]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/arc.c
79b04f45564f6111acb2d2818b881ca71b38e621
[mirror_zfs.git] / module / zfs / arc.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2012, Joyent, Inc. All rights reserved.
24 * Copyright (c) 2011, 2017 by Delphix. All rights reserved.
25 * Copyright (c) 2014 by Saso Kiselkov. All rights reserved.
26 * Copyright 2015 Nexenta Systems, Inc. All rights reserved.
27 */
28
29 /*
30 * DVA-based Adjustable Replacement Cache
31 *
32 * While much of the theory of operation used here is
33 * based on the self-tuning, low overhead replacement cache
34 * presented by Megiddo and Modha at FAST 2003, there are some
35 * significant differences:
36 *
37 * 1. The Megiddo and Modha model assumes any page is evictable.
38 * Pages in its cache cannot be "locked" into memory. This makes
39 * the eviction algorithm simple: evict the last page in the list.
40 * This also make the performance characteristics easy to reason
41 * about. Our cache is not so simple. At any given moment, some
42 * subset of the blocks in the cache are un-evictable because we
43 * have handed out a reference to them. Blocks are only evictable
44 * when there are no external references active. This makes
45 * eviction far more problematic: we choose to evict the evictable
46 * blocks that are the "lowest" in the list.
47 *
48 * There are times when it is not possible to evict the requested
49 * space. In these circumstances we are unable to adjust the cache
50 * size. To prevent the cache growing unbounded at these times we
51 * implement a "cache throttle" that slows the flow of new data
52 * into the cache until we can make space available.
53 *
54 * 2. The Megiddo and Modha model assumes a fixed cache size.
55 * Pages are evicted when the cache is full and there is a cache
56 * miss. Our model has a variable sized cache. It grows with
57 * high use, but also tries to react to memory pressure from the
58 * operating system: decreasing its size when system memory is
59 * tight.
60 *
61 * 3. The Megiddo and Modha model assumes a fixed page size. All
62 * elements of the cache are therefore exactly the same size. So
63 * when adjusting the cache size following a cache miss, its simply
64 * a matter of choosing a single page to evict. In our model, we
65 * have variable sized cache blocks (rangeing from 512 bytes to
66 * 128K bytes). We therefore choose a set of blocks to evict to make
67 * space for a cache miss that approximates as closely as possible
68 * the space used by the new block.
69 *
70 * See also: "ARC: A Self-Tuning, Low Overhead Replacement Cache"
71 * by N. Megiddo & D. Modha, FAST 2003
72 */
73
74 /*
75 * The locking model:
76 *
77 * A new reference to a cache buffer can be obtained in two
78 * ways: 1) via a hash table lookup using the DVA as a key,
79 * or 2) via one of the ARC lists. The arc_read() interface
80 * uses method 1, while the internal ARC algorithms for
81 * adjusting the cache use method 2. We therefore provide two
82 * types of locks: 1) the hash table lock array, and 2) the
83 * ARC list locks.
84 *
85 * Buffers do not have their own mutexes, rather they rely on the
86 * hash table mutexes for the bulk of their protection (i.e. most
87 * fields in the arc_buf_hdr_t are protected by these mutexes).
88 *
89 * buf_hash_find() returns the appropriate mutex (held) when it
90 * locates the requested buffer in the hash table. It returns
91 * NULL for the mutex if the buffer was not in the table.
92 *
93 * buf_hash_remove() expects the appropriate hash mutex to be
94 * already held before it is invoked.
95 *
96 * Each ARC state also has a mutex which is used to protect the
97 * buffer list associated with the state. When attempting to
98 * obtain a hash table lock while holding an ARC list lock you
99 * must use: mutex_tryenter() to avoid deadlock. Also note that
100 * the active state mutex must be held before the ghost state mutex.
101 *
102 * It as also possible to register a callback which is run when the
103 * arc_meta_limit is reached and no buffers can be safely evicted. In
104 * this case the arc user should drop a reference on some arc buffers so
105 * they can be reclaimed and the arc_meta_limit honored. For example,
106 * when using the ZPL each dentry holds a references on a znode. These
107 * dentries must be pruned before the arc buffer holding the znode can
108 * be safely evicted.
109 *
110 * Note that the majority of the performance stats are manipulated
111 * with atomic operations.
112 *
113 * The L2ARC uses the l2ad_mtx on each vdev for the following:
114 *
115 * - L2ARC buflist creation
116 * - L2ARC buflist eviction
117 * - L2ARC write completion, which walks L2ARC buflists
118 * - ARC header destruction, as it removes from L2ARC buflists
119 * - ARC header release, as it removes from L2ARC buflists
120 */
121
122 /*
123 * ARC operation:
124 *
125 * Every block that is in the ARC is tracked by an arc_buf_hdr_t structure.
126 * This structure can point either to a block that is still in the cache or to
127 * one that is only accessible in an L2 ARC device, or it can provide
128 * information about a block that was recently evicted. If a block is
129 * only accessible in the L2ARC, then the arc_buf_hdr_t only has enough
130 * information to retrieve it from the L2ARC device. This information is
131 * stored in the l2arc_buf_hdr_t sub-structure of the arc_buf_hdr_t. A block
132 * that is in this state cannot access the data directly.
133 *
134 * Blocks that are actively being referenced or have not been evicted
135 * are cached in the L1ARC. The L1ARC (l1arc_buf_hdr_t) is a structure within
136 * the arc_buf_hdr_t that will point to the data block in memory. A block can
137 * only be read by a consumer if it has an l1arc_buf_hdr_t. The L1ARC
138 * caches data in two ways -- in a list of ARC buffers (arc_buf_t) and
139 * also in the arc_buf_hdr_t's private physical data block pointer (b_pabd).
140 *
141 * The L1ARC's data pointer may or may not be uncompressed. The ARC has the
142 * ability to store the physical data (b_pabd) associated with the DVA of the
143 * arc_buf_hdr_t. Since the b_pabd is a copy of the on-disk physical block,
144 * it will match its on-disk compression characteristics. This behavior can be
145 * disabled by setting 'zfs_compressed_arc_enabled' to B_FALSE. When the
146 * compressed ARC functionality is disabled, the b_pabd will point to an
147 * uncompressed version of the on-disk data.
148 *
149 * Data in the L1ARC is not accessed by consumers of the ARC directly. Each
150 * arc_buf_hdr_t can have multiple ARC buffers (arc_buf_t) which reference it.
151 * Each ARC buffer (arc_buf_t) is being actively accessed by a specific ARC
152 * consumer. The ARC will provide references to this data and will keep it
153 * cached until it is no longer in use. The ARC caches only the L1ARC's physical
154 * data block and will evict any arc_buf_t that is no longer referenced. The
155 * amount of memory consumed by the arc_buf_ts' data buffers can be seen via the
156 * "overhead_size" kstat.
157 *
158 * Depending on the consumer, an arc_buf_t can be requested in uncompressed or
159 * compressed form. The typical case is that consumers will want uncompressed
160 * data, and when that happens a new data buffer is allocated where the data is
161 * decompressed for them to use. Currently the only consumer who wants
162 * compressed arc_buf_t's is "zfs send", when it streams data exactly as it
163 * exists on disk. When this happens, the arc_buf_t's data buffer is shared
164 * with the arc_buf_hdr_t.
165 *
166 * Here is a diagram showing an arc_buf_hdr_t referenced by two arc_buf_t's. The
167 * first one is owned by a compressed send consumer (and therefore references
168 * the same compressed data buffer as the arc_buf_hdr_t) and the second could be
169 * used by any other consumer (and has its own uncompressed copy of the data
170 * buffer).
171 *
172 * arc_buf_hdr_t
173 * +-----------+
174 * | fields |
175 * | common to |
176 * | L1- and |
177 * | L2ARC |
178 * +-----------+
179 * | l2arc_buf_hdr_t
180 * | |
181 * +-----------+
182 * | l1arc_buf_hdr_t
183 * | | arc_buf_t
184 * | b_buf +------------>+-----------+ arc_buf_t
185 * | b_pabd +-+ |b_next +---->+-----------+
186 * +-----------+ | |-----------| |b_next +-->NULL
187 * | |b_comp = T | +-----------+
188 * | |b_data +-+ |b_comp = F |
189 * | +-----------+ | |b_data +-+
190 * +->+------+ | +-----------+ |
191 * compressed | | | |
192 * data | |<--------------+ | uncompressed
193 * +------+ compressed, | data
194 * shared +-->+------+
195 * data | |
196 * | |
197 * +------+
198 *
199 * When a consumer reads a block, the ARC must first look to see if the
200 * arc_buf_hdr_t is cached. If the hdr is cached then the ARC allocates a new
201 * arc_buf_t and either copies uncompressed data into a new data buffer from an
202 * existing uncompressed arc_buf_t, decompresses the hdr's b_pabd buffer into a
203 * new data buffer, or shares the hdr's b_pabd buffer, depending on whether the
204 * hdr is compressed and the desired compression characteristics of the
205 * arc_buf_t consumer. If the arc_buf_t ends up sharing data with the
206 * arc_buf_hdr_t and both of them are uncompressed then the arc_buf_t must be
207 * the last buffer in the hdr's b_buf list, however a shared compressed buf can
208 * be anywhere in the hdr's list.
209 *
210 * The diagram below shows an example of an uncompressed ARC hdr that is
211 * sharing its data with an arc_buf_t (note that the shared uncompressed buf is
212 * the last element in the buf list):
213 *
214 * arc_buf_hdr_t
215 * +-----------+
216 * | |
217 * | |
218 * | |
219 * +-----------+
220 * l2arc_buf_hdr_t| |
221 * | |
222 * +-----------+
223 * l1arc_buf_hdr_t| |
224 * | | arc_buf_t (shared)
225 * | b_buf +------------>+---------+ arc_buf_t
226 * | | |b_next +---->+---------+
227 * | b_pabd +-+ |---------| |b_next +-->NULL
228 * +-----------+ | | | +---------+
229 * | |b_data +-+ | |
230 * | +---------+ | |b_data +-+
231 * +->+------+ | +---------+ |
232 * | | | |
233 * uncompressed | | | |
234 * data +------+ | |
235 * ^ +->+------+ |
236 * | uncompressed | | |
237 * | data | | |
238 * | +------+ |
239 * +---------------------------------+
240 *
241 * Writing to the ARC requires that the ARC first discard the hdr's b_pabd
242 * since the physical block is about to be rewritten. The new data contents
243 * will be contained in the arc_buf_t. As the I/O pipeline performs the write,
244 * it may compress the data before writing it to disk. The ARC will be called
245 * with the transformed data and will bcopy the transformed on-disk block into
246 * a newly allocated b_pabd. Writes are always done into buffers which have
247 * either been loaned (and hence are new and don't have other readers) or
248 * buffers which have been released (and hence have their own hdr, if there
249 * were originally other readers of the buf's original hdr). This ensures that
250 * the ARC only needs to update a single buf and its hdr after a write occurs.
251 *
252 * When the L2ARC is in use, it will also take advantage of the b_pabd. The
253 * L2ARC will always write the contents of b_pabd to the L2ARC. This means
254 * that when compressed ARC is enabled that the L2ARC blocks are identical
255 * to the on-disk block in the main data pool. This provides a significant
256 * advantage since the ARC can leverage the bp's checksum when reading from the
257 * L2ARC to determine if the contents are valid. However, if the compressed
258 * ARC is disabled, then the L2ARC's block must be transformed to look
259 * like the physical block in the main data pool before comparing the
260 * checksum and determining its validity.
261 */
262
263 #include <sys/spa.h>
264 #include <sys/zio.h>
265 #include <sys/spa_impl.h>
266 #include <sys/zio_compress.h>
267 #include <sys/zio_checksum.h>
268 #include <sys/zfs_context.h>
269 #include <sys/arc.h>
270 #include <sys/refcount.h>
271 #include <sys/vdev.h>
272 #include <sys/vdev_impl.h>
273 #include <sys/dsl_pool.h>
274 #include <sys/zio_checksum.h>
275 #include <sys/multilist.h>
276 #include <sys/abd.h>
277 #ifdef _KERNEL
278 #include <sys/vmsystm.h>
279 #include <vm/anon.h>
280 #include <sys/fs/swapnode.h>
281 #include <sys/zpl.h>
282 #include <linux/mm_compat.h>
283 #endif
284 #include <sys/callb.h>
285 #include <sys/kstat.h>
286 #include <sys/dmu_tx.h>
287 #include <zfs_fletcher.h>
288 #include <sys/arc_impl.h>
289 #include <sys/trace_arc.h>
290
291 #ifndef _KERNEL
292 /* set with ZFS_DEBUG=watch, to enable watchpoints on frozen buffers */
293 boolean_t arc_watch = B_FALSE;
294 #endif
295
296 static kmutex_t arc_reclaim_lock;
297 static kcondvar_t arc_reclaim_thread_cv;
298 static boolean_t arc_reclaim_thread_exit;
299 static kcondvar_t arc_reclaim_waiters_cv;
300
301 /*
302 * The number of headers to evict in arc_evict_state_impl() before
303 * dropping the sublist lock and evicting from another sublist. A lower
304 * value means we're more likely to evict the "correct" header (i.e. the
305 * oldest header in the arc state), but comes with higher overhead
306 * (i.e. more invocations of arc_evict_state_impl()).
307 */
308 int zfs_arc_evict_batch_limit = 10;
309
310 /* number of seconds before growing cache again */
311 static int arc_grow_retry = 5;
312
313 /* shift of arc_c for calculating overflow limit in arc_get_data_impl */
314 int zfs_arc_overflow_shift = 8;
315
316 /* shift of arc_c for calculating both min and max arc_p */
317 static int arc_p_min_shift = 4;
318
319 /* log2(fraction of arc to reclaim) */
320 static int arc_shrink_shift = 7;
321
322 /*
323 * log2(fraction of ARC which must be free to allow growing).
324 * I.e. If there is less than arc_c >> arc_no_grow_shift free memory,
325 * when reading a new block into the ARC, we will evict an equal-sized block
326 * from the ARC.
327 *
328 * This must be less than arc_shrink_shift, so that when we shrink the ARC,
329 * we will still not allow it to grow.
330 */
331 int arc_no_grow_shift = 5;
332
333
334 /*
335 * minimum lifespan of a prefetch block in clock ticks
336 * (initialized in arc_init())
337 */
338 static int arc_min_prefetch_lifespan;
339
340 /*
341 * If this percent of memory is free, don't throttle.
342 */
343 int arc_lotsfree_percent = 10;
344
345 static int arc_dead;
346
347 /*
348 * The arc has filled available memory and has now warmed up.
349 */
350 static boolean_t arc_warm;
351
352 /*
353 * log2 fraction of the zio arena to keep free.
354 */
355 int arc_zio_arena_free_shift = 2;
356
357 /*
358 * These tunables are for performance analysis.
359 */
360 unsigned long zfs_arc_max = 0;
361 unsigned long zfs_arc_min = 0;
362 unsigned long zfs_arc_meta_limit = 0;
363 unsigned long zfs_arc_meta_min = 0;
364 unsigned long zfs_arc_dnode_limit = 0;
365 unsigned long zfs_arc_dnode_reduce_percent = 10;
366 int zfs_arc_grow_retry = 0;
367 int zfs_arc_shrink_shift = 0;
368 int zfs_arc_p_min_shift = 0;
369 int zfs_arc_average_blocksize = 8 * 1024; /* 8KB */
370
371 int zfs_compressed_arc_enabled = B_TRUE;
372
373 /*
374 * ARC will evict meta buffers that exceed arc_meta_limit. This
375 * tunable make arc_meta_limit adjustable for different workloads.
376 */
377 unsigned long zfs_arc_meta_limit_percent = 75;
378
379 /*
380 * Percentage that can be consumed by dnodes of ARC meta buffers.
381 */
382 unsigned long zfs_arc_dnode_limit_percent = 10;
383
384 /*
385 * These tunables are Linux specific
386 */
387 unsigned long zfs_arc_sys_free = 0;
388 int zfs_arc_min_prefetch_lifespan = 0;
389 int zfs_arc_p_aggressive_disable = 1;
390 int zfs_arc_p_dampener_disable = 1;
391 int zfs_arc_meta_prune = 10000;
392 int zfs_arc_meta_strategy = ARC_STRATEGY_META_BALANCED;
393 int zfs_arc_meta_adjust_restarts = 4096;
394 int zfs_arc_lotsfree_percent = 10;
395
396 /* The 6 states: */
397 static arc_state_t ARC_anon;
398 static arc_state_t ARC_mru;
399 static arc_state_t ARC_mru_ghost;
400 static arc_state_t ARC_mfu;
401 static arc_state_t ARC_mfu_ghost;
402 static arc_state_t ARC_l2c_only;
403
404 typedef struct arc_stats {
405 kstat_named_t arcstat_hits;
406 kstat_named_t arcstat_misses;
407 kstat_named_t arcstat_demand_data_hits;
408 kstat_named_t arcstat_demand_data_misses;
409 kstat_named_t arcstat_demand_metadata_hits;
410 kstat_named_t arcstat_demand_metadata_misses;
411 kstat_named_t arcstat_prefetch_data_hits;
412 kstat_named_t arcstat_prefetch_data_misses;
413 kstat_named_t arcstat_prefetch_metadata_hits;
414 kstat_named_t arcstat_prefetch_metadata_misses;
415 kstat_named_t arcstat_mru_hits;
416 kstat_named_t arcstat_mru_ghost_hits;
417 kstat_named_t arcstat_mfu_hits;
418 kstat_named_t arcstat_mfu_ghost_hits;
419 kstat_named_t arcstat_deleted;
420 /*
421 * Number of buffers that could not be evicted because the hash lock
422 * was held by another thread. The lock may not necessarily be held
423 * by something using the same buffer, since hash locks are shared
424 * by multiple buffers.
425 */
426 kstat_named_t arcstat_mutex_miss;
427 /*
428 * Number of buffers skipped because they have I/O in progress, are
429 * indrect prefetch buffers that have not lived long enough, or are
430 * not from the spa we're trying to evict from.
431 */
432 kstat_named_t arcstat_evict_skip;
433 /*
434 * Number of times arc_evict_state() was unable to evict enough
435 * buffers to reach its target amount.
436 */
437 kstat_named_t arcstat_evict_not_enough;
438 kstat_named_t arcstat_evict_l2_cached;
439 kstat_named_t arcstat_evict_l2_eligible;
440 kstat_named_t arcstat_evict_l2_ineligible;
441 kstat_named_t arcstat_evict_l2_skip;
442 kstat_named_t arcstat_hash_elements;
443 kstat_named_t arcstat_hash_elements_max;
444 kstat_named_t arcstat_hash_collisions;
445 kstat_named_t arcstat_hash_chains;
446 kstat_named_t arcstat_hash_chain_max;
447 kstat_named_t arcstat_p;
448 kstat_named_t arcstat_c;
449 kstat_named_t arcstat_c_min;
450 kstat_named_t arcstat_c_max;
451 kstat_named_t arcstat_size;
452 /*
453 * Number of compressed bytes stored in the arc_buf_hdr_t's b_pabd.
454 * Note that the compressed bytes may match the uncompressed bytes
455 * if the block is either not compressed or compressed arc is disabled.
456 */
457 kstat_named_t arcstat_compressed_size;
458 /*
459 * Uncompressed size of the data stored in b_pabd. If compressed
460 * arc is disabled then this value will be identical to the stat
461 * above.
462 */
463 kstat_named_t arcstat_uncompressed_size;
464 /*
465 * Number of bytes stored in all the arc_buf_t's. This is classified
466 * as "overhead" since this data is typically short-lived and will
467 * be evicted from the arc when it becomes unreferenced unless the
468 * zfs_keep_uncompressed_metadata or zfs_keep_uncompressed_level
469 * values have been set (see comment in dbuf.c for more information).
470 */
471 kstat_named_t arcstat_overhead_size;
472 /*
473 * Number of bytes consumed by internal ARC structures necessary
474 * for tracking purposes; these structures are not actually
475 * backed by ARC buffers. This includes arc_buf_hdr_t structures
476 * (allocated via arc_buf_hdr_t_full and arc_buf_hdr_t_l2only
477 * caches), and arc_buf_t structures (allocated via arc_buf_t
478 * cache).
479 */
480 kstat_named_t arcstat_hdr_size;
481 /*
482 * Number of bytes consumed by ARC buffers of type equal to
483 * ARC_BUFC_DATA. This is generally consumed by buffers backing
484 * on disk user data (e.g. plain file contents).
485 */
486 kstat_named_t arcstat_data_size;
487 /*
488 * Number of bytes consumed by ARC buffers of type equal to
489 * ARC_BUFC_METADATA. This is generally consumed by buffers
490 * backing on disk data that is used for internal ZFS
491 * structures (e.g. ZAP, dnode, indirect blocks, etc).
492 */
493 kstat_named_t arcstat_metadata_size;
494 /*
495 * Number of bytes consumed by dmu_buf_impl_t objects.
496 */
497 kstat_named_t arcstat_dbuf_size;
498 /*
499 * Number of bytes consumed by dnode_t objects.
500 */
501 kstat_named_t arcstat_dnode_size;
502 /*
503 * Number of bytes consumed by bonus buffers.
