head item on the pending, priority, and work list.
169 * This value is stored in tq->tq_lowest_id and only updated to the new
170 * lowest id when the previous lowest id completes. All taskqids lower
171 * than tq->tq_lowest_id must have completed. It is also possible
172 * larger taskqid's have completed because they may be processed in
173 * parallel by several worker threads. However, this is not a problem
174 * because the behavior of taskq_wait_id() is to block until all
175 * previously submitted taskqid's have completed.
176 *
177 * XXX: Taskqid_t wrapping is not handled. However, taskqid_t's are
178 * 64-bit values so even if a taskq is processing 2^24 (16,777,216)
179 * taskqid_ts per second it will still take 2^40 seconds, 34,865 years,
180 * before the wrap occurs. I can live with that for now.
181 */
182 static int
183 taskq_wait_check(taskq_t *tq, taskqid_t id)
184 {
185 int rc;
186
187 spin_lock_irqsave(&tq->tq_lock, tq->tq_lock_flags);
188 rc = (id < tq->tq_lowest_id);
189 spin_unlock_irqrestore(&tq->tq_lock, tq->tq_lock_flags);
190
191 SRETURN(rc);
192 }
193
194 void
195 __taskq_wait_id(taskq_t *tq, taskqid_t id)
196 {
197 SENTRY;
198 ASSERT(tq);
199
200 wait_event(tq->tq_wait_waitq, taskq_wait_check(tq, id));
201
202 SEXIT;
203 }
204 EXPORT_SYMBOL(__taskq_wait_id);
205
206 void
207 __taskq_wait(taskq_t *tq)
208 {
209 taskqid_t id;
210 SENTRY;
211 ASSERT(tq);
212
213 /* Wait for the largest outstanding taskqid */
214 spin_lock_irqsave(&tq->tq_lock, tq->tq_lock_flags);
215 id = tq->tq_next_id - 1;
216 spin_unlock_irqrestore(&tq->tq_lock, tq->tq_lock_flags);
217
218 __taskq_wait_id(tq, id);
219
220 SEXIT;
221
222 }
223 EXPORT_SYMBOL(__taskq_wait);
224
225 int
226 __taskq_member(taskq_t *tq, void *t)
227 {
228 struct list_head *l;
229 taskq_thread_t *tqt;
230 SENTRY;
231
232 ASSERT(tq);
233 ASSERT(t);
234
235 list_for_each(l, &tq->tq_thread_list) {
236 tqt = list_entry(l, taskq_thread_t, tqt_thread_list);
237 if (tqt->tqt_thread == (struct task_struct *)t)
238 SRETURN(1);
239 }
240
241 SRETURN(0);
242 }
243 EXPORT_SYMBOL(__taskq_member);
244
245 taskqid_t
246 __taskq_dispatch(taskq_t *tq, task_func_t func, void *arg, uint_t flags)
247 {
248 taskq_ent_t *t;
249 taskqid_t rc = 0;
250 SENTRY;
251
252 ASSERT(tq);
253 ASSERT(func);
254
255 /* Solaris assumes TQ_SLEEP if not passed explicitly */
256 if (!(flags & (TQ_SLEEP | TQ_NOSLEEP)))
257 flags |= TQ_SLEEP;
258
259 if (unlikely(in_atomic() && (flags & TQ_SLEEP)))
260 PANIC("May schedule while atomic: %s/0x%08x/%d\n",
261 current->comm, preempt_count(), current->pid);
262
263 spin_lock_irqsave(&tq->tq_lock, tq->tq_lock_flags);
264
265 /* Taskq being destroyed and all tasks drained */
266 if (!(tq->tq_flags & TQ_ACTIVE))
