]> git.proxmox.com Git - mirror_spl.git/blob - module/splat/splat-kmem.c
Merge branch 'splat'
[mirror_spl.git] / module / splat / splat-kmem.c
1 /*****************************************************************************\
2 * Copyright (C) 2007-2010 Lawrence Livermore National Security, LLC.
3 * Copyright (C) 2007 The Regents of the University of California.
4 * Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER).
5 * Written by Brian Behlendorf <behlendorf1@llnl.gov>.
6 * UCRL-CODE-235197
7 *
8 * This file is part of the SPL, Solaris Porting Layer.
9 * For details, see <http://github.com/behlendorf/spl/>.
10 *
11 * The SPL is free software; you can redistribute it and/or modify it
12 * under the terms of the GNU General Public License as published by the
13 * Free Software Foundation; either version 2 of the License, or (at your
14 * option) any later version.
15 *
16 * The SPL is distributed in the hope that it will be useful, but WITHOUT
17 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
18 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
19 * for more details.
20 *
21 * You should have received a copy of the GNU General Public License along
22 * with the SPL. If not, see <http://www.gnu.org/licenses/>.
23 *****************************************************************************
24 * Solaris Porting LAyer Tests (SPLAT) Kmem Tests.
25 \*****************************************************************************/
26
27 #include <sys/kmem.h>
28 #include <sys/thread.h>
29 #include "splat-internal.h"
30
31 #define SPLAT_KMEM_NAME "kmem"
32 #define SPLAT_KMEM_DESC "Kernel Malloc/Slab Tests"
33
34 #define SPLAT_KMEM_TEST1_ID 0x0101
35 #define SPLAT_KMEM_TEST1_NAME "kmem_alloc"
36 #define SPLAT_KMEM_TEST1_DESC "Memory allocation test (kmem_alloc)"
37
38 #define SPLAT_KMEM_TEST2_ID 0x0102
39 #define SPLAT_KMEM_TEST2_NAME "kmem_zalloc"
40 #define SPLAT_KMEM_TEST2_DESC "Memory allocation test (kmem_zalloc)"
41
42 #define SPLAT_KMEM_TEST3_ID 0x0103
43 #define SPLAT_KMEM_TEST3_NAME "vmem_alloc"
44 #define SPLAT_KMEM_TEST3_DESC "Memory allocation test (vmem_alloc)"
45
46 #define SPLAT_KMEM_TEST4_ID 0x0104
47 #define SPLAT_KMEM_TEST4_NAME "vmem_zalloc"
48 #define SPLAT_KMEM_TEST4_DESC "Memory allocation test (vmem_zalloc)"
49
50 #define SPLAT_KMEM_TEST5_ID 0x0105
51 #define SPLAT_KMEM_TEST5_NAME "slab_small"
52 #define SPLAT_KMEM_TEST5_DESC "Slab ctor/dtor test (small)"
53
54 #define SPLAT_KMEM_TEST6_ID 0x0106
55 #define SPLAT_KMEM_TEST6_NAME "slab_large"
56 #define SPLAT_KMEM_TEST6_DESC "Slab ctor/dtor test (large)"
57
58 #define SPLAT_KMEM_TEST7_ID 0x0107
59 #define SPLAT_KMEM_TEST7_NAME "slab_align"
60 #define SPLAT_KMEM_TEST7_DESC "Slab alignment test"
61
62 #define SPLAT_KMEM_TEST8_ID 0x0108
63 #define SPLAT_KMEM_TEST8_NAME "slab_reap"
64 #define SPLAT_KMEM_TEST8_DESC "Slab reaping test"
65
66 #define SPLAT_KMEM_TEST9_ID 0x0109
67 #define SPLAT_KMEM_TEST9_NAME "slab_age"
68 #define SPLAT_KMEM_TEST9_DESC "Slab aging test"
69
70 #define SPLAT_KMEM_TEST10_ID 0x010a
71 #define SPLAT_KMEM_TEST10_NAME "slab_lock"
72 #define SPLAT_KMEM_TEST10_DESC "Slab locking test"
73
74 #if 0
75 #define SPLAT_KMEM_TEST11_ID 0x010b
76 #define SPLAT_KMEM_TEST11_NAME "slab_overcommit"
77 #define SPLAT_KMEM_TEST11_DESC "Slab memory overcommit test"
78 #endif
79
80 #define SPLAT_KMEM_TEST12_ID 0x010c
81 #define SPLAT_KMEM_TEST12_NAME "vmem_size"
82 #define SPLAT_KMEM_TEST12_DESC "Memory zone test"
83
84 #define SPLAT_KMEM_TEST13_ID 0x010d
85 #define SPLAT_KMEM_TEST13_NAME "slab_reclaim"
86 #define SPLAT_KMEM_TEST13_DESC "Slab direct memory reclaim test"
87
88 #define SPLAT_KMEM_ALLOC_COUNT 10
89 #define SPLAT_VMEM_ALLOC_COUNT 10
90
91
92 static int
93 splat_kmem_test1(struct file *file, void *arg)
94 {
95 void *ptr[SPLAT_KMEM_ALLOC_COUNT];
96 int size = PAGE_SIZE;
97 int i, count, rc = 0;
98
99 while ((!rc) && (size <= (PAGE_SIZE * 32))) {
100 count = 0;
101
102 for (i = 0; i < SPLAT_KMEM_ALLOC_COUNT; i++) {
103 ptr[i] = kmem_alloc(size, KM_SLEEP | KM_NODEBUG);
104 if (ptr[i])
105 count++;
106 }
107
108 for (i = 0; i < SPLAT_KMEM_ALLOC_COUNT; i++)
109 if (ptr[i])
110 kmem_free(ptr[i], size);
111
112 splat_vprint(file, SPLAT_KMEM_TEST1_NAME,
113 "%d byte allocations, %d/%d successful\n",
114 size, count, SPLAT_KMEM_ALLOC_COUNT);
115 if (count != SPLAT_KMEM_ALLOC_COUNT)
116 rc = -ENOMEM;
117
118 size *= 2;
119 }
120
121 return rc;
122 }
123
124 static int
125 splat_kmem_test2(struct file *file, void *arg)
126 {
127 void *ptr[SPLAT_KMEM_ALLOC_COUNT];
128 int size = PAGE_SIZE;
129 int i, j, count, rc = 0;
130
131 while ((!rc) && (size <= (PAGE_SIZE * 32))) {
132 count = 0;
133
134 for (i = 0; i < SPLAT_KMEM_ALLOC_COUNT; i++) {
135 ptr[i] = kmem_zalloc(size, KM_SLEEP | KM_NODEBUG);
136 if (ptr[i])
137 count++;
138 }
139
140 /* Ensure buffer has been zero filled */
141 for (i = 0; i < SPLAT_KMEM_ALLOC_COUNT; i++) {
142 for (j = 0; j < size; j++) {
143 if (((char *)ptr[i])[j] != '\0') {
