]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/arc.c
6662e0fae30e2b727ef3fe50ff95b463cc10a0a1
[mirror_zfs.git] / module / zfs / arc.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2012, Joyent, Inc. All rights reserved.
24 * Copyright (c) 2011, 2017 by Delphix. All rights reserved.
25 * Copyright (c) 2014 by Saso Kiselkov. All rights reserved.
26 * Copyright 2015 Nexenta Systems, Inc. All rights reserved.
27 */
28
29 /*
30 * DVA-based Adjustable Replacement Cache
31 *
32 * While much of the theory of operation used here is
33 * based on the self-tuning, low overhead replacement cache
34 * presented by Megiddo and Modha at FAST 2003, there are some
35 * significant differences:
36 *
37 * 1. The Megiddo and Modha model assumes any page is evictable.
38 * Pages in its cache cannot be "locked" into memory. This makes
39 * the eviction algorithm simple: evict the last page in the list.
40 * This also make the performance characteristics easy to reason
41 * about. Our cache is not so simple. At any given moment, some
42 * subset of the blocks in the cache are un-evictable because we
43 * have handed out a reference to them. Blocks are only evictable
44 * when there are no external references active. This makes
45 * eviction far more problematic: we choose to evict the evictable
46 * blocks that are the "lowest" in the list.
47 *
48 * There are times when it is not possible to evict the requested
49 * space. In these circumstances we are unable to adjust the cache
50 * size. To prevent the cache growing unbounded at these times we
51 * implement a "cache throttle" that slows the flow of new data
52 * into the cache until we can make space available.
53 *
54 * 2. The Megiddo and Modha model assumes a fixed cache size.
55 * Pages are evicted when the cache is full and there is a cache
56 * miss. Our model has a variable sized cache. It grows with
57 * high use, but also tries to react to memory pressure from the
58 * operating system: decreasing its size when system memory is
59 * tight.
60 *
61 * 3. The Megiddo and Modha model assumes a fixed page size. All
62 * elements of the cache are therefore exactly the same size. So
63 * when adjusting the cache size following a cache miss, its simply
64 * a matter of choosing a single page to evict. In our model, we
65 * have variable sized cache blocks (rangeing from 512 bytes to
66 * 128K bytes). We therefore choose a set of blocks to evict to make
67 * space for a cache miss that approximates as closely as possible
68 * the space used by the new block.
69 *
70 * See also: "ARC: A Self-Tuning, Low Overhead Replacement Cache"
71 * by N. Megiddo & D. Modha, FAST 2003
72 */
73
74 /*
75 * The locking model:
76 *
77 * A new reference to a cache buffer can be obtained in two
78 * ways: 1) via a hash table lookup using the DVA as a key,
79 * or 2) via one of the ARC lists. The arc_read() interface
80 * uses method 1, while the internal ARC algorithms for
81 * adjusting the cache use method 2. We therefore provide two
82 * types of locks: 1) the hash table lock array, and 2) the
83 * ARC list locks.
84 *
85 * Buffers do not have their own mutexes, rather they rely on the
86 * hash table mutexes for the bulk of their protection (i.e. most
87 * fields in the arc_buf_hdr_t are protected by these mutexes).
88 *
89 * buf_hash_find() returns the appropriate mutex (held) when it
90 * locates the requested buffer in the hash table. It returns
91 * NULL for the mutex if the buffer was not in the table.
92 *
93 * buf_hash_remove() expects the appropriate hash mutex to be
94 * already held before it is invoked.
95 *
96 * Each ARC state also has a mutex which is used to protect the
97 * buffer list associated with the state. When attempting to
98 * obtain a hash table lock while holding an ARC list lock you
99 * must use: mutex_tryenter() to avoid deadlock. Also note that
100 * the active state mutex must be held before the ghost state mutex.
101 *
102 * It as also possible to register a callback which is run when the
103 * arc_meta_limit is reached and no buffers can be safely evicted. In
104 * this case the arc user should drop a reference on some arc buffers so
105 * they can be reclaimed and the arc_meta_limit honored. For example,
106 * when using the ZPL each dentry holds a references on a znode. These
107 * dentries must be pruned before the arc buffer holding the znode can
108 * be safely evicted.
109 *
110 * Note that the majority of the performance stats are manipulated
111 * with atomic operations.
112 *
113 * The L2ARC uses the l2ad_mtx on each vdev for the following:
114 *
115 * - L2ARC buflist creation
116 * - L2ARC buflist eviction
117 * - L2ARC write completion, which walks L2ARC buflists
118 * - ARC header destruction, as it removes from L2ARC buflists
119 * - ARC header release, as it removes from L2ARC buflists
120 */
121
122 /*
123 * ARC operation:
124 *
125 * Every block that is in the ARC is tracked by an arc_buf_hdr_t structure.
126 * This structure can point either to a block that is still in the cache or to
127 * one that is only accessible in an L2 ARC device, or it can provide
128 * information about a block that was recently evicted. If a block is
129 * only accessible in the L2ARC, then the arc_buf_hdr_t only has enough
130 * information to retrieve it from the L2ARC device. This information is
131 * stored in the l2arc_buf_hdr_t sub-structure of the arc_buf_hdr_t. A block
132 * that is in this state cannot access the data directly.
133 *
134 * Blocks that are actively being referenced or have not been evicted
135 * are cached in the L1ARC. The L1ARC (l1arc_buf_hdr_t) is a structure within
136 * the arc_buf_hdr_t that will point to the data block in memory. A block can
137 * only be read by a consumer if it has an l1arc_buf_hdr_t. The L1ARC
138 * caches data in two ways -- in a list of ARC buffers (arc_buf_t) and
139 * also in the arc_buf_hdr_t's private physical data block pointer (b_pabd).
140 *
141 * The L1ARC's data pointer may or may not be uncompressed. The ARC has the
142 * ability to store the physical data (b_pabd) associated with the DVA of the
143 * arc_buf_hdr_t. Since the b_pabd is a copy of the on-disk physical block,
144 * it will match its on-disk compression characteristics. This behavior can be
145 * disabled by setting 'zfs_compressed_arc_enabled' to B_FALSE. When the
146 * compressed ARC functionality is disabled, the b_pabd will point to an
147 * uncompressed version of the on-disk data.
148 *
149 * Data in the L1ARC is not accessed by consumers of the ARC directly. Each
150 * arc_buf_hdr_t can have multiple ARC buffers (arc_buf_t) which reference it.
151 * Each ARC buffer (arc_buf_t) is being actively accessed by a specific ARC
152 * consumer. The ARC will provide references to this data and will keep it
153 * cached until it is no longer in use. The ARC caches only the L1ARC's physical
154 * data block and will evict any arc_buf_t that is no longer referenced. The
155 * amount of memory consumed by the arc_buf_ts' data buffers can be seen via the
156 * "overhead_size" kstat.
157 *
158 * Depending on the consumer, an arc_buf_t can be requested in uncompressed or
159 * compressed form. The typical case is that consumers will want uncompressed
160 * data, and when that happens a new data buffer is allocated where the data is
161 * decompressed for them to use. Currently the only consumer who wants
162 * compressed arc_buf_t's is "zfs send", when it streams data exactly as it
163 * exists on disk. When this happens, the arc_buf_t's data buffer is shared
164 * with the arc_buf_hdr_t.
165 *
166 * Here is a diagram showing an arc_buf_hdr_t referenced by two arc_buf_t's. The
167 * first one is owned by a compressed send consumer (and therefore references
168 * the same compressed data buffer as the arc_buf_hdr_t) and the second could be
169 * used by any other consumer (and has its own uncompressed copy of the data
170 * buffer).
171 *
172 * arc_buf_hdr_t
173 * +-----------+
174 * | fields |
175 * | common to |
176 * | L1- and |
177 * | L2ARC |
178 * +-----------+
179 * | l2arc_buf_hdr_t
180 * | |
181 * +-----------+
182 * | l1arc_buf_hdr_t
183 * | | arc_buf_t
184 * | b_buf +------------>+-----------+ arc_buf_t
185 * | b_pabd +-+ |b_next +---->+-----------+
186 * +-----------+ | |-----------| |b_next +-->NULL
187 * | |b_comp = T | +-----------+
188 * | |b_data +-+ |b_comp = F |
189 * | +-----------+ | |b_data +-+
190 * +->+------+ | +-----------+ |
191 * compressed | | | |
192 * data | |<--------------+ | uncompressed
193 * +------+ compressed, | data
194 * shared +-->+------+
195 * data | |
196 * | |
197 * +------+
198 *
199 * When a consumer reads a block, the ARC must first look to see if the
200 * arc_buf_hdr_t is cached. If the hdr is cached then the ARC allocates a new
201 * arc_buf_t and either copies uncompressed data into a new data buffer from an
202 * existing uncompressed arc_buf_t, decompresses the hdr's b_pabd buffer into a
203 * new data buffer, or shares the hdr's b_pabd buffer, depending on whether the
204 * hdr is compressed and the desired compression characteristics of the
205 * arc_buf_t consumer. If the arc_buf_t ends up sharing data with the
206 * arc_buf_hdr_t and both of them are uncompressed then the arc_buf_t must be
207 * the last buffer in the hdr's b_buf list, however a shared compressed buf can
208 * be anywhere in the hdr's list.
209 *
210 * The diagram below shows an example of an uncompressed ARC hdr that is
211 * sharing its data with an arc_buf_t (note that the shared uncompressed buf is
212 * the last element in the buf list):
213 *
214 * arc_buf_hdr_t
215 * +-----------+
216 * | |
217 * | |
218 * | |
219 * +-----------+
220 * l2arc_buf_hdr_t| |
221 * | |
222 * +-----------+
223 * l1arc_buf_hdr_t| |
224 * | | arc_buf_t (shared)
225 * | b_buf +------------>+---------+ arc_buf_t
226 * | | |b_next +---->+---------+
227 * | b_pabd +-+ |---------| |b_next +-->NULL
228 * +-----------+ | | | +---------+
229 * | |b_data +-+ | |
230 * | +---------+ | |b_data +-+
231 * +->+------+ | +---------+ |
232 * | | | |
233 * uncompressed | | | |
234 * data +------+ | |
235 * ^ +->+------+ |
236 * | uncompressed | | |
237 * | data | | |
238 * | +------+ |
239 * +---------------------------------+
240 *
241 * Writing to the ARC requires that the ARC first discard the hdr's b_pabd
242 * since the physical block is about to be rewritten. The new data contents
243 * will be contained in the arc_buf_t. As the I/O pipeline performs the write,
244 * it may compress the data before writing it to disk. The ARC will be called
245 * with the transformed data and will bcopy the transformed on-disk block into
246 * a newly allocated b_pabd. Writes are always done into buffers which have
247 * either been loaned (and hence are new and don't have other readers) or
248 * buffers which have been released (and hence have their own hdr, if there
249 * were originally other readers of the buf's original hdr). This ensures that
250 * the ARC only needs to update a single buf and its hdr after a write occurs.
251 *
252 * When the L2ARC is in use, it will also take advantage of the b_pabd. The
253 * L2ARC will always write the contents of b_pabd to the L2ARC. This means
254 * that when compressed ARC is enabled that the L2ARC blocks are identical
255 * to the on-disk block in the main data pool. This provides a significant
256 * advantage since the ARC can leverage the bp's checksum when reading from the
257 * L2ARC to determine if the contents are valid. However, if the compressed
258 * ARC is disabled, then the L2ARC's block must be transformed to look
259 * like the physical block in the main data pool before comparing the
260 * checksum and determining its validity.
261 *
262 * The L1ARC has a slightly different system for storing encrypted data.
263 * Raw (encrypted + possibly compressed) data has a few subtle differences from
264 * data that is just compressed. The biggest difference is that it is not
265 * possible to decrypt encrypted data (or visa versa) if the keys aren't loaded.
266 * The other difference is that encryption cannot be treated as a suggestion.
267 * If a caller would prefer compressed data, but they actually wind up with
268 * uncompressed data the worst thing that could happen is there might be a
269 * performance hit. If the caller requests encrypted data, however, we must be
270 * sure they actually get it or else secret information could be leaked. Raw
271 * data is stored in hdr->b_crypt_hdr.b_rabd. An encrypted header, therefore,
272 * may have both an encrypted version and a decrypted version of its data at
273 * once. When a caller needs a raw arc_buf_t, it is allocated and the data is
274 * copied out of this header. To avoid complications with b_pabd, raw buffers
275 * cannot be shared.
276 */
277
278 #include <sys/spa.h>
279 #include <sys/zio.h>
280 #include <sys/spa_impl.h>
281 #include <sys/zio_compress.h>
282 #include <sys/zio_checksum.h>
283 #include <sys/zfs_context.h>
284 #include <sys/arc.h>
285 #include <sys/refcount.h>
286 #include <sys/vdev.h>
287 #include <sys/vdev_impl.h>
288 #include <sys/dsl_pool.h>
289 #include <sys/zio_checksum.h>
290 #include <sys/multilist.h>
291 #include <sys/abd.h>
292 #include <sys/zil.h>
293 #include <sys/fm/fs/zfs.h>
294 #ifdef _KERNEL
295 #include <sys/vmsystm.h>
296 #include <vm/anon.h>
297 #include <sys/fs/swapnode.h>
298 #include <sys/zpl.h>
299 #include <linux/mm_compat.h>
300 #include <linux/page_compat.h>
301 #endif
302 #include <sys/callb.h>
303 #include <sys/kstat.h>
304 #include <sys/dmu_tx.h>
305 #include <zfs_fletcher.h>
306 #include <sys/arc_impl.h>
307 #include <sys/trace_arc.h>
308
309 #ifndef _KERNEL
310 /* set with ZFS_DEBUG=watch, to enable watchpoints on frozen buffers */
311 boolean_t arc_watch = B_FALSE;
312 #endif
313
314 static kmutex_t arc_reclaim_lock;
315 static kcondvar_t arc_reclaim_thread_cv;
316 static boolean_t arc_reclaim_thread_exit;
317 static kcondvar_t arc_reclaim_waiters_cv;
318
319 /*
320 * The number of headers to evict in arc_evict_state_impl() before
321 * dropping the sublist lock and evicting from another sublist. A lower
322 * value means we're more likely to evict the "correct" header (i.e. the
323 * oldest header in the arc state), but comes with higher overhead
324 * (i.e. more invocations of arc_evict_state_impl()).
325 */
326 int zfs_arc_evict_batch_limit = 10;
327
328 /* number of seconds before growing cache again */
329 static int arc_grow_retry = 5;
330
331 /* shift of arc_c for calculating overflow limit in arc_get_data_impl */
332 int zfs_arc_overflow_shift = 8;
333
334 /* shift of arc_c for calculating both min and max arc_p */
335 static int arc_p_min_shift = 4;
336
337 /* log2(fraction of arc to reclaim) */
338 static int arc_shrink_shift = 7;
339
340 /* percent of pagecache to reclaim arc to */
341 #ifdef _KERNEL
342 static uint_t zfs_arc_pc_percent = 0;
343 #endif
344
345 /*
346 * log2(fraction of ARC which must be free to allow growing).
347 * I.e. If there is less than arc_c >> arc_no_grow_shift free memory,
348 * when reading a new block into the ARC, we will evict an equal-sized block
349 * from the ARC.
350 *
351 * This must be less than arc_shrink_shift, so that when we shrink the ARC,
352 * we will still not allow it to grow.
353 */
354 int arc_no_grow_shift = 5;
355
356
357 /*
358 * minimum lifespan of a prefetch block in clock ticks
359 * (initialized in arc_init())
360 */
361 static int arc_min_prefetch_ms;
362 static int arc_min_prescient_prefetch_ms;
363
364 /*
365 * If this percent of memory is free, don't throttle.
366 */
367 int arc_lotsfree_percent = 10;
368
369 static int arc_dead;
370
371 /*
372 * The arc has filled available memory and has now warmed up.
373 */
374 static boolean_t arc_warm;
375
376 /*
377 * log2 fraction of the zio arena to keep free.
378 */
379 int arc_zio_arena_free_shift = 2;
380
381 /*
382 * These tunables are for performance analysis.
383 */
384 unsigned long zfs_arc_max = 0;
385 unsigned long zfs_arc_min = 0;
386 unsigned long zfs_arc_meta_limit = 0;
387 unsigned long zfs_arc_meta_min = 0;
388 unsigned long zfs_arc_dnode_limit = 0;
389 unsigned long zfs_arc_dnode_reduce_percent = 10;
390 int zfs_arc_grow_retry = 0;
391 int zfs_arc_shrink_shift = 0;
392 int zfs_arc_p_min_shift = 0;
393 int zfs_arc_average_blocksize = 8 * 1024; /* 8KB */
394
395 int zfs_compressed_arc_enabled = B_TRUE;
396
397 /*
398 * ARC will evict meta buffers that exceed arc_meta_limit. This
399 * tunable make arc_meta_limit adjustable for different workloads.
400 */
401 unsigned long zfs_arc_meta_limit_percent = 75;
402
403 /*
404 * Percentage that can be consumed by dnodes of ARC meta buffers.
405 */
406 unsigned long zfs_arc_dnode_limit_percent = 10;
407
408 /*
409 * These tunables are Linux specific
410 */
411 unsigned long zfs_arc_sys_free = 0;
412 int zfs_arc_min_prefetch_ms = 0;
413 int zfs_arc_min_prescient_prefetch_ms = 0;
414 int zfs_arc_p_dampener_disable = 1;
415 int zfs_arc_meta_prune = 10000;
416 int zfs_arc_meta_strategy = ARC_STRATEGY_META_BALANCED;
417 int zfs_arc_meta_adjust_restarts = 4096;
418 int zfs_arc_lotsfree_percent = 10;
419
420 /* The 6 states: */
421 static arc_state_t ARC_anon;
422 static arc_state_t ARC_mru;
423 static arc_state_t ARC_mru_ghost;
424 static arc_state_t ARC_mfu;
425 static arc_state_t ARC_mfu_ghost;
426 static arc_state_t ARC_l2c_only;
427
428 typedef struct arc_stats {
429 kstat_named_t arcstat_hits;
430 kstat_named_t arcstat_misses;
431 kstat_named_t arcstat_demand_data_hits;
432 kstat_named_t arcstat_demand_data_misses;
433 kstat_named_t arcstat_demand_metadata_hits;
434 kstat_named_t arcstat_demand_metadata_misses;
435 kstat_named_t arcstat_prefetch_data_hits;
436 kstat_named_t arcstat_prefetch_data_misses;
437 kstat_named_t arcstat_prefetch_metadata_hits;
438 kstat_named_t arcstat_prefetch_metadata_misses;
439 kstat_named_t arcstat_mru_hits;
440 kstat_named_t arcstat_mru_ghost_hits;
441 kstat_named_t arcstat_mfu_hits;
442 kstat_named_t arcstat_mfu_ghost_hits;
443 kstat_named_t arcstat_deleted;
444 /*
445 * Number of buffers that could not be evicted because the hash lock
446 * was held by another thread. The lock may not necessarily be held
447 * by something using the same buffer, since hash locks are shared
448 * by multiple buffers.
449 */
450 kstat_named_t arcstat_mutex_miss;
451 /*
452 * Number of buffers skipped when updating the access state due to the
453 * header having already been released after acquiring the hash lock.
454 */
455 kstat_named_t arcstat_access_skip;
456 /*
457 * Number of buffers skipped because they have I/O in progress, are
458 * indirect prefetch buffers that have not lived long enough, or are
459 * not from the spa we're trying to evict from.
460 */
461 kstat_named_t arcstat_evict_skip;
462 /*
463 * Number of times arc_evict_state() was unable to evict enough
464 * buffers to reach its target amount.
465 */
466 kstat_named_t arcstat_evict_not_enough;
467 kstat_named_t arcstat_evict_l2_cached;
468 kstat_named_t arcstat_evict_l2_eligible;
469 kstat_named_t arcstat_evict_l2_ineligible;
470 kstat_named_t arcstat_evict_l2_skip;
471 kstat_named_t arcstat_hash_elements;
472 kstat_named_t arcstat_hash_elements_max;
473 kstat_named_t arcstat_hash_collisions;
474 kstat_named_t arcstat_hash_chains;
475 kstat_named_t arcstat_hash_chain_max;
476 kstat_named_t arcstat_p;
477 kstat_named_t arcstat_c;
478 kstat_named_t arcstat_c_min;
479 kstat_named_t arcstat_c_max;
480 kstat_named_t arcstat_size;
481 /*
482 * Number of compressed bytes stored in the arc_buf_hdr_t's b_pabd.
483 * Note that the compressed bytes may match the uncompressed bytes
484 * if the block is either not compressed or compressed arc is disabled.
485 */
486 kstat_named_t arcstat_compressed_size;
487 /*
488 * Uncompressed size of the data stored in b_pabd. If compressed
489 * arc is disabled then this value will be identical to the stat
490 * above.
491 */
492 kstat_named_t arcstat_uncompressed_size;
493 /*
494 * Number of bytes stored in all the arc_buf_t's. This is classified
495 * as "overhead" since this data is typically short-lived and will
496 * be evicted from the arc when it becomes unreferenced unless the
497 * zfs_keep_uncompressed_metadata or zfs_keep_uncompressed_level
498 * values have been set (see comment in dbuf.c for more information).
499 */
500 kstat_named_t arcstat_overhead_size;
501 /*
502 * Number of bytes consumed by internal ARC structures necessary
503 * for tracking purposes; these structures are not actually
504 * backed by ARC buffers. This includes arc_buf_hdr_t structures
505 * (allocated via arc_buf_hdr_t_full and arc_buf_hdr_t_l2only
506 * caches), and arc_buf_t structures (allocated via arc_buf_t
507 * cache).
508 */
509 kstat_named_t arcstat_hdr_size;
510 /*
511 * Number of bytes consumed by ARC buffers of type equal to
512 * ARC_BUFC_DATA. This is generally consumed by buffers backing
513 * on disk user data (e.g. plain file contents).
514 */
515 kstat_named_t arcstat_data_size;
516 /*
517 * Number of bytes consumed by ARC buffers of type equal to
518 * ARC_BUFC_METADATA. This is generally consumed by buffers
519 * backing on disk data that is used for internal ZFS
520 * structures (e.g. ZAP, dnode, indirect blocks, etc).
521 */
522 kstat_named_t arcstat_metadata_size;
523 /*
524 * Number of bytes consumed by dmu_buf_impl_t objects.
525 */
526 kstat_named_t arcstat_dbuf_size;
527 /*
528 * Number of bytes consumed by dnode_t objects.
529 */
530 kstat_named_t arcstat_dnode_size;
531 /*
532 * Number of bytes consumed by bonus buffers.
533 */
534 kstat_named_t arcstat_bonus_size;
535 /*
536 * Total number of bytes consumed by ARC buffers residing in the
537 * arc_anon state. This includes *all* buffers in the arc_anon
538 * state; e.g. data, metadata, evictable, and unevictable buffers
539 * are all included in this value.
540 */
541 kstat_named_t arcstat_anon_size;
542 /*
543 * Number of bytes consumed by ARC buffers that meet the
544 * following criteria: backing buffers of type ARC_BUFC_DATA,
545 * residing in the arc_anon state, and are eligible for eviction
546 * (e.g. have no outstanding holds on the buffer).
547 */
548 kstat_named_t arcstat_anon_evictable_data;
549 /*
550 * Number of bytes consumed by ARC buffers that meet the
551 * following criteria: backing buffers of type ARC_BUFC_METADATA,
552 * residing in the arc_anon state, and are eligible for eviction
553 * (e.g. have no outstanding holds on the buffer).
554 */
555 kstat_named_t arcstat_anon_evictable_metadata;
556 /*
557 * Total number of bytes consumed by ARC buffers residing in the
558 * arc_mru state. This includes *all* buffers in the arc_mru
559 * state; e.g. data, metadata, evictable, and unevictable buffers
560 * are all included in this value.
561 */
562 kstat_named_t arcstat_mru_size;
563 /*
564 * Number of bytes consumed by ARC buffers that meet the
565 * following criteria: backing buffers of type ARC_BUFC_DATA,
566 * residing in the arc_mru state, and are eligible for eviction
567 * (e.g. have no outstanding holds on the buffer).
568 */
569 kstat_named_t arcstat_mru_evictable_data;
570 /*
571 * Number of bytes consumed by ARC buffers that meet the
572 * following criteria: backing buffers of type ARC_BUFC_METADATA,
573 * residing in the arc_mru state, and are eligible for eviction
574 * (e.g. have no outstanding holds on the buffer).
575 */
576 kstat_named_t arcstat_mru_evictable_metadata;
577 /*
578 * Total number of bytes that *would have been* consumed by ARC
579 * buffers in the arc_mru_ghost state. The key thing to note
580 * here, is the fact that this size doesn't actually indicate
581 * RAM consumption. The ghost lists only consist of headers and
582 * don't actually have ARC buffers linked off of these headers.
583 * Thus, *if* the headers had associated ARC buffers, these
584 * buffers *would have* consumed this number of bytes.
585 */
586 kstat_named_t arcstat_mru_ghost_size;
587 /*
588 * Number of bytes that *would have been* consumed by ARC
589 * buffers that are eligible for eviction, of type
590 * ARC_BUFC_DATA, and linked off the arc_mru_ghost state.
591 */
592 kstat_named_t arcstat_mru_ghost_evictable_data;
593 /*
594 * Number of bytes that *would have been* consumed by ARC
595 * buffers that are eligible for eviction, of type
596 * ARC_BUFC_METADATA, and linked off the arc_mru_ghost state.
597 */
598 kstat_named_t arcstat_mru_ghost_evictable_metadata;
599 /*
600 * Total number of bytes consumed by ARC buffers residing in the
601 * arc_mfu state. This includes *all* buffers in the arc_mfu
602 * state; e.g. data, metadata, evictable, and unevictable buffers
603 * are all included in this value.
604 */
605 kstat_named_t arcstat_mfu_size;
606 /*
607 * Number of bytes consumed by ARC buffers that are eligible for
608 * eviction, of type ARC_BUFC_DATA, and reside in the arc_mfu
609 * state.
610 */
611 kstat_named_t arcstat_mfu_evictable_data;
612 /*
613 * Number of bytes consumed by ARC buffers that are eligible for
614 * eviction, of type ARC_BUFC_METADATA, and reside in the
615 * arc_mfu state.
616 */
617 kstat_named_t arcstat_mfu_evictable_metadata;
618 /*
619 * Total number of bytes that *would have been* consumed by ARC
620 * buffers in the arc_mfu_ghost state. See the comment above
621 * arcstat_mru_ghost_size for more details.
622 */
623 kstat_named_t arcstat_mfu_ghost_size;
624 /*
625 * Number of bytes that *would have been* consumed by ARC
626 * buffers that are eligible for eviction, of type
627 * ARC_BUFC_DATA, and linked off the arc_mfu_ghost state.
628 */
629 kstat_named_t arcstat_mfu_ghost_evictable_data;
630 /*
631 * Number of bytes that *would have been* consumed by ARC
632 * buffers that are eligible for eviction, of type
633 * ARC_BUFC_METADATA, and linked off the arc_mru_ghost state.
634 */
635 kstat_named_t arcstat_mfu_ghost_evictable_metadata;
636 kstat_named_t arcstat_l2_hits;
637 kstat_named_t arcstat_l2_misses;
638 kstat_named_t arcstat_l2_feeds;
639 kstat_named_t arcstat_l2_rw_clash;
640 kstat_named_t arcstat_l2_read_bytes;
641 kstat_named_t arcstat_l2_write_bytes;
642 kstat_named_t arcstat_l2_writes_sent;
643 kstat_named_t arcstat_l2_writes_done;
644 kstat_named_t arcstat_l2_writes_error;
645 kstat_named_t arcstat_l2_writes_lock_retry;
646 kstat_named_t arcstat_l2_evict_lock_retry;
647 kstat_named_t arcstat_l2_evict_reading;
648 kstat_named_t arcstat_l2_evict_l1cached;
649 kstat_named_t arcstat_l2_free_on_write;
650 kstat_named_t arcstat_l2_abort_lowmem;
651 kstat_named_t arcstat_l2_cksum_bad;
652 kstat_named_t arcstat_l2_io_error;
653 kstat_named_t arcstat_l2_lsize;
654 kstat_named_t arcstat_l2_psize;
655 kstat_named_t arcstat_l2_hdr_size;
656 kstat_named_t arcstat_memory_throttle_count;
657 kstat_named_t arcstat_memory_direct_count;
658 kstat_named_t arcstat_memory_indirect_count;
659 kstat_named_t arcstat_memory_all_bytes;
660 kstat_named_t arcstat_memory_free_bytes;
661 kstat_named_t arcstat_memory_available_bytes;
662 kstat_named_t arcstat_no_grow;
663 kstat_named_t arcstat_tempreserve;
664 kstat_named_t arcstat_loaned_bytes;
665 kstat_named_t arcstat_prune;
666 kstat_named_t arcstat_meta_used;
667 kstat_named_t arcstat_meta_limit;
668 kstat_named_t arcstat_dnode_limit;
669 kstat_named_t arcstat_meta_max;
670 kstat_named_t arcstat_meta_min;
671 kstat_named_t arcstat_async_upgrade_sync;
672 kstat_named_t arcstat_demand_hit_predictive_prefetch;
673 kstat_named_t arcstat_demand_hit_prescient_prefetch;
674 kstat_named_t arcstat_need_free;
675 kstat_named_t arcstat_sys_free;
676 kstat_named_t arcstat_raw_size;
677 } arc_stats_t;
678
679 static arc_stats_t arc_stats = {
680 { "hits", KSTAT_DATA_UINT64 },
681 { "misses", KSTAT_DATA_UINT64 },
682 { "demand_data_hits", KSTAT_DATA_UINT64 },
683 { "demand_data_misses", KSTAT_DATA_UINT64 },
684 { "demand_metadata_hits", KSTAT_DATA_UINT64 },
685 { "demand_metadata_misses", KSTAT_DATA_UINT64 },
686 { "prefetch_data_hits", KSTAT_DATA_UINT64 },
687 { "prefetch_data_misses", KSTAT_DATA_UINT64 },
688 { "prefetch_metadata_hits", KSTAT_DATA_UINT64 },
689 { "prefetch_metadata_misses", KSTAT_DATA_UINT64 },
690 { "mru_hits", KSTAT_DATA_UINT64 },
691 { "mru_ghost_hits", KSTAT_DATA_UINT64 },
692 { "mfu_hits", KSTAT_DATA_UINT64 },
693 { "mfu_ghost_hits", KSTAT_DATA_UINT64 },
694 { "deleted", KSTAT_DATA_UINT64 },
695 { "mutex_miss", KSTAT_DATA_UINT64 },
696 { "access_skip", KSTAT_DATA_UINT64 },
697 { "evict_skip", KSTAT_DATA_UINT64 },
698 { "evict_not_enough", KSTAT_DATA_UINT64 },
699 { "evict_l2_cached", KSTAT_DATA_UINT64 },
700 { "evict_l2_eligible", KSTAT_DATA_UINT64 },
701 { "evict_l2_ineligible", KSTAT_DATA_UINT64 },
702 { "evict_l2_skip", KSTAT_DATA_UINT64 },
703 { "hash_elements", KSTAT_DATA_UINT64 },
704 { "hash_elements_max", KSTAT_DATA_UINT64 },
705 { "hash_collisions", KSTAT_DATA_UINT64 },
706 { "hash_chains", KSTAT_DATA_UINT64 },
707 { "hash_chain_max", KSTAT_DATA_UINT64 },
708 { "p", KSTAT_DATA_UINT64 },
709 { "c", KSTAT_DATA_UINT64 },
710 { "c_min", KSTAT_DATA_UINT64 },
711 { "c_max", KSTAT_DATA_UINT64 },
712 { "size", KSTAT_DATA_UINT64 },
713 { "compressed_size", KSTAT_DATA_UINT64 },
714 { "uncompressed_size", KSTAT_DATA_UINT64 },
715 { "overhead_size", KSTAT_DATA_UINT64 },
716 { "hdr_size", KSTAT_DATA_UINT64 },
717 { "data_size", KSTAT_DATA_UINT64 },
718 { "metadata_size", KSTAT_DATA_UINT64 },
719 { "dbuf_size", KSTAT_DATA_UINT64 },
720 { "dnode_size", KSTAT_DATA_UINT64 },
721 { "bonus_size", KSTAT_DATA_UINT64 },
722 { "anon_size", KSTAT_DATA_UINT64 },
723 { "anon_evictable_data", KSTAT_DATA_UINT64 },
724 { "anon_evictable_metadata", KSTAT_DATA_UINT64 },
725 { "mru_size", KSTAT_DATA_UINT64 },
726 { "mru_evictable_data", KSTAT_DATA_UINT64 },
727 { "mru_evictable_metadata", KSTAT_DATA_UINT64 },
728 { "mru_ghost_size", KSTAT_DATA_UINT64 },
729 { "mru_ghost_evictable_data", KSTAT_DATA_UINT64 },
730 { "mru_ghost_evictable_metadata", KSTAT_DATA_UINT64 },
731 { "mfu_size", KSTAT_DATA_UINT64 },
732 { "mfu_evictable_data", KSTAT_DATA_UINT64 },
733 { "mfu_evictable_metadata", KSTAT_DATA_UINT64 },
734 { "mfu_ghost_size", KSTAT_DATA_UINT64 },
735 { "mfu_ghost_evictable_data", KSTAT_DATA_UINT64 },
736 { "mfu_ghost_evictable_metadata", KSTAT_DATA_UINT64 },
737 { "l2_hits", KSTAT_DATA_UINT64 },
738 { "l2_misses", KSTAT_DATA_UINT64 },
739 { "l2_feeds", KSTAT_DATA_UINT64 },
740 { "l2_rw_clash", KSTAT_DATA_UINT64 },
741 { "l2_read_bytes", KSTAT_DATA_UINT64 },
742 { "l2_write_bytes", KSTAT_DATA_UINT64 },
743 { "l2_writes_sent", KSTAT_DATA_UINT64 },
744 { "l2_writes_done", KSTAT_DATA_UINT64 },
745 { "l2_writes_error", KSTAT_DATA_UINT64 },
746 { "l2_writes_lock_retry", KSTAT_DATA_UINT64 },
747 { "l2_evict_lock_retry", KSTAT_DATA_UINT64 },
748 { "l2_evict_reading", KSTAT_DATA_UINT64 },
749 { "l2_evict_l1cached", KSTAT_DATA_UINT64 },
750 { "l2_free_on_write", KSTAT_DATA_UINT64 },
751 { "l2_abort_lowmem", KSTAT_DATA_UINT64 },
752 { "l2_cksum_bad", KSTAT_DATA_UINT64 },
753 { "l2_io_error", KSTAT_DATA_UINT64 },
754 { "l2_size", KSTAT_DATA_UINT64 },
755 { "l2_asize", KSTAT_DATA_UINT64 },
756 { "l2_hdr_size", KSTAT_DATA_UINT64 },
757 { "memory_throttle_count", KSTAT_DATA_UINT64 },
758 { "memory_direct_count", KSTAT_DATA_UINT64 },
759 { "memory_indirect_count", KSTAT_DATA_UINT64 },
760 { "memory_all_bytes", KSTAT_DATA_UINT64 },
761 { "memory_free_bytes", KSTAT_DATA_UINT64 },
762 { "memory_available_bytes", KSTAT_DATA_INT64 },
763 { "arc_no_grow", KSTAT_DATA_UINT64 },
764 { "arc_tempreserve", KSTAT_DATA_UINT64 },
765 { "arc_loaned_bytes", KSTAT_DATA_UINT64 },
766 { "arc_prune", KSTAT_DATA_UINT64 },
767 { "arc_meta_used", KSTAT_DATA_UINT64 },
768 { "arc_meta_limit", KSTAT_DATA_UINT64 },
769 { "arc_dnode_limit", KSTAT_DATA_UINT64 },
770 { "arc_meta_max", KSTAT_DATA_UINT64 },
771 { "arc_meta_min", KSTAT_DATA_UINT64 },
772 { "async_upgrade_sync", KSTAT_DATA_UINT64 },
773 { "demand_hit_predictive_prefetch", KSTAT_DATA_UINT64 },
774 { "demand_hit_prescient_prefetch", KSTAT_DATA_UINT64 },
775 { "arc_need_free", KSTAT_DATA_UINT64 },
776 { "arc_sys_free", KSTAT_DATA_UINT64 },
777 { "arc_raw_size", KSTAT_DATA_UINT64 }
778 };
779
780 #define ARCSTAT(stat) (arc_stats.stat.value.ui64)
781
782 #define ARCSTAT_INCR(stat, val) \
783 atomic_add_64(&arc_stats.stat.value.ui64, (val))
784
785 #define ARCSTAT_BUMP(stat) ARCSTAT_INCR(stat, 1)
786 #define ARCSTAT_BUMPDOWN(stat) ARCSTAT_INCR(stat, -1)
787
788 #define ARCSTAT_MAX(stat, val) { \
789 uint64_t m; \
790 while ((val) > (m = arc_stats.stat.value.ui64) && \
791 (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val)))) \
792 continue; \
793 }
794
795 #define ARCSTAT_MAXSTAT(stat) \
796 ARCSTAT_MAX(stat##_max, arc_stats.stat.value.ui64)
797
798 /*
799 * We define a macro to allow ARC hits/misses to be easily broken down by
800 * two separate conditions, giving a total of four different subtypes for
801 * each of hits and misses (so eight statistics total).
802 */
803 #define ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \
804 if (cond1) { \
805 if (cond2) { \
806 ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \
807 } else { \
808 ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \
809 } \
810 } else { \
811 if (cond2) { \
812 ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \
813 } else { \
814 ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\
815 } \
816 }
817
818 kstat_t *arc_ksp;
819 static arc_state_t *arc_anon;
820 static arc_state_t *arc_mru;
821 static arc_state_t *arc_mru_ghost;
822 static arc_state_t *arc_mfu;
823 static arc_state_t *arc_mfu_ghost;
824 static arc_state_t *arc_l2c_only;
825
826 /*
827 * There are several ARC variables that are critical to export as kstats --
828 * but we don't want to have to grovel around in the kstat whenever we wish to
829 * manipulate them. For these variables, we therefore define them to be in
830 * terms of the statistic variable. This assures that we are not introducing
831 * the possibility of inconsistency by having shadow copies of the variables,
832 * while still allowing the code to be readable.
833 */
834 #define arc_size ARCSTAT(arcstat_size) /* actual total arc size */
835 #define arc_p ARCSTAT(arcstat_p) /* target size of MRU */
836 #define arc_c ARCSTAT(arcstat_c) /* target size of cache */
837 #define arc_c_min ARCSTAT(arcstat_c_min) /* min target cache size */
838 #define arc_c_max ARCSTAT(arcstat_c_max) /* max target cache size */
839 #define arc_no_grow ARCSTAT(arcstat_no_grow) /* do not grow cache size */
840 #define arc_tempreserve ARCSTAT(arcstat_tempreserve)
841 #define arc_loaned_bytes ARCSTAT(arcstat_loaned_bytes)
842 #define arc_meta_limit ARCSTAT(arcstat_meta_limit) /* max size for metadata */
843 #define arc_dnode_limit ARCSTAT(arcstat_dnode_limit) /* max size for dnodes */
844 #define arc_meta_min ARCSTAT(arcstat_meta_min) /* min size for metadata */
845 #define arc_meta_used ARCSTAT(arcstat_meta_used) /* size of metadata */
846 #define arc_meta_max ARCSTAT(arcstat_meta_max) /* max size of metadata */
847 #define arc_dbuf_size ARCSTAT(arcstat_dbuf_size) /* dbuf metadata */
848 #define arc_dnode_size ARCSTAT(arcstat_dnode_size) /* dnode metadata */
849 #define arc_bonus_size ARCSTAT(arcstat_bonus_size) /* bonus buffer metadata */
850 #define arc_need_free ARCSTAT(arcstat_need_free) /* bytes to be freed */
851 #define arc_sys_free ARCSTAT(arcstat_sys_free) /* target system free bytes */
852
853 /* size of all b_rabd's in entire arc */
854 #define arc_raw_size ARCSTAT(arcstat_raw_size)
855 /* compressed size of entire arc */
856 #define arc_compressed_size ARCSTAT(arcstat_compressed_size)
857 /* uncompressed size of entire arc */
858 #define arc_uncompressed_size ARCSTAT(arcstat_uncompressed_size)
859 /* number of bytes in the arc from arc_buf_t's */
860 #define arc_overhead_size ARCSTAT(arcstat_overhead_size)
861
862 static list_t arc_prune_list;
863 static kmutex_t arc_prune_mtx;
864 static taskq_t *arc_prune_taskq;
865
866 #define GHOST_STATE(state) \
867 ((state) == arc_mru_ghost || (state) == arc_mfu_ghost || \
868 (state) == arc_l2c_only)
869
870 #define HDR_IN_HASH_TABLE(hdr) ((hdr)->b_flags & ARC_FLAG_IN_HASH_TABLE)
871 #define HDR_IO_IN_PROGRESS(hdr) ((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS)
872 #define HDR_IO_ERROR(hdr) ((hdr)->b_flags & ARC_FLAG_IO_ERROR)
873 #define HDR_PREFETCH(hdr) ((hdr)->b_flags & ARC_FLAG_PREFETCH)
874 #define HDR_PRESCIENT_PREFETCH(hdr) \
875 ((hdr)->b_flags & ARC_FLAG_PRESCIENT_PREFETCH)
876 #define HDR_COMPRESSION_ENABLED(hdr) \
877 ((hdr)->b_flags & ARC_FLAG_COMPRESSED_ARC)
878
879 #define HDR_L2CACHE(hdr) ((hdr)->b_flags & ARC_FLAG_L2CACHE)
880 #define HDR_L2_READING(hdr) \
881 (((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS) && \
882 ((hdr)->b_flags & ARC_FLAG_HAS_L2HDR))
883 #define HDR_L2_WRITING(hdr) ((hdr)->b_flags & ARC_FLAG_L2_WRITING)
884 #define HDR_L2_EVICTED(hdr) ((hdr)->b_flags & ARC_FLAG_L2_EVICTED)
885 #define HDR_L2_WRITE_HEAD(hdr) ((hdr)->b_flags & ARC_FLAG_L2_WRITE_HEAD)
886 #define HDR_PROTECTED(hdr) ((hdr)->b_flags & ARC_FLAG_PROTECTED)
887 #define HDR_NOAUTH(hdr) ((hdr)->b_flags & ARC_FLAG_NOAUTH)
888 #define HDR_SHARED_DATA(hdr) ((hdr)->b_flags & ARC_FLAG_SHARED_DATA)
889
890 #define HDR_ISTYPE_METADATA(hdr) \
891 ((hdr)->b_flags & ARC_FLAG_BUFC_METADATA)
892 #define HDR_ISTYPE_DATA(hdr) (!HDR_ISTYPE_METADATA(hdr))
893
894 #define HDR_HAS_L1HDR(hdr) ((hdr)->b_flags & ARC_FLAG_HAS_L1HDR)
895 #define HDR_HAS_L2HDR(hdr) ((hdr)->b_flags & ARC_FLAG_HAS_L2HDR)
896 #define HDR_HAS_RABD(hdr) \
897 (HDR_HAS_L1HDR(hdr) && HDR_PROTECTED(hdr) && \
898 (hdr)->b_crypt_hdr.b_rabd != NULL)
899 #define HDR_ENCRYPTED(hdr) \
900 (HDR_PROTECTED(hdr) && DMU_OT_IS_ENCRYPTED((hdr)->b_crypt_hdr.b_ot))
901 #define HDR_AUTHENTICATED(hdr) \
902 (HDR_PROTECTED(hdr) && !DMU_OT_IS_ENCRYPTED((hdr)->b_crypt_hdr.b_ot))
903
904 /* For storing compression mode in b_flags */
905 #define HDR_COMPRESS_OFFSET (highbit64(ARC_FLAG_COMPRESS_0) - 1)
906
907 #define HDR_GET_COMPRESS(hdr) ((enum zio_compress)BF32_GET((hdr)->b_flags, \
908 HDR_COMPRESS_OFFSET, SPA_COMPRESSBITS))
909 #define HDR_SET_COMPRESS(hdr, cmp) BF32_SET((hdr)->b_flags, \
910 HDR_COMPRESS_OFFSET, SPA_COMPRESSBITS, (cmp));
911
912 #define ARC_BUF_LAST(buf) ((buf)->b_next == NULL)
913 #define ARC_BUF_SHARED(buf) ((buf)->b_flags & ARC_BUF_FLAG_SHARED)
914 #define ARC_BUF_COMPRESSED(buf) ((buf)->b_flags & ARC_BUF_FLAG_COMPRESSED)
915 #define ARC_BUF_ENCRYPTED(buf) ((buf)->b_flags & ARC_BUF_FLAG_ENCRYPTED)
916
917 /*
918 * Other sizes
919 */
920
921 #define HDR_FULL_CRYPT_SIZE ((int64_t)sizeof (arc_buf_hdr_t))
922 #define HDR_FULL_SIZE ((int64_t)offsetof(arc_buf_hdr_t, b_crypt_hdr))
923 #define HDR_L2ONLY_SIZE ((int64_t)offsetof(arc_buf_hdr_t, b_l1hdr))
924
925 /*
926 * Hash table routines
927 */
928
929 #define HT_LOCK_ALIGN 64
930 #define HT_LOCK_PAD (P2NPHASE(sizeof (kmutex_t), (HT_LOCK_ALIGN)))
931
932 struct ht_lock {
933 kmutex_t ht_lock;
934 #ifdef _KERNEL
935 unsigned char pad[HT_LOCK_PAD];
936 #endif
937 };
938
939 #define BUF_LOCKS 8192
940 typedef struct buf_hash_table {
941 uint64_t ht_mask;
942 arc_buf_hdr_t **ht_table;
943 struct ht_lock ht_locks[BUF_LOCKS];
944 } buf_hash_table_t;
945
946 static buf_hash_table_t buf_hash_table;
947
948 #define BUF_HASH_INDEX(spa, dva, birth) \
949 (buf_hash(spa, dva, birth) & buf_hash_table.ht_mask)
950 #define BUF_HASH_LOCK_NTRY(idx) (buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)])
951 #define BUF_HASH_LOCK(idx) (&(BUF_HASH_LOCK_NTRY(idx).ht_lock))
952 #define HDR_LOCK(hdr) \
953 (BUF_HASH_LOCK(BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth)))
954
955 uint64_t zfs_crc64_table[256];
956
957 /*
958 * Level 2 ARC
959 */
960
961 #define L2ARC_WRITE_SIZE (8 * 1024 * 1024) /* initial write max */
962 #define L2ARC_HEADROOM 2 /* num of writes */
963
964 /*
965 * If we discover during ARC scan any buffers to be compressed, we boost
966 * our headroom for the next scanning cycle by this percentage multiple.
967 */
968 #define L2ARC_HEADROOM_BOOST 200
969 #define L2ARC_FEED_SECS 1 /* caching interval secs */
970 #define L2ARC_FEED_MIN_MS 200 /* min caching interval ms */
971
972 /*
973 * We can feed L2ARC from two states of ARC buffers, mru and mfu,
974 * and each of the state has two types: data and metadata.