504 */
505 kstat_named_t arcstat_bonus_size;
506 /*
507 * Total number of bytes consumed by ARC buffers residing in the
508 * arc_anon state. This includes *all* buffers in the arc_anon
509 * state; e.g. data, metadata, evictable, and unevictable buffers
510 * are all included in this value.
511 */
512 kstat_named_t arcstat_anon_size;
513 /*
514 * Number of bytes consumed by ARC buffers that meet the
515 * following criteria: backing buffers of type ARC_BUFC_DATA,
516 * residing in the arc_anon state, and are eligible for eviction
517 * (e.g. have no outstanding holds on the buffer).
518 */
519 kstat_named_t arcstat_anon_evictable_data;
520 /*
521 * Number of bytes consumed by ARC buffers that meet the
522 * following criteria: backing buffers of type ARC_BUFC_METADATA,
523 * residing in the arc_anon state, and are eligible for eviction
524 * (e.g. have no outstanding holds on the buffer).
525 */
526 kstat_named_t arcstat_anon_evictable_metadata;
527 /*
528 * Total number of bytes consumed by ARC buffers residing in the
529 * arc_mru state. This includes *all* buffers in the arc_mru
530 * state; e.g. data, metadata, evictable, and unevictable buffers
531 * are all included in this value.
532 */
533 kstat_named_t arcstat_mru_size;
534 /*
535 * Number of bytes consumed by ARC buffers that meet the
536 * following criteria: backing buffers of type ARC_BUFC_DATA,
537 * residing in the arc_mru state, and are eligible for eviction
538 * (e.g. have no outstanding holds on the buffer).
539 */
540 kstat_named_t arcstat_mru_evictable_data;
541 /*
542 * Number of bytes consumed by ARC buffers that meet the
543 * following criteria: backing buffers of type ARC_BUFC_METADATA,
544 * residing in the arc_mru state, and are eligible for eviction
545 * (e.g. have no outstanding holds on the buffer).
546 */
547 kstat_named_t arcstat_mru_evictable_metadata;
548 /*
549 * Total number of bytes that *would have been* consumed by ARC
550 * buffers in the arc_mru_ghost state. The key thing to note
551 * here, is the fact that this size doesn't actually indicate
552 * RAM consumption. The ghost lists only consist of headers and
553 * don't actually have ARC buffers linked off of these headers.
554 * Thus, *if* the headers had associated ARC buffers, these
555 * buffers *would have* consumed this number of bytes.
556 */
557 kstat_named_t arcstat_mru_ghost_size;
558 /*
559 * Number of bytes that *would have been* consumed by ARC
560 * buffers that are eligible for eviction, of type
561 * ARC_BUFC_DATA, and linked off the arc_mru_ghost state.
562 */
563 kstat_named_t arcstat_mru_ghost_evictable_data;
564 /*
565 * Number of bytes that *would have been* consumed by ARC
566 * buffers that are eligible for eviction, of type
567 * ARC_BUFC_METADATA, and linked off the arc_mru_ghost state.
568 */
569 kstat_named_t arcstat_mru_ghost_evictable_metadata;
570 /*
571 * Total number of bytes consumed by ARC buffers residing in the
572 * arc_mfu state. This includes *all* buffers in the arc_mfu
573 * state; e.g. data, metadata, evictable, and unevictable buffers
574 * are all included in this value.
575 */
576 kstat_named_t arcstat_mfu_size;
577 /*
578 * Number of bytes consumed by ARC buffers that are eligible for
579 * eviction, of type ARC_BUFC_DATA, and reside in the arc_mfu
580 * state.
581 */
582 kstat_named_t arcstat_mfu_evictable_data;
583 /*
584 * Number of bytes consumed by ARC buffers that are eligible for
585 * eviction, of type ARC_BUFC_METADATA, and reside in the
586 * arc_mfu state.
587 */
588 kstat_named_t arcstat_mfu_evictable_metadata;
589 /*
590 * Total number of bytes that *would have been* consumed by ARC
591 * buffers in the arc_mfu_ghost state. See the comment above
592 * arcstat_mru_ghost_size for more details.
593 */
594 kstat_named_t arcstat_mfu_ghost_size;
595 /*
596 * Number of bytes that *would have been* consumed by ARC
597 * buffers that are eligible for eviction, of type
598 * ARC_BUFC_DATA, and linked off the arc_mfu_ghost state.
599 */
600 kstat_named_t arcstat_mfu_ghost_evictable_data;
601 /*
602 * Number of bytes that *would have been* consumed by ARC
603 * buffers that are eligible for eviction, of type
604 * ARC_BUFC_METADATA, and linked off the arc_mru_ghost state.
605 */
606 kstat_named_t arcstat_mfu_ghost_evictable_metadata;
607 kstat_named_t arcstat_l2_hits;
608 kstat_named_t arcstat_l2_misses;
609 kstat_named_t arcstat_l2_feeds;
610 kstat_named_t arcstat_l2_rw_clash;
611 kstat_named_t arcstat_l2_read_bytes;
612 kstat_named_t arcstat_l2_write_bytes;
613 kstat_named_t arcstat_l2_writes_sent;
614 kstat_named_t arcstat_l2_writes_done;
615 kstat_named_t arcstat_l2_writes_error;
616 kstat_named_t arcstat_l2_writes_lock_retry;
617 kstat_named_t arcstat_l2_evict_lock_retry;
618 kstat_named_t arcstat_l2_evict_reading;
619 kstat_named_t arcstat_l2_evict_l1cached;
620 kstat_named_t arcstat_l2_free_on_write;
621 kstat_named_t arcstat_l2_abort_lowmem;
622 kstat_named_t arcstat_l2_cksum_bad;
623 kstat_named_t arcstat_l2_io_error;
624 kstat_named_t arcstat_l2_size;
625 kstat_named_t arcstat_l2_asize;
626 kstat_named_t arcstat_l2_hdr_size;
627 kstat_named_t arcstat_memory_throttle_count;
628 kstat_named_t arcstat_memory_direct_count;
629 kstat_named_t arcstat_memory_indirect_count;
630 kstat_named_t arcstat_no_grow;
631 kstat_named_t arcstat_tempreserve;
632 kstat_named_t arcstat_loaned_bytes;
633 kstat_named_t arcstat_prune;
634 kstat_named_t arcstat_meta_used;
635 kstat_named_t arcstat_meta_limit;
636 kstat_named_t arcstat_dnode_limit;
637 kstat_named_t arcstat_meta_max;
638 kstat_named_t arcstat_meta_min;
639 kstat_named_t arcstat_sync_wait_for_async;
640 kstat_named_t arcstat_demand_hit_predictive_prefetch;
641 kstat_named_t arcstat_need_free;
642 kstat_named_t arcstat_sys_free;
643 } arc_stats_t;
644
645 static arc_stats_t arc_stats = {
646 { "hits", KSTAT_DATA_UINT64 },
647 { "misses", KSTAT_DATA_UINT64 },
648 { "demand_data_hits", KSTAT_DATA_UINT64 },
649 { "demand_data_misses", KSTAT_DATA_UINT64 },
650 { "demand_metadata_hits", KSTAT_DATA_UINT64 },
651 { "demand_metadata_misses", KSTAT_DATA_UINT64 },
652 { "prefetch_data_hits", KSTAT_DATA_UINT64 },
653 { "prefetch_data_misses", KSTAT_DATA_UINT64 },
654 { "prefetch_metadata_hits", KSTAT_DATA_UINT64 },
655 { "prefetch_metadata_misses", KSTAT_DATA_UINT64 },
656 { "mru_hits", KSTAT_DATA_UINT64 },
657 { "mru_ghost_hits", KSTAT_DATA_UINT64 },
658 { "mfu_hits", KSTAT_DATA_UINT64 },
659 { "mfu_ghost_hits", KSTAT_DATA_UINT64 },
660 { "deleted", KSTAT_DATA_UINT64 },
661 { "mutex_miss", KSTAT_DATA_UINT64 },
662 { "evict_skip", KSTAT_DATA_UINT64 },
663 { "evict_not_enough", KSTAT_DATA_UINT64 },
664 { "evict_l2_cached", KSTAT_DATA_UINT64 },
665 { "evict_l2_eligible", KSTAT_DATA_UINT64 },
666 { "evict_l2_ineligible", KSTAT_DATA_UINT64 },
667 { "evict_l2_skip", KSTAT_DATA_UINT64 },
668 { "hash_elements", KSTAT_DATA_UINT64 },
669 { "hash_elements_max", KSTAT_DATA_UINT64 },
670 { "hash_collisions", KSTAT_DATA_UINT64 },
671 { "hash_chains", KSTAT_DATA_UINT64 },
672 { "hash_chain_max", KSTAT_DATA_UINT64 },
673 { "p", KSTAT_DATA_UINT64 },
674 { "c", KSTAT_DATA_UINT64 },
675 { "c_min", KSTAT_DATA_UINT64 },
676 { "c_max", KSTAT_DATA_UINT64 },
677 { "size", KSTAT_DATA_UINT64 },
678 { "compressed_size", KSTAT_DATA_UINT64 },
679 { "uncompressed_size", KSTAT_DATA_UINT64 },
680 { "overhead_size", KSTAT_DATA_UINT64 },
681 { "hdr_size", KSTAT_DATA_UINT64 },
682 { "data_size", KSTAT_DATA_UINT64 },
683 { "metadata_size", KSTAT_DATA_UINT64 },
684 { "dbuf_size", KSTAT_DATA_UINT64 },
685 { "dnode_size", KSTAT_DATA_UINT64 },
686 { "bonus_size", KSTAT_DATA_UINT64 },
687 { "anon_size", KSTAT_DATA_UINT64 },
688 { "anon_evictable_data", KSTAT_DATA_UINT64 },
689 { "anon_evictable_metadata", KSTAT_DATA_UINT64 },
690 { "mru_size", KSTAT_DATA_UINT64 },
691 { "mru_evictable_data", KSTAT_DATA_UINT64 },
692 { "mru_evictable_metadata", KSTAT_DATA_UINT64 },
693 { "mru_ghost_size", KSTAT_DATA_UINT64 },
694 { "mru_ghost_evictable_data", KSTAT_DATA_UINT64 },
695 { "mru_ghost_evictable_metadata", KSTAT_DATA_UINT64 },
696 { "mfu_size", KSTAT_DATA_UINT64 },
697 { "mfu_evictable_data", KSTAT_DATA_UINT64 },
698 { "mfu_evictable_metadata", KSTAT_DATA_UINT64 },
699 { "mfu_ghost_size", KSTAT_DATA_UINT64 },
700 { "mfu_ghost_evictable_data", KSTAT_DATA_UINT64 },
701 { "mfu_ghost_evictable_metadata", KSTAT_DATA_UINT64 },
702 { "l2_hits", KSTAT_DATA_UINT64 },
703 { "l2_misses", KSTAT_DATA_UINT64 },
704 { "l2_feeds", KSTAT_DATA_UINT64 },
705 { "l2_rw_clash", KSTAT_DATA_UINT64 },
706 { "l2_read_bytes", KSTAT_DATA_UINT64 },
707 { "l2_write_bytes", KSTAT_DATA_UINT64 },
708 { "l2_writes_sent", KSTAT_DATA_UINT64 },
709 { "l2_writes_done", KSTAT_DATA_UINT64 },
710 { "l2_writes_error", KSTAT_DATA_UINT64 },
711 { "l2_writes_lock_retry", KSTAT_DATA_UINT64 },
712 { "l2_evict_lock_retry", KSTAT_DATA_UINT64 },
713 { "l2_evict_reading", KSTAT_DATA_UINT64 },
714 { "l2_evict_l1cached", KSTAT_DATA_UINT64 },
715 { "l2_free_on_write", KSTAT_DATA_UINT64 },
716 { "l2_abort_lowmem", KSTAT_DATA_UINT64 },
717 { "l2_cksum_bad", KSTAT_DATA_UINT64 },
718 { "l2_io_error", KSTAT_DATA_UINT64 },
719 { "l2_size", KSTAT_DATA_UINT64 },
720 { "l2_asize", KSTAT_DATA_UINT64 },
721 { "l2_hdr_size", KSTAT_DATA_UINT64 },
722 { "memory_throttle_count", KSTAT_DATA_UINT64 },
723 { "memory_direct_count", KSTAT_DATA_UINT64 },
724 { "memory_indirect_count", KSTAT_DATA_UINT64 },
725 { "arc_no_grow", KSTAT_DATA_UINT64 },
726 { "arc_tempreserve", KSTAT_DATA_UINT64 },
727 { "arc_loaned_bytes", KSTAT_DATA_UINT64 },
728 { "arc_prune", KSTAT_DATA_UINT64 },
729 { "arc_meta_used", KSTAT_DATA_UINT64 },
730 { "arc_meta_limit", KSTAT_DATA_UINT64 },
731 { "arc_dnode_limit", KSTAT_DATA_UINT64 },
732 { "arc_meta_max", KSTAT_DATA_UINT64 },
733 { "arc_meta_min", KSTAT_DATA_UINT64 },
734 { "sync_wait_for_async", KSTAT_DATA_UINT64 },
735 { "demand_hit_predictive_prefetch", KSTAT_DATA_UINT64 },
736 { "arc_need_free", KSTAT_DATA_UINT64 },
737 { "arc_sys_free", KSTAT_DATA_UINT64 }
738 };
739
740 #define ARCSTAT(stat) (arc_stats.stat.value.ui64)
741
742 #define ARCSTAT_INCR(stat, val) \
743 atomic_add_64(&arc_stats.stat.value.ui64, (val))
744
745 #define ARCSTAT_BUMP(stat) ARCSTAT_INCR(stat, 1)
746 #define ARCSTAT_BUMPDOWN(stat) ARCSTAT_INCR(stat, -1)
747
748 #define ARCSTAT_MAX(stat, val) { \
749 uint64_t m; \
750 while ((val) > (m = arc_stats.stat.value.ui64) && \
751 (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val)))) \
752 continue; \
753 }
754
755 #define ARCSTAT_MAXSTAT(stat) \
756 ARCSTAT_MAX(stat##_max, arc_stats.stat.value.ui64)
757
758 /*
759 * We define a macro to allow ARC hits/misses to be easily broken down by
760 * two separate conditions, giving a total of four different subtypes for
761 * each of hits and misses (so eight statistics total).
762 */
763 #define ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \
764 if (cond1) { \
765 if (cond2) { \
766 ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \
767 } else { \
768 ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \
769 } \
770 } else { \
771 if (cond2) { \
772 ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \
773 } else { \
774 ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\
775 } \
776 }
777
778 kstat_t *arc_ksp;
779 static arc_state_t *arc_anon;
780 static arc_state_t *arc_mru;
781 static arc_state_t *arc_mru_ghost;
782 static arc_state_t *arc_mfu;
783 static arc_state_t *arc_mfu_ghost;
784 static arc_state_t *arc_l2c_only;
785
786 /*
787 * There are several ARC variables that are critical to export as kstats --
788 * but we don't want to have to grovel around in the kstat whenever we wish to
789 * manipulate them. For these variables, we therefore define them to be in
790 * terms of the statistic variable. This assures that we are not introducing
791 * the possibility of inconsistency by having shadow copies of the variables,
792 * while still allowing the code to be readable.
793 */
794 #define arc_size ARCSTAT(arcstat_size) /* actual total arc size */
795 #define arc_p ARCSTAT(arcstat_p) /* target size of MRU */
796 #define arc_c ARCSTAT(arcstat_c) /* target size of cache */
797 #define arc_c_min ARCSTAT(arcstat_c_min) /* min target cache size */
798 #define arc_c_max ARCSTAT(arcstat_c_max) /* max target cache size */
799 #define arc_no_grow ARCSTAT(arcstat_no_grow) /* do not grow cache size */
800 #define arc_tempreserve ARCSTAT(arcstat_tempreserve)
801 #define arc_loaned_bytes ARCSTAT(arcstat_loaned_bytes)
802 #define arc_meta_limit ARCSTAT(arcstat_meta_limit) /* max size for metadata */
803 #define arc_dnode_limit ARCSTAT(arcstat_dnode_limit) /* max size for dnodes */
804 #define arc_meta_min ARCSTAT(arcstat_meta_min) /* min size for metadata */
805 #define arc_meta_used ARCSTAT(arcstat_meta_used) /* size of metadata */
806 #define arc_meta_max ARCSTAT(arcstat_meta_max) /* max size of metadata */
807 #define arc_dbuf_size ARCSTAT(arcstat_dbuf_size) /* dbuf metadata */
808 #define arc_dnode_size ARCSTAT(arcstat_dnode_size) /* dnode metadata */
809 #define arc_bonus_size ARCSTAT(arcstat_bonus_size) /* bonus buffer metadata */
810 #define arc_need_free ARCSTAT(arcstat_need_free) /* bytes to be freed */
811 #define arc_sys_free ARCSTAT(arcstat_sys_free) /* target system free bytes */
812
813 /* compressed size of entire arc */
814 #define arc_compressed_size ARCSTAT(arcstat_compressed_size)
815 /* uncompressed size of entire arc */
816 #define arc_uncompressed_size ARCSTAT(arcstat_uncompressed_size)
817 /* number of bytes in the arc from arc_buf_t's */
818 #define arc_overhead_size ARCSTAT(arcstat_overhead_size)
819
820 static list_t arc_prune_list;
821 static kmutex_t arc_prune_mtx;
822 static taskq_t *arc_prune_taskq;
823
824 #define GHOST_STATE(state) \
825 ((state) == arc_mru_ghost || (state) == arc_mfu_ghost || \
826 (state) == arc_l2c_only)
827
828 #define HDR_IN_HASH_TABLE(hdr) ((hdr)->b_flags & ARC_FLAG_IN_HASH_TABLE)
829 #define HDR_IO_IN_PROGRESS(hdr) ((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS)
830 #define HDR_IO_ERROR(hdr) ((hdr)->b_flags & ARC_FLAG_IO_ERROR)
831 #define HDR_PREFETCH(hdr) ((hdr)->b_flags & ARC_FLAG_PREFETCH)
832 #define HDR_COMPRESSION_ENABLED(hdr) \
833 ((hdr)->b_flags & ARC_FLAG_COMPRESSED_ARC)
834
835 #define HDR_L2CACHE(hdr) ((hdr)->b_flags & ARC_FLAG_L2CACHE)
836 #define HDR_L2_READING(hdr) \
837 (((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS) && \
838 ((hdr)->b_flags & ARC_FLAG_HAS_L2HDR))
839 #define HDR_L2_WRITING(hdr) ((hdr)->b_flags & ARC_FLAG_L2_WRITING)
840 #define HDR_L2_EVICTED(hdr) ((hdr)->b_flags & ARC_FLAG_L2_EVICTED)
841 #define HDR_L2_WRITE_HEAD(hdr) ((hdr)->b_flags & ARC_FLAG_L2_WRITE_HEAD)
842 #define HDR_SHARED_DATA(hdr) ((hdr)->b_flags & ARC_FLAG_SHARED_DATA)
843
844 #define HDR_ISTYPE_METADATA(hdr) \
845 ((hdr)->b_flags & ARC_FLAG_BUFC_METADATA)
846 #define HDR_ISTYPE_DATA(hdr) (!HDR_ISTYPE_METADATA(hdr))
847
848 #define HDR_HAS_L1HDR(hdr) ((hdr)->b_flags & ARC_FLAG_HAS_L1HDR)
849 #define HDR_HAS_L2HDR(hdr) ((hdr)->b_flags & ARC_FLAG_HAS_L2HDR)
850
851 /* For storing compression mode in b_flags */
852 #define HDR_COMPRESS_OFFSET (highbit64(ARC_FLAG_COMPRESS_0) - 1)
853
854 #define HDR_GET_COMPRESS(hdr) ((enum zio_compress)BF32_GET((hdr)->b_flags, \
855 HDR_COMPRESS_OFFSET, SPA_COMPRESSBITS))
856 #define HDR_SET_COMPRESS(hdr, cmp) BF32_SET((hdr)->b_flags, \
857 HDR_COMPRESS_OFFSET, SPA_COMPRESSBITS, (cmp));
858
859 #define ARC_BUF_LAST(buf) ((buf)->b_next == NULL)
860 #define ARC_BUF_SHARED(buf) ((buf)->b_flags & ARC_BUF_FLAG_SHARED)
861 #define ARC_BUF_COMPRESSED(buf) ((buf)->b_flags & ARC_BUF_FLAG_COMPRESSED)
862
863 /*
864 * Other sizes
865 */
866
867 #define HDR_FULL_SIZE ((int64_t)sizeof (arc_buf_hdr_t))
868 #define HDR_L2ONLY_SIZE ((int64_t)offsetof(arc_buf_hdr_t, b_l1hdr))
869
870 /*
871 * Hash table routines
872 */
873
874 #define HT_LOCK_ALIGN 64
875 #define HT_LOCK_PAD (P2NPHASE(sizeof (kmutex_t), (HT_LOCK_ALIGN)))
876
877 struct ht_lock {
878 kmutex_t ht_lock;
879 #ifdef _KERNEL
880 unsigned char pad[HT_LOCK_PAD];
881 #endif
882 };
883
884 #define BUF_LOCKS 8192
885 typedef struct buf_hash_table {
886 uint64_t ht_mask;
887 arc_buf_hdr_t **ht_table;
888 struct ht_lock ht_locks[BUF_LOCKS];
889 } buf_hash_table_t;
890
891 static buf_hash_table_t buf_hash_table;
892
893 #define BUF_HASH_INDEX(spa, dva, birth) \
894 (buf_hash(spa, dva, birth) & buf_hash_table.ht_mask)
895 #define BUF_HASH_LOCK_NTRY(idx) (buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)])
896 #define BUF_HASH_LOCK(idx) (&(BUF_HASH_LOCK_NTRY(idx).ht_lock))
897 #define HDR_LOCK(hdr) \
898 (BUF_HASH_LOCK(BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth)))
899
900 uint64_t zfs_crc64_table[256];
901
902 /*
903 * Level 2 ARC
904 */
905
906 #define L2ARC_WRITE_SIZE (8 * 1024 * 1024) /* initial write max */
907 #define L2ARC_HEADROOM 2 /* num of writes */
908
909 /*
910 * If we discover during ARC scan any buffers to be compressed, we boost
911 * our headroom for the next scanning cycle by this percentage multiple.