144 splat_vprint(file,SPLAT_KMEM_TEST2_NAME,
145 "%d-byte allocation was "
146 "not zeroed\n", size);
147 rc = -EFAULT;
148 }
149 }
150 }
151
152 for (i = 0; i < SPLAT_KMEM_ALLOC_COUNT; i++)
153 if (ptr[i])
154 kmem_free(ptr[i], size);
155
156 splat_vprint(file, SPLAT_KMEM_TEST2_NAME,
157 "%d byte allocations, %d/%d successful\n",
158 size, count, SPLAT_KMEM_ALLOC_COUNT);
159 if (count != SPLAT_KMEM_ALLOC_COUNT)
160 rc = -ENOMEM;
161
162 size *= 2;
163 }
164
165 return rc;
166 }
167
168 static int
169 splat_kmem_test3(struct file *file, void *arg)
170 {
171 void *ptr[SPLAT_VMEM_ALLOC_COUNT];
172 int size = PAGE_SIZE;
173 int i, count, rc = 0;
174
175 while ((!rc) && (size <= (PAGE_SIZE * 1024))) {
176 count = 0;
177
178 for (i = 0; i < SPLAT_VMEM_ALLOC_COUNT; i++) {
179 ptr[i] = vmem_alloc(size, KM_SLEEP);
180 if (ptr[i])
181 count++;
182 }
183
184 for (i = 0; i < SPLAT_VMEM_ALLOC_COUNT; i++)
185 if (ptr[i])
186 vmem_free(ptr[i], size);
187
188 splat_vprint(file, SPLAT_KMEM_TEST3_NAME,
189 "%d byte allocations, %d/%d successful\n",
190 size, count, SPLAT_VMEM_ALLOC_COUNT);
191 if (count != SPLAT_VMEM_ALLOC_COUNT)
192 rc = -ENOMEM;
193
194 size *= 2;
195 }
196
197 return rc;
198 }
199
200 static int
201 splat_kmem_test4(struct file *file, void *arg)
202 {
203 void *ptr[SPLAT_VMEM_ALLOC_COUNT];
204 int size = PAGE_SIZE;
205 int i, j, count, rc = 0;
206
207 while ((!rc) && (size <= (PAGE_SIZE * 1024))) {
208 count = 0;
209
210 for (i = 0; i < SPLAT_VMEM_ALLOC_COUNT; i++) {
211 ptr[i] = vmem_zalloc(size, KM_SLEEP);
212 if (ptr[i])
213 count++;
214 }
215
216 /* Ensure buffer has been zero filled */
217 for (i = 0; i < SPLAT_VMEM_ALLOC_COUNT; i++) {
218 for (j = 0; j < size; j++) {
219 if (((char *)ptr[i])[j] != '\0') {
220 splat_vprint(file, SPLAT_KMEM_TEST4_NAME,
221 "%d-byte allocation was "
222 "not zeroed\n", size);
223 rc = -EFAULT;
224 }
225 }
226 }
227
228 for (i = 0; i < SPLAT_VMEM_ALLOC_COUNT; i++)
229 if (ptr[i])
230 vmem_free(ptr[i], size);
231
232 splat_vprint(file, SPLAT_KMEM_TEST4_NAME,
233 "%d byte allocations, %d/%d successful\n",
234 size, count, SPLAT_VMEM_ALLOC_COUNT);
235 if (count != SPLAT_VMEM_ALLOC_COUNT)
236 rc = -ENOMEM;
237
238 size *= 2;
239 }
240
241 return rc;
242 }
243
244 #define SPLAT_KMEM_TEST_MAGIC 0x004488CCUL
245 #define SPLAT_KMEM_CACHE_NAME "kmem_test"
246 #define SPLAT_KMEM_OBJ_COUNT 1024
247 #define SPLAT_KMEM_OBJ_RECLAIM 1000 /* objects */
248 #define SPLAT_KMEM_THREADS 32
249
250 #define KCP_FLAG_READY 0x01
251
252 typedef struct kmem_cache_data {
253 unsigned long kcd_magic;
254 struct list_head kcd_node;
255 int kcd_flag;
256 char kcd_buf[0];
257 } kmem_cache_data_t;
258
259 typedef struct kmem_cache_thread {
260 spinlock_t kct_lock;
261 int kct_id;
262 struct list_head kct_list;
263 } kmem_cache_thread_t;
264
265 typedef struct kmem_cache_priv {
266 unsigned long kcp_magic;
267 struct file *kcp_file;
268 kmem_cache_t *kcp_cache;
269 spinlock_t kcp_lock;
270 wait_queue_head_t kcp_ctl_waitq;
271 wait_queue_head_t kcp_thr_waitq;
272 int kcp_flags;
273 int kcp_kct_count;
274 kmem_cache_thread_t *kcp_kct[SPLAT_KMEM_THREADS];
275 int kcp_size;
276 int kcp_align;
277 int kcp_count;
278 int kcp_alloc;
279 int kcp_rc;
280 } kmem_cache_priv_t;
281
282 static kmem_cache_priv_t *
283 splat_kmem_cache_test_kcp_alloc(struct file *file, char *name,
284 int size, int align, int alloc)
285 {
286 kmem_cache_priv_t *kcp;
287
288 kcp = kmem_zalloc(sizeof(kmem_cache_priv_t), KM_SLEEP);
289 if (!kcp)
290 return NULL;
291
292 kcp->kcp_magic = SPLAT_KMEM_TEST_MAGIC;
293 kcp->kcp_file = file;
294 kcp->kcp_cache = NULL;
295 spin_lock_init(&kcp->kcp_lock);
296 init_waitqueue_head(&kcp->kcp_ctl_waitq);
297 init_waitqueue_head(&kcp->kcp_thr_waitq);
298 kcp->kcp_flags = 0;
299 kcp->kcp_kct_count = -1;
300 kcp->kcp_size = size;
301 kcp->kcp_align = align;
302 kcp->kcp_count = 0;
303 kcp->kcp_alloc = alloc;
304 kcp->kcp_rc = 0;
305
306 return kcp;
307 }
308
309 static void
310 splat_kmem_cache_test_kcp_free(kmem_cache_priv_t *kcp)
311 {
312 kmem_free(kcp, sizeof(kmem_cache_priv_t));
313 }
314
315 static kmem_cache_thread_t *
316 splat_kmem_cache_test_kct_alloc(kmem_cache_priv_t *kcp, int id)
317 {
318 kmem_cache_thread_t *kct;
319
320 ASSERTF(id < SPLAT_KMEM_THREADS, "id=%d\n", id);
321 ASSERT(kcp->kcp_kct[id] == NULL);
322
323 kct = kmem_zalloc(sizeof(kmem_cache_thread_t), KM_SLEEP);
324 if (!kct)
325 return NULL;
326
327 spin_lock_init(&kct->kct_lock);
328 kct->kct_id = id;
329 INIT_LIST_HEAD(&kct->kct_list);
330
331 spin_lock(&kcp->kcp_lock);
332 kcp->kcp_kct[id] = kct;
333 spin_unlock(&kcp->kcp_lock);
334
335 return kct;
336 }
337
338 static void
339 splat_kmem_cache_test_kct_free(kmem_cache_priv_t *kcp,
340 kmem_cache_thread_t *kct)
341 {
342 spin_lock(&kcp->kcp_lock);
343 kcp->kcp_kct[kct->kct_id] = NULL;
344 spin_unlock(&kcp->kcp_lock);
345
346 kmem_free(kct, sizeof(kmem_cache_thread_t));
347 }
348
349 static void
350 splat_kmem_cache_test_kcd_free(kmem_cache_priv_t *kcp,