267 SGOTO(out, rc = 0);
268
269 /* Do not queue the task unless there is idle thread for it */
270 ASSERT(tq->tq_nactive <= tq->tq_nthreads);
271 if ((flags & TQ_NOQUEUE) && (tq->tq_nactive == tq->tq_nthreads))
272 SGOTO(out, rc = 0);
273
274 if ((t = task_alloc(tq, flags)) == NULL)
275 SGOTO(out, rc = 0);
276
277 spin_lock(&t->tqent_lock);
278
279 /* Queue to the priority list instead of the pending list */
280 if (flags & TQ_FRONT)
281 list_add_tail(&t->tqent_list, &tq->tq_prio_list);
282 else
283 list_add_tail(&t->tqent_list, &tq->tq_pend_list);
284
285 t->tqent_id = rc = tq->tq_next_id;
286 tq->tq_next_id++;
287 t->tqent_func = func;
288 t->tqent_arg = arg;
289
290 ASSERT(!(t->tqent_flags & TQENT_FLAG_PREALLOC));
291
292 spin_unlock(&t->tqent_lock);
293
294 wake_up(&tq->tq_work_waitq);
295 out:
296 spin_unlock_irqrestore(&tq->tq_lock, tq->tq_lock_flags);
297 SRETURN(rc);
298 }
299 EXPORT_SYMBOL(__taskq_dispatch);
300
301 void
302 __taskq_dispatch_ent(taskq_t *tq, task_func_t func, void *arg, uint_t flags,
303 taskq_ent_t *t)
304 {
305 SENTRY;
306
307 ASSERT(tq);
308 ASSERT(func);
309 ASSERT(!(tq->tq_flags & TASKQ_DYNAMIC));
310
311 spin_lock_irqsave(&tq->tq_lock, tq->tq_lock_flags);
312
313 /* Taskq being destroyed and all tasks drained */
314 if (!(tq->tq_flags & TQ_ACTIVE)) {
315 t->tqent_id = 0;
316 goto out;
317 }
318
319 spin_lock(&t->tqent_lock);
320
321 /*
322 * Mark it as a prealloc'd task. This is important
323 * to ensure that we don't free it later.
324 */
325 t->tqent_flags |= TQENT_FLAG_PREALLOC;
326
327 /* Queue to the priority list instead of the pending list */
328 if (flags & TQ_FRONT)
329 list_add_tail(&t->tqent_list, &tq->tq_prio_list);
330 else
331 list_add_tail(&t->tqent_list, &tq->tq_pend_list);
332
333 t->tqent_id = tq->tq_next_id;
334 tq->tq_next_id++;
335 t->tqent_func = func;
336 t->tqent_arg = arg;
337
338 spin_unlock(&t->tqent_lock);
339
340 wake_up(&tq->tq_work_waitq);
341 out:
342 spin_unlock_irqrestore(&tq->tq_lock, tq->tq_lock_flags);
343 SEXIT;
344 }
345 EXPORT_SYMBOL(__taskq_dispatch_ent);
346
347 int
348 __taskq_empty_ent(taskq_ent_t *t)
349 {
350 return list_empty(&t->tqent_list);
351 }
352 EXPORT_SYMBOL(__taskq_empty_ent);
353
354 void
355 __taskq_init_ent(taskq_ent_t *t)
356 {
357 spin_lock_init(&t->tqent_lock);
358 INIT_LIST_HEAD(&t->tqent_list);
359 t->tqent_id = 0;
360 t->tqent_func = NULL;
361 t->tqent_arg = NULL;
362 t->tqent_flags = 0;
363 }
364 EXPORT_SYMBOL(__taskq_init_ent);
365
366 /*
367 * Returns the lowest incomplete taskqid_t. The taskqid_t may
368 * be queued on the pending list, on the priority list, or on
369 * the work list currently being handled, but it is not 100%
370 * complete yet.