912 */
913 #define L2ARC_HEADROOM_BOOST 200
914 #define L2ARC_FEED_SECS 1 /* caching interval secs */
915 #define L2ARC_FEED_MIN_MS 200 /* min caching interval ms */
916
917 /*
918 * We can feed L2ARC from two states of ARC buffers, mru and mfu,
919 * and each of the state has two types: data and metadata.
920 */
921 #define L2ARC_FEED_TYPES 4
922
923 #define l2arc_writes_sent ARCSTAT(arcstat_l2_writes_sent)
924 #define l2arc_writes_done ARCSTAT(arcstat_l2_writes_done)
925
926 /* L2ARC Performance Tunables */
927 unsigned long l2arc_write_max = L2ARC_WRITE_SIZE; /* def max write size */
928 unsigned long l2arc_write_boost = L2ARC_WRITE_SIZE; /* extra warmup write */
929 unsigned long l2arc_headroom = L2ARC_HEADROOM; /* # of dev writes */
930 unsigned long l2arc_headroom_boost = L2ARC_HEADROOM_BOOST;
931 unsigned long l2arc_feed_secs = L2ARC_FEED_SECS; /* interval seconds */
932 unsigned long l2arc_feed_min_ms = L2ARC_FEED_MIN_MS; /* min interval msecs */
933 int l2arc_noprefetch = B_TRUE; /* don't cache prefetch bufs */
934 int l2arc_feed_again = B_TRUE; /* turbo warmup */
935 int l2arc_norw = B_FALSE; /* no reads during writes */
936
937 /*
938 * L2ARC Internals
939 */
940 static list_t L2ARC_dev_list; /* device list */
941 static list_t *l2arc_dev_list; /* device list pointer */
942 static kmutex_t l2arc_dev_mtx; /* device list mutex */
943 static l2arc_dev_t *l2arc_dev_last; /* last device used */
944 static list_t L2ARC_free_on_write; /* free after write buf list */
945 static list_t *l2arc_free_on_write; /* free after write list ptr */
946 static kmutex_t l2arc_free_on_write_mtx; /* mutex for list */
947 static uint64_t l2arc_ndev; /* number of devices */
948
949 typedef struct l2arc_read_callback {
950 arc_buf_hdr_t *l2rcb_hdr; /* read header */
951 blkptr_t l2rcb_bp; /* original blkptr */
952 zbookmark_phys_t l2rcb_zb; /* original bookmark */
953 int l2rcb_flags; /* original flags */
954 } l2arc_read_callback_t;
955
956 typedef struct l2arc_data_free {
957 /* protected by l2arc_free_on_write_mtx */
958 abd_t *l2df_abd;
959 size_t l2df_size;
960 arc_buf_contents_t l2df_type;
961 list_node_t l2df_list_node;
962 } l2arc_data_free_t;
963
964 static kmutex_t l2arc_feed_thr_lock;
965 static kcondvar_t l2arc_feed_thr_cv;
966 static uint8_t l2arc_thread_exit;
967
968 static abd_t *arc_get_data_abd(arc_buf_hdr_t *, uint64_t, void *);
969 static void *arc_get_data_buf(arc_buf_hdr_t *, uint64_t, void *);
970 static void arc_get_data_impl(arc_buf_hdr_t *, uint64_t, void *);
971 static void arc_free_data_abd(arc_buf_hdr_t *, abd_t *, uint64_t, void *);
972 static void arc_free_data_buf(arc_buf_hdr_t *, void *, uint64_t, void *);
973 static void arc_free_data_impl(arc_buf_hdr_t *hdr, uint64_t size, void *tag);
974 static void arc_hdr_free_pabd(arc_buf_hdr_t *);
975 static void arc_hdr_alloc_pabd(arc_buf_hdr_t *);
976 static void arc_access(arc_buf_hdr_t *, kmutex_t *);
977 static boolean_t arc_is_overflowing(void);
978 static void arc_buf_watch(arc_buf_t *);
979 static void arc_tuning_update(void);
980 static void arc_prune_async(int64_t);
981 static uint64_t arc_all_memory(void);
982
983 static arc_buf_contents_t arc_buf_type(arc_buf_hdr_t *);
984 static uint32_t arc_bufc_to_flags(arc_buf_contents_t);
985 static inline void arc_hdr_set_flags(arc_buf_hdr_t *hdr, arc_flags_t flags);
986 static inline void arc_hdr_clear_flags(arc_buf_hdr_t *hdr, arc_flags_t flags);
987
988 static boolean_t l2arc_write_eligible(uint64_t, arc_buf_hdr_t *);
989 static void l2arc_read_done(zio_t *);
990
991 static uint64_t
992 buf_hash(uint64_t spa, const dva_t *dva, uint64_t birth)
993 {
994 uint8_t *vdva = (uint8_t *)dva;
995 uint64_t crc = -1ULL;
996 int i;
997
998 ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
999
1000 for (i = 0; i < sizeof (dva_t); i++)
1001 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ vdva[i]) & 0xFF];
1002
1003 crc ^= (spa>>8) ^ birth;
1004
1005 return (crc);
1006 }
1007
1008 #define HDR_EMPTY(hdr) \
1009 ((hdr)->b_dva.dva_word[0] == 0 && \
1010 (hdr)->b_dva.dva_word[1] == 0)
1011
1012 #define HDR_EQUAL(spa, dva, birth, hdr) \
1013 ((hdr)->b_dva.dva_word[0] == (dva)->dva_word[0]) && \
1014 ((hdr)->b_dva.dva_word[1] == (dva)->dva_word[1]) && \
1015 ((hdr)->b_birth == birth) && ((hdr)->b_spa == spa)
1016
1017 static void
1018 buf_discard_identity(arc_buf_hdr_t *hdr)
1019 {
1020 hdr->b_dva.dva_word[0] = 0;
1021 hdr->b_dva.dva_word[1] = 0;
1022 hdr->b_birth = 0;
1023 }
1024
1025 static arc_buf_hdr_t *
1026 buf_hash_find(uint64_t spa, const blkptr_t *bp, kmutex_t **lockp)
1027 {
1028 const dva_t *dva = BP_IDENTITY(bp);
1029 uint64_t birth = BP_PHYSICAL_BIRTH(bp);
1030 uint64_t idx = BUF_HASH_INDEX(spa, dva, birth);
1031 kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
1032 arc_buf_hdr_t *hdr;
1033
1034 mutex_enter(hash_lock);
1035 for (hdr = buf_hash_table.ht_table[idx]; hdr != NULL;
1036 hdr = hdr->b_hash_next) {
1037 if (HDR_EQUAL(spa, dva, birth, hdr)) {
1038 *lockp = hash_lock;
1039 return (hdr);
1040 }
1041 }
1042 mutex_exit(hash_lock);
1043 *lockp = NULL;
1044 return (NULL);
1045 }
1046
1047 /*
1048 * Insert an entry into the hash table. If there is already an element
1049 * equal to elem in the hash table, then the already existing element
1050 * will be returned and the new element will not be inserted.
1051 * Otherwise returns NULL.
1052 * If lockp == NULL, the caller is assumed to already hold the hash lock.
1053 */
1054 static arc_buf_hdr_t *
1055 buf_hash_insert(arc_buf_hdr_t *hdr, kmutex_t **lockp)
1056 {
1057 uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth);
1058 kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
1059 arc_buf_hdr_t *fhdr;
1060 uint32_t i;
1061
1062 ASSERT(!DVA_IS_EMPTY(&hdr->b_dva));
1063 ASSERT(hdr->b_birth != 0);
1064 ASSERT(!HDR_IN_HASH_TABLE(hdr));
1065
1066 if (lockp != NULL) {
1067 *lockp = hash_lock;
1068 mutex_enter(hash_lock);
1069 } else {
1070 ASSERT(MUTEX_HELD(hash_lock));
1071 }
1072
1073 for (fhdr = buf_hash_table.ht_table[idx], i = 0; fhdr != NULL;
1074 fhdr = fhdr->b_hash_next, i++) {
1075 if (HDR_EQUAL(hdr->b_spa, &hdr->b_dva, hdr->b_birth, fhdr))
1076 return (fhdr);
1077 }
1078
1079 hdr->b_hash_next = buf_hash_table.ht_table[idx];
1080 buf_hash_table.ht_table[idx] = hdr;
1081 arc_hdr_set_flags(hdr, ARC_FLAG_IN_HASH_TABLE);
1082
1083 /* collect some hash table performance data */
1084 if (i > 0) {
1085 ARCSTAT_BUMP(arcstat_hash_collisions);
1086 if (i == 1)
1087 ARCSTAT_BUMP(arcstat_hash_chains);
1088
1089 ARCSTAT_MAX(arcstat_hash_chain_max, i);
1090 }
1091
1092 ARCSTAT_BUMP(arcstat_hash_elements);
1093 ARCSTAT_MAXSTAT(arcstat_hash_elements);
1094
1095 return (NULL);
1096 }
1097
1098 static void
1099 buf_hash_remove(arc_buf_hdr_t *hdr)
1100 {
1101 arc_buf_hdr_t *fhdr, **hdrp;
1102 uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth);
1103
1104 ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx)));
1105 ASSERT(HDR_IN_HASH_TABLE(hdr));
1106
1107 hdrp = &buf_hash_table.ht_table[idx];
1108 while ((fhdr = *hdrp) != hdr) {
1109 ASSERT3P(fhdr, !=, NULL);
1110 hdrp = &fhdr->b_hash_next;
1111 }
1112 *hdrp = hdr->b_hash_next;
1113 hdr->b_hash_next = NULL;
1114 arc_hdr_clear_flags(hdr, ARC_FLAG_IN_HASH_TABLE);
1115
1116 /* collect some hash table performance data */
1117 ARCSTAT_BUMPDOWN(arcstat_hash_elements);
1118
1119 if (buf_hash_table.ht_table[idx] &&
1120 buf_hash_table.ht_table[idx]->b_hash_next == NULL)
1121 ARCSTAT_BUMPDOWN(arcstat_hash_chains);
1122 }
1123
1124 /*
1125 * Global data structures and functions for the buf kmem cache.
1126 */
1127 static kmem_cache_t *hdr_full_cache;
1128 static kmem_cache_t *hdr_l2only_cache;
1129 static kmem_cache_t *buf_cache;
1130
1131 static void
1132 buf_fini(void)
1133 {
1134 int i;
1135
1136 #if defined(_KERNEL) && defined(HAVE_SPL)
1137 /*
1138 * Large allocations which do not require contiguous pages
1139 * should be using vmem_free() in the linux kernel\
1140 */
1141 vmem_free(buf_hash_table.ht_table,
1142 (buf_hash_table.ht_mask + 1) * sizeof (void *));
1143 #else
1144 kmem_free(buf_hash_table.ht_table,
1145 (buf_hash_table.ht_mask + 1) * sizeof (void *));
1146 #endif
1147 for (i = 0; i < BUF_LOCKS; i++)
1148 mutex_destroy(&buf_hash_table.ht_locks[i].ht_lock);
1149 kmem_cache_destroy(hdr_full_cache);
1150 kmem_cache_destroy(hdr_l2only_cache);
1151 kmem_cache_destroy(buf_cache);
1152 }
1153
1154 /*
1155 * Constructor callback - called when the cache is empty
1156 * and a new buf is requested.
1157 */
1158 /* ARGSUSED */
1159 static int
1160 hdr_full_cons(void *vbuf, void *unused, int kmflag)
1161 {
1162 arc_buf_hdr_t *hdr = vbuf;
1163
1164 bzero(hdr, HDR_FULL_SIZE);
1165 cv_init(&hdr->b_l1hdr.b_cv, NULL, CV_DEFAULT, NULL);
1166 refcount_create(&hdr->b_l1hdr.b_refcnt);
1167 mutex_init(&hdr->b_l1hdr.b_freeze_lock, NULL, MUTEX_DEFAULT, NULL);
1168 list_link_init(&hdr->b_l1hdr.b_arc_node);
1169 list_link_init(&hdr->b_l2hdr.b_l2node);
1170 multilist_link_init(&hdr->b_l1hdr.b_arc_node);
1171 arc_space_consume(HDR_FULL_SIZE, ARC_SPACE_HDRS);
1172
1173 return (0);
1174 }
1175
1176 /* ARGSUSED */
1177 static int
1178 hdr_l2only_cons(void *vbuf, void *unused, int kmflag)
1179 {
1180 arc_buf_hdr_t *hdr = vbuf;
1181
1182 bzero(hdr, HDR_L2ONLY_SIZE);
1183 arc_space_consume(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS);
1184
1185 return (0);
1186 }
1187
1188 /* ARGSUSED */
1189 static int
1190 buf_cons(void *vbuf, void *unused, int kmflag)
1191 {
1192 arc_buf_t *buf = vbuf;
1193
1194 bzero(buf, sizeof (arc_buf_t));
1195 mutex_init(&buf->b_evict_lock, NULL, MUTEX_DEFAULT, NULL);
1196 arc_space_consume(sizeof (arc_buf_t), ARC_SPACE_HDRS);
1197
1198 return (0);
1199 }
1200
1201 /*
1202 * Destructor callback - called when a cached buf is
1203 * no longer required.
1204 */
1205 /* ARGSUSED */
1206 static void
1207 hdr_full_dest(void *vbuf, void *unused)
1208 {
1209 arc_buf_hdr_t *hdr = vbuf;
1210
1211 ASSERT(HDR_EMPTY(hdr));
1212 cv_destroy(&hdr->b_l1hdr.b_cv);
1213 refcount_destroy(&hdr->b_l1hdr.b_refcnt);
1214 mutex_destroy(&hdr->b_l1hdr.b_freeze_lock);
1215 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
1216 arc_space_return(HDR_FULL_SIZE, ARC_SPACE_HDRS);
1217 }
1218
1219 /* ARGSUSED */
1220 static void
1221 hdr_l2only_dest(void *vbuf, void *unused)
1222 {
1223 ASSERTV(arc_buf_hdr_t *hdr = vbuf);
1224
1225 ASSERT(HDR_EMPTY(hdr));
1226 arc_space_return(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS);
1227 }
1228
1229 /* ARGSUSED */
1230 static void
1231 buf_dest(void *vbuf, void *unused)
1232 {
1233 arc_buf_t *buf = vbuf;
1234
1235 mutex_destroy(&buf->b_evict_lock);
1236 arc_space_return(sizeof (arc_buf_t), ARC_SPACE_HDRS);
1237 }
1238
1239 /*
1240 * Reclaim callback -- invoked when memory is low.
1241 */
1242 /* ARGSUSED */
1243 static void
1244 hdr_recl(void *unused)
1245 {
1246 dprintf("hdr_recl called\n");
1247 /*
1248 * umem calls the reclaim func when we destroy the buf cache,
1249 * which is after we do arc_fini().
1250 */
1251 if (!arc_dead)
1252 cv_signal(&arc_reclaim_thread_cv);
1253 }
1254
1255 static void
1256 buf_init(void)
1257 {
1258 uint64_t *ct = NULL;
1259 uint64_t hsize = 1ULL << 12;
1260 int i, j;
1261
1262 /*
1263 * The hash table is big enough to fill all of physical memory
1264 * with an average block size of zfs_arc_average_blocksize (default 8K).
1265 * By default, the table will take up
1266 * totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers).
1267 */
1268 while (hsize * zfs_arc_average_blocksize < arc_all_memory())
1269 hsize <<= 1;
1270 retry:
1271 buf_hash_table.ht_mask = hsize - 1;
1272 #if defined(_KERNEL) && defined(HAVE_SPL)
1273 /*
1274 * Large allocations which do not require contiguous pages
1275 * should be using vmem_alloc() in the linux kernel
1276 */
1277 buf_hash_table.ht_table =
1278 vmem_zalloc(hsize * sizeof (void*), KM_SLEEP);
1279 #else
1280 buf_hash_table.ht_table =
1281 kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP);
1282 #endif
1283 if (buf_hash_table.ht_table == NULL) {
1284 ASSERT(hsize > (1ULL << 8));
1285 hsize >>= 1;
1286 goto retry;
1287 }
1288
1289 hdr_full_cache = kmem_cache_create("arc_buf_hdr_t_full", HDR_FULL_SIZE,
1290 0, hdr_full_cons, hdr_full_dest, hdr_recl, NULL, NULL, 0);
1291 hdr_l2only_cache = kmem_cache_create("arc_buf_hdr_t_l2only",
1292 HDR_L2ONLY_SIZE, 0, hdr_l2only_cons, hdr_l2only_dest, hdr_recl,
1293 NULL, NULL, 0);
1294 buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t),
1295 0, buf_cons, buf_dest, NULL, NULL, NULL, 0);
1296
1297 for (i = 0; i < 256; i++)
1298 for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--)
1299 *ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY);
1300
1301 for (i = 0; i < BUF_LOCKS; i++) {
1302 mutex_init(&buf_hash_table.ht_locks[i].ht_lock,
1303 NULL, MUTEX_DEFAULT, NULL);
1304 }
1305 }
1306
1307 #define ARC_MINTIME (hz>>4) /* 62 ms */
1308
1309 /*
1310 * This is the size that the buf occupies in memory. If the buf is compressed,
1311 * it will correspond to the compressed size. You should use this method of
1312 * getting the buf size unless you explicitly need the logical size.
1313 */
1314 uint64_t
1315 arc_buf_size(arc_buf_t *buf)
1316 {
1317 return (ARC_BUF_COMPRESSED(buf) ?
1318 HDR_GET_PSIZE(buf->b_hdr) : HDR_GET_LSIZE(buf->b_hdr));
1319 }
1320
1321 uint64_t
1322 arc_buf_lsize(arc_buf_t *buf)
1323 {
1324 return (HDR_GET_LSIZE(buf->b_hdr));
1325 }
1326
1327 enum zio_compress
1328 arc_get_compression(arc_buf_t *buf)
1329 {
1330 return (ARC_BUF_COMPRESSED(buf) ?
1331 HDR_GET_COMPRESS(buf->b_hdr) : ZIO_COMPRESS_OFF);
1332 }
1333
1334 static inline boolean_t
1335 arc_buf_is_shared(arc_buf_t *buf)
1336 {
1337 boolean_t shared = (buf->b_data != NULL &&
1338 buf->b_hdr->b_l1hdr.b_pabd != NULL &&
1339 abd_is_linear(buf->b_hdr->b_l1hdr.b_pabd) &&
1340 buf->b_data == abd_to_buf(buf->b_hdr->b_l1hdr.b_pabd));
1341 IMPLY(shared, HDR_SHARED_DATA(buf->b_hdr));
1342 IMPLY(shared, ARC_BUF_SHARED(buf));
1343 IMPLY(shared, ARC_BUF_COMPRESSED(buf) || ARC_BUF_LAST(buf));
1344
1345 /*
1346 * It would be nice to assert arc_can_share() too, but the "hdr isn't
1347 * already being shared" requirement prevents us from doing that.
1348 */
1349
1350 return (shared);
1351 }
1352
1353 /*
1354 * Free the checksum associated with this header. If there is no checksum, this
1355 * is a no-op.
1356 */
1357 static inline void
1358 arc_cksum_free(arc_buf_hdr_t *hdr)
1359 {
1360 ASSERT(HDR_HAS_L1HDR(hdr));
1361 mutex_enter(&hdr->b_l1hdr.b_freeze_lock);
1362 if (hdr->b_l1hdr.b_freeze_cksum != NULL) {
1363 kmem_free(hdr->b_l1hdr.b_freeze_cksum, sizeof (zio_cksum_t));
1364 hdr->b_l1hdr.b_freeze_cksum = NULL;
1365 }
1366 mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1367 }
1368
1369 /*
1370 * Return true iff at least one of the bufs on hdr is not compressed.
1371 */
1372 static boolean_t
1373 arc_hdr_has_uncompressed_buf(arc_buf_hdr_t *hdr)
1374 {
1375 for (arc_buf_t *b = hdr->b_l1hdr.b_buf; b != NULL; b = b->b_next) {
1376 if (!ARC_BUF_COMPRESSED(b)) {
1377 return (B_TRUE);
1378 }
1379 }
1380 return (B_FALSE);
1381 }
1382
1383
1384 /*
1385 * If we've turned on the ZFS_DEBUG_MODIFY flag, verify that the buf's data
1386 * matches the checksum that is stored in the hdr. If there is no checksum,
1387 * or if the buf is compressed, this is a no-op.