975 */
976 #define L2ARC_FEED_TYPES 4
977
978 #define l2arc_writes_sent ARCSTAT(arcstat_l2_writes_sent)
979 #define l2arc_writes_done ARCSTAT(arcstat_l2_writes_done)
980
981 /* L2ARC Performance Tunables */
982 unsigned long l2arc_write_max = L2ARC_WRITE_SIZE; /* def max write size */
983 unsigned long l2arc_write_boost = L2ARC_WRITE_SIZE; /* extra warmup write */
984 unsigned long l2arc_headroom = L2ARC_HEADROOM; /* # of dev writes */
985 unsigned long l2arc_headroom_boost = L2ARC_HEADROOM_BOOST;
986 unsigned long l2arc_feed_secs = L2ARC_FEED_SECS; /* interval seconds */
987 unsigned long l2arc_feed_min_ms = L2ARC_FEED_MIN_MS; /* min interval msecs */
988 int l2arc_noprefetch = B_TRUE; /* don't cache prefetch bufs */
989 int l2arc_feed_again = B_TRUE; /* turbo warmup */
990 int l2arc_norw = B_FALSE; /* no reads during writes */
991
992 /*
993 * L2ARC Internals
994 */
995 static list_t L2ARC_dev_list; /* device list */
996 static list_t *l2arc_dev_list; /* device list pointer */
997 static kmutex_t l2arc_dev_mtx; /* device list mutex */
998 static l2arc_dev_t *l2arc_dev_last; /* last device used */
999 static list_t L2ARC_free_on_write; /* free after write buf list */
1000 static list_t *l2arc_free_on_write; /* free after write list ptr */
1001 static kmutex_t l2arc_free_on_write_mtx; /* mutex for list */
1002 static uint64_t l2arc_ndev; /* number of devices */
1003
1004 typedef struct l2arc_read_callback {
1005 arc_buf_hdr_t *l2rcb_hdr; /* read header */
1006 blkptr_t l2rcb_bp; /* original blkptr */
1007 zbookmark_phys_t l2rcb_zb; /* original bookmark */
1008 int l2rcb_flags; /* original flags */
1009 abd_t *l2rcb_abd; /* temporary buffer */
1010 } l2arc_read_callback_t;
1011
1012 typedef struct l2arc_data_free {
1013 /* protected by l2arc_free_on_write_mtx */
1014 abd_t *l2df_abd;
1015 size_t l2df_size;
1016 arc_buf_contents_t l2df_type;
1017 list_node_t l2df_list_node;
1018 } l2arc_data_free_t;
1019
1020 typedef enum arc_fill_flags {
1021 ARC_FILL_LOCKED = 1 << 0, /* hdr lock is held */
1022 ARC_FILL_COMPRESSED = 1 << 1, /* fill with compressed data */
1023 ARC_FILL_ENCRYPTED = 1 << 2, /* fill with encrypted data */
1024 ARC_FILL_NOAUTH = 1 << 3, /* don't attempt to authenticate */
1025 ARC_FILL_IN_PLACE = 1 << 4 /* fill in place (special case) */
1026 } arc_fill_flags_t;
1027
1028 static kmutex_t l2arc_feed_thr_lock;
1029 static kcondvar_t l2arc_feed_thr_cv;
1030 static uint8_t l2arc_thread_exit;
1031
1032 static abd_t *arc_get_data_abd(arc_buf_hdr_t *, uint64_t, void *);
1033 static void *arc_get_data_buf(arc_buf_hdr_t *, uint64_t, void *);
1034 static void arc_get_data_impl(arc_buf_hdr_t *, uint64_t, void *);
1035 static void arc_free_data_abd(arc_buf_hdr_t *, abd_t *, uint64_t, void *);
1036 static void arc_free_data_buf(arc_buf_hdr_t *, void *, uint64_t, void *);
1037 static void arc_free_data_impl(arc_buf_hdr_t *hdr, uint64_t size, void *tag);
1038 static void arc_hdr_free_abd(arc_buf_hdr_t *, boolean_t);
1039 static void arc_hdr_alloc_abd(arc_buf_hdr_t *, boolean_t);
1040 static void arc_access(arc_buf_hdr_t *, kmutex_t *);
1041 static boolean_t arc_is_overflowing(void);
1042 static void arc_buf_watch(arc_buf_t *);
1043 static void arc_tuning_update(void);
1044 static void arc_prune_async(int64_t);
1045 static uint64_t arc_all_memory(void);
1046
1047 static arc_buf_contents_t arc_buf_type(arc_buf_hdr_t *);
1048 static uint32_t arc_bufc_to_flags(arc_buf_contents_t);
1049 static inline void arc_hdr_set_flags(arc_buf_hdr_t *hdr, arc_flags_t flags);
1050 static inline void arc_hdr_clear_flags(arc_buf_hdr_t *hdr, arc_flags_t flags);
1051
1052 static boolean_t l2arc_write_eligible(uint64_t, arc_buf_hdr_t *);
1053 static void l2arc_read_done(zio_t *);
1054
1055 static uint64_t
1056 buf_hash(uint64_t spa, const dva_t *dva, uint64_t birth)
1057 {
1058 uint8_t *vdva = (uint8_t *)dva;
1059 uint64_t crc = -1ULL;
1060 int i;
1061
1062 ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
1063
1064 for (i = 0; i < sizeof (dva_t); i++)
1065 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ vdva[i]) & 0xFF];
1066
1067 crc ^= (spa>>8) ^ birth;
1068
1069 return (crc);
1070 }
1071
1072 #define HDR_EMPTY(hdr) \
1073 ((hdr)->b_dva.dva_word[0] == 0 && \
1074 (hdr)->b_dva.dva_word[1] == 0)
1075
1076 #define HDR_EQUAL(spa, dva, birth, hdr) \
1077 ((hdr)->b_dva.dva_word[0] == (dva)->dva_word[0]) && \
1078 ((hdr)->b_dva.dva_word[1] == (dva)->dva_word[1]) && \
1079 ((hdr)->b_birth == birth) && ((hdr)->b_spa == spa)
1080
1081 static void
1082 buf_discard_identity(arc_buf_hdr_t *hdr)
1083 {
1084 hdr->b_dva.dva_word[0] = 0;
1085 hdr->b_dva.dva_word[1] = 0;
1086 hdr->b_birth = 0;
1087 }
1088
1089 static arc_buf_hdr_t *
1090 buf_hash_find(uint64_t spa, const blkptr_t *bp, kmutex_t **lockp)
1091 {
1092 const dva_t *dva = BP_IDENTITY(bp);
1093 uint64_t birth = BP_PHYSICAL_BIRTH(bp);
1094 uint64_t idx = BUF_HASH_INDEX(spa, dva, birth);
1095 kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
1096 arc_buf_hdr_t *hdr;
1097
1098 mutex_enter(hash_lock);
1099 for (hdr = buf_hash_table.ht_table[idx]; hdr != NULL;
1100 hdr = hdr->b_hash_next) {
1101 if (HDR_EQUAL(spa, dva, birth, hdr)) {
1102 *lockp = hash_lock;
1103 return (hdr);
1104 }
1105 }
1106 mutex_exit(hash_lock);
1107 *lockp = NULL;
1108 return (NULL);
1109 }
1110
1111 /*
1112 * Insert an entry into the hash table. If there is already an element
1113 * equal to elem in the hash table, then the already existing element
1114 * will be returned and the new element will not be inserted.
1115 * Otherwise returns NULL.
1116 * If lockp == NULL, the caller is assumed to already hold the hash lock.
1117 */
1118 static arc_buf_hdr_t *
1119 buf_hash_insert(arc_buf_hdr_t *hdr, kmutex_t **lockp)
1120 {
1121 uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth);
1122 kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
1123 arc_buf_hdr_t *fhdr;
1124 uint32_t i;
1125
1126 ASSERT(!DVA_IS_EMPTY(&hdr->b_dva));
1127 ASSERT(hdr->b_birth != 0);
1128 ASSERT(!HDR_IN_HASH_TABLE(hdr));
1129
1130 if (lockp != NULL) {
1131 *lockp = hash_lock;
1132 mutex_enter(hash_lock);
1133 } else {
1134 ASSERT(MUTEX_HELD(hash_lock));
1135 }
1136
1137 for (fhdr = buf_hash_table.ht_table[idx], i = 0; fhdr != NULL;
1138 fhdr = fhdr->b_hash_next, i++) {
1139 if (HDR_EQUAL(hdr->b_spa, &hdr->b_dva, hdr->b_birth, fhdr))
1140 return (fhdr);
1141 }
1142
1143 hdr->b_hash_next = buf_hash_table.ht_table[idx];
1144 buf_hash_table.ht_table[idx] = hdr;
1145 arc_hdr_set_flags(hdr, ARC_FLAG_IN_HASH_TABLE);
1146
1147 /* collect some hash table performance data */
1148 if (i > 0) {
1149 ARCSTAT_BUMP(arcstat_hash_collisions);
1150 if (i == 1)
1151 ARCSTAT_BUMP(arcstat_hash_chains);
1152
1153 ARCSTAT_MAX(arcstat_hash_chain_max, i);
1154 }
1155
1156 ARCSTAT_BUMP(arcstat_hash_elements);
1157 ARCSTAT_MAXSTAT(arcstat_hash_elements);
1158
1159 return (NULL);
1160 }
1161
1162 static void
1163 buf_hash_remove(arc_buf_hdr_t *hdr)
1164 {
1165 arc_buf_hdr_t *fhdr, **hdrp;
1166 uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth);
1167
1168 ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx)));
1169 ASSERT(HDR_IN_HASH_TABLE(hdr));
1170
1171 hdrp = &buf_hash_table.ht_table[idx];
1172 while ((fhdr = *hdrp) != hdr) {
1173 ASSERT3P(fhdr, !=, NULL);
1174 hdrp = &fhdr->b_hash_next;
1175 }
1176 *hdrp = hdr->b_hash_next;
1177 hdr->b_hash_next = NULL;
1178 arc_hdr_clear_flags(hdr, ARC_FLAG_IN_HASH_TABLE);
1179
1180 /* collect some hash table performance data */
1181 ARCSTAT_BUMPDOWN(arcstat_hash_elements);
1182
1183 if (buf_hash_table.ht_table[idx] &&
1184 buf_hash_table.ht_table[idx]->b_hash_next == NULL)
1185 ARCSTAT_BUMPDOWN(arcstat_hash_chains);
1186 }
1187
1188 /*
1189 * Global data structures and functions for the buf kmem cache.
1190 */
1191
1192 static kmem_cache_t *hdr_full_cache;
1193 static kmem_cache_t *hdr_full_crypt_cache;
1194 static kmem_cache_t *hdr_l2only_cache;
1195 static kmem_cache_t *buf_cache;
1196
1197 static void
1198 buf_fini(void)
1199 {
1200 int i;
1201
1202 #if defined(_KERNEL) && defined(HAVE_SPL)
1203 /*
1204 * Large allocations which do not require contiguous pages
1205 * should be using vmem_free() in the linux kernel\
1206 */
1207 vmem_free(buf_hash_table.ht_table,
1208 (buf_hash_table.ht_mask + 1) * sizeof (void *));
1209 #else
1210 kmem_free(buf_hash_table.ht_table,
1211 (buf_hash_table.ht_mask + 1) * sizeof (void *));
1212 #endif
1213 for (i = 0; i < BUF_LOCKS; i++)
1214 mutex_destroy(&buf_hash_table.ht_locks[i].ht_lock);
1215 kmem_cache_destroy(hdr_full_cache);
1216 kmem_cache_destroy(hdr_full_crypt_cache);
1217 kmem_cache_destroy(hdr_l2only_cache);
1218 kmem_cache_destroy(buf_cache);
1219 }
1220
1221 /*
1222 * Constructor callback - called when the cache is empty
1223 * and a new buf is requested.
1224 */
1225 /* ARGSUSED */
1226 static int
1227 hdr_full_cons(void *vbuf, void *unused, int kmflag)
1228 {
1229 arc_buf_hdr_t *hdr = vbuf;
1230
1231 bzero(hdr, HDR_FULL_SIZE);
1232 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS;
1233 cv_init(&hdr->b_l1hdr.b_cv, NULL, CV_DEFAULT, NULL);
1234 refcount_create(&hdr->b_l1hdr.b_refcnt);
1235 mutex_init(&hdr->b_l1hdr.b_freeze_lock, NULL, MUTEX_DEFAULT, NULL);
1236 list_link_init(&hdr->b_l1hdr.b_arc_node);
1237 list_link_init(&hdr->b_l2hdr.b_l2node);
1238 multilist_link_init(&hdr->b_l1hdr.b_arc_node);
1239 arc_space_consume(HDR_FULL_SIZE, ARC_SPACE_HDRS);
1240
1241 return (0);
1242 }
1243
1244 /* ARGSUSED */
1245 static int
1246 hdr_full_crypt_cons(void *vbuf, void *unused, int kmflag)
1247 {
1248 arc_buf_hdr_t *hdr = vbuf;
1249
1250 hdr_full_cons(vbuf, unused, kmflag);
1251 bzero(&hdr->b_crypt_hdr, sizeof (hdr->b_crypt_hdr));
1252 arc_space_consume(sizeof (hdr->b_crypt_hdr), ARC_SPACE_HDRS);
1253
1254 return (0);
1255 }
1256
1257 /* ARGSUSED */
1258 static int
1259 hdr_l2only_cons(void *vbuf, void *unused, int kmflag)
1260 {
1261 arc_buf_hdr_t *hdr = vbuf;
1262
1263 bzero(hdr, HDR_L2ONLY_SIZE);
1264 arc_space_consume(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS);
1265
1266 return (0);
1267 }
1268
1269 /* ARGSUSED */
1270 static int
1271 buf_cons(void *vbuf, void *unused, int kmflag)
1272 {
1273 arc_buf_t *buf = vbuf;
1274
1275 bzero(buf, sizeof (arc_buf_t));
1276 mutex_init(&buf->b_evict_lock, NULL, MUTEX_DEFAULT, NULL);
1277 arc_space_consume(sizeof (arc_buf_t), ARC_SPACE_HDRS);
1278
1279 return (0);
1280 }
1281
1282 /*
1283 * Destructor callback - called when a cached buf is
1284 * no longer required.
1285 */
1286 /* ARGSUSED */
1287 static void
1288 hdr_full_dest(void *vbuf, void *unused)
1289 {
1290 arc_buf_hdr_t *hdr = vbuf;
1291
1292 ASSERT(HDR_EMPTY(hdr));
1293 cv_destroy(&hdr->b_l1hdr.b_cv);
1294 refcount_destroy(&hdr->b_l1hdr.b_refcnt);
1295 mutex_destroy(&hdr->b_l1hdr.b_freeze_lock);
1296 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
1297 arc_space_return(HDR_FULL_SIZE, ARC_SPACE_HDRS);
1298 }
1299
1300 /* ARGSUSED */
1301 static void
1302 hdr_full_crypt_dest(void *vbuf, void *unused)
1303 {
1304 arc_buf_hdr_t *hdr = vbuf;
1305
1306 hdr_full_dest(vbuf, unused);
1307 arc_space_return(sizeof (hdr->b_crypt_hdr), ARC_SPACE_HDRS);
1308 }
1309
1310 /* ARGSUSED */
1311 static void
1312 hdr_l2only_dest(void *vbuf, void *unused)
1313 {
1314 ASSERTV(arc_buf_hdr_t *hdr = vbuf);
1315
1316 ASSERT(HDR_EMPTY(hdr));
1317 arc_space_return(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS);
1318 }
1319
1320 /* ARGSUSED */
1321 static void
1322 buf_dest(void *vbuf, void *unused)
1323 {
1324 arc_buf_t *buf = vbuf;
1325
1326 mutex_destroy(&buf->b_evict_lock);
1327 arc_space_return(sizeof (arc_buf_t), ARC_SPACE_HDRS);
1328 }
1329
1330 /*
1331 * Reclaim callback -- invoked when memory is low.
1332 */
1333 /* ARGSUSED */
1334 static void
1335 hdr_recl(void *unused)
1336 {
1337 dprintf("hdr_recl called\n");
1338 /*
1339 * umem calls the reclaim func when we destroy the buf cache,
1340 * which is after we do arc_fini().
1341 */
1342 if (!arc_dead)
1343 cv_signal(&arc_reclaim_thread_cv);
1344 }
1345
1346 static void
1347 buf_init(void)
1348 {
1349 uint64_t *ct = NULL;
1350 uint64_t hsize = 1ULL << 12;
1351 int i, j;
1352
1353 /*
1354 * The hash table is big enough to fill all of physical memory
1355 * with an average block size of zfs_arc_average_blocksize (default 8K).
1356 * By default, the table will take up
1357 * totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers).
1358 */
1359 while (hsize * zfs_arc_average_blocksize < arc_all_memory())
1360 hsize <<= 1;
1361 retry:
1362 buf_hash_table.ht_mask = hsize - 1;
1363 #if defined(_KERNEL) && defined(HAVE_SPL)
1364 /*
1365 * Large allocations which do not require contiguous pages
1366 * should be using vmem_alloc() in the linux kernel
1367 */
1368 buf_hash_table.ht_table =
1369 vmem_zalloc(hsize * sizeof (void*), KM_SLEEP);
1370 #else
1371 buf_hash_table.ht_table =
1372 kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP);
1373 #endif
1374 if (buf_hash_table.ht_table == NULL) {
1375 ASSERT(hsize > (1ULL << 8));
1376 hsize >>= 1;
1377 goto retry;
1378 }
1379
1380 hdr_full_cache = kmem_cache_create("arc_buf_hdr_t_full", HDR_FULL_SIZE,
1381 0, hdr_full_cons, hdr_full_dest, hdr_recl, NULL, NULL, 0);
1382 hdr_full_crypt_cache = kmem_cache_create("arc_buf_hdr_t_full_crypt",
1383 HDR_FULL_CRYPT_SIZE, 0, hdr_full_crypt_cons, hdr_full_crypt_dest,
1384 hdr_recl, NULL, NULL, 0);
1385 hdr_l2only_cache = kmem_cache_create("arc_buf_hdr_t_l2only",
1386 HDR_L2ONLY_SIZE, 0, hdr_l2only_cons, hdr_l2only_dest, hdr_recl,
1387 NULL, NULL, 0);
1388 buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t),
1389 0, buf_cons, buf_dest, NULL, NULL, NULL, 0);
1390
1391 for (i = 0; i < 256; i++)
1392 for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--)
1393 *ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY);
1394
1395 for (i = 0; i < BUF_LOCKS; i++) {
1396 mutex_init(&buf_hash_table.ht_locks[i].ht_lock,
1397 NULL, MUTEX_DEFAULT, NULL);
1398 }
1399 }
1400
1401 #define ARC_MINTIME (hz>>4) /* 62 ms */
1402
1403 /*
1404 * This is the size that the buf occupies in memory. If the buf is compressed,
1405 * it will correspond to the compressed size. You should use this method of
1406 * getting the buf size unless you explicitly need the logical size.
1407 */
1408 uint64_t
1409 arc_buf_size(arc_buf_t *buf)
1410 {
1411 return (ARC_BUF_COMPRESSED(buf) ?
1412 HDR_GET_PSIZE(buf->b_hdr) : HDR_GET_LSIZE(buf->b_hdr));
1413 }
1414
1415 uint64_t
1416 arc_buf_lsize(arc_buf_t *buf)
1417 {
1418 return (HDR_GET_LSIZE(buf->b_hdr));
1419 }
1420
1421 /*
1422 * This function will return B_TRUE if the buffer is encrypted in memory.
1423 * This buffer can be decrypted by calling arc_untransform().
1424 */
1425 boolean_t
1426 arc_is_encrypted(arc_buf_t *buf)
1427 {
1428 return (ARC_BUF_ENCRYPTED(buf) != 0);
1429 }
1430
1431 /*
1432 * Returns B_TRUE if the buffer represents data that has not had its MAC
1433 * verified yet.
1434 */
1435 boolean_t
1436 arc_is_unauthenticated(arc_buf_t *buf)
1437 {
1438 return (HDR_NOAUTH(buf->b_hdr) != 0);
1439 }
1440
1441 void
1442 arc_get_raw_params(arc_buf_t *buf, boolean_t *byteorder, uint8_t *salt,
1443 uint8_t *iv, uint8_t *mac)
1444 {
1445 arc_buf_hdr_t *hdr = buf->b_hdr;
1446
1447 ASSERT(HDR_PROTECTED(hdr));
1448
1449 bcopy(hdr->b_crypt_hdr.b_salt, salt, ZIO_DATA_SALT_LEN);
1450 bcopy(hdr->b_crypt_hdr.b_iv, iv, ZIO_DATA_IV_LEN);
1451 bcopy(hdr->b_crypt_hdr.b_mac, mac, ZIO_DATA_MAC_LEN);
1452 *byteorder = (hdr->b_l1hdr.b_byteswap == DMU_BSWAP_NUMFUNCS) ?
1453 ZFS_HOST_BYTEORDER : !ZFS_HOST_BYTEORDER;
1454 }
1455
1456 /*
1457 * Indicates how this buffer is compressed in memory. If it is not compressed
1458 * the value will be ZIO_COMPRESS_OFF. It can be made normally readable with
1459 * arc_untransform() as long as it is also unencrypted.
1460 */
1461 enum zio_compress
1462 arc_get_compression(arc_buf_t *buf)
1463 {
1464 return (ARC_BUF_COMPRESSED(buf) ?
1465 HDR_GET_COMPRESS(buf->b_hdr) : ZIO_COMPRESS_OFF);
1466 }
1467
1468 /*
1469 * Return the compression algorithm used to store this data in the ARC. If ARC
1470 * compression is enabled or this is an encrypted block, this will be the same
1471 * as what's used to store it on-disk. Otherwise, this will be ZIO_COMPRESS_OFF.
1472 */
1473 static inline enum zio_compress
1474 arc_hdr_get_compress(arc_buf_hdr_t *hdr)
1475 {
1476 return (HDR_COMPRESSION_ENABLED(hdr) ?
1477 HDR_GET_COMPRESS(hdr) : ZIO_COMPRESS_OFF);
1478 }
1479
1480 static inline boolean_t
1481 arc_buf_is_shared(arc_buf_t *buf)
1482 {
1483 boolean_t shared = (buf->b_data != NULL &&
1484 buf->b_hdr->b_l1hdr.b_pabd != NULL &&
1485 abd_is_linear(buf->b_hdr->b_l1hdr.b_pabd) &&
1486 buf->b_data == abd_to_buf(buf->b_hdr->b_l1hdr.b_pabd));
1487 IMPLY(shared, HDR_SHARED_DATA(buf->b_hdr));
1488 IMPLY(shared, ARC_BUF_SHARED(buf));
1489 IMPLY(shared, ARC_BUF_COMPRESSED(buf) || ARC_BUF_LAST(buf));
1490
1491 /*
1492 * It would be nice to assert arc_can_share() too, but the "hdr isn't
1493 * already being shared" requirement prevents us from doing that.
1494 */
1495
1496 return (shared);
1497 }
1498
1499 /*
1500 * Free the checksum associated with this header. If there is no checksum, this
1501 * is a no-op.
1502 */
1503 static inline void
1504 arc_cksum_free(arc_buf_hdr_t *hdr)
1505 {
1506 ASSERT(HDR_HAS_L1HDR(hdr));
1507
1508 mutex_enter(&hdr->b_l1hdr.b_freeze_lock);
1509 if (hdr->b_l1hdr.b_freeze_cksum != NULL) {
1510 kmem_free(hdr->b_l1hdr.b_freeze_cksum, sizeof (zio_cksum_t));
1511 hdr->b_l1hdr.b_freeze_cksum = NULL;
1512 }
1513 mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1514 }
1515
1516 /*
1517 * Return true iff at least one of the bufs on hdr is not compressed.
1518 * Encrypted buffers count as compressed.
1519 */
1520 static boolean_t
1521 arc_hdr_has_uncompressed_buf(arc_buf_hdr_t *hdr)
1522 {
1523 for (arc_buf_t *b = hdr->b_l1hdr.b_buf; b != NULL; b = b->b_next) {
1524 if (!ARC_BUF_COMPRESSED(b)) {
1525 return (B_TRUE);
1526 }
1527 }
1528 return (B_FALSE);
1529 }
1530
1531
1532 /*
1533 * If we've turned on the ZFS_DEBUG_MODIFY flag, verify that the buf's data
1534 * matches the checksum that is stored in the hdr. If there is no checksum,
1535 * or if the buf is compressed, this is a no-op.
1536 */
1537 static void
1538 arc_cksum_verify(arc_buf_t *buf)
1539 {
1540 arc_buf_hdr_t *hdr = buf->b_hdr;
1541 zio_cksum_t zc;
1542
1543 if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1544 return;
1545
1546 if (ARC_BUF_COMPRESSED(buf)) {
1547 ASSERT(hdr->b_l1hdr.b_freeze_cksum == NULL ||
1548 arc_hdr_has_uncompressed_buf(hdr));
1549 return;
1550 }
1551
1552 ASSERT(HDR_HAS_L1HDR(hdr));
1553
1554 mutex_enter(&hdr->b_l1hdr.b_freeze_lock);
1555 if (hdr->b_l1hdr.b_freeze_cksum == NULL || HDR_IO_ERROR(hdr)) {
1556 mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1557 return;
1558 }
1559
1560 fletcher_2_native(buf->b_data, arc_buf_size(buf), NULL, &zc);
1561 if (!ZIO_CHECKSUM_EQUAL(*hdr->b_l1hdr.b_freeze_cksum, zc))
1562 panic("buffer modified while frozen!");
1563 mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1564 }
1565
1566 /*
1567 * This function makes the assumption that data stored in the L2ARC
1568 * will be transformed exactly as it is in the main pool. Because of
1569 * this we can verify the checksum against the reading process's bp.
1570 */
1571 static boolean_t
1572 arc_cksum_is_equal(arc_buf_hdr_t *hdr, zio_t *zio)
1573 {
1574 ASSERT(!BP_IS_EMBEDDED(zio->io_bp));
1575 VERIFY3U(BP_GET_PSIZE(zio->io_bp), ==, HDR_GET_PSIZE(hdr));
1576
1577 /*
1578 * Block pointers always store the checksum for the logical data.
1579 * If the block pointer has the gang bit set, then the checksum
1580 * it represents is for the reconstituted data and not for an
1581 * individual gang member. The zio pipeline, however, must be able to
1582 * determine the checksum of each of the gang constituents so it
1583 * treats the checksum comparison differently than what we need
1584 * for l2arc blocks. This prevents us from using the
1585 * zio_checksum_error() interface directly. Instead we must call the
1586 * zio_checksum_error_impl() so that we can ensure the checksum is
1587 * generated using the correct checksum algorithm and accounts for the
1588 * logical I/O size and not just a gang fragment.
1589 */
1590 return (zio_checksum_error_impl(zio->io_spa, zio->io_bp,
1591 BP_GET_CHECKSUM(zio->io_bp), zio->io_abd, zio->io_size,
1592 zio->io_offset, NULL) == 0);
1593 }
1594
1595 /*
1596 * Given a buf full of data, if ZFS_DEBUG_MODIFY is enabled this computes a
1597 * checksum and attaches it to the buf's hdr so that we can ensure that the buf
1598 * isn't modified later on. If buf is compressed or there is already a checksum
1599 * on the hdr, this is a no-op (we only checksum uncompressed bufs).
1600 */
1601 static void
1602 arc_cksum_compute(arc_buf_t *buf)
1603 {
1604 arc_buf_hdr_t *hdr = buf->b_hdr;
1605
1606 if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1607 return;
1608
1609 ASSERT(HDR_HAS_L1HDR(hdr));
1610
1611 mutex_enter(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1612 if (hdr->b_l1hdr.b_freeze_cksum != NULL) {
1613 ASSERT(arc_hdr_has_uncompressed_buf(hdr));
1614 mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1615 return;
1616 } else if (ARC_BUF_COMPRESSED(buf)) {
1617 mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1618 return;
1619 }
1620
1621 ASSERT(!ARC_BUF_ENCRYPTED(buf));
1622 ASSERT(!ARC_BUF_COMPRESSED(buf));
1623 hdr->b_l1hdr.b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t),
1624 KM_SLEEP);
1625 fletcher_2_native(buf->b_data, arc_buf_size(buf), NULL,
1626 hdr->b_l1hdr.b_freeze_cksum);
1627 mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1628 arc_buf_watch(buf);
1629 }
1630
1631 #ifndef _KERNEL
1632 void
1633 arc_buf_sigsegv(int sig, siginfo_t *si, void *unused)
1634 {
1635 panic("Got SIGSEGV at address: 0x%lx\n", (long)si->si_addr);
1636 }
1637 #endif
1638
1639 /* ARGSUSED */
1640 static void
1641 arc_buf_unwatch(arc_buf_t *buf)
1642 {
1643 #ifndef _KERNEL
1644 if (arc_watch) {
1645 ASSERT0(mprotect(buf->b_data, arc_buf_size(buf),
1646 PROT_READ | PROT_WRITE));
1647 }
1648 #endif
1649 }
1650
1651 /* ARGSUSED */
1652 static void
1653 arc_buf_watch(arc_buf_t *buf)
1654 {
1655 #ifndef _KERNEL
1656 if (arc_watch)
1657 ASSERT0(mprotect(buf->b_data, arc_buf_size(buf),
1658 PROT_READ));
1659 #endif
1660 }
1661
1662 static arc_buf_contents_t
1663 arc_buf_type(arc_buf_hdr_t *hdr)
1664 {
1665 arc_buf_contents_t type;
1666 if (HDR_ISTYPE_METADATA(hdr)) {
1667 type = ARC_BUFC_METADATA;
1668 } else {
1669 type = ARC_BUFC_DATA;
1670 }
1671 VERIFY3U(hdr->b_type, ==, type);
1672 return (type);
1673 }
1674
1675 boolean_t
1676 arc_is_metadata(arc_buf_t *buf)
1677 {
1678 return (HDR_ISTYPE_METADATA(buf->b_hdr) != 0);
1679 }
1680
1681 static uint32_t
1682 arc_bufc_to_flags(arc_buf_contents_t type)
1683 {
1684 switch (type) {
1685 case ARC_BUFC_DATA:
1686 /* metadata field is 0 if buffer contains normal data */
1687 return (0);
1688 case ARC_BUFC_METADATA:
1689 return (ARC_FLAG_BUFC_METADATA);
1690 default:
1691 break;
1692 }
1693 panic("undefined ARC buffer type!");
1694 return ((uint32_t)-1);
1695 }
1696
1697 void
1698 arc_buf_thaw(arc_buf_t *buf)
1699 {
1700 arc_buf_hdr_t *hdr = buf->b_hdr;
1701
1702 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
1703 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
1704
1705 arc_cksum_verify(buf);
1706
1707 /*
1708 * Compressed buffers do not manipulate the b_freeze_cksum or
1709 * allocate b_thawed.
1710 */
1711 if (ARC_BUF_COMPRESSED(buf)) {
1712 ASSERT(hdr->b_l1hdr.b_freeze_cksum == NULL ||
1713 arc_hdr_has_uncompressed_buf(hdr));
1714 return;
1715 }
1716
1717 ASSERT(HDR_HAS_L1HDR(hdr));
1718 arc_cksum_free(hdr);
1719 arc_buf_unwatch(buf);
1720 }
1721
1722 void
1723 arc_buf_freeze(arc_buf_t *buf)
1724 {
1725 arc_buf_hdr_t *hdr = buf->b_hdr;
1726 kmutex_t *hash_lock;
1727
1728 if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1729 return;
1730
1731 if (ARC_BUF_COMPRESSED(buf)) {
1732 ASSERT(hdr->b_l1hdr.b_freeze_cksum == NULL ||
1733 arc_hdr_has_uncompressed_buf(hdr));
1734 return;
1735 }
1736
1737 hash_lock = HDR_LOCK(hdr);
1738 mutex_enter(hash_lock);
1739
1740 ASSERT(HDR_HAS_L1HDR(hdr));
1741 ASSERT(hdr->b_l1hdr.b_freeze_cksum != NULL ||
1742 hdr->b_l1hdr.b_state == arc_anon);
1743 arc_cksum_compute(buf);
1744 mutex_exit(hash_lock);
1745 }
1746
1747 /*
1748 * The arc_buf_hdr_t's b_flags should never be modified directly. Instead,
1749 * the following functions should be used to ensure that the flags are
1750 * updated in a thread-safe way. When manipulating the flags either
1751 * the hash_lock must be held or the hdr must be undiscoverable. This
1752 * ensures that we're not racing with any other threads when updating
1753 * the flags.
1754 */
1755 static inline void
1756 arc_hdr_set_flags(arc_buf_hdr_t *hdr, arc_flags_t flags)
1757 {
1758 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
1759 hdr->b_flags |= flags;
1760 }
1761
1762 static inline void
1763 arc_hdr_clear_flags(arc_buf_hdr_t *hdr, arc_flags_t flags)
1764 {
1765 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
1766 hdr->b_flags &= ~flags;
1767 }
1768
1769 /*
1770 * Setting the compression bits in the arc_buf_hdr_t's b_flags is
1771 * done in a special way since we have to clear and set bits
1772 * at the same time. Consumers that wish to set the compression bits
1773 * must use this function to ensure that the flags are updated in
1774 * thread-safe manner.
1775 */
1776 static void
1777 arc_hdr_set_compress(arc_buf_hdr_t *hdr, enum zio_compress cmp)
1778 {
1779 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
1780
1781 /*
1782 * Holes and embedded blocks will always have a psize = 0 so
1783 * we ignore the compression of the blkptr and set the
1784 * want to uncompress them. Mark them as uncompressed.
1785 */
1786 if (!zfs_compressed_arc_enabled || HDR_GET_PSIZE(hdr) == 0) {
1787 arc_hdr_clear_flags(hdr, ARC_FLAG_COMPRESSED_ARC);
1788 ASSERT(!HDR_COMPRESSION_ENABLED(hdr));
1789 } else {
1790 arc_hdr_set_flags(hdr, ARC_FLAG_COMPRESSED_ARC);
1791 ASSERT(HDR_COMPRESSION_ENABLED(hdr));
1792 }
1793
1794 HDR_SET_COMPRESS(hdr, cmp);
1795 ASSERT3U(HDR_GET_COMPRESS(hdr), ==, cmp);
1796 }
1797
1798 /*
1799 * Looks for another buf on the same hdr which has the data decompressed, copies
1800 * from it, and returns true. If no such buf exists, returns false.
1801 */
1802 static boolean_t
1803 arc_buf_try_copy_decompressed_data(arc_buf_t *buf)
1804 {
1805 arc_buf_hdr_t *hdr = buf->b_hdr;
1806 boolean_t copied = B_FALSE;
1807
1808 ASSERT(HDR_HAS_L1HDR(hdr));
1809 ASSERT3P(buf->b_data, !=, NULL);
1810 ASSERT(!ARC_BUF_COMPRESSED(buf));
1811
1812 for (arc_buf_t *from = hdr->b_l1hdr.b_buf; from != NULL;
1813 from = from->b_next) {
1814 /* can't use our own data buffer */
1815 if (from == buf) {
1816 continue;
1817 }
1818
1819 if (!ARC_BUF_COMPRESSED(from)) {
1820 bcopy(from->b_data, buf->b_data, arc_buf_size(buf));
1821 copied = B_TRUE;
1822 break;
1823 }
1824 }
1825
1826 /*
1827 * There were no decompressed bufs, so there should not be a
1828 * checksum on the hdr either.
1829 */
1830 EQUIV(!copied, hdr->b_l1hdr.b_freeze_cksum == NULL);
1831
1832 return (copied);
1833 }
1834
1835 /*
1836 * Return the size of the block, b_pabd, that is stored in the arc_buf_hdr_t.
1837 */
1838 static uint64_t
1839 arc_hdr_size(arc_buf_hdr_t *hdr)
1840 {
1841 uint64_t size;
1842
1843 if (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF &&
1844 HDR_GET_PSIZE(hdr) > 0) {
1845 size = HDR_GET_PSIZE(hdr);
1846 } else {
1847 ASSERT3U(HDR_GET_LSIZE(hdr), !=, 0);
1848 size = HDR_GET_LSIZE(hdr);
1849 }
1850 return (size);
1851 }
1852
1853 static int
1854 arc_hdr_authenticate(arc_buf_hdr_t *hdr, spa_t *spa, uint64_t dsobj)
1855 {
1856 int ret;
1857 uint64_t csize;
1858 uint64_t lsize = HDR_GET_LSIZE(hdr);
1859 uint64_t psize = HDR_GET_PSIZE(hdr);
1860 void *tmpbuf = NULL;
1861 abd_t *abd = hdr->b_l1hdr.b_pabd;
1862
1863 ASSERT(HDR_LOCK(hdr) == NULL || MUTEX_HELD(HDR_LOCK(hdr)));
1864 ASSERT(HDR_AUTHENTICATED(hdr));
1865 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
1866
1867 /*
1868 * The MAC is calculated on the compressed data that is stored on disk.
1869 * However, if compressed arc is disabled we will only have the
1870 * decompressed data available to us now. Compress it into a temporary
1871 * abd so we can verify the MAC. The performance overhead of this will
1872 * be relatively low, since most objects in an encrypted objset will
1873 * be encrypted (instead of authenticated) anyway.
1874 */
1875 if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF &&
1876 !HDR_COMPRESSION_ENABLED(hdr)) {
1877 tmpbuf = zio_buf_alloc(lsize);
1878 abd = abd_get_from_buf(tmpbuf, lsize);
1879 abd_take_ownership_of_buf(abd, B_TRUE);
1880
1881 csize = zio_compress_data(HDR_GET_COMPRESS(hdr),
1882 hdr->b_l1hdr.b_pabd, tmpbuf, lsize);
1883 ASSERT3U(csize, <=, psize);
1884 abd_zero_off(abd, csize, psize - csize);
1885 }
1886
1887 /*
1888 * Authentication is best effort. We authenticate whenever the key is
1889 * available. If we succeed we clear ARC_FLAG_NOAUTH.
1890 */
1891 if (hdr->b_crypt_hdr.b_ot == DMU_OT_OBJSET) {
1892 ASSERT3U(HDR_GET_COMPRESS(hdr), ==, ZIO_COMPRESS_OFF);
1893 ASSERT3U(lsize, ==, psize);
1894 ret = spa_do_crypt_objset_mac_abd(B_FALSE, spa, dsobj, abd,
1895 psize, hdr->b_l1hdr.b_byteswap != DMU_BSWAP_NUMFUNCS);
1896 } else {
1897 ret = spa_do_crypt_mac_abd(B_FALSE, spa, dsobj, abd, psize,
1898 hdr->b_crypt_hdr.b_mac);
1899 }
1900
1901 if (ret == 0)
1902 arc_hdr_clear_flags(hdr, ARC_FLAG_NOAUTH);
1903 else if (ret != ENOENT)
1904 goto error;
1905
1906 if (tmpbuf != NULL)
1907 abd_free(abd);
1908
1909 return (0);
1910
1911 error:
1912 if (tmpbuf != NULL)
1913 abd_free(abd);
1914
1915 return (ret);
1916 }
1917
1918 /*
1919 * This function will take a header that only has raw encrypted data in
1920 * b_crypt_hdr.b_rabd and decrypt it into a new buffer which is stored in
1921 * b_l1hdr.b_pabd. If designated in the header flags, this function will
1922 * also decompress the data.
1923 */
1924 static int
1925 arc_hdr_decrypt(arc_buf_hdr_t *hdr, spa_t *spa, const zbookmark_phys_t *zb)
1926 {
1927 int ret;
1928 abd_t *cabd = NULL;
1929 void *tmp = NULL;
1930 boolean_t no_crypt = B_FALSE;
1931 boolean_t bswap = (hdr->b_l1hdr.b_byteswap != DMU_BSWAP_NUMFUNCS);
1932
1933 ASSERT(HDR_LOCK(hdr) == NULL || MUTEX_HELD(HDR_LOCK(hdr)));
1934 ASSERT(HDR_ENCRYPTED(hdr));
1935
1936 arc_hdr_alloc_abd(hdr, B_FALSE);
1937
1938 ret = spa_do_crypt_abd(B_FALSE, spa, zb, hdr->b_crypt_hdr.b_ot,
1939 B_FALSE, bswap, hdr->b_crypt_hdr.b_salt, hdr->b_crypt_hdr.b_iv,
1940 hdr->b_crypt_hdr.b_mac, HDR_GET_PSIZE(hdr), hdr->b_l1hdr.b_pabd,
1941 hdr->b_crypt_hdr.b_rabd, &no_crypt);
1942 if (ret != 0)
1943 goto error;
1944
1945 if (no_crypt) {
1946 abd_copy(hdr->b_l1hdr.b_pabd, hdr->b_crypt_hdr.b_rabd,
1947 HDR_GET_PSIZE(hdr));
1948 }
1949
1950 /*
1951 * If this header has disabled arc compression but the b_pabd is
1952 * compressed after decrypting it, we need to decompress the newly
1953 * decrypted data.
1954 */
1955 if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF &&
1956 !HDR_COMPRESSION_ENABLED(hdr)) {
1957 /*
1958 * We want to make sure that we are correctly honoring the
1959 * zfs_abd_scatter_enabled setting, so we allocate an abd here
1960 * and then loan a buffer from it, rather than allocating a
1961 * linear buffer and wrapping it in an abd later.
1962 */
1963 cabd = arc_get_data_abd(hdr, arc_hdr_size(hdr), hdr);
1964 tmp = abd_borrow_buf(cabd, arc_hdr_size(hdr));
1965
1966 ret = zio_decompress_data(HDR_GET_COMPRESS(hdr),
1967 hdr->b_l1hdr.b_pabd, tmp, HDR_GET_PSIZE(hdr),
1968 HDR_GET_LSIZE(hdr));
1969 if (ret != 0) {
1970 abd_return_buf(cabd, tmp, arc_hdr_size(hdr));
1971 goto error;
1972 }
1973
1974 abd_return_buf_copy(cabd, tmp, arc_hdr_size(hdr));
1975 arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd,
1976 arc_hdr_size(hdr), hdr);
1977 hdr->b_l1hdr.b_pabd = cabd;
1978 }
1979
1980 return (0);
1981
1982 error:
1983 arc_hdr_free_abd(hdr, B_FALSE);
1984 if (cabd != NULL)
1985 arc_free_data_buf(hdr, cabd, arc_hdr_size(hdr), hdr);
1986
1987 return (ret);
1988 }
1989
1990 /*
1991 * This function is called during arc_buf_fill() to prepare the header's
1992 * abd plaintext pointer for use. This involves authenticated protected
1993 * data and decrypting encrypted data into the plaintext abd.
1994 */
1995 static int
1996 arc_fill_hdr_crypt(arc_buf_hdr_t *hdr, kmutex_t *hash_lock, spa_t *spa,
1997 const zbookmark_phys_t *zb, boolean_t noauth)
1998 {
1999 int ret;
2000
2001 ASSERT(HDR_PROTECTED(hdr));
2002
2003 if (hash_lock != NULL)
2004 mutex_enter(hash_lock);
2005
2006 if (HDR_NOAUTH(hdr) && !noauth) {
2007 /*
2008 * The caller requested authenticated data but our data has
2009 * not been authenticated yet. Verify the MAC now if we can.
2010 */
2011 ret = arc_hdr_authenticate(hdr, spa, zb->zb_objset);
2012 if (ret != 0)
2013 goto error;
2014 } else if (HDR_HAS_RABD(hdr) && hdr->b_l1hdr.b_pabd == NULL) {
2015 /*
2016 * If we only have the encrypted version of the data, but the
2017 * unencrypted version was requested we take this opportunity
2018 * to store the decrypted version in the header for future use.
2019 */
2020 ret = arc_hdr_decrypt(hdr, spa, zb);
2021 if (ret != 0)
2022 goto error;
2023 }
2024
2025 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
2026
2027 if (hash_lock != NULL)
2028 mutex_exit(hash_lock);
2029
2030 return (0);
2031
2032 error:
2033 if (hash_lock != NULL)
2034 mutex_exit(hash_lock);
2035
2036 return (ret);
2037 }
2038
2039 /*
2040 * This function is used by the dbuf code to decrypt bonus buffers in place.
2041 * The dbuf code itself doesn't have any locking for decrypting a shared dnode
2042 * block, so we use the hash lock here to protect against concurrent calls to
2043 * arc_buf_fill().
2044 */
2045 static void
2046 arc_buf_untransform_in_place(arc_buf_t *buf, kmutex_t *hash_lock)
2047 {
2048 arc_buf_hdr_t *hdr = buf->b_hdr;
2049
2050 ASSERT(HDR_ENCRYPTED(hdr));
2051 ASSERT3U(hdr->b_crypt_hdr.b_ot, ==, DMU_OT_DNODE);
2052 ASSERT(HDR_LOCK(hdr) == NULL || MUTEX_HELD(HDR_LOCK(hdr)));
2053 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
2054
2055 zio_crypt_copy_dnode_bonus(hdr->b_l1hdr.b_pabd, buf->b_data,
2056 arc_buf_size(buf));
2057 buf->b_flags &= ~ARC_BUF_FLAG_ENCRYPTED;
2058 buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED;
2059 hdr->b_crypt_hdr.b_ebufcnt -= 1;
2060 }
2061
2062 /*
2063 * Given a buf that has a data buffer attached to it, this function will
2064 * efficiently fill the buf with data of the specified compression setting from
2065 * the hdr and update the hdr's b_freeze_cksum if necessary. If the buf and hdr
2066 * are already sharing a data buf, no copy is performed.
2067 *
2068 * If the buf is marked as compressed but uncompressed data was requested, this
2069 * will allocate a new data buffer for the buf, remove that flag, and fill the
2070 * buf with uncompressed data. You can't request a compressed buf on a hdr with
2071 * uncompressed data, and (since we haven't added support for it yet) if you
2072 * want compressed data your buf must already be marked as compressed and have
2073 * the correct-sized data buffer.
2074 */
2075 static int
2076 arc_buf_fill(arc_buf_t *buf, spa_t *spa, const zbookmark_phys_t *zb,
2077 arc_fill_flags_t flags)
2078 {
2079 int error = 0;
2080 arc_buf_hdr_t *hdr = buf->b_hdr;
2081 boolean_t hdr_compressed =
2082 (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF);
2083 boolean_t compressed = (flags & ARC_FILL_COMPRESSED) != 0;
2084 boolean_t encrypted = (flags & ARC_FILL_ENCRYPTED) != 0;
2085 dmu_object_byteswap_t bswap = hdr->b_l1hdr.b_byteswap;
2086 kmutex_t *hash_lock = (flags & ARC_FILL_LOCKED) ? NULL : HDR_LOCK(hdr);
2087
2088 ASSERT3P(buf->b_data, !=, NULL);
2089 IMPLY(compressed, hdr_compressed || ARC_BUF_ENCRYPTED(buf));
2090 IMPLY(compressed, ARC_BUF_COMPRESSED(buf));
2091 IMPLY(encrypted, HDR_ENCRYPTED(hdr));
2092 IMPLY(encrypted, ARC_BUF_ENCRYPTED(buf));
2093 IMPLY(encrypted, ARC_BUF_COMPRESSED(buf));
2094 IMPLY(encrypted, !ARC_BUF_SHARED(buf));
2095
2096 /*
2097 * If the caller wanted encrypted data we just need to copy it from
2098 * b_rabd and potentially byteswap it. We won't be able to do any
2099 * further transforms on it.
2100 */
2101 if (encrypted) {
2102 ASSERT(HDR_HAS_RABD(hdr));
2103 abd_copy_to_buf(buf->b_data, hdr->b_crypt_hdr.b_rabd,
2104 HDR_GET_PSIZE(hdr));
2105 goto byteswap;
2106 }
2107
2108 /*
2109 * Adjust encrypted and authenticated headers to accomodate the
2110 * request if needed.
2111 */
2112 if (HDR_PROTECTED(hdr)) {
2113 error = arc_fill_hdr_crypt(hdr, hash_lock, spa,
2114 zb, !!(flags & ARC_FILL_NOAUTH));
2115 if (error != 0) {
2116 arc_hdr_set_flags(hdr, ARC_FLAG_IO_ERROR);
2117 return (error);
2118 }
2119 }
2120
2121 /*
2122 * There is a special case here for dnode blocks which are
2123 * decrypting their bonus buffers. These blocks may request to
2124 * be decrypted in-place. This is necessary because there may
2125 * be many dnodes pointing into this buffer and there is
2126 * currently no method to synchronize replacing the backing
2127 * b_data buffer and updating all of the pointers. Here we use
2128 * the hash lock to ensure there are no races. If the need
2129 * arises for other types to be decrypted in-place, they must
2130 * add handling here as well.
2131 */
2132 if ((flags & ARC_FILL_IN_PLACE) != 0) {
2133 ASSERT(!hdr_compressed);
2134 ASSERT(!compressed);
2135 ASSERT(!encrypted);
2136
2137 if (HDR_ENCRYPTED(hdr) && ARC_BUF_ENCRYPTED(buf)) {
2138 ASSERT3U(hdr->b_crypt_hdr.b_ot, ==, DMU_OT_DNODE);
2139
2140 if (hash_lock != NULL)
2141 mutex_enter(hash_lock);
2142 arc_buf_untransform_in_place(buf, hash_lock);
2143 if (hash_lock != NULL)
2144 mutex_exit(hash_lock);
2145
2146 /* Compute the hdr's checksum if necessary */
2147 arc_cksum_compute(buf);
2148 }
2149
2150 return (0);
2151 }
2152
2153 if (hdr_compressed == compressed) {
2154 if (!arc_buf_is_shared(buf)) {
2155 abd_copy_to_buf(buf->b_data, hdr->b_l1hdr.b_pabd,
2156 arc_buf_size(buf));
2157 }
2158 } else {
2159 ASSERT(hdr_compressed);
2160 ASSERT(!compressed);
2161 ASSERT3U(HDR_GET_LSIZE(hdr), !=, HDR_GET_PSIZE(hdr));
2162
2163 /*
2164 * If the buf is sharing its data with the hdr, unlink it and
2165 * allocate a new data buffer for the buf.