351 kmem_cache_thread_t *kct)
352 {
353 kmem_cache_data_t *kcd;
354
355 spin_lock(&kct->kct_lock);
356 while (!list_empty(&kct->kct_list)) {
357 kcd = list_entry(kct->kct_list.next,
358 kmem_cache_data_t, kcd_node);
359 list_del(&kcd->kcd_node);
360 spin_unlock(&kct->kct_lock);
361
362 kmem_cache_free(kcp->kcp_cache, kcd);
363
364 spin_lock(&kct->kct_lock);
365 }
366 spin_unlock(&kct->kct_lock);
367 }
368
369 static int
370 splat_kmem_cache_test_kcd_alloc(kmem_cache_priv_t *kcp,
371 kmem_cache_thread_t *kct, int count)
372 {
373 kmem_cache_data_t *kcd;
374 int i;
375
376 for (i = 0; i < count; i++) {
377 kcd = kmem_cache_alloc(kcp->kcp_cache, KM_SLEEP);
378 if (kcd == NULL) {
379 splat_kmem_cache_test_kcd_free(kcp, kct);
380 return -ENOMEM;
381 }
382
383 spin_lock(&kct->kct_lock);
384 list_add_tail(&kcd->kcd_node, &kct->kct_list);
385 spin_unlock(&kct->kct_lock);
386 }
387
388 return 0;
389 }
390
391 static void
392 splat_kmem_cache_test_debug(struct file *file, char *name,
393 kmem_cache_priv_t *kcp)
394 {
395 int j;
396
397 splat_vprint(file, name,
398 "%s cache objects %d, slabs %u/%u objs %u/%u mags ",
399 kcp->kcp_cache->skc_name, kcp->kcp_count,
400 (unsigned)kcp->kcp_cache->skc_slab_alloc,
401 (unsigned)kcp->kcp_cache->skc_slab_total,
402 (unsigned)kcp->kcp_cache->skc_obj_alloc,
403 (unsigned)kcp->kcp_cache->skc_obj_total);
404
405 for_each_online_cpu(j)
406 splat_print(file, "%u/%u ",
407 kcp->kcp_cache->skc_mag[j]->skm_avail,
408 kcp->kcp_cache->skc_mag[j]->skm_size);
409
410 splat_print(file, "%s\n", "");
411 }
412
413 static int
414 splat_kmem_cache_test_constructor(void *ptr, void *priv, int flags)
415 {
416 kmem_cache_priv_t *kcp = (kmem_cache_priv_t *)priv;
417 kmem_cache_data_t *kcd = (kmem_cache_data_t *)ptr;
418
419 if (kcd && kcp) {
420 kcd->kcd_magic = kcp->kcp_magic;
421 INIT_LIST_HEAD(&kcd->kcd_node);
422 kcd->kcd_flag = 1;
423 memset(kcd->kcd_buf, 0xaa, kcp->kcp_size - (sizeof *kcd));
424 kcp->kcp_count++;
425 }
426
427 return 0;
428 }
429
430 static void
431 splat_kmem_cache_test_destructor(void *ptr, void *priv)
432 {
433 kmem_cache_priv_t *kcp = (kmem_cache_priv_t *)priv;
434 kmem_cache_data_t *kcd = (kmem_cache_data_t *)ptr;
435
436 if (kcd && kcp) {
437 kcd->kcd_magic = 0;
438 kcd->kcd_flag = 0;
439 memset(kcd->kcd_buf, 0xbb, kcp->kcp_size - (sizeof *kcd));
440 kcp->kcp_count--;
441 }
442
443 return;
444 }
445
446 /*
447 * Generic reclaim function which assumes that all objects may
448 * be reclaimed at any time. We free a small percentage of the
449 * objects linked off the kcp or kct[] every time we are called.
450 */
451 static void
452 splat_kmem_cache_test_reclaim(void *priv)
453 {
454 kmem_cache_priv_t *kcp = (kmem_cache_priv_t *)priv;
455 kmem_cache_thread_t *kct;
456 kmem_cache_data_t *kcd;
457 LIST_HEAD(reclaim);
458 int i, count;
459
460 ASSERT(kcp->kcp_magic == SPLAT_KMEM_TEST_MAGIC);
461
462 /* For each kct thread reclaim some objects */
463 spin_lock(&kcp->kcp_lock);
464 for (i = 0; i < SPLAT_KMEM_THREADS; i++) {
465 kct = kcp->kcp_kct[i];
466 if (!kct)
467 continue;
468
469 spin_unlock(&kcp->kcp_lock);
470 spin_lock(&kct->kct_lock);
471
472 count = SPLAT_KMEM_OBJ_RECLAIM;
473 while (count > 0 && !list_empty(&kct->kct_list)) {
474 kcd = list_entry(kct->kct_list.next,
475 kmem_cache_data_t, kcd_node);
476 list_del(&kcd->kcd_node);
477 list_add(&kcd->kcd_node, &reclaim);
478 count--;
479 }
480
481 spin_unlock(&kct->kct_lock);
482 spin_lock(&kcp->kcp_lock);
483 }
484 spin_unlock(&kcp->kcp_lock);
485
486 /* Freed outside the spin lock */
487 while (!list_empty(&reclaim)) {
488 kcd = list_entry(reclaim.next, kmem_cache_data_t, kcd_node);
489 list_del(&kcd->kcd_node);
490 kmem_cache_free(kcp->kcp_cache, kcd);
491 }
492
493 return;
494 }
495
496 static int
497 splat_kmem_cache_test_threads(kmem_cache_priv_t *kcp, int threads)
498 {
499 int rc;
500
501 spin_lock(&kcp->kcp_lock);
502 rc = (kcp->kcp_kct_count == threads);
503 spin_unlock(&kcp->kcp_lock);
504
505 return rc;
506 }
507
508 static int
509 splat_kmem_cache_test_flags(kmem_cache_priv_t *kcp, int flags)
510 {
511 int rc;
512
513 spin_lock(&kcp->kcp_lock);
514 rc = (kcp->kcp_flags & flags);
515 spin_unlock(&kcp->kcp_lock);
516
517 return rc;
518 }
519
520 static void
521 splat_kmem_cache_test_thread(void *arg)
522 {
523 kmem_cache_priv_t *kcp = (kmem_cache_priv_t *)arg;
524 kmem_cache_thread_t *kct;
525 int rc = 0, id;
526
527 ASSERT(kcp->kcp_magic == SPLAT_KMEM_TEST_MAGIC);
528
529 /* Assign thread ids */
530 spin_lock(&kcp->kcp_lock);
531 if (kcp->kcp_kct_count == -1)
532 kcp->kcp_kct_count = 0;
533
534 id = kcp->kcp_kct_count;
535 kcp->kcp_kct_count++;
536 spin_unlock(&kcp->kcp_lock);
537
538 kct = splat_kmem_cache_test_kct_alloc(kcp, id);
539 if (!kct) {
540 rc = -ENOMEM;
541 goto out;
542 }
543
544 /* Wait for all threads to have started and report they are ready */
545 if (kcp->kcp_kct_count == SPLAT_KMEM_THREADS)
546 wake_up(&kcp->kcp_ctl_waitq);
547
548 wait_event(kcp->kcp_thr_waitq,