1388 */
1389 static void
1390 arc_cksum_verify(arc_buf_t *buf)
1391 {
1392 arc_buf_hdr_t *hdr = buf->b_hdr;
1393 zio_cksum_t zc;
1394
1395 if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1396 return;
1397
1398 if (ARC_BUF_COMPRESSED(buf)) {
1399 ASSERT(hdr->b_l1hdr.b_freeze_cksum == NULL ||
1400 arc_hdr_has_uncompressed_buf(hdr));
1401 return;
1402 }
1403
1404 ASSERT(HDR_HAS_L1HDR(hdr));
1405
1406 mutex_enter(&hdr->b_l1hdr.b_freeze_lock);
1407 if (hdr->b_l1hdr.b_freeze_cksum == NULL || HDR_IO_ERROR(hdr)) {
1408 mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1409 return;
1410 }
1411
1412 fletcher_2_native(buf->b_data, arc_buf_size(buf), NULL, &zc);
1413 if (!ZIO_CHECKSUM_EQUAL(*hdr->b_l1hdr.b_freeze_cksum, zc))
1414 panic("buffer modified while frozen!");
1415 mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1416 }
1417
1418 static boolean_t
1419 arc_cksum_is_equal(arc_buf_hdr_t *hdr, zio_t *zio)
1420 {
1421 enum zio_compress compress = BP_GET_COMPRESS(zio->io_bp);
1422 boolean_t valid_cksum;
1423
1424 ASSERT(!BP_IS_EMBEDDED(zio->io_bp));
1425 VERIFY3U(BP_GET_PSIZE(zio->io_bp), ==, HDR_GET_PSIZE(hdr));
1426
1427 /*
1428 * We rely on the blkptr's checksum to determine if the block
1429 * is valid or not. When compressed arc is enabled, the l2arc
1430 * writes the block to the l2arc just as it appears in the pool.
1431 * This allows us to use the blkptr's checksum to validate the
1432 * data that we just read off of the l2arc without having to store
1433 * a separate checksum in the arc_buf_hdr_t. However, if compressed
1434 * arc is disabled, then the data written to the l2arc is always
1435 * uncompressed and won't match the block as it exists in the main
1436 * pool. When this is the case, we must first compress it if it is
1437 * compressed on the main pool before we can validate the checksum.
1438 */
1439 if (!HDR_COMPRESSION_ENABLED(hdr) && compress != ZIO_COMPRESS_OFF) {
1440 uint64_t lsize;
1441 uint64_t csize;
1442 void *cbuf;
1443 ASSERT3U(HDR_GET_COMPRESS(hdr), ==, ZIO_COMPRESS_OFF);
1444
1445 cbuf = zio_buf_alloc(HDR_GET_PSIZE(hdr));
1446 lsize = HDR_GET_LSIZE(hdr);
1447 csize = zio_compress_data(compress, zio->io_abd, cbuf, lsize);
1448
1449 ASSERT3U(csize, <=, HDR_GET_PSIZE(hdr));
1450 if (csize < HDR_GET_PSIZE(hdr)) {
1451 /*
1452 * Compressed blocks are always a multiple of the
1453 * smallest ashift in the pool. Ideally, we would
1454 * like to round up the csize to the next
1455 * spa_min_ashift but that value may have changed
1456 * since the block was last written. Instead,
1457 * we rely on the fact that the hdr's psize
1458 * was set to the psize of the block when it was
1459 * last written. We set the csize to that value
1460 * and zero out any part that should not contain
1461 * data.
1462 */
1463 bzero((char *)cbuf + csize, HDR_GET_PSIZE(hdr) - csize);
1464 csize = HDR_GET_PSIZE(hdr);
1465 }
1466 zio_push_transform(zio, cbuf, csize, HDR_GET_PSIZE(hdr), NULL);
1467 }
1468
1469 /*
1470 * Block pointers always store the checksum for the logical data.
1471 * If the block pointer has the gang bit set, then the checksum
1472 * it represents is for the reconstituted data and not for an
1473 * individual gang member. The zio pipeline, however, must be able to
1474 * determine the checksum of each of the gang constituents so it
1475 * treats the checksum comparison differently than what we need
1476 * for l2arc blocks. This prevents us from using the
1477 * zio_checksum_error() interface directly. Instead we must call the
1478 * zio_checksum_error_impl() so that we can ensure the checksum is
1479 * generated using the correct checksum algorithm and accounts for the
1480 * logical I/O size and not just a gang fragment.
1481 */
1482 valid_cksum = (zio_checksum_error_impl(zio->io_spa, zio->io_bp,
1483 BP_GET_CHECKSUM(zio->io_bp), zio->io_abd, zio->io_size,
1484 zio->io_offset, NULL) == 0);
1485 zio_pop_transforms(zio);
1486 return (valid_cksum);
1487 }
1488
1489 /*
1490 * Given a buf full of data, if ZFS_DEBUG_MODIFY is enabled this computes a
1491 * checksum and attaches it to the buf's hdr so that we can ensure that the buf
1492 * isn't modified later on. If buf is compressed or there is already a checksum
1493 * on the hdr, this is a no-op (we only checksum uncompressed bufs).
1494 */
1495 static void
1496 arc_cksum_compute(arc_buf_t *buf)
1497 {
1498 arc_buf_hdr_t *hdr = buf->b_hdr;
1499
1500 if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1501 return;
1502
1503 ASSERT(HDR_HAS_L1HDR(hdr));
1504
1505 mutex_enter(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1506 if (hdr->b_l1hdr.b_freeze_cksum != NULL) {
1507 ASSERT(arc_hdr_has_uncompressed_buf(hdr));
1508 mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1509 return;
1510 } else if (ARC_BUF_COMPRESSED(buf)) {
1511 mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1512 return;
1513 }
1514
1515 ASSERT(!ARC_BUF_COMPRESSED(buf));
1516 hdr->b_l1hdr.b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t),
1517 KM_SLEEP);
1518 fletcher_2_native(buf->b_data, arc_buf_size(buf), NULL,
1519 hdr->b_l1hdr.b_freeze_cksum);
1520 mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1521 arc_buf_watch(buf);
1522 }
1523
1524 #ifndef _KERNEL
1525 void
1526 arc_buf_sigsegv(int sig, siginfo_t *si, void *unused)
1527 {
1528 panic("Got SIGSEGV at address: 0x%lx\n", (long)si->si_addr);
1529 }
1530 #endif
1531
1532 /* ARGSUSED */
1533 static void
1534 arc_buf_unwatch(arc_buf_t *buf)
1535 {
1536 #ifndef _KERNEL
1537 if (arc_watch) {
1538 ASSERT0(mprotect(buf->b_data, arc_buf_size(buf),
1539 PROT_READ | PROT_WRITE));
1540 }
1541 #endif
1542 }
1543
1544 /* ARGSUSED */
1545 static void
1546 arc_buf_watch(arc_buf_t *buf)
1547 {
1548 #ifndef _KERNEL
1549 if (arc_watch)
1550 ASSERT0(mprotect(buf->b_data, arc_buf_size(buf),
1551 PROT_READ));
1552 #endif
1553 }
1554
1555 static arc_buf_contents_t
1556 arc_buf_type(arc_buf_hdr_t *hdr)
1557 {
1558 arc_buf_contents_t type;
1559 if (HDR_ISTYPE_METADATA(hdr)) {
1560 type = ARC_BUFC_METADATA;
1561 } else {
1562 type = ARC_BUFC_DATA;
1563 }
1564 VERIFY3U(hdr->b_type, ==, type);
1565 return (type);
1566 }
1567
1568 boolean_t
1569 arc_is_metadata(arc_buf_t *buf)
1570 {
1571 return (HDR_ISTYPE_METADATA(buf->b_hdr) != 0);
1572 }
1573
1574 static uint32_t
1575 arc_bufc_to_flags(arc_buf_contents_t type)
1576 {
1577 switch (type) {
1578 case ARC_BUFC_DATA:
1579 /* metadata field is 0 if buffer contains normal data */
1580 return (0);
1581 case ARC_BUFC_METADATA:
1582 return (ARC_FLAG_BUFC_METADATA);
1583 default:
1584 break;
1585 }
1586 panic("undefined ARC buffer type!");
1587 return ((uint32_t)-1);
1588 }
1589
1590 void
1591 arc_buf_thaw(arc_buf_t *buf)
1592 {
1593 arc_buf_hdr_t *hdr = buf->b_hdr;
1594
1595 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
1596 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
1597
1598 arc_cksum_verify(buf);
1599
1600 /*
1601 * Compressed buffers do not manipulate the b_freeze_cksum or
1602 * allocate b_thawed.
1603 */
1604 if (ARC_BUF_COMPRESSED(buf)) {
1605 ASSERT(hdr->b_l1hdr.b_freeze_cksum == NULL ||
1606 arc_hdr_has_uncompressed_buf(hdr));
1607 return;
1608 }
1609
1610 ASSERT(HDR_HAS_L1HDR(hdr));
1611 arc_cksum_free(hdr);
1612 arc_buf_unwatch(buf);
1613 }
1614
1615 void
1616 arc_buf_freeze(arc_buf_t *buf)
1617 {
1618 arc_buf_hdr_t *hdr = buf->b_hdr;
1619 kmutex_t *hash_lock;
1620
1621 if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1622 return;
1623
1624 if (ARC_BUF_COMPRESSED(buf)) {
1625 ASSERT(hdr->b_l1hdr.b_freeze_cksum == NULL ||
1626 arc_hdr_has_uncompressed_buf(hdr));
1627 return;
1628 }
1629
1630 hash_lock = HDR_LOCK(hdr);
1631 mutex_enter(hash_lock);
1632
1633 ASSERT(HDR_HAS_L1HDR(hdr));
1634 ASSERT(hdr->b_l1hdr.b_freeze_cksum != NULL ||
1635 hdr->b_l1hdr.b_state == arc_anon);
1636 arc_cksum_compute(buf);
1637 mutex_exit(hash_lock);
1638 }
1639
1640 /*
1641 * The arc_buf_hdr_t's b_flags should never be modified directly. Instead,
1642 * the following functions should be used to ensure that the flags are
1643 * updated in a thread-safe way. When manipulating the flags either
1644 * the hash_lock must be held or the hdr must be undiscoverable. This
1645 * ensures that we're not racing with any other threads when updating
1646 * the flags.
1647 */
1648 static inline void
1649 arc_hdr_set_flags(arc_buf_hdr_t *hdr, arc_flags_t flags)
1650 {
1651 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
1652 hdr->b_flags |= flags;
1653 }
1654
1655 static inline void
1656 arc_hdr_clear_flags(arc_buf_hdr_t *hdr, arc_flags_t flags)
1657 {
1658 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
1659 hdr->b_flags &= ~flags;
1660 }
1661
1662 /*
1663 * Setting the compression bits in the arc_buf_hdr_t's b_flags is
1664 * done in a special way since we have to clear and set bits
1665 * at the same time. Consumers that wish to set the compression bits
1666 * must use this function to ensure that the flags are updated in
1667 * thread-safe manner.
1668 */
1669 static void
1670 arc_hdr_set_compress(arc_buf_hdr_t *hdr, enum zio_compress cmp)
1671 {
1672 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
1673
1674 /*
1675 * Holes and embedded blocks will always have a psize = 0 so
1676 * we ignore the compression of the blkptr and set the
1677 * want to uncompress them. Mark them as uncompressed.
1678 */
1679 if (!zfs_compressed_arc_enabled || HDR_GET_PSIZE(hdr) == 0) {
1680 arc_hdr_clear_flags(hdr, ARC_FLAG_COMPRESSED_ARC);
1681 HDR_SET_COMPRESS(hdr, ZIO_COMPRESS_OFF);
1682 ASSERT(!HDR_COMPRESSION_ENABLED(hdr));
1683 ASSERT3U(HDR_GET_COMPRESS(hdr), ==, ZIO_COMPRESS_OFF);
1684 } else {
1685 arc_hdr_set_flags(hdr, ARC_FLAG_COMPRESSED_ARC);
1686 HDR_SET_COMPRESS(hdr, cmp);
1687 ASSERT3U(HDR_GET_COMPRESS(hdr), ==, cmp);
1688 ASSERT(HDR_COMPRESSION_ENABLED(hdr));
1689 }
1690 }
1691
1692 /*
1693 * Looks for another buf on the same hdr which has the data decompressed, copies
1694 * from it, and returns true. If no such buf exists, returns false.
1695 */
1696 static boolean_t
1697 arc_buf_try_copy_decompressed_data(arc_buf_t *buf)
1698 {
1699 arc_buf_hdr_t *hdr = buf->b_hdr;
1700 boolean_t copied = B_FALSE;
1701
1702 ASSERT(HDR_HAS_L1HDR(hdr));
1703 ASSERT3P(buf->b_data, !=, NULL);
1704 ASSERT(!ARC_BUF_COMPRESSED(buf));
1705
1706 for (arc_buf_t *from = hdr->b_l1hdr.b_buf; from != NULL;
1707 from = from->b_next) {
1708 /* can't use our own data buffer */
1709 if (from == buf) {
1710 continue;
1711 }
1712
1713 if (!ARC_BUF_COMPRESSED(from)) {
1714 bcopy(from->b_data, buf->b_data, arc_buf_size(buf));
1715 copied = B_TRUE;
1716 break;
1717 }
1718 }
1719
1720 /*
1721 * There were no decompressed bufs, so there should not be a
1722 * checksum on the hdr either.
1723 */
1724 EQUIV(!copied, hdr->b_l1hdr.b_freeze_cksum == NULL);
1725
1726 return (copied);
1727 }
1728
1729 /*
1730 * Given a buf that has a data buffer attached to it, this function will
1731 * efficiently fill the buf with data of the specified compression setting from
1732 * the hdr and update the hdr's b_freeze_cksum if necessary. If the buf and hdr
1733 * are already sharing a data buf, no copy is performed.
1734 *
1735 * If the buf is marked as compressed but uncompressed data was requested, this
1736 * will allocate a new data buffer for the buf, remove that flag, and fill the
1737 * buf with uncompressed data. You can't request a compressed buf on a hdr with
1738 * uncompressed data, and (since we haven't added support for it yet) if you
1739 * want compressed data your buf must already be marked as compressed and have
1740 * the correct-sized data buffer.
1741 */
1742 static int
1743 arc_buf_fill(arc_buf_t *buf, boolean_t compressed)
1744 {
1745 arc_buf_hdr_t *hdr = buf->b_hdr;
1746 boolean_t hdr_compressed = (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF);
1747 dmu_object_byteswap_t bswap = hdr->b_l1hdr.b_byteswap;
1748
1749 ASSERT3P(buf->b_data, !=, NULL);
1750 IMPLY(compressed, hdr_compressed);
1751 IMPLY(compressed, ARC_BUF_COMPRESSED(buf));
1752
1753 if (hdr_compressed == compressed) {
1754 if (!arc_buf_is_shared(buf)) {
1755 abd_copy_to_buf(buf->b_data, hdr->b_l1hdr.b_pabd,
1756 arc_buf_size(buf));
1757 }
1758 } else {
1759 ASSERT(hdr_compressed);
1760 ASSERT(!compressed);
1761 ASSERT3U(HDR_GET_LSIZE(hdr), !=, HDR_GET_PSIZE(hdr));
1762
1763 /*
1764 * If the buf is sharing its data with the hdr, unlink it and
1765 * allocate a new data buffer for the buf.
1766 */
1767 if (arc_buf_is_shared(buf)) {
1768 ASSERT(ARC_BUF_COMPRESSED(buf));
1769
1770 /* We need to give the buf it's own b_data */
1771 buf->b_flags &= ~ARC_BUF_FLAG_SHARED;
1772 buf->b_data =
1773 arc_get_data_buf(hdr, HDR_GET_LSIZE(hdr), buf);
1774 arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA);
1775
1776 /* Previously overhead was 0; just add new overhead */
1777 ARCSTAT_INCR(arcstat_overhead_size, HDR_GET_LSIZE(hdr));
1778 } else if (ARC_BUF_COMPRESSED(buf)) {
1779 /* We need to reallocate the buf's b_data */
1780 arc_free_data_buf(hdr, buf->b_data, HDR_GET_PSIZE(hdr),
1781 buf);
1782 buf->b_data =
1783 arc_get_data_buf(hdr, HDR_GET_LSIZE(hdr), buf);
1784
1785 /* We increased the size of b_data; update overhead */
1786 ARCSTAT_INCR(arcstat_overhead_size,
1787 HDR_GET_LSIZE(hdr) - HDR_GET_PSIZE(hdr));
1788 }
1789
1790 /*
1791 * Regardless of the buf's previous compression settings, it
1792 * should not be compressed at the end of this function.
1793 */
1794 buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED;
1795
1796 /*
1797 * Try copying the data from another buf which already has a
1798 * decompressed version. If that's not possible, it's time to
1799 * bite the bullet and decompress the data from the hdr.
1800 */
1801 if (arc_buf_try_copy_decompressed_data(buf)) {
1802 /* Skip byteswapping and checksumming (already done) */
1803 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, !=, NULL);
1804 return (0);
1805 } else {
1806 int error = zio_decompress_data(HDR_GET_COMPRESS(hdr),
1807 hdr->b_l1hdr.b_pabd, buf->b_data,
1808 HDR_GET_PSIZE(hdr), HDR_GET_LSIZE(hdr));
1809
1810 /*
1811 * Absent hardware errors or software bugs, this should
1812 * be impossible, but log it anyway so we can debug it.
1813 */
1814 if (error != 0) {
1815 zfs_dbgmsg(
1816 "hdr %p, compress %d, psize %d, lsize %d",
1817 hdr, HDR_GET_COMPRESS(hdr),
1818 HDR_GET_PSIZE(hdr), HDR_GET_LSIZE(hdr));
1819 return (SET_ERROR(EIO));
1820 }
1821 }
1822 }
1823
1824 /* Byteswap the buf's data if necessary */
1825 if (bswap != DMU_BSWAP_NUMFUNCS) {
1826 ASSERT(!HDR_SHARED_DATA(hdr));
1827 ASSERT3U(bswap, <, DMU_BSWAP_NUMFUNCS);
1828 dmu_ot_byteswap[bswap].ob_func(buf->b_data, HDR_GET_LSIZE(hdr));
1829 }
1830
1831 /* Compute the hdr's checksum if necessary */
1832 arc_cksum_compute(buf);
1833
1834 return (0);
1835 }
1836
1837 int
1838 arc_decompress(arc_buf_t *buf)
1839 {
1840 return (arc_buf_fill(buf, B_FALSE));
1841 }
1842
1843 /*
1844 * Return the size of the block, b_pabd, that is stored in the arc_buf_hdr_t.
1845 */
1846 static uint64_t
1847 arc_hdr_size(arc_buf_hdr_t *hdr)
1848 {
1849 uint64_t size;
1850
1851 if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF &&
1852 HDR_GET_PSIZE(hdr) > 0) {
1853 size = HDR_GET_PSIZE(hdr);
1854 } else {
1855 ASSERT3U(HDR_GET_LSIZE(hdr), !=, 0);
1856 size = HDR_GET_LSIZE(hdr);
1857 }
1858 return (size);
1859 }
1860
1861 /*
1862 * Increment the amount of evictable space in the arc_state_t's refcount.
1863 * We account for the space used by the hdr and the arc buf individually
1864 * so that we can add and remove them from the refcount individually.
1865 */
1866 static void
1867 arc_evictable_space_increment(arc_buf_hdr_t *hdr, arc_state_t *state)
1868 {
1869 arc_buf_contents_t type = arc_buf_type(hdr);
1870 arc_buf_t *buf;
1871
1872 ASSERT(HDR_HAS_L1HDR(hdr));
1873
1874 if (GHOST_STATE(state)) {
1875 ASSERT0(hdr->b_l1hdr.b_bufcnt);
1876 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
1877 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
1878 (void) refcount_add_many(&state->arcs_esize[type],
1879 HDR_GET_LSIZE(hdr), hdr);
1880 return;
1881 }
1882
1883 ASSERT(!GHOST_STATE(state));
1884 if (hdr->b_l1hdr.b_pabd != NULL) {
1885 (void) refcount_add_many(&state->arcs_esize[type],
1886 arc_hdr_size(hdr), hdr);
1887 }
1888 for (buf = hdr->b_l1hdr.b_buf; buf != NULL; buf = buf->b_next) {
1889 if (arc_buf_is_shared(buf))
1890 continue;
1891 (void) refcount_add_many(&state->arcs_esize[type],
1892 arc_buf_size(buf), buf);
1893 }
1894 }
1895
1896 /*
1897 * Decrement the amount of evictable space in the arc_state_t's refcount.
1898 * We account for the space used by the hdr and the arc buf individually
1899 * so that we can add and remove them from the refcount individually.