2166 */
2167 if (arc_buf_is_shared(buf)) {
2168 ASSERT(ARC_BUF_COMPRESSED(buf));
2169
2170 /* We need to give the buf it's own b_data */
2171 buf->b_flags &= ~ARC_BUF_FLAG_SHARED;
2172 buf->b_data =
2173 arc_get_data_buf(hdr, HDR_GET_LSIZE(hdr), buf);
2174 arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA);
2175
2176 /* Previously overhead was 0; just add new overhead */
2177 ARCSTAT_INCR(arcstat_overhead_size, HDR_GET_LSIZE(hdr));
2178 } else if (ARC_BUF_COMPRESSED(buf)) {
2179 /* We need to reallocate the buf's b_data */
2180 arc_free_data_buf(hdr, buf->b_data, HDR_GET_PSIZE(hdr),
2181 buf);
2182 buf->b_data =
2183 arc_get_data_buf(hdr, HDR_GET_LSIZE(hdr), buf);
2184
2185 /* We increased the size of b_data; update overhead */
2186 ARCSTAT_INCR(arcstat_overhead_size,
2187 HDR_GET_LSIZE(hdr) - HDR_GET_PSIZE(hdr));
2188 }
2189
2190 /*
2191 * Regardless of the buf's previous compression settings, it
2192 * should not be compressed at the end of this function.
2193 */
2194 buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED;
2195
2196 /*
2197 * Try copying the data from another buf which already has a
2198 * decompressed version. If that's not possible, it's time to
2199 * bite the bullet and decompress the data from the hdr.
2200 */
2201 if (arc_buf_try_copy_decompressed_data(buf)) {
2202 /* Skip byteswapping and checksumming (already done) */
2203 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, !=, NULL);
2204 return (0);
2205 } else {
2206 error = zio_decompress_data(HDR_GET_COMPRESS(hdr),
2207 hdr->b_l1hdr.b_pabd, buf->b_data,
2208 HDR_GET_PSIZE(hdr), HDR_GET_LSIZE(hdr));
2209
2210 /*
2211 * Absent hardware errors or software bugs, this should
2212 * be impossible, but log it anyway so we can debug it.
2213 */
2214 if (error != 0) {
2215 zfs_dbgmsg(
2216 "hdr %p, compress %d, psize %d, lsize %d",
2217 hdr, arc_hdr_get_compress(hdr),
2218 HDR_GET_PSIZE(hdr), HDR_GET_LSIZE(hdr));
2219 arc_hdr_set_flags(hdr, ARC_FLAG_IO_ERROR);
2220 return (SET_ERROR(EIO));
2221 }
2222 }
2223 }
2224
2225 byteswap:
2226 /* Byteswap the buf's data if necessary */
2227 if (bswap != DMU_BSWAP_NUMFUNCS) {
2228 ASSERT(!HDR_SHARED_DATA(hdr));
2229 ASSERT3U(bswap, <, DMU_BSWAP_NUMFUNCS);
2230 dmu_ot_byteswap[bswap].ob_func(buf->b_data, HDR_GET_LSIZE(hdr));
2231 }
2232
2233 /* Compute the hdr's checksum if necessary */
2234 arc_cksum_compute(buf);
2235
2236 return (0);
2237 }
2238
2239 /*
2240 * If this function is being called to decrypt an encrypted buffer or verify an
2241 * authenticated one, the key must be loaded and a mapping must be made
2242 * available in the keystore via spa_keystore_create_mapping() or one of its
2243 * callers.
2244 */
2245 int
2246 arc_untransform(arc_buf_t *buf, spa_t *spa, const zbookmark_phys_t *zb,
2247 boolean_t in_place)
2248 {
2249 int ret;
2250 arc_fill_flags_t flags = 0;
2251
2252 if (in_place)
2253 flags |= ARC_FILL_IN_PLACE;
2254
2255 ret = arc_buf_fill(buf, spa, zb, flags);
2256 if (ret == ECKSUM) {
2257 /*
2258 * Convert authentication and decryption errors to EIO
2259 * (and generate an ereport) before leaving the ARC.
2260 */
2261 ret = SET_ERROR(EIO);
2262 spa_log_error(spa, zb);
2263 zfs_ereport_post(FM_EREPORT_ZFS_AUTHENTICATION,
2264 spa, NULL, zb, NULL, 0, 0);
2265 }
2266
2267 return (ret);
2268 }
2269
2270 /*
2271 * Increment the amount of evictable space in the arc_state_t's refcount.
2272 * We account for the space used by the hdr and the arc buf individually
2273 * so that we can add and remove them from the refcount individually.
2274 */
2275 static void
2276 arc_evictable_space_increment(arc_buf_hdr_t *hdr, arc_state_t *state)
2277 {
2278 arc_buf_contents_t type = arc_buf_type(hdr);
2279
2280 ASSERT(HDR_HAS_L1HDR(hdr));
2281
2282 if (GHOST_STATE(state)) {
2283 ASSERT0(hdr->b_l1hdr.b_bufcnt);
2284 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2285 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
2286 ASSERT(!HDR_HAS_RABD(hdr));
2287 (void) refcount_add_many(&state->arcs_esize[type],
2288 HDR_GET_LSIZE(hdr), hdr);
2289 return;
2290 }
2291
2292 ASSERT(!GHOST_STATE(state));
2293 if (hdr->b_l1hdr.b_pabd != NULL) {
2294 (void) refcount_add_many(&state->arcs_esize[type],
2295 arc_hdr_size(hdr), hdr);
2296 }
2297 if (HDR_HAS_RABD(hdr)) {
2298 (void) refcount_add_many(&state->arcs_esize[type],
2299 HDR_GET_PSIZE(hdr), hdr);
2300 }
2301
2302 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
2303 buf = buf->b_next) {
2304 if (arc_buf_is_shared(buf))
2305 continue;
2306 (void) refcount_add_many(&state->arcs_esize[type],
2307 arc_buf_size(buf), buf);
2308 }
2309 }
2310
2311 /*
2312 * Decrement the amount of evictable space in the arc_state_t's refcount.
2313 * We account for the space used by the hdr and the arc buf individually
2314 * so that we can add and remove them from the refcount individually.
2315 */
2316 static void
2317 arc_evictable_space_decrement(arc_buf_hdr_t *hdr, arc_state_t *state)
2318 {
2319 arc_buf_contents_t type = arc_buf_type(hdr);
2320
2321 ASSERT(HDR_HAS_L1HDR(hdr));
2322
2323 if (GHOST_STATE(state)) {
2324 ASSERT0(hdr->b_l1hdr.b_bufcnt);
2325 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2326 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
2327 ASSERT(!HDR_HAS_RABD(hdr));
2328 (void) refcount_remove_many(&state->arcs_esize[type],
2329 HDR_GET_LSIZE(hdr), hdr);
2330 return;
2331 }
2332
2333 ASSERT(!GHOST_STATE(state));
2334 if (hdr->b_l1hdr.b_pabd != NULL) {
2335 (void) refcount_remove_many(&state->arcs_esize[type],
2336 arc_hdr_size(hdr), hdr);
2337 }
2338 if (HDR_HAS_RABD(hdr)) {
2339 (void) refcount_remove_many(&state->arcs_esize[type],
2340 HDR_GET_PSIZE(hdr), hdr);
2341 }
2342
2343 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
2344 buf = buf->b_next) {
2345 if (arc_buf_is_shared(buf))
2346 continue;
2347 (void) refcount_remove_many(&state->arcs_esize[type],
2348 arc_buf_size(buf), buf);
2349 }
2350 }
2351
2352 /*
2353 * Add a reference to this hdr indicating that someone is actively
2354 * referencing that memory. When the refcount transitions from 0 to 1,
2355 * we remove it from the respective arc_state_t list to indicate that
2356 * it is not evictable.
2357 */
2358 static void
2359 add_reference(arc_buf_hdr_t *hdr, void *tag)
2360 {
2361 arc_state_t *state;
2362
2363 ASSERT(HDR_HAS_L1HDR(hdr));
2364 if (!MUTEX_HELD(HDR_LOCK(hdr))) {
2365 ASSERT(hdr->b_l1hdr.b_state == arc_anon);
2366 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
2367 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2368 }
2369
2370 state = hdr->b_l1hdr.b_state;
2371
2372 if ((refcount_add(&hdr->b_l1hdr.b_refcnt, tag) == 1) &&
2373 (state != arc_anon)) {
2374 /* We don't use the L2-only state list. */
2375 if (state != arc_l2c_only) {
2376 multilist_remove(state->arcs_list[arc_buf_type(hdr)],
2377 hdr);
2378 arc_evictable_space_decrement(hdr, state);
2379 }
2380 /* remove the prefetch flag if we get a reference */
2381 arc_hdr_clear_flags(hdr, ARC_FLAG_PREFETCH);
2382 }
2383 }
2384
2385 /*
2386 * Remove a reference from this hdr. When the reference transitions from
2387 * 1 to 0 and we're not anonymous, then we add this hdr to the arc_state_t's
2388 * list making it eligible for eviction.
2389 */
2390 static int
2391 remove_reference(arc_buf_hdr_t *hdr, kmutex_t *hash_lock, void *tag)
2392 {
2393 int cnt;
2394 arc_state_t *state = hdr->b_l1hdr.b_state;
2395
2396 ASSERT(HDR_HAS_L1HDR(hdr));
2397 ASSERT(state == arc_anon || MUTEX_HELD(hash_lock));
2398 ASSERT(!GHOST_STATE(state));
2399
2400 /*
2401 * arc_l2c_only counts as a ghost state so we don't need to explicitly
2402 * check to prevent usage of the arc_l2c_only list.
2403 */
2404 if (((cnt = refcount_remove(&hdr->b_l1hdr.b_refcnt, tag)) == 0) &&
2405 (state != arc_anon)) {
2406 multilist_insert(state->arcs_list[arc_buf_type(hdr)], hdr);
2407 ASSERT3U(hdr->b_l1hdr.b_bufcnt, >, 0);
2408 arc_evictable_space_increment(hdr, state);
2409 }
2410 return (cnt);
2411 }
2412
2413 /*
2414 * Returns detailed information about a specific arc buffer. When the
2415 * state_index argument is set the function will calculate the arc header
2416 * list position for its arc state. Since this requires a linear traversal
2417 * callers are strongly encourage not to do this. However, it can be helpful
2418 * for targeted analysis so the functionality is provided.
2419 */
2420 void
2421 arc_buf_info(arc_buf_t *ab, arc_buf_info_t *abi, int state_index)
2422 {
2423 arc_buf_hdr_t *hdr = ab->b_hdr;
2424 l1arc_buf_hdr_t *l1hdr = NULL;
2425 l2arc_buf_hdr_t *l2hdr = NULL;
2426 arc_state_t *state = NULL;
2427
2428 memset(abi, 0, sizeof (arc_buf_info_t));
2429
2430 if (hdr == NULL)
2431 return;
2432
2433 abi->abi_flags = hdr->b_flags;
2434
2435 if (HDR_HAS_L1HDR(hdr)) {
2436 l1hdr = &hdr->b_l1hdr;
2437 state = l1hdr->b_state;
2438 }
2439 if (HDR_HAS_L2HDR(hdr))
2440 l2hdr = &hdr->b_l2hdr;
2441
2442 if (l1hdr) {
2443 abi->abi_bufcnt = l1hdr->b_bufcnt;
2444 abi->abi_access = l1hdr->b_arc_access;
2445 abi->abi_mru_hits = l1hdr->b_mru_hits;
2446 abi->abi_mru_ghost_hits = l1hdr->b_mru_ghost_hits;
2447 abi->abi_mfu_hits = l1hdr->b_mfu_hits;
2448 abi->abi_mfu_ghost_hits = l1hdr->b_mfu_ghost_hits;
2449 abi->abi_holds = refcount_count(&l1hdr->b_refcnt);
2450 }
2451
2452 if (l2hdr) {
2453 abi->abi_l2arc_dattr = l2hdr->b_daddr;
2454 abi->abi_l2arc_hits = l2hdr->b_hits;
2455 }
2456
2457 abi->abi_state_type = state ? state->arcs_state : ARC_STATE_ANON;
2458 abi->abi_state_contents = arc_buf_type(hdr);
2459 abi->abi_size = arc_hdr_size(hdr);
2460 }
2461
2462 /*
2463 * Move the supplied buffer to the indicated state. The hash lock
2464 * for the buffer must be held by the caller.
2465 */
2466 static void
2467 arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *hdr,
2468 kmutex_t *hash_lock)
2469 {
2470 arc_state_t *old_state;
2471 int64_t refcnt;
2472 uint32_t bufcnt;
2473 boolean_t update_old, update_new;
2474 arc_buf_contents_t buftype = arc_buf_type(hdr);
2475
2476 /*
2477 * We almost always have an L1 hdr here, since we call arc_hdr_realloc()
2478 * in arc_read() when bringing a buffer out of the L2ARC. However, the
2479 * L1 hdr doesn't always exist when we change state to arc_anon before
2480 * destroying a header, in which case reallocating to add the L1 hdr is
2481 * pointless.
2482 */
2483 if (HDR_HAS_L1HDR(hdr)) {
2484 old_state = hdr->b_l1hdr.b_state;
2485 refcnt = refcount_count(&hdr->b_l1hdr.b_refcnt);
2486 bufcnt = hdr->b_l1hdr.b_bufcnt;
2487 update_old = (bufcnt > 0 || hdr->b_l1hdr.b_pabd != NULL ||
2488 HDR_HAS_RABD(hdr));
2489 } else {
2490 old_state = arc_l2c_only;
2491 refcnt = 0;
2492 bufcnt = 0;
2493 update_old = B_FALSE;
2494 }
2495 update_new = update_old;
2496
2497 ASSERT(MUTEX_HELD(hash_lock));
2498 ASSERT3P(new_state, !=, old_state);
2499 ASSERT(!GHOST_STATE(new_state) || bufcnt == 0);
2500 ASSERT(old_state != arc_anon || bufcnt <= 1);
2501
2502 /*
2503 * If this buffer is evictable, transfer it from the
2504 * old state list to the new state list.
2505 */
2506 if (refcnt == 0) {
2507 if (old_state != arc_anon && old_state != arc_l2c_only) {
2508 ASSERT(HDR_HAS_L1HDR(hdr));
2509 multilist_remove(old_state->arcs_list[buftype], hdr);
2510
2511 if (GHOST_STATE(old_state)) {
2512 ASSERT0(bufcnt);
2513 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2514 update_old = B_TRUE;
2515 }
2516 arc_evictable_space_decrement(hdr, old_state);
2517 }
2518 if (new_state != arc_anon && new_state != arc_l2c_only) {
2519 /*
2520 * An L1 header always exists here, since if we're
2521 * moving to some L1-cached state (i.e. not l2c_only or
2522 * anonymous), we realloc the header to add an L1hdr
2523 * beforehand.
2524 */
2525 ASSERT(HDR_HAS_L1HDR(hdr));
2526 multilist_insert(new_state->arcs_list[buftype], hdr);
2527
2528 if (GHOST_STATE(new_state)) {
2529 ASSERT0(bufcnt);
2530 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2531 update_new = B_TRUE;
2532 }
2533 arc_evictable_space_increment(hdr, new_state);
2534 }
2535 }
2536
2537 ASSERT(!HDR_EMPTY(hdr));
2538 if (new_state == arc_anon && HDR_IN_HASH_TABLE(hdr))
2539 buf_hash_remove(hdr);
2540
2541 /* adjust state sizes (ignore arc_l2c_only) */
2542
2543 if (update_new && new_state != arc_l2c_only) {
2544 ASSERT(HDR_HAS_L1HDR(hdr));
2545 if (GHOST_STATE(new_state)) {
2546 ASSERT0(bufcnt);
2547
2548 /*
2549 * When moving a header to a ghost state, we first
2550 * remove all arc buffers. Thus, we'll have a
2551 * bufcnt of zero, and no arc buffer to use for
2552 * the reference. As a result, we use the arc
2553 * header pointer for the reference.
2554 */
2555 (void) refcount_add_many(&new_state->arcs_size,
2556 HDR_GET_LSIZE(hdr), hdr);
2557 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
2558 ASSERT(!HDR_HAS_RABD(hdr));
2559 } else {
2560 uint32_t buffers = 0;
2561
2562 /*
2563 * Each individual buffer holds a unique reference,
2564 * thus we must remove each of these references one
2565 * at a time.
2566 */
2567 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
2568 buf = buf->b_next) {
2569 ASSERT3U(bufcnt, !=, 0);
2570 buffers++;
2571
2572 /*
2573 * When the arc_buf_t is sharing the data
2574 * block with the hdr, the owner of the
2575 * reference belongs to the hdr. Only
2576 * add to the refcount if the arc_buf_t is
2577 * not shared.
2578 */
2579 if (arc_buf_is_shared(buf))
2580 continue;
2581
2582 (void) refcount_add_many(&new_state->arcs_size,
2583 arc_buf_size(buf), buf);
2584 }
2585 ASSERT3U(bufcnt, ==, buffers);
2586
2587 if (hdr->b_l1hdr.b_pabd != NULL) {
2588 (void) refcount_add_many(&new_state->arcs_size,
2589 arc_hdr_size(hdr), hdr);
2590 }
2591
2592 if (HDR_HAS_RABD(hdr)) {
2593 (void) refcount_add_many(&new_state->arcs_size,
2594 HDR_GET_PSIZE(hdr), hdr);
2595 }
2596 }
2597 }
2598
2599 if (update_old && old_state != arc_l2c_only) {
2600 ASSERT(HDR_HAS_L1HDR(hdr));
2601 if (GHOST_STATE(old_state)) {
2602 ASSERT0(bufcnt);
2603 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
2604 ASSERT(!HDR_HAS_RABD(hdr));
2605
2606 /*
2607 * When moving a header off of a ghost state,
2608 * the header will not contain any arc buffers.
2609 * We use the arc header pointer for the reference
2610 * which is exactly what we did when we put the
2611 * header on the ghost state.
2612 */
2613
2614 (void) refcount_remove_many(&old_state->arcs_size,
2615 HDR_GET_LSIZE(hdr), hdr);
2616 } else {
2617 uint32_t buffers = 0;
2618
2619 /*
2620 * Each individual buffer holds a unique reference,
2621 * thus we must remove each of these references one
2622 * at a time.
2623 */
2624 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
2625 buf = buf->b_next) {
2626 ASSERT3U(bufcnt, !=, 0);
2627 buffers++;
2628
2629 /*
2630 * When the arc_buf_t is sharing the data
2631 * block with the hdr, the owner of the
2632 * reference belongs to the hdr. Only
2633 * add to the refcount if the arc_buf_t is
2634 * not shared.
2635 */
2636 if (arc_buf_is_shared(buf))
2637 continue;
2638
2639 (void) refcount_remove_many(
2640 &old_state->arcs_size, arc_buf_size(buf),
2641 buf);
2642 }
2643 ASSERT3U(bufcnt, ==, buffers);
2644 ASSERT(hdr->b_l1hdr.b_pabd != NULL ||
2645 HDR_HAS_RABD(hdr));
2646
2647 if (hdr->b_l1hdr.b_pabd != NULL) {
2648 (void) refcount_remove_many(
2649 &old_state->arcs_size, arc_hdr_size(hdr),
2650 hdr);
2651 }
2652
2653 if (HDR_HAS_RABD(hdr)) {
2654 (void) refcount_remove_many(
2655 &old_state->arcs_size, HDR_GET_PSIZE(hdr),
2656 hdr);
2657 }
2658 }
2659 }
2660
2661 if (HDR_HAS_L1HDR(hdr))
2662 hdr->b_l1hdr.b_state = new_state;
2663
2664 /*
2665 * L2 headers should never be on the L2 state list since they don't
2666 * have L1 headers allocated.
2667 */
2668 ASSERT(multilist_is_empty(arc_l2c_only->arcs_list[ARC_BUFC_DATA]) &&
2669 multilist_is_empty(arc_l2c_only->arcs_list[ARC_BUFC_METADATA]));
2670 }
2671
2672 void
2673 arc_space_consume(uint64_t space, arc_space_type_t type)
2674 {
2675 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
2676
2677 switch (type) {
2678 default:
2679 break;
2680 case ARC_SPACE_DATA:
2681 ARCSTAT_INCR(arcstat_data_size, space);
2682 break;
2683 case ARC_SPACE_META:
2684 ARCSTAT_INCR(arcstat_metadata_size, space);
2685 break;
2686 case ARC_SPACE_BONUS:
2687 ARCSTAT_INCR(arcstat_bonus_size, space);
2688 break;
2689 case ARC_SPACE_DNODE:
2690 ARCSTAT_INCR(arcstat_dnode_size, space);
2691 break;
2692 case ARC_SPACE_DBUF:
2693 ARCSTAT_INCR(arcstat_dbuf_size, space);
2694 break;
2695 case ARC_SPACE_HDRS:
2696 ARCSTAT_INCR(arcstat_hdr_size, space);
2697 break;
2698 case ARC_SPACE_L2HDRS:
2699 ARCSTAT_INCR(arcstat_l2_hdr_size, space);
2700 break;
2701 }
2702
2703 if (type != ARC_SPACE_DATA)
2704 ARCSTAT_INCR(arcstat_meta_used, space);
2705
2706 atomic_add_64(&arc_size, space);
2707 }
2708
2709 void
2710 arc_space_return(uint64_t space, arc_space_type_t type)
2711 {
2712 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
2713
2714 switch (type) {
2715 default:
2716 break;
2717 case ARC_SPACE_DATA:
2718 ARCSTAT_INCR(arcstat_data_size, -space);
2719 break;
2720 case ARC_SPACE_META:
2721 ARCSTAT_INCR(arcstat_metadata_size, -space);
2722 break;
2723 case ARC_SPACE_BONUS:
2724 ARCSTAT_INCR(arcstat_bonus_size, -space);
2725 break;
2726 case ARC_SPACE_DNODE:
2727 ARCSTAT_INCR(arcstat_dnode_size, -space);
2728 break;
2729 case ARC_SPACE_DBUF:
2730 ARCSTAT_INCR(arcstat_dbuf_size, -space);
2731 break;
2732 case ARC_SPACE_HDRS:
2733 ARCSTAT_INCR(arcstat_hdr_size, -space);
2734 break;
2735 case ARC_SPACE_L2HDRS:
2736 ARCSTAT_INCR(arcstat_l2_hdr_size, -space);
2737 break;
2738 }
2739
2740 if (type != ARC_SPACE_DATA) {
2741 ASSERT(arc_meta_used >= space);
2742 if (arc_meta_max < arc_meta_used)
2743 arc_meta_max = arc_meta_used;
2744 ARCSTAT_INCR(arcstat_meta_used, -space);
2745 }
2746
2747 ASSERT(arc_size >= space);
2748 atomic_add_64(&arc_size, -space);
2749 }
2750
2751 /*
2752 * Given a hdr and a buf, returns whether that buf can share its b_data buffer
2753 * with the hdr's b_pabd.
2754 */
2755 static boolean_t
2756 arc_can_share(arc_buf_hdr_t *hdr, arc_buf_t *buf)
2757 {
2758 /*
2759 * The criteria for sharing a hdr's data are:
2760 * 1. the buffer is not encrypted
2761 * 2. the hdr's compression matches the buf's compression
2762 * 3. the hdr doesn't need to be byteswapped
2763 * 4. the hdr isn't already being shared
2764 * 5. the buf is either compressed or it is the last buf in the hdr list
2765 *
2766 * Criterion #5 maintains the invariant that shared uncompressed
2767 * bufs must be the final buf in the hdr's b_buf list. Reading this, you
2768 * might ask, "if a compressed buf is allocated first, won't that be the
2769 * last thing in the list?", but in that case it's impossible to create
2770 * a shared uncompressed buf anyway (because the hdr must be compressed
2771 * to have the compressed buf). You might also think that #3 is
2772 * sufficient to make this guarantee, however it's possible
2773 * (specifically in the rare L2ARC write race mentioned in
2774 * arc_buf_alloc_impl()) there will be an existing uncompressed buf that
2775 * is sharable, but wasn't at the time of its allocation. Rather than
2776 * allow a new shared uncompressed buf to be created and then shuffle
2777 * the list around to make it the last element, this simply disallows
2778 * sharing if the new buf isn't the first to be added.
2779 */
2780 ASSERT3P(buf->b_hdr, ==, hdr);
2781 boolean_t hdr_compressed =
2782 arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF;
2783 boolean_t buf_compressed = ARC_BUF_COMPRESSED(buf) != 0;
2784 return (!ARC_BUF_ENCRYPTED(buf) &&
2785 buf_compressed == hdr_compressed &&
2786 hdr->b_l1hdr.b_byteswap == DMU_BSWAP_NUMFUNCS &&
2787 !HDR_SHARED_DATA(hdr) &&
2788 (ARC_BUF_LAST(buf) || ARC_BUF_COMPRESSED(buf)));
2789 }
2790
2791 /*
2792 * Allocate a buf for this hdr. If you care about the data that's in the hdr,
2793 * or if you want a compressed buffer, pass those flags in. Returns 0 if the
2794 * copy was made successfully, or an error code otherwise.
2795 */
2796 static int
2797 arc_buf_alloc_impl(arc_buf_hdr_t *hdr, spa_t *spa, const zbookmark_phys_t *zb,
2798 void *tag, boolean_t encrypted, boolean_t compressed, boolean_t noauth,
2799 boolean_t fill, arc_buf_t **ret)
2800 {
2801 arc_buf_t *buf;
2802 arc_fill_flags_t flags = ARC_FILL_LOCKED;
2803
2804 ASSERT(HDR_HAS_L1HDR(hdr));
2805 ASSERT3U(HDR_GET_LSIZE(hdr), >, 0);
2806 VERIFY(hdr->b_type == ARC_BUFC_DATA ||
2807 hdr->b_type == ARC_BUFC_METADATA);
2808 ASSERT3P(ret, !=, NULL);
2809 ASSERT3P(*ret, ==, NULL);
2810 IMPLY(encrypted, compressed);
2811
2812 hdr->b_l1hdr.b_mru_hits = 0;
2813 hdr->b_l1hdr.b_mru_ghost_hits = 0;
2814 hdr->b_l1hdr.b_mfu_hits = 0;
2815 hdr->b_l1hdr.b_mfu_ghost_hits = 0;
2816 hdr->b_l1hdr.b_l2_hits = 0;
2817
2818 buf = *ret = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
2819 buf->b_hdr = hdr;
2820 buf->b_data = NULL;
2821 buf->b_next = hdr->b_l1hdr.b_buf;
2822 buf->b_flags = 0;
2823
2824 add_reference(hdr, tag);
2825
2826 /*
2827 * We're about to change the hdr's b_flags. We must either
2828 * hold the hash_lock or be undiscoverable.
2829 */
2830 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
2831
2832 /*
2833 * Only honor requests for compressed bufs if the hdr is actually
2834 * compressed. This must be overriden if the buffer is encrypted since
2835 * encrypted buffers cannot be decompressed.
2836 */
2837 if (encrypted) {
2838 buf->b_flags |= ARC_BUF_FLAG_COMPRESSED;
2839 buf->b_flags |= ARC_BUF_FLAG_ENCRYPTED;
2840 flags |= ARC_FILL_COMPRESSED | ARC_FILL_ENCRYPTED;
2841 } else if (compressed &&
2842 arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF) {
2843 buf->b_flags |= ARC_BUF_FLAG_COMPRESSED;
2844 flags |= ARC_FILL_COMPRESSED;
2845 }
2846
2847 if (noauth) {
2848 ASSERT0(encrypted);
2849 flags |= ARC_FILL_NOAUTH;
2850 }
2851
2852 /*
2853 * If the hdr's data can be shared then we share the data buffer and
2854 * set the appropriate bit in the hdr's b_flags to indicate the hdr is
2855 * allocate a new buffer to store the buf's data.
2856 *
2857 * There are two additional restrictions here because we're sharing
2858 * hdr -> buf instead of the usual buf -> hdr. First, the hdr can't be
2859 * actively involved in an L2ARC write, because if this buf is used by
2860 * an arc_write() then the hdr's data buffer will be released when the
2861 * write completes, even though the L2ARC write might still be using it.
2862 * Second, the hdr's ABD must be linear so that the buf's user doesn't
2863 * need to be ABD-aware.
2864 */
2865 boolean_t can_share = arc_can_share(hdr, buf) && !HDR_L2_WRITING(hdr) &&
2866 hdr->b_l1hdr.b_pabd != NULL && abd_is_linear(hdr->b_l1hdr.b_pabd);
2867
2868 /* Set up b_data and sharing */
2869 if (can_share) {
2870 buf->b_data = abd_to_buf(hdr->b_l1hdr.b_pabd);
2871 buf->b_flags |= ARC_BUF_FLAG_SHARED;
2872 arc_hdr_set_flags(hdr, ARC_FLAG_SHARED_DATA);
2873 } else {
2874 buf->b_data =
2875 arc_get_data_buf(hdr, arc_buf_size(buf), buf);
2876 ARCSTAT_INCR(arcstat_overhead_size, arc_buf_size(buf));
2877 }
2878 VERIFY3P(buf->b_data, !=, NULL);
2879
2880 hdr->b_l1hdr.b_buf = buf;
2881 hdr->b_l1hdr.b_bufcnt += 1;
2882 if (encrypted)
2883 hdr->b_crypt_hdr.b_ebufcnt += 1;
2884
2885 /*
2886 * If the user wants the data from the hdr, we need to either copy or
2887 * decompress the data.
2888 */
2889 if (fill) {
2890 ASSERT3P(zb, !=, NULL);
2891 return (arc_buf_fill(buf, spa, zb, flags));
2892 }
2893
2894 return (0);
2895 }
2896
2897 static char *arc_onloan_tag = "onloan";
2898
2899 static inline void
2900 arc_loaned_bytes_update(int64_t delta)
2901 {
2902 atomic_add_64(&arc_loaned_bytes, delta);
2903
2904 /* assert that it did not wrap around */
2905 ASSERT3S(atomic_add_64_nv(&arc_loaned_bytes, 0), >=, 0);
2906 }
2907
2908 /*
2909 * Loan out an anonymous arc buffer. Loaned buffers are not counted as in
2910 * flight data by arc_tempreserve_space() until they are "returned". Loaned
2911 * buffers must be returned to the arc before they can be used by the DMU or
2912 * freed.
2913 */
2914 arc_buf_t *
2915 arc_loan_buf(spa_t *spa, boolean_t is_metadata, int size)
2916 {
2917 arc_buf_t *buf = arc_alloc_buf(spa, arc_onloan_tag,
2918 is_metadata ? ARC_BUFC_METADATA : ARC_BUFC_DATA, size);
2919
2920 arc_loaned_bytes_update(arc_buf_size(buf));
2921
2922 return (buf);
2923 }
2924
2925 arc_buf_t *
2926 arc_loan_compressed_buf(spa_t *spa, uint64_t psize, uint64_t lsize,
2927 enum zio_compress compression_type)
2928 {
2929 arc_buf_t *buf = arc_alloc_compressed_buf(spa, arc_onloan_tag,
2930 psize, lsize, compression_type);
2931
2932 arc_loaned_bytes_update(arc_buf_size(buf));
2933
2934 return (buf);
2935 }
2936
2937 arc_buf_t *
2938 arc_loan_raw_buf(spa_t *spa, uint64_t dsobj, boolean_t byteorder,
2939 const uint8_t *salt, const uint8_t *iv, const uint8_t *mac,
2940 dmu_object_type_t ot, uint64_t psize, uint64_t lsize,
2941 enum zio_compress compression_type)
2942 {
2943 arc_buf_t *buf = arc_alloc_raw_buf(spa, arc_onloan_tag, dsobj,
2944 byteorder, salt, iv, mac, ot, psize, lsize, compression_type);
2945
2946 atomic_add_64(&arc_loaned_bytes, psize);
2947 return (buf);
2948 }
2949
2950
2951 /*
2952 * Return a loaned arc buffer to the arc.
2953 */
2954 void
2955 arc_return_buf(arc_buf_t *buf, void *tag)
2956 {
2957 arc_buf_hdr_t *hdr = buf->b_hdr;
2958
2959 ASSERT3P(buf->b_data, !=, NULL);
2960 ASSERT(HDR_HAS_L1HDR(hdr));
2961 (void) refcount_add(&hdr->b_l1hdr.b_refcnt, tag);
2962 (void) refcount_remove(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag);
2963
2964 arc_loaned_bytes_update(-arc_buf_size(buf));
2965 }
2966
2967 /* Detach an arc_buf from a dbuf (tag) */
2968 void
2969 arc_loan_inuse_buf(arc_buf_t *buf, void *tag)
2970 {
2971 arc_buf_hdr_t *hdr = buf->b_hdr;
2972
2973 ASSERT3P(buf->b_data, !=, NULL);
2974 ASSERT(HDR_HAS_L1HDR(hdr));
2975 (void) refcount_add(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag);
2976 (void) refcount_remove(&hdr->b_l1hdr.b_refcnt, tag);
2977
2978 arc_loaned_bytes_update(arc_buf_size(buf));
2979 }
2980
2981 static void
2982 l2arc_free_abd_on_write(abd_t *abd, size_t size, arc_buf_contents_t type)
2983 {
2984 l2arc_data_free_t *df = kmem_alloc(sizeof (*df), KM_SLEEP);
2985
2986 df->l2df_abd = abd;
2987 df->l2df_size = size;
2988 df->l2df_type = type;
2989 mutex_enter(&l2arc_free_on_write_mtx);
2990 list_insert_head(l2arc_free_on_write, df);
2991 mutex_exit(&l2arc_free_on_write_mtx);
2992 }
2993
2994 static void
2995 arc_hdr_free_on_write(arc_buf_hdr_t *hdr, boolean_t free_rdata)
2996 {
2997 arc_state_t *state = hdr->b_l1hdr.b_state;
2998 arc_buf_contents_t type = arc_buf_type(hdr);
2999 uint64_t size = (free_rdata) ? HDR_GET_PSIZE(hdr) : arc_hdr_size(hdr);
3000
3001 /* protected by hash lock, if in the hash table */
3002 if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
3003 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
3004 ASSERT(state != arc_anon && state != arc_l2c_only);
3005
3006 (void) refcount_remove_many(&state->arcs_esize[type],
3007 size, hdr);
3008 }
3009 (void) refcount_remove_many(&state->arcs_size, size, hdr);
3010 if (type == ARC_BUFC_METADATA) {
3011 arc_space_return(size, ARC_SPACE_META);
3012 } else {
3013 ASSERT(type == ARC_BUFC_DATA);
3014 arc_space_return(size, ARC_SPACE_DATA);
3015 }
3016
3017 if (free_rdata) {
3018 l2arc_free_abd_on_write(hdr->b_crypt_hdr.b_rabd, size, type);
3019 } else {
3020 l2arc_free_abd_on_write(hdr->b_l1hdr.b_pabd, size, type);
3021 }
3022 }
3023
3024 /*
3025 * Share the arc_buf_t's data with the hdr. Whenever we are sharing the
3026 * data buffer, we transfer the refcount ownership to the hdr and update
3027 * the appropriate kstats.
3028 */
3029 static void
3030 arc_share_buf(arc_buf_hdr_t *hdr, arc_buf_t *buf)
3031 {
3032 ASSERT(arc_can_share(hdr, buf));
3033 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
3034 ASSERT(!ARC_BUF_ENCRYPTED(buf));
3035 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
3036
3037 /*
3038 * Start sharing the data buffer. We transfer the
3039 * refcount ownership to the hdr since it always owns
3040 * the refcount whenever an arc_buf_t is shared.
3041 */
3042 refcount_transfer_ownership(&hdr->b_l1hdr.b_state->arcs_size, buf, hdr);
3043 hdr->b_l1hdr.b_pabd = abd_get_from_buf(buf->b_data, arc_buf_size(buf));
3044 abd_take_ownership_of_buf(hdr->b_l1hdr.b_pabd,
3045 HDR_ISTYPE_METADATA(hdr));
3046 arc_hdr_set_flags(hdr, ARC_FLAG_SHARED_DATA);
3047 buf->b_flags |= ARC_BUF_FLAG_SHARED;
3048
3049 /*
3050 * Since we've transferred ownership to the hdr we need
3051 * to increment its compressed and uncompressed kstats and
3052 * decrement the overhead size.
3053 */
3054 ARCSTAT_INCR(arcstat_compressed_size, arc_hdr_size(hdr));
3055 ARCSTAT_INCR(arcstat_uncompressed_size, HDR_GET_LSIZE(hdr));
3056 ARCSTAT_INCR(arcstat_overhead_size, -arc_buf_size(buf));
3057 }
3058
3059 static void
3060 arc_unshare_buf(arc_buf_hdr_t *hdr, arc_buf_t *buf)
3061 {
3062 ASSERT(arc_buf_is_shared(buf));
3063 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
3064 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
3065
3066 /*
3067 * We are no longer sharing this buffer so we need
3068 * to transfer its ownership to the rightful owner.
3069 */
3070 refcount_transfer_ownership(&hdr->b_l1hdr.b_state->arcs_size, hdr, buf);
3071 arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA);
3072 abd_release_ownership_of_buf(hdr->b_l1hdr.b_pabd);
3073 abd_put(hdr->b_l1hdr.b_pabd);
3074 hdr->b_l1hdr.b_pabd = NULL;
3075 buf->b_flags &= ~ARC_BUF_FLAG_SHARED;
3076
3077 /*
3078 * Since the buffer is no longer shared between
3079 * the arc buf and the hdr, count it as overhead.
3080 */
3081 ARCSTAT_INCR(arcstat_compressed_size, -arc_hdr_size(hdr));
3082 ARCSTAT_INCR(arcstat_uncompressed_size, -HDR_GET_LSIZE(hdr));
3083 ARCSTAT_INCR(arcstat_overhead_size, arc_buf_size(buf));
3084 }
3085
3086 /*
3087 * Remove an arc_buf_t from the hdr's buf list and return the last
3088 * arc_buf_t on the list. If no buffers remain on the list then return
3089 * NULL.
3090 */
3091 static arc_buf_t *
3092 arc_buf_remove(arc_buf_hdr_t *hdr, arc_buf_t *buf)
3093 {
3094 ASSERT(HDR_HAS_L1HDR(hdr));
3095 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
3096
3097 arc_buf_t **bufp = &hdr->b_l1hdr.b_buf;
3098 arc_buf_t *lastbuf = NULL;
3099
3100 /*
3101 * Remove the buf from the hdr list and locate the last
3102 * remaining buffer on the list.
3103 */
3104 while (*bufp != NULL) {
3105 if (*bufp == buf)
3106 *bufp = buf->b_next;
3107
3108 /*
3109 * If we've removed a buffer in the middle of
3110 * the list then update the lastbuf and update
3111 * bufp.
3112 */
3113 if (*bufp != NULL) {
3114 lastbuf = *bufp;
3115 bufp = &(*bufp)->b_next;
3116 }
3117 }
3118 buf->b_next = NULL;
3119 ASSERT3P(lastbuf, !=, buf);
3120 IMPLY(hdr->b_l1hdr.b_bufcnt > 0, lastbuf != NULL);
3121 IMPLY(hdr->b_l1hdr.b_bufcnt > 0, hdr->b_l1hdr.b_buf != NULL);
3122 IMPLY(lastbuf != NULL, ARC_BUF_LAST(lastbuf));
3123
3124 return (lastbuf);
3125 }
3126
3127 /*
3128 * Free up buf->b_data and pull the arc_buf_t off of the the arc_buf_hdr_t's
3129 * list and free it.
3130 */
3131 static void
3132 arc_buf_destroy_impl(arc_buf_t *buf)
3133 {
3134 arc_buf_hdr_t *hdr = buf->b_hdr;
3135
3136 /*
3137 * Free up the data associated with the buf but only if we're not
3138 * sharing this with the hdr. If we are sharing it with the hdr, the
3139 * hdr is responsible for doing the free.
3140 */
3141 if (buf->b_data != NULL) {
3142 /*
3143 * We're about to change the hdr's b_flags. We must either
3144 * hold the hash_lock or be undiscoverable.
3145 */
3146 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
3147
3148 arc_cksum_verify(buf);
3149 arc_buf_unwatch(buf);
3150
3151 if (arc_buf_is_shared(buf)) {
3152 arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA);
3153 } else {
3154 uint64_t size = arc_buf_size(buf);
3155 arc_free_data_buf(hdr, buf->b_data, size, buf);
3156 ARCSTAT_INCR(arcstat_overhead_size, -size);
3157 }
3158 buf->b_data = NULL;
3159
3160 ASSERT(hdr->b_l1hdr.b_bufcnt > 0);
3161 hdr->b_l1hdr.b_bufcnt -= 1;
3162
3163 if (ARC_BUF_ENCRYPTED(buf)) {
3164 hdr->b_crypt_hdr.b_ebufcnt -= 1;
3165
3166 /*
3167 * If we have no more encrypted buffers and we've
3168 * already gotten a copy of the decrypted data we can
3169 * free b_rabd to save some space.
3170 */
3171 if (hdr->b_crypt_hdr.b_ebufcnt == 0 &&
3172 HDR_HAS_RABD(hdr) && hdr->b_l1hdr.b_pabd != NULL &&
3173 !HDR_IO_IN_PROGRESS(hdr)) {
3174 arc_hdr_free_abd(hdr, B_TRUE);
3175 }
3176 }
3177 }
3178
3179 arc_buf_t *lastbuf = arc_buf_remove(hdr, buf);
3180
3181 if (ARC_BUF_SHARED(buf) && !ARC_BUF_COMPRESSED(buf)) {
3182 /*
3183 * If the current arc_buf_t is sharing its data buffer with the
3184 * hdr, then reassign the hdr's b_pabd to share it with the new
3185 * buffer at the end of the list. The shared buffer is always
3186 * the last one on the hdr's buffer list.
3187 *
3188 * There is an equivalent case for compressed bufs, but since
3189 * they aren't guaranteed to be the last buf in the list and
3190 * that is an exceedingly rare case, we just allow that space be
3191 * wasted temporarily. We must also be careful not to share
3192 * encrypted buffers, since they cannot be shared.
3193 */
3194 if (lastbuf != NULL && !ARC_BUF_ENCRYPTED(lastbuf)) {
3195 /* Only one buf can be shared at once */
3196 VERIFY(!arc_buf_is_shared(lastbuf));
3197 /* hdr is uncompressed so can't have compressed buf */
3198 VERIFY(!ARC_BUF_COMPRESSED(lastbuf));
3199
3200 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
3201 arc_hdr_free_abd(hdr, B_FALSE);
3202
3203 /*
3204 * We must setup a new shared block between the
3205 * last buffer and the hdr. The data would have
3206 * been allocated by the arc buf so we need to transfer
3207 * ownership to the hdr since it's now being shared.
3208 */
3209 arc_share_buf(hdr, lastbuf);
3210 }
3211 } else if (HDR_SHARED_DATA(hdr)) {
3212 /*
3213 * Uncompressed shared buffers are always at the end
3214 * of the list. Compressed buffers don't have the
3215 * same requirements. This makes it hard to
3216 * simply assert that the lastbuf is shared so
3217 * we rely on the hdr's compression flags to determine
3218 * if we have a compressed, shared buffer.
3219 */
3220 ASSERT3P(lastbuf, !=, NULL);
3221 ASSERT(arc_buf_is_shared(lastbuf) ||
3222 arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF);
3223 }
3224
3225 /*
3226 * Free the checksum if we're removing the last uncompressed buf from
3227 * this hdr.
3228 */
3229 if (!arc_hdr_has_uncompressed_buf(hdr)) {
3230 arc_cksum_free(hdr);
3231 }
3232
3233 /* clean up the buf */
3234 buf->b_hdr = NULL;
3235 kmem_cache_free(buf_cache, buf);
3236 }
3237
3238 static void
3239 arc_hdr_alloc_abd(arc_buf_hdr_t *hdr, boolean_t alloc_rdata)
3240 {
3241 uint64_t size;
3242
3243 ASSERT3U(HDR_GET_LSIZE(hdr), >, 0);
3244 ASSERT(HDR_HAS_L1HDR(hdr));
3245 ASSERT(!HDR_SHARED_DATA(hdr) || alloc_rdata);
3246 IMPLY(alloc_rdata, HDR_PROTECTED(hdr));
3247
3248 if (alloc_rdata) {
3249 size = HDR_GET_PSIZE(hdr);
3250 ASSERT3P(hdr->b_crypt_hdr.b_rabd, ==, NULL);
3251 hdr->b_crypt_hdr.b_rabd = arc_get_data_abd(hdr, size, hdr);
3252 ASSERT3P(hdr->b_crypt_hdr.b_rabd, !=, NULL);
3253 ARCSTAT_INCR(arcstat_raw_size, size);
3254 } else {
3255 size = arc_hdr_size(hdr);
3256 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
3257 hdr->b_l1hdr.b_pabd = arc_get_data_abd(hdr, size, hdr);
3258 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
3259 }
3260
3261 ARCSTAT_INCR(arcstat_compressed_size, size);
3262 ARCSTAT_INCR(arcstat_uncompressed_size, HDR_GET_LSIZE(hdr));
3263 }
3264
3265 static void
3266 arc_hdr_free_abd(arc_buf_hdr_t *hdr, boolean_t free_rdata)
3267 {
3268 uint64_t size = (free_rdata) ? HDR_GET_PSIZE(hdr) : arc_hdr_size(hdr);
3269
3270 ASSERT(HDR_HAS_L1HDR(hdr));
3271 ASSERT(hdr->b_l1hdr.b_pabd != NULL || HDR_HAS_RABD(hdr));
3272 IMPLY(free_rdata, HDR_HAS_RABD(hdr));
3273
3274 /*
3275 * If the hdr is currently being written to the l2arc then
3276 * we defer freeing the data by adding it to the l2arc_free_on_write
3277 * list. The l2arc will free the data once it's finished
3278 * writing it to the l2arc device.
3279 */
3280 if (HDR_L2_WRITING(hdr)) {
3281 arc_hdr_free_on_write(hdr, free_rdata);
3282 ARCSTAT_BUMP(arcstat_l2_free_on_write);
3283 } else if (free_rdata) {
3284 arc_free_data_abd(hdr, hdr->b_crypt_hdr.b_rabd, size, hdr);
3285 } else {
3286 arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd, size, hdr);
3287 }
3288
3289 if (free_rdata) {
3290 hdr->b_crypt_hdr.b_rabd = NULL;
3291 ARCSTAT_INCR(arcstat_raw_size, -size);
3292 } else {
3293 hdr->b_l1hdr.b_pabd = NULL;
3294 }
3295
3296 if (hdr->b_l1hdr.b_pabd == NULL && !HDR_HAS_RABD(hdr))
3297 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS;
3298
3299 ARCSTAT_INCR(arcstat_compressed_size, -size);
3300 ARCSTAT_INCR(arcstat_uncompressed_size, -HDR_GET_LSIZE(hdr));
3301 }
3302
3303 static arc_buf_hdr_t *
3304 arc_hdr_alloc(uint64_t spa, int32_t psize, int32_t lsize,
3305 boolean_t protected, enum zio_compress compression_type,
3306 arc_buf_contents_t type, boolean_t alloc_rdata)
3307 {
3308 arc_buf_hdr_t *hdr;
3309
3310 VERIFY(type == ARC_BUFC_DATA || type == ARC_BUFC_METADATA);
3311 if (protected) {
3312 hdr = kmem_cache_alloc(hdr_full_crypt_cache, KM_PUSHPAGE);
3313 } else {
3314 hdr = kmem_cache_alloc(hdr_full_cache, KM_PUSHPAGE);
3315 }
3316
3317 ASSERT(HDR_EMPTY(hdr));
3318 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
3319 HDR_SET_PSIZE(hdr, psize);
3320 HDR_SET_LSIZE(hdr, lsize);
3321 hdr->b_spa = spa;
3322 hdr->b_type = type;
3323 hdr->b_flags = 0;
3324 arc_hdr_set_flags(hdr, arc_bufc_to_flags(type) | ARC_FLAG_HAS_L1HDR);
3325 arc_hdr_set_compress(hdr, compression_type);
3326 if (protected)
3327 arc_hdr_set_flags(hdr, ARC_FLAG_PROTECTED);
3328
3329 hdr->b_l1hdr.b_state = arc_anon;
3330 hdr->b_l1hdr.b_arc_access = 0;
3331 hdr->b_l1hdr.b_bufcnt = 0;
3332 hdr->b_l1hdr.b_buf = NULL;
3333
3334 /*
3335 * Allocate the hdr's buffer. This will contain either
3336 * the compressed or uncompressed data depending on the block
3337 * it references and compressed arc enablement.
3338 */
3339 arc_hdr_alloc_abd(hdr, alloc_rdata);
3340 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
3341
3342 return (hdr);
3343 }
3344
3345 /*
3346 * Transition between the two allocation states for the arc_buf_hdr struct.
3347 * The arc_buf_hdr struct can be allocated with (hdr_full_cache) or without
3348 * (hdr_l2only_cache) the fields necessary for the L1 cache - the smaller
3349 * version is used when a cache buffer is only in the L2ARC in order to reduce
3350 * memory usage.