549 splat_kmem_cache_test_flags(kcp, KCP_FLAG_READY));
550
551 /* Create and destroy objects */
552 rc = splat_kmem_cache_test_kcd_alloc(kcp, kct, kcp->kcp_alloc);
553 splat_kmem_cache_test_kcd_free(kcp, kct);
554 out:
555 if (kct)
556 splat_kmem_cache_test_kct_free(kcp, kct);
557
558 spin_lock(&kcp->kcp_lock);
559 if (!kcp->kcp_rc)
560 kcp->kcp_rc = rc;
561
562 if ((--kcp->kcp_kct_count) == 0)
563 wake_up(&kcp->kcp_ctl_waitq);
564
565 spin_unlock(&kcp->kcp_lock);
566
567 thread_exit();
568 }
569
570 static int
571 splat_kmem_cache_test(struct file *file, void *arg, char *name,
572 int size, int align, int flags)
573 {
574 kmem_cache_priv_t *kcp;
575 kmem_cache_data_t *kcd = NULL;
576 int rc = 0, max;
577
578 kcp = splat_kmem_cache_test_kcp_alloc(file, name, size, align, 0);
579 if (!kcp) {
580 splat_vprint(file, name, "Unable to create '%s'\n", "kcp");
581 return -ENOMEM;
582 }
583
584 kcp->kcp_cache =
585 kmem_cache_create(SPLAT_KMEM_CACHE_NAME,
586 kcp->kcp_size, kcp->kcp_align,
587 splat_kmem_cache_test_constructor,
588 splat_kmem_cache_test_destructor,
589 NULL, kcp, NULL, flags);
590 if (!kcp->kcp_cache) {
591 splat_vprint(file, name,
592 "Unable to create '%s'\n",
593 SPLAT_KMEM_CACHE_NAME);
594 rc = -ENOMEM;
595 goto out_free;
596 }
597
598 kcd = kmem_cache_alloc(kcp->kcp_cache, KM_SLEEP);
599 if (!kcd) {
600 splat_vprint(file, name,
601 "Unable to allocate from '%s'\n",
602 SPLAT_KMEM_CACHE_NAME);
603 rc = -EINVAL;
604 goto out_free;
605 }
606
607 if (!kcd->kcd_flag) {
608 splat_vprint(file, name,
609 "Failed to run contructor for '%s'\n",
610 SPLAT_KMEM_CACHE_NAME);
611 rc = -EINVAL;
612 goto out_free;
613 }
614
615 if (kcd->kcd_magic != kcp->kcp_magic) {
616 splat_vprint(file, name,
617 "Failed to pass private data to constructor "
618 "for '%s'\n", SPLAT_KMEM_CACHE_NAME);
619 rc = -EINVAL;
620 goto out_free;
621 }
622
623 max = kcp->kcp_count;
624 kmem_cache_free(kcp->kcp_cache, kcd);
625
626 /* Destroy the entire cache which will force destructors to
627 * run and we can verify one was called for every object */
628 kmem_cache_destroy(kcp->kcp_cache);
629 if (kcp->kcp_count) {
630 splat_vprint(file, name,
631 "Failed to run destructor on all slab objects "
632 "for '%s'\n", SPLAT_KMEM_CACHE_NAME);
633 rc = -EINVAL;
634 }
635
636 splat_kmem_cache_test_kcp_free(kcp);
637 splat_vprint(file, name,
638 "Successfully ran ctors/dtors for %d elements in '%s'\n",
639 max, SPLAT_KMEM_CACHE_NAME);
640
641 return rc;
642
643 out_free:
644 if (kcd)
645 kmem_cache_free(kcp->kcp_cache, kcd);
646
647 if (kcp->kcp_cache)
648 kmem_cache_destroy(kcp->kcp_cache);
649
650 splat_kmem_cache_test_kcp_free(kcp);
651
652 return rc;
653 }
654
655 static int
656 splat_kmem_cache_thread_test(struct file *file, void *arg, char *name,
657 int size, int alloc, int max_time)
658 {
659 kmem_cache_priv_t *kcp;
660 kthread_t *thr;
661 struct timespec start, stop, delta;
662 char cache_name[32];
663 int i, rc = 0;
664
665 kcp = splat_kmem_cache_test_kcp_alloc(file, name, size, 0, alloc);
666 if (!kcp) {
667 splat_vprint(file, name, "Unable to create '%s'\n", "kcp");
668 return -ENOMEM;
669 }
670
671 (void)snprintf(cache_name, 32, "%s-%d-%d",
672 SPLAT_KMEM_CACHE_NAME, size, alloc);
673 kcp->kcp_cache =
674 kmem_cache_create(cache_name, kcp->kcp_size, 0,
675 splat_kmem_cache_test_constructor,
676 splat_kmem_cache_test_destructor,
677 splat_kmem_cache_test_reclaim,
678 kcp, NULL, 0);
679 if (!kcp->kcp_cache) {
680 splat_vprint(file, name, "Unable to create '%s'\n", cache_name);
681 rc = -ENOMEM;
682 goto out_kcp;
683 }
684
685 start = current_kernel_time();
686
687 for (i = 0; i < SPLAT_KMEM_THREADS; i++) {
688 thr = thread_create(NULL, 0,
689 splat_kmem_cache_test_thread,
690 kcp, 0, &p0, TS_RUN, minclsyspri);
691 if (thr == NULL) {
692 rc = -ESRCH;
693 goto out_cache;
694 }
695 }
696
697 /* Sleep until all threads have started, then set the ready
698 * flag and wake them all up for maximum concurrency. */
699 wait_event(kcp->kcp_ctl_waitq,
700 splat_kmem_cache_test_threads(kcp, SPLAT_KMEM_THREADS));
701
702 spin_lock(&kcp->kcp_lock);
703 kcp->kcp_flags |= KCP_FLAG_READY;
704 spin_unlock(&kcp->kcp_lock);
705 wake_up_all(&kcp->kcp_thr_waitq);
706
707 /* Sleep until all thread have finished */
708 wait_event(kcp->kcp_ctl_waitq, splat_kmem_cache_test_threads(kcp, 0));
709
710 stop = current_kernel_time();
711 delta = timespec_sub(stop, start);
712
713 splat_vprint(file, name,
714 "%-22s %2ld.%09ld\t"
715 "%lu/%lu/%lu\t%lu/%lu/%lu\n",
716 kcp->kcp_cache->skc_name,
717 delta.tv_sec, delta.tv_nsec,
718 (unsigned long)kcp->kcp_cache->skc_slab_total,
719 (unsigned long)kcp->kcp_cache->skc_slab_max,
720 (unsigned long)(kcp->kcp_alloc *
721 SPLAT_KMEM_THREADS /
722 SPL_KMEM_CACHE_OBJ_PER_SLAB),
723 (unsigned long)kcp->kcp_cache->skc_obj_total,
724 (unsigned long)kcp->kcp_cache->skc_obj_max,
725 (unsigned long)(kcp->kcp_alloc *
726 SPLAT_KMEM_THREADS));
727
728 if (delta.tv_sec >= max_time)
729 rc = -ETIME;