371 */
372 static taskqid_t
373 taskq_lowest_id(taskq_t *tq)
374 {
375 taskqid_t lowest_id = tq->tq_next_id;
376 taskq_ent_t *t;
377 taskq_thread_t *tqt;
378 SENTRY;
379
380 ASSERT(tq);
381 ASSERT(spin_is_locked(&tq->tq_lock));
382
383 if (!list_empty(&tq->tq_pend_list)) {
384 t = list_entry(tq->tq_pend_list.next, taskq_ent_t, tqent_list);
385 lowest_id = MIN(lowest_id, t->tqent_id);
386 }
387
388 if (!list_empty(&tq->tq_prio_list)) {
389 t = list_entry(tq->tq_prio_list.next, taskq_ent_t, tqent_list);
390 lowest_id = MIN(lowest_id, t->tqent_id);
391 }
392
393 if (!list_empty(&tq->tq_active_list)) {
394 tqt = list_entry(tq->tq_active_list.next, taskq_thread_t,
395 tqt_active_list);
396 ASSERT(tqt->tqt_ent != NULL);
397 lowest_id = MIN(lowest_id, tqt->tqt_ent->tqent_id);
398 }
399
400 SRETURN(lowest_id);
401 }
402
403 /*
404 * Insert a task into a list keeping the list sorted by increasing
405 * taskqid.
406 */
407 static void
408 taskq_insert_in_order(taskq_t *tq, taskq_thread_t *tqt)
409 {
410 taskq_thread_t *w;
411 struct list_head *l;
412
413 SENTRY;
414 ASSERT(tq);
415 ASSERT(tqt);
416 ASSERT(spin_is_locked(&tq->tq_lock));
417
418 list_for_each_prev(l, &tq->tq_active_list) {
419 w = list_entry(l, taskq_thread_t, tqt_active_list);
420 if (w->tqt_ent->tqent_id < tqt->tqt_ent->tqent_id) {
421 list_add(&tqt->tqt_active_list, l);
422 break;
423 }
424 }
425 if (l == &tq->tq_active_list)
426 list_add(&tqt->tqt_active_list, &tq->tq_active_list);
427
428 SEXIT;
429 }
430
431 static int
432 taskq_thread(void *args)
433 {
434 DECLARE_WAITQUEUE(wait, current);
435 sigset_t blocked;
436 taskqid_t id;
437 taskq_thread_t *tqt = args;
438 taskq_t *tq;
439 taskq_ent_t *t;
440 struct list_head *pend_list;
441 SENTRY;
442
443 ASSERT(tqt);
444 tq = tqt->tqt_tq;
445 current->flags |= PF_NOFREEZE;
446
447 /* Disable the direct memory reclaim path */
448 if (tq->tq_flags & TASKQ_NORECLAIM)
449 current->flags |= PF_MEMALLOC;
450
451 sigfillset(&blocked);
452 sigprocmask(SIG_BLOCK, &blocked, NULL);
453 flush_signals(current);
454
455 spin_lock_irqsave(&tq->tq_lock, tq->tq_lock_flags);
456 tq->tq_nthreads++;
457 wake_up(&tq->tq_wait_waitq);
458 set_current_state(TASK_INTERRUPTIBLE);
459
460 while (!kthread_should_stop()) {
461
462 add_wait_queue(&tq->tq_work_waitq, &wait);
463 if (list_empty(&tq->tq_pend_list) &&
464 list_empty(&tq->tq_prio_list)) {
465 spin_unlock_irqrestore(&tq->tq_lock, tq->tq_lock_flags);
466 schedule();
467 spin_lock_irqsave(&tq->tq_lock, tq->tq_lock_flags);
468 } else {
469 __set_current_state(TASK_RUNNING);
470 }
471
472 remove_wait_queue(&tq->tq_work_waitq, &wait);
473
474 if (!list_empty(&tq->tq_prio_list))
475 pend_list = &tq->tq_prio_list;
476 else if (!list_empty(&tq->tq_pend_list))
477 pend_list = &tq->tq_pend_list;
478 else
479 pend_list = NULL;
480
481 if (pend_list) {
482 t = list_entry(pend_list->next, taskq_ent_t, tqent_list);
483 list_del_init(&t->tqent_list);
484 /* In order to support recursively dispatching a