3351 */
3352 static arc_buf_hdr_t *
3353 arc_hdr_realloc(arc_buf_hdr_t *hdr, kmem_cache_t *old, kmem_cache_t *new)
3354 {
3355 ASSERT(HDR_HAS_L2HDR(hdr));
3356
3357 arc_buf_hdr_t *nhdr;
3358 l2arc_dev_t *dev = hdr->b_l2hdr.b_dev;
3359
3360 ASSERT((old == hdr_full_cache && new == hdr_l2only_cache) ||
3361 (old == hdr_l2only_cache && new == hdr_full_cache));
3362
3363 /*
3364 * if the caller wanted a new full header and the header is to be
3365 * encrypted we will actually allocate the header from the full crypt
3366 * cache instead. The same applies to freeing from the old cache.
3367 */
3368 if (HDR_PROTECTED(hdr) && new == hdr_full_cache)
3369 new = hdr_full_crypt_cache;
3370 if (HDR_PROTECTED(hdr) && old == hdr_full_cache)
3371 old = hdr_full_crypt_cache;
3372
3373 nhdr = kmem_cache_alloc(new, KM_PUSHPAGE);
3374
3375 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)));
3376 buf_hash_remove(hdr);
3377
3378 bcopy(hdr, nhdr, HDR_L2ONLY_SIZE);
3379
3380 if (new == hdr_full_cache || new == hdr_full_crypt_cache) {
3381 arc_hdr_set_flags(nhdr, ARC_FLAG_HAS_L1HDR);
3382 /*
3383 * arc_access and arc_change_state need to be aware that a
3384 * header has just come out of L2ARC, so we set its state to
3385 * l2c_only even though it's about to change.
3386 */
3387 nhdr->b_l1hdr.b_state = arc_l2c_only;
3388
3389 /* Verify previous threads set to NULL before freeing */
3390 ASSERT3P(nhdr->b_l1hdr.b_pabd, ==, NULL);
3391 ASSERT(!HDR_HAS_RABD(hdr));
3392 } else {
3393 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
3394 ASSERT0(hdr->b_l1hdr.b_bufcnt);
3395 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
3396
3397 /*
3398 * If we've reached here, We must have been called from
3399 * arc_evict_hdr(), as such we should have already been
3400 * removed from any ghost list we were previously on
3401 * (which protects us from racing with arc_evict_state),
3402 * thus no locking is needed during this check.
3403 */
3404 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
3405
3406 /*
3407 * A buffer must not be moved into the arc_l2c_only
3408 * state if it's not finished being written out to the
3409 * l2arc device. Otherwise, the b_l1hdr.b_pabd field
3410 * might try to be accessed, even though it was removed.
3411 */
3412 VERIFY(!HDR_L2_WRITING(hdr));
3413 VERIFY3P(hdr->b_l1hdr.b_pabd, ==, NULL);
3414 ASSERT(!HDR_HAS_RABD(hdr));
3415
3416 arc_hdr_clear_flags(nhdr, ARC_FLAG_HAS_L1HDR);
3417 }
3418 /*
3419 * The header has been reallocated so we need to re-insert it into any
3420 * lists it was on.
3421 */
3422 (void) buf_hash_insert(nhdr, NULL);
3423
3424 ASSERT(list_link_active(&hdr->b_l2hdr.b_l2node));
3425
3426 mutex_enter(&dev->l2ad_mtx);
3427
3428 /*
3429 * We must place the realloc'ed header back into the list at
3430 * the same spot. Otherwise, if it's placed earlier in the list,
3431 * l2arc_write_buffers() could find it during the function's
3432 * write phase, and try to write it out to the l2arc.
3433 */
3434 list_insert_after(&dev->l2ad_buflist, hdr, nhdr);
3435 list_remove(&dev->l2ad_buflist, hdr);
3436
3437 mutex_exit(&dev->l2ad_mtx);
3438
3439 /*
3440 * Since we're using the pointer address as the tag when
3441 * incrementing and decrementing the l2ad_alloc refcount, we
3442 * must remove the old pointer (that we're about to destroy) and
3443 * add the new pointer to the refcount. Otherwise we'd remove
3444 * the wrong pointer address when calling arc_hdr_destroy() later.
3445 */
3446
3447 (void) refcount_remove_many(&dev->l2ad_alloc, arc_hdr_size(hdr), hdr);
3448 (void) refcount_add_many(&dev->l2ad_alloc, arc_hdr_size(nhdr), nhdr);
3449
3450 buf_discard_identity(hdr);
3451 kmem_cache_free(old, hdr);
3452
3453 return (nhdr);
3454 }
3455
3456 /*
3457 * This function allows an L1 header to be reallocated as a crypt
3458 * header and vice versa. If we are going to a crypt header, the
3459 * new fields will be zeroed out.
3460 */
3461 static arc_buf_hdr_t *
3462 arc_hdr_realloc_crypt(arc_buf_hdr_t *hdr, boolean_t need_crypt)
3463 {
3464 arc_buf_hdr_t *nhdr;
3465 arc_buf_t *buf;
3466 kmem_cache_t *ncache, *ocache;
3467
3468 ASSERT(HDR_HAS_L1HDR(hdr));
3469 ASSERT3U(!!HDR_PROTECTED(hdr), !=, need_crypt);
3470 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
3471 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
3472
3473 if (need_crypt) {
3474 ncache = hdr_full_crypt_cache;
3475 ocache = hdr_full_cache;
3476 } else {
3477 ncache = hdr_full_cache;
3478 ocache = hdr_full_crypt_cache;
3479 }
3480
3481 nhdr = kmem_cache_alloc(ncache, KM_PUSHPAGE);
3482 bcopy(hdr, nhdr, HDR_L2ONLY_SIZE);
3483 nhdr->b_l1hdr.b_freeze_cksum = hdr->b_l1hdr.b_freeze_cksum;
3484 nhdr->b_l1hdr.b_bufcnt = hdr->b_l1hdr.b_bufcnt;
3485 nhdr->b_l1hdr.b_byteswap = hdr->b_l1hdr.b_byteswap;
3486 nhdr->b_l1hdr.b_state = hdr->b_l1hdr.b_state;
3487 nhdr->b_l1hdr.b_arc_access = hdr->b_l1hdr.b_arc_access;
3488 nhdr->b_l1hdr.b_mru_hits = hdr->b_l1hdr.b_mru_hits;
3489 nhdr->b_l1hdr.b_mru_ghost_hits = hdr->b_l1hdr.b_mru_ghost_hits;
3490 nhdr->b_l1hdr.b_mfu_hits = hdr->b_l1hdr.b_mfu_hits;
3491 nhdr->b_l1hdr.b_mfu_ghost_hits = hdr->b_l1hdr.b_mfu_ghost_hits;
3492 nhdr->b_l1hdr.b_l2_hits = hdr->b_l1hdr.b_l2_hits;
3493 nhdr->b_l1hdr.b_acb = hdr->b_l1hdr.b_acb;
3494 nhdr->b_l1hdr.b_pabd = hdr->b_l1hdr.b_pabd;
3495 nhdr->b_l1hdr.b_buf = hdr->b_l1hdr.b_buf;
3496
3497 /*
3498 * This refcount_add() exists only to ensure that the individual
3499 * arc buffers always point to a header that is referenced, avoiding
3500 * a small race condition that could trigger ASSERTs.
3501 */
3502 (void) refcount_add(&nhdr->b_l1hdr.b_refcnt, FTAG);
3503
3504 for (buf = nhdr->b_l1hdr.b_buf; buf != NULL; buf = buf->b_next) {
3505 mutex_enter(&buf->b_evict_lock);
3506 buf->b_hdr = nhdr;
3507 mutex_exit(&buf->b_evict_lock);
3508 }
3509
3510 refcount_transfer(&nhdr->b_l1hdr.b_refcnt, &hdr->b_l1hdr.b_refcnt);
3511 (void) refcount_remove(&nhdr->b_l1hdr.b_refcnt, FTAG);
3512
3513 if (need_crypt) {
3514 arc_hdr_set_flags(nhdr, ARC_FLAG_PROTECTED);
3515 } else {
3516 arc_hdr_clear_flags(nhdr, ARC_FLAG_PROTECTED);
3517 }
3518
3519 buf_discard_identity(hdr);
3520 kmem_cache_free(ocache, hdr);
3521
3522 return (nhdr);
3523 }
3524
3525 /*
3526 * This function is used by the send / receive code to convert a newly
3527 * allocated arc_buf_t to one that is suitable for a raw encrypted write. It
3528 * is also used to allow the root objset block to be uupdated without altering
3529 * its embedded MACs. Both block types will always be uncompressed so we do not
3530 * have to worry about compression type or psize.
3531 */
3532 void
3533 arc_convert_to_raw(arc_buf_t *buf, uint64_t dsobj, boolean_t byteorder,
3534 dmu_object_type_t ot, const uint8_t *salt, const uint8_t *iv,
3535 const uint8_t *mac)
3536 {
3537 arc_buf_hdr_t *hdr = buf->b_hdr;
3538
3539 ASSERT(ot == DMU_OT_DNODE || ot == DMU_OT_OBJSET);
3540 ASSERT(HDR_HAS_L1HDR(hdr));
3541 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
3542
3543 buf->b_flags |= (ARC_BUF_FLAG_COMPRESSED | ARC_BUF_FLAG_ENCRYPTED);
3544 if (!HDR_PROTECTED(hdr))
3545 hdr = arc_hdr_realloc_crypt(hdr, B_TRUE);
3546 hdr->b_crypt_hdr.b_dsobj = dsobj;
3547 hdr->b_crypt_hdr.b_ot = ot;
3548 hdr->b_l1hdr.b_byteswap = (byteorder == ZFS_HOST_BYTEORDER) ?
3549 DMU_BSWAP_NUMFUNCS : DMU_OT_BYTESWAP(ot);
3550 if (!arc_hdr_has_uncompressed_buf(hdr))
3551 arc_cksum_free(hdr);
3552
3553 if (salt != NULL)
3554 bcopy(salt, hdr->b_crypt_hdr.b_salt, ZIO_DATA_SALT_LEN);
3555 if (iv != NULL)
3556 bcopy(iv, hdr->b_crypt_hdr.b_iv, ZIO_DATA_IV_LEN);
3557 if (mac != NULL)
3558 bcopy(mac, hdr->b_crypt_hdr.b_mac, ZIO_DATA_MAC_LEN);
3559 }
3560
3561 /*
3562 * Allocate a new arc_buf_hdr_t and arc_buf_t and return the buf to the caller.
3563 * The buf is returned thawed since we expect the consumer to modify it.
3564 */
3565 arc_buf_t *
3566 arc_alloc_buf(spa_t *spa, void *tag, arc_buf_contents_t type, int32_t size)
3567 {
3568 arc_buf_hdr_t *hdr = arc_hdr_alloc(spa_load_guid(spa), size, size,
3569 B_FALSE, ZIO_COMPRESS_OFF, type, B_FALSE);
3570 ASSERT(!MUTEX_HELD(HDR_LOCK(hdr)));
3571
3572 arc_buf_t *buf = NULL;
3573 VERIFY0(arc_buf_alloc_impl(hdr, spa, NULL, tag, B_FALSE, B_FALSE,
3574 B_FALSE, B_FALSE, &buf));
3575 arc_buf_thaw(buf);
3576
3577 return (buf);
3578 }
3579
3580 /*
3581 * Allocate a compressed buf in the same manner as arc_alloc_buf. Don't use this
3582 * for bufs containing metadata.
3583 */
3584 arc_buf_t *
3585 arc_alloc_compressed_buf(spa_t *spa, void *tag, uint64_t psize, uint64_t lsize,
3586 enum zio_compress compression_type)
3587 {
3588 ASSERT3U(lsize, >, 0);
3589 ASSERT3U(lsize, >=, psize);
3590 ASSERT3U(compression_type, >, ZIO_COMPRESS_OFF);
3591 ASSERT3U(compression_type, <, ZIO_COMPRESS_FUNCTIONS);
3592
3593 arc_buf_hdr_t *hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize,
3594 B_FALSE, compression_type, ARC_BUFC_DATA, B_FALSE);
3595 ASSERT(!MUTEX_HELD(HDR_LOCK(hdr)));
3596
3597 arc_buf_t *buf = NULL;
3598 VERIFY0(arc_buf_alloc_impl(hdr, spa, NULL, tag, B_FALSE,
3599 B_TRUE, B_FALSE, B_FALSE, &buf));
3600 arc_buf_thaw(buf);
3601 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
3602
3603 if (!arc_buf_is_shared(buf)) {
3604 /*
3605 * To ensure that the hdr has the correct data in it if we call
3606 * arc_untransform() on this buf before it's been written to
3607 * disk, it's easiest if we just set up sharing between the
3608 * buf and the hdr.
3609 */
3610 ASSERT(!abd_is_linear(hdr->b_l1hdr.b_pabd));
3611 arc_hdr_free_abd(hdr, B_FALSE);
3612 arc_share_buf(hdr, buf);
3613 }
3614
3615 return (buf);
3616 }
3617
3618 arc_buf_t *
3619 arc_alloc_raw_buf(spa_t *spa, void *tag, uint64_t dsobj, boolean_t byteorder,
3620 const uint8_t *salt, const uint8_t *iv, const uint8_t *mac,
3621 dmu_object_type_t ot, uint64_t psize, uint64_t lsize,
3622 enum zio_compress compression_type)
3623 {
3624 arc_buf_hdr_t *hdr;
3625 arc_buf_t *buf;
3626 arc_buf_contents_t type = DMU_OT_IS_METADATA(ot) ?
3627 ARC_BUFC_METADATA : ARC_BUFC_DATA;
3628
3629 ASSERT3U(lsize, >, 0);
3630 ASSERT3U(lsize, >=, psize);
3631 ASSERT3U(compression_type, >=, ZIO_COMPRESS_OFF);
3632 ASSERT3U(compression_type, <, ZIO_COMPRESS_FUNCTIONS);
3633
3634 hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize, B_TRUE,
3635 compression_type, type, B_TRUE);
3636 ASSERT(!MUTEX_HELD(HDR_LOCK(hdr)));
3637
3638 hdr->b_crypt_hdr.b_dsobj = dsobj;
3639 hdr->b_crypt_hdr.b_ot = ot;
3640 hdr->b_l1hdr.b_byteswap = (byteorder == ZFS_HOST_BYTEORDER) ?
3641 DMU_BSWAP_NUMFUNCS : DMU_OT_BYTESWAP(ot);
3642 bcopy(salt, hdr->b_crypt_hdr.b_salt, ZIO_DATA_SALT_LEN);
3643 bcopy(iv, hdr->b_crypt_hdr.b_iv, ZIO_DATA_IV_LEN);
3644 bcopy(mac, hdr->b_crypt_hdr.b_mac, ZIO_DATA_MAC_LEN);
3645
3646 /*
3647 * This buffer will be considered encrypted even if the ot is not an
3648 * encrypted type. It will become authenticated instead in
3649 * arc_write_ready().
3650 */
3651 buf = NULL;
3652 VERIFY0(arc_buf_alloc_impl(hdr, spa, NULL, tag, B_TRUE, B_TRUE,
3653 B_FALSE, B_FALSE, &buf));
3654 arc_buf_thaw(buf);
3655 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
3656
3657 return (buf);
3658 }
3659
3660 static void
3661 arc_hdr_l2hdr_destroy(arc_buf_hdr_t *hdr)
3662 {
3663 l2arc_buf_hdr_t *l2hdr = &hdr->b_l2hdr;
3664 l2arc_dev_t *dev = l2hdr->b_dev;
3665 uint64_t psize = arc_hdr_size(hdr);
3666
3667 ASSERT(MUTEX_HELD(&dev->l2ad_mtx));
3668 ASSERT(HDR_HAS_L2HDR(hdr));
3669
3670 list_remove(&dev->l2ad_buflist, hdr);
3671
3672 ARCSTAT_INCR(arcstat_l2_psize, -psize);
3673 ARCSTAT_INCR(arcstat_l2_lsize, -HDR_GET_LSIZE(hdr));
3674
3675 vdev_space_update(dev->l2ad_vdev, -psize, 0, 0);
3676
3677 (void) refcount_remove_many(&dev->l2ad_alloc, psize, hdr);
3678 arc_hdr_clear_flags(hdr, ARC_FLAG_HAS_L2HDR);
3679 }
3680
3681 static void
3682 arc_hdr_destroy(arc_buf_hdr_t *hdr)
3683 {
3684 if (HDR_HAS_L1HDR(hdr)) {
3685 ASSERT(hdr->b_l1hdr.b_buf == NULL ||
3686 hdr->b_l1hdr.b_bufcnt > 0);
3687 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
3688 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
3689 }
3690 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
3691 ASSERT(!HDR_IN_HASH_TABLE(hdr));
3692
3693 if (!HDR_EMPTY(hdr))
3694 buf_discard_identity(hdr);
3695
3696 if (HDR_HAS_L2HDR(hdr)) {
3697 l2arc_dev_t *dev = hdr->b_l2hdr.b_dev;
3698 boolean_t buflist_held = MUTEX_HELD(&dev->l2ad_mtx);
3699
3700 if (!buflist_held)
3701 mutex_enter(&dev->l2ad_mtx);
3702
3703 /*
3704 * Even though we checked this conditional above, we
3705 * need to check this again now that we have the
3706 * l2ad_mtx. This is because we could be racing with
3707 * another thread calling l2arc_evict() which might have
3708 * destroyed this header's L2 portion as we were waiting
3709 * to acquire the l2ad_mtx. If that happens, we don't
3710 * want to re-destroy the header's L2 portion.
3711 */
3712 if (HDR_HAS_L2HDR(hdr))
3713 arc_hdr_l2hdr_destroy(hdr);
3714
3715 if (!buflist_held)
3716 mutex_exit(&dev->l2ad_mtx);
3717 }
3718
3719 if (HDR_HAS_L1HDR(hdr)) {
3720 arc_cksum_free(hdr);
3721
3722 while (hdr->b_l1hdr.b_buf != NULL)
3723 arc_buf_destroy_impl(hdr->b_l1hdr.b_buf);
3724
3725 if (hdr->b_l1hdr.b_pabd != NULL) {
3726 arc_hdr_free_abd(hdr, B_FALSE);
3727 }
3728
3729 if (HDR_HAS_RABD(hdr))
3730 arc_hdr_free_abd(hdr, B_TRUE);
3731 }
3732
3733 ASSERT3P(hdr->b_hash_next, ==, NULL);
3734 if (HDR_HAS_L1HDR(hdr)) {
3735 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
3736 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
3737
3738 if (!HDR_PROTECTED(hdr)) {
3739 kmem_cache_free(hdr_full_cache, hdr);
3740 } else {
3741 kmem_cache_free(hdr_full_crypt_cache, hdr);
3742 }
3743 } else {
3744 kmem_cache_free(hdr_l2only_cache, hdr);
3745 }
3746 }
3747
3748 void
3749 arc_buf_destroy(arc_buf_t *buf, void* tag)
3750 {
3751 arc_buf_hdr_t *hdr = buf->b_hdr;
3752 kmutex_t *hash_lock = HDR_LOCK(hdr);
3753
3754 if (hdr->b_l1hdr.b_state == arc_anon) {
3755 ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1);
3756 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
3757 VERIFY0(remove_reference(hdr, NULL, tag));
3758 arc_hdr_destroy(hdr);
3759 return;
3760 }
3761
3762 mutex_enter(hash_lock);
3763 ASSERT3P(hdr, ==, buf->b_hdr);
3764 ASSERT(hdr->b_l1hdr.b_bufcnt > 0);
3765 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
3766 ASSERT3P(hdr->b_l1hdr.b_state, !=, arc_anon);
3767 ASSERT3P(buf->b_data, !=, NULL);
3768
3769 (void) remove_reference(hdr, hash_lock, tag);
3770 arc_buf_destroy_impl(buf);
3771 mutex_exit(hash_lock);
3772 }
3773
3774 /*
3775 * Evict the arc_buf_hdr that is provided as a parameter. The resultant
3776 * state of the header is dependent on its state prior to entering this
3777 * function. The following transitions are possible:
3778 *
3779 * - arc_mru -> arc_mru_ghost
3780 * - arc_mfu -> arc_mfu_ghost
3781 * - arc_mru_ghost -> arc_l2c_only
3782 * - arc_mru_ghost -> deleted
3783 * - arc_mfu_ghost -> arc_l2c_only
3784 * - arc_mfu_ghost -> deleted
3785 */
3786 static int64_t
3787 arc_evict_hdr(arc_buf_hdr_t *hdr, kmutex_t *hash_lock)
3788 {
3789 arc_state_t *evicted_state, *state;
3790 int64_t bytes_evicted = 0;
3791 int min_lifetime = HDR_PRESCIENT_PREFETCH(hdr) ?
3792 arc_min_prescient_prefetch_ms : arc_min_prefetch_ms;
3793
3794 ASSERT(MUTEX_HELD(hash_lock));
3795 ASSERT(HDR_HAS_L1HDR(hdr));
3796
3797 state = hdr->b_l1hdr.b_state;
3798 if (GHOST_STATE(state)) {
3799 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
3800 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
3801
3802 /*
3803 * l2arc_write_buffers() relies on a header's L1 portion
3804 * (i.e. its b_pabd field) during it's write phase.
3805 * Thus, we cannot push a header onto the arc_l2c_only
3806 * state (removing its L1 piece) until the header is
3807 * done being written to the l2arc.
3808 */
3809 if (HDR_HAS_L2HDR(hdr) && HDR_L2_WRITING(hdr)) {
3810 ARCSTAT_BUMP(arcstat_evict_l2_skip);
3811 return (bytes_evicted);
3812 }
3813
3814 ARCSTAT_BUMP(arcstat_deleted);
3815 bytes_evicted += HDR_GET_LSIZE(hdr);
3816
3817 DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, hdr);
3818
3819 if (HDR_HAS_L2HDR(hdr)) {
3820 ASSERT(hdr->b_l1hdr.b_pabd == NULL);
3821 ASSERT(!HDR_HAS_RABD(hdr));
3822 /*
3823 * This buffer is cached on the 2nd Level ARC;
3824 * don't destroy the header.
3825 */
3826 arc_change_state(arc_l2c_only, hdr, hash_lock);
3827 /*
3828 * dropping from L1+L2 cached to L2-only,
3829 * realloc to remove the L1 header.
3830 */
3831 hdr = arc_hdr_realloc(hdr, hdr_full_cache,
3832 hdr_l2only_cache);
3833 } else {
3834 arc_change_state(arc_anon, hdr, hash_lock);
3835 arc_hdr_destroy(hdr);
3836 }
3837 return (bytes_evicted);
3838 }
3839
3840 ASSERT(state == arc_mru || state == arc_mfu);
3841 evicted_state = (state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost;
3842
3843 /* prefetch buffers have a minimum lifespan */
3844 if (HDR_IO_IN_PROGRESS(hdr) ||
3845 ((hdr->b_flags & (ARC_FLAG_PREFETCH | ARC_FLAG_INDIRECT)) &&
3846 ddi_get_lbolt() - hdr->b_l1hdr.b_arc_access <
3847 MSEC_TO_TICK(min_lifetime))) {
3848 ARCSTAT_BUMP(arcstat_evict_skip);
3849 return (bytes_evicted);
3850 }
3851
3852 ASSERT0(refcount_count(&hdr->b_l1hdr.b_refcnt));
3853 while (hdr->b_l1hdr.b_buf) {
3854 arc_buf_t *buf = hdr->b_l1hdr.b_buf;
3855 if (!mutex_tryenter(&buf->b_evict_lock)) {
3856 ARCSTAT_BUMP(arcstat_mutex_miss);
3857 break;
3858 }
3859 if (buf->b_data != NULL)
3860 bytes_evicted += HDR_GET_LSIZE(hdr);
3861 mutex_exit(&buf->b_evict_lock);
3862 arc_buf_destroy_impl(buf);
3863 }
3864
3865 if (HDR_HAS_L2HDR(hdr)) {
3866 ARCSTAT_INCR(arcstat_evict_l2_cached, HDR_GET_LSIZE(hdr));
3867 } else {
3868 if (l2arc_write_eligible(hdr->b_spa, hdr)) {
3869 ARCSTAT_INCR(arcstat_evict_l2_eligible,
3870 HDR_GET_LSIZE(hdr));
3871 } else {
3872 ARCSTAT_INCR(arcstat_evict_l2_ineligible,
3873 HDR_GET_LSIZE(hdr));
3874 }
3875 }
3876
3877 if (hdr->b_l1hdr.b_bufcnt == 0) {
3878 arc_cksum_free(hdr);
3879
3880 bytes_evicted += arc_hdr_size(hdr);
3881
3882 /*
3883 * If this hdr is being evicted and has a compressed
3884 * buffer then we discard it here before we change states.
3885 * This ensures that the accounting is updated correctly
3886 * in arc_free_data_impl().
3887 */
3888 if (hdr->b_l1hdr.b_pabd != NULL)
3889 arc_hdr_free_abd(hdr, B_FALSE);
3890
3891 if (HDR_HAS_RABD(hdr))
3892 arc_hdr_free_abd(hdr, B_TRUE);
3893
3894 arc_change_state(evicted_state, hdr, hash_lock);
3895 ASSERT(HDR_IN_HASH_TABLE(hdr));
3896 arc_hdr_set_flags(hdr, ARC_FLAG_IN_HASH_TABLE);
3897 DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, hdr);
3898 }
3899
3900 return (bytes_evicted);
3901 }
3902
3903 static uint64_t
3904 arc_evict_state_impl(multilist_t *ml, int idx, arc_buf_hdr_t *marker,
3905 uint64_t spa, int64_t bytes)
3906 {
3907 multilist_sublist_t *mls;
3908 uint64_t bytes_evicted = 0;
3909 arc_buf_hdr_t *hdr;
3910 kmutex_t *hash_lock;
3911 int evict_count = 0;
3912
3913 ASSERT3P(marker, !=, NULL);
3914 IMPLY(bytes < 0, bytes == ARC_EVICT_ALL);
3915
3916 mls = multilist_sublist_lock(ml, idx);
3917
3918 for (hdr = multilist_sublist_prev(mls, marker); hdr != NULL;
3919 hdr = multilist_sublist_prev(mls, marker)) {
3920 if ((bytes != ARC_EVICT_ALL && bytes_evicted >= bytes) ||
3921 (evict_count >= zfs_arc_evict_batch_limit))
3922 break;
3923
3924 /*
3925 * To keep our iteration location, move the marker
3926 * forward. Since we're not holding hdr's hash lock, we
3927 * must be very careful and not remove 'hdr' from the
3928 * sublist. Otherwise, other consumers might mistake the
3929 * 'hdr' as not being on a sublist when they call the
3930 * multilist_link_active() function (they all rely on
3931 * the hash lock protecting concurrent insertions and
3932 * removals). multilist_sublist_move_forward() was
3933 * specifically implemented to ensure this is the case
3934 * (only 'marker' will be removed and re-inserted).
3935 */
3936 multilist_sublist_move_forward(mls, marker);
3937
3938 /*
3939 * The only case where the b_spa field should ever be
3940 * zero, is the marker headers inserted by
3941 * arc_evict_state(). It's possible for multiple threads
3942 * to be calling arc_evict_state() concurrently (e.g.
3943 * dsl_pool_close() and zio_inject_fault()), so we must
3944 * skip any markers we see from these other threads.
3945 */
3946 if (hdr->b_spa == 0)
3947 continue;
3948
3949 /* we're only interested in evicting buffers of a certain spa */
3950 if (spa != 0 && hdr->b_spa != spa) {
3951 ARCSTAT_BUMP(arcstat_evict_skip);
3952 continue;
3953 }
3954
3955 hash_lock = HDR_LOCK(hdr);
3956
3957 /*
3958 * We aren't calling this function from any code path
3959 * that would already be holding a hash lock, so we're
3960 * asserting on this assumption to be defensive in case
3961 * this ever changes. Without this check, it would be
3962 * possible to incorrectly increment arcstat_mutex_miss
3963 * below (e.g. if the code changed such that we called
3964 * this function with a hash lock held).
3965 */
3966 ASSERT(!MUTEX_HELD(hash_lock));
3967
3968 if (mutex_tryenter(hash_lock)) {
3969 uint64_t evicted = arc_evict_hdr(hdr, hash_lock);
3970 mutex_exit(hash_lock);
3971
3972 bytes_evicted += evicted;
3973
3974 /*
3975 * If evicted is zero, arc_evict_hdr() must have
3976 * decided to skip this header, don't increment
3977 * evict_count in this case.
3978 */
3979 if (evicted != 0)
3980 evict_count++;
3981
3982 /*
3983 * If arc_size isn't overflowing, signal any
3984 * threads that might happen to be waiting.
3985 *
3986 * For each header evicted, we wake up a single
3987 * thread. If we used cv_broadcast, we could
3988 * wake up "too many" threads causing arc_size
3989 * to significantly overflow arc_c; since
3990 * arc_get_data_impl() doesn't check for overflow
3991 * when it's woken up (it doesn't because it's
3992 * possible for the ARC to be overflowing while
3993 * full of un-evictable buffers, and the
3994 * function should proceed in this case).
3995 *
3996 * If threads are left sleeping, due to not
3997 * using cv_broadcast, they will be woken up
3998 * just before arc_reclaim_thread() sleeps.
3999 */
4000 mutex_enter(&arc_reclaim_lock);
4001 if (!arc_is_overflowing())
4002 cv_signal(&arc_reclaim_waiters_cv);
4003 mutex_exit(&arc_reclaim_lock);
4004 } else {
4005 ARCSTAT_BUMP(arcstat_mutex_miss);
4006 }
4007 }
4008
4009 multilist_sublist_unlock(mls);
4010
4011 return (bytes_evicted);
4012 }
4013
4014 /*
4015 * Evict buffers from the given arc state, until we've removed the
4016 * specified number of bytes. Move the removed buffers to the
4017 * appropriate evict state.
4018 *
4019 * This function makes a "best effort". It skips over any buffers
4020 * it can't get a hash_lock on, and so, may not catch all candidates.
4021 * It may also return without evicting as much space as requested.
4022 *
4023 * If bytes is specified using the special value ARC_EVICT_ALL, this
4024 * will evict all available (i.e. unlocked and evictable) buffers from
4025 * the given arc state; which is used by arc_flush().
4026 */
4027 static uint64_t
4028 arc_evict_state(arc_state_t *state, uint64_t spa, int64_t bytes,
4029 arc_buf_contents_t type)
4030 {
4031 uint64_t total_evicted = 0;
4032 multilist_t *ml = state->arcs_list[type];
4033 int num_sublists;
4034 arc_buf_hdr_t **markers;
4035
4036 IMPLY(bytes < 0, bytes == ARC_EVICT_ALL);
4037
4038 num_sublists = multilist_get_num_sublists(ml);
4039
4040 /*
4041 * If we've tried to evict from each sublist, made some
4042 * progress, but still have not hit the target number of bytes
4043 * to evict, we want to keep trying. The markers allow us to
4044 * pick up where we left off for each individual sublist, rather
4045 * than starting from the tail each time.
4046 */
4047 markers = kmem_zalloc(sizeof (*markers) * num_sublists, KM_SLEEP);
4048 for (int i = 0; i < num_sublists; i++) {
4049 multilist_sublist_t *mls;
4050
4051 markers[i] = kmem_cache_alloc(hdr_full_cache, KM_SLEEP);
4052
4053 /*
4054 * A b_spa of 0 is used to indicate that this header is
4055 * a marker. This fact is used in arc_adjust_type() and
4056 * arc_evict_state_impl().
4057 */
4058 markers[i]->b_spa = 0;
4059
4060 mls = multilist_sublist_lock(ml, i);
4061 multilist_sublist_insert_tail(mls, markers[i]);
4062 multilist_sublist_unlock(mls);
4063 }
4064
4065 /*
4066 * While we haven't hit our target number of bytes to evict, or
4067 * we're evicting all available buffers.
4068 */
4069 while (total_evicted < bytes || bytes == ARC_EVICT_ALL) {
4070 int sublist_idx = multilist_get_random_index(ml);
4071 uint64_t scan_evicted = 0;
4072
4073 /*
4074 * Try to reduce pinned dnodes with a floor of arc_dnode_limit.
4075 * Request that 10% of the LRUs be scanned by the superblock
4076 * shrinker.
4077 */
4078 if (type == ARC_BUFC_DATA && arc_dnode_size > arc_dnode_limit)
4079 arc_prune_async((arc_dnode_size - arc_dnode_limit) /
4080 sizeof (dnode_t) / zfs_arc_dnode_reduce_percent);
4081
4082 /*
4083 * Start eviction using a randomly selected sublist,
4084 * this is to try and evenly balance eviction across all
4085 * sublists. Always starting at the same sublist
4086 * (e.g. index 0) would cause evictions to favor certain
4087 * sublists over others.
4088 */
4089 for (int i = 0; i < num_sublists; i++) {
4090 uint64_t bytes_remaining;
4091 uint64_t bytes_evicted;
4092
4093 if (bytes == ARC_EVICT_ALL)
4094 bytes_remaining = ARC_EVICT_ALL;
4095 else if (total_evicted < bytes)
4096 bytes_remaining = bytes - total_evicted;
4097 else
4098 break;
4099
4100 bytes_evicted = arc_evict_state_impl(ml, sublist_idx,
4101 markers[sublist_idx], spa, bytes_remaining);
4102
4103 scan_evicted += bytes_evicted;
4104 total_evicted += bytes_evicted;
4105
4106 /* we've reached the end, wrap to the beginning */
4107 if (++sublist_idx >= num_sublists)
4108 sublist_idx = 0;
4109 }
4110
4111 /*
4112 * If we didn't evict anything during this scan, we have
4113 * no reason to believe we'll evict more during another
4114 * scan, so break the loop.
4115 */
4116 if (scan_evicted == 0) {
4117 /* This isn't possible, let's make that obvious */
4118 ASSERT3S(bytes, !=, 0);
4119
4120 /*
4121 * When bytes is ARC_EVICT_ALL, the only way to
4122 * break the loop is when scan_evicted is zero.
4123 * In that case, we actually have evicted enough,
4124 * so we don't want to increment the kstat.
4125 */
4126 if (bytes != ARC_EVICT_ALL) {
4127 ASSERT3S(total_evicted, <, bytes);
4128 ARCSTAT_BUMP(arcstat_evict_not_enough);
4129 }
4130
4131 break;
4132 }
4133 }
4134
4135 for (int i = 0; i < num_sublists; i++) {
4136 multilist_sublist_t *mls = multilist_sublist_lock(ml, i);
4137 multilist_sublist_remove(mls, markers[i]);
4138 multilist_sublist_unlock(mls);
4139
4140 kmem_cache_free(hdr_full_cache, markers[i]);
4141 }
4142 kmem_free(markers, sizeof (*markers) * num_sublists);
4143
4144 return (total_evicted);
4145 }
4146
4147 /*
4148 * Flush all "evictable" data of the given type from the arc state
4149 * specified. This will not evict any "active" buffers (i.e. referenced).
4150 *
4151 * When 'retry' is set to B_FALSE, the function will make a single pass
4152 * over the state and evict any buffers that it can. Since it doesn't
4153 * continually retry the eviction, it might end up leaving some buffers
4154 * in the ARC due to lock misses.
4155 *
4156 * When 'retry' is set to B_TRUE, the function will continually retry the
4157 * eviction until *all* evictable buffers have been removed from the
4158 * state. As a result, if concurrent insertions into the state are
4159 * allowed (e.g. if the ARC isn't shutting down), this function might
4160 * wind up in an infinite loop, continually trying to evict buffers.
4161 */
4162 static uint64_t
4163 arc_flush_state(arc_state_t *state, uint64_t spa, arc_buf_contents_t type,
4164 boolean_t retry)
4165 {
4166 uint64_t evicted = 0;
4167
4168 while (refcount_count(&state->arcs_esize[type]) != 0) {
4169 evicted += arc_evict_state(state, spa, ARC_EVICT_ALL, type);
4170
4171 if (!retry)
4172 break;
4173 }
4174
4175 return (evicted);
4176 }
4177
4178 /*
4179 * Helper function for arc_prune_async() it is responsible for safely
4180 * handling the execution of a registered arc_prune_func_t.
4181 */
4182 static void
4183 arc_prune_task(void *ptr)
4184 {
4185 arc_prune_t *ap = (arc_prune_t *)ptr;
4186 arc_prune_func_t *func = ap->p_pfunc;
4187
4188 if (func != NULL)
4189 func(ap->p_adjust, ap->p_private);
4190
4191 refcount_remove(&ap->p_refcnt, func);
4192 }
4193
4194 /*
4195 * Notify registered consumers they must drop holds on a portion of the ARC
4196 * buffered they reference. This provides a mechanism to ensure the ARC can
4197 * honor the arc_meta_limit and reclaim otherwise pinned ARC buffers. This
4198 * is analogous to dnlc_reduce_cache() but more generic.
4199 *
4200 * This operation is performed asynchronously so it may be safely called
4201 * in the context of the arc_reclaim_thread(). A reference is taken here
4202 * for each registered arc_prune_t and the arc_prune_task() is responsible
4203 * for releasing it once the registered arc_prune_func_t has completed.
4204 */
4205 static void
4206 arc_prune_async(int64_t adjust)
4207 {
4208 arc_prune_t *ap;
4209
4210 mutex_enter(&arc_prune_mtx);
4211 for (ap = list_head(&arc_prune_list); ap != NULL;
4212 ap = list_next(&arc_prune_list, ap)) {
4213
4214 if (refcount_count(&ap->p_refcnt) >= 2)
4215 continue;
4216
4217 refcount_add(&ap->p_refcnt, ap->p_pfunc);
4218 ap->p_adjust = adjust;
4219 if (taskq_dispatch(arc_prune_taskq, arc_prune_task,
4220 ap, TQ_SLEEP) == TASKQID_INVALID) {
4221 refcount_remove(&ap->p_refcnt, ap->p_pfunc);
4222 continue;
4223 }
4224 ARCSTAT_BUMP(arcstat_prune);
4225 }
4226 mutex_exit(&arc_prune_mtx);
4227 }
4228
4229 /*
4230 * Evict the specified number of bytes from the state specified,
4231 * restricting eviction to the spa and type given. This function
4232 * prevents us from trying to evict more from a state's list than
4233 * is "evictable", and to skip evicting altogether when passed a
4234 * negative value for "bytes". In contrast, arc_evict_state() will
4235 * evict everything it can, when passed a negative value for "bytes".
4236 */
4237 static uint64_t
4238 arc_adjust_impl(arc_state_t *state, uint64_t spa, int64_t bytes,
4239 arc_buf_contents_t type)
4240 {
4241 int64_t delta;
4242
4243 if (bytes > 0 && refcount_count(&state->arcs_esize[type]) > 0) {
4244 delta = MIN(refcount_count(&state->arcs_esize[type]), bytes);
4245 return (arc_evict_state(state, spa, delta, type));
4246 }
4247
4248 return (0);
4249 }
4250
4251 /*
4252 * The goal of this function is to evict enough meta data buffers from the
4253 * ARC in order to enforce the arc_meta_limit. Achieving this is slightly
4254 * more complicated than it appears because it is common for data buffers
4255 * to have holds on meta data buffers. In addition, dnode meta data buffers
4256 * will be held by the dnodes in the block preventing them from being freed.
4257 * This means we can't simply traverse the ARC and expect to always find
4258 * enough unheld meta data buffer to release.
4259 *
4260 * Therefore, this function has been updated to make alternating passes
4261 * over the ARC releasing data buffers and then newly unheld meta data
4262 * buffers. This ensures forward progress is maintained and arc_meta_used
4263 * will decrease. Normally this is sufficient, but if required the ARC
4264 * will call the registered prune callbacks causing dentry and inodes to
4265 * be dropped from the VFS cache. This will make dnode meta data buffers
4266 * available for reclaim.
4267 */
4268 static uint64_t
4269 arc_adjust_meta_balanced(void)
4270 {
4271 int64_t delta, prune = 0, adjustmnt;
4272 uint64_t total_evicted = 0;
4273 arc_buf_contents_t type = ARC_BUFC_DATA;
4274 int restarts = MAX(zfs_arc_meta_adjust_restarts, 0);
4275
4276 restart:
4277 /*
4278 * This slightly differs than the way we evict from the mru in
4279 * arc_adjust because we don't have a "target" value (i.e. no
4280 * "meta" arc_p). As a result, I think we can completely
4281 * cannibalize the metadata in the MRU before we evict the
4282 * metadata from the MFU. I think we probably need to implement a
4283 * "metadata arc_p" value to do this properly.
4284 */
4285 adjustmnt = arc_meta_used - arc_meta_limit;
4286
4287 if (adjustmnt > 0 && refcount_count(&arc_mru->arcs_esize[type]) > 0) {
4288 delta = MIN(refcount_count(&arc_mru->arcs_esize[type]),
4289 adjustmnt);
4290 total_evicted += arc_adjust_impl(arc_mru, 0, delta, type);
4291 adjustmnt -= delta;
4292 }
4293
4294 /*
4295 * We can't afford to recalculate adjustmnt here. If we do,
4296 * new metadata buffers can sneak into the MRU or ANON lists,
4297 * thus penalize the MFU metadata. Although the fudge factor is
4298 * small, it has been empirically shown to be significant for
4299 * certain workloads (e.g. creating many empty directories). As
4300 * such, we use the original calculation for adjustmnt, and
4301 * simply decrement the amount of data evicted from the MRU.
4302 */
4303
4304 if (adjustmnt > 0 && refcount_count(&arc_mfu->arcs_esize[type]) > 0) {
4305 delta = MIN(refcount_count(&arc_mfu->arcs_esize[type]),
4306 adjustmnt);
4307 total_evicted += arc_adjust_impl(arc_mfu, 0, delta, type);
4308 }
4309
4310 adjustmnt = arc_meta_used - arc_meta_limit;
4311
4312 if (adjustmnt > 0 &&
4313 refcount_count(&arc_mru_ghost->arcs_esize[type]) > 0) {
4314 delta = MIN(adjustmnt,
4315 refcount_count(&arc_mru_ghost->arcs_esize[type]));
4316 total_evicted += arc_adjust_impl(arc_mru_ghost, 0, delta, type);
4317 adjustmnt -= delta;
4318 }
4319
4320 if (adjustmnt > 0 &&
4321 refcount_count(&arc_mfu_ghost->arcs_esize[type]) > 0) {
4322 delta = MIN(adjustmnt,
4323 refcount_count(&arc_mfu_ghost->arcs_esize[type]));
4324 total_evicted += arc_adjust_impl(arc_mfu_ghost, 0, delta, type);
4325 }
4326
4327 /*
4328 * If after attempting to make the requested adjustment to the ARC
4329 * the meta limit is still being exceeded then request that the
4330 * higher layers drop some cached objects which have holds on ARC
4331 * meta buffers. Requests to the upper layers will be made with
4332 * increasingly large scan sizes until the ARC is below the limit.
4333 */
4334 if (arc_meta_used > arc_meta_limit) {
4335 if (type == ARC_BUFC_DATA) {
4336 type = ARC_BUFC_METADATA;
4337 } else {
4338 type = ARC_BUFC_DATA;
4339
4340 if (zfs_arc_meta_prune) {
4341 prune += zfs_arc_meta_prune;
4342 arc_prune_async(prune);
4343 }
4344 }
4345
4346 if (restarts > 0) {
4347 restarts--;
4348 goto restart;
4349 }
4350 }
4351 return (total_evicted);
4352 }
4353
4354 /*
4355 * Evict metadata buffers from the cache, such that arc_meta_used is
4356 * capped by the arc_meta_limit tunable.
4357 */
4358 static uint64_t
4359 arc_adjust_meta_only(void)
4360 {
4361 uint64_t total_evicted = 0;
4362 int64_t target;
4363
4364 /*
4365 * If we're over the meta limit, we want to evict enough
4366 * metadata to get back under the meta limit. We don't want to
4367 * evict so much that we drop the MRU below arc_p, though. If
4368 * we're over the meta limit more than we're over arc_p, we
4369 * evict some from the MRU here, and some from the MFU below.
4370 */
4371 target = MIN((int64_t)(arc_meta_used - arc_meta_limit),
4372 (int64_t)(refcount_count(&arc_anon->arcs_size) +
4373 refcount_count(&arc_mru->arcs_size) - arc_p));
4374
4375 total_evicted += arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA);
4376
4377 /*
4378 * Similar to the above, we want to evict enough bytes to get us
4379 * below the meta limit, but not so much as to drop us below the
4380 * space allotted to the MFU (which is defined as arc_c - arc_p).
4381 */
4382 target = MIN((int64_t)(arc_meta_used - arc_meta_limit),
4383 (int64_t)(refcount_count(&arc_mfu->arcs_size) - (arc_c - arc_p)));
4384
4385 total_evicted += arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA);
4386
4387 return (total_evicted);
4388 }
4389
4390 static uint64_t
4391 arc_adjust_meta(void)
4392 {
4393 if (zfs_arc_meta_strategy == ARC_STRATEGY_META_ONLY)
4394 return (arc_adjust_meta_only());
4395 else
4396 return (arc_adjust_meta_balanced());
4397 }
4398
4399 /*
4400 * Return the type of the oldest buffer in the given arc state
4401 *
4402 * This function will select a random sublist of type ARC_BUFC_DATA and
4403 * a random sublist of type ARC_BUFC_METADATA. The tail of each sublist
4404 * is compared, and the type which contains the "older" buffer will be
4405 * returned.
4406 */
4407 static arc_buf_contents_t
4408 arc_adjust_type(arc_state_t *state)
4409 {
4410 multilist_t *data_ml = state->arcs_list[ARC_BUFC_DATA];
4411 multilist_t *meta_ml = state->arcs_list[ARC_BUFC_METADATA];
4412 int data_idx = multilist_get_random_index(data_ml);
4413 int meta_idx = multilist_get_random_index(meta_ml);
4414 multilist_sublist_t *data_mls;
4415 multilist_sublist_t *meta_mls;
4416 arc_buf_contents_t type;
4417 arc_buf_hdr_t *data_hdr;
4418 arc_buf_hdr_t *meta_hdr;
4419
4420 /*
4421 * We keep the sublist lock until we're finished, to prevent
4422 * the headers from being destroyed via arc_evict_state().
4423 */
4424 data_mls = multilist_sublist_lock(data_ml, data_idx);
4425 meta_mls = multilist_sublist_lock(meta_ml, meta_idx);
4426
4427 /*
4428 * These two loops are to ensure we skip any markers that
4429 * might be at the tail of the lists due to arc_evict_state().
4430 */
4431
4432 for (data_hdr = multilist_sublist_tail(data_mls); data_hdr != NULL;
4433 data_hdr = multilist_sublist_prev(data_mls, data_hdr)) {
4434 if (data_hdr->b_spa != 0)
4435 break;
4436 }
4437
4438 for (meta_hdr = multilist_sublist_tail(meta_mls); meta_hdr != NULL;
4439 meta_hdr = multilist_sublist_prev(meta_mls, meta_hdr)) {
4440 if (meta_hdr->b_spa != 0)
4441 break;
4442 }
4443
4444 if (data_hdr == NULL && meta_hdr == NULL) {
4445 type = ARC_BUFC_DATA;
4446 } else if (data_hdr == NULL) {
4447 ASSERT3P(meta_hdr, !=, NULL);
4448 type = ARC_BUFC_METADATA;
4449 } else if (meta_hdr == NULL) {
4450 ASSERT3P(data_hdr, !=, NULL);
4451 type = ARC_BUFC_DATA;
4452 } else {
4453 ASSERT3P(data_hdr, !=, NULL);
4454 ASSERT3P(meta_hdr, !=, NULL);
4455
4456 /* The headers can't be on the sublist without an L1 header */
4457 ASSERT(HDR_HAS_L1HDR(data_hdr));
4458 ASSERT(HDR_HAS_L1HDR(meta_hdr));
4459
4460 if (data_hdr->b_l1hdr.b_arc_access <
4461 meta_hdr->b_l1hdr.b_arc_access) {
4462 type = ARC_BUFC_DATA;
4463 } else {
4464 type = ARC_BUFC_METADATA;
4465 }
4466 }
4467
4468 multilist_sublist_unlock(meta_mls);
4469 multilist_sublist_unlock(data_mls);
4470
4471 return (type);
4472 }
4473
4474 /*
4475 * Evict buffers from the cache, such that arc_size is capped by arc_c.
4476 */
4477 static uint64_t
4478 arc_adjust(void)
4479 {
4480 uint64_t total_evicted = 0;
4481 uint64_t bytes;
4482 int64_t target;
4483
4484 /*
4485 * If we're over arc_meta_limit, we want to correct that before
4486 * potentially evicting data buffers below.