730
731 if (!rc && kcp->kcp_rc)
732 rc = kcp->kcp_rc;
733
734 out_cache:
735 kmem_cache_destroy(kcp->kcp_cache);
736 out_kcp:
737 splat_kmem_cache_test_kcp_free(kcp);
738 return rc;
739 }
740
741 /* Validate small object cache behavior for dynamic/kmem/vmem caches */
742 static int
743 splat_kmem_test5(struct file *file, void *arg)
744 {
745 char *name = SPLAT_KMEM_TEST5_NAME;
746 int rc;
747
748 rc = splat_kmem_cache_test(file, arg, name, 128, 0, 0);
749 if (rc)
750 return rc;
751
752 rc = splat_kmem_cache_test(file, arg, name, 128, 0, KMC_KMEM);
753 if (rc)
754 return rc;
755
756 return splat_kmem_cache_test(file, arg, name, 128, 0, KMC_VMEM);
757 }
758
759 /*
760 * Validate large object cache behavior for dynamic/kmem/vmem caches
761 */
762 static int
763 splat_kmem_test6(struct file *file, void *arg)
764 {
765 char *name = SPLAT_KMEM_TEST6_NAME;
766 int rc;
767
768 rc = splat_kmem_cache_test(file, arg, name, 256*1024, 0, 0);
769 if (rc)
770 return rc;
771
772 rc = splat_kmem_cache_test(file, arg, name, 64*1024, 0, KMC_KMEM);
773 if (rc)
774 return rc;
775
776 return splat_kmem_cache_test(file, arg, name, 1024*1024, 0, KMC_VMEM);
777 }
778
779 /*
780 * Validate object alignment cache behavior for caches
781 */
782 static int
783 splat_kmem_test7(struct file *file, void *arg)
784 {
785 char *name = SPLAT_KMEM_TEST7_NAME;
786 int i, rc;
787
788 for (i = SPL_KMEM_CACHE_ALIGN; i <= PAGE_SIZE; i *= 2) {
789 rc = splat_kmem_cache_test(file, arg, name, 157, i, 0);
790 if (rc)
791 return rc;
792 }
793
794 return rc;
795 }
796
797 /*
798 * Validate kmem_cache_reap() by requesting the slab cache free any objects
799 * it can. For a few reasons this may not immediately result in more free
800 * memory even if objects are freed. First off, due to fragmentation we
801 * may not be able to reclaim any slabs. Secondly, even if we do we fully
802 * clear some slabs we will not want to immediately reclaim all of them
803 * because we may contend with cache allocations and thrash. What we want
804 * to see is the slab size decrease more gradually as it becomes clear they
805 * will not be needed. This should be achievable in less than a minute.
806 * If it takes longer than this something has gone wrong.
807 */
808 static int
809 splat_kmem_test8(struct file *file, void *arg)
810 {
811 kmem_cache_priv_t *kcp;
812 kmem_cache_thread_t *kct;
813 int i, rc = 0;
814
815 kcp = splat_kmem_cache_test_kcp_alloc(file, SPLAT_KMEM_TEST8_NAME,
816 256, 0, 0);
817 if (!kcp) {
818 splat_vprint(file, SPLAT_KMEM_TEST8_NAME,
819 "Unable to create '%s'\n", "kcp");
820 rc = -ENOMEM;
821 goto out;
822 }
823
824 kcp->kcp_cache =
825 kmem_cache_create(SPLAT_KMEM_CACHE_NAME, kcp->kcp_size, 0,
826 splat_kmem_cache_test_constructor,
827 splat_kmem_cache_test_destructor,
828 splat_kmem_cache_test_reclaim,
829 kcp, NULL, 0);
830 if (!kcp->kcp_cache) {
831 splat_vprint(file, SPLAT_KMEM_TEST8_NAME,
832 "Unable to create '%s'\n", SPLAT_KMEM_CACHE_NAME);
833 rc = -ENOMEM;
834 goto out_kcp;
835 }
836
837 kct = splat_kmem_cache_test_kct_alloc(kcp, 0);
838 if (!kct) {
839 splat_vprint(file, SPLAT_KMEM_TEST8_NAME,
840 "Unable to create '%s'\n", "kct");
841 rc = -ENOMEM;
842 goto out_cache;
843 }
844
845 rc = splat_kmem_cache_test_kcd_alloc(kcp, kct, SPLAT_KMEM_OBJ_COUNT);
846 if (rc) {
847 splat_vprint(file, SPLAT_KMEM_TEST8_NAME, "Unable to "
848 "allocate from '%s'\n", SPLAT_KMEM_CACHE_NAME);
849 goto out_kct;
850 }
851
852 for (i = 0; i < 60; i++) {
853 kmem_cache_reap_now(kcp->kcp_cache);
854 splat_kmem_cache_test_debug(file, SPLAT_KMEM_TEST8_NAME, kcp);
855
856 if (kcp->kcp_cache->skc_obj_total == 0)
857 break;
858
859 set_current_state(TASK_INTERRUPTIBLE);
860 schedule_timeout(HZ);
861 }
862
863 if (kcp->kcp_cache->skc_obj_total == 0) {
864 splat_vprint(file, SPLAT_KMEM_TEST8_NAME,
865 "Successfully created %d objects "
866 "in cache %s and reclaimed them\n",
867 SPLAT_KMEM_OBJ_COUNT, SPLAT_KMEM_CACHE_NAME);
868 } else {
869 splat_vprint(file, SPLAT_KMEM_TEST8_NAME,
870 "Failed to reclaim %u/%d objects from cache %s\n",
871 (unsigned)kcp->kcp_cache->skc_obj_total,
872 SPLAT_KMEM_OBJ_COUNT, SPLAT_KMEM_CACHE_NAME);
873 rc = -ENOMEM;
874 }
875
876 /* Cleanup our mess (for failure case of time expiring) */
877 splat_kmem_cache_test_kcd_free(kcp, kct);
878 out_kct:
879 splat_kmem_cache_test_kct_free(kcp, kct);
880 out_cache:
881 kmem_cache_destroy(kcp->kcp_cache);
882 out_kcp:
883 splat_kmem_cache_test_kcp_free(kcp);
884 out:
885 return rc;
886 }
887
888 /* Test cache aging, we have allocated a large number of objects thus
889 * creating a large number of slabs and then free'd them all. However,
890 * since there should be little memory pressure at the moment those
891 * slabs have not been freed. What we want to see is the slab size
892 * decrease gradually as it becomes clear they will not be be needed.
893 * This should be achievable in less than minute. If it takes longer
894 * than this something has gone wrong.