1900 */
1901 static void
1902 arc_evictable_space_decrement(arc_buf_hdr_t *hdr, arc_state_t *state)
1903 {
1904 arc_buf_contents_t type = arc_buf_type(hdr);
1905 arc_buf_t *buf;
1906
1907 ASSERT(HDR_HAS_L1HDR(hdr));
1908
1909 if (GHOST_STATE(state)) {
1910 ASSERT0(hdr->b_l1hdr.b_bufcnt);
1911 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
1912 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
1913 (void) refcount_remove_many(&state->arcs_esize[type],
1914 HDR_GET_LSIZE(hdr), hdr);
1915 return;
1916 }
1917
1918 ASSERT(!GHOST_STATE(state));
1919 if (hdr->b_l1hdr.b_pabd != NULL) {
1920 (void) refcount_remove_many(&state->arcs_esize[type],
1921 arc_hdr_size(hdr), hdr);
1922 }
1923 for (buf = hdr->b_l1hdr.b_buf; buf != NULL; buf = buf->b_next) {
1924 if (arc_buf_is_shared(buf))
1925 continue;
1926 (void) refcount_remove_many(&state->arcs_esize[type],
1927 arc_buf_size(buf), buf);
1928 }
1929 }
1930
1931 /*
1932 * Add a reference to this hdr indicating that someone is actively
1933 * referencing that memory. When the refcount transitions from 0 to 1,
1934 * we remove it from the respective arc_state_t list to indicate that
1935 * it is not evictable.
1936 */
1937 static void
1938 add_reference(arc_buf_hdr_t *hdr, void *tag)
1939 {
1940 arc_state_t *state;
1941
1942 ASSERT(HDR_HAS_L1HDR(hdr));
1943 if (!MUTEX_HELD(HDR_LOCK(hdr))) {
1944 ASSERT(hdr->b_l1hdr.b_state == arc_anon);
1945 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
1946 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
1947 }
1948
1949 state = hdr->b_l1hdr.b_state;
1950
1951 if ((refcount_add(&hdr->b_l1hdr.b_refcnt, tag) == 1) &&
1952 (state != arc_anon)) {
1953 /* We don't use the L2-only state list. */
1954 if (state != arc_l2c_only) {
1955 multilist_remove(state->arcs_list[arc_buf_type(hdr)],
1956 hdr);
1957 arc_evictable_space_decrement(hdr, state);
1958 }
1959 /* remove the prefetch flag if we get a reference */
1960 arc_hdr_clear_flags(hdr, ARC_FLAG_PREFETCH);
1961 }
1962 }
1963
1964 /*
1965 * Remove a reference from this hdr. When the reference transitions from
1966 * 1 to 0 and we're not anonymous, then we add this hdr to the arc_state_t's
1967 * list making it eligible for eviction.
1968 */
1969 static int
1970 remove_reference(arc_buf_hdr_t *hdr, kmutex_t *hash_lock, void *tag)
1971 {
1972 int cnt;
1973 arc_state_t *state = hdr->b_l1hdr.b_state;
1974
1975 ASSERT(HDR_HAS_L1HDR(hdr));
1976 ASSERT(state == arc_anon || MUTEX_HELD(hash_lock));
1977 ASSERT(!GHOST_STATE(state));
1978
1979 /*
1980 * arc_l2c_only counts as a ghost state so we don't need to explicitly
1981 * check to prevent usage of the arc_l2c_only list.
1982 */
1983 if (((cnt = refcount_remove(&hdr->b_l1hdr.b_refcnt, tag)) == 0) &&
1984 (state != arc_anon)) {
1985 multilist_insert(state->arcs_list[arc_buf_type(hdr)], hdr);
1986 ASSERT3U(hdr->b_l1hdr.b_bufcnt, >, 0);
1987 arc_evictable_space_increment(hdr, state);
1988 }
1989 return (cnt);
1990 }
1991
1992 /*
1993 * Returns detailed information about a specific arc buffer. When the
1994 * state_index argument is set the function will calculate the arc header
1995 * list position for its arc state. Since this requires a linear traversal
1996 * callers are strongly encourage not to do this. However, it can be helpful
1997 * for targeted analysis so the functionality is provided.
1998 */
1999 void
2000 arc_buf_info(arc_buf_t *ab, arc_buf_info_t *abi, int state_index)
2001 {
2002 arc_buf_hdr_t *hdr = ab->b_hdr;
2003 l1arc_buf_hdr_t *l1hdr = NULL;
2004 l2arc_buf_hdr_t *l2hdr = NULL;
2005 arc_state_t *state = NULL;
2006
2007 memset(abi, 0, sizeof (arc_buf_info_t));
2008
2009 if (hdr == NULL)
2010 return;
2011
2012 abi->abi_flags = hdr->b_flags;
2013
2014 if (HDR_HAS_L1HDR(hdr)) {
2015 l1hdr = &hdr->b_l1hdr;
2016 state = l1hdr->b_state;
2017 }
2018 if (HDR_HAS_L2HDR(hdr))
2019 l2hdr = &hdr->b_l2hdr;
2020
2021 if (l1hdr) {
2022 abi->abi_bufcnt = l1hdr->b_bufcnt;
2023 abi->abi_access = l1hdr->b_arc_access;
2024 abi->abi_mru_hits = l1hdr->b_mru_hits;
2025 abi->abi_mru_ghost_hits = l1hdr->b_mru_ghost_hits;
2026 abi->abi_mfu_hits = l1hdr->b_mfu_hits;
2027 abi->abi_mfu_ghost_hits = l1hdr->b_mfu_ghost_hits;
2028 abi->abi_holds = refcount_count(&l1hdr->b_refcnt);
2029 }
2030
2031 if (l2hdr) {
2032 abi->abi_l2arc_dattr = l2hdr->b_daddr;
2033 abi->abi_l2arc_hits = l2hdr->b_hits;
2034 }
2035
2036 abi->abi_state_type = state ? state->arcs_state : ARC_STATE_ANON;
2037 abi->abi_state_contents = arc_buf_type(hdr);
2038 abi->abi_size = arc_hdr_size(hdr);
2039 }
2040
2041 /*
2042 * Move the supplied buffer to the indicated state. The hash lock
2043 * for the buffer must be held by the caller.
2044 */
2045 static void
2046 arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *hdr,
2047 kmutex_t *hash_lock)
2048 {
2049 arc_state_t *old_state;
2050 int64_t refcnt;
2051 uint32_t bufcnt;
2052 boolean_t update_old, update_new;
2053 arc_buf_contents_t buftype = arc_buf_type(hdr);
2054
2055 /*
2056 * We almost always have an L1 hdr here, since we call arc_hdr_realloc()
2057 * in arc_read() when bringing a buffer out of the L2ARC. However, the
2058 * L1 hdr doesn't always exist when we change state to arc_anon before
2059 * destroying a header, in which case reallocating to add the L1 hdr is
2060 * pointless.
2061 */
2062 if (HDR_HAS_L1HDR(hdr)) {
2063 old_state = hdr->b_l1hdr.b_state;
2064 refcnt = refcount_count(&hdr->b_l1hdr.b_refcnt);
2065 bufcnt = hdr->b_l1hdr.b_bufcnt;
2066 update_old = (bufcnt > 0 || hdr->b_l1hdr.b_pabd != NULL);
2067 } else {
2068 old_state = arc_l2c_only;
2069 refcnt = 0;
2070 bufcnt = 0;
2071 update_old = B_FALSE;
2072 }
2073 update_new = update_old;
2074
2075 ASSERT(MUTEX_HELD(hash_lock));
2076 ASSERT3P(new_state, !=, old_state);
2077 ASSERT(!GHOST_STATE(new_state) || bufcnt == 0);
2078 ASSERT(old_state != arc_anon || bufcnt <= 1);
2079
2080 /*
2081 * If this buffer is evictable, transfer it from the
2082 * old state list to the new state list.
2083 */
2084 if (refcnt == 0) {
2085 if (old_state != arc_anon && old_state != arc_l2c_only) {
2086 ASSERT(HDR_HAS_L1HDR(hdr));
2087 multilist_remove(old_state->arcs_list[buftype], hdr);
2088
2089 if (GHOST_STATE(old_state)) {
2090 ASSERT0(bufcnt);
2091 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2092 update_old = B_TRUE;
2093 }
2094 arc_evictable_space_decrement(hdr, old_state);
2095 }
2096 if (new_state != arc_anon && new_state != arc_l2c_only) {
2097 /*
2098 * An L1 header always exists here, since if we're
2099 * moving to some L1-cached state (i.e. not l2c_only or
2100 * anonymous), we realloc the header to add an L1hdr
2101 * beforehand.
2102 */
2103 ASSERT(HDR_HAS_L1HDR(hdr));
2104 multilist_insert(new_state->arcs_list[buftype], hdr);
2105
2106 if (GHOST_STATE(new_state)) {
2107 ASSERT0(bufcnt);
2108 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2109 update_new = B_TRUE;
2110 }
2111 arc_evictable_space_increment(hdr, new_state);
2112 }
2113 }
2114
2115 ASSERT(!HDR_EMPTY(hdr));
2116 if (new_state == arc_anon && HDR_IN_HASH_TABLE(hdr))
2117 buf_hash_remove(hdr);
2118
2119 /* adjust state sizes (ignore arc_l2c_only) */
2120
2121 if (update_new && new_state != arc_l2c_only) {
2122 ASSERT(HDR_HAS_L1HDR(hdr));
2123 if (GHOST_STATE(new_state)) {
2124 ASSERT0(bufcnt);
2125
2126 /*
2127 * When moving a header to a ghost state, we first
2128 * remove all arc buffers. Thus, we'll have a
2129 * bufcnt of zero, and no arc buffer to use for
2130 * the reference. As a result, we use the arc
2131 * header pointer for the reference.
2132 */
2133 (void) refcount_add_many(&new_state->arcs_size,
2134 HDR_GET_LSIZE(hdr), hdr);
2135 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
2136 } else {
2137 arc_buf_t *buf;
2138 uint32_t buffers = 0;
2139
2140 /*
2141 * Each individual buffer holds a unique reference,
2142 * thus we must remove each of these references one
2143 * at a time.
2144 */
2145 for (buf = hdr->b_l1hdr.b_buf; buf != NULL;
2146 buf = buf->b_next) {
2147 ASSERT3U(bufcnt, !=, 0);
2148 buffers++;
2149
2150 /*
2151 * When the arc_buf_t is sharing the data
2152 * block with the hdr, the owner of the
2153 * reference belongs to the hdr. Only
2154 * add to the refcount if the arc_buf_t is
2155 * not shared.
2156 */
2157 if (arc_buf_is_shared(buf))
2158 continue;
2159
2160 (void) refcount_add_many(&new_state->arcs_size,
2161 arc_buf_size(buf), buf);
2162 }
2163 ASSERT3U(bufcnt, ==, buffers);
2164
2165 if (hdr->b_l1hdr.b_pabd != NULL) {
2166 (void) refcount_add_many(&new_state->arcs_size,
2167 arc_hdr_size(hdr), hdr);
2168 } else {
2169 ASSERT(GHOST_STATE(old_state));
2170 }
2171 }
2172 }
2173
2174 if (update_old && old_state != arc_l2c_only) {
2175 ASSERT(HDR_HAS_L1HDR(hdr));
2176 if (GHOST_STATE(old_state)) {
2177 ASSERT0(bufcnt);
2178 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
2179
2180 /*
2181 * When moving a header off of a ghost state,
2182 * the header will not contain any arc buffers.
2183 * We use the arc header pointer for the reference
2184 * which is exactly what we did when we put the
2185 * header on the ghost state.
2186 */
2187
2188 (void) refcount_remove_many(&old_state->arcs_size,
2189 HDR_GET_LSIZE(hdr), hdr);
2190 } else {
2191 arc_buf_t *buf;
2192 uint32_t buffers = 0;
2193
2194 /*
2195 * Each individual buffer holds a unique reference,
2196 * thus we must remove each of these references one
2197 * at a time.
2198 */
2199 for (buf = hdr->b_l1hdr.b_buf; buf != NULL;
2200 buf = buf->b_next) {
2201 ASSERT3U(bufcnt, !=, 0);
2202 buffers++;
2203
2204 /*
2205 * When the arc_buf_t is sharing the data
2206 * block with the hdr, the owner of the
2207 * reference belongs to the hdr. Only
2208 * add to the refcount if the arc_buf_t is
2209 * not shared.
2210 */
2211 if (arc_buf_is_shared(buf))
2212 continue;
2213
2214 (void) refcount_remove_many(
2215 &old_state->arcs_size, arc_buf_size(buf),
2216 buf);
2217 }
2218 ASSERT3U(bufcnt, ==, buffers);
2219 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
2220 (void) refcount_remove_many(
2221 &old_state->arcs_size, arc_hdr_size(hdr), hdr);
2222 }
2223 }
2224
2225 if (HDR_HAS_L1HDR(hdr))
2226 hdr->b_l1hdr.b_state = new_state;
2227
2228 /*
2229 * L2 headers should never be on the L2 state list since they don't
2230 * have L1 headers allocated.
2231 */
2232 ASSERT(multilist_is_empty(arc_l2c_only->arcs_list[ARC_BUFC_DATA]) &&
2233 multilist_is_empty(arc_l2c_only->arcs_list[ARC_BUFC_METADATA]));
2234 }
2235
2236 void
2237 arc_space_consume(uint64_t space, arc_space_type_t type)
2238 {
2239 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
2240
2241 switch (type) {
2242 default:
2243 break;
2244 case ARC_SPACE_DATA:
2245 ARCSTAT_INCR(arcstat_data_size, space);
2246 break;
2247 case ARC_SPACE_META:
2248 ARCSTAT_INCR(arcstat_metadata_size, space);
2249 break;
2250 case ARC_SPACE_BONUS:
2251 ARCSTAT_INCR(arcstat_bonus_size, space);
2252 break;
2253 case ARC_SPACE_DNODE:
2254 ARCSTAT_INCR(arcstat_dnode_size, space);
2255 break;
2256 case ARC_SPACE_DBUF:
2257 ARCSTAT_INCR(arcstat_dbuf_size, space);
2258 break;
2259 case ARC_SPACE_HDRS:
2260 ARCSTAT_INCR(arcstat_hdr_size, space);
2261 break;
2262 case ARC_SPACE_L2HDRS:
2263 ARCSTAT_INCR(arcstat_l2_hdr_size, space);
2264 break;
2265 }
2266
2267 if (type != ARC_SPACE_DATA)
2268 ARCSTAT_INCR(arcstat_meta_used, space);
2269
2270 atomic_add_64(&arc_size, space);
2271 }
2272
2273 void
2274 arc_space_return(uint64_t space, arc_space_type_t type)
2275 {
2276 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
2277
2278 switch (type) {
2279 default:
2280 break;
2281 case ARC_SPACE_DATA:
2282 ARCSTAT_INCR(arcstat_data_size, -space);
2283 break;
2284 case ARC_SPACE_META:
2285 ARCSTAT_INCR(arcstat_metadata_size, -space);
2286 break;
2287 case ARC_SPACE_BONUS:
2288 ARCSTAT_INCR(arcstat_bonus_size, -space);
2289 break;
2290 case ARC_SPACE_DNODE:
2291 ARCSTAT_INCR(arcstat_dnode_size, -space);
2292 break;
2293 case ARC_SPACE_DBUF:
2294 ARCSTAT_INCR(arcstat_dbuf_size, -space);
2295 break;
2296 case ARC_SPACE_HDRS:
2297 ARCSTAT_INCR(arcstat_hdr_size, -space);
2298 break;
2299 case ARC_SPACE_L2HDRS:
2300 ARCSTAT_INCR(arcstat_l2_hdr_size, -space);
2301 break;
2302 }
2303
2304 if (type != ARC_SPACE_DATA) {
2305 ASSERT(arc_meta_used >= space);
2306 if (arc_meta_max < arc_meta_used)
2307 arc_meta_max = arc_meta_used;
2308 ARCSTAT_INCR(arcstat_meta_used, -space);
2309 }
2310
2311 ASSERT(arc_size >= space);
2312 atomic_add_64(&arc_size, -space);
2313 }
2314
2315 /*
2316 * Given a hdr and a buf, returns whether that buf can share its b_data buffer
2317 * with the hdr's b_pabd.
2318 */
2319 static boolean_t
2320 arc_can_share(arc_buf_hdr_t *hdr, arc_buf_t *buf)
2321 {
2322 /*
2323 * The criteria for sharing a hdr's data are:
2324 * 1. the hdr's compression matches the buf's compression
2325 * 2. the hdr doesn't need to be byteswapped
2326 * 3. the hdr isn't already being shared
2327 * 4. the buf is either compressed or it is the last buf in the hdr list
2328 *
2329 * Criterion #4 maintains the invariant that shared uncompressed
2330 * bufs must be the final buf in the hdr's b_buf list. Reading this, you
2331 * might ask, "if a compressed buf is allocated first, won't that be the
2332 * last thing in the list?", but in that case it's impossible to create
2333 * a shared uncompressed buf anyway (because the hdr must be compressed
2334 * to have the compressed buf). You might also think that #3 is
2335 * sufficient to make this guarantee, however it's possible
2336 * (specifically in the rare L2ARC write race mentioned in
2337 * arc_buf_alloc_impl()) there will be an existing uncompressed buf that
2338 * is sharable, but wasn't at the time of its allocation. Rather than
2339 * allow a new shared uncompressed buf to be created and then shuffle
2340 * the list around to make it the last element, this simply disallows
2341 * sharing if the new buf isn't the first to be added.
2342 */
2343 ASSERT3P(buf->b_hdr, ==, hdr);
2344 boolean_t hdr_compressed = HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF;
2345 boolean_t buf_compressed = ARC_BUF_COMPRESSED(buf) != 0;
2346 return (buf_compressed == hdr_compressed &&
2347 hdr->b_l1hdr.b_byteswap == DMU_BSWAP_NUMFUNCS &&
2348 !HDR_SHARED_DATA(hdr) &&
2349 (ARC_BUF_LAST(buf) || ARC_BUF_COMPRESSED(buf)));
2350 }
2351
2352 /*
2353 * Allocate a buf for this hdr. If you care about the data that's in the hdr,
2354 * or if you want a compressed buffer, pass those flags in. Returns 0 if the
2355 * copy was made successfully, or an error code otherwise.
2356 */
2357 static int
2358 arc_buf_alloc_impl(arc_buf_hdr_t *hdr, void *tag, boolean_t compressed,
2359 boolean_t fill, arc_buf_t **ret)
2360 {
2361 arc_buf_t *buf;
2362
2363 ASSERT(HDR_HAS_L1HDR(hdr));
2364 ASSERT3U(HDR_GET_LSIZE(hdr), >, 0);
2365 VERIFY(hdr->b_type == ARC_BUFC_DATA ||
2366 hdr->b_type == ARC_BUFC_METADATA);
2367 ASSERT3P(ret, !=, NULL);
2368 ASSERT3P(*ret, ==, NULL);
2369
2370 hdr->b_l1hdr.b_mru_hits = 0;
2371 hdr->b_l1hdr.b_mru_ghost_hits = 0;
2372 hdr->b_l1hdr.b_mfu_hits = 0;
2373 hdr->b_l1hdr.b_mfu_ghost_hits = 0;
2374 hdr->b_l1hdr.b_l2_hits = 0;
2375
2376 buf = *ret = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
2377 buf->b_hdr = hdr;
2378 buf->b_data = NULL;
2379 buf->b_next = hdr->b_l1hdr.b_buf;
2380 buf->b_flags = 0;
2381
2382 add_reference(hdr, tag);
2383
2384 /*
2385 * We're about to change the hdr's b_flags. We must either
2386 * hold the hash_lock or be undiscoverable.
2387 */
2388 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
2389
2390 /*
2391 * Only honor requests for compressed bufs if the hdr is actually
2392 * compressed.
2393 */
2394 if (compressed && HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF)
2395 buf->b_flags |= ARC_BUF_FLAG_COMPRESSED;
2396
2397 /*
2398 * If the hdr's data can be shared then we share the data buffer and
2399 * set the appropriate bit in the hdr's b_flags to indicate the hdr is
2400 * allocate a new buffer to store the buf's data.
2401 *
2402 * There are two additional restrictions here because we're sharing
2403 * hdr -> buf instead of the usual buf -> hdr. First, the hdr can't be
2404 * actively involved in an L2ARC write, because if this buf is used by
2405 * an arc_write() then the hdr's data buffer will be released when the
2406 * write completes, even though the L2ARC write might still be using it.
2407 * Second, the hdr's ABD must be linear so that the buf's user doesn't
2408 * need to be ABD-aware.
2409 */
2410 boolean_t can_share = arc_can_share(hdr, buf) && !HDR_L2_WRITING(hdr) &&
2411 abd_is_linear(hdr->b_l1hdr.b_pabd);
2412
2413 /* Set up b_data and sharing */
2414 if (can_share) {
2415 buf->b_data = abd_to_buf(hdr->b_l1hdr.b_pabd);
2416 buf->b_flags |= ARC_BUF_FLAG_SHARED;
2417 arc_hdr_set_flags(hdr, ARC_FLAG_SHARED_DATA);
2418 } else {
2419 buf->b_data =
2420 arc_get_data_buf(hdr, arc_buf_size(buf), buf);
2421 ARCSTAT_INCR(arcstat_overhead_size, arc_buf_size(buf));
2422 }
2423 VERIFY3P(buf->b_data, !=, NULL);
2424
2425 hdr->b_l1hdr.b_buf = buf;
2426 hdr->b_l1hdr.b_bufcnt += 1;
2427
2428 /*
2429 * If the user wants the data from the hdr, we need to either copy or
2430 * decompress the data.