4487 */
4488 total_evicted += arc_adjust_meta();
4489
4490 /*
4491 * Adjust MRU size
4492 *
4493 * If we're over the target cache size, we want to evict enough
4494 * from the list to get back to our target size. We don't want
4495 * to evict too much from the MRU, such that it drops below
4496 * arc_p. So, if we're over our target cache size more than
4497 * the MRU is over arc_p, we'll evict enough to get back to
4498 * arc_p here, and then evict more from the MFU below.
4499 */
4500 target = MIN((int64_t)(arc_size - arc_c),
4501 (int64_t)(refcount_count(&arc_anon->arcs_size) +
4502 refcount_count(&arc_mru->arcs_size) + arc_meta_used - arc_p));
4503
4504 /*
4505 * If we're below arc_meta_min, always prefer to evict data.
4506 * Otherwise, try to satisfy the requested number of bytes to
4507 * evict from the type which contains older buffers; in an
4508 * effort to keep newer buffers in the cache regardless of their
4509 * type. If we cannot satisfy the number of bytes from this
4510 * type, spill over into the next type.
4511 */
4512 if (arc_adjust_type(arc_mru) == ARC_BUFC_METADATA &&
4513 arc_meta_used > arc_meta_min) {
4514 bytes = arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA);
4515 total_evicted += bytes;
4516
4517 /*
4518 * If we couldn't evict our target number of bytes from
4519 * metadata, we try to get the rest from data.
4520 */
4521 target -= bytes;
4522
4523 total_evicted +=
4524 arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_DATA);
4525 } else {
4526 bytes = arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_DATA);
4527 total_evicted += bytes;
4528
4529 /*
4530 * If we couldn't evict our target number of bytes from
4531 * data, we try to get the rest from metadata.
4532 */
4533 target -= bytes;
4534
4535 total_evicted +=
4536 arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA);
4537 }
4538
4539 /*
4540 * Adjust MFU size
4541 *
4542 * Now that we've tried to evict enough from the MRU to get its
4543 * size back to arc_p, if we're still above the target cache
4544 * size, we evict the rest from the MFU.
4545 */
4546 target = arc_size - arc_c;
4547
4548 if (arc_adjust_type(arc_mfu) == ARC_BUFC_METADATA &&
4549 arc_meta_used > arc_meta_min) {
4550 bytes = arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA);
4551 total_evicted += bytes;
4552
4553 /*
4554 * If we couldn't evict our target number of bytes from
4555 * metadata, we try to get the rest from data.
4556 */
4557 target -= bytes;
4558
4559 total_evicted +=
4560 arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_DATA);
4561 } else {
4562 bytes = arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_DATA);
4563 total_evicted += bytes;
4564
4565 /*
4566 * If we couldn't evict our target number of bytes from
4567 * data, we try to get the rest from data.
4568 */
4569 target -= bytes;
4570
4571 total_evicted +=
4572 arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA);
4573 }
4574
4575 /*
4576 * Adjust ghost lists
4577 *
4578 * In addition to the above, the ARC also defines target values
4579 * for the ghost lists. The sum of the mru list and mru ghost
4580 * list should never exceed the target size of the cache, and
4581 * the sum of the mru list, mfu list, mru ghost list, and mfu
4582 * ghost list should never exceed twice the target size of the
4583 * cache. The following logic enforces these limits on the ghost
4584 * caches, and evicts from them as needed.
4585 */
4586 target = refcount_count(&arc_mru->arcs_size) +
4587 refcount_count(&arc_mru_ghost->arcs_size) - arc_c;
4588
4589 bytes = arc_adjust_impl(arc_mru_ghost, 0, target, ARC_BUFC_DATA);
4590 total_evicted += bytes;
4591
4592 target -= bytes;
4593
4594 total_evicted +=
4595 arc_adjust_impl(arc_mru_ghost, 0, target, ARC_BUFC_METADATA);
4596
4597 /*
4598 * We assume the sum of the mru list and mfu list is less than
4599 * or equal to arc_c (we enforced this above), which means we
4600 * can use the simpler of the two equations below:
4601 *
4602 * mru + mfu + mru ghost + mfu ghost <= 2 * arc_c
4603 * mru ghost + mfu ghost <= arc_c
4604 */
4605 target = refcount_count(&arc_mru_ghost->arcs_size) +
4606 refcount_count(&arc_mfu_ghost->arcs_size) - arc_c;
4607
4608 bytes = arc_adjust_impl(arc_mfu_ghost, 0, target, ARC_BUFC_DATA);
4609 total_evicted += bytes;
4610
4611 target -= bytes;
4612
4613 total_evicted +=
4614 arc_adjust_impl(arc_mfu_ghost, 0, target, ARC_BUFC_METADATA);
4615
4616 return (total_evicted);
4617 }
4618
4619 void
4620 arc_flush(spa_t *spa, boolean_t retry)
4621 {
4622 uint64_t guid = 0;
4623
4624 /*
4625 * If retry is B_TRUE, a spa must not be specified since we have
4626 * no good way to determine if all of a spa's buffers have been
4627 * evicted from an arc state.
4628 */
4629 ASSERT(!retry || spa == 0);
4630
4631 if (spa != NULL)
4632 guid = spa_load_guid(spa);
4633
4634 (void) arc_flush_state(arc_mru, guid, ARC_BUFC_DATA, retry);
4635 (void) arc_flush_state(arc_mru, guid, ARC_BUFC_METADATA, retry);
4636
4637 (void) arc_flush_state(arc_mfu, guid, ARC_BUFC_DATA, retry);
4638 (void) arc_flush_state(arc_mfu, guid, ARC_BUFC_METADATA, retry);
4639
4640 (void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_DATA, retry);
4641 (void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_METADATA, retry);
4642
4643 (void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_DATA, retry);
4644 (void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_METADATA, retry);
4645 }
4646
4647 void
4648 arc_shrink(int64_t to_free)
4649 {
4650 uint64_t c = arc_c;
4651
4652 if (c > to_free && c - to_free > arc_c_min) {
4653 arc_c = c - to_free;
4654 atomic_add_64(&arc_p, -(arc_p >> arc_shrink_shift));
4655 if (arc_c > arc_size)
4656 arc_c = MAX(arc_size, arc_c_min);
4657 if (arc_p > arc_c)
4658 arc_p = (arc_c >> 1);
4659 ASSERT(arc_c >= arc_c_min);
4660 ASSERT((int64_t)arc_p >= 0);
4661 } else {
4662 arc_c = arc_c_min;
4663 }
4664
4665 if (arc_size > arc_c)
4666 (void) arc_adjust();
4667 }
4668
4669 /*
4670 * Return maximum amount of memory that we could possibly use. Reduced
4671 * to half of all memory in user space which is primarily used for testing.
4672 */
4673 static uint64_t
4674 arc_all_memory(void)
4675 {
4676 #ifdef _KERNEL
4677 #ifdef CONFIG_HIGHMEM
4678 return (ptob(totalram_pages - totalhigh_pages));
4679 #else
4680 return (ptob(totalram_pages));
4681 #endif /* CONFIG_HIGHMEM */
4682 #else
4683 return (ptob(physmem) / 2);
4684 #endif /* _KERNEL */
4685 }
4686
4687 /*
4688 * Return the amount of memory that is considered free. In user space
4689 * which is primarily used for testing we pretend that free memory ranges
4690 * from 0-20% of all memory.
4691 */
4692 static uint64_t
4693 arc_free_memory(void)
4694 {
4695 #ifdef _KERNEL
4696 #ifdef CONFIG_HIGHMEM
4697 struct sysinfo si;
4698 si_meminfo(&si);
4699 return (ptob(si.freeram - si.freehigh));
4700 #else
4701 return (ptob(nr_free_pages() +
4702 nr_inactive_file_pages() +
4703 nr_inactive_anon_pages() +
4704 nr_slab_reclaimable_pages()));
4705
4706 #endif /* CONFIG_HIGHMEM */
4707 #else
4708 return (spa_get_random(arc_all_memory() * 20 / 100));
4709 #endif /* _KERNEL */
4710 }
4711
4712 typedef enum free_memory_reason_t {
4713 FMR_UNKNOWN,
4714 FMR_NEEDFREE,
4715 FMR_LOTSFREE,
4716 FMR_SWAPFS_MINFREE,
4717 FMR_PAGES_PP_MAXIMUM,
4718 FMR_HEAP_ARENA,
4719 FMR_ZIO_ARENA,
4720 } free_memory_reason_t;
4721
4722 int64_t last_free_memory;
4723 free_memory_reason_t last_free_reason;
4724
4725 #ifdef _KERNEL
4726 /*
4727 * Additional reserve of pages for pp_reserve.
4728 */
4729 int64_t arc_pages_pp_reserve = 64;
4730
4731 /*
4732 * Additional reserve of pages for swapfs.
4733 */
4734 int64_t arc_swapfs_reserve = 64;
4735 #endif /* _KERNEL */
4736
4737 /*
4738 * Return the amount of memory that can be consumed before reclaim will be
4739 * needed. Positive if there is sufficient free memory, negative indicates
4740 * the amount of memory that needs to be freed up.
4741 */
4742 static int64_t
4743 arc_available_memory(void)
4744 {
4745 int64_t lowest = INT64_MAX;
4746 free_memory_reason_t r = FMR_UNKNOWN;
4747 #ifdef _KERNEL
4748 int64_t n;
4749 #ifdef __linux__
4750 #ifdef freemem
4751 #undef freemem
4752 #endif
4753 pgcnt_t needfree = btop(arc_need_free);
4754 pgcnt_t lotsfree = btop(arc_sys_free);
4755 pgcnt_t desfree = 0;
4756 pgcnt_t freemem = btop(arc_free_memory());
4757 #endif
4758
4759 if (needfree > 0) {
4760 n = PAGESIZE * (-needfree);
4761 if (n < lowest) {
4762 lowest = n;
4763 r = FMR_NEEDFREE;
4764 }
4765 }
4766
4767 /*
4768 * check that we're out of range of the pageout scanner. It starts to
4769 * schedule paging if freemem is less than lotsfree and needfree.
4770 * lotsfree is the high-water mark for pageout, and needfree is the
4771 * number of needed free pages. We add extra pages here to make sure
4772 * the scanner doesn't start up while we're freeing memory.
4773 */
4774 n = PAGESIZE * (freemem - lotsfree - needfree - desfree);
4775 if (n < lowest) {
4776 lowest = n;
4777 r = FMR_LOTSFREE;
4778 }
4779
4780 #ifndef __linux__
4781 /*
4782 * check to make sure that swapfs has enough space so that anon
4783 * reservations can still succeed. anon_resvmem() checks that the
4784 * availrmem is greater than swapfs_minfree, and the number of reserved
4785 * swap pages. We also add a bit of extra here just to prevent
4786 * circumstances from getting really dire.
4787 */
4788 n = PAGESIZE * (availrmem - swapfs_minfree - swapfs_reserve -
4789 desfree - arc_swapfs_reserve);
4790 if (n < lowest) {
4791 lowest = n;
4792 r = FMR_SWAPFS_MINFREE;
4793 }
4794
4795 /*
4796 * Check that we have enough availrmem that memory locking (e.g., via
4797 * mlock(3C) or memcntl(2)) can still succeed. (pages_pp_maximum
4798 * stores the number of pages that cannot be locked; when availrmem
4799 * drops below pages_pp_maximum, page locking mechanisms such as
4800 * page_pp_lock() will fail.)
4801 */
4802 n = PAGESIZE * (availrmem - pages_pp_maximum -
4803 arc_pages_pp_reserve);
4804 if (n < lowest) {
4805 lowest = n;
4806 r = FMR_PAGES_PP_MAXIMUM;
4807 }
4808 #endif
4809
4810 #if defined(_ILP32)
4811 /*
4812 * If we're on a 32-bit platform, it's possible that we'll exhaust the
4813 * kernel heap space before we ever run out of available physical
4814 * memory. Most checks of the size of the heap_area compare against
4815 * tune.t_minarmem, which is the minimum available real memory that we
4816 * can have in the system. However, this is generally fixed at 25 pages
4817 * which is so low that it's useless. In this comparison, we seek to
4818 * calculate the total heap-size, and reclaim if more than 3/4ths of the
4819 * heap is allocated. (Or, in the calculation, if less than 1/4th is
4820 * free)
4821 */
4822 n = vmem_size(heap_arena, VMEM_FREE) -
4823 (vmem_size(heap_arena, VMEM_FREE | VMEM_ALLOC) >> 2);
4824 if (n < lowest) {
4825 lowest = n;
4826 r = FMR_HEAP_ARENA;
4827 }
4828 #endif
4829
4830 /*
4831 * If zio data pages are being allocated out of a separate heap segment,
4832 * then enforce that the size of available vmem for this arena remains
4833 * above about 1/4th (1/(2^arc_zio_arena_free_shift)) free.
4834 *
4835 * Note that reducing the arc_zio_arena_free_shift keeps more virtual
4836 * memory (in the zio_arena) free, which can avoid memory
4837 * fragmentation issues.
4838 */
4839 if (zio_arena != NULL) {
4840 n = (int64_t)vmem_size(zio_arena, VMEM_FREE) -
4841 (vmem_size(zio_arena, VMEM_ALLOC) >>
4842 arc_zio_arena_free_shift);
4843 if (n < lowest) {
4844 lowest = n;
4845 r = FMR_ZIO_ARENA;
4846 }
4847 }
4848 #else /* _KERNEL */
4849 /* Every 100 calls, free a small amount */
4850 if (spa_get_random(100) == 0)
4851 lowest = -1024;
4852 #endif /* _KERNEL */
4853
4854 last_free_memory = lowest;
4855 last_free_reason = r;
4856
4857 return (lowest);
4858 }
4859
4860 /*
4861 * Determine if the system is under memory pressure and is asking
4862 * to reclaim memory. A return value of B_TRUE indicates that the system
4863 * is under memory pressure and that the arc should adjust accordingly.
4864 */
4865 static boolean_t
4866 arc_reclaim_needed(void)
4867 {
4868 return (arc_available_memory() < 0);
4869 }
4870
4871 static void
4872 arc_kmem_reap_now(void)
4873 {
4874 size_t i;
4875 kmem_cache_t *prev_cache = NULL;
4876 kmem_cache_t *prev_data_cache = NULL;
4877 extern kmem_cache_t *zio_buf_cache[];
4878 extern kmem_cache_t *zio_data_buf_cache[];
4879 extern kmem_cache_t *range_seg_cache;
4880
4881 #ifdef _KERNEL
4882 if ((arc_meta_used >= arc_meta_limit) && zfs_arc_meta_prune) {
4883 /*
4884 * We are exceeding our meta-data cache limit.
4885 * Prune some entries to release holds on meta-data.
4886 */
4887 arc_prune_async(zfs_arc_meta_prune);
4888 }
4889 #if defined(_ILP32)
4890 /*
4891 * Reclaim unused memory from all kmem caches.
4892 */
4893 kmem_reap();
4894 #endif
4895 #endif
4896
4897 for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) {
4898 #if defined(_ILP32)
4899 /* reach upper limit of cache size on 32-bit */
4900 if (zio_buf_cache[i] == NULL)
4901 break;
4902 #endif
4903 if (zio_buf_cache[i] != prev_cache) {
4904 prev_cache = zio_buf_cache[i];
4905 kmem_cache_reap_now(zio_buf_cache[i]);
4906 }
4907 if (zio_data_buf_cache[i] != prev_data_cache) {
4908 prev_data_cache = zio_data_buf_cache[i];
4909 kmem_cache_reap_now(zio_data_buf_cache[i]);
4910 }
4911 }
4912 kmem_cache_reap_now(buf_cache);
4913 kmem_cache_reap_now(hdr_full_cache);
4914 kmem_cache_reap_now(hdr_l2only_cache);
4915 kmem_cache_reap_now(range_seg_cache);
4916
4917 if (zio_arena != NULL) {
4918 /*
4919 * Ask the vmem arena to reclaim unused memory from its
4920 * quantum caches.
4921 */
4922 vmem_qcache_reap(zio_arena);
4923 }
4924 }
4925
4926 /*
4927 * Threads can block in arc_get_data_impl() waiting for this thread to evict
4928 * enough data and signal them to proceed. When this happens, the threads in
4929 * arc_get_data_impl() are sleeping while holding the hash lock for their
4930 * particular arc header. Thus, we must be careful to never sleep on a
4931 * hash lock in this thread. This is to prevent the following deadlock:
4932 *
4933 * - Thread A sleeps on CV in arc_get_data_impl() holding hash lock "L",
4934 * waiting for the reclaim thread to signal it.
4935 *
4936 * - arc_reclaim_thread() tries to acquire hash lock "L" using mutex_enter,
4937 * fails, and goes to sleep forever.
4938 *
4939 * This possible deadlock is avoided by always acquiring a hash lock
4940 * using mutex_tryenter() from arc_reclaim_thread().
4941 */
4942 /* ARGSUSED */
4943 static void
4944 arc_reclaim_thread(void *unused)
4945 {
4946 fstrans_cookie_t cookie = spl_fstrans_mark();
4947 hrtime_t growtime = 0;
4948 callb_cpr_t cpr;
4949
4950 CALLB_CPR_INIT(&cpr, &arc_reclaim_lock, callb_generic_cpr, FTAG);
4951
4952 mutex_enter(&arc_reclaim_lock);
4953 while (!arc_reclaim_thread_exit) {
4954 uint64_t evicted = 0;
4955 uint64_t need_free = arc_need_free;
4956 arc_tuning_update();
4957
4958 /*
4959 * This is necessary in order for the mdb ::arc dcmd to
4960 * show up to date information. Since the ::arc command
4961 * does not call the kstat's update function, without
4962 * this call, the command may show stale stats for the
4963 * anon, mru, mru_ghost, mfu, and mfu_ghost lists. Even
4964 * with this change, the data might be up to 1 second
4965 * out of date; but that should suffice. The arc_state_t
4966 * structures can be queried directly if more accurate
4967 * information is needed.
4968 */
4969 #ifndef __linux__
4970 if (arc_ksp != NULL)
4971 arc_ksp->ks_update(arc_ksp, KSTAT_READ);
4972 #endif
4973 mutex_exit(&arc_reclaim_lock);
4974
4975 /*
4976 * We call arc_adjust() before (possibly) calling
4977 * arc_kmem_reap_now(), so that we can wake up
4978 * arc_get_data_buf() sooner.
4979 */
4980 evicted = arc_adjust();
4981
4982 int64_t free_memory = arc_available_memory();
4983 if (free_memory < 0) {
4984
4985 arc_no_grow = B_TRUE;
4986 arc_warm = B_TRUE;
4987
4988 /*
4989 * Wait at least zfs_grow_retry (default 5) seconds
4990 * before considering growing.
4991 */
4992 growtime = gethrtime() + SEC2NSEC(arc_grow_retry);
4993
4994 arc_kmem_reap_now();
4995
4996 /*
4997 * If we are still low on memory, shrink the ARC
4998 * so that we have arc_shrink_min free space.
4999 */
5000 free_memory = arc_available_memory();
5001
5002 int64_t to_free =
5003 (arc_c >> arc_shrink_shift) - free_memory;
5004 if (to_free > 0) {
5005 #ifdef _KERNEL
5006 to_free = MAX(to_free, need_free);
5007 #endif
5008 arc_shrink(to_free);
5009 }
5010 } else if (free_memory < arc_c >> arc_no_grow_shift) {
5011 arc_no_grow = B_TRUE;
5012 } else if (gethrtime() >= growtime) {
5013 arc_no_grow = B_FALSE;
5014 }
5015
5016 mutex_enter(&arc_reclaim_lock);
5017
5018 /*
5019 * If evicted is zero, we couldn't evict anything via
5020 * arc_adjust(). This could be due to hash lock
5021 * collisions, but more likely due to the majority of
5022 * arc buffers being unevictable. Therefore, even if
5023 * arc_size is above arc_c, another pass is unlikely to
5024 * be helpful and could potentially cause us to enter an
5025 * infinite loop.
5026 */
5027 if (arc_size <= arc_c || evicted == 0) {
5028 /*
5029 * We're either no longer overflowing, or we
5030 * can't evict anything more, so we should wake
5031 * up any threads before we go to sleep and remove
5032 * the bytes we were working on from arc_need_free
5033 * since nothing more will be done here.
5034 */
5035 cv_broadcast(&arc_reclaim_waiters_cv);
5036 ARCSTAT_INCR(arcstat_need_free, -need_free);
5037
5038 /*
5039 * Block until signaled, or after one second (we
5040 * might need to perform arc_kmem_reap_now()
5041 * even if we aren't being signalled)
5042 */
5043 CALLB_CPR_SAFE_BEGIN(&cpr);
5044 (void) cv_timedwait_sig_hires(&arc_reclaim_thread_cv,
5045 &arc_reclaim_lock, SEC2NSEC(1), MSEC2NSEC(1), 0);
5046 CALLB_CPR_SAFE_END(&cpr, &arc_reclaim_lock);
5047 }
5048 }
5049
5050 arc_reclaim_thread_exit = B_FALSE;
5051 cv_broadcast(&arc_reclaim_thread_cv);
5052 CALLB_CPR_EXIT(&cpr); /* drops arc_reclaim_lock */
5053 spl_fstrans_unmark(cookie);
5054 thread_exit();
5055 }
5056
5057 #ifdef _KERNEL
5058 /*
5059 * Determine the amount of memory eligible for eviction contained in the
5060 * ARC. All clean data reported by the ghost lists can always be safely
5061 * evicted. Due to arc_c_min, the same does not hold for all clean data
5062 * contained by the regular mru and mfu lists.
5063 *
5064 * In the case of the regular mru and mfu lists, we need to report as
5065 * much clean data as possible, such that evicting that same reported
5066 * data will not bring arc_size below arc_c_min. Thus, in certain
5067 * circumstances, the total amount of clean data in the mru and mfu
5068 * lists might not actually be evictable.
5069 *
5070 * The following two distinct cases are accounted for:
5071 *
5072 * 1. The sum of the amount of dirty data contained by both the mru and
5073 * mfu lists, plus the ARC's other accounting (e.g. the anon list),
5074 * is greater than or equal to arc_c_min.
5075 * (i.e. amount of dirty data >= arc_c_min)
5076 *
5077 * This is the easy case; all clean data contained by the mru and mfu
5078 * lists is evictable. Evicting all clean data can only drop arc_size
5079 * to the amount of dirty data, which is greater than arc_c_min.
5080 *
5081 * 2. The sum of the amount of dirty data contained by both the mru and
5082 * mfu lists, plus the ARC's other accounting (e.g. the anon list),
5083 * is less than arc_c_min.
5084 * (i.e. arc_c_min > amount of dirty data)
5085 *
5086 * 2.1. arc_size is greater than or equal arc_c_min.
5087 * (i.e. arc_size >= arc_c_min > amount of dirty data)
5088 *
5089 * In this case, not all clean data from the regular mru and mfu
5090 * lists is actually evictable; we must leave enough clean data
5091 * to keep arc_size above arc_c_min. Thus, the maximum amount of
5092 * evictable data from the two lists combined, is exactly the
5093 * difference between arc_size and arc_c_min.
5094 *
5095 * 2.2. arc_size is less than arc_c_min
5096 * (i.e. arc_c_min > arc_size > amount of dirty data)
5097 *
5098 * In this case, none of the data contained in the mru and mfu
5099 * lists is evictable, even if it's clean. Since arc_size is
5100 * already below arc_c_min, evicting any more would only
5101 * increase this negative difference.
5102 */
5103 static uint64_t
5104 arc_evictable_memory(void)
5105 {
5106 uint64_t arc_clean =
5107 refcount_count(&arc_mru->arcs_esize[ARC_BUFC_DATA]) +
5108 refcount_count(&arc_mru->arcs_esize[ARC_BUFC_METADATA]) +
5109 refcount_count(&arc_mfu->arcs_esize[ARC_BUFC_DATA]) +
5110 refcount_count(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]);
5111 uint64_t arc_dirty = MAX((int64_t)arc_size - (int64_t)arc_clean, 0);
5112
5113 /*
5114 * Scale reported evictable memory in proportion to page cache, cap
5115 * at specified min/max.
5116 */
5117 uint64_t min = (ptob(nr_file_pages()) / 100) * zfs_arc_pc_percent;
5118 min = MAX(arc_c_min, MIN(arc_c_max, min));
5119
5120 if (arc_dirty >= min)
5121 return (arc_clean);
5122
5123 return (MAX((int64_t)arc_size - (int64_t)min, 0));
5124 }
5125
5126 /*
5127 * If sc->nr_to_scan is zero, the caller is requesting a query of the
5128 * number of objects which can potentially be freed. If it is nonzero,
5129 * the request is to free that many objects.
5130 *
5131 * Linux kernels >= 3.12 have the count_objects and scan_objects callbacks
5132 * in struct shrinker and also require the shrinker to return the number
5133 * of objects freed.
5134 *
5135 * Older kernels require the shrinker to return the number of freeable
5136 * objects following the freeing of nr_to_free.
5137 */
5138 static spl_shrinker_t
5139 __arc_shrinker_func(struct shrinker *shrink, struct shrink_control *sc)
5140 {
5141 int64_t pages;
5142
5143 /* The arc is considered warm once reclaim has occurred */
5144 if (unlikely(arc_warm == B_FALSE))
5145 arc_warm = B_TRUE;
5146
5147 /* Return the potential number of reclaimable pages */
5148 pages = btop((int64_t)arc_evictable_memory());
5149 if (sc->nr_to_scan == 0)
5150 return (pages);
5151
5152 /* Not allowed to perform filesystem reclaim */
5153 if (!(sc->gfp_mask & __GFP_FS))
5154 return (SHRINK_STOP);
5155
5156 /* Reclaim in progress */
5157 if (mutex_tryenter(&arc_reclaim_lock) == 0) {
5158 ARCSTAT_INCR(arcstat_need_free, ptob(sc->nr_to_scan));
5159 return (0);
5160 }
5161
5162 mutex_exit(&arc_reclaim_lock);
5163
5164 /*
5165 * Evict the requested number of pages by shrinking arc_c the
5166 * requested amount.
5167 */
5168 if (pages > 0) {
5169 arc_shrink(ptob(sc->nr_to_scan));
5170 if (current_is_kswapd())
5171 arc_kmem_reap_now();
5172 #ifdef HAVE_SPLIT_SHRINKER_CALLBACK
5173 pages = MAX((int64_t)pages -
5174 (int64_t)btop(arc_evictable_memory()), 0);
5175 #else
5176 pages = btop(arc_evictable_memory());
5177 #endif
5178 /*
5179 * We've shrunk what we can, wake up threads.
5180 */
5181 cv_broadcast(&arc_reclaim_waiters_cv);
5182 } else
5183 pages = SHRINK_STOP;
5184
5185 /*
5186 * When direct reclaim is observed it usually indicates a rapid
5187 * increase in memory pressure. This occurs because the kswapd
5188 * threads were unable to asynchronously keep enough free memory
5189 * available. In this case set arc_no_grow to briefly pause arc
5190 * growth to avoid compounding the memory pressure.
5191 */
5192 if (current_is_kswapd()) {
5193 ARCSTAT_BUMP(arcstat_memory_indirect_count);
5194 } else {
5195 arc_no_grow = B_TRUE;
5196 arc_kmem_reap_now();
5197 ARCSTAT_BUMP(arcstat_memory_direct_count);
5198 }
5199
5200 return (pages);
5201 }
5202 SPL_SHRINKER_CALLBACK_WRAPPER(arc_shrinker_func);
5203
5204 SPL_SHRINKER_DECLARE(arc_shrinker, arc_shrinker_func, DEFAULT_SEEKS);
5205 #endif /* _KERNEL */
5206
5207 /*
5208 * Adapt arc info given the number of bytes we are trying to add and
5209 * the state that we are coming from. This function is only called
5210 * when we are adding new content to the cache.
5211 */
5212 static void
5213 arc_adapt(int bytes, arc_state_t *state)
5214 {
5215 int mult;
5216 uint64_t arc_p_min = (arc_c >> arc_p_min_shift);
5217 int64_t mrug_size = refcount_count(&arc_mru_ghost->arcs_size);
5218 int64_t mfug_size = refcount_count(&arc_mfu_ghost->arcs_size);
5219
5220 if (state == arc_l2c_only)
5221 return;
5222
5223 ASSERT(bytes > 0);
5224 /*
5225 * Adapt the target size of the MRU list:
5226 * - if we just hit in the MRU ghost list, then increase
5227 * the target size of the MRU list.
5228 * - if we just hit in the MFU ghost list, then increase
5229 * the target size of the MFU list by decreasing the
5230 * target size of the MRU list.
5231 */
5232 if (state == arc_mru_ghost) {
5233 mult = (mrug_size >= mfug_size) ? 1 : (mfug_size / mrug_size);
5234 if (!zfs_arc_p_dampener_disable)
5235 mult = MIN(mult, 10); /* avoid wild arc_p adjustment */
5236
5237 arc_p = MIN(arc_c - arc_p_min, arc_p + bytes * mult);
5238 } else if (state == arc_mfu_ghost) {
5239 uint64_t delta;
5240
5241 mult = (mfug_size >= mrug_size) ? 1 : (mrug_size / mfug_size);
5242 if (!zfs_arc_p_dampener_disable)
5243 mult = MIN(mult, 10);
5244
5245 delta = MIN(bytes * mult, arc_p);
5246 arc_p = MAX(arc_p_min, arc_p - delta);
5247 }
5248 ASSERT((int64_t)arc_p >= 0);
5249
5250 if (arc_reclaim_needed()) {
5251 cv_signal(&arc_reclaim_thread_cv);
5252 return;
5253 }
5254
5255 if (arc_no_grow)
5256 return;
5257
5258 if (arc_c >= arc_c_max)
5259 return;
5260
5261 /*
5262 * If we're within (2 * maxblocksize) bytes of the target
5263 * cache size, increment the target cache size
5264 */
5265 ASSERT3U(arc_c, >=, 2ULL << SPA_MAXBLOCKSHIFT);
5266 if (arc_size >= arc_c - (2ULL << SPA_MAXBLOCKSHIFT)) {
5267 atomic_add_64(&arc_c, (int64_t)bytes);
5268 if (arc_c > arc_c_max)
5269 arc_c = arc_c_max;
5270 else if (state == arc_anon)
5271 atomic_add_64(&arc_p, (int64_t)bytes);
5272 if (arc_p > arc_c)
5273 arc_p = arc_c;
5274 }
5275 ASSERT((int64_t)arc_p >= 0);
5276 }
5277
5278 /*
5279 * Check if arc_size has grown past our upper threshold, determined by
5280 * zfs_arc_overflow_shift.
5281 */
5282 static boolean_t
5283 arc_is_overflowing(void)
5284 {
5285 /* Always allow at least one block of overflow */
5286 uint64_t overflow = MAX(SPA_MAXBLOCKSIZE,
5287 arc_c >> zfs_arc_overflow_shift);
5288
5289 return (arc_size >= arc_c + overflow);
5290 }
5291
5292 static abd_t *
5293 arc_get_data_abd(arc_buf_hdr_t *hdr, uint64_t size, void *tag)
5294 {
5295 arc_buf_contents_t type = arc_buf_type(hdr);
5296
5297 arc_get_data_impl(hdr, size, tag);
5298 if (type == ARC_BUFC_METADATA) {
5299 return (abd_alloc(size, B_TRUE));
5300 } else {
5301 ASSERT(type == ARC_BUFC_DATA);
5302 return (abd_alloc(size, B_FALSE));
5303 }
5304 }
5305
5306 static void *
5307 arc_get_data_buf(arc_buf_hdr_t *hdr, uint64_t size, void *tag)
5308 {
5309 arc_buf_contents_t type = arc_buf_type(hdr);
5310
5311 arc_get_data_impl(hdr, size, tag);
5312 if (type == ARC_BUFC_METADATA) {
5313 return (zio_buf_alloc(size));
5314 } else {
5315 ASSERT(type == ARC_BUFC_DATA);
5316 return (zio_data_buf_alloc(size));
5317 }
5318 }
5319
5320 /*
5321 * Allocate a block and return it to the caller. If we are hitting the
5322 * hard limit for the cache size, we must sleep, waiting for the eviction
5323 * thread to catch up. If we're past the target size but below the hard
5324 * limit, we'll only signal the reclaim thread and continue on.
5325 */
5326 static void
5327 arc_get_data_impl(arc_buf_hdr_t *hdr, uint64_t size, void *tag)
5328 {
5329 arc_state_t *state = hdr->b_l1hdr.b_state;
5330 arc_buf_contents_t type = arc_buf_type(hdr);
5331
5332 arc_adapt(size, state);
5333
5334 /*
5335 * If arc_size is currently overflowing, and has grown past our
5336 * upper limit, we must be adding data faster than the evict
5337 * thread can evict. Thus, to ensure we don't compound the
5338 * problem by adding more data and forcing arc_size to grow even
5339 * further past it's target size, we halt and wait for the
5340 * eviction thread to catch up.
5341 *
5342 * It's also possible that the reclaim thread is unable to evict
5343 * enough buffers to get arc_size below the overflow limit (e.g.
5344 * due to buffers being un-evictable, or hash lock collisions).
5345 * In this case, we want to proceed regardless if we're
5346 * overflowing; thus we don't use a while loop here.
5347 */
5348 if (arc_is_overflowing()) {
5349 mutex_enter(&arc_reclaim_lock);
5350
5351 /*
5352 * Now that we've acquired the lock, we may no longer be
5353 * over the overflow limit, lets check.
5354 *
5355 * We're ignoring the case of spurious wake ups. If that
5356 * were to happen, it'd let this thread consume an ARC
5357 * buffer before it should have (i.e. before we're under
5358 * the overflow limit and were signalled by the reclaim
5359 * thread). As long as that is a rare occurrence, it
5360 * shouldn't cause any harm.
5361 */
5362 if (arc_is_overflowing()) {
5363 cv_signal(&arc_reclaim_thread_cv);
5364 cv_wait(&arc_reclaim_waiters_cv, &arc_reclaim_lock);
5365 }
5366
5367 mutex_exit(&arc_reclaim_lock);
5368 }
5369
5370 VERIFY3U(hdr->b_type, ==, type);
5371 if (type == ARC_BUFC_METADATA) {
5372 arc_space_consume(size, ARC_SPACE_META);
5373 } else {
5374 arc_space_consume(size, ARC_SPACE_DATA);
5375 }
5376
5377 /*
5378 * Update the state size. Note that ghost states have a
5379 * "ghost size" and so don't need to be updated.
5380 */
5381 if (!GHOST_STATE(state)) {
5382
5383 (void) refcount_add_many(&state->arcs_size, size, tag);
5384
5385 /*
5386 * If this is reached via arc_read, the link is
5387 * protected by the hash lock. If reached via
5388 * arc_buf_alloc, the header should not be accessed by
5389 * any other thread. And, if reached via arc_read_done,
5390 * the hash lock will protect it if it's found in the
5391 * hash table; otherwise no other thread should be
5392 * trying to [add|remove]_reference it.
5393 */
5394 if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
5395 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
5396 (void) refcount_add_many(&state->arcs_esize[type],
5397 size, tag);
5398 }
5399
5400 /*
5401 * If we are growing the cache, and we are adding anonymous
5402 * data, and we have outgrown arc_p, update arc_p
5403 */
5404 if (arc_size < arc_c && hdr->b_l1hdr.b_state == arc_anon &&
5405 (refcount_count(&arc_anon->arcs_size) +
5406 refcount_count(&arc_mru->arcs_size) > arc_p))
5407 arc_p = MIN(arc_c, arc_p + size);
5408 }
5409 }
5410
5411 static void
5412 arc_free_data_abd(arc_buf_hdr_t *hdr, abd_t *abd, uint64_t size, void *tag)
5413 {
5414 arc_free_data_impl(hdr, size, tag);
5415 abd_free(abd);
5416 }
5417
5418 static void
5419 arc_free_data_buf(arc_buf_hdr_t *hdr, void *buf, uint64_t size, void *tag)
5420 {
5421 arc_buf_contents_t type = arc_buf_type(hdr);
5422
5423 arc_free_data_impl(hdr, size, tag);
5424 if (type == ARC_BUFC_METADATA) {
5425 zio_buf_free(buf, size);
5426 } else {
5427 ASSERT(type == ARC_BUFC_DATA);
5428 zio_data_buf_free(buf, size);
5429 }
5430 }
5431
5432 /*
5433 * Free the arc data buffer.
5434 */
5435 static void
5436 arc_free_data_impl(arc_buf_hdr_t *hdr, uint64_t size, void *tag)
5437 {
5438 arc_state_t *state = hdr->b_l1hdr.b_state;
5439 arc_buf_contents_t type = arc_buf_type(hdr);
5440
5441 /* protected by hash lock, if in the hash table */
5442 if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
5443 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
5444 ASSERT(state != arc_anon && state != arc_l2c_only);
5445
5446 (void) refcount_remove_many(&state->arcs_esize[type],
5447 size, tag);
5448 }
5449 (void) refcount_remove_many(&state->arcs_size, size, tag);
5450
5451 VERIFY3U(hdr->b_type, ==, type);
5452 if (type == ARC_BUFC_METADATA) {
5453 arc_space_return(size, ARC_SPACE_META);
5454 } else {
5455 ASSERT(type == ARC_BUFC_DATA);
5456 arc_space_return(size, ARC_SPACE_DATA);
5457 }
5458 }
5459
5460 /*
5461 * This routine is called whenever a buffer is accessed.
5462 * NOTE: the hash lock is dropped in this function.
5463 */
5464 static void
5465 arc_access(arc_buf_hdr_t *hdr, kmutex_t *hash_lock)
5466 {
5467 clock_t now;
5468
5469 ASSERT(MUTEX_HELD(hash_lock));
5470 ASSERT(HDR_HAS_L1HDR(hdr));
5471
5472 if (hdr->b_l1hdr.b_state == arc_anon) {
5473 /*
5474 * This buffer is not in the cache, and does not
5475 * appear in our "ghost" list. Add the new buffer
5476 * to the MRU state.
5477 */
5478
5479 ASSERT0(hdr->b_l1hdr.b_arc_access);
5480 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
5481 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr);
5482 arc_change_state(arc_mru, hdr, hash_lock);
5483
5484 } else if (hdr->b_l1hdr.b_state == arc_mru) {
5485 now = ddi_get_lbolt();
5486
5487 /*
5488 * If this buffer is here because of a prefetch, then either:
5489 * - clear the flag if this is a "referencing" read
5490 * (any subsequent access will bump this into the MFU state).
5491 * or
5492 * - move the buffer to the head of the list if this is
5493 * another prefetch (to make it less likely to be evicted).
5494 */
5495 if (HDR_PREFETCH(hdr) || HDR_PRESCIENT_PREFETCH(hdr)) {
5496 if (refcount_count(&hdr->b_l1hdr.b_refcnt) == 0) {
5497 /* link protected by hash lock */
5498 ASSERT(multilist_link_active(
5499 &hdr->b_l1hdr.b_arc_node));
5500 } else {
5501 arc_hdr_clear_flags(hdr,
5502 ARC_FLAG_PREFETCH |
5503 ARC_FLAG_PRESCIENT_PREFETCH);
5504 atomic_inc_32(&hdr->b_l1hdr.b_mru_hits);
5505 ARCSTAT_BUMP(arcstat_mru_hits);
5506 }
5507 hdr->b_l1hdr.b_arc_access = now;
5508 return;
5509 }
5510
5511 /*
5512 * This buffer has been "accessed" only once so far,
5513 * but it is still in the cache. Move it to the MFU
5514 * state.
5515 */
5516 if (ddi_time_after(now, hdr->b_l1hdr.b_arc_access +
5517 ARC_MINTIME)) {
5518 /*
5519 * More than 125ms have passed since we
5520 * instantiated this buffer. Move it to the
5521 * most frequently used state.
5522 */
5523 hdr->b_l1hdr.b_arc_access = now;
5524 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
5525 arc_change_state(arc_mfu, hdr, hash_lock);
5526 }
5527 atomic_inc_32(&hdr->b_l1hdr.b_mru_hits);
5528 ARCSTAT_BUMP(arcstat_mru_hits);
5529 } else if (hdr->b_l1hdr.b_state == arc_mru_ghost) {
5530 arc_state_t *new_state;
5531 /*
5532 * This buffer has been "accessed" recently, but
5533 * was evicted from the cache. Move it to the
5534 * MFU state.
5535 */
5536
5537 if (HDR_PREFETCH(hdr) || HDR_PRESCIENT_PREFETCH(hdr)) {
5538 new_state = arc_mru;
5539 if (refcount_count(&hdr->b_l1hdr.b_refcnt) > 0) {
5540 arc_hdr_clear_flags(hdr,
5541 ARC_FLAG_PREFETCH |
5542 ARC_FLAG_PRESCIENT_PREFETCH);
5543 }
5544 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr);
5545 } else {
5546 new_state = arc_mfu;
5547 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
5548 }
5549
5550 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
5551 arc_change_state(new_state, hdr, hash_lock);
5552
5553 atomic_inc_32(&hdr->b_l1hdr.b_mru_ghost_hits);
5554 ARCSTAT_BUMP(arcstat_mru_ghost_hits);
5555 } else if (hdr->b_l1hdr.b_state == arc_mfu) {
5556 /*
5557 * This buffer has been accessed more than once and is
5558 * still in the cache. Keep it in the MFU state.
5559 *
5560 * NOTE: an add_reference() that occurred when we did
5561 * the arc_read() will have kicked this off the list.
5562 * If it was a prefetch, we will explicitly move it to
5563 * the head of the list now.
5564 */
5565
5566 atomic_inc_32(&hdr->b_l1hdr.b_mfu_hits);
5567 ARCSTAT_BUMP(arcstat_mfu_hits);
5568 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
5569 } else if (hdr->b_l1hdr.b_state == arc_mfu_ghost) {
5570 arc_state_t *new_state = arc_mfu;
5571 /*
5572 * This buffer has been accessed more than once but has
5573 * been evicted from the cache. Move it back to the
5574 * MFU state.
5575 */
5576
5577 if (HDR_PREFETCH(hdr) || HDR_PRESCIENT_PREFETCH(hdr)) {
5578 /*
5579 * This is a prefetch access...
5580 * move this block back to the MRU state.
5581 */
5582 new_state = arc_mru;
5583 }
5584
5585 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
5586 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
5587 arc_change_state(new_state, hdr, hash_lock);
5588
5589 atomic_inc_32(&hdr->b_l1hdr.b_mfu_ghost_hits);
5590 ARCSTAT_BUMP(arcstat_mfu_ghost_hits);
5591 } else if (hdr->b_l1hdr.b_state == arc_l2c_only) {
5592 /*
5593 * This buffer is on the 2nd Level ARC.
5594 */
5595
5596 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
5597 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
5598 arc_change_state(arc_mfu, hdr, hash_lock);
5599 } else {
5600 cmn_err(CE_PANIC, "invalid arc state 0x%p",
5601 hdr->b_l1hdr.b_state);
5602 }
5603 }
5604
5605 /*
5606 * This routine is called by dbuf_hold() to update the arc_access() state
5607 * which otherwise would be skipped for entries in the dbuf cache.
5608 */
5609 void
5610 arc_buf_access(arc_buf_t *buf)
5611 {
5612 mutex_enter(&buf->b_evict_lock);
5613 arc_buf_hdr_t *hdr = buf->b_hdr;
5614
5615 /*
5616 * Avoid taking the hash_lock when possible as an optimization.
5617 * The header must be checked again under the hash_lock in order
5618 * to handle the case where it is concurrently being released.
5619 */
5620 if (hdr->b_l1hdr.b_state == arc_anon || HDR_EMPTY(hdr)) {
5621 mutex_exit(&buf->b_evict_lock);
5622 return;
5623 }
5624
5625 kmutex_t *hash_lock = HDR_LOCK(hdr);
5626 mutex_enter(hash_lock);
5627
5628 if (hdr->b_l1hdr.b_state == arc_anon || HDR_EMPTY(hdr)) {
5629 mutex_exit(hash_lock);
5630 mutex_exit(&buf->b_evict_lock);
5631 ARCSTAT_BUMP(arcstat_access_skip);
5632 return;
5633 }
5634
5635 mutex_exit(&buf->b_evict_lock);
5636
5637 ASSERT(hdr->b_l1hdr.b_state == arc_mru ||
5638 hdr->b_l1hdr.b_state == arc_mfu);
5639
5640 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
5641 arc_access(hdr, hash_lock);
5642 mutex_exit(hash_lock);
5643
5644 ARCSTAT_BUMP(arcstat_hits);
5645 ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr) && !HDR_PRESCIENT_PREFETCH(hdr),
5646 demand, prefetch, !HDR_ISTYPE_METADATA(hdr), data, metadata, hits);
5647 }
5648
5649 /* a generic arc_read_done_func_t which you can use */
5650 /* ARGSUSED */
5651 void
5652 arc_bcopy_func(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp,
5653 arc_buf_t *buf, void *arg)
5654 {
5655 if (buf == NULL)
5656 return;
5657
5658 bcopy(buf->b_data, arg, arc_buf_size(buf));
5659 arc_buf_destroy(buf, arg);
5660 }
5661
5662 /* a generic arc_read_done_func_t */
5663 /* ARGSUSED */
5664 void
5665 arc_getbuf_func(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp,
5666 arc_buf_t *buf, void *arg)
5667 {
5668 arc_buf_t **bufp = arg;
5669
5670 if (buf == NULL) {
5671 *bufp = NULL;
5672 } else {
5673 *bufp = buf;
5674 ASSERT(buf->b_data);
5675 }
5676 }
5677
5678 static void
5679 arc_hdr_verify(arc_buf_hdr_t *hdr, blkptr_t *bp)
5680 {
5681 if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp)) {
5682 ASSERT3U(HDR_GET_PSIZE(hdr), ==, 0);
5683 ASSERT3U(arc_hdr_get_compress(hdr), ==, ZIO_COMPRESS_OFF);
5684 } else {
5685 if (HDR_COMPRESSION_ENABLED(hdr)) {
5686 ASSERT3U(arc_hdr_get_compress(hdr), ==,
5687 BP_GET_COMPRESS(bp));
5688 }
5689 ASSERT3U(HDR_GET_LSIZE(hdr), ==, BP_GET_LSIZE(bp));
5690 ASSERT3U(HDR_GET_PSIZE(hdr), ==, BP_GET_PSIZE(bp));
5691 ASSERT3U(!!HDR_PROTECTED(hdr), ==, BP_IS_PROTECTED(bp));
5692 }
5693 }
5694
5695 static void
5696 arc_read_done(zio_t *zio)
5697 {
5698 blkptr_t *bp = zio->io_bp;
5699 arc_buf_hdr_t *hdr = zio->io_private;
5700 kmutex_t *hash_lock = NULL;
5701 arc_callback_t *callback_list;
5702 arc_callback_t *acb;
5703 boolean_t freeable = B_FALSE;
5704
5705 /*
5706 * The hdr was inserted into hash-table and removed from lists
5707 * prior to starting I/O. We should find this header, since
5708 * it's in the hash table, and it should be legit since it's
5709 * not possible to evict it during the I/O. The only possible
5710 * reason for it not to be found is if we were freed during the
5711 * read.
5712 */
5713 if (HDR_IN_HASH_TABLE(hdr)) {
5714 arc_buf_hdr_t *found;
5715
5716 ASSERT3U(hdr->b_birth, ==, BP_PHYSICAL_BIRTH(zio->io_bp));
5717 ASSERT3U(hdr->b_dva.dva_word[0], ==,
5718 BP_IDENTITY(zio->io_bp)->dva_word[0]);
5719 ASSERT3U(hdr->b_dva.dva_word[1], ==,
5720 BP_IDENTITY(zio->io_bp)->dva_word[1]);
5721
5722 found = buf_hash_find(hdr->b_spa, zio->io_bp, &hash_lock);
5723
5724 ASSERT((found == hdr &&
5725 DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))) ||
5726 (found == hdr && HDR_L2_READING(hdr)));
5727 ASSERT3P(hash_lock, !=, NULL);
5728 }
5729
5730 if (BP_IS_PROTECTED(bp)) {
5731 hdr->b_crypt_hdr.b_ot = BP_GET_TYPE(bp);
5732 hdr->b_crypt_hdr.b_dsobj = zio->io_bookmark.zb_objset;
5733 zio_crypt_decode_params_bp(bp, hdr->b_crypt_hdr.b_salt,
5734 hdr->b_crypt_hdr.b_iv);
5735
5736 if (BP_GET_TYPE(bp) == DMU_OT_INTENT_LOG) {
5737 void *tmpbuf;
5738
5739 tmpbuf = abd_borrow_buf_copy(zio->io_abd,
5740 sizeof (zil_chain_t));
5741 zio_crypt_decode_mac_zil(tmpbuf,
5742 hdr->b_crypt_hdr.b_mac);
5743 abd_return_buf(zio->io_abd, tmpbuf,
5744 sizeof (zil_chain_t));
5745 } else {
5746 zio_crypt_decode_mac_bp(bp, hdr->b_crypt_hdr.b_mac);
5747 }
5748 }
5749
5750 if (zio->io_error == 0) {
5751 /* byteswap if necessary */
5752 if (BP_SHOULD_BYTESWAP(zio->io_bp)) {
5753 if (BP_GET_LEVEL(zio->io_bp) > 0) {
5754 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_UINT64;
5755 } else {
5756 hdr->b_l1hdr.b_byteswap =
5757 DMU_OT_BYTESWAP(BP_GET_TYPE(zio->io_bp));
5758 }
5759 } else {
5760 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS;
5761 }
5762 }
5763
5764 arc_hdr_clear_flags(hdr, ARC_FLAG_L2_EVICTED);
5765 if (l2arc_noprefetch && HDR_PREFETCH(hdr))
5766 arc_hdr_clear_flags(hdr, ARC_FLAG_L2CACHE);
5767
5768 callback_list = hdr->b_l1hdr.b_acb;
5769 ASSERT3P(callback_list, !=, NULL);
5770
5771 if (hash_lock && zio->io_error == 0 &&
5772 hdr->b_l1hdr.b_state == arc_anon) {
5773 /*
5774 * Only call arc_access on anonymous buffers. This is because
5775 * if we've issued an I/O for an evicted buffer, we've already
5776 * called arc_access (to prevent any simultaneous readers from
5777 * getting confused).