895 */
896 static int
897 splat_kmem_test9(struct file *file, void *arg)
898 {
899 kmem_cache_priv_t *kcp;
900 kmem_cache_thread_t *kct;
901 int i, rc = 0, count = SPLAT_KMEM_OBJ_COUNT * 128;
902
903 kcp = splat_kmem_cache_test_kcp_alloc(file, SPLAT_KMEM_TEST9_NAME,
904 256, 0, 0);
905 if (!kcp) {
906 splat_vprint(file, SPLAT_KMEM_TEST9_NAME,
907 "Unable to create '%s'\n", "kcp");
908 rc = -ENOMEM;
909 goto out;
910 }
911
912 kcp->kcp_cache =
913 kmem_cache_create(SPLAT_KMEM_CACHE_NAME, kcp->kcp_size, 0,
914 splat_kmem_cache_test_constructor,
915 splat_kmem_cache_test_destructor,
916 NULL, kcp, NULL, 0);
917 if (!kcp->kcp_cache) {
918 splat_vprint(file, SPLAT_KMEM_TEST9_NAME,
919 "Unable to create '%s'\n", SPLAT_KMEM_CACHE_NAME);
920 rc = -ENOMEM;
921 goto out_kcp;
922 }
923
924 kct = splat_kmem_cache_test_kct_alloc(kcp, 0);
925 if (!kct) {
926 splat_vprint(file, SPLAT_KMEM_TEST8_NAME,
927 "Unable to create '%s'\n", "kct");
928 rc = -ENOMEM;
929 goto out_cache;
930 }
931
932 rc = splat_kmem_cache_test_kcd_alloc(kcp, kct, count);
933 if (rc) {
934 splat_vprint(file, SPLAT_KMEM_TEST9_NAME, "Unable to "
935 "allocate from '%s'\n", SPLAT_KMEM_CACHE_NAME);
936 goto out_kct;
937 }
938
939 splat_kmem_cache_test_kcd_free(kcp, kct);
940
941 for (i = 0; i < 60; i++) {
942 splat_kmem_cache_test_debug(file, SPLAT_KMEM_TEST9_NAME, kcp);
943
944 if (kcp->kcp_cache->skc_obj_total == 0)
945 break;
946
947 set_current_state(TASK_INTERRUPTIBLE);
948 schedule_timeout(HZ);
949 }
950
951 if (kcp->kcp_cache->skc_obj_total == 0) {
952 splat_vprint(file, SPLAT_KMEM_TEST9_NAME,
953 "Successfully created %d objects "
954 "in cache %s and reclaimed them\n",
955 count, SPLAT_KMEM_CACHE_NAME);
956 } else {
957 splat_vprint(file, SPLAT_KMEM_TEST9_NAME,
958 "Failed to reclaim %u/%d objects from cache %s\n",
959 (unsigned)kcp->kcp_cache->skc_obj_total, count,
960 SPLAT_KMEM_CACHE_NAME);
961 rc = -ENOMEM;
962 }
963
964 out_kct:
965 splat_kmem_cache_test_kct_free(kcp, kct);
966 out_cache:
967 kmem_cache_destroy(kcp->kcp_cache);
968 out_kcp:
969 splat_kmem_cache_test_kcp_free(kcp);
970 out:
971 return rc;
972 }
973
974 /*
975 * This test creates N threads with a shared kmem cache. They then all
976 * concurrently allocate and free from the cache to stress the locking and
977 * concurrent cache performance. If any one test takes longer than 5
978 * seconds to complete it is treated as a failure and may indicate a
979 * performance regression. On my test system no one test takes more
980 * than 1 second to complete so a 5x slowdown likely a problem.
981 */
982 static int
983 splat_kmem_test10(struct file *file, void *arg)
984 {
985 uint64_t size, alloc, rc = 0;
986
987 for (size = 32; size <= 1024*1024; size *= 2) {
988
989 splat_vprint(file, SPLAT_KMEM_TEST10_NAME, "%-22s %s", "name",
990 "time (sec)\tslabs \tobjs \thash\n");
991 splat_vprint(file, SPLAT_KMEM_TEST10_NAME, "%-22s %s", "",
992 " \ttot/max/calc\ttot/max/calc\n");
993
994 for (alloc = 1; alloc <= 1024; alloc *= 2) {
995
996 /* Skip tests which exceed available memory. We
997 * leverage availrmem here for some extra testing */
998 if (size * alloc * SPLAT_KMEM_THREADS > availrmem / 2)
999 continue;
1000
1001 rc = splat_kmem_cache_thread_test(file, arg,
1002 SPLAT_KMEM_TEST10_NAME, size, alloc, 5);
1003 if (rc)
1004 break;
1005 }
1006 }
1007
1008 return rc;
1009 }
1010
1011 #if 0
1012 /*
1013 * This test creates N threads with a shared kmem cache which overcommits
1014 * memory by 4x. This makes it impossible for the slab to satify the
1015 * thread requirements without having its reclaim hook run which will
1016 * free objects back for use. This behavior is triggered by the linum VM
1017 * detecting a low memory condition on the node and invoking the shrinkers.
1018 * This should allow all the threads to complete while avoiding deadlock
1019 * and for the most part out of memory events. This is very tough on the
1020 * system so it is possible the test app may get oom'ed. This particular
1021 * test has proven troublesome on 32-bit archs with limited virtual
1022 * address space so it only run on 64-bit systems.
1023 */
1024 static int
1025 splat_kmem_test11(struct file *file, void *arg)
1026 {
1027 uint64_t size, alloc, rc;
1028
1029 size = 8 * 1024;
1030 alloc = ((4 * physmem * PAGE_SIZE) / size) / SPLAT_KMEM_THREADS;
1031
1032 splat_vprint(file, SPLAT_KMEM_TEST11_NAME, "%-22s %s", "name",
1033 "time (sec)\tslabs \tobjs \thash\n");
1034 splat_vprint(file, SPLAT_KMEM_TEST11_NAME, "%-22s %s", "",
1035 " \ttot/max/calc\ttot/max/calc\n");
1036
1037 rc = splat_kmem_cache_thread_test(file, arg,
1038 SPLAT_KMEM_TEST11_NAME, size, alloc, 60);
1039
1040 return rc;
1041 }
1042 #endif
1043
1044 /*
1045 * Check vmem_size() behavior by acquiring the alloc/free/total vmem
1046 * space, then allocate a known buffer size from vmem space. We can
1047 * then check that vmem_size() values were updated properly with in
1048 * a fairly small tolerence. The tolerance is important because we
1049 * are not the only vmem consumer on the system. Other unrelated
1050 * allocations might occur during the small test window. The vmem
1051 * allocation itself may also add in a little extra private space to
1052 * the buffer. Finally, verify total space always remains unchanged.