2431 */
2432 if (fill) {
2433 return (arc_buf_fill(buf, ARC_BUF_COMPRESSED(buf) != 0));
2434 }
2435
2436 return (0);
2437 }
2438
2439 static char *arc_onloan_tag = "onloan";
2440
2441 static inline void
2442 arc_loaned_bytes_update(int64_t delta)
2443 {
2444 atomic_add_64(&arc_loaned_bytes, delta);
2445
2446 /* assert that it did not wrap around */
2447 ASSERT3S(atomic_add_64_nv(&arc_loaned_bytes, 0), >=, 0);
2448 }
2449
2450 /*
2451 * Loan out an anonymous arc buffer. Loaned buffers are not counted as in
2452 * flight data by arc_tempreserve_space() until they are "returned". Loaned
2453 * buffers must be returned to the arc before they can be used by the DMU or
2454 * freed.
2455 */
2456 arc_buf_t *
2457 arc_loan_buf(spa_t *spa, boolean_t is_metadata, int size)
2458 {
2459 arc_buf_t *buf = arc_alloc_buf(spa, arc_onloan_tag,
2460 is_metadata ? ARC_BUFC_METADATA : ARC_BUFC_DATA, size);
2461
2462 arc_loaned_bytes_update(size);
2463
2464 return (buf);
2465 }
2466
2467 arc_buf_t *
2468 arc_loan_compressed_buf(spa_t *spa, uint64_t psize, uint64_t lsize,
2469 enum zio_compress compression_type)
2470 {
2471 arc_buf_t *buf = arc_alloc_compressed_buf(spa, arc_onloan_tag,
2472 psize, lsize, compression_type);
2473
2474 arc_loaned_bytes_update(psize);
2475
2476 return (buf);
2477 }
2478
2479
2480 /*
2481 * Return a loaned arc buffer to the arc.
2482 */
2483 void
2484 arc_return_buf(arc_buf_t *buf, void *tag)
2485 {
2486 arc_buf_hdr_t *hdr = buf->b_hdr;
2487
2488 ASSERT3P(buf->b_data, !=, NULL);
2489 ASSERT(HDR_HAS_L1HDR(hdr));
2490 (void) refcount_add(&hdr->b_l1hdr.b_refcnt, tag);
2491 (void) refcount_remove(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag);
2492
2493 arc_loaned_bytes_update(-arc_buf_size(buf));
2494 }
2495
2496 /* Detach an arc_buf from a dbuf (tag) */
2497 void
2498 arc_loan_inuse_buf(arc_buf_t *buf, void *tag)
2499 {
2500 arc_buf_hdr_t *hdr = buf->b_hdr;
2501
2502 ASSERT3P(buf->b_data, !=, NULL);
2503 ASSERT(HDR_HAS_L1HDR(hdr));
2504 (void) refcount_add(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag);
2505 (void) refcount_remove(&hdr->b_l1hdr.b_refcnt, tag);
2506
2507 arc_loaned_bytes_update(arc_buf_size(buf));
2508 }
2509
2510 static void
2511 l2arc_free_abd_on_write(abd_t *abd, size_t size, arc_buf_contents_t type)
2512 {
2513 l2arc_data_free_t *df = kmem_alloc(sizeof (*df), KM_SLEEP);
2514
2515 df->l2df_abd = abd;
2516 df->l2df_size = size;
2517 df->l2df_type = type;
2518 mutex_enter(&l2arc_free_on_write_mtx);
2519 list_insert_head(l2arc_free_on_write, df);
2520 mutex_exit(&l2arc_free_on_write_mtx);
2521 }
2522
2523 static void
2524 arc_hdr_free_on_write(arc_buf_hdr_t *hdr)
2525 {
2526 arc_state_t *state = hdr->b_l1hdr.b_state;
2527 arc_buf_contents_t type = arc_buf_type(hdr);
2528 uint64_t size = arc_hdr_size(hdr);
2529
2530 /* protected by hash lock, if in the hash table */
2531 if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
2532 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
2533 ASSERT(state != arc_anon && state != arc_l2c_only);
2534
2535 (void) refcount_remove_many(&state->arcs_esize[type],
2536 size, hdr);
2537 }
2538 (void) refcount_remove_many(&state->arcs_size, size, hdr);
2539 if (type == ARC_BUFC_METADATA) {
2540 arc_space_return(size, ARC_SPACE_META);
2541 } else {
2542 ASSERT(type == ARC_BUFC_DATA);
2543 arc_space_return(size, ARC_SPACE_DATA);
2544 }
2545
2546 l2arc_free_abd_on_write(hdr->b_l1hdr.b_pabd, size, type);
2547 }
2548
2549 /*
2550 * Share the arc_buf_t's data with the hdr. Whenever we are sharing the
2551 * data buffer, we transfer the refcount ownership to the hdr and update
2552 * the appropriate kstats.
2553 */
2554 static void
2555 arc_share_buf(arc_buf_hdr_t *hdr, arc_buf_t *buf)
2556 {
2557 ASSERT(arc_can_share(hdr, buf));
2558 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
2559 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
2560
2561 /*
2562 * Start sharing the data buffer. We transfer the
2563 * refcount ownership to the hdr since it always owns
2564 * the refcount whenever an arc_buf_t is shared.
2565 */
2566 refcount_transfer_ownership(&hdr->b_l1hdr.b_state->arcs_size, buf, hdr);
2567 hdr->b_l1hdr.b_pabd = abd_get_from_buf(buf->b_data, arc_buf_size(buf));
2568 abd_take_ownership_of_buf(hdr->b_l1hdr.b_pabd,
2569 HDR_ISTYPE_METADATA(hdr));
2570 arc_hdr_set_flags(hdr, ARC_FLAG_SHARED_DATA);
2571 buf->b_flags |= ARC_BUF_FLAG_SHARED;
2572
2573 /*
2574 * Since we've transferred ownership to the hdr we need
2575 * to increment its compressed and uncompressed kstats and
2576 * decrement the overhead size.
2577 */
2578 ARCSTAT_INCR(arcstat_compressed_size, arc_hdr_size(hdr));
2579 ARCSTAT_INCR(arcstat_uncompressed_size, HDR_GET_LSIZE(hdr));
2580 ARCSTAT_INCR(arcstat_overhead_size, -arc_buf_size(buf));
2581 }
2582
2583 static void
2584 arc_unshare_buf(arc_buf_hdr_t *hdr, arc_buf_t *buf)
2585 {
2586 ASSERT(arc_buf_is_shared(buf));
2587 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
2588 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
2589
2590 /*
2591 * We are no longer sharing this buffer so we need
2592 * to transfer its ownership to the rightful owner.
2593 */
2594 refcount_transfer_ownership(&hdr->b_l1hdr.b_state->arcs_size, hdr, buf);
2595 arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA);
2596 abd_release_ownership_of_buf(hdr->b_l1hdr.b_pabd);
2597 abd_put(hdr->b_l1hdr.b_pabd);
2598 hdr->b_l1hdr.b_pabd = NULL;
2599 buf->b_flags &= ~ARC_BUF_FLAG_SHARED;
2600
2601 /*
2602 * Since the buffer is no longer shared between
2603 * the arc buf and the hdr, count it as overhead.
2604 */
2605 ARCSTAT_INCR(arcstat_compressed_size, -arc_hdr_size(hdr));
2606 ARCSTAT_INCR(arcstat_uncompressed_size, -HDR_GET_LSIZE(hdr));
2607 ARCSTAT_INCR(arcstat_overhead_size, arc_buf_size(buf));
2608 }
2609
2610 /*
2611 * Remove an arc_buf_t from the hdr's buf list and return the last
2612 * arc_buf_t on the list. If no buffers remain on the list then return
2613 * NULL.
2614 */
2615 static arc_buf_t *
2616 arc_buf_remove(arc_buf_hdr_t *hdr, arc_buf_t *buf)
2617 {
2618 ASSERT(HDR_HAS_L1HDR(hdr));
2619 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
2620
2621 arc_buf_t **bufp = &hdr->b_l1hdr.b_buf;
2622 arc_buf_t *lastbuf = NULL;
2623
2624 /*
2625 * Remove the buf from the hdr list and locate the last
2626 * remaining buffer on the list.
2627 */
2628 while (*bufp != NULL) {
2629 if (*bufp == buf)
2630 *bufp = buf->b_next;
2631
2632 /*
2633 * If we've removed a buffer in the middle of
2634 * the list then update the lastbuf and update
2635 * bufp.
2636 */
2637 if (*bufp != NULL) {
2638 lastbuf = *bufp;
2639 bufp = &(*bufp)->b_next;
2640 }
2641 }
2642 buf->b_next = NULL;
2643 ASSERT3P(lastbuf, !=, buf);
2644 IMPLY(hdr->b_l1hdr.b_bufcnt > 0, lastbuf != NULL);
2645 IMPLY(hdr->b_l1hdr.b_bufcnt > 0, hdr->b_l1hdr.b_buf != NULL);
2646 IMPLY(lastbuf != NULL, ARC_BUF_LAST(lastbuf));
2647
2648 return (lastbuf);
2649 }
2650
2651 /*
2652 * Free up buf->b_data and pull the arc_buf_t off of the the arc_buf_hdr_t's
2653 * list and free it.
2654 */
2655 static void
2656 arc_buf_destroy_impl(arc_buf_t *buf)
2657 {
2658 arc_buf_hdr_t *hdr = buf->b_hdr;
2659
2660 /*
2661 * Free up the data associated with the buf but only if we're not
2662 * sharing this with the hdr. If we are sharing it with the hdr, the
2663 * hdr is responsible for doing the free.
2664 */
2665 if (buf->b_data != NULL) {
2666 /*
2667 * We're about to change the hdr's b_flags. We must either
2668 * hold the hash_lock or be undiscoverable.
2669 */
2670 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
2671
2672 arc_cksum_verify(buf);
2673 arc_buf_unwatch(buf);
2674
2675 if (arc_buf_is_shared(buf)) {
2676 arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA);
2677 } else {
2678 uint64_t size = arc_buf_size(buf);
2679 arc_free_data_buf(hdr, buf->b_data, size, buf);
2680 ARCSTAT_INCR(arcstat_overhead_size, -size);
2681 }
2682 buf->b_data = NULL;
2683
2684 ASSERT(hdr->b_l1hdr.b_bufcnt > 0);
2685 hdr->b_l1hdr.b_bufcnt -= 1;
2686 }
2687
2688 arc_buf_t *lastbuf = arc_buf_remove(hdr, buf);
2689
2690 if (ARC_BUF_SHARED(buf) && !ARC_BUF_COMPRESSED(buf)) {
2691 /*
2692 * If the current arc_buf_t is sharing its data buffer with the
2693 * hdr, then reassign the hdr's b_pabd to share it with the new
2694 * buffer at the end of the list. The shared buffer is always
2695 * the last one on the hdr's buffer list.
2696 *
2697 * There is an equivalent case for compressed bufs, but since
2698 * they aren't guaranteed to be the last buf in the list and
2699 * that is an exceedingly rare case, we just allow that space be
2700 * wasted temporarily.
2701 */
2702 if (lastbuf != NULL) {
2703 /* Only one buf can be shared at once */
2704 VERIFY(!arc_buf_is_shared(lastbuf));
2705 /* hdr is uncompressed so can't have compressed buf */
2706 VERIFY(!ARC_BUF_COMPRESSED(lastbuf));
2707
2708 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
2709 arc_hdr_free_pabd(hdr);
2710
2711 /*
2712 * We must setup a new shared block between the
2713 * last buffer and the hdr. The data would have
2714 * been allocated by the arc buf so we need to transfer
2715 * ownership to the hdr since it's now being shared.
2716 */
2717 arc_share_buf(hdr, lastbuf);
2718 }
2719 } else if (HDR_SHARED_DATA(hdr)) {
2720 /*
2721 * Uncompressed shared buffers are always at the end
2722 * of the list. Compressed buffers don't have the
2723 * same requirements. This makes it hard to
2724 * simply assert that the lastbuf is shared so
2725 * we rely on the hdr's compression flags to determine
2726 * if we have a compressed, shared buffer.
2727 */
2728 ASSERT3P(lastbuf, !=, NULL);
2729 ASSERT(arc_buf_is_shared(lastbuf) ||
2730 HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF);
2731 }
2732
2733 /*
2734 * Free the checksum if we're removing the last uncompressed buf from
2735 * this hdr.
2736 */
2737 if (!arc_hdr_has_uncompressed_buf(hdr)) {
2738 arc_cksum_free(hdr);
2739 }
2740
2741 /* clean up the buf */
2742 buf->b_hdr = NULL;
2743 kmem_cache_free(buf_cache, buf);
2744 }
2745
2746 static void
2747 arc_hdr_alloc_pabd(arc_buf_hdr_t *hdr)
2748 {
2749 ASSERT3U(HDR_GET_LSIZE(hdr), >, 0);
2750 ASSERT(HDR_HAS_L1HDR(hdr));
2751 ASSERT(!HDR_SHARED_DATA(hdr));
2752
2753 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
2754 hdr->b_l1hdr.b_pabd = arc_get_data_abd(hdr, arc_hdr_size(hdr), hdr);
2755 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS;
2756 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
2757
2758 ARCSTAT_INCR(arcstat_compressed_size, arc_hdr_size(hdr));
2759 ARCSTAT_INCR(arcstat_uncompressed_size, HDR_GET_LSIZE(hdr));
2760 }
2761
2762 static void
2763 arc_hdr_free_pabd(arc_buf_hdr_t *hdr)
2764 {
2765 ASSERT(HDR_HAS_L1HDR(hdr));
2766 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
2767
2768 /*
2769 * If the hdr is currently being written to the l2arc then
2770 * we defer freeing the data by adding it to the l2arc_free_on_write
2771 * list. The l2arc will free the data once it's finished
2772 * writing it to the l2arc device.
2773 */
2774 if (HDR_L2_WRITING(hdr)) {
2775 arc_hdr_free_on_write(hdr);
2776 ARCSTAT_BUMP(arcstat_l2_free_on_write);
2777 } else {
2778 arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd,
2779 arc_hdr_size(hdr), hdr);
2780 }
2781 hdr->b_l1hdr.b_pabd = NULL;
2782 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS;
2783
2784 ARCSTAT_INCR(arcstat_compressed_size, -arc_hdr_size(hdr));
2785 ARCSTAT_INCR(arcstat_uncompressed_size, -HDR_GET_LSIZE(hdr));
2786 }
2787
2788 static arc_buf_hdr_t *
2789 arc_hdr_alloc(uint64_t spa, int32_t psize, int32_t lsize,
2790 enum zio_compress compression_type, arc_buf_contents_t type)
2791 {
2792 arc_buf_hdr_t *hdr;
2793
2794 VERIFY(type == ARC_BUFC_DATA || type == ARC_BUFC_METADATA);
2795
2796 hdr = kmem_cache_alloc(hdr_full_cache, KM_PUSHPAGE);
2797 ASSERT(HDR_EMPTY(hdr));
2798 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
2799 HDR_SET_PSIZE(hdr, psize);
2800 HDR_SET_LSIZE(hdr, lsize);
2801 hdr->b_spa = spa;
2802 hdr->b_type = type;
2803 hdr->b_flags = 0;
2804 arc_hdr_set_flags(hdr, arc_bufc_to_flags(type) | ARC_FLAG_HAS_L1HDR);
2805 arc_hdr_set_compress(hdr, compression_type);
2806
2807 hdr->b_l1hdr.b_state = arc_anon;
2808 hdr->b_l1hdr.b_arc_access = 0;
2809 hdr->b_l1hdr.b_bufcnt = 0;
2810 hdr->b_l1hdr.b_buf = NULL;
2811
2812 /*
2813 * Allocate the hdr's buffer. This will contain either
2814 * the compressed or uncompressed data depending on the block
2815 * it references and compressed arc enablement.
2816 */
2817 arc_hdr_alloc_pabd(hdr);
2818 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
2819
2820 return (hdr);
2821 }
2822
2823 /*
2824 * Transition between the two allocation states for the arc_buf_hdr struct.
2825 * The arc_buf_hdr struct can be allocated with (hdr_full_cache) or without
2826 * (hdr_l2only_cache) the fields necessary for the L1 cache - the smaller
2827 * version is used when a cache buffer is only in the L2ARC in order to reduce
2828 * memory usage.
2829 */
2830 static arc_buf_hdr_t *
2831 arc_hdr_realloc(arc_buf_hdr_t *hdr, kmem_cache_t *old, kmem_cache_t *new)
2832 {
2833 arc_buf_hdr_t *nhdr;
2834 l2arc_dev_t *dev = hdr->b_l2hdr.b_dev;
2835
2836 ASSERT(HDR_HAS_L2HDR(hdr));
2837 ASSERT((old == hdr_full_cache && new == hdr_l2only_cache) ||
2838 (old == hdr_l2only_cache && new == hdr_full_cache));
2839
2840 nhdr = kmem_cache_alloc(new, KM_PUSHPAGE);
2841
2842 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)));
2843 buf_hash_remove(hdr);
2844
2845 bcopy(hdr, nhdr, HDR_L2ONLY_SIZE);
2846
2847 if (new == hdr_full_cache) {
2848 arc_hdr_set_flags(nhdr, ARC_FLAG_HAS_L1HDR);
2849 /*
2850 * arc_access and arc_change_state need to be aware that a
2851 * header has just come out of L2ARC, so we set its state to
2852 * l2c_only even though it's about to change.
2853 */
2854 nhdr->b_l1hdr.b_state = arc_l2c_only;
2855
2856 /* Verify previous threads set to NULL before freeing */
2857 ASSERT3P(nhdr->b_l1hdr.b_pabd, ==, NULL);
2858 } else {
2859 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2860 ASSERT0(hdr->b_l1hdr.b_bufcnt);
2861 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
2862
2863 /*
2864 * If we've reached here, We must have been called from
2865 * arc_evict_hdr(), as such we should have already been
2866 * removed from any ghost list we were previously on
2867 * (which protects us from racing with arc_evict_state),
2868 * thus no locking is needed during this check.
2869 */
2870 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
2871
2872 /*
2873 * A buffer must not be moved into the arc_l2c_only
2874 * state if it's not finished being written out to the
2875 * l2arc device. Otherwise, the b_l1hdr.b_pabd field
2876 * might try to be accessed, even though it was removed.
2877 */
2878 VERIFY(!HDR_L2_WRITING(hdr));
2879 VERIFY3P(hdr->b_l1hdr.b_pabd, ==, NULL);
2880
2881 arc_hdr_clear_flags(nhdr, ARC_FLAG_HAS_L1HDR);
2882 }
2883 /*
2884 * The header has been reallocated so we need to re-insert it into any
2885 * lists it was on.
2886 */
2887 (void) buf_hash_insert(nhdr, NULL);
2888
2889 ASSERT(list_link_active(&hdr->b_l2hdr.b_l2node));
2890
2891 mutex_enter(&dev->l2ad_mtx);
2892
2893 /*
2894 * We must place the realloc'ed header back into the list at
2895 * the same spot. Otherwise, if it's placed earlier in the list,
2896 * l2arc_write_buffers() could find it during the function's
2897 * write phase, and try to write it out to the l2arc.
2898 */
2899 list_insert_after(&dev->l2ad_buflist, hdr, nhdr);
2900 list_remove(&dev->l2ad_buflist, hdr);
2901
2902 mutex_exit(&dev->l2ad_mtx);
2903
2904 /*
2905 * Since we're using the pointer address as the tag when
2906 * incrementing and decrementing the l2ad_alloc refcount, we
2907 * must remove the old pointer (that we're about to destroy) and
2908 * add the new pointer to the refcount. Otherwise we'd remove
2909 * the wrong pointer address when calling arc_hdr_destroy() later.
2910 */
2911
2912 (void) refcount_remove_many(&dev->l2ad_alloc, arc_hdr_size(hdr), hdr);
2913 (void) refcount_add_many(&dev->l2ad_alloc, arc_hdr_size(nhdr), nhdr);
2914
2915 buf_discard_identity(hdr);
2916 kmem_cache_free(old, hdr);
2917
2918 return (nhdr);
2919 }
2920
2921 /*
2922 * Allocate a new arc_buf_hdr_t and arc_buf_t and return the buf to the caller.
2923 * The buf is returned thawed since we expect the consumer to modify it.
2924 */
2925 arc_buf_t *
2926 arc_alloc_buf(spa_t *spa, void *tag, arc_buf_contents_t type, int32_t size)
2927 {
2928 arc_buf_hdr_t *hdr = arc_hdr_alloc(spa_load_guid(spa), size, size,
2929 ZIO_COMPRESS_OFF, type);
2930 ASSERT(!MUTEX_HELD(HDR_LOCK(hdr)));
2931
2932 arc_buf_t *buf = NULL;
2933 VERIFY0(arc_buf_alloc_impl(hdr, tag, B_FALSE, B_FALSE, &buf));
2934 arc_buf_thaw(buf);
2935
2936 return (buf);
2937 }
2938
2939 /*
2940 * Allocate a compressed buf in the same manner as arc_alloc_buf. Don't use this
2941 * for bufs containing metadata.