5778 */
5779 arc_access(hdr, hash_lock);
5780 }
5781
5782 /*
5783 * If a read request has a callback (i.e. acb_done is not NULL), then we
5784 * make a buf containing the data according to the parameters which were
5785 * passed in. The implementation of arc_buf_alloc_impl() ensures that we
5786 * aren't needlessly decompressing the data multiple times.
5787 */
5788 int callback_cnt = 0;
5789 for (acb = callback_list; acb != NULL; acb = acb->acb_next) {
5790 if (!acb->acb_done)
5791 continue;
5792
5793 callback_cnt++;
5794
5795 if (zio->io_error != 0)
5796 continue;
5797
5798 int error = arc_buf_alloc_impl(hdr, zio->io_spa,
5799 &acb->acb_zb, acb->acb_private, acb->acb_encrypted,
5800 acb->acb_compressed, acb->acb_noauth, B_TRUE,
5801 &acb->acb_buf);
5802 if (error != 0) {
5803 (void) remove_reference(hdr, hash_lock,
5804 acb->acb_private);
5805 arc_buf_destroy_impl(acb->acb_buf);
5806 acb->acb_buf = NULL;
5807 }
5808
5809 /*
5810 * Assert non-speculative zios didn't fail because an
5811 * encryption key wasn't loaded
5812 */
5813 ASSERT((zio->io_flags & ZIO_FLAG_SPECULATIVE) ||
5814 error != EACCES);
5815
5816 /*
5817 * If we failed to decrypt, report an error now (as the zio
5818 * layer would have done if it had done the transforms).
5819 */
5820 if (error == ECKSUM) {
5821 ASSERT(BP_IS_PROTECTED(bp));
5822 error = SET_ERROR(EIO);
5823 if ((zio->io_flags & ZIO_FLAG_SPECULATIVE) == 0) {
5824 spa_log_error(zio->io_spa, &acb->acb_zb);
5825 zfs_ereport_post(FM_EREPORT_ZFS_AUTHENTICATION,
5826 zio->io_spa, NULL, &acb->acb_zb, zio, 0, 0);
5827 }
5828 }
5829
5830 if (zio->io_error == 0)
5831 zio->io_error = error;
5832 }
5833 hdr->b_l1hdr.b_acb = NULL;
5834 arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
5835 if (callback_cnt == 0)
5836 ASSERT(hdr->b_l1hdr.b_pabd != NULL || HDR_HAS_RABD(hdr));
5837
5838 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt) ||
5839 callback_list != NULL);
5840
5841 if (zio->io_error == 0) {
5842 arc_hdr_verify(hdr, zio->io_bp);
5843 } else {
5844 arc_hdr_set_flags(hdr, ARC_FLAG_IO_ERROR);
5845 if (hdr->b_l1hdr.b_state != arc_anon)
5846 arc_change_state(arc_anon, hdr, hash_lock);
5847 if (HDR_IN_HASH_TABLE(hdr))
5848 buf_hash_remove(hdr);
5849 freeable = refcount_is_zero(&hdr->b_l1hdr.b_refcnt);
5850 }
5851
5852 /*
5853 * Broadcast before we drop the hash_lock to avoid the possibility
5854 * that the hdr (and hence the cv) might be freed before we get to
5855 * the cv_broadcast().
5856 */
5857 cv_broadcast(&hdr->b_l1hdr.b_cv);
5858
5859 if (hash_lock != NULL) {
5860 mutex_exit(hash_lock);
5861 } else {
5862 /*
5863 * This block was freed while we waited for the read to
5864 * complete. It has been removed from the hash table and
5865 * moved to the anonymous state (so that it won't show up
5866 * in the cache).
5867 */
5868 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
5869 freeable = refcount_is_zero(&hdr->b_l1hdr.b_refcnt);
5870 }
5871
5872 /* execute each callback and free its structure */
5873 while ((acb = callback_list) != NULL) {
5874 if (acb->acb_done) {
5875 acb->acb_done(zio, &zio->io_bookmark, zio->io_bp,
5876 acb->acb_buf, acb->acb_private);
5877 }
5878
5879 if (acb->acb_zio_dummy != NULL) {
5880 acb->acb_zio_dummy->io_error = zio->io_error;
5881 zio_nowait(acb->acb_zio_dummy);
5882 }
5883
5884 callback_list = acb->acb_next;
5885 kmem_free(acb, sizeof (arc_callback_t));
5886 }
5887
5888 if (freeable)
5889 arc_hdr_destroy(hdr);
5890 }
5891
5892 /*
5893 * "Read" the block at the specified DVA (in bp) via the
5894 * cache. If the block is found in the cache, invoke the provided
5895 * callback immediately and return. Note that the `zio' parameter
5896 * in the callback will be NULL in this case, since no IO was
5897 * required. If the block is not in the cache pass the read request
5898 * on to the spa with a substitute callback function, so that the
5899 * requested block will be added to the cache.
5900 *
5901 * If a read request arrives for a block that has a read in-progress,
5902 * either wait for the in-progress read to complete (and return the
5903 * results); or, if this is a read with a "done" func, add a record
5904 * to the read to invoke the "done" func when the read completes,
5905 * and return; or just return.
5906 *
5907 * arc_read_done() will invoke all the requested "done" functions
5908 * for readers of this block.
5909 */
5910 int
5911 arc_read(zio_t *pio, spa_t *spa, const blkptr_t *bp,
5912 arc_read_done_func_t *done, void *private, zio_priority_t priority,
5913 int zio_flags, arc_flags_t *arc_flags, const zbookmark_phys_t *zb)
5914 {
5915 arc_buf_hdr_t *hdr = NULL;
5916 kmutex_t *hash_lock = NULL;
5917 zio_t *rzio;
5918 uint64_t guid = spa_load_guid(spa);
5919 boolean_t compressed_read = (zio_flags & ZIO_FLAG_RAW_COMPRESS) != 0;
5920 boolean_t encrypted_read = BP_IS_ENCRYPTED(bp) &&
5921 (zio_flags & ZIO_FLAG_RAW_ENCRYPT) != 0;
5922 boolean_t noauth_read = BP_IS_AUTHENTICATED(bp) &&
5923 (zio_flags & ZIO_FLAG_RAW_ENCRYPT) != 0;
5924 int rc = 0;
5925
5926 ASSERT(!BP_IS_EMBEDDED(bp) ||
5927 BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA);
5928
5929 top:
5930 if (!BP_IS_EMBEDDED(bp)) {
5931 /*
5932 * Embedded BP's have no DVA and require no I/O to "read".
5933 * Create an anonymous arc buf to back it.
5934 */
5935 hdr = buf_hash_find(guid, bp, &hash_lock);
5936 }
5937
5938 /*
5939 * Determine if we have an L1 cache hit or a cache miss. For simplicity
5940 * we maintain encrypted data seperately from compressed / uncompressed
5941 * data. If the user is requesting raw encrypted data and we don't have
5942 * that in the header we will read from disk to guarantee that we can
5943 * get it even if the encryption keys aren't loaded.
5944 */
5945 if (hdr != NULL && HDR_HAS_L1HDR(hdr) && (HDR_HAS_RABD(hdr) ||
5946 (hdr->b_l1hdr.b_pabd != NULL && !encrypted_read))) {
5947 arc_buf_t *buf = NULL;
5948 *arc_flags |= ARC_FLAG_CACHED;
5949
5950 if (HDR_IO_IN_PROGRESS(hdr)) {
5951 zio_t *head_zio = hdr->b_l1hdr.b_acb->acb_zio_head;
5952
5953 ASSERT3P(head_zio, !=, NULL);
5954 if ((hdr->b_flags & ARC_FLAG_PRIO_ASYNC_READ) &&
5955 priority == ZIO_PRIORITY_SYNC_READ) {
5956 /*
5957 * This is a sync read that needs to wait for
5958 * an in-flight async read. Request that the
5959 * zio have its priority upgraded.
5960 */
5961 zio_change_priority(head_zio, priority);
5962 DTRACE_PROBE1(arc__async__upgrade__sync,
5963 arc_buf_hdr_t *, hdr);
5964 ARCSTAT_BUMP(arcstat_async_upgrade_sync);
5965 }
5966 if (hdr->b_flags & ARC_FLAG_PREDICTIVE_PREFETCH) {
5967 arc_hdr_clear_flags(hdr,
5968 ARC_FLAG_PREDICTIVE_PREFETCH);
5969 }
5970
5971 if (*arc_flags & ARC_FLAG_WAIT) {
5972 cv_wait(&hdr->b_l1hdr.b_cv, hash_lock);
5973 mutex_exit(hash_lock);
5974 goto top;
5975 }
5976 ASSERT(*arc_flags & ARC_FLAG_NOWAIT);
5977
5978 if (done) {
5979 arc_callback_t *acb = NULL;
5980
5981 acb = kmem_zalloc(sizeof (arc_callback_t),
5982 KM_SLEEP);
5983 acb->acb_done = done;
5984 acb->acb_private = private;
5985 acb->acb_compressed = compressed_read;
5986 acb->acb_encrypted = encrypted_read;
5987 acb->acb_noauth = noauth_read;
5988 acb->acb_zb = *zb;
5989 if (pio != NULL)
5990 acb->acb_zio_dummy = zio_null(pio,
5991 spa, NULL, NULL, NULL, zio_flags);
5992
5993 ASSERT3P(acb->acb_done, !=, NULL);
5994 acb->acb_zio_head = head_zio;
5995 acb->acb_next = hdr->b_l1hdr.b_acb;
5996 hdr->b_l1hdr.b_acb = acb;
5997 mutex_exit(hash_lock);
5998 goto out;
5999 }
6000 mutex_exit(hash_lock);
6001 goto out;
6002 }
6003
6004 ASSERT(hdr->b_l1hdr.b_state == arc_mru ||
6005 hdr->b_l1hdr.b_state == arc_mfu);
6006
6007 if (done) {
6008 if (hdr->b_flags & ARC_FLAG_PREDICTIVE_PREFETCH) {
6009 /*
6010 * This is a demand read which does not have to
6011 * wait for i/o because we did a predictive
6012 * prefetch i/o for it, which has completed.
6013 */
6014 DTRACE_PROBE1(
6015 arc__demand__hit__predictive__prefetch,
6016 arc_buf_hdr_t *, hdr);
6017 ARCSTAT_BUMP(
6018 arcstat_demand_hit_predictive_prefetch);
6019 arc_hdr_clear_flags(hdr,
6020 ARC_FLAG_PREDICTIVE_PREFETCH);
6021 }
6022
6023 if (hdr->b_flags & ARC_FLAG_PRESCIENT_PREFETCH) {
6024 ARCSTAT_BUMP(
6025 arcstat_demand_hit_prescient_prefetch);
6026 arc_hdr_clear_flags(hdr,
6027 ARC_FLAG_PRESCIENT_PREFETCH);
6028 }
6029
6030 ASSERT(!BP_IS_EMBEDDED(bp) || !BP_IS_HOLE(bp));
6031
6032 /* Get a buf with the desired data in it. */
6033 rc = arc_buf_alloc_impl(hdr, spa, zb, private,
6034 encrypted_read, compressed_read, noauth_read,
6035 B_TRUE, &buf);
6036 if (rc == ECKSUM) {
6037 /*
6038 * Convert authentication and decryption errors
6039 * to EIO (and generate an ereport if needed)
6040 * before leaving the ARC.
6041 */
6042 rc = SET_ERROR(EIO);
6043 if ((zio_flags & ZIO_FLAG_SPECULATIVE) == 0) {
6044 spa_log_error(spa, zb);
6045 zfs_ereport_post(
6046 FM_EREPORT_ZFS_AUTHENTICATION,
6047 spa, NULL, zb, NULL, 0, 0);
6048 }
6049 }
6050 if (rc != 0) {
6051 (void) remove_reference(hdr, hash_lock,
6052 private);
6053 arc_buf_destroy_impl(buf);
6054 buf = NULL;
6055 }
6056
6057 /* assert any errors weren't due to unloaded keys */
6058 ASSERT((zio_flags & ZIO_FLAG_SPECULATIVE) ||
6059 rc != EACCES);
6060 } else if (*arc_flags & ARC_FLAG_PREFETCH &&
6061 refcount_count(&hdr->b_l1hdr.b_refcnt) == 0) {
6062 arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH);
6063 }
6064 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
6065 arc_access(hdr, hash_lock);
6066 if (*arc_flags & ARC_FLAG_PRESCIENT_PREFETCH)
6067 arc_hdr_set_flags(hdr, ARC_FLAG_PRESCIENT_PREFETCH);
6068 if (*arc_flags & ARC_FLAG_L2CACHE)
6069 arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE);
6070 mutex_exit(hash_lock);
6071 ARCSTAT_BUMP(arcstat_hits);
6072 ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr),
6073 demand, prefetch, !HDR_ISTYPE_METADATA(hdr),
6074 data, metadata, hits);
6075
6076 if (done)
6077 done(NULL, zb, bp, buf, private);
6078 } else {
6079 uint64_t lsize = BP_GET_LSIZE(bp);
6080 uint64_t psize = BP_GET_PSIZE(bp);
6081 arc_callback_t *acb;
6082 vdev_t *vd = NULL;
6083 uint64_t addr = 0;
6084 boolean_t devw = B_FALSE;
6085 uint64_t size;
6086 abd_t *hdr_abd;
6087
6088 /*
6089 * Gracefully handle a damaged logical block size as a
6090 * checksum error.
6091 */
6092 if (lsize > spa_maxblocksize(spa)) {
6093 rc = SET_ERROR(ECKSUM);
6094 goto out;
6095 }
6096
6097 if (hdr == NULL) {
6098 /* this block is not in the cache */
6099 arc_buf_hdr_t *exists = NULL;
6100 arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp);
6101 hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize,
6102 BP_IS_PROTECTED(bp), BP_GET_COMPRESS(bp), type,
6103 encrypted_read);
6104
6105 if (!BP_IS_EMBEDDED(bp)) {
6106 hdr->b_dva = *BP_IDENTITY(bp);
6107 hdr->b_birth = BP_PHYSICAL_BIRTH(bp);
6108 exists = buf_hash_insert(hdr, &hash_lock);
6109 }
6110 if (exists != NULL) {
6111 /* somebody beat us to the hash insert */
6112 mutex_exit(hash_lock);
6113 buf_discard_identity(hdr);
6114 arc_hdr_destroy(hdr);
6115 goto top; /* restart the IO request */
6116 }
6117 } else {
6118 /*
6119 * This block is in the ghost cache or encrypted data
6120 * was requested and we didn't have it. If it was
6121 * L2-only (and thus didn't have an L1 hdr),
6122 * we realloc the header to add an L1 hdr.
6123 */
6124 if (!HDR_HAS_L1HDR(hdr)) {
6125 hdr = arc_hdr_realloc(hdr, hdr_l2only_cache,
6126 hdr_full_cache);
6127 }
6128
6129 if (GHOST_STATE(hdr->b_l1hdr.b_state)) {
6130 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
6131 ASSERT(!HDR_HAS_RABD(hdr));
6132 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
6133 ASSERT0(refcount_count(&hdr->b_l1hdr.b_refcnt));
6134 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
6135 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
6136 } else if (HDR_IO_IN_PROGRESS(hdr)) {
6137 /*
6138 * If this header already had an IO in progress
6139 * and we are performing another IO to fetch
6140 * encrypted data we must wait until the first
6141 * IO completes so as not to confuse
6142 * arc_read_done(). This should be very rare
6143 * and so the performance impact shouldn't
6144 * matter.
6145 */
6146 cv_wait(&hdr->b_l1hdr.b_cv, hash_lock);
6147 mutex_exit(hash_lock);
6148 goto top;
6149 }
6150
6151 /*
6152 * This is a delicate dance that we play here.
6153 * This hdr might be in the ghost list so we access
6154 * it to move it out of the ghost list before we
6155 * initiate the read. If it's a prefetch then
6156 * it won't have a callback so we'll remove the
6157 * reference that arc_buf_alloc_impl() created. We
6158 * do this after we've called arc_access() to
6159 * avoid hitting an assert in remove_reference().
6160 */
6161 arc_access(hdr, hash_lock);
6162 arc_hdr_alloc_abd(hdr, encrypted_read);
6163 }
6164
6165 if (encrypted_read) {
6166 ASSERT(HDR_HAS_RABD(hdr));
6167 size = HDR_GET_PSIZE(hdr);
6168 hdr_abd = hdr->b_crypt_hdr.b_rabd;
6169 zio_flags |= ZIO_FLAG_RAW;
6170 } else {
6171 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
6172 size = arc_hdr_size(hdr);
6173 hdr_abd = hdr->b_l1hdr.b_pabd;
6174
6175 if (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF) {
6176 zio_flags |= ZIO_FLAG_RAW_COMPRESS;
6177 }
6178
6179 /*
6180 * For authenticated bp's, we do not ask the ZIO layer
6181 * to authenticate them since this will cause the entire
6182 * IO to fail if the key isn't loaded. Instead, we
6183 * defer authentication until arc_buf_fill(), which will
6184 * verify the data when the key is available.
6185 */
6186 if (BP_IS_AUTHENTICATED(bp))
6187 zio_flags |= ZIO_FLAG_RAW_ENCRYPT;
6188 }
6189
6190 if (*arc_flags & ARC_FLAG_PREFETCH &&
6191 refcount_is_zero(&hdr->b_l1hdr.b_refcnt))
6192 arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH);
6193 if (*arc_flags & ARC_FLAG_PRESCIENT_PREFETCH)
6194 arc_hdr_set_flags(hdr, ARC_FLAG_PRESCIENT_PREFETCH);
6195 if (*arc_flags & ARC_FLAG_L2CACHE)
6196 arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE);
6197 if (BP_IS_AUTHENTICATED(bp))
6198 arc_hdr_set_flags(hdr, ARC_FLAG_NOAUTH);
6199 if (BP_GET_LEVEL(bp) > 0)
6200 arc_hdr_set_flags(hdr, ARC_FLAG_INDIRECT);
6201 if (*arc_flags & ARC_FLAG_PREDICTIVE_PREFETCH)
6202 arc_hdr_set_flags(hdr, ARC_FLAG_PREDICTIVE_PREFETCH);
6203 ASSERT(!GHOST_STATE(hdr->b_l1hdr.b_state));
6204
6205 acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP);
6206 acb->acb_done = done;
6207 acb->acb_private = private;
6208 acb->acb_compressed = compressed_read;
6209 acb->acb_encrypted = encrypted_read;
6210 acb->acb_noauth = noauth_read;
6211 acb->acb_zb = *zb;
6212
6213 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
6214 hdr->b_l1hdr.b_acb = acb;
6215 arc_hdr_set_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
6216
6217 if (HDR_HAS_L2HDR(hdr) &&
6218 (vd = hdr->b_l2hdr.b_dev->l2ad_vdev) != NULL) {
6219 devw = hdr->b_l2hdr.b_dev->l2ad_writing;
6220 addr = hdr->b_l2hdr.b_daddr;
6221 /*
6222 * Lock out L2ARC device removal.
6223 */
6224 if (vdev_is_dead(vd) ||
6225 !spa_config_tryenter(spa, SCL_L2ARC, vd, RW_READER))
6226 vd = NULL;
6227 }
6228
6229 /*
6230 * We count both async reads and scrub IOs as asynchronous so
6231 * that both can be upgraded in the event of a cache hit while
6232 * the read IO is still in-flight.
6233 */
6234 if (priority == ZIO_PRIORITY_ASYNC_READ ||
6235 priority == ZIO_PRIORITY_SCRUB)
6236 arc_hdr_set_flags(hdr, ARC_FLAG_PRIO_ASYNC_READ);
6237 else
6238 arc_hdr_clear_flags(hdr, ARC_FLAG_PRIO_ASYNC_READ);
6239
6240 /*
6241 * At this point, we have a level 1 cache miss. Try again in
6242 * L2ARC if possible.
6243 */
6244 ASSERT3U(HDR_GET_LSIZE(hdr), ==, lsize);
6245
6246 DTRACE_PROBE4(arc__miss, arc_buf_hdr_t *, hdr, blkptr_t *, bp,
6247 uint64_t, lsize, zbookmark_phys_t *, zb);
6248 ARCSTAT_BUMP(arcstat_misses);
6249 ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr),
6250 demand, prefetch, !HDR_ISTYPE_METADATA(hdr),
6251 data, metadata, misses);
6252
6253 if (vd != NULL && l2arc_ndev != 0 && !(l2arc_norw && devw)) {
6254 /*
6255 * Read from the L2ARC if the following are true:
6256 * 1. The L2ARC vdev was previously cached.
6257 * 2. This buffer still has L2ARC metadata.
6258 * 3. This buffer isn't currently writing to the L2ARC.
6259 * 4. The L2ARC entry wasn't evicted, which may
6260 * also have invalidated the vdev.
6261 * 5. This isn't prefetch and l2arc_noprefetch is set.
6262 */
6263 if (HDR_HAS_L2HDR(hdr) &&
6264 !HDR_L2_WRITING(hdr) && !HDR_L2_EVICTED(hdr) &&
6265 !(l2arc_noprefetch && HDR_PREFETCH(hdr))) {
6266 l2arc_read_callback_t *cb;
6267 abd_t *abd;
6268 uint64_t asize;
6269
6270 DTRACE_PROBE1(l2arc__hit, arc_buf_hdr_t *, hdr);
6271 ARCSTAT_BUMP(arcstat_l2_hits);
6272 atomic_inc_32(&hdr->b_l2hdr.b_hits);
6273
6274 cb = kmem_zalloc(sizeof (l2arc_read_callback_t),
6275 KM_SLEEP);
6276 cb->l2rcb_hdr = hdr;
6277 cb->l2rcb_bp = *bp;
6278 cb->l2rcb_zb = *zb;
6279 cb->l2rcb_flags = zio_flags;
6280
6281 asize = vdev_psize_to_asize(vd, size);
6282 if (asize != size) {
6283 abd = abd_alloc_for_io(asize,
6284 HDR_ISTYPE_METADATA(hdr));
6285 cb->l2rcb_abd = abd;
6286 } else {
6287 abd = hdr_abd;
6288 }
6289
6290 ASSERT(addr >= VDEV_LABEL_START_SIZE &&
6291 addr + asize <= vd->vdev_psize -
6292 VDEV_LABEL_END_SIZE);
6293
6294 /*
6295 * l2arc read. The SCL_L2ARC lock will be
6296 * released by l2arc_read_done().
6297 * Issue a null zio if the underlying buffer
6298 * was squashed to zero size by compression.
6299 */
6300 ASSERT3U(arc_hdr_get_compress(hdr), !=,
6301 ZIO_COMPRESS_EMPTY);
6302 rzio = zio_read_phys(pio, vd, addr,
6303 asize, abd,
6304 ZIO_CHECKSUM_OFF,
6305 l2arc_read_done, cb, priority,
6306 zio_flags | ZIO_FLAG_DONT_CACHE |
6307 ZIO_FLAG_CANFAIL |
6308 ZIO_FLAG_DONT_PROPAGATE |
6309 ZIO_FLAG_DONT_RETRY, B_FALSE);
6310 acb->acb_zio_head = rzio;
6311
6312 if (hash_lock != NULL)
6313 mutex_exit(hash_lock);
6314
6315 DTRACE_PROBE2(l2arc__read, vdev_t *, vd,
6316 zio_t *, rzio);
6317 ARCSTAT_INCR(arcstat_l2_read_bytes,
6318 HDR_GET_PSIZE(hdr));
6319
6320 if (*arc_flags & ARC_FLAG_NOWAIT) {
6321 zio_nowait(rzio);
6322 goto out;
6323 }
6324
6325 ASSERT(*arc_flags & ARC_FLAG_WAIT);
6326 if (zio_wait(rzio) == 0)
6327 goto out;
6328
6329 /* l2arc read error; goto zio_read() */
6330 if (hash_lock != NULL)
6331 mutex_enter(hash_lock);
6332 } else {
6333 DTRACE_PROBE1(l2arc__miss,
6334 arc_buf_hdr_t *, hdr);
6335 ARCSTAT_BUMP(arcstat_l2_misses);
6336 if (HDR_L2_WRITING(hdr))
6337 ARCSTAT_BUMP(arcstat_l2_rw_clash);
6338 spa_config_exit(spa, SCL_L2ARC, vd);
6339 }
6340 } else {
6341 if (vd != NULL)
6342 spa_config_exit(spa, SCL_L2ARC, vd);
6343 if (l2arc_ndev != 0) {
6344 DTRACE_PROBE1(l2arc__miss,
6345 arc_buf_hdr_t *, hdr);
6346 ARCSTAT_BUMP(arcstat_l2_misses);
6347 }
6348 }
6349
6350 rzio = zio_read(pio, spa, bp, hdr_abd, size,
6351 arc_read_done, hdr, priority, zio_flags, zb);
6352 acb->acb_zio_head = rzio;
6353
6354 if (hash_lock != NULL)
6355 mutex_exit(hash_lock);
6356
6357 if (*arc_flags & ARC_FLAG_WAIT) {
6358 rc = zio_wait(rzio);
6359 goto out;
6360 }
6361
6362 ASSERT(*arc_flags & ARC_FLAG_NOWAIT);
6363 zio_nowait(rzio);
6364 }
6365
6366 out:
6367 /* embedded bps don't actually go to disk */
6368 if (!BP_IS_EMBEDDED(bp))
6369 spa_read_history_add(spa, zb, *arc_flags);
6370 return (rc);
6371 }
6372
6373 arc_prune_t *
6374 arc_add_prune_callback(arc_prune_func_t *func, void *private)
6375 {
6376 arc_prune_t *p;
6377
6378 p = kmem_alloc(sizeof (*p), KM_SLEEP);
6379 p->p_pfunc = func;
6380 p->p_private = private;
6381 list_link_init(&p->p_node);
6382 refcount_create(&p->p_refcnt);
6383
6384 mutex_enter(&arc_prune_mtx);
6385 refcount_add(&p->p_refcnt, &arc_prune_list);
6386 list_insert_head(&arc_prune_list, p);
6387 mutex_exit(&arc_prune_mtx);
6388
6389 return (p);
6390 }
6391
6392 void
6393 arc_remove_prune_callback(arc_prune_t *p)
6394 {
6395 boolean_t wait = B_FALSE;
6396 mutex_enter(&arc_prune_mtx);
6397 list_remove(&arc_prune_list, p);
6398 if (refcount_remove(&p->p_refcnt, &arc_prune_list) > 0)
6399 wait = B_TRUE;
6400 mutex_exit(&arc_prune_mtx);
6401
6402 /* wait for arc_prune_task to finish */
6403 if (wait)
6404 taskq_wait_outstanding(arc_prune_taskq, 0);
6405 ASSERT0(refcount_count(&p->p_refcnt));
6406 refcount_destroy(&p->p_refcnt);
6407 kmem_free(p, sizeof (*p));
6408 }
6409
6410 /*
6411 * Notify the arc that a block was freed, and thus will never be used again.
6412 */
6413 void
6414 arc_freed(spa_t *spa, const blkptr_t *bp)
6415 {
6416 arc_buf_hdr_t *hdr;
6417 kmutex_t *hash_lock;
6418 uint64_t guid = spa_load_guid(spa);
6419
6420 ASSERT(!BP_IS_EMBEDDED(bp));
6421
6422 hdr = buf_hash_find(guid, bp, &hash_lock);
6423 if (hdr == NULL)
6424 return;
6425
6426 /*
6427 * We might be trying to free a block that is still doing I/O
6428 * (i.e. prefetch) or has a reference (i.e. a dedup-ed,
6429 * dmu_sync-ed block). If this block is being prefetched, then it
6430 * would still have the ARC_FLAG_IO_IN_PROGRESS flag set on the hdr
6431 * until the I/O completes. A block may also have a reference if it is
6432 * part of a dedup-ed, dmu_synced write. The dmu_sync() function would
6433 * have written the new block to its final resting place on disk but
6434 * without the dedup flag set. This would have left the hdr in the MRU
6435 * state and discoverable. When the txg finally syncs it detects that
6436 * the block was overridden in open context and issues an override I/O.
6437 * Since this is a dedup block, the override I/O will determine if the
6438 * block is already in the DDT. If so, then it will replace the io_bp
6439 * with the bp from the DDT and allow the I/O to finish. When the I/O
6440 * reaches the done callback, dbuf_write_override_done, it will
6441 * check to see if the io_bp and io_bp_override are identical.
6442 * If they are not, then it indicates that the bp was replaced with
6443 * the bp in the DDT and the override bp is freed. This allows
6444 * us to arrive here with a reference on a block that is being
6445 * freed. So if we have an I/O in progress, or a reference to
6446 * this hdr, then we don't destroy the hdr.
6447 */
6448 if (!HDR_HAS_L1HDR(hdr) || (!HDR_IO_IN_PROGRESS(hdr) &&
6449 refcount_is_zero(&hdr->b_l1hdr.b_refcnt))) {
6450 arc_change_state(arc_anon, hdr, hash_lock);
6451 arc_hdr_destroy(hdr);
6452 mutex_exit(hash_lock);
6453 } else {
6454 mutex_exit(hash_lock);
6455 }
6456
6457 }
6458
6459 /*
6460 * Release this buffer from the cache, making it an anonymous buffer. This
6461 * must be done after a read and prior to modifying the buffer contents.
6462 * If the buffer has more than one reference, we must make
6463 * a new hdr for the buffer.
6464 */
6465 void
6466 arc_release(arc_buf_t *buf, void *tag)
6467 {
6468 arc_buf_hdr_t *hdr = buf->b_hdr;
6469
6470 /*
6471 * It would be nice to assert that if its DMU metadata (level >
6472 * 0 || it's the dnode file), then it must be syncing context.
6473 * But we don't know that information at this level.
6474 */
6475
6476 mutex_enter(&buf->b_evict_lock);
6477
6478 ASSERT(HDR_HAS_L1HDR(hdr));
6479
6480 /*
6481 * We don't grab the hash lock prior to this check, because if
6482 * the buffer's header is in the arc_anon state, it won't be
6483 * linked into the hash table.
6484 */
6485 if (hdr->b_l1hdr.b_state == arc_anon) {
6486 mutex_exit(&buf->b_evict_lock);
6487 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
6488 ASSERT(!HDR_IN_HASH_TABLE(hdr));
6489 ASSERT(!HDR_HAS_L2HDR(hdr));
6490 ASSERT(HDR_EMPTY(hdr));
6491
6492 ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1);
6493 ASSERT3S(refcount_count(&hdr->b_l1hdr.b_refcnt), ==, 1);
6494 ASSERT(!list_link_active(&hdr->b_l1hdr.b_arc_node));
6495
6496 hdr->b_l1hdr.b_arc_access = 0;
6497
6498 /*
6499 * If the buf is being overridden then it may already
6500 * have a hdr that is not empty.
6501 */
6502 buf_discard_identity(hdr);
6503 arc_buf_thaw(buf);
6504
6505 return;
6506 }
6507
6508 kmutex_t *hash_lock = HDR_LOCK(hdr);
6509 mutex_enter(hash_lock);
6510
6511 /*
6512 * This assignment is only valid as long as the hash_lock is
6513 * held, we must be careful not to reference state or the
6514 * b_state field after dropping the lock.
6515 */
6516 arc_state_t *state = hdr->b_l1hdr.b_state;
6517 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
6518 ASSERT3P(state, !=, arc_anon);
6519
6520 /* this buffer is not on any list */
6521 ASSERT3S(refcount_count(&hdr->b_l1hdr.b_refcnt), >, 0);
6522
6523 if (HDR_HAS_L2HDR(hdr)) {
6524 mutex_enter(&hdr->b_l2hdr.b_dev->l2ad_mtx);
6525
6526 /*
6527 * We have to recheck this conditional again now that
6528 * we're holding the l2ad_mtx to prevent a race with
6529 * another thread which might be concurrently calling
6530 * l2arc_evict(). In that case, l2arc_evict() might have
6531 * destroyed the header's L2 portion as we were waiting
6532 * to acquire the l2ad_mtx.
6533 */
6534 if (HDR_HAS_L2HDR(hdr))
6535 arc_hdr_l2hdr_destroy(hdr);
6536
6537 mutex_exit(&hdr->b_l2hdr.b_dev->l2ad_mtx);
6538 }
6539
6540 /*
6541 * Do we have more than one buf?
6542 */
6543 if (hdr->b_l1hdr.b_bufcnt > 1) {
6544 arc_buf_hdr_t *nhdr;
6545 uint64_t spa = hdr->b_spa;
6546 uint64_t psize = HDR_GET_PSIZE(hdr);
6547 uint64_t lsize = HDR_GET_LSIZE(hdr);
6548 boolean_t protected = HDR_PROTECTED(hdr);
6549 enum zio_compress compress = arc_hdr_get_compress(hdr);
6550 arc_buf_contents_t type = arc_buf_type(hdr);
6551 VERIFY3U(hdr->b_type, ==, type);
6552
6553 ASSERT(hdr->b_l1hdr.b_buf != buf || buf->b_next != NULL);
6554 (void) remove_reference(hdr, hash_lock, tag);
6555
6556 if (arc_buf_is_shared(buf) && !ARC_BUF_COMPRESSED(buf)) {
6557 ASSERT3P(hdr->b_l1hdr.b_buf, !=, buf);
6558 ASSERT(ARC_BUF_LAST(buf));
6559 }
6560
6561 /*
6562 * Pull the data off of this hdr and attach it to
6563 * a new anonymous hdr. Also find the last buffer
6564 * in the hdr's buffer list.
6565 */
6566 arc_buf_t *lastbuf = arc_buf_remove(hdr, buf);
6567 ASSERT3P(lastbuf, !=, NULL);
6568
6569 /*
6570 * If the current arc_buf_t and the hdr are sharing their data
6571 * buffer, then we must stop sharing that block.
6572 */
6573 if (arc_buf_is_shared(buf)) {
6574 ASSERT3P(hdr->b_l1hdr.b_buf, !=, buf);
6575 VERIFY(!arc_buf_is_shared(lastbuf));
6576
6577 /*
6578 * First, sever the block sharing relationship between
6579 * buf and the arc_buf_hdr_t.
6580 */
6581 arc_unshare_buf(hdr, buf);
6582
6583 /*
6584 * Now we need to recreate the hdr's b_pabd. Since we
6585 * have lastbuf handy, we try to share with it, but if
6586 * we can't then we allocate a new b_pabd and copy the
6587 * data from buf into it.
6588 */
6589 if (arc_can_share(hdr, lastbuf)) {
6590 arc_share_buf(hdr, lastbuf);
6591 } else {
6592 arc_hdr_alloc_abd(hdr, B_FALSE);
6593 abd_copy_from_buf(hdr->b_l1hdr.b_pabd,
6594 buf->b_data, psize);
6595 }
6596 VERIFY3P(lastbuf->b_data, !=, NULL);
6597 } else if (HDR_SHARED_DATA(hdr)) {
6598 /*
6599 * Uncompressed shared buffers are always at the end
6600 * of the list. Compressed buffers don't have the
6601 * same requirements. This makes it hard to
6602 * simply assert that the lastbuf is shared so
6603 * we rely on the hdr's compression flags to determine
6604 * if we have a compressed, shared buffer.
6605 */
6606 ASSERT(arc_buf_is_shared(lastbuf) ||
6607 arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF);
6608 ASSERT(!ARC_BUF_SHARED(buf));
6609 }
6610
6611 ASSERT(hdr->b_l1hdr.b_pabd != NULL || HDR_HAS_RABD(hdr));
6612 ASSERT3P(state, !=, arc_l2c_only);
6613
6614 (void) refcount_remove_many(&state->arcs_size,
6615 arc_buf_size(buf), buf);
6616
6617 if (refcount_is_zero(&hdr->b_l1hdr.b_refcnt)) {
6618 ASSERT3P(state, !=, arc_l2c_only);
6619 (void) refcount_remove_many(&state->arcs_esize[type],
6620 arc_buf_size(buf), buf);
6621 }
6622
6623 hdr->b_l1hdr.b_bufcnt -= 1;
6624 if (ARC_BUF_ENCRYPTED(buf))
6625 hdr->b_crypt_hdr.b_ebufcnt -= 1;
6626
6627 arc_cksum_verify(buf);
6628 arc_buf_unwatch(buf);
6629
6630 /* if this is the last uncompressed buf free the checksum */
6631 if (!arc_hdr_has_uncompressed_buf(hdr))
6632 arc_cksum_free(hdr);
6633
6634 mutex_exit(hash_lock);
6635
6636 /*
6637 * Allocate a new hdr. The new hdr will contain a b_pabd
6638 * buffer which will be freed in arc_write().
6639 */
6640 nhdr = arc_hdr_alloc(spa, psize, lsize, protected,
6641 compress, type, HDR_HAS_RABD(hdr));
6642 ASSERT3P(nhdr->b_l1hdr.b_buf, ==, NULL);
6643 ASSERT0(nhdr->b_l1hdr.b_bufcnt);
6644 ASSERT0(refcount_count(&nhdr->b_l1hdr.b_refcnt));
6645 VERIFY3U(nhdr->b_type, ==, type);
6646 ASSERT(!HDR_SHARED_DATA(nhdr));
6647
6648 nhdr->b_l1hdr.b_buf = buf;
6649 nhdr->b_l1hdr.b_bufcnt = 1;
6650 if (ARC_BUF_ENCRYPTED(buf))
6651 nhdr->b_crypt_hdr.b_ebufcnt = 1;
6652 nhdr->b_l1hdr.b_mru_hits = 0;
6653 nhdr->b_l1hdr.b_mru_ghost_hits = 0;
6654 nhdr->b_l1hdr.b_mfu_hits = 0;
6655 nhdr->b_l1hdr.b_mfu_ghost_hits = 0;
6656 nhdr->b_l1hdr.b_l2_hits = 0;
6657 (void) refcount_add(&nhdr->b_l1hdr.b_refcnt, tag);
6658 buf->b_hdr = nhdr;
6659
6660 mutex_exit(&buf->b_evict_lock);
6661 (void) refcount_add_many(&arc_anon->arcs_size,
6662 HDR_GET_LSIZE(nhdr), buf);
6663 } else {
6664 mutex_exit(&buf->b_evict_lock);
6665 ASSERT(refcount_count(&hdr->b_l1hdr.b_refcnt) == 1);
6666 /* protected by hash lock, or hdr is on arc_anon */
6667 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
6668 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
6669 hdr->b_l1hdr.b_mru_hits = 0;
6670 hdr->b_l1hdr.b_mru_ghost_hits = 0;
6671 hdr->b_l1hdr.b_mfu_hits = 0;
6672 hdr->b_l1hdr.b_mfu_ghost_hits = 0;
6673 hdr->b_l1hdr.b_l2_hits = 0;
6674 arc_change_state(arc_anon, hdr, hash_lock);
6675 hdr->b_l1hdr.b_arc_access = 0;
6676
6677 mutex_exit(hash_lock);
6678 buf_discard_identity(hdr);
6679 arc_buf_thaw(buf);
6680 }
6681 }
6682
6683 int
6684 arc_released(arc_buf_t *buf)
6685 {
6686 int released;
6687
6688 mutex_enter(&buf->b_evict_lock);
6689 released = (buf->b_data != NULL &&
6690 buf->b_hdr->b_l1hdr.b_state == arc_anon);
6691 mutex_exit(&buf->b_evict_lock);
6692 return (released);
6693 }
6694
6695 #ifdef ZFS_DEBUG
6696 int
6697 arc_referenced(arc_buf_t *buf)
6698 {
6699 int referenced;
6700
6701 mutex_enter(&buf->b_evict_lock);
6702 referenced = (refcount_count(&buf->b_hdr->b_l1hdr.b_refcnt));
6703 mutex_exit(&buf->b_evict_lock);
6704 return (referenced);
6705 }
6706 #endif
6707
6708 static void
6709 arc_write_ready(zio_t *zio)
6710 {
6711 arc_write_callback_t *callback = zio->io_private;
6712 arc_buf_t *buf = callback->awcb_buf;
6713 arc_buf_hdr_t *hdr = buf->b_hdr;
6714 blkptr_t *bp = zio->io_bp;
6715 uint64_t psize = BP_IS_HOLE(bp) ? 0 : BP_GET_PSIZE(bp);
6716 fstrans_cookie_t cookie = spl_fstrans_mark();
6717
6718 ASSERT(HDR_HAS_L1HDR(hdr));
6719 ASSERT(!refcount_is_zero(&buf->b_hdr->b_l1hdr.b_refcnt));
6720 ASSERT(hdr->b_l1hdr.b_bufcnt > 0);
6721
6722 /*
6723 * If we're reexecuting this zio because the pool suspended, then
6724 * cleanup any state that was previously set the first time the
6725 * callback was invoked.
6726 */
6727 if (zio->io_flags & ZIO_FLAG_REEXECUTED) {
6728 arc_cksum_free(hdr);
6729 arc_buf_unwatch(buf);
6730 if (hdr->b_l1hdr.b_pabd != NULL) {
6731 if (arc_buf_is_shared(buf)) {
6732 arc_unshare_buf(hdr, buf);
6733 } else {
6734 arc_hdr_free_abd(hdr, B_FALSE);
6735 }
6736 }
6737
6738 if (HDR_HAS_RABD(hdr))
6739 arc_hdr_free_abd(hdr, B_TRUE);
6740 }
6741 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
6742 ASSERT(!HDR_HAS_RABD(hdr));
6743 ASSERT(!HDR_SHARED_DATA(hdr));
6744 ASSERT(!arc_buf_is_shared(buf));
6745
6746 callback->awcb_ready(zio, buf, callback->awcb_private);
6747
6748 if (HDR_IO_IN_PROGRESS(hdr))
6749 ASSERT(zio->io_flags & ZIO_FLAG_REEXECUTED);
6750
6751 arc_hdr_set_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
6752
6753 if (BP_IS_PROTECTED(bp) != !!HDR_PROTECTED(hdr))
6754 hdr = arc_hdr_realloc_crypt(hdr, BP_IS_PROTECTED(bp));
6755
6756 if (BP_IS_PROTECTED(bp)) {
6757 /* ZIL blocks are written through zio_rewrite */
6758 ASSERT3U(BP_GET_TYPE(bp), !=, DMU_OT_INTENT_LOG);
6759 ASSERT(HDR_PROTECTED(hdr));
6760
6761 if (BP_SHOULD_BYTESWAP(bp)) {
6762 if (BP_GET_LEVEL(bp) > 0) {
6763 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_UINT64;
6764 } else {
6765 hdr->b_l1hdr.b_byteswap =
6766 DMU_OT_BYTESWAP(BP_GET_TYPE(bp));
6767 }
6768 } else {
6769 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS;
6770 }
6771
6772 hdr->b_crypt_hdr.b_ot = BP_GET_TYPE(bp);
6773 hdr->b_crypt_hdr.b_dsobj = zio->io_bookmark.zb_objset;
6774 zio_crypt_decode_params_bp(bp, hdr->b_crypt_hdr.b_salt,
6775 hdr->b_crypt_hdr.b_iv);
6776 zio_crypt_decode_mac_bp(bp, hdr->b_crypt_hdr.b_mac);
6777 }
6778
6779 /*
6780 * If this block was written for raw encryption but the zio layer
6781 * ended up only authenticating it, adjust the buffer flags now.
6782 */
6783 if (BP_IS_AUTHENTICATED(bp) && ARC_BUF_ENCRYPTED(buf)) {
6784 arc_hdr_set_flags(hdr, ARC_FLAG_NOAUTH);
6785 buf->b_flags &= ~ARC_BUF_FLAG_ENCRYPTED;
6786 if (BP_GET_COMPRESS(bp) == ZIO_COMPRESS_OFF)
6787 buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED;
6788 } else if (BP_IS_HOLE(bp) && ARC_BUF_ENCRYPTED(buf)) {
6789 buf->b_flags &= ~ARC_BUF_FLAG_ENCRYPTED;
6790 buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED;
6791 }
6792
6793 /* this must be done after the buffer flags are adjusted */
6794 arc_cksum_compute(buf);
6795
6796 enum zio_compress compress;
6797 if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp)) {
6798 compress = ZIO_COMPRESS_OFF;
6799 } else {
6800 ASSERT3U(HDR_GET_LSIZE(hdr), ==, BP_GET_LSIZE(bp));
6801 compress = BP_GET_COMPRESS(bp);
6802 }
6803 HDR_SET_PSIZE(hdr, psize);
6804 arc_hdr_set_compress(hdr, compress);
6805
6806 if (zio->io_error != 0 || psize == 0)
6807 goto out;
6808
6809 /*
6810 * Fill the hdr with data. If the buffer is encrypted we have no choice
6811 * but to copy the data into b_radb. If the hdr is compressed, the data
6812 * we want is available from the zio, otherwise we can take it from
6813 * the buf.
6814 *
6815 * We might be able to share the buf's data with the hdr here. However,
6816 * doing so would cause the ARC to be full of linear ABDs if we write a
6817 * lot of shareable data. As a compromise, we check whether scattered
6818 * ABDs are allowed, and assume that if they are then the user wants
6819 * the ARC to be primarily filled with them regardless of the data being
6820 * written. Therefore, if they're allowed then we allocate one and copy
6821 * the data into it; otherwise, we share the data directly if we can.
6822 */
6823 if (ARC_BUF_ENCRYPTED(buf)) {
6824 ASSERT3U(psize, >, 0);
6825 ASSERT(ARC_BUF_COMPRESSED(buf));
6826 arc_hdr_alloc_abd(hdr, B_TRUE);
6827 abd_copy(hdr->b_crypt_hdr.b_rabd, zio->io_abd, psize);
6828 } else if (zfs_abd_scatter_enabled || !arc_can_share(hdr, buf)) {
6829 /*
6830 * Ideally, we would always copy the io_abd into b_pabd, but the
6831 * user may have disabled compressed ARC, thus we must check the
6832 * hdr's compression setting rather than the io_bp's.
6833 */
6834 if (BP_IS_ENCRYPTED(bp)) {
6835 ASSERT3U(psize, >, 0);
6836 arc_hdr_alloc_abd(hdr, B_TRUE);
6837 abd_copy(hdr->b_crypt_hdr.b_rabd, zio->io_abd, psize);
6838 } else if (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF &&
6839 !ARC_BUF_COMPRESSED(buf)) {
6840 ASSERT3U(psize, >, 0);
6841 arc_hdr_alloc_abd(hdr, B_FALSE);
6842 abd_copy(hdr->b_l1hdr.b_pabd, zio->io_abd, psize);
6843 } else {
6844 ASSERT3U(zio->io_orig_size, ==, arc_hdr_size(hdr));
6845 arc_hdr_alloc_abd(hdr, B_FALSE);
6846 abd_copy_from_buf(hdr->b_l1hdr.b_pabd, buf->b_data,
6847 arc_buf_size(buf));
6848 }
6849 } else {
6850 ASSERT3P(buf->b_data, ==, abd_to_buf(zio->io_orig_abd));
6851 ASSERT3U(zio->io_orig_size, ==, arc_buf_size(buf));
6852 ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1);
6853
6854 arc_share_buf(hdr, buf);
6855 }
6856
6857 out:
6858 arc_hdr_verify(hdr, bp);
6859 spl_fstrans_unmark(cookie);
6860 }
6861
6862 static void
6863 arc_write_children_ready(zio_t *zio)
6864 {
6865 arc_write_callback_t *callback = zio->io_private;
6866 arc_buf_t *buf = callback->awcb_buf;
6867
6868 callback->awcb_children_ready(zio, buf, callback->awcb_private);
6869 }
6870
6871 /*
6872 * The SPA calls this callback for each physical write that happens on behalf
6873 * of a logical write. See the comment in dbuf_write_physdone() for details.