1053 */
1054 static int
1055 splat_kmem_test12(struct file *file, void *arg)
1056 {
1057 size_t alloc1, free1, total1;
1058 size_t alloc2, free2, total2;
1059 int size = 8*1024*1024;
1060 void *ptr;
1061
1062 alloc1 = vmem_size(NULL, VMEM_ALLOC);
1063 free1 = vmem_size(NULL, VMEM_FREE);
1064 total1 = vmem_size(NULL, VMEM_ALLOC | VMEM_FREE);
1065 splat_vprint(file, SPLAT_KMEM_TEST12_NAME, "Vmem alloc=%lu "
1066 "free=%lu total=%lu\n", (unsigned long)alloc1,
1067 (unsigned long)free1, (unsigned long)total1);
1068
1069 splat_vprint(file, SPLAT_KMEM_TEST12_NAME, "Alloc %d bytes\n", size);
1070 ptr = vmem_alloc(size, KM_SLEEP);
1071 if (!ptr) {
1072 splat_vprint(file, SPLAT_KMEM_TEST12_NAME,
1073 "Failed to alloc %d bytes\n", size);
1074 return -ENOMEM;
1075 }
1076
1077 alloc2 = vmem_size(NULL, VMEM_ALLOC);
1078 free2 = vmem_size(NULL, VMEM_FREE);
1079 total2 = vmem_size(NULL, VMEM_ALLOC | VMEM_FREE);
1080 splat_vprint(file, SPLAT_KMEM_TEST12_NAME, "Vmem alloc=%lu "
1081 "free=%lu total=%lu\n", (unsigned long)alloc2,
1082 (unsigned long)free2, (unsigned long)total2);
1083
1084 splat_vprint(file, SPLAT_KMEM_TEST12_NAME, "Free %d bytes\n", size);
1085 vmem_free(ptr, size);
1086 if (alloc2 < (alloc1 + size - (size / 100)) ||
1087 alloc2 > (alloc1 + size + (size / 100))) {
1088 splat_vprint(file, SPLAT_KMEM_TEST12_NAME, "Failed "
1089 "VMEM_ALLOC size: %lu != %lu+%d (+/- 1%%)\n",
1090 (unsigned long)alloc2,(unsigned long)alloc1,size);
1091 return -ERANGE;
1092 }
1093
1094 if (free2 < (free1 - size - (size / 100)) ||
1095 free2 > (free1 - size + (size / 100))) {
1096 splat_vprint(file, SPLAT_KMEM_TEST12_NAME, "Failed "
1097 "VMEM_FREE size: %lu != %lu-%d (+/- 1%%)\n",
1098 (unsigned long)free2, (unsigned long)free1, size);
1099 return -ERANGE;
1100 }
1101
1102 if (total1 != total2) {
1103 splat_vprint(file, SPLAT_KMEM_TEST12_NAME, "Failed "
1104 "VMEM_ALLOC | VMEM_FREE not constant: "
1105 "%lu != %lu\n", (unsigned long)total2,
1106 (unsigned long)total1);
1107 return -ERANGE;
1108 }
1109
1110 splat_vprint(file, SPLAT_KMEM_TEST12_NAME,
1111 "VMEM_ALLOC within tolerance: ~%ld%% (%ld/%d)\n",
1112 (long)abs(alloc1 + (long)size - alloc2) * 100 / (long)size,
1113 (long)abs(alloc1 + (long)size - alloc2), size);
1114 splat_vprint(file, SPLAT_KMEM_TEST12_NAME,
1115 "VMEM_FREE within tolerance: ~%ld%% (%ld/%d)\n",
1116 (long)abs((free1 - (long)size) - free2) * 100 / (long)size,
1117 (long)abs((free1 - (long)size) - free2), size);
1118
1119 return 0;
1120 }
1121
1122 typedef struct dummy_page {
1123 struct list_head dp_list;
1124 char dp_pad[PAGE_SIZE - sizeof(struct list_head)];
1125 } dummy_page_t;
1126
1127 /*
1128 * This test is designed to verify that direct reclaim is functioning as
1129 * expected. We allocate a large number of objects thus creating a large
1130 * number of slabs. We then apply memory pressure and expect that the
1131 * direct reclaim path can easily recover those slabs. The registered
1132 * reclaim function will free the objects and the slab shrinker will call
1133 * it repeatedly until at least a single slab can be freed.
1134 *
1135 * Note it may not be possible to reclaim every last slab via direct reclaim
1136 * without a failure because the shrinker_rwsem may be contended. For this
1137 * reason, quickly reclaiming 3/4 of the slabs is considered a success.
1138 *
1139 * This should all be possible within 10 seconds. For reference, on a
1140 * system with 2G of memory this test takes roughly 0.2 seconds to run.
1141 * It may take longer on larger memory systems but should still easily
1142 * complete in the alloted 10 seconds.
1143 */
1144 static int
1145 splat_kmem_test13(struct file *file, void *arg)
1146 {
1147 kmem_cache_priv_t *kcp;
1148 kmem_cache_thread_t *kct;
1149 dummy_page_t *dp;
1150 struct list_head list;
1151 struct timespec start, delta = { 0, 0 };
1152 int size, count, slabs, fails = 0;
1153 int i, rc = 0, max_time = 10;
1154
1155 size = 128 * 1024;
1156 count = ((physmem * PAGE_SIZE) / 4 / size);
1157
1158 kcp = splat_kmem_cache_test_kcp_alloc(file, SPLAT_KMEM_TEST13_NAME,
1159 size, 0, 0);
1160 if (!kcp) {
1161 splat_vprint(file, SPLAT_KMEM_TEST13_NAME,
1162 "Unable to create '%s'\n", "kcp");
1163 rc = -ENOMEM;
1164 goto out;
1165 }
1166
1167 kcp->kcp_cache =
1168 kmem_cache_create(SPLAT_KMEM_CACHE_NAME, kcp->kcp_size, 0,
1169 splat_kmem_cache_test_constructor,
1170 splat_kmem_cache_test_destructor,
1171 splat_kmem_cache_test_reclaim,
1172 kcp, NULL, 0);
1173 if (!kcp->kcp_cache) {
1174 splat_vprint(file, SPLAT_KMEM_TEST13_NAME,
1175 "Unable to create '%s'\n", SPLAT_KMEM_CACHE_NAME);
1176 rc = -ENOMEM;
1177 goto out_kcp;
1178 }
1179
1180 kct = splat_kmem_cache_test_kct_alloc(kcp, 0);
1181 if (!kct) {
1182 splat_vprint(file, SPLAT_KMEM_TEST13_NAME,
1183 "Unable to create '%s'\n", "kct");
1184 rc = -ENOMEM;
1185 goto out_cache;
1186 }
1187
1188 rc = splat_kmem_cache_test_kcd_alloc(kcp, kct, count);