2942 */
2943 arc_buf_t *
2944 arc_alloc_compressed_buf(spa_t *spa, void *tag, uint64_t psize, uint64_t lsize,
2945 enum zio_compress compression_type)
2946 {
2947 ASSERT3U(lsize, >, 0);
2948 ASSERT3U(lsize, >=, psize);
2949 ASSERT(compression_type > ZIO_COMPRESS_OFF);
2950 ASSERT(compression_type < ZIO_COMPRESS_FUNCTIONS);
2951
2952 arc_buf_hdr_t *hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize,
2953 compression_type, ARC_BUFC_DATA);
2954 ASSERT(!MUTEX_HELD(HDR_LOCK(hdr)));
2955
2956 arc_buf_t *buf = NULL;
2957 VERIFY0(arc_buf_alloc_impl(hdr, tag, B_TRUE, B_FALSE, &buf));
2958 arc_buf_thaw(buf);
2959 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
2960
2961 if (!arc_buf_is_shared(buf)) {
2962 /*
2963 * To ensure that the hdr has the correct data in it if we call
2964 * arc_decompress() on this buf before it's been written to
2965 * disk, it's easiest if we just set up sharing between the
2966 * buf and the hdr.
2967 */
2968 ASSERT(!abd_is_linear(hdr->b_l1hdr.b_pabd));
2969 arc_hdr_free_pabd(hdr);
2970 arc_share_buf(hdr, buf);
2971 }
2972
2973 return (buf);
2974 }
2975
2976 static void
2977 arc_hdr_l2hdr_destroy(arc_buf_hdr_t *hdr)
2978 {
2979 l2arc_buf_hdr_t *l2hdr = &hdr->b_l2hdr;
2980 l2arc_dev_t *dev = l2hdr->b_dev;
2981 uint64_t asize = arc_hdr_size(hdr);
2982
2983 ASSERT(MUTEX_HELD(&dev->l2ad_mtx));
2984 ASSERT(HDR_HAS_L2HDR(hdr));
2985
2986 list_remove(&dev->l2ad_buflist, hdr);
2987
2988 ARCSTAT_INCR(arcstat_l2_asize, -asize);
2989 ARCSTAT_INCR(arcstat_l2_size, -HDR_GET_LSIZE(hdr));
2990
2991 vdev_space_update(dev->l2ad_vdev, -asize, 0, 0);
2992
2993 (void) refcount_remove_many(&dev->l2ad_alloc, asize, hdr);
2994 arc_hdr_clear_flags(hdr, ARC_FLAG_HAS_L2HDR);
2995 }
2996
2997 static void
2998 arc_hdr_destroy(arc_buf_hdr_t *hdr)
2999 {
3000 if (HDR_HAS_L1HDR(hdr)) {
3001 ASSERT(hdr->b_l1hdr.b_buf == NULL ||
3002 hdr->b_l1hdr.b_bufcnt > 0);
3003 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
3004 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
3005 }
3006 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
3007 ASSERT(!HDR_IN_HASH_TABLE(hdr));
3008
3009 if (!HDR_EMPTY(hdr))
3010 buf_discard_identity(hdr);
3011
3012 if (HDR_HAS_L2HDR(hdr)) {
3013 l2arc_dev_t *dev = hdr->b_l2hdr.b_dev;
3014 boolean_t buflist_held = MUTEX_HELD(&dev->l2ad_mtx);
3015
3016 if (!buflist_held)
3017 mutex_enter(&dev->l2ad_mtx);
3018
3019 /*
3020 * Even though we checked this conditional above, we
3021 * need to check this again now that we have the
3022 * l2ad_mtx. This is because we could be racing with
3023 * another thread calling l2arc_evict() which might have
3024 * destroyed this header's L2 portion as we were waiting
3025 * to acquire the l2ad_mtx. If that happens, we don't
3026 * want to re-destroy the header's L2 portion.
3027 */
3028 if (HDR_HAS_L2HDR(hdr))
3029 arc_hdr_l2hdr_destroy(hdr);
3030
3031 if (!buflist_held)
3032 mutex_exit(&dev->l2ad_mtx);
3033 }
3034
3035 if (HDR_HAS_L1HDR(hdr)) {
3036 arc_cksum_free(hdr);
3037
3038 while (hdr->b_l1hdr.b_buf != NULL)
3039 arc_buf_destroy_impl(hdr->b_l1hdr.b_buf);
3040
3041 if (hdr->b_l1hdr.b_pabd != NULL)
3042 arc_hdr_free_pabd(hdr);
3043 }
3044
3045 ASSERT3P(hdr->b_hash_next, ==, NULL);
3046 if (HDR_HAS_L1HDR(hdr)) {
3047 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
3048 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
3049 kmem_cache_free(hdr_full_cache, hdr);
3050 } else {
3051 kmem_cache_free(hdr_l2only_cache, hdr);
3052 }
3053 }
3054
3055 void
3056 arc_buf_destroy(arc_buf_t *buf, void* tag)
3057 {
3058 arc_buf_hdr_t *hdr = buf->b_hdr;
3059 kmutex_t *hash_lock = HDR_LOCK(hdr);
3060
3061 if (hdr->b_l1hdr.b_state == arc_anon) {
3062 ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1);
3063 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
3064 VERIFY0(remove_reference(hdr, NULL, tag));
3065 arc_hdr_destroy(hdr);
3066 return;
3067 }
3068
3069 mutex_enter(hash_lock);
3070 ASSERT3P(hdr, ==, buf->b_hdr);
3071 ASSERT(hdr->b_l1hdr.b_bufcnt > 0);
3072 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
3073 ASSERT3P(hdr->b_l1hdr.b_state, !=, arc_anon);
3074 ASSERT3P(buf->b_data, !=, NULL);
3075
3076 (void) remove_reference(hdr, hash_lock, tag);
3077 arc_buf_destroy_impl(buf);
3078 mutex_exit(hash_lock);
3079 }
3080
3081 /*
3082 * Evict the arc_buf_hdr that is provided as a parameter. The resultant
3083 * state of the header is dependent on its state prior to entering this
3084 * function. The following transitions are possible:
3085 *
3086 * - arc_mru -> arc_mru_ghost
3087 * - arc_mfu -> arc_mfu_ghost
3088 * - arc_mru_ghost -> arc_l2c_only
3089 * - arc_mru_ghost -> deleted
3090 * - arc_mfu_ghost -> arc_l2c_only
3091 * - arc_mfu_ghost -> deleted
3092 */
3093 static int64_t
3094 arc_evict_hdr(arc_buf_hdr_t *hdr, kmutex_t *hash_lock)
3095 {
3096 arc_state_t *evicted_state, *state;
3097 int64_t bytes_evicted = 0;
3098
3099 ASSERT(MUTEX_HELD(hash_lock));
3100 ASSERT(HDR_HAS_L1HDR(hdr));
3101
3102 state = hdr->b_l1hdr.b_state;
3103 if (GHOST_STATE(state)) {
3104 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
3105 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
3106
3107 /*
3108 * l2arc_write_buffers() relies on a header's L1 portion
3109 * (i.e. its b_pabd field) during it's write phase.
3110 * Thus, we cannot push a header onto the arc_l2c_only
3111 * state (removing its L1 piece) until the header is
3112 * done being written to the l2arc.
3113 */
3114 if (HDR_HAS_L2HDR(hdr) && HDR_L2_WRITING(hdr)) {
3115 ARCSTAT_BUMP(arcstat_evict_l2_skip);
3116 return (bytes_evicted);
3117 }
3118
3119 ARCSTAT_BUMP(arcstat_deleted);
3120 bytes_evicted += HDR_GET_LSIZE(hdr);
3121
3122 DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, hdr);
3123
3124 if (HDR_HAS_L2HDR(hdr)) {
3125 ASSERT(hdr->b_l1hdr.b_pabd == NULL);
3126 /*
3127 * This buffer is cached on the 2nd Level ARC;
3128 * don't destroy the header.
3129 */
3130 arc_change_state(arc_l2c_only, hdr, hash_lock);
3131 /*
3132 * dropping from L1+L2 cached to L2-only,
3133 * realloc to remove the L1 header.
3134 */
3135 hdr = arc_hdr_realloc(hdr, hdr_full_cache,
3136 hdr_l2only_cache);
3137 } else {
3138 arc_change_state(arc_anon, hdr, hash_lock);
3139 arc_hdr_destroy(hdr);
3140 }
3141 return (bytes_evicted);
3142 }
3143
3144 ASSERT(state == arc_mru || state == arc_mfu);
3145 evicted_state = (state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost;
3146
3147 /* prefetch buffers have a minimum lifespan */
3148 if (HDR_IO_IN_PROGRESS(hdr) ||
3149 ((hdr->b_flags & (ARC_FLAG_PREFETCH | ARC_FLAG_INDIRECT)) &&
3150 ddi_get_lbolt() - hdr->b_l1hdr.b_arc_access <
3151 arc_min_prefetch_lifespan)) {
3152 ARCSTAT_BUMP(arcstat_evict_skip);
3153 return (bytes_evicted);
3154 }
3155
3156 ASSERT0(refcount_count(&hdr->b_l1hdr.b_refcnt));
3157 while (hdr->b_l1hdr.b_buf) {
3158 arc_buf_t *buf = hdr->b_l1hdr.b_buf;
3159 if (!mutex_tryenter(&buf->b_evict_lock)) {
3160 ARCSTAT_BUMP(arcstat_mutex_miss);
3161 break;
3162 }
3163 if (buf->b_data != NULL)
3164 bytes_evicted += HDR_GET_LSIZE(hdr);
3165 mutex_exit(&buf->b_evict_lock);
3166 arc_buf_destroy_impl(buf);
3167 }
3168
3169 if (HDR_HAS_L2HDR(hdr)) {
3170 ARCSTAT_INCR(arcstat_evict_l2_cached, HDR_GET_LSIZE(hdr));
3171 } else {
3172 if (l2arc_write_eligible(hdr->b_spa, hdr)) {
3173 ARCSTAT_INCR(arcstat_evict_l2_eligible,
3174 HDR_GET_LSIZE(hdr));
3175 } else {
3176 ARCSTAT_INCR(arcstat_evict_l2_ineligible,
3177 HDR_GET_LSIZE(hdr));
3178 }
3179 }
3180
3181 if (hdr->b_l1hdr.b_bufcnt == 0) {
3182 arc_cksum_free(hdr);
3183
3184 bytes_evicted += arc_hdr_size(hdr);
3185
3186 /*
3187 * If this hdr is being evicted and has a compressed
3188 * buffer then we discard it here before we change states.
3189 * This ensures that the accounting is updated correctly
3190 * in arc_free_data_impl().
3191 */
3192 arc_hdr_free_pabd(hdr);
3193
3194 arc_change_state(evicted_state, hdr, hash_lock);
3195 ASSERT(HDR_IN_HASH_TABLE(hdr));
3196 arc_hdr_set_flags(hdr, ARC_FLAG_IN_HASH_TABLE);
3197 DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, hdr);
3198 }
3199
3200 return (bytes_evicted);
3201 }
3202
3203 static uint64_t
3204 arc_evict_state_impl(multilist_t *ml, int idx, arc_buf_hdr_t *marker,
3205 uint64_t spa, int64_t bytes)
3206 {
3207 multilist_sublist_t *mls;
3208 uint64_t bytes_evicted = 0;
3209 arc_buf_hdr_t *hdr;
3210 kmutex_t *hash_lock;
3211 int evict_count = 0;
3212
3213 ASSERT3P(marker, !=, NULL);
3214 IMPLY(bytes < 0, bytes == ARC_EVICT_ALL);
3215
3216 mls = multilist_sublist_lock(ml, idx);
3217
3218 for (hdr = multilist_sublist_prev(mls, marker); hdr != NULL;
3219 hdr = multilist_sublist_prev(mls, marker)) {
3220 if ((bytes != ARC_EVICT_ALL && bytes_evicted >= bytes) ||
3221 (evict_count >= zfs_arc_evict_batch_limit))
3222 break;
3223
3224 /*
3225 * To keep our iteration location, move the marker
3226 * forward. Since we're not holding hdr's hash lock, we
3227 * must be very careful and not remove 'hdr' from the
3228 * sublist. Otherwise, other consumers might mistake the
3229 * 'hdr' as not being on a sublist when they call the
3230 * multilist_link_active() function (they all rely on
3231 * the hash lock protecting concurrent insertions and
3232 * removals). multilist_sublist_move_forward() was
3233 * specifically implemented to ensure this is the case
3234 * (only 'marker' will be removed and re-inserted).
3235 */
3236 multilist_sublist_move_forward(mls, marker);
3237
3238 /*
3239 * The only case where the b_spa field should ever be
3240 * zero, is the marker headers inserted by
3241 * arc_evict_state(). It's possible for multiple threads
3242 * to be calling arc_evict_state() concurrently (e.g.
3243 * dsl_pool_close() and zio_inject_fault()), so we must
3244 * skip any markers we see from these other threads.
3245 */
3246 if (hdr->b_spa == 0)
3247 continue;
3248
3249 /* we're only interested in evicting buffers of a certain spa */
3250 if (spa != 0 && hdr->b_spa != spa) {
3251 ARCSTAT_BUMP(arcstat_evict_skip);
3252 continue;
3253 }
3254
3255 hash_lock = HDR_LOCK(hdr);
3256
3257 /*
3258 * We aren't calling this function from any code path
3259 * that would already be holding a hash lock, so we're
3260 * asserting on this assumption to be defensive in case
3261 * this ever changes. Without this check, it would be
3262 * possible to incorrectly increment arcstat_mutex_miss
3263 * below (e.g. if the code changed such that we called
3264 * this function with a hash lock held).
3265 */
3266 ASSERT(!MUTEX_HELD(hash_lock));
3267
3268 if (mutex_tryenter(hash_lock)) {
3269 uint64_t evicted = arc_evict_hdr(hdr, hash_lock);
3270 mutex_exit(hash_lock);
3271
3272 bytes_evicted += evicted;
3273
3274 /*
3275 * If evicted is zero, arc_evict_hdr() must have
3276 * decided to skip this header, don't increment
3277 * evict_count in this case.
3278 */
3279 if (evicted != 0)
3280 evict_count++;
3281
3282 /*
3283 * If arc_size isn't overflowing, signal any
3284 * threads that might happen to be waiting.
3285 *
3286 * For each header evicted, we wake up a single
3287 * thread. If we used cv_broadcast, we could
3288 * wake up "too many" threads causing arc_size
3289 * to significantly overflow arc_c; since
3290 * arc_get_data_impl() doesn't check for overflow
3291 * when it's woken up (it doesn't because it's
3292 * possible for the ARC to be overflowing while
3293 * full of un-evictable buffers, and the
3294 * function should proceed in this case).
3295 *
3296 * If threads are left sleeping, due to not
3297 * using cv_broadcast, they will be woken up
3298 * just before arc_reclaim_thread() sleeps.
3299 */
3300 mutex_enter(&arc_reclaim_lock);
3301 if (!arc_is_overflowing())
3302 cv_signal(&arc_reclaim_waiters_cv);
3303 mutex_exit(&arc_reclaim_lock);
3304 } else {
3305 ARCSTAT_BUMP(arcstat_mutex_miss);
3306 }
3307 }
3308
3309 multilist_sublist_unlock(mls);
3310
3311 return (bytes_evicted);
3312 }
3313
3314 /*
3315 * Evict buffers from the given arc state, until we've removed the
3316 * specified number of bytes. Move the removed buffers to the
3317 * appropriate evict state.
3318 *
3319 * This function makes a "best effort". It skips over any buffers
3320 * it can't get a hash_lock on, and so, may not catch all candidates.
3321 * It may also return without evicting as much space as requested.
3322 *
3323 * If bytes is specified using the special value ARC_EVICT_ALL, this
3324 * will evict all available (i.e. unlocked and evictable) buffers from
3325 * the given arc state; which is used by arc_flush().
3326 */
3327 static uint64_t
3328 arc_evict_state(arc_state_t *state, uint64_t spa, int64_t bytes,
3329 arc_buf_contents_t type)
3330 {
3331 uint64_t total_evicted = 0;
3332 multilist_t *ml = state->arcs_list[type];
3333 int num_sublists;
3334 arc_buf_hdr_t **markers;
3335 int i;
3336
3337 IMPLY(bytes < 0, bytes == ARC_EVICT_ALL);
3338
3339 num_sublists = multilist_get_num_sublists(ml);
3340
3341 /*
3342 * If we've tried to evict from each sublist, made some
3343 * progress, but still have not hit the target number of bytes
3344 * to evict, we want to keep trying. The markers allow us to
3345 * pick up where we left off for each individual sublist, rather
3346 * than starting from the tail each time.
3347 */
3348 markers = kmem_zalloc(sizeof (*markers) * num_sublists, KM_SLEEP);
3349 for (i = 0; i < num_sublists; i++) {
3350 multilist_sublist_t *mls;
3351
3352 markers[i] = kmem_cache_alloc(hdr_full_cache, KM_SLEEP);
3353
3354 /*
3355 * A b_spa of 0 is used to indicate that this header is
3356 * a marker. This fact is used in arc_adjust_type() and
3357 * arc_evict_state_impl().
3358 */
3359 markers[i]->b_spa = 0;
3360
3361 mls = multilist_sublist_lock(ml, i);
3362 multilist_sublist_insert_tail(mls, markers[i]);
3363 multilist_sublist_unlock(mls);
3364 }
3365
3366 /*
3367 * While we haven't hit our target number of bytes to evict, or
3368 * we're evicting all available buffers.
3369 */
3370 while (total_evicted < bytes || bytes == ARC_EVICT_ALL) {
3371 int sublist_idx = multilist_get_random_index(ml);
3372 uint64_t scan_evicted = 0;
3373
3374 /*
3375 * Try to reduce pinned dnodes with a floor of arc_dnode_limit.
3376 * Request that 10% of the LRUs be scanned by the superblock
3377 * shrinker.
3378 */
3379 if (type == ARC_BUFC_DATA && arc_dnode_size > arc_dnode_limit)
3380 arc_prune_async((arc_dnode_size - arc_dnode_limit) /
3381 sizeof (dnode_t) / zfs_arc_dnode_reduce_percent);
3382
3383 /*
3384 * Start eviction using a randomly selected sublist,
3385 * this is to try and evenly balance eviction across all
3386 * sublists. Always starting at the same sublist
3387 * (e.g. index 0) would cause evictions to favor certain
3388 * sublists over others.
3389 */
3390 for (i = 0; i < num_sublists; i++) {
3391 uint64_t bytes_remaining;
3392 uint64_t bytes_evicted;
3393
3394 if (bytes == ARC_EVICT_ALL)
3395 bytes_remaining = ARC_EVICT_ALL;
3396 else if (total_evicted < bytes)
3397 bytes_remaining = bytes - total_evicted;
3398 else
3399 break;
3400
3401 bytes_evicted = arc_evict_state_impl(ml, sublist_idx,
3402 markers[sublist_idx], spa, bytes_remaining);
3403
3404 scan_evicted += bytes_evicted;
3405 total_evicted += bytes_evicted;
3406
3407 /* we've reached the end, wrap to the beginning */
3408 if (++sublist_idx >= num_sublists)
3409 sublist_idx = 0;
3410 }
3411
3412 /*
3413 * If we didn't evict anything during this scan, we have
3414 * no reason to believe we'll evict more during another
3415 * scan, so break the loop.
3416 */
3417 if (scan_evicted == 0) {
3418 /* This isn't possible, let's make that obvious */
3419 ASSERT3S(bytes, !=, 0);
3420
3421 /*
3422 * When bytes is ARC_EVICT_ALL, the only way to
3423 * break the loop is when scan_evicted is zero.
3424 * In that case, we actually have evicted enough,
3425 * so we don't want to increment the kstat.
3426 */
3427 if (bytes != ARC_EVICT_ALL) {
3428 ASSERT3S(total_evicted, <, bytes);
3429 ARCSTAT_BUMP(arcstat_evict_not_enough);
3430 }
3431
3432 break;
3433 }
3434 }
3435
3436 for (i = 0; i < num_sublists; i++) {
3437 multilist_sublist_t *mls = multilist_sublist_lock(ml, i);
3438 multilist_sublist_remove(mls, markers[i]);
3439 multilist_sublist_unlock(mls);
3440
3441 kmem_cache_free(hdr_full_cache, markers[i]);
3442 }
3443 kmem_free(markers, sizeof (*markers) * num_sublists);
3444
3445 return (total_evicted);
3446 }
3447
3448 /*
3449 * Flush all "evictable" data of the given type from the arc state
3450 * specified. This will not evict any "active" buffers (i.e. referenced).
3451 *
3452 * When 'retry' is set to B_FALSE, the function will make a single pass
3453 * over the state and evict any buffers that it can. Since it doesn't
3454 * continually retry the eviction, it might end up leaving some buffers
3455 * in the ARC due to lock misses.
3456 *
3457 * When 'retry' is set to B_TRUE, the function will continually retry the
3458 * eviction until *all* evictable buffers have been removed from the
3459 * state. As a result, if concurrent insertions into the state are
3460 * allowed (e.g. if the ARC isn't shutting down), this function might
3461 * wind up in an infinite loop, continually trying to evict buffers.