6874 */
6875 static void
6876 arc_write_physdone(zio_t *zio)
6877 {
6878 arc_write_callback_t *cb = zio->io_private;
6879 if (cb->awcb_physdone != NULL)
6880 cb->awcb_physdone(zio, cb->awcb_buf, cb->awcb_private);
6881 }
6882
6883 static void
6884 arc_write_done(zio_t *zio)
6885 {
6886 arc_write_callback_t *callback = zio->io_private;
6887 arc_buf_t *buf = callback->awcb_buf;
6888 arc_buf_hdr_t *hdr = buf->b_hdr;
6889
6890 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
6891
6892 if (zio->io_error == 0) {
6893 arc_hdr_verify(hdr, zio->io_bp);
6894
6895 if (BP_IS_HOLE(zio->io_bp) || BP_IS_EMBEDDED(zio->io_bp)) {
6896 buf_discard_identity(hdr);
6897 } else {
6898 hdr->b_dva = *BP_IDENTITY(zio->io_bp);
6899 hdr->b_birth = BP_PHYSICAL_BIRTH(zio->io_bp);
6900 }
6901 } else {
6902 ASSERT(HDR_EMPTY(hdr));
6903 }
6904
6905 /*
6906 * If the block to be written was all-zero or compressed enough to be
6907 * embedded in the BP, no write was performed so there will be no
6908 * dva/birth/checksum. The buffer must therefore remain anonymous
6909 * (and uncached).
6910 */
6911 if (!HDR_EMPTY(hdr)) {
6912 arc_buf_hdr_t *exists;
6913 kmutex_t *hash_lock;
6914
6915 ASSERT3U(zio->io_error, ==, 0);
6916
6917 arc_cksum_verify(buf);
6918
6919 exists = buf_hash_insert(hdr, &hash_lock);
6920 if (exists != NULL) {
6921 /*
6922 * This can only happen if we overwrite for
6923 * sync-to-convergence, because we remove
6924 * buffers from the hash table when we arc_free().
6925 */
6926 if (zio->io_flags & ZIO_FLAG_IO_REWRITE) {
6927 if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
6928 panic("bad overwrite, hdr=%p exists=%p",
6929 (void *)hdr, (void *)exists);
6930 ASSERT(refcount_is_zero(
6931 &exists->b_l1hdr.b_refcnt));
6932 arc_change_state(arc_anon, exists, hash_lock);
6933 mutex_exit(hash_lock);
6934 arc_hdr_destroy(exists);
6935 exists = buf_hash_insert(hdr, &hash_lock);
6936 ASSERT3P(exists, ==, NULL);
6937 } else if (zio->io_flags & ZIO_FLAG_NOPWRITE) {
6938 /* nopwrite */
6939 ASSERT(zio->io_prop.zp_nopwrite);
6940 if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
6941 panic("bad nopwrite, hdr=%p exists=%p",
6942 (void *)hdr, (void *)exists);
6943 } else {
6944 /* Dedup */
6945 ASSERT(hdr->b_l1hdr.b_bufcnt == 1);
6946 ASSERT(hdr->b_l1hdr.b_state == arc_anon);
6947 ASSERT(BP_GET_DEDUP(zio->io_bp));
6948 ASSERT(BP_GET_LEVEL(zio->io_bp) == 0);
6949 }
6950 }
6951 arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
6952 /* if it's not anon, we are doing a scrub */
6953 if (exists == NULL && hdr->b_l1hdr.b_state == arc_anon)
6954 arc_access(hdr, hash_lock);
6955 mutex_exit(hash_lock);
6956 } else {
6957 arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
6958 }
6959
6960 ASSERT(!refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
6961 callback->awcb_done(zio, buf, callback->awcb_private);
6962
6963 abd_put(zio->io_abd);
6964 kmem_free(callback, sizeof (arc_write_callback_t));
6965 }
6966
6967 zio_t *
6968 arc_write(zio_t *pio, spa_t *spa, uint64_t txg,
6969 blkptr_t *bp, arc_buf_t *buf, boolean_t l2arc,
6970 const zio_prop_t *zp, arc_write_done_func_t *ready,
6971 arc_write_done_func_t *children_ready, arc_write_done_func_t *physdone,
6972 arc_write_done_func_t *done, void *private, zio_priority_t priority,
6973 int zio_flags, const zbookmark_phys_t *zb)
6974 {
6975 arc_buf_hdr_t *hdr = buf->b_hdr;
6976 arc_write_callback_t *callback;
6977 zio_t *zio;
6978 zio_prop_t localprop = *zp;
6979
6980 ASSERT3P(ready, !=, NULL);
6981 ASSERT3P(done, !=, NULL);
6982 ASSERT(!HDR_IO_ERROR(hdr));
6983 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
6984 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
6985 ASSERT3U(hdr->b_l1hdr.b_bufcnt, >, 0);
6986 if (l2arc)
6987 arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE);
6988
6989 if (ARC_BUF_ENCRYPTED(buf)) {
6990 ASSERT(ARC_BUF_COMPRESSED(buf));
6991 localprop.zp_encrypt = B_TRUE;
6992 localprop.zp_compress = HDR_GET_COMPRESS(hdr);
6993 localprop.zp_byteorder =
6994 (hdr->b_l1hdr.b_byteswap == DMU_BSWAP_NUMFUNCS) ?
6995 ZFS_HOST_BYTEORDER : !ZFS_HOST_BYTEORDER;
6996 bcopy(hdr->b_crypt_hdr.b_salt, localprop.zp_salt,
6997 ZIO_DATA_SALT_LEN);
6998 bcopy(hdr->b_crypt_hdr.b_iv, localprop.zp_iv,
6999 ZIO_DATA_IV_LEN);
7000 bcopy(hdr->b_crypt_hdr.b_mac, localprop.zp_mac,
7001 ZIO_DATA_MAC_LEN);
7002 if (DMU_OT_IS_ENCRYPTED(localprop.zp_type)) {
7003 localprop.zp_nopwrite = B_FALSE;
7004 localprop.zp_copies =
7005 MIN(localprop.zp_copies, SPA_DVAS_PER_BP - 1);
7006 }
7007 zio_flags |= ZIO_FLAG_RAW;
7008 } else if (ARC_BUF_COMPRESSED(buf)) {
7009 ASSERT3U(HDR_GET_LSIZE(hdr), !=, arc_buf_size(buf));
7010 localprop.zp_compress = HDR_GET_COMPRESS(hdr);
7011 zio_flags |= ZIO_FLAG_RAW_COMPRESS;
7012 }
7013 callback = kmem_zalloc(sizeof (arc_write_callback_t), KM_SLEEP);
7014 callback->awcb_ready = ready;
7015 callback->awcb_children_ready = children_ready;
7016 callback->awcb_physdone = physdone;
7017 callback->awcb_done = done;
7018 callback->awcb_private = private;
7019 callback->awcb_buf = buf;
7020
7021 /*
7022 * The hdr's b_pabd is now stale, free it now. A new data block
7023 * will be allocated when the zio pipeline calls arc_write_ready().
7024 */
7025 if (hdr->b_l1hdr.b_pabd != NULL) {
7026 /*
7027 * If the buf is currently sharing the data block with
7028 * the hdr then we need to break that relationship here.
7029 * The hdr will remain with a NULL data pointer and the
7030 * buf will take sole ownership of the block.
7031 */
7032 if (arc_buf_is_shared(buf)) {
7033 arc_unshare_buf(hdr, buf);
7034 } else {
7035 arc_hdr_free_abd(hdr, B_FALSE);
7036 }
7037 VERIFY3P(buf->b_data, !=, NULL);
7038 }
7039
7040 if (HDR_HAS_RABD(hdr))
7041 arc_hdr_free_abd(hdr, B_TRUE);
7042
7043 if (!(zio_flags & ZIO_FLAG_RAW))
7044 arc_hdr_set_compress(hdr, ZIO_COMPRESS_OFF);
7045
7046 ASSERT(!arc_buf_is_shared(buf));
7047 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
7048
7049 zio = zio_write(pio, spa, txg, bp,
7050 abd_get_from_buf(buf->b_data, HDR_GET_LSIZE(hdr)),
7051 HDR_GET_LSIZE(hdr), arc_buf_size(buf), &localprop, arc_write_ready,
7052 (children_ready != NULL) ? arc_write_children_ready : NULL,
7053 arc_write_physdone, arc_write_done, callback,
7054 priority, zio_flags, zb);
7055
7056 return (zio);
7057 }
7058
7059 static int
7060 arc_memory_throttle(uint64_t reserve, uint64_t txg)
7061 {
7062 #ifdef _KERNEL
7063 uint64_t available_memory = arc_free_memory();
7064 static uint64_t page_load = 0;
7065 static uint64_t last_txg = 0;
7066
7067 #if defined(_ILP32)
7068 available_memory =
7069 MIN(available_memory, vmem_size(heap_arena, VMEM_FREE));
7070 #endif
7071
7072 if (available_memory > arc_all_memory() * arc_lotsfree_percent / 100)
7073 return (0);
7074
7075 if (txg > last_txg) {
7076 last_txg = txg;
7077 page_load = 0;
7078 }
7079 /*
7080 * If we are in pageout, we know that memory is already tight,
7081 * the arc is already going to be evicting, so we just want to
7082 * continue to let page writes occur as quickly as possible.
7083 */
7084 if (current_is_kswapd()) {
7085 if (page_load > MAX(arc_sys_free / 4, available_memory) / 4) {
7086 DMU_TX_STAT_BUMP(dmu_tx_memory_reclaim);
7087 return (SET_ERROR(ERESTART));
7088 }
7089 /* Note: reserve is inflated, so we deflate */
7090 page_load += reserve / 8;
7091 return (0);
7092 } else if (page_load > 0 && arc_reclaim_needed()) {
7093 /* memory is low, delay before restarting */
7094 ARCSTAT_INCR(arcstat_memory_throttle_count, 1);
7095 DMU_TX_STAT_BUMP(dmu_tx_memory_reclaim);
7096 return (SET_ERROR(EAGAIN));
7097 }
7098 page_load = 0;
7099 #endif
7100 return (0);
7101 }
7102
7103 void
7104 arc_tempreserve_clear(uint64_t reserve)
7105 {
7106 atomic_add_64(&arc_tempreserve, -reserve);
7107 ASSERT((int64_t)arc_tempreserve >= 0);
7108 }
7109
7110 int
7111 arc_tempreserve_space(uint64_t reserve, uint64_t txg)
7112 {
7113 int error;
7114 uint64_t anon_size;
7115
7116 if (!arc_no_grow &&
7117 reserve > arc_c/4 &&
7118 reserve * 4 > (2ULL << SPA_MAXBLOCKSHIFT))
7119 arc_c = MIN(arc_c_max, reserve * 4);
7120
7121 /*
7122 * Throttle when the calculated memory footprint for the TXG
7123 * exceeds the target ARC size.
7124 */
7125 if (reserve > arc_c) {
7126 DMU_TX_STAT_BUMP(dmu_tx_memory_reserve);
7127 return (SET_ERROR(ERESTART));
7128 }
7129
7130 /*
7131 * Don't count loaned bufs as in flight dirty data to prevent long
7132 * network delays from blocking transactions that are ready to be
7133 * assigned to a txg.
7134 */
7135
7136 /* assert that it has not wrapped around */
7137 ASSERT3S(atomic_add_64_nv(&arc_loaned_bytes, 0), >=, 0);
7138
7139 anon_size = MAX((int64_t)(refcount_count(&arc_anon->arcs_size) -
7140 arc_loaned_bytes), 0);
7141
7142 /*
7143 * Writes will, almost always, require additional memory allocations
7144 * in order to compress/encrypt/etc the data. We therefore need to
7145 * make sure that there is sufficient available memory for this.
7146 */
7147 error = arc_memory_throttle(reserve, txg);
7148 if (error != 0)
7149 return (error);
7150
7151 /*
7152 * Throttle writes when the amount of dirty data in the cache
7153 * gets too large. We try to keep the cache less than half full
7154 * of dirty blocks so that our sync times don't grow too large.
7155 * Note: if two requests come in concurrently, we might let them
7156 * both succeed, when one of them should fail. Not a huge deal.
7157 */
7158
7159 if (reserve + arc_tempreserve + anon_size > arc_c / 2 &&
7160 anon_size > arc_c / 4) {
7161 #ifdef ZFS_DEBUG
7162 uint64_t meta_esize =
7163 refcount_count(&arc_anon->arcs_esize[ARC_BUFC_METADATA]);
7164 uint64_t data_esize =
7165 refcount_count(&arc_anon->arcs_esize[ARC_BUFC_DATA]);
7166 dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK "
7167 "anon_data=%lluK tempreserve=%lluK arc_c=%lluK\n",
7168 arc_tempreserve >> 10, meta_esize >> 10,
7169 data_esize >> 10, reserve >> 10, arc_c >> 10);
7170 #endif
7171 DMU_TX_STAT_BUMP(dmu_tx_dirty_throttle);
7172 return (SET_ERROR(ERESTART));
7173 }
7174 atomic_add_64(&arc_tempreserve, reserve);
7175 return (0);
7176 }
7177
7178 static void
7179 arc_kstat_update_state(arc_state_t *state, kstat_named_t *size,
7180 kstat_named_t *evict_data, kstat_named_t *evict_metadata)
7181 {
7182 size->value.ui64 = refcount_count(&state->arcs_size);
7183 evict_data->value.ui64 =
7184 refcount_count(&state->arcs_esize[ARC_BUFC_DATA]);
7185 evict_metadata->value.ui64 =
7186 refcount_count(&state->arcs_esize[ARC_BUFC_METADATA]);
7187 }
7188
7189 static int
7190 arc_kstat_update(kstat_t *ksp, int rw)
7191 {
7192 arc_stats_t *as = ksp->ks_data;
7193
7194 if (rw == KSTAT_WRITE) {
7195 return (SET_ERROR(EACCES));
7196 } else {
7197 arc_kstat_update_state(arc_anon,
7198 &as->arcstat_anon_size,
7199 &as->arcstat_anon_evictable_data,
7200 &as->arcstat_anon_evictable_metadata);
7201 arc_kstat_update_state(arc_mru,
7202 &as->arcstat_mru_size,
7203 &as->arcstat_mru_evictable_data,
7204 &as->arcstat_mru_evictable_metadata);
7205 arc_kstat_update_state(arc_mru_ghost,
7206 &as->arcstat_mru_ghost_size,
7207 &as->arcstat_mru_ghost_evictable_data,
7208 &as->arcstat_mru_ghost_evictable_metadata);
7209 arc_kstat_update_state(arc_mfu,
7210 &as->arcstat_mfu_size,
7211 &as->arcstat_mfu_evictable_data,
7212 &as->arcstat_mfu_evictable_metadata);
7213 arc_kstat_update_state(arc_mfu_ghost,
7214 &as->arcstat_mfu_ghost_size,
7215 &as->arcstat_mfu_ghost_evictable_data,
7216 &as->arcstat_mfu_ghost_evictable_metadata);
7217
7218 as->arcstat_memory_all_bytes.value.ui64 =
7219 arc_all_memory();
7220 as->arcstat_memory_free_bytes.value.ui64 =
7221 arc_free_memory();
7222 as->arcstat_memory_available_bytes.value.i64 =
7223 arc_available_memory();
7224 }
7225
7226 return (0);
7227 }
7228
7229 /*
7230 * This function *must* return indices evenly distributed between all
7231 * sublists of the multilist. This is needed due to how the ARC eviction
7232 * code is laid out; arc_evict_state() assumes ARC buffers are evenly
7233 * distributed between all sublists and uses this assumption when
7234 * deciding which sublist to evict from and how much to evict from it.
7235 */
7236 unsigned int
7237 arc_state_multilist_index_func(multilist_t *ml, void *obj)
7238 {
7239 arc_buf_hdr_t *hdr = obj;
7240
7241 /*
7242 * We rely on b_dva to generate evenly distributed index
7243 * numbers using buf_hash below. So, as an added precaution,
7244 * let's make sure we never add empty buffers to the arc lists.
7245 */
7246 ASSERT(!HDR_EMPTY(hdr));
7247
7248 /*
7249 * The assumption here, is the hash value for a given
7250 * arc_buf_hdr_t will remain constant throughout its lifetime
7251 * (i.e. its b_spa, b_dva, and b_birth fields don't change).
7252 * Thus, we don't need to store the header's sublist index
7253 * on insertion, as this index can be recalculated on removal.
7254 *
7255 * Also, the low order bits of the hash value are thought to be
7256 * distributed evenly. Otherwise, in the case that the multilist
7257 * has a power of two number of sublists, each sublists' usage
7258 * would not be evenly distributed.
7259 */
7260 return (buf_hash(hdr->b_spa, &hdr->b_dva, hdr->b_birth) %
7261 multilist_get_num_sublists(ml));
7262 }
7263
7264 /*
7265 * Called during module initialization and periodically thereafter to
7266 * apply reasonable changes to the exposed performance tunings. Non-zero
7267 * zfs_* values which differ from the currently set values will be applied.
7268 */
7269 static void
7270 arc_tuning_update(void)
7271 {
7272 uint64_t allmem = arc_all_memory();
7273 unsigned long limit;
7274
7275 /* Valid range: 64M - <all physical memory> */
7276 if ((zfs_arc_max) && (zfs_arc_max != arc_c_max) &&
7277 (zfs_arc_max >= 64 << 20) && (zfs_arc_max < allmem) &&
7278 (zfs_arc_max > arc_c_min)) {
7279 arc_c_max = zfs_arc_max;
7280 arc_c = arc_c_max;
7281 arc_p = (arc_c >> 1);
7282 if (arc_meta_limit > arc_c_max)
7283 arc_meta_limit = arc_c_max;
7284 if (arc_dnode_limit > arc_meta_limit)
7285 arc_dnode_limit = arc_meta_limit;
7286 }
7287
7288 /* Valid range: 32M - <arc_c_max> */
7289 if ((zfs_arc_min) && (zfs_arc_min != arc_c_min) &&
7290 (zfs_arc_min >= 2ULL << SPA_MAXBLOCKSHIFT) &&
7291 (zfs_arc_min <= arc_c_max)) {
7292 arc_c_min = zfs_arc_min;
7293 arc_c = MAX(arc_c, arc_c_min);
7294 }
7295
7296 /* Valid range: 16M - <arc_c_max> */
7297 if ((zfs_arc_meta_min) && (zfs_arc_meta_min != arc_meta_min) &&
7298 (zfs_arc_meta_min >= 1ULL << SPA_MAXBLOCKSHIFT) &&
7299 (zfs_arc_meta_min <= arc_c_max)) {
7300 arc_meta_min = zfs_arc_meta_min;
7301 if (arc_meta_limit < arc_meta_min)
7302 arc_meta_limit = arc_meta_min;
7303 if (arc_dnode_limit < arc_meta_min)
7304 arc_dnode_limit = arc_meta_min;
7305 }
7306
7307 /* Valid range: <arc_meta_min> - <arc_c_max> */
7308 limit = zfs_arc_meta_limit ? zfs_arc_meta_limit :
7309 MIN(zfs_arc_meta_limit_percent, 100) * arc_c_max / 100;
7310 if ((limit != arc_meta_limit) &&
7311 (limit >= arc_meta_min) &&
7312 (limit <= arc_c_max))
7313 arc_meta_limit = limit;
7314
7315 /* Valid range: <arc_meta_min> - <arc_meta_limit> */
7316 limit = zfs_arc_dnode_limit ? zfs_arc_dnode_limit :
7317 MIN(zfs_arc_dnode_limit_percent, 100) * arc_meta_limit / 100;
7318 if ((limit != arc_dnode_limit) &&
7319 (limit >= arc_meta_min) &&
7320 (limit <= arc_meta_limit))
7321 arc_dnode_limit = limit;
7322
7323 /* Valid range: 1 - N */
7324 if (zfs_arc_grow_retry)
7325 arc_grow_retry = zfs_arc_grow_retry;
7326
7327 /* Valid range: 1 - N */
7328 if (zfs_arc_shrink_shift) {
7329 arc_shrink_shift = zfs_arc_shrink_shift;
7330 arc_no_grow_shift = MIN(arc_no_grow_shift, arc_shrink_shift -1);
7331 }
7332
7333 /* Valid range: 1 - N */
7334 if (zfs_arc_p_min_shift)
7335 arc_p_min_shift = zfs_arc_p_min_shift;
7336
7337 /* Valid range: 1 - N ms */
7338 if (zfs_arc_min_prefetch_ms)
7339 arc_min_prefetch_ms = zfs_arc_min_prefetch_ms;
7340
7341 /* Valid range: 1 - N ms */
7342 if (zfs_arc_min_prescient_prefetch_ms) {
7343 arc_min_prescient_prefetch_ms =
7344 zfs_arc_min_prescient_prefetch_ms;
7345 }
7346
7347 /* Valid range: 0 - 100 */
7348 if ((zfs_arc_lotsfree_percent >= 0) &&
7349 (zfs_arc_lotsfree_percent <= 100))
7350 arc_lotsfree_percent = zfs_arc_lotsfree_percent;
7351
7352 /* Valid range: 0 - <all physical memory> */
7353 if ((zfs_arc_sys_free) && (zfs_arc_sys_free != arc_sys_free))
7354 arc_sys_free = MIN(MAX(zfs_arc_sys_free, 0), allmem);
7355
7356 }
7357
7358 static void
7359 arc_state_init(void)
7360 {
7361 arc_anon = &ARC_anon;
7362 arc_mru = &ARC_mru;
7363 arc_mru_ghost = &ARC_mru_ghost;
7364 arc_mfu = &ARC_mfu;
7365 arc_mfu_ghost = &ARC_mfu_ghost;
7366 arc_l2c_only = &ARC_l2c_only;
7367
7368 arc_mru->arcs_list[ARC_BUFC_METADATA] =
7369 multilist_create(sizeof (arc_buf_hdr_t),
7370 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
7371 arc_state_multilist_index_func);
7372 arc_mru->arcs_list[ARC_BUFC_DATA] =
7373 multilist_create(sizeof (arc_buf_hdr_t),
7374 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
7375 arc_state_multilist_index_func);
7376 arc_mru_ghost->arcs_list[ARC_BUFC_METADATA] =
7377 multilist_create(sizeof (arc_buf_hdr_t),
7378 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
7379 arc_state_multilist_index_func);
7380 arc_mru_ghost->arcs_list[ARC_BUFC_DATA] =
7381 multilist_create(sizeof (arc_buf_hdr_t),
7382 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
7383 arc_state_multilist_index_func);
7384 arc_mfu->arcs_list[ARC_BUFC_METADATA] =
7385 multilist_create(sizeof (arc_buf_hdr_t),
7386 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
7387 arc_state_multilist_index_func);
7388 arc_mfu->arcs_list[ARC_BUFC_DATA] =
7389 multilist_create(sizeof (arc_buf_hdr_t),
7390 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
7391 arc_state_multilist_index_func);
7392 arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA] =
7393 multilist_create(sizeof (arc_buf_hdr_t),
7394 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
7395 arc_state_multilist_index_func);
7396 arc_mfu_ghost->arcs_list[ARC_BUFC_DATA] =
7397 multilist_create(sizeof (arc_buf_hdr_t),
7398 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
7399 arc_state_multilist_index_func);
7400 arc_l2c_only->arcs_list[ARC_BUFC_METADATA] =
7401 multilist_create(sizeof (arc_buf_hdr_t),
7402 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
7403 arc_state_multilist_index_func);
7404 arc_l2c_only->arcs_list[ARC_BUFC_DATA] =
7405 multilist_create(sizeof (arc_buf_hdr_t),
7406 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
7407 arc_state_multilist_index_func);
7408
7409 refcount_create(&arc_anon->arcs_esize[ARC_BUFC_METADATA]);
7410 refcount_create(&arc_anon->arcs_esize[ARC_BUFC_DATA]);
7411 refcount_create(&arc_mru->arcs_esize[ARC_BUFC_METADATA]);
7412 refcount_create(&arc_mru->arcs_esize[ARC_BUFC_DATA]);
7413 refcount_create(&arc_mru_ghost->arcs_esize[ARC_BUFC_METADATA]);
7414 refcount_create(&arc_mru_ghost->arcs_esize[ARC_BUFC_DATA]);
7415 refcount_create(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]);
7416 refcount_create(&arc_mfu->arcs_esize[ARC_BUFC_DATA]);
7417 refcount_create(&arc_mfu_ghost->arcs_esize[ARC_BUFC_METADATA]);
7418 refcount_create(&arc_mfu_ghost->arcs_esize[ARC_BUFC_DATA]);
7419 refcount_create(&arc_l2c_only->arcs_esize[ARC_BUFC_METADATA]);
7420 refcount_create(&arc_l2c_only->arcs_esize[ARC_BUFC_DATA]);
7421
7422 refcount_create(&arc_anon->arcs_size);
7423 refcount_create(&arc_mru->arcs_size);
7424 refcount_create(&arc_mru_ghost->arcs_size);
7425 refcount_create(&arc_mfu->arcs_size);
7426 refcount_create(&arc_mfu_ghost->arcs_size);
7427 refcount_create(&arc_l2c_only->arcs_size);
7428
7429 arc_anon->arcs_state = ARC_STATE_ANON;
7430 arc_mru->arcs_state = ARC_STATE_MRU;
7431 arc_mru_ghost->arcs_state = ARC_STATE_MRU_GHOST;
7432 arc_mfu->arcs_state = ARC_STATE_MFU;
7433 arc_mfu_ghost->arcs_state = ARC_STATE_MFU_GHOST;
7434 arc_l2c_only->arcs_state = ARC_STATE_L2C_ONLY;
7435 }
7436
7437 static void
7438 arc_state_fini(void)
7439 {
7440 refcount_destroy(&arc_anon->arcs_esize[ARC_BUFC_METADATA]);
7441 refcount_destroy(&arc_anon->arcs_esize[ARC_BUFC_DATA]);
7442 refcount_destroy(&arc_mru->arcs_esize[ARC_BUFC_METADATA]);
7443 refcount_destroy(&arc_mru->arcs_esize[ARC_BUFC_DATA]);
7444 refcount_destroy(&arc_mru_ghost->arcs_esize[ARC_BUFC_METADATA]);
7445 refcount_destroy(&arc_mru_ghost->arcs_esize[ARC_BUFC_DATA]);
7446 refcount_destroy(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]);
7447 refcount_destroy(&arc_mfu->arcs_esize[ARC_BUFC_DATA]);
7448 refcount_destroy(&arc_mfu_ghost->arcs_esize[ARC_BUFC_METADATA]);
7449 refcount_destroy(&arc_mfu_ghost->arcs_esize[ARC_BUFC_DATA]);
7450 refcount_destroy(&arc_l2c_only->arcs_esize[ARC_BUFC_METADATA]);
7451 refcount_destroy(&arc_l2c_only->arcs_esize[ARC_BUFC_DATA]);
7452
7453 refcount_destroy(&arc_anon->arcs_size);
7454 refcount_destroy(&arc_mru->arcs_size);
7455 refcount_destroy(&arc_mru_ghost->arcs_size);
7456 refcount_destroy(&arc_mfu->arcs_size);
7457 refcount_destroy(&arc_mfu_ghost->arcs_size);
7458 refcount_destroy(&arc_l2c_only->arcs_size);
7459
7460 multilist_destroy(arc_mru->arcs_list[ARC_BUFC_METADATA]);
7461 multilist_destroy(arc_mru_ghost->arcs_list[ARC_BUFC_METADATA]);
7462 multilist_destroy(arc_mfu->arcs_list[ARC_BUFC_METADATA]);
7463 multilist_destroy(arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA]);
7464 multilist_destroy(arc_mru->arcs_list[ARC_BUFC_DATA]);
7465 multilist_destroy(arc_mru_ghost->arcs_list[ARC_BUFC_DATA]);
7466 multilist_destroy(arc_mfu->arcs_list[ARC_BUFC_DATA]);
7467 multilist_destroy(arc_mfu_ghost->arcs_list[ARC_BUFC_DATA]);
7468 multilist_destroy(arc_l2c_only->arcs_list[ARC_BUFC_METADATA]);
7469 multilist_destroy(arc_l2c_only->arcs_list[ARC_BUFC_DATA]);
7470 }
7471
7472 uint64_t
7473 arc_target_bytes(void)
7474 {
7475 return (arc_c);
7476 }
7477
7478 void
7479 arc_init(void)
7480 {
7481 uint64_t percent, allmem = arc_all_memory();
7482
7483 mutex_init(&arc_reclaim_lock, NULL, MUTEX_DEFAULT, NULL);
7484 cv_init(&arc_reclaim_thread_cv, NULL, CV_DEFAULT, NULL);
7485 cv_init(&arc_reclaim_waiters_cv, NULL, CV_DEFAULT, NULL);
7486
7487 arc_min_prefetch_ms = 1000;
7488 arc_min_prescient_prefetch_ms = 6000;
7489
7490 #ifdef _KERNEL
7491 /*
7492 * Register a shrinker to support synchronous (direct) memory
7493 * reclaim from the arc. This is done to prevent kswapd from
7494 * swapping out pages when it is preferable to shrink the arc.
7495 */
7496 spl_register_shrinker(&arc_shrinker);
7497
7498 /* Set to 1/64 of all memory or a minimum of 512K */
7499 arc_sys_free = MAX(allmem / 64, (512 * 1024));
7500 arc_need_free = 0;
7501 #endif
7502
7503 /* Set max to 1/2 of all memory */
7504 arc_c_max = allmem / 2;
7505
7506 #ifdef _KERNEL
7507 /* Set min cache to 1/32 of all memory, or 32MB, whichever is more */
7508 arc_c_min = MAX(allmem / 32, 2ULL << SPA_MAXBLOCKSHIFT);
7509 #else
7510 /*
7511 * In userland, there's only the memory pressure that we artificially
7512 * create (see arc_available_memory()). Don't let arc_c get too
7513 * small, because it can cause transactions to be larger than
7514 * arc_c, causing arc_tempreserve_space() to fail.
7515 */
7516 arc_c_min = MAX(arc_c_max / 2, 2ULL << SPA_MAXBLOCKSHIFT);
7517 #endif
7518
7519 arc_c = arc_c_max;
7520 arc_p = (arc_c >> 1);
7521 arc_size = 0;
7522
7523 /* Set min to 1/2 of arc_c_min */
7524 arc_meta_min = 1ULL << SPA_MAXBLOCKSHIFT;
7525 /* Initialize maximum observed usage to zero */
7526 arc_meta_max = 0;
7527 /*
7528 * Set arc_meta_limit to a percent of arc_c_max with a floor of
7529 * arc_meta_min, and a ceiling of arc_c_max.
7530 */
7531 percent = MIN(zfs_arc_meta_limit_percent, 100);
7532 arc_meta_limit = MAX(arc_meta_min, (percent * arc_c_max) / 100);
7533 percent = MIN(zfs_arc_dnode_limit_percent, 100);
7534 arc_dnode_limit = (percent * arc_meta_limit) / 100;
7535
7536 /* Apply user specified tunings */
7537 arc_tuning_update();
7538
7539 /* if kmem_flags are set, lets try to use less memory */
7540 if (kmem_debugging())
7541 arc_c = arc_c / 2;
7542 if (arc_c < arc_c_min)
7543 arc_c = arc_c_min;
7544
7545 arc_state_init();
7546 buf_init();
7547
7548 list_create(&arc_prune_list, sizeof (arc_prune_t),
7549 offsetof(arc_prune_t, p_node));
7550 mutex_init(&arc_prune_mtx, NULL, MUTEX_DEFAULT, NULL);
7551
7552 arc_prune_taskq = taskq_create("arc_prune", max_ncpus, defclsyspri,
7553 max_ncpus, INT_MAX, TASKQ_PREPOPULATE | TASKQ_DYNAMIC);
7554
7555 arc_reclaim_thread_exit = B_FALSE;
7556
7557 arc_ksp = kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED,
7558 sizeof (arc_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
7559
7560 if (arc_ksp != NULL) {
7561 arc_ksp->ks_data = &arc_stats;
7562 arc_ksp->ks_update = arc_kstat_update;
7563 kstat_install(arc_ksp);
7564 }
7565
7566 (void) thread_create(NULL, 0, arc_reclaim_thread, NULL, 0, &p0,
7567 TS_RUN, defclsyspri);
7568
7569 arc_dead = B_FALSE;
7570 arc_warm = B_FALSE;
7571
7572 /*
7573 * Calculate maximum amount of dirty data per pool.
7574 *
7575 * If it has been set by a module parameter, take that.
7576 * Otherwise, use a percentage of physical memory defined by
7577 * zfs_dirty_data_max_percent (default 10%) with a cap at
7578 * zfs_dirty_data_max_max (default 4G or 25% of physical memory).
7579 */
7580 if (zfs_dirty_data_max_max == 0)
7581 zfs_dirty_data_max_max = MIN(4ULL * 1024 * 1024 * 1024,
7582 allmem * zfs_dirty_data_max_max_percent / 100);
7583
7584 if (zfs_dirty_data_max == 0) {
7585 zfs_dirty_data_max = allmem *
7586 zfs_dirty_data_max_percent / 100;
7587 zfs_dirty_data_max = MIN(zfs_dirty_data_max,
7588 zfs_dirty_data_max_max);
7589 }
7590 }
7591
7592 void
7593 arc_fini(void)
7594 {
7595 arc_prune_t *p;
7596
7597 #ifdef _KERNEL
7598 spl_unregister_shrinker(&arc_shrinker);
7599 #endif /* _KERNEL */
7600
7601 mutex_enter(&arc_reclaim_lock);
7602 arc_reclaim_thread_exit = B_TRUE;
7603 /*
7604 * The reclaim thread will set arc_reclaim_thread_exit back to
7605 * B_FALSE when it is finished exiting; we're waiting for that.
7606 */
7607 while (arc_reclaim_thread_exit) {
7608 cv_signal(&arc_reclaim_thread_cv);
7609 cv_wait(&arc_reclaim_thread_cv, &arc_reclaim_lock);
7610 }
7611 mutex_exit(&arc_reclaim_lock);
7612
7613 /* Use B_TRUE to ensure *all* buffers are evicted */
7614 arc_flush(NULL, B_TRUE);
7615
7616 arc_dead = B_TRUE;
7617
7618 if (arc_ksp != NULL) {
7619 kstat_delete(arc_ksp);
7620 arc_ksp = NULL;
7621 }
7622
7623 taskq_wait(arc_prune_taskq);
7624 taskq_destroy(arc_prune_taskq);
7625
7626 mutex_enter(&arc_prune_mtx);
7627 while ((p = list_head(&arc_prune_list)) != NULL) {
7628 list_remove(&arc_prune_list, p);
7629 refcount_remove(&p->p_refcnt, &arc_prune_list);
7630 refcount_destroy(&p->p_refcnt);
7631 kmem_free(p, sizeof (*p));
7632 }
7633 mutex_exit(&arc_prune_mtx);
7634
7635 list_destroy(&arc_prune_list);
7636 mutex_destroy(&arc_prune_mtx);
7637 mutex_destroy(&arc_reclaim_lock);
7638 cv_destroy(&arc_reclaim_thread_cv);
7639 cv_destroy(&arc_reclaim_waiters_cv);
7640
7641 arc_state_fini();
7642 buf_fini();
7643
7644 ASSERT0(arc_loaned_bytes);
7645 }
7646
7647 /*
7648 * Level 2 ARC
7649 *
7650 * The level 2 ARC (L2ARC) is a cache layer in-between main memory and disk.
7651 * It uses dedicated storage devices to hold cached data, which are populated
7652 * using large infrequent writes. The main role of this cache is to boost
7653 * the performance of random read workloads. The intended L2ARC devices
7654 * include short-stroked disks, solid state disks, and other media with
7655 * substantially faster read latency than disk.
7656 *
7657 * +-----------------------+
7658 * | ARC |
7659 * +-----------------------+
7660 * | ^ ^
7661 * | | |
7662 * l2arc_feed_thread() arc_read()
7663 * | | |
7664 * | l2arc read |
7665 * V | |
7666 * +---------------+ |
7667 * | L2ARC | |
7668 * +---------------+ |
7669 * | ^ |
7670 * l2arc_write() | |
7671 * | | |
7672 * V | |
7673 * +-------+ +-------+
7674 * | vdev | | vdev |
7675 * | cache | | cache |
7676 * +-------+ +-------+
7677 * +=========+ .-----.
7678 * : L2ARC : |-_____-|
7679 * : devices : | Disks |
7680 * +=========+ `-_____-'
7681 *
7682 * Read requests are satisfied from the following sources, in order:
7683 *
7684 * 1) ARC
7685 * 2) vdev cache of L2ARC devices
7686 * 3) L2ARC devices
7687 * 4) vdev cache of disks
7688 * 5) disks
7689 *
7690 * Some L2ARC device types exhibit extremely slow write performance.
7691 * To accommodate for this there are some significant differences between
7692 * the L2ARC and traditional cache design:
7693 *
7694 * 1. There is no eviction path from the ARC to the L2ARC. Evictions from
7695 * the ARC behave as usual, freeing buffers and placing headers on ghost
7696 * lists. The ARC does not send buffers to the L2ARC during eviction as
7697 * this would add inflated write latencies for all ARC memory pressure.
7698 *
7699 * 2. The L2ARC attempts to cache data from the ARC before it is evicted.
7700 * It does this by periodically scanning buffers from the eviction-end of
7701 * the MFU and MRU ARC lists, copying them to the L2ARC devices if they are
7702 * not already there. It scans until a headroom of buffers is satisfied,
7703 * which itself is a buffer for ARC eviction. If a compressible buffer is
7704 * found during scanning and selected for writing to an L2ARC device, we
7705 * temporarily boost scanning headroom during the next scan cycle to make
7706 * sure we adapt to compression effects (which might significantly reduce
7707 * the data volume we write to L2ARC). The thread that does this is
7708 * l2arc_feed_thread(), illustrated below; example sizes are included to
7709 * provide a better sense of ratio than this diagram:
7710 *
7711 * head --> tail
7712 * +---------------------+----------+
7713 * ARC_mfu |:::::#:::::::::::::::|o#o###o###|-->. # already on L2ARC
7714 * +---------------------+----------+ | o L2ARC eligible
7715 * ARC_mru |:#:::::::::::::::::::|#o#ooo####|-->| : ARC buffer
7716 * +---------------------+----------+ |
7717 * 15.9 Gbytes ^ 32 Mbytes |
7718 * headroom |
7719 * l2arc_feed_thread()
7720 * |
7721 * l2arc write hand <--[oooo]--'
7722 * | 8 Mbyte
7723 * | write max
7724 * V
7725 * +==============================+
7726 * L2ARC dev |####|#|###|###| |####| ... |
7727 * +==============================+
7728 * 32 Gbytes
7729 *
7730 * 3. If an ARC buffer is copied to the L2ARC but then hit instead of
7731 * evicted, then the L2ARC has cached a buffer much sooner than it probably
7732 * needed to, potentially wasting L2ARC device bandwidth and storage. It is
7733 * safe to say that this is an uncommon case, since buffers at the end of
7734 * the ARC lists have moved there due to inactivity.
7735 *
7736 * 4. If the ARC evicts faster than the L2ARC can maintain a headroom,
7737 * then the L2ARC simply misses copying some buffers. This serves as a
7738 * pressure valve to prevent heavy read workloads from both stalling the ARC
7739 * with waits and clogging the L2ARC with writes. This also helps prevent
7740 * the potential for the L2ARC to churn if it attempts to cache content too
7741 * quickly, such as during backups of the entire pool.
7742 *
7743 * 5. After system boot and before the ARC has filled main memory, there are
7744 * no evictions from the ARC and so the tails of the ARC_mfu and ARC_mru
7745 * lists can remain mostly static. Instead of searching from tail of these
7746 * lists as pictured, the l2arc_feed_thread() will search from the list heads
7747 * for eligible buffers, greatly increasing its chance of finding them.
7748 *
7749 * The L2ARC device write speed is also boosted during this time so that
7750 * the L2ARC warms up faster. Since there have been no ARC evictions yet,
7751 * there are no L2ARC reads, and no fear of degrading read performance
7752 * through increased writes.
7753 *
7754 * 6. Writes to the L2ARC devices are grouped and sent in-sequence, so that
7755 * the vdev queue can aggregate them into larger and fewer writes. Each
7756 * device is written to in a rotor fashion, sweeping writes through
7757 * available space then repeating.
7758 *
7759 * 7. The L2ARC does not store dirty content. It never needs to flush
7760 * write buffers back to disk based storage.
7761 *
7762 * 8. If an ARC buffer is written (and dirtied) which also exists in the
7763 * L2ARC, the now stale L2ARC buffer is immediately dropped.
7764 *
7765 * The performance of the L2ARC can be tweaked by a number of tunables, which
7766 * may be necessary for different workloads:
7767 *
7768 * l2arc_write_max max write bytes per interval
7769 * l2arc_write_boost extra write bytes during device warmup
7770 * l2arc_noprefetch skip caching prefetched buffers
7771 * l2arc_headroom number of max device writes to precache
7772 * l2arc_headroom_boost when we find compressed buffers during ARC
7773 * scanning, we multiply headroom by this
7774 * percentage factor for the next scan cycle,
7775 * since more compressed buffers are likely to
7776 * be present
7777 * l2arc_feed_secs seconds between L2ARC writing
7778 *
7779 * Tunables may be removed or added as future performance improvements are
7780 * integrated, and also may become zpool properties.
7781 *
7782 * There are three key functions that control how the L2ARC warms up:
7783 *
7784 * l2arc_write_eligible() check if a buffer is eligible to cache
7785 * l2arc_write_size() calculate how much to write
7786 * l2arc_write_interval() calculate sleep delay between writes
7787 *
7788 * These three functions determine what to write, how much, and how quickly
7789 * to send writes.
7790 */
7791
7792 static boolean_t
7793 l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *hdr)
7794 {
7795 /*
7796 * A buffer is *not* eligible for the L2ARC if it:
7797 * 1. belongs to a different spa.
7798 * 2. is already cached on the L2ARC.
7799 * 3. has an I/O in progress (it may be an incomplete read).
7800 * 4. is flagged not eligible (zfs property).
7801 */
7802 if (hdr->b_spa != spa_guid || HDR_HAS_L2HDR(hdr) ||
7803 HDR_IO_IN_PROGRESS(hdr) || !HDR_L2CACHE(hdr))
7804 return (B_FALSE);
7805
7806 return (B_TRUE);
7807 }
7808
7809 static uint64_t
7810 l2arc_write_size(void)
7811 {
7812 uint64_t size;
7813
7814 /*
7815 * Make sure our globals have meaningful values in case the user
7816 * altered them.
7817 */
7818 size = l2arc_write_max;
7819 if (size == 0) {
7820 cmn_err(CE_NOTE, "Bad value for l2arc_write_max, value must "
7821 "be greater than zero, resetting it to the default (%d)",
7822 L2ARC_WRITE_SIZE);
7823 size = l2arc_write_max = L2ARC_WRITE_SIZE;
7824 }
7825
7826 if (arc_warm == B_FALSE)
7827 size += l2arc_write_boost;
7828
7829 return (size);
7830
7831 }
7832
7833 static clock_t
7834 l2arc_write_interval(clock_t began, uint64_t wanted, uint64_t wrote)
7835 {
7836 clock_t interval, next, now;
7837
7838 /*
7839 * If the ARC lists are busy, increase our write rate; if the
7840 * lists are stale, idle back. This is achieved by checking
7841 * how much we previously wrote - if it was more than half of
7842 * what we wanted, schedule the next write much sooner.
7843 */
7844 if (l2arc_feed_again && wrote > (wanted / 2))
7845 interval = (hz * l2arc_feed_min_ms) / 1000;
7846 else
7847 interval = hz * l2arc_feed_secs;
7848
7849 now = ddi_get_lbolt();
7850 next = MAX(now, MIN(now + interval, began + interval));
7851
7852 return (next);
7853 }
7854
7855 /*
7856 * Cycle through L2ARC devices. This is how L2ARC load balances.
7857 * If a device is returned, this also returns holding the spa config lock.
7858 */
7859 static l2arc_dev_t *
7860 l2arc_dev_get_next(void)
7861 {
7862 l2arc_dev_t *first, *next = NULL;
7863
7864 /*
7865 * Lock out the removal of spas (spa_namespace_lock), then removal
7866 * of cache devices (l2arc_dev_mtx). Once a device has been selected,
7867 * both locks will be dropped and a spa config lock held instead.
7868 */
7869 mutex_enter(&spa_namespace_lock);
7870 mutex_enter(&l2arc_dev_mtx);
7871
7872 /* if there are no vdevs, there is nothing to do */
7873 if (l2arc_ndev == 0)
7874 goto out;
7875
7876 first = NULL;
7877 next = l2arc_dev_last;
7878 do {
7879 /* loop around the list looking for a non-faulted vdev */
7880 if (next == NULL) {
7881 next = list_head(l2arc_dev_list);
7882 } else {
7883 next = list_next(l2arc_dev_list, next);
7884 if (next == NULL)
7885 next = list_head(l2arc_dev_list);
7886 }
7887
7888 /* if we have come back to the start, bail out */
7889 if (first == NULL)
7890 first = next;
7891 else if (next == first)
7892 break;
7893
7894 } while (vdev_is_dead(next->l2ad_vdev));
7895
7896 /* if we were unable to find any usable vdevs, return NULL */
7897 if (vdev_is_dead(next->l2ad_vdev))
7898 next = NULL;
7899
7900 l2arc_dev_last = next;
7901
7902 out:
7903 mutex_exit(&l2arc_dev_mtx);
7904
7905 /*
7906 * Grab the config lock to prevent the 'next' device from being
7907 * removed while we are writing to it.
7908 */
7909 if (next != NULL)
7910 spa_config_enter(next->l2ad_spa, SCL_L2ARC, next, RW_READER);
7911 mutex_exit(&spa_namespace_lock);
7912
7913 return (next);
7914 }
7915
7916 /*
7917 * Free buffers that were tagged for destruction.
7918 */
7919 static void
7920 l2arc_do_free_on_write(void)
7921 {
7922 list_t *buflist;
7923 l2arc_data_free_t *df, *df_prev;
7924
7925 mutex_enter(&l2arc_free_on_write_mtx);
7926 buflist = l2arc_free_on_write;
7927
7928 for (df = list_tail(buflist); df; df = df_prev) {
7929 df_prev = list_prev(buflist, df);
7930 ASSERT3P(df->l2df_abd, !=, NULL);
7931 abd_free(df->l2df_abd);
7932 list_remove(buflist, df);
7933 kmem_free(df, sizeof (l2arc_data_free_t));
7934 }
7935
7936 mutex_exit(&l2arc_free_on_write_mtx);
7937 }
7938
7939 /*
7940 * A write to a cache device has completed. Update all headers to allow
7941 * reads from these buffers to begin.
7942 */
7943 static void
7944 l2arc_write_done(zio_t *zio)
7945 {
7946 l2arc_write_callback_t *cb;
7947 l2arc_dev_t *dev;
7948 list_t *buflist;
7949 arc_buf_hdr_t *head, *hdr, *hdr_prev;
7950 kmutex_t *hash_lock;
7951 int64_t bytes_dropped = 0;
7952
7953 cb = zio->io_private;
7954 ASSERT3P(cb, !=, NULL);
7955 dev = cb->l2wcb_dev;
7956 ASSERT3P(dev, !=, NULL);
7957 head = cb->l2wcb_head;
7958 ASSERT3P(head, !=, NULL);
7959 buflist = &dev->l2ad_buflist;
7960 ASSERT3P(buflist, !=, NULL);
7961 DTRACE_PROBE2(l2arc__iodone, zio_t *, zio,
7962 l2arc_write_callback_t *, cb);
7963
7964 if (zio->io_error != 0)
7965 ARCSTAT_BUMP(arcstat_l2_writes_error);
7966
7967 /*
7968 * All writes completed, or an error was hit.
7969 */
7970 top:
7971 mutex_enter(&dev->l2ad_mtx);
7972 for (hdr = list_prev(buflist, head); hdr; hdr = hdr_prev) {
7973 hdr_prev = list_prev(buflist, hdr);
7974
7975 hash_lock = HDR_LOCK(hdr);
7976
7977 /*
7978 * We cannot use mutex_enter or else we can deadlock
7979 * with l2arc_write_buffers (due to swapping the order
7980 * the hash lock and l2ad_mtx are taken).
7981 */
7982 if (!mutex_tryenter(hash_lock)) {
7983 /*
7984 * Missed the hash lock. We must retry so we
7985 * don't leave the ARC_FLAG_L2_WRITING bit set.
7986 */
7987 ARCSTAT_BUMP(arcstat_l2_writes_lock_retry);
7988
7989 /*
7990 * We don't want to rescan the headers we've
7991 * already marked as having been written out, so
7992 * we reinsert the head node so we can pick up
7993 * where we left off.