1189 if (rc) {
1190 splat_vprint(file, SPLAT_KMEM_TEST13_NAME, "Unable to "
1191 "allocate from '%s'\n", SPLAT_KMEM_CACHE_NAME);
1192 goto out_kct;
1193 }
1194
1195 i = 0;
1196 slabs = kcp->kcp_cache->skc_slab_total;
1197 INIT_LIST_HEAD(&list);
1198 start = current_kernel_time();
1199
1200 /* Apply memory pressure */
1201 while (kcp->kcp_cache->skc_slab_total > (slabs >> 2)) {
1202
1203 if ((i % 10000) == 0)
1204 splat_kmem_cache_test_debug(
1205 file, SPLAT_KMEM_TEST13_NAME, kcp);
1206
1207 delta = timespec_sub(current_kernel_time(), start);
1208 if (delta.tv_sec >= max_time) {
1209 splat_vprint(file, SPLAT_KMEM_TEST13_NAME,
1210 "Failed to reclaim 3/4 of cache in %ds, "
1211 "%u/%u slabs remain\n", max_time,
1212 (unsigned)kcp->kcp_cache->skc_slab_total,
1213 slabs);
1214 rc = -ETIME;
1215 break;
1216 }
1217
1218 dp = (dummy_page_t *)__get_free_page(GFP_KERNEL | __GFP_NORETRY);
1219 if (!dp) {
1220 fails++;
1221 splat_vprint(file, SPLAT_KMEM_TEST13_NAME,
1222 "Failed (%d) to allocate page with %u "
1223 "slabs still in the cache\n", fails,
1224 (unsigned)kcp->kcp_cache->skc_slab_total);
1225 continue;
1226 }
1227
1228 list_add(&dp->dp_list, &list);
1229 i++;
1230 }
1231
1232 if (rc == 0)
1233 splat_vprint(file, SPLAT_KMEM_TEST13_NAME,
1234 "Successfully created %u slabs and with %d alloc "
1235 "failures reclaimed 3/4 of them in %d.%03ds\n",
1236 slabs, fails,
1237 (int)delta.tv_sec, (int)delta.tv_nsec / 1000000);
1238
1239 /* Release memory pressure pages */
1240 while (!list_empty(&list)) {
1241 dp = list_entry(list.next, dummy_page_t, dp_list);
1242 list_del_init(&dp->dp_list);
1243 free_page((unsigned long)dp);
1244 }
1245
1246 /* Release remaining kmem cache objects */
1247 splat_kmem_cache_test_kcd_free(kcp, kct);
1248 out_kct:
1249 splat_kmem_cache_test_kct_free(kcp, kct);
1250 out_cache:
1251 kmem_cache_destroy(kcp->kcp_cache);
1252 out_kcp:
1253 splat_kmem_cache_test_kcp_free(kcp);
1254 out:
1255 return rc;
1256 }
1257
1258 splat_subsystem_t *
1259 splat_kmem_init(void)
1260 {
1261 splat_subsystem_t *sub;
1262
1263 sub = kmalloc(sizeof(*sub), GFP_KERNEL);
1264 if (sub == NULL)
1265 return NULL;
1266
1267 memset(sub, 0, sizeof(*sub));
1268 strncpy(sub->desc.name, SPLAT_KMEM_NAME, SPLAT_NAME_SIZE);
1269 strncpy(sub->desc.desc, SPLAT_KMEM_DESC, SPLAT_DESC_SIZE);
1270 INIT_LIST_HEAD(&sub->subsystem_list);
1271 INIT_LIST_HEAD(&sub->test_list);
1272 spin_lock_init(&sub->test_lock);
1273 sub->desc.id = SPLAT_SUBSYSTEM_KMEM;
1274
1275 SPLAT_TEST_INIT(sub, SPLAT_KMEM_TEST1_NAME, SPLAT_KMEM_TEST1_DESC,
1276 SPLAT_KMEM_TEST1_ID, splat_kmem_test1);
1277 SPLAT_TEST_INIT(sub, SPLAT_KMEM_TEST2_NAME, SPLAT_KMEM_TEST2_DESC,
1278 SPLAT_KMEM_TEST2_ID, splat_kmem_test2);
1279 SPLAT_TEST_INIT(sub, SPLAT_KMEM_TEST3_NAME, SPLAT_KMEM_TEST3_DESC,
1280 SPLAT_KMEM_TEST3_ID, splat_kmem_test3);
1281 SPLAT_TEST_INIT(sub, SPLAT_KMEM_TEST4_NAME, SPLAT_KMEM_TEST4_DESC,
1282 SPLAT_KMEM_TEST4_ID, splat_kmem_test4);
1283 SPLAT_TEST_INIT(sub, SPLAT_KMEM_TEST5_NAME, SPLAT_KMEM_TEST5_DESC,
1284 SPLAT_KMEM_TEST5_ID, splat_kmem_test5);
1285 SPLAT_TEST_INIT(sub, SPLAT_KMEM_TEST6_NAME, SPLAT_KMEM_TEST6_DESC,
1286 SPLAT_KMEM_TEST6_ID, splat_kmem_test6);
1287 SPLAT_TEST_INIT(sub, SPLAT_KMEM_TEST7_NAME, SPLAT_KMEM_TEST7_DESC,
1288 SPLAT_KMEM_TEST7_ID, splat_kmem_test7);
1289 SPLAT_TEST_INIT(sub, SPLAT_KMEM_TEST8_NAME, SPLAT_KMEM_TEST8_DESC,
1290 SPLAT_KMEM_TEST8_ID, splat_kmem_test8);
1291 SPLAT_TEST_INIT(sub, SPLAT_KMEM_TEST9_NAME, SPLAT_KMEM_TEST9_DESC,
1292 SPLAT_KMEM_TEST9_ID, splat_kmem_test9);
1293 SPLAT_TEST_INIT(sub, SPLAT_KMEM_TEST10_NAME, SPLAT_KMEM_TEST10_DESC,
1294 SPLAT_KMEM_TEST10_ID, splat_kmem_test10);
1295 #if 0
1296 SPLAT_TEST_INIT(sub, SPLAT_KMEM_TEST11_NAME, SPLAT_KMEM_TEST11_DESC,
1297 SPLAT_KMEM_TEST11_ID, splat_kmem_test11);
1298 #endif
1299 SPLAT_TEST_INIT(sub, SPLAT_KMEM_TEST12_NAME, SPLAT_KMEM_TEST12_DESC,
1300 SPLAT_KMEM_TEST12_ID, splat_kmem_test12);
1301 SPLAT_TEST_INIT(sub, SPLAT_KMEM_TEST13_NAME, SPLAT_KMEM_TEST13_DESC,
1302 SPLAT_KMEM_TEST13_ID, splat_kmem_test13);
1303
1304 return sub;
1305 }
1306
1307 void
1308 splat_kmem_fini(splat_subsystem_t *sub)
1309 {
1310 ASSERT(sub);
1311 SPLAT_TEST_FINI(sub, SPLAT_KMEM_TEST13_ID);
1312 SPLAT_TEST_FINI(sub, SPLAT_KMEM_TEST12_ID);
1313 #if 0
1314 SPLAT_TEST_FINI(sub, SPLAT_KMEM_TEST11_ID);
1315 #endif
1316 SPLAT_TEST_FINI(sub, SPLAT_KMEM_TEST10_ID);
1317 SPLAT_TEST_FINI(sub, SPLAT_KMEM_TEST9_ID);
1318 SPLAT_TEST_FINI(sub, SPLAT_KMEM_TEST8_ID);
1319 SPLAT_TEST_FINI(sub, SPLAT_KMEM_TEST7_ID);
1320 SPLAT_TEST_FINI(sub, SPLAT_KMEM_TEST6_ID);
1321 SPLAT_TEST_FINI(sub, SPLAT_KMEM_TEST5_ID);
1322 SPLAT_TEST_FINI(sub, SPLAT_KMEM_TEST4_ID);
1323 SPLAT_TEST_FINI(sub, SPLAT_KMEM_TEST3_ID);
1324 SPLAT_TEST_FINI(sub, SPLAT_KMEM_TEST2_ID);
1325 SPLAT_TEST_FINI(sub, SPLAT_KMEM_TEST1_ID);
1326
1327 kfree(sub);
1328 }
1329
1330 int
1331 splat_kmem_id(void) {
1332 return SPLAT_SUBSYSTEM_KMEM;
1333 }