485 * preallocated taskq_ent_t, tqent_id must be
486 * stored prior to executing tqent_func. */
487 id = t->tqent_id;
488 tqt->tqt_ent = t;
489 taskq_insert_in_order(tq, tqt);
490 tq->tq_nactive++;
491 spin_unlock_irqrestore(&tq->tq_lock, tq->tq_lock_flags);
492
493 /* Perform the requested task */
494 t->tqent_func(t->tqent_arg);
495
496 spin_lock_irqsave(&tq->tq_lock, tq->tq_lock_flags);
497 tq->tq_nactive--;
498 list_del_init(&tqt->tqt_active_list);
499 tqt->tqt_ent = NULL;
500 task_done(tq, t);
501
502 /* When the current lowest outstanding taskqid is
503 * done calculate the new lowest outstanding id */
504 if (tq->tq_lowest_id == id) {
505 tq->tq_lowest_id = taskq_lowest_id(tq);
506 ASSERT(tq->tq_lowest_id > id);
507 }
508
509 wake_up_all(&tq->tq_wait_waitq);
510 }
511
512 set_current_state(TASK_INTERRUPTIBLE);
513
514 }
515
516 __set_current_state(TASK_RUNNING);
517 tq->tq_nthreads--;
518 list_del_init(&tqt->tqt_thread_list);
519 kmem_free(tqt, sizeof(taskq_thread_t));
520
521 spin_unlock_irqrestore(&tq->tq_lock, tq->tq_lock_flags);
522
523 SRETURN(0);
524 }
525
526 taskq_t *
527 __taskq_create(const char *name, int nthreads, pri_t pri,
528 int minalloc, int maxalloc, uint_t flags)
529 {
530 taskq_t *tq;
531 taskq_thread_t *tqt;
532 int rc = 0, i, j = 0;
533 SENTRY;
534
535 ASSERT(name != NULL);
536 ASSERT(pri <= maxclsyspri);
537 ASSERT(minalloc >= 0);
538 ASSERT(maxalloc <= INT_MAX);
539 ASSERT(!(flags & (TASKQ_CPR_SAFE | TASKQ_DYNAMIC))); /* Unsupported */
540
541 /* Scale the number of threads using nthreads as a percentage */
542 if (flags & TASKQ_THREADS_CPU_PCT) {
543 ASSERT(nthreads <= 100);
544 ASSERT(nthreads >= 0);
545 nthreads = MIN(nthreads, 100);
546 nthreads = MAX(nthreads, 0);
547 nthreads = MAX((num_online_cpus() * nthreads) / 100, 1);
548 }
549
550 tq = kmem_alloc(sizeof(*tq), KM_SLEEP);
551 if (tq == NULL)
552 SRETURN(NULL);
553
554 spin_lock_init(&tq->tq_lock);
555 spin_lock_irqsave(&tq->tq_lock, tq->tq_lock_flags);
556 INIT_LIST_HEAD(&tq->tq_thread_list);
557 INIT_LIST_HEAD(&tq->tq_active_list);
558 tq->tq_name = name;
559 tq->tq_nactive = 0;
560 tq->tq_nthreads = 0;
561 tq->tq_pri = pri;
562 tq->tq_minalloc = minalloc;
563 tq->tq_maxalloc = maxalloc;
564 tq->tq_nalloc = 0;
565 tq->tq_flags = (flags | TQ_ACTIVE);
566 tq->tq_next_id = 1;
567 tq->tq_lowest_id = 1;
568 INIT_LIST_HEAD(&tq->tq_free_list);
569 INIT_LIST_HEAD(&tq->tq_pend_list);
570 INIT_LIST_HEAD(&tq->tq_prio_list);
571 init_waitqueue_head(&tq->tq_work_waitq);
572 init_waitqueue_head(&tq->tq_wait_waitq);
573
574 if (flags & TASKQ_PREPOPULATE)
575 for (i = 0; i < minalloc; i++)
576 task_done(tq, task_alloc(tq, TQ_SLEEP | TQ_NEW));
577
578 spin_unlock_irqrestore(&tq->tq_lock, tq->tq_lock_flags);
579
580 for (i = 0; i < nthreads; i++) {
581 tqt = kmem_alloc(sizeof(*tqt), KM_SLEEP);
582 INIT_LIST_HEAD(&tqt->tqt_thread_list);
583 INIT_LIST_HEAD(&tqt->tqt_active_list);
584 tqt->tqt_tq = tq;