7994 */
7995 list_remove(buflist, head);
7996 list_insert_after(buflist, hdr, head);
7997
7998 mutex_exit(&dev->l2ad_mtx);
7999
8000 /*
8001 * We wait for the hash lock to become available
8002 * to try and prevent busy waiting, and increase
8003 * the chance we'll be able to acquire the lock
8004 * the next time around.
8005 */
8006 mutex_enter(hash_lock);
8007 mutex_exit(hash_lock);
8008 goto top;
8009 }
8010
8011 /*
8012 * We could not have been moved into the arc_l2c_only
8013 * state while in-flight due to our ARC_FLAG_L2_WRITING
8014 * bit being set. Let's just ensure that's being enforced.
8015 */
8016 ASSERT(HDR_HAS_L1HDR(hdr));
8017
8018 /*
8019 * Skipped - drop L2ARC entry and mark the header as no
8020 * longer L2 eligibile.
8021 */
8022 if (zio->io_error != 0) {
8023 /*
8024 * Error - drop L2ARC entry.
8025 */
8026 list_remove(buflist, hdr);
8027 arc_hdr_clear_flags(hdr, ARC_FLAG_HAS_L2HDR);
8028
8029 ARCSTAT_INCR(arcstat_l2_psize, -arc_hdr_size(hdr));
8030 ARCSTAT_INCR(arcstat_l2_lsize, -HDR_GET_LSIZE(hdr));
8031
8032 bytes_dropped += arc_hdr_size(hdr);
8033 (void) refcount_remove_many(&dev->l2ad_alloc,
8034 arc_hdr_size(hdr), hdr);
8035 }
8036
8037 /*
8038 * Allow ARC to begin reads and ghost list evictions to
8039 * this L2ARC entry.
8040 */
8041 arc_hdr_clear_flags(hdr, ARC_FLAG_L2_WRITING);
8042
8043 mutex_exit(hash_lock);
8044 }
8045
8046 atomic_inc_64(&l2arc_writes_done);
8047 list_remove(buflist, head);
8048 ASSERT(!HDR_HAS_L1HDR(head));
8049 kmem_cache_free(hdr_l2only_cache, head);
8050 mutex_exit(&dev->l2ad_mtx);
8051
8052 vdev_space_update(dev->l2ad_vdev, -bytes_dropped, 0, 0);
8053
8054 l2arc_do_free_on_write();
8055
8056 kmem_free(cb, sizeof (l2arc_write_callback_t));
8057 }
8058
8059 static int
8060 l2arc_untransform(zio_t *zio, l2arc_read_callback_t *cb)
8061 {
8062 int ret;
8063 spa_t *spa = zio->io_spa;
8064 arc_buf_hdr_t *hdr = cb->l2rcb_hdr;
8065 blkptr_t *bp = zio->io_bp;
8066 uint8_t salt[ZIO_DATA_SALT_LEN];
8067 uint8_t iv[ZIO_DATA_IV_LEN];
8068 uint8_t mac[ZIO_DATA_MAC_LEN];
8069 boolean_t no_crypt = B_FALSE;
8070
8071 /*
8072 * ZIL data is never be written to the L2ARC, so we don't need
8073 * special handling for its unique MAC storage.
8074 */
8075 ASSERT3U(BP_GET_TYPE(bp), !=, DMU_OT_INTENT_LOG);
8076 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)));
8077 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
8078
8079 /*
8080 * If the data was encrypted, decrypt it now. Note that
8081 * we must check the bp here and not the hdr, since the
8082 * hdr does not have its encryption parameters updated
8083 * until arc_read_done().
8084 */
8085 if (BP_IS_ENCRYPTED(bp)) {
8086 abd_t *eabd = arc_get_data_abd(hdr, arc_hdr_size(hdr), hdr);
8087
8088 zio_crypt_decode_params_bp(bp, salt, iv);
8089 zio_crypt_decode_mac_bp(bp, mac);
8090
8091 ret = spa_do_crypt_abd(B_FALSE, spa, &cb->l2rcb_zb,
8092 BP_GET_TYPE(bp), BP_GET_DEDUP(bp), BP_SHOULD_BYTESWAP(bp),
8093 salt, iv, mac, HDR_GET_PSIZE(hdr), eabd,
8094 hdr->b_l1hdr.b_pabd, &no_crypt);
8095 if (ret != 0) {
8096 arc_free_data_abd(hdr, eabd, arc_hdr_size(hdr), hdr);
8097 goto error;
8098 }
8099
8100 /*
8101 * If we actually performed decryption, replace b_pabd
8102 * with the decrypted data. Otherwise we can just throw
8103 * our decryption buffer away.
8104 */
8105 if (!no_crypt) {
8106 arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd,
8107 arc_hdr_size(hdr), hdr);
8108 hdr->b_l1hdr.b_pabd = eabd;
8109 zio->io_abd = eabd;
8110 } else {
8111 arc_free_data_abd(hdr, eabd, arc_hdr_size(hdr), hdr);
8112 }
8113 }
8114
8115 /*
8116 * If the L2ARC block was compressed, but ARC compression
8117 * is disabled we decompress the data into a new buffer and
8118 * replace the existing data.
8119 */
8120 if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF &&
8121 !HDR_COMPRESSION_ENABLED(hdr)) {
8122 abd_t *cabd = arc_get_data_abd(hdr, arc_hdr_size(hdr), hdr);
8123 void *tmp = abd_borrow_buf(cabd, arc_hdr_size(hdr));
8124
8125 ret = zio_decompress_data(HDR_GET_COMPRESS(hdr),
8126 hdr->b_l1hdr.b_pabd, tmp, HDR_GET_PSIZE(hdr),
8127 HDR_GET_LSIZE(hdr));
8128 if (ret != 0) {
8129 abd_return_buf_copy(cabd, tmp, arc_hdr_size(hdr));
8130 arc_free_data_abd(hdr, cabd, arc_hdr_size(hdr), hdr);
8131 goto error;
8132 }
8133
8134 abd_return_buf_copy(cabd, tmp, arc_hdr_size(hdr));
8135 arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd,
8136 arc_hdr_size(hdr), hdr);
8137 hdr->b_l1hdr.b_pabd = cabd;
8138 zio->io_abd = cabd;
8139 zio->io_size = HDR_GET_LSIZE(hdr);
8140 }
8141
8142 return (0);
8143
8144 error:
8145 return (ret);
8146 }
8147
8148
8149 /*
8150 * A read to a cache device completed. Validate buffer contents before
8151 * handing over to the regular ARC routines.
8152 */
8153 static void
8154 l2arc_read_done(zio_t *zio)
8155 {
8156 int tfm_error = 0;
8157 l2arc_read_callback_t *cb;
8158 arc_buf_hdr_t *hdr;
8159 kmutex_t *hash_lock;
8160 boolean_t valid_cksum, using_rdata;
8161
8162 ASSERT3P(zio->io_vd, !=, NULL);
8163 ASSERT(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE);
8164
8165 spa_config_exit(zio->io_spa, SCL_L2ARC, zio->io_vd);
8166
8167 cb = zio->io_private;
8168 ASSERT3P(cb, !=, NULL);
8169 hdr = cb->l2rcb_hdr;
8170 ASSERT3P(hdr, !=, NULL);
8171
8172 hash_lock = HDR_LOCK(hdr);
8173 mutex_enter(hash_lock);
8174 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
8175
8176 /*
8177 * If the data was read into a temporary buffer,
8178 * move it and free the buffer.
8179 */
8180 if (cb->l2rcb_abd != NULL) {
8181 ASSERT3U(arc_hdr_size(hdr), <, zio->io_size);
8182 if (zio->io_error == 0) {
8183 abd_copy(hdr->b_l1hdr.b_pabd, cb->l2rcb_abd,
8184 arc_hdr_size(hdr));
8185 }
8186
8187 /*
8188 * The following must be done regardless of whether
8189 * there was an error:
8190 * - free the temporary buffer
8191 * - point zio to the real ARC buffer
8192 * - set zio size accordingly
8193 * These are required because zio is either re-used for
8194 * an I/O of the block in the case of the error
8195 * or the zio is passed to arc_read_done() and it
8196 * needs real data.
8197 */
8198 abd_free(cb->l2rcb_abd);
8199 zio->io_size = zio->io_orig_size = arc_hdr_size(hdr);
8200
8201 if (BP_IS_ENCRYPTED(&cb->l2rcb_bp) &&
8202 (cb->l2rcb_flags & ZIO_FLAG_RAW_ENCRYPT)) {
8203 ASSERT(HDR_HAS_RABD(hdr));
8204 zio->io_abd = zio->io_orig_abd =
8205 hdr->b_crypt_hdr.b_rabd;
8206 } else {
8207 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
8208 zio->io_abd = zio->io_orig_abd = hdr->b_l1hdr.b_pabd;
8209 }
8210 }
8211
8212 ASSERT3P(zio->io_abd, !=, NULL);
8213
8214 /*
8215 * Check this survived the L2ARC journey.
8216 */
8217 ASSERT(zio->io_abd == hdr->b_l1hdr.b_pabd ||
8218 (HDR_HAS_RABD(hdr) && zio->io_abd == hdr->b_crypt_hdr.b_rabd));
8219 zio->io_bp_copy = cb->l2rcb_bp; /* XXX fix in L2ARC 2.0 */
8220 zio->io_bp = &zio->io_bp_copy; /* XXX fix in L2ARC 2.0 */
8221
8222 valid_cksum = arc_cksum_is_equal(hdr, zio);
8223 using_rdata = (HDR_HAS_RABD(hdr) &&
8224 zio->io_abd == hdr->b_crypt_hdr.b_rabd);
8225
8226 /*
8227 * b_rabd will always match the data as it exists on disk if it is
8228 * being used. Therefore if we are reading into b_rabd we do not
8229 * attempt to untransform the data.
8230 */
8231 if (valid_cksum && !using_rdata)
8232 tfm_error = l2arc_untransform(zio, cb);
8233
8234 if (valid_cksum && tfm_error == 0 && zio->io_error == 0 &&
8235 !HDR_L2_EVICTED(hdr)) {
8236 mutex_exit(hash_lock);
8237 zio->io_private = hdr;
8238 arc_read_done(zio);
8239 } else {
8240 mutex_exit(hash_lock);
8241 /*
8242 * Buffer didn't survive caching. Increment stats and
8243 * reissue to the original storage device.
8244 */
8245 if (zio->io_error != 0) {
8246 ARCSTAT_BUMP(arcstat_l2_io_error);
8247 } else {
8248 zio->io_error = SET_ERROR(EIO);
8249 }
8250 if (!valid_cksum || tfm_error != 0)
8251 ARCSTAT_BUMP(arcstat_l2_cksum_bad);
8252
8253 /*
8254 * If there's no waiter, issue an async i/o to the primary
8255 * storage now. If there *is* a waiter, the caller must
8256 * issue the i/o in a context where it's OK to block.
8257 */
8258 if (zio->io_waiter == NULL) {
8259 zio_t *pio = zio_unique_parent(zio);
8260 void *abd = (using_rdata) ?
8261 hdr->b_crypt_hdr.b_rabd : hdr->b_l1hdr.b_pabd;
8262
8263 ASSERT(!pio || pio->io_child_type == ZIO_CHILD_LOGICAL);
8264
8265 zio_nowait(zio_read(pio, zio->io_spa, zio->io_bp,
8266 abd, zio->io_size, arc_read_done,
8267 hdr, zio->io_priority, cb->l2rcb_flags,
8268 &cb->l2rcb_zb));
8269 }
8270 }
8271
8272 kmem_free(cb, sizeof (l2arc_read_callback_t));
8273 }
8274
8275 /*
8276 * This is the list priority from which the L2ARC will search for pages to
8277 * cache. This is used within loops (0..3) to cycle through lists in the
8278 * desired order. This order can have a significant effect on cache
8279 * performance.
8280 *
8281 * Currently the metadata lists are hit first, MFU then MRU, followed by
8282 * the data lists. This function returns a locked list, and also returns
8283 * the lock pointer.
8284 */
8285 static multilist_sublist_t *
8286 l2arc_sublist_lock(int list_num)
8287 {
8288 multilist_t *ml = NULL;
8289 unsigned int idx;
8290
8291 ASSERT(list_num >= 0 && list_num < L2ARC_FEED_TYPES);
8292
8293 switch (list_num) {
8294 case 0:
8295 ml = arc_mfu->arcs_list[ARC_BUFC_METADATA];
8296 break;
8297 case 1:
8298 ml = arc_mru->arcs_list[ARC_BUFC_METADATA];
8299 break;
8300 case 2:
8301 ml = arc_mfu->arcs_list[ARC_BUFC_DATA];
8302 break;
8303 case 3:
8304 ml = arc_mru->arcs_list[ARC_BUFC_DATA];
8305 break;
8306 default:
8307 return (NULL);
8308 }
8309
8310 /*
8311 * Return a randomly-selected sublist. This is acceptable
8312 * because the caller feeds only a little bit of data for each
8313 * call (8MB). Subsequent calls will result in different
8314 * sublists being selected.
8315 */
8316 idx = multilist_get_random_index(ml);
8317 return (multilist_sublist_lock(ml, idx));
8318 }
8319
8320 /*
8321 * Evict buffers from the device write hand to the distance specified in
8322 * bytes. This distance may span populated buffers, it may span nothing.
8323 * This is clearing a region on the L2ARC device ready for writing.
8324 * If the 'all' boolean is set, every buffer is evicted.
8325 */
8326 static void
8327 l2arc_evict(l2arc_dev_t *dev, uint64_t distance, boolean_t all)
8328 {
8329 list_t *buflist;
8330 arc_buf_hdr_t *hdr, *hdr_prev;
8331 kmutex_t *hash_lock;
8332 uint64_t taddr;
8333
8334 buflist = &dev->l2ad_buflist;
8335
8336 if (!all && dev->l2ad_first) {
8337 /*
8338 * This is the first sweep through the device. There is
8339 * nothing to evict.
8340 */
8341 return;
8342 }
8343
8344 if (dev->l2ad_hand >= (dev->l2ad_end - (2 * distance))) {
8345 /*
8346 * When nearing the end of the device, evict to the end
8347 * before the device write hand jumps to the start.
8348 */
8349 taddr = dev->l2ad_end;
8350 } else {
8351 taddr = dev->l2ad_hand + distance;
8352 }
8353 DTRACE_PROBE4(l2arc__evict, l2arc_dev_t *, dev, list_t *, buflist,
8354 uint64_t, taddr, boolean_t, all);
8355
8356 top:
8357 mutex_enter(&dev->l2ad_mtx);
8358 for (hdr = list_tail(buflist); hdr; hdr = hdr_prev) {
8359 hdr_prev = list_prev(buflist, hdr);
8360
8361 hash_lock = HDR_LOCK(hdr);
8362
8363 /*
8364 * We cannot use mutex_enter or else we can deadlock
8365 * with l2arc_write_buffers (due to swapping the order
8366 * the hash lock and l2ad_mtx are taken).
8367 */
8368 if (!mutex_tryenter(hash_lock)) {
8369 /*
8370 * Missed the hash lock. Retry.
8371 */
8372 ARCSTAT_BUMP(arcstat_l2_evict_lock_retry);
8373 mutex_exit(&dev->l2ad_mtx);
8374 mutex_enter(hash_lock);
8375 mutex_exit(hash_lock);
8376 goto top;
8377 }
8378
8379 /*
8380 * A header can't be on this list if it doesn't have L2 header.
8381 */
8382 ASSERT(HDR_HAS_L2HDR(hdr));
8383
8384 /* Ensure this header has finished being written. */
8385 ASSERT(!HDR_L2_WRITING(hdr));
8386 ASSERT(!HDR_L2_WRITE_HEAD(hdr));
8387
8388 if (!all && (hdr->b_l2hdr.b_daddr >= taddr ||
8389 hdr->b_l2hdr.b_daddr < dev->l2ad_hand)) {
8390 /*
8391 * We've evicted to the target address,
8392 * or the end of the device.
8393 */
8394 mutex_exit(hash_lock);
8395 break;
8396 }
8397
8398 if (!HDR_HAS_L1HDR(hdr)) {
8399 ASSERT(!HDR_L2_READING(hdr));
8400 /*
8401 * This doesn't exist in the ARC. Destroy.
8402 * arc_hdr_destroy() will call list_remove()
8403 * and decrement arcstat_l2_lsize.
8404 */
8405 arc_change_state(arc_anon, hdr, hash_lock);
8406 arc_hdr_destroy(hdr);
8407 } else {
8408 ASSERT(hdr->b_l1hdr.b_state != arc_l2c_only);
8409 ARCSTAT_BUMP(arcstat_l2_evict_l1cached);
8410 /*
8411 * Invalidate issued or about to be issued
8412 * reads, since we may be about to write
8413 * over this location.
8414 */
8415 if (HDR_L2_READING(hdr)) {
8416 ARCSTAT_BUMP(arcstat_l2_evict_reading);
8417 arc_hdr_set_flags(hdr, ARC_FLAG_L2_EVICTED);
8418 }
8419
8420 arc_hdr_l2hdr_destroy(hdr);
8421 }
8422 mutex_exit(hash_lock);
8423 }
8424 mutex_exit(&dev->l2ad_mtx);
8425 }
8426
8427 /*
8428 * Handle any abd transforms that might be required for writing to the L2ARC.
8429 * If successful, this function will always return an abd with the data
8430 * transformed as it is on disk in a new abd of asize bytes.
8431 */
8432 static int
8433 l2arc_apply_transforms(spa_t *spa, arc_buf_hdr_t *hdr, uint64_t asize,
8434 abd_t **abd_out)
8435 {
8436 int ret;
8437 void *tmp = NULL;
8438 abd_t *cabd = NULL, *eabd = NULL, *to_write = hdr->b_l1hdr.b_pabd;
8439 enum zio_compress compress = HDR_GET_COMPRESS(hdr);
8440 uint64_t psize = HDR_GET_PSIZE(hdr);
8441 uint64_t size = arc_hdr_size(hdr);
8442 boolean_t ismd = HDR_ISTYPE_METADATA(hdr);
8443 boolean_t bswap = (hdr->b_l1hdr.b_byteswap != DMU_BSWAP_NUMFUNCS);
8444 dsl_crypto_key_t *dck = NULL;
8445 uint8_t mac[ZIO_DATA_MAC_LEN] = { 0 };
8446 boolean_t no_crypt = B_FALSE;
8447
8448 ASSERT((HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF &&
8449 !HDR_COMPRESSION_ENABLED(hdr)) ||
8450 HDR_ENCRYPTED(hdr) || HDR_SHARED_DATA(hdr) || psize != asize);
8451 ASSERT3U(psize, <=, asize);
8452
8453 /*
8454 * If this data simply needs its own buffer, we simply allocate it
8455 * and copy the data. This may be done to elimiate a depedency on a
8456 * shared buffer or to reallocate the buffer to match asize.
8457 */
8458 if (HDR_HAS_RABD(hdr) && asize != psize) {
8459 ASSERT3U(asize, >=, psize);
8460 to_write = abd_alloc_for_io(asize, ismd);
8461 abd_copy(to_write, hdr->b_crypt_hdr.b_rabd, psize);
8462 if (psize != asize)
8463 abd_zero_off(to_write, psize, asize - psize);
8464 goto out;
8465 }
8466
8467 if ((compress == ZIO_COMPRESS_OFF || HDR_COMPRESSION_ENABLED(hdr)) &&
8468 !HDR_ENCRYPTED(hdr)) {
8469 ASSERT3U(size, ==, psize);
8470 to_write = abd_alloc_for_io(asize, ismd);
8471 abd_copy(to_write, hdr->b_l1hdr.b_pabd, size);
8472 if (size != asize)
8473 abd_zero_off(to_write, size, asize - size);
8474 goto out;
8475 }
8476
8477 if (compress != ZIO_COMPRESS_OFF && !HDR_COMPRESSION_ENABLED(hdr)) {
8478 cabd = abd_alloc_for_io(asize, ismd);
8479 tmp = abd_borrow_buf(cabd, asize);
8480
8481 psize = zio_compress_data(compress, to_write, tmp, size);
8482 ASSERT3U(psize, <=, HDR_GET_PSIZE(hdr));
8483 if (psize < asize)
8484 bzero((char *)tmp + psize, asize - psize);
8485 psize = HDR_GET_PSIZE(hdr);
8486 abd_return_buf_copy(cabd, tmp, asize);
8487 to_write = cabd;
8488 }
8489
8490 if (HDR_ENCRYPTED(hdr)) {
8491 eabd = abd_alloc_for_io(asize, ismd);
8492
8493 /*
8494 * If the dataset was disowned before the buffer
8495 * made it to this point, the key to re-encrypt
8496 * it won't be available. In this case we simply
8497 * won't write the buffer to the L2ARC.
8498 */
8499 ret = spa_keystore_lookup_key(spa, hdr->b_crypt_hdr.b_dsobj,
8500 FTAG, &dck);
8501 if (ret != 0)
8502 goto error;
8503
8504 ret = zio_do_crypt_abd(B_TRUE, &dck->dck_key,
8505 hdr->b_crypt_hdr.b_ot, bswap, hdr->b_crypt_hdr.b_salt,
8506 hdr->b_crypt_hdr.b_iv, mac, psize, to_write, eabd,
8507 &no_crypt);
8508 if (ret != 0)
8509 goto error;
8510
8511 if (no_crypt)
8512 abd_copy(eabd, to_write, psize);
8513
8514 if (psize != asize)
8515 abd_zero_off(eabd, psize, asize - psize);
8516
8517 /* assert that the MAC we got here matches the one we saved */
8518 ASSERT0(bcmp(mac, hdr->b_crypt_hdr.b_mac, ZIO_DATA_MAC_LEN));
8519 spa_keystore_dsl_key_rele(spa, dck, FTAG);
8520
8521 if (to_write == cabd)
8522 abd_free(cabd);
8523
8524 to_write = eabd;
8525 }
8526
8527 out:
8528 ASSERT3P(to_write, !=, hdr->b_l1hdr.b_pabd);
8529 *abd_out = to_write;
8530 return (0);
8531
8532 error:
8533 if (dck != NULL)
8534 spa_keystore_dsl_key_rele(spa, dck, FTAG);
8535 if (cabd != NULL)
8536 abd_free(cabd);
8537 if (eabd != NULL)
8538 abd_free(eabd);
8539
8540 *abd_out = NULL;
8541 return (ret);
8542 }
8543
8544 /*
8545 * Find and write ARC buffers to the L2ARC device.
8546 *
8547 * An ARC_FLAG_L2_WRITING flag is set so that the L2ARC buffers are not valid
8548 * for reading until they have completed writing.
8549 * The headroom_boost is an in-out parameter used to maintain headroom boost
8550 * state between calls to this function.
8551 *
8552 * Returns the number of bytes actually written (which may be smaller than
8553 * the delta by which the device hand has changed due to alignment).
8554 */
8555 static uint64_t
8556 l2arc_write_buffers(spa_t *spa, l2arc_dev_t *dev, uint64_t target_sz)
8557 {
8558 arc_buf_hdr_t *hdr, *hdr_prev, *head;
8559 uint64_t write_asize, write_psize, write_lsize, headroom;
8560 boolean_t full;
8561 l2arc_write_callback_t *cb;
8562 zio_t *pio, *wzio;
8563 uint64_t guid = spa_load_guid(spa);
8564
8565 ASSERT3P(dev->l2ad_vdev, !=, NULL);
8566
8567 pio = NULL;
8568 write_lsize = write_asize = write_psize = 0;
8569 full = B_FALSE;
8570 head = kmem_cache_alloc(hdr_l2only_cache, KM_PUSHPAGE);
8571 arc_hdr_set_flags(head, ARC_FLAG_L2_WRITE_HEAD | ARC_FLAG_HAS_L2HDR);
8572
8573 /*
8574 * Copy buffers for L2ARC writing.
8575 */
8576 for (int try = 0; try < L2ARC_FEED_TYPES; try++) {
8577 multilist_sublist_t *mls = l2arc_sublist_lock(try);
8578 uint64_t passed_sz = 0;
8579
8580 VERIFY3P(mls, !=, NULL);
8581
8582 /*
8583 * L2ARC fast warmup.
8584 *
8585 * Until the ARC is warm and starts to evict, read from the
8586 * head of the ARC lists rather than the tail.
8587 */
8588 if (arc_warm == B_FALSE)
8589 hdr = multilist_sublist_head(mls);
8590 else
8591 hdr = multilist_sublist_tail(mls);
8592
8593 headroom = target_sz * l2arc_headroom;
8594 if (zfs_compressed_arc_enabled)
8595 headroom = (headroom * l2arc_headroom_boost) / 100;
8596
8597 for (; hdr; hdr = hdr_prev) {
8598 kmutex_t *hash_lock;
8599 abd_t *to_write = NULL;
8600
8601 if (arc_warm == B_FALSE)
8602 hdr_prev = multilist_sublist_next(mls, hdr);
8603 else
8604 hdr_prev = multilist_sublist_prev(mls, hdr);
8605
8606 hash_lock = HDR_LOCK(hdr);
8607 if (!mutex_tryenter(hash_lock)) {
8608 /*
8609 * Skip this buffer rather than waiting.
8610 */
8611 continue;
8612 }
8613
8614 passed_sz += HDR_GET_LSIZE(hdr);
8615 if (passed_sz > headroom) {
8616 /*
8617 * Searched too far.
8618 */
8619 mutex_exit(hash_lock);
8620 break;
8621 }
8622
8623 if (!l2arc_write_eligible(guid, hdr)) {
8624 mutex_exit(hash_lock);
8625 continue;
8626 }
8627
8628 /*
8629 * We rely on the L1 portion of the header below, so
8630 * it's invalid for this header to have been evicted out
8631 * of the ghost cache, prior to being written out. The
8632 * ARC_FLAG_L2_WRITING bit ensures this won't happen.
8633 */
8634 ASSERT(HDR_HAS_L1HDR(hdr));
8635
8636 ASSERT3U(HDR_GET_PSIZE(hdr), >, 0);
8637 ASSERT3U(arc_hdr_size(hdr), >, 0);
8638 ASSERT(hdr->b_l1hdr.b_pabd != NULL ||
8639 HDR_HAS_RABD(hdr));
8640 uint64_t psize = HDR_GET_PSIZE(hdr);
8641 uint64_t asize = vdev_psize_to_asize(dev->l2ad_vdev,
8642 psize);
8643
8644 if ((write_asize + asize) > target_sz) {
8645 full = B_TRUE;
8646 mutex_exit(hash_lock);
8647 break;
8648 }
8649
8650 /*
8651 * We rely on the L1 portion of the header below, so
8652 * it's invalid for this header to have been evicted out
8653 * of the ghost cache, prior to being written out. The
8654 * ARC_FLAG_L2_WRITING bit ensures this won't happen.
8655 */
8656 arc_hdr_set_flags(hdr, ARC_FLAG_L2_WRITING);
8657 ASSERT(HDR_HAS_L1HDR(hdr));
8658
8659 ASSERT3U(HDR_GET_PSIZE(hdr), >, 0);
8660 ASSERT(hdr->b_l1hdr.b_pabd != NULL ||
8661 HDR_HAS_RABD(hdr));
8662 ASSERT3U(arc_hdr_size(hdr), >, 0);
8663
8664 /*
8665 * If this header has b_rabd, we can use this since it
8666 * must always match the data exactly as it exists on
8667 * disk. Otherwise, the L2ARC can normally use the
8668 * hdr's data, but if we're sharing data between the
8669 * hdr and one of its bufs, L2ARC needs its own copy of
8670 * the data so that the ZIO below can't race with the
8671 * buf consumer. To ensure that this copy will be
8672 * available for the lifetime of the ZIO and be cleaned
8673 * up afterwards, we add it to the l2arc_free_on_write
8674 * queue. If we need to apply any transforms to the
8675 * data (compression, encryption) we will also need the
8676 * extra buffer.
8677 */
8678 if (HDR_HAS_RABD(hdr) && psize == asize) {
8679 to_write = hdr->b_crypt_hdr.b_rabd;
8680 } else if ((HDR_COMPRESSION_ENABLED(hdr) ||
8681 HDR_GET_COMPRESS(hdr) == ZIO_COMPRESS_OFF) &&
8682 !HDR_ENCRYPTED(hdr) && !HDR_SHARED_DATA(hdr) &&
8683 psize == asize) {
8684 to_write = hdr->b_l1hdr.b_pabd;
8685 } else {
8686 int ret;
8687 arc_buf_contents_t type = arc_buf_type(hdr);
8688
8689 ret = l2arc_apply_transforms(spa, hdr, asize,
8690 &to_write);
8691 if (ret != 0) {
8692 arc_hdr_clear_flags(hdr,
8693 ARC_FLAG_L2_WRITING);
8694 mutex_exit(hash_lock);
8695 continue;
8696 }
8697
8698 l2arc_free_abd_on_write(to_write, asize, type);
8699 }
8700
8701 if (pio == NULL) {
8702 /*
8703 * Insert a dummy header on the buflist so
8704 * l2arc_write_done() can find where the
8705 * write buffers begin without searching.
8706 */
8707 mutex_enter(&dev->l2ad_mtx);
8708 list_insert_head(&dev->l2ad_buflist, head);
8709 mutex_exit(&dev->l2ad_mtx);
8710
8711 cb = kmem_alloc(
8712 sizeof (l2arc_write_callback_t), KM_SLEEP);
8713 cb->l2wcb_dev = dev;
8714 cb->l2wcb_head = head;
8715 pio = zio_root(spa, l2arc_write_done, cb,
8716 ZIO_FLAG_CANFAIL);
8717 }
8718
8719 hdr->b_l2hdr.b_dev = dev;
8720 hdr->b_l2hdr.b_hits = 0;
8721
8722 hdr->b_l2hdr.b_daddr = dev->l2ad_hand;
8723 arc_hdr_set_flags(hdr, ARC_FLAG_HAS_L2HDR);
8724
8725 mutex_enter(&dev->l2ad_mtx);
8726 list_insert_head(&dev->l2ad_buflist, hdr);
8727 mutex_exit(&dev->l2ad_mtx);
8728
8729 (void) refcount_add_many(&dev->l2ad_alloc,
8730 arc_hdr_size(hdr), hdr);
8731
8732 wzio = zio_write_phys(pio, dev->l2ad_vdev,
8733 hdr->b_l2hdr.b_daddr, asize, to_write,
8734 ZIO_CHECKSUM_OFF, NULL, hdr,
8735 ZIO_PRIORITY_ASYNC_WRITE,
8736 ZIO_FLAG_CANFAIL, B_FALSE);
8737
8738 write_lsize += HDR_GET_LSIZE(hdr);
8739 DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev,
8740 zio_t *, wzio);
8741
8742 write_psize += psize;
8743 write_asize += asize;
8744 dev->l2ad_hand += asize;
8745
8746 mutex_exit(hash_lock);
8747
8748 (void) zio_nowait(wzio);
8749 }
8750
8751 multilist_sublist_unlock(mls);
8752
8753 if (full == B_TRUE)
8754 break;
8755 }
8756
8757 /* No buffers selected for writing? */
8758 if (pio == NULL) {
8759 ASSERT0(write_lsize);
8760 ASSERT(!HDR_HAS_L1HDR(head));
8761 kmem_cache_free(hdr_l2only_cache, head);
8762 return (0);
8763 }
8764
8765 ASSERT3U(write_asize, <=, target_sz);
8766 ARCSTAT_BUMP(arcstat_l2_writes_sent);
8767 ARCSTAT_INCR(arcstat_l2_write_bytes, write_psize);
8768 ARCSTAT_INCR(arcstat_l2_lsize, write_lsize);
8769 ARCSTAT_INCR(arcstat_l2_psize, write_psize);
8770 vdev_space_update(dev->l2ad_vdev, write_psize, 0, 0);
8771
8772 /*
8773 * Bump device hand to the device start if it is approaching the end.
8774 * l2arc_evict() will already have evicted ahead for this case.
8775 */
8776 if (dev->l2ad_hand >= (dev->l2ad_end - target_sz)) {
8777 dev->l2ad_hand = dev->l2ad_start;
8778 dev->l2ad_first = B_FALSE;
8779 }
8780
8781 dev->l2ad_writing = B_TRUE;
8782 (void) zio_wait(pio);
8783 dev->l2ad_writing = B_FALSE;
8784
8785 return (write_asize);
8786 }
8787
8788 /*
8789 * This thread feeds the L2ARC at regular intervals. This is the beating
8790 * heart of the L2ARC.
8791 */
8792 /* ARGSUSED */
8793 static void
8794 l2arc_feed_thread(void *unused)
8795 {
8796 callb_cpr_t cpr;
8797 l2arc_dev_t *dev;
8798 spa_t *spa;
8799 uint64_t size, wrote;
8800 clock_t begin, next = ddi_get_lbolt();
8801 fstrans_cookie_t cookie;
8802
8803 CALLB_CPR_INIT(&cpr, &l2arc_feed_thr_lock, callb_generic_cpr, FTAG);
8804
8805 mutex_enter(&l2arc_feed_thr_lock);
8806
8807 cookie = spl_fstrans_mark();
8808 while (l2arc_thread_exit == 0) {
8809 CALLB_CPR_SAFE_BEGIN(&cpr);
8810 (void) cv_timedwait_sig(&l2arc_feed_thr_cv,
8811 &l2arc_feed_thr_lock, next);
8812 CALLB_CPR_SAFE_END(&cpr, &l2arc_feed_thr_lock);
8813 next = ddi_get_lbolt() + hz;
8814
8815 /*
8816 * Quick check for L2ARC devices.
8817 */
8818 mutex_enter(&l2arc_dev_mtx);
8819 if (l2arc_ndev == 0) {
8820 mutex_exit(&l2arc_dev_mtx);
8821 continue;
8822 }
8823 mutex_exit(&l2arc_dev_mtx);
8824 begin = ddi_get_lbolt();
8825
8826 /*
8827 * This selects the next l2arc device to write to, and in
8828 * doing so the next spa to feed from: dev->l2ad_spa. This
8829 * will return NULL if there are now no l2arc devices or if
8830 * they are all faulted.
8831 *
8832 * If a device is returned, its spa's config lock is also
8833 * held to prevent device removal. l2arc_dev_get_next()
8834 * will grab and release l2arc_dev_mtx.
8835 */
8836 if ((dev = l2arc_dev_get_next()) == NULL)
8837 continue;
8838
8839 spa = dev->l2ad_spa;
8840 ASSERT3P(spa, !=, NULL);
8841
8842 /*
8843 * If the pool is read-only then force the feed thread to
8844 * sleep a little longer.
8845 */
8846 if (!spa_writeable(spa)) {
8847 next = ddi_get_lbolt() + 5 * l2arc_feed_secs * hz;
8848 spa_config_exit(spa, SCL_L2ARC, dev);
8849 continue;
8850 }
8851
8852 /*
8853 * Avoid contributing to memory pressure.
8854 */
8855 if (arc_reclaim_needed()) {
8856 ARCSTAT_BUMP(arcstat_l2_abort_lowmem);
8857 spa_config_exit(spa, SCL_L2ARC, dev);
8858 continue;
8859 }
8860
8861 ARCSTAT_BUMP(arcstat_l2_feeds);
8862
8863 size = l2arc_write_size();
8864
8865 /*
8866 * Evict L2ARC buffers that will be overwritten.
8867 */
8868 l2arc_evict(dev, size, B_FALSE);
8869
8870 /*
8871 * Write ARC buffers.
8872 */
8873 wrote = l2arc_write_buffers(spa, dev, size);
8874
8875 /*
8876 * Calculate interval between writes.
8877 */
8878 next = l2arc_write_interval(begin, size, wrote);
8879 spa_config_exit(spa, SCL_L2ARC, dev);
8880 }
8881 spl_fstrans_unmark(cookie);
8882
8883 l2arc_thread_exit = 0;
8884 cv_broadcast(&l2arc_feed_thr_cv);
8885 CALLB_CPR_EXIT(&cpr); /* drops l2arc_feed_thr_lock */
8886 thread_exit();
8887 }
8888
8889 boolean_t
8890 l2arc_vdev_present(vdev_t *vd)
8891 {
8892 l2arc_dev_t *dev;
8893
8894 mutex_enter(&l2arc_dev_mtx);
8895 for (dev = list_head(l2arc_dev_list); dev != NULL;
8896 dev = list_next(l2arc_dev_list, dev)) {
8897 if (dev->l2ad_vdev == vd)
8898 break;
8899 }
8900 mutex_exit(&l2arc_dev_mtx);
8901
8902 return (dev != NULL);
8903 }
8904
8905 /*
8906 * Add a vdev for use by the L2ARC. By this point the spa has already
8907 * validated the vdev and opened it.
8908 */
8909 void
8910 l2arc_add_vdev(spa_t *spa, vdev_t *vd)
8911 {
8912 l2arc_dev_t *adddev;
8913
8914 ASSERT(!l2arc_vdev_present(vd));
8915
8916 /*
8917 * Create a new l2arc device entry.
8918 */
8919 adddev = kmem_zalloc(sizeof (l2arc_dev_t), KM_SLEEP);
8920 adddev->l2ad_spa = spa;
8921 adddev->l2ad_vdev = vd;
8922 adddev->l2ad_start = VDEV_LABEL_START_SIZE;
8923 adddev->l2ad_end = VDEV_LABEL_START_SIZE + vdev_get_min_asize(vd);
8924 adddev->l2ad_hand = adddev->l2ad_start;
8925 adddev->l2ad_first = B_TRUE;
8926 adddev->l2ad_writing = B_FALSE;
8927 list_link_init(&adddev->l2ad_node);
8928
8929 mutex_init(&adddev->l2ad_mtx, NULL, MUTEX_DEFAULT, NULL);
8930 /*
8931 * This is a list of all ARC buffers that are still valid on the
8932 * device.
8933 */
8934 list_create(&adddev->l2ad_buflist, sizeof (arc_buf_hdr_t),
8935 offsetof(arc_buf_hdr_t, b_l2hdr.b_l2node));
8936
8937 vdev_space_update(vd, 0, 0, adddev->l2ad_end - adddev->l2ad_hand);
8938 refcount_create(&adddev->l2ad_alloc);
8939
8940 /*
8941 * Add device to global list
8942 */
8943 mutex_enter(&l2arc_dev_mtx);
8944 list_insert_head(l2arc_dev_list, adddev);
8945 atomic_inc_64(&l2arc_ndev);
8946 mutex_exit(&l2arc_dev_mtx);
8947 }
8948
8949 /*
8950 * Remove a vdev from the L2ARC.
8951 */
8952 void
8953 l2arc_remove_vdev(vdev_t *vd)
8954 {
8955 l2arc_dev_t *dev, *nextdev, *remdev = NULL;
8956
8957 /*
8958 * Find the device by vdev
8959 */
8960 mutex_enter(&l2arc_dev_mtx);
8961 for (dev = list_head(l2arc_dev_list); dev; dev = nextdev) {
8962 nextdev = list_next(l2arc_dev_list, dev);
8963 if (vd == dev->l2ad_vdev) {
8964 remdev = dev;
8965 break;
8966 }
8967 }
8968 ASSERT3P(remdev, !=, NULL);
8969
8970 /*
8971 * Remove device from global list
8972 */
8973 list_remove(l2arc_dev_list, remdev);
8974 l2arc_dev_last = NULL; /* may have been invalidated */
8975 atomic_dec_64(&l2arc_ndev);
8976 mutex_exit(&l2arc_dev_mtx);
8977
8978 /*
8979 * Clear all buflists and ARC references. L2ARC device flush.
8980 */
8981 l2arc_evict(remdev, 0, B_TRUE);
8982 list_destroy(&remdev->l2ad_buflist);
8983 mutex_destroy(&remdev->l2ad_mtx);
8984 refcount_destroy(&remdev->l2ad_alloc);
8985 kmem_free(remdev, sizeof (l2arc_dev_t));
8986 }
8987
8988 void
8989 l2arc_init(void)
8990 {
8991 l2arc_thread_exit = 0;
8992 l2arc_ndev = 0;
8993 l2arc_writes_sent = 0;
8994 l2arc_writes_done = 0;
8995
8996 mutex_init(&l2arc_feed_thr_lock, NULL, MUTEX_DEFAULT, NULL);
8997 cv_init(&l2arc_feed_thr_cv, NULL, CV_DEFAULT, NULL);
8998 mutex_init(&l2arc_dev_mtx, NULL, MUTEX_DEFAULT, NULL);
8999 mutex_init(&l2arc_free_on_write_mtx, NULL, MUTEX_DEFAULT, NULL);
9000
9001 l2arc_dev_list = &L2ARC_dev_list;
9002 l2arc_free_on_write = &L2ARC_free_on_write;
9003 list_create(l2arc_dev_list, sizeof (l2arc_dev_t),
9004 offsetof(l2arc_dev_t, l2ad_node));
9005 list_create(l2arc_free_on_write, sizeof (l2arc_data_free_t),
9006 offsetof(l2arc_data_free_t, l2df_list_node));
9007 }
9008
9009 void
9010 l2arc_fini(void)
9011 {
9012 /*
9013 * This is called from dmu_fini(), which is called from spa_fini();
9014 * Because of this, we can assume that all l2arc devices have
9015 * already been removed when the pools themselves were removed.
9016 */
9017
9018 l2arc_do_free_on_write();
9019
9020 mutex_destroy(&l2arc_feed_thr_lock);
9021 cv_destroy(&l2arc_feed_thr_cv);
9022 mutex_destroy(&l2arc_dev_mtx);
9023 mutex_destroy(&l2arc_free_on_write_mtx);
9024
9025 list_destroy(l2arc_dev_list);
9026 list_destroy(l2arc_free_on_write);
9027 }
9028
9029 void
9030 l2arc_start(void)
9031 {
9032 if (!(spa_mode_global & FWRITE))
9033 return;
9034
9035 (void) thread_create(NULL, 0, l2arc_feed_thread, NULL, 0, &p0,
9036 TS_RUN, defclsyspri);
9037 }
9038
9039 void
9040 l2arc_stop(void)
9041 {
9042 if (!(spa_mode_global & FWRITE))
9043 return;
9044
9045 mutex_enter(&l2arc_feed_thr_lock);
9046 cv_signal(&l2arc_feed_thr_cv); /* kick thread out of startup */
9047 l2arc_thread_exit = 1;
9048 while (l2arc_thread_exit != 0)
9049 cv_wait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock);
9050 mutex_exit(&l2arc_feed_thr_lock);
9051 }
9052
9053 #if defined(_KERNEL) && defined(HAVE_SPL)
9054 EXPORT_SYMBOL(arc_buf_size);
9055 EXPORT_SYMBOL(arc_write);
9056 EXPORT_SYMBOL(arc_read);
9057 EXPORT_SYMBOL(arc_buf_info);
9058 EXPORT_SYMBOL(arc_getbuf_func);
9059 EXPORT_SYMBOL(arc_add_prune_callback);
9060 EXPORT_SYMBOL(arc_remove_prune_callback);
9061
9062 /* BEGIN CSTYLED */
9063 module_param(zfs_arc_min, ulong, 0644);
9064 MODULE_PARM_DESC(zfs_arc_min, "Min arc size");
9065
9066 module_param(zfs_arc_max, ulong, 0644);
9067 MODULE_PARM_DESC(zfs_arc_max, "Max arc size");
9068
9069 module_param(zfs_arc_meta_limit, ulong, 0644);
9070 MODULE_PARM_DESC(zfs_arc_meta_limit, "Meta limit for arc size");
9071
9072 module_param(zfs_arc_meta_limit_percent, ulong, 0644);
9073 MODULE_PARM_DESC(zfs_arc_meta_limit_percent,
9074 "Percent of arc size for arc meta limit");
9075
9076 module_param(zfs_arc_meta_min, ulong, 0644);
9077 MODULE_PARM_DESC(zfs_arc_meta_min, "Min arc metadata");
9078
9079 module_param(zfs_arc_meta_prune, int, 0644);
9080 MODULE_PARM_DESC(zfs_arc_meta_prune, "Meta objects to scan for prune");
9081
9082 module_param(zfs_arc_meta_adjust_restarts, int, 0644);
9083 MODULE_PARM_DESC(zfs_arc_meta_adjust_restarts,
9084 "Limit number of restarts in arc_adjust_meta");
9085
9086 module_param(zfs_arc_meta_strategy, int, 0644);
9087 MODULE_PARM_DESC(zfs_arc_meta_strategy, "Meta reclaim strategy");
9088
9089 module_param(zfs_arc_grow_retry, int, 0644);
9090 MODULE_PARM_DESC(zfs_arc_grow_retry, "Seconds before growing arc size");
9091
9092 module_param(zfs_arc_p_dampener_disable, int, 0644);
9093 MODULE_PARM_DESC(zfs_arc_p_dampener_disable, "disable arc_p adapt dampener");
9094
9095 module_param(zfs_arc_shrink_shift, int, 0644);
9096 MODULE_PARM_DESC(zfs_arc_shrink_shift, "log2(fraction of arc to reclaim)");
9097
9098 module_param(zfs_arc_pc_percent, uint, 0644);
9099 MODULE_PARM_DESC(zfs_arc_pc_percent,
9100 "Percent of pagecache to reclaim arc to");
9101
9102 module_param(zfs_arc_p_min_shift, int, 0644);
9103 MODULE_PARM_DESC(zfs_arc_p_min_shift, "arc_c shift to calc min/max arc_p");
9104
9105 module_param(zfs_arc_average_blocksize, int, 0444);
9106 MODULE_PARM_DESC(zfs_arc_average_blocksize, "Target average block size");
9107
9108 module_param(zfs_compressed_arc_enabled, int, 0644);
9109 MODULE_PARM_DESC(zfs_compressed_arc_enabled, "Disable compressed arc buffers");
9110
9111 module_param(zfs_arc_min_prefetch_ms, int, 0644);
9112 MODULE_PARM_DESC(zfs_arc_min_prefetch_ms, "Min life of prefetch block in ms");
9113
9114 module_param(zfs_arc_min_prescient_prefetch_ms, int, 0644);
9115 MODULE_PARM_DESC(zfs_arc_min_prescient_prefetch_ms,
9116 "Min life of prescient prefetched block in ms");
9117
9118 module_param(l2arc_write_max, ulong, 0644);
9119 MODULE_PARM_DESC(l2arc_write_max, "Max write bytes per interval");
9120
9121 module_param(l2arc_write_boost, ulong, 0644);
9122 MODULE_PARM_DESC(l2arc_write_boost, "Extra write bytes during device warmup");
9123
9124 module_param(l2arc_headroom, ulong, 0644);
9125 MODULE_PARM_DESC(l2arc_headroom, "Number of max device writes to precache");
9126
9127 module_param(l2arc_headroom_boost, ulong, 0644);
9128 MODULE_PARM_DESC(l2arc_headroom_boost, "Compressed l2arc_headroom multiplier");
9129
9130 module_param(l2arc_feed_secs, ulong, 0644);
9131 MODULE_PARM_DESC(l2arc_feed_secs, "Seconds between L2ARC writing");
9132
9133 module_param(l2arc_feed_min_ms, ulong, 0644);
9134 MODULE_PARM_DESC(l2arc_feed_min_ms, "Min feed interval in milliseconds");
9135
9136 module_param(l2arc_noprefetch, int, 0644);
9137 MODULE_PARM_DESC(l2arc_noprefetch, "Skip caching prefetched buffers");
9138
9139 module_param(l2arc_feed_again, int, 0644);
9140 MODULE_PARM_DESC(l2arc_feed_again, "Turbo L2ARC warmup");
9141
9142 module_param(l2arc_norw, int, 0644);
9143 MODULE_PARM_DESC(l2arc_norw, "No reads during writes");
9144
9145 module_param(zfs_arc_lotsfree_percent, int, 0644);
9146 MODULE_PARM_DESC(zfs_arc_lotsfree_percent,
9147 "System free memory I/O throttle in bytes");
9148
9149 module_param(zfs_arc_sys_free, ulong, 0644);
9150 MODULE_PARM_DESC(zfs_arc_sys_free, "System free memory target size in bytes");
9151
9152 module_param(zfs_arc_dnode_limit, ulong, 0644);
9153 MODULE_PARM_DESC(zfs_arc_dnode_limit, "Minimum bytes of dnodes in arc");
9154
9155 module_param(zfs_arc_dnode_limit_percent, ulong, 0644);
9156 MODULE_PARM_DESC(zfs_arc_dnode_limit_percent,
9157 "Percent of ARC meta buffers for dnodes");
9158
9159 module_param(zfs_arc_dnode_reduce_percent, ulong, 0644);
9160 MODULE_PARM_DESC(zfs_arc_dnode_reduce_percent,
9161 "Percentage of excess dnodes to try to unpin");
9162 /* END CSTYLED */
9163 #endif