585 tqt->tqt_ent = NULL;
586
587 tqt->tqt_thread = kthread_create(taskq_thread, tqt,
588 "%s/%d", name, i);
589 if (tqt->tqt_thread) {
590 list_add(&tqt->tqt_thread_list, &tq->tq_thread_list);
591 kthread_bind(tqt->tqt_thread, i % num_online_cpus());
592 set_user_nice(tqt->tqt_thread, PRIO_TO_NICE(pri));
593 wake_up_process(tqt->tqt_thread);
594 j++;
595 } else {
596 kmem_free(tqt, sizeof(taskq_thread_t));
597 rc = 1;
598 }
599 }
600
601 /* Wait for all threads to be started before potential destroy */
602 wait_event(tq->tq_wait_waitq, tq->tq_nthreads == j);
603
604 if (rc) {
605 __taskq_destroy(tq);
606 tq = NULL;
607 }
608
609 SRETURN(tq);
610 }
611 EXPORT_SYMBOL(__taskq_create);
612
613 void
614 __taskq_destroy(taskq_t *tq)
615 {
616 struct task_struct *thread;
617 taskq_thread_t *tqt;
618 taskq_ent_t *t;
619 SENTRY;
620
621 ASSERT(tq);
622 spin_lock_irqsave(&tq->tq_lock, tq->tq_lock_flags);
623 tq->tq_flags &= ~TQ_ACTIVE;
624 spin_unlock_irqrestore(&tq->tq_lock, tq->tq_lock_flags);
625
626 /* TQ_ACTIVE cleared prevents new tasks being added to pending */
627 __taskq_wait(tq);
628
629 spin_lock_irqsave(&tq->tq_lock, tq->tq_lock_flags);
630
631 /*
632 * Signal each thread to exit and block until it does. Each thread
633 * is responsible for removing itself from the list and freeing its
634 * taskq_thread_t. This allows for idle threads to opt to remove
635 * themselves from the taskq. They can be recreated as needed.
636 */
637 while (!list_empty(&tq->tq_thread_list)) {
638 tqt = list_entry(tq->tq_thread_list.next,
639 taskq_thread_t, tqt_thread_list);
640 thread = tqt->tqt_thread;
641 spin_unlock_irqrestore(&tq->tq_lock, tq->tq_lock_flags);
642
643 kthread_stop(thread);
644
645 spin_lock_irqsave(&tq->tq_lock, tq->tq_lock_flags);
646 }
647
648 while (!list_empty(&tq->tq_free_list)) {
649 t = list_entry(tq->tq_free_list.next, taskq_ent_t, tqent_list);
650
651 ASSERT(!(t->tqent_flags & TQENT_FLAG_PREALLOC));
652
653 list_del_init(&t->tqent_list);
654 task_free(tq, t);
655 }
656
657 ASSERT(tq->tq_nthreads == 0);
658 ASSERT(tq->tq_nalloc == 0);
659 ASSERT(list_empty(&tq->tq_thread_list));
660 ASSERT(list_empty(&tq->tq_active_list));
661 ASSERT(list_empty(&tq->tq_free_list));
662 ASSERT(list_empty(&tq->tq_pend_list));
663 ASSERT(list_empty(&tq->tq_prio_list));
664
665 spin_unlock_irqrestore(&tq->tq_lock, tq->tq_lock_flags);
666
667 kmem_free(tq, sizeof(taskq_t));
668
669 SEXIT;
670 }
671 EXPORT_SYMBOL(__taskq_destroy);
672
673 int
674 spl_taskq_init(void)
675 {
676 SENTRY;
677
678 /* Solaris creates a dynamic taskq of up to 64 threads, however in
679 * a Linux environment 1 thread per-core is usually about right */
680 system_taskq = taskq_create("spl_system_taskq", num_online_cpus(),
681 minclsyspri, 4, 512, TASKQ_PREPOPULATE);
682 if (system_taskq == NULL)
683 SRETURN(1);
684
685 SRETURN(0);
686 }
687
688 void
689 spl_taskq_fini(void)
690 {
691 SENTRY;
692 taskq_destroy(system_taskq);
693 SEXIT;
694 }