3462 */
3463 static uint64_t
3464 arc_flush_state(arc_state_t *state, uint64_t spa, arc_buf_contents_t type,
3465 boolean_t retry)
3466 {
3467 uint64_t evicted = 0;
3468
3469 while (refcount_count(&state->arcs_esize[type]) != 0) {
3470 evicted += arc_evict_state(state, spa, ARC_EVICT_ALL, type);
3471
3472 if (!retry)
3473 break;
3474 }
3475
3476 return (evicted);
3477 }
3478
3479 /*
3480 * Helper function for arc_prune_async() it is responsible for safely
3481 * handling the execution of a registered arc_prune_func_t.
3482 */
3483 static void
3484 arc_prune_task(void *ptr)
3485 {
3486 arc_prune_t *ap = (arc_prune_t *)ptr;
3487 arc_prune_func_t *func = ap->p_pfunc;
3488
3489 if (func != NULL)
3490 func(ap->p_adjust, ap->p_private);
3491
3492 refcount_remove(&ap->p_refcnt, func);
3493 }
3494
3495 /*
3496 * Notify registered consumers they must drop holds on a portion of the ARC
3497 * buffered they reference. This provides a mechanism to ensure the ARC can
3498 * honor the arc_meta_limit and reclaim otherwise pinned ARC buffers. This
3499 * is analogous to dnlc_reduce_cache() but more generic.
3500 *
3501 * This operation is performed asynchronously so it may be safely called
3502 * in the context of the arc_reclaim_thread(). A reference is taken here
3503 * for each registered arc_prune_t and the arc_prune_task() is responsible
3504 * for releasing it once the registered arc_prune_func_t has completed.
3505 */
3506 static void
3507 arc_prune_async(int64_t adjust)
3508 {
3509 arc_prune_t *ap;
3510
3511 mutex_enter(&arc_prune_mtx);
3512 for (ap = list_head(&arc_prune_list); ap != NULL;
3513 ap = list_next(&arc_prune_list, ap)) {
3514
3515 if (refcount_count(&ap->p_refcnt) >= 2)
3516 continue;
3517
3518 refcount_add(&ap->p_refcnt, ap->p_pfunc);
3519 ap->p_adjust = adjust;
3520 if (taskq_dispatch(arc_prune_taskq, arc_prune_task,
3521 ap, TQ_SLEEP) == TASKQID_INVALID) {
3522 refcount_remove(&ap->p_refcnt, ap->p_pfunc);
3523 continue;
3524 }
3525 ARCSTAT_BUMP(arcstat_prune);
3526 }
3527 mutex_exit(&arc_prune_mtx);
3528 }
3529
3530 /*
3531 * Evict the specified number of bytes from the state specified,
3532 * restricting eviction to the spa and type given. This function
3533 * prevents us from trying to evict more from a state's list than
3534 * is "evictable", and to skip evicting altogether when passed a
3535 * negative value for "bytes". In contrast, arc_evict_state() will
3536 * evict everything it can, when passed a negative value for "bytes".
3537 */
3538 static uint64_t
3539 arc_adjust_impl(arc_state_t *state, uint64_t spa, int64_t bytes,
3540 arc_buf_contents_t type)
3541 {
3542 int64_t delta;
3543
3544 if (bytes > 0 && refcount_count(&state->arcs_esize[type]) > 0) {
3545 delta = MIN(refcount_count(&state->arcs_esize[type]), bytes);
3546 return (arc_evict_state(state, spa, delta, type));
3547 }
3548
3549 return (0);
3550 }
3551
3552 /*
3553 * The goal of this function is to evict enough meta data buffers from the
3554 * ARC in order to enforce the arc_meta_limit. Achieving this is slightly
3555 * more complicated than it appears because it is common for data buffers
3556 * to have holds on meta data buffers. In addition, dnode meta data buffers
3557 * will be held by the dnodes in the block preventing them from being freed.
3558 * This means we can't simply traverse the ARC and expect to always find
3559 * enough unheld meta data buffer to release.
3560 *
3561 * Therefore, this function has been updated to make alternating passes
3562 * over the ARC releasing data buffers and then newly unheld meta data
3563 * buffers. This ensures forward progress is maintained and arc_meta_used
3564 * will decrease. Normally this is sufficient, but if required the ARC
3565 * will call the registered prune callbacks causing dentry and inodes to
3566 * be dropped from the VFS cache. This will make dnode meta data buffers
3567 * available for reclaim.
3568 */
3569 static uint64_t
3570 arc_adjust_meta_balanced(void)
3571 {
3572 int64_t delta, prune = 0, adjustmnt;
3573 uint64_t total_evicted = 0;
3574 arc_buf_contents_t type = ARC_BUFC_DATA;
3575 int restarts = MAX(zfs_arc_meta_adjust_restarts, 0);
3576
3577 restart:
3578 /*
3579 * This slightly differs than the way we evict from the mru in
3580 * arc_adjust because we don't have a "target" value (i.e. no
3581 * "meta" arc_p). As a result, I think we can completely
3582 * cannibalize the metadata in the MRU before we evict the
3583 * metadata from the MFU. I think we probably need to implement a
3584 * "metadata arc_p" value to do this properly.
3585 */
3586 adjustmnt = arc_meta_used - arc_meta_limit;
3587
3588 if (adjustmnt > 0 && refcount_count(&arc_mru->arcs_esize[type]) > 0) {
3589 delta = MIN(refcount_count(&arc_mru->arcs_esize[type]),
3590 adjustmnt);
3591 total_evicted += arc_adjust_impl(arc_mru, 0, delta, type);
3592 adjustmnt -= delta;
3593 }
3594
3595 /*
3596 * We can't afford to recalculate adjustmnt here. If we do,
3597 * new metadata buffers can sneak into the MRU or ANON lists,
3598 * thus penalize the MFU metadata. Although the fudge factor is
3599 * small, it has been empirically shown to be significant for
3600 * certain workloads (e.g. creating many empty directories). As
3601 * such, we use the original calculation for adjustmnt, and
3602 * simply decrement the amount of data evicted from the MRU.
3603 */
3604
3605 if (adjustmnt > 0 && refcount_count(&arc_mfu->arcs_esize[type]) > 0) {
3606 delta = MIN(refcount_count(&arc_mfu->arcs_esize[type]),
3607 adjustmnt);
3608 total_evicted += arc_adjust_impl(arc_mfu, 0, delta, type);
3609 }
3610
3611 adjustmnt = arc_meta_used - arc_meta_limit;
3612
3613 if (adjustmnt > 0 &&
3614 refcount_count(&arc_mru_ghost->arcs_esize[type]) > 0) {
3615 delta = MIN(adjustmnt,
3616 refcount_count(&arc_mru_ghost->arcs_esize[type]));
3617 total_evicted += arc_adjust_impl(arc_mru_ghost, 0, delta, type);
3618 adjustmnt -= delta;
3619 }
3620
3621 if (adjustmnt > 0 &&
3622 refcount_count(&arc_mfu_ghost->arcs_esize[type]) > 0) {
3623 delta = MIN(adjustmnt,
3624 refcount_count(&arc_mfu_ghost->arcs_esize[type]));
3625 total_evicted += arc_adjust_impl(arc_mfu_ghost, 0, delta, type);
3626 }
3627
3628 /*
3629 * If after attempting to make the requested adjustment to the ARC
3630 * the meta limit is still being exceeded then request that the
3631 * higher layers drop some cached objects which have holds on ARC
3632 * meta buffers. Requests to the upper layers will be made with
3633 * increasingly large scan sizes until the ARC is below the limit.
3634 */
3635 if (arc_meta_used > arc_meta_limit) {
3636 if (type == ARC_BUFC_DATA) {
3637 type = ARC_BUFC_METADATA;
3638 } else {
3639 type = ARC_BUFC_DATA;
3640
3641 if (zfs_arc_meta_prune) {
3642 prune += zfs_arc_meta_prune;
3643 arc_prune_async(prune);
3644 }
3645 }
3646
3647 if (restarts > 0) {
3648 restarts--;
3649 goto restart;
3650 }
3651 }
3652 return (total_evicted);
3653 }
3654
3655 /*
3656 * Evict metadata buffers from the cache, such that arc_meta_used is
3657 * capped by the arc_meta_limit tunable.
3658 */
3659 static uint64_t
3660 arc_adjust_meta_only(void)
3661 {
3662 uint64_t total_evicted = 0;
3663 int64_t target;
3664
3665 /*
3666 * If we're over the meta limit, we want to evict enough
3667 * metadata to get back under the meta limit. We don't want to
3668 * evict so much that we drop the MRU below arc_p, though. If
3669 * we're over the meta limit more than we're over arc_p, we
3670 * evict some from the MRU here, and some from the MFU below.
3671 */
3672 target = MIN((int64_t)(arc_meta_used - arc_meta_limit),
3673 (int64_t)(refcount_count(&arc_anon->arcs_size) +
3674 refcount_count(&arc_mru->arcs_size) - arc_p));
3675
3676 total_evicted += arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA);
3677
3678 /*
3679 * Similar to the above, we want to evict enough bytes to get us
3680 * below the meta limit, but not so much as to drop us below the
3681 * space allotted to the MFU (which is defined as arc_c - arc_p).
3682 */
3683 target = MIN((int64_t)(arc_meta_used - arc_meta_limit),
3684 (int64_t)(refcount_count(&arc_mfu->arcs_size) - (arc_c - arc_p)));
3685
3686 total_evicted += arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA);
3687
3688 return (total_evicted);
3689 }
3690
3691 static uint64_t
3692 arc_adjust_meta(void)
3693 {
3694 if (zfs_arc_meta_strategy == ARC_STRATEGY_META_ONLY)
3695 return (arc_adjust_meta_only());
3696 else
3697 return (arc_adjust_meta_balanced());
3698 }
3699
3700 /*
3701 * Return the type of the oldest buffer in the given arc state
3702 *
3703 * This function will select a random sublist of type ARC_BUFC_DATA and
3704 * a random sublist of type ARC_BUFC_METADATA. The tail of each sublist
3705 * is compared, and the type which contains the "older" buffer will be
3706 * returned.
3707 */
3708 static arc_buf_contents_t
3709 arc_adjust_type(arc_state_t *state)
3710 {
3711 multilist_t *data_ml = state->arcs_list[ARC_BUFC_DATA];
3712 multilist_t *meta_ml = state->arcs_list[ARC_BUFC_METADATA];
3713 int data_idx = multilist_get_random_index(data_ml);
3714 int meta_idx = multilist_get_random_index(meta_ml);
3715 multilist_sublist_t *data_mls;
3716 multilist_sublist_t *meta_mls;
3717 arc_buf_contents_t type;
3718 arc_buf_hdr_t *data_hdr;
3719 arc_buf_hdr_t *meta_hdr;
3720
3721 /*
3722 * We keep the sublist lock until we're finished, to prevent
3723 * the headers from being destroyed via arc_evict_state().
3724 */
3725 data_mls = multilist_sublist_lock(data_ml, data_idx);
3726 meta_mls = multilist_sublist_lock(meta_ml, meta_idx);
3727
3728 /*
3729 * These two loops are to ensure we skip any markers that
3730 * might be at the tail of the lists due to arc_evict_state().
3731 */
3732
3733 for (data_hdr = multilist_sublist_tail(data_mls); data_hdr != NULL;
3734 data_hdr = multilist_sublist_prev(data_mls, data_hdr)) {
3735 if (data_hdr->b_spa != 0)
3736 break;
3737 }
3738
3739 for (meta_hdr = multilist_sublist_tail(meta_mls); meta_hdr != NULL;
3740 meta_hdr = multilist_sublist_prev(meta_mls, meta_hdr)) {
3741 if (meta_hdr->b_spa != 0)
3742 break;
3743 }
3744
3745 if (data_hdr == NULL && meta_hdr == NULL) {
3746 type = ARC_BUFC_DATA;
3747 } else if (data_hdr == NULL) {
3748 ASSERT3P(meta_hdr, !=, NULL);
3749 type = ARC_BUFC_METADATA;
3750 } else if (meta_hdr == NULL) {
3751 ASSERT3P(data_hdr, !=, NULL);
3752 type = ARC_BUFC_DATA;
3753 } else {
3754 ASSERT3P(data_hdr, !=, NULL);
3755 ASSERT3P(meta_hdr, !=, NULL);
3756
3757 /* The headers can't be on the sublist without an L1 header */
3758 ASSERT(HDR_HAS_L1HDR(data_hdr));
3759 ASSERT(HDR_HAS_L1HDR(meta_hdr));
3760
3761 if (data_hdr->b_l1hdr.b_arc_access <
3762 meta_hdr->b_l1hdr.b_arc_access) {
3763 type = ARC_BUFC_DATA;
3764 } else {
3765 type = ARC_BUFC_METADATA;
3766 }
3767 }
3768
3769 multilist_sublist_unlock(meta_mls);
3770 multilist_sublist_unlock(data_mls);
3771
3772 return (type);
3773 }
3774
3775 /*
3776 * Evict buffers from the cache, such that arc_size is capped by arc_c.
3777 */
3778 static uint64_t
3779 arc_adjust(void)
3780 {
3781 uint64_t total_evicted = 0;
3782 uint64_t bytes;
3783 int64_t target;
3784
3785 /*
3786 * If we're over arc_meta_limit, we want to correct that before
3787 * potentially evicting data buffers below.
3788 */
3789 total_evicted += arc_adjust_meta();
3790
3791 /*
3792 * Adjust MRU size
3793 *
3794 * If we're over the target cache size, we want to evict enough
3795 * from the list to get back to our target size. We don't want
3796 * to evict too much from the MRU, such that it drops below
3797 * arc_p. So, if we're over our target cache size more than
3798 * the MRU is over arc_p, we'll evict enough to get back to
3799 * arc_p here, and then evict more from the MFU below.
3800 */
3801 target = MIN((int64_t)(arc_size - arc_c),
3802 (int64_t)(refcount_count(&arc_anon->arcs_size) +
3803 refcount_count(&arc_mru->arcs_size) + arc_meta_used - arc_p));
3804
3805 /*
3806 * If we're below arc_meta_min, always prefer to evict data.
3807 * Otherwise, try to satisfy the requested number of bytes to
3808 * evict from the type which contains older buffers; in an
3809 * effort to keep newer buffers in the cache regardless of their
3810 * type. If we cannot satisfy the number of bytes from this
3811 * type, spill over into the next type.
3812 */
3813 if (arc_adjust_type(arc_mru) == ARC_BUFC_METADATA &&
3814 arc_meta_used > arc_meta_min) {
3815 bytes = arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA);
3816 total_evicted += bytes;
3817
3818 /*
3819 * If we couldn't evict our target number of bytes from
3820 * metadata, we try to get the rest from data.
3821 */
3822 target -= bytes;
3823
3824 total_evicted +=
3825 arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_DATA);
3826 } else {
3827 bytes = arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_DATA);
3828 total_evicted += bytes;
3829
3830 /*
3831 * If we couldn't evict our target number of bytes from
3832 * data, we try to get the rest from metadata.
3833 */
3834 target -= bytes;
3835
3836 total_evicted +=
3837 arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA);
3838 }
3839
3840 /*
3841 * Adjust MFU size
3842 *
3843 * Now that we've tried to evict enough from the MRU to get its
3844 * size back to arc_p, if we're still above the target cache
3845 * size, we evict the rest from the MFU.
3846 */
3847 target = arc_size - arc_c;
3848
3849 if (arc_adjust_type(arc_mfu) == ARC_BUFC_METADATA &&
3850 arc_meta_used > arc_meta_min) {
3851 bytes = arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA);
3852 total_evicted += bytes;
3853
3854 /*
3855 * If we couldn't evict our target number of bytes from
3856 * metadata, we try to get the rest from data.
3857 */
3858 target -= bytes;
3859
3860 total_evicted +=
3861 arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_DATA);
3862 } else {
3863 bytes = arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_DATA);
3864 total_evicted += bytes;
3865
3866 /*
3867 * If we couldn't evict our target number of bytes from
3868 * data, we try to get the rest from data.
3869 */
3870 target -= bytes;
3871
3872 total_evicted +=
3873 arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA);
3874 }
3875
3876 /*
3877 * Adjust ghost lists
3878 *
3879 * In addition to the above, the ARC also defines target values
3880 * for the ghost lists. The sum of the mru list and mru ghost
3881 * list should never exceed the target size of the cache, and
3882 * the sum of the mru list, mfu list, mru ghost list, and mfu
3883 * ghost list should never exceed twice the target size of the
3884 * cache. The following logic enforces these limits on the ghost
3885 * caches, and evicts from them as needed.
3886 */
3887 target = refcount_count(&arc_mru->arcs_size) +
3888 refcount_count(&arc_mru_ghost->arcs_size) - arc_c;
3889
3890 bytes = arc_adjust_impl(arc_mru_ghost, 0, target, ARC_BUFC_DATA);
3891 total_evicted += bytes;
3892
3893 target -= bytes;
3894
3895 total_evicted +=
3896 arc_adjust_impl(arc_mru_ghost, 0, target, ARC_BUFC_METADATA);
3897
3898 /*
3899 * We assume the sum of the mru list and mfu list is less than
3900 * or equal to arc_c (we enforced this above), which means we
3901 * can use the simpler of the two equations below:
3902 *
3903 * mru + mfu + mru ghost + mfu ghost <= 2 * arc_c
3904 * mru ghost + mfu ghost <= arc_c
3905 */
3906 target = refcount_count(&arc_mru_ghost->arcs_size) +
3907 refcount_count(&arc_mfu_ghost->arcs_size) - arc_c;
3908
3909 bytes = arc_adjust_impl(arc_mfu_ghost, 0, target, ARC_BUFC_DATA);
3910 total_evicted += bytes;
3911
3912 target -= bytes;
3913
3914 total_evicted +=
3915 arc_adjust_impl(arc_mfu_ghost, 0, target, ARC_BUFC_METADATA);
3916
3917 return (total_evicted);
3918 }
3919
3920 void
3921 arc_flush(spa_t *spa, boolean_t retry)
3922 {
3923 uint64_t guid = 0;
3924
3925 /*
3926 * If retry is B_TRUE, a spa must not be specified since we have
3927 * no good way to determine if all of a spa's buffers have been
3928 * evicted from an arc state.
3929 */
3930 ASSERT(!retry || spa == 0);
3931
3932 if (spa != NULL)
3933 guid = spa_load_guid(spa);
3934
3935 (void) arc_flush_state(arc_mru, guid, ARC_BUFC_DATA, retry);
3936 (void) arc_flush_state(arc_mru, guid, ARC_BUFC_METADATA, retry);
3937
3938 (void) arc_flush_state(arc_mfu, guid, ARC_BUFC_DATA, retry);
3939 (void) arc_flush_state(arc_mfu, guid, ARC_BUFC_METADATA, retry);
3940
3941 (void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_DATA, retry);
3942 (void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_METADATA, retry);
3943
3944 (void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_DATA, retry);
3945 (void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_METADATA, retry);
3946 }
3947
3948 void
3949 arc_shrink(int64_t to_free)
3950 {
3951 uint64_t c = arc_c;
3952
3953 if (c > to_free && c - to_free > arc_c_min) {
3954 arc_c = c - to_free;
3955 atomic_add_64(&arc_p, -(arc_p >> arc_shrink_shift));
3956 if (arc_c > arc_size)
3957 arc_c = MAX(arc_size, arc_c_min);
3958 if (arc_p > arc_c)
3959 arc_p = (arc_c >> 1);
3960 ASSERT(arc_c >= arc_c_min);
3961 ASSERT((int64_t)arc_p >= 0);
3962 } else {
3963 arc_c = arc_c_min;
3964 }
3965
3966 if (arc_size > arc_c)
3967 (void) arc_adjust();
3968 }
3969
3970 /*
3971 * Return maximum amount of memory that we could possibly use. Reduced
3972 * to half of all memory in user space which is primarily used for testing.
3973 */
3974 static uint64_t
3975 arc_all_memory(void)
3976 {
3977 #ifdef _KERNEL
3978 return (MIN(ptob(physmem),
3979 vmem_size(heap_arena, VMEM_FREE | VMEM_ALLOC)));
3980 #else
3981 return (ptob(physmem) / 2);
3982 #endif
3983 }
3984
3985 typedef enum free_memory_reason_t {
3986 FMR_UNKNOWN,
3987 FMR_NEEDFREE,
3988 FMR_LOTSFREE,
3989 FMR_SWAPFS_MINFREE,
3990 FMR_PAGES_PP_MAXIMUM,
3991 FMR_HEAP_ARENA,
3992 FMR_ZIO_ARENA,
3993 } free_memory_reason_t;
3994
3995 int64_t last_free_memory;
3996 free_memory_reason_t last_free_reason;
3997
3998 #ifdef _KERNEL
3999 /*
4000 * Additional reserve of pages for pp_reserve.
4001 */
4002 int64_t arc_pages_pp_reserve = 64;
4003
4004 /*
4005 * Additional reserve of pages for swapfs.
4006 */
4007 int64_t arc_swapfs_reserve = 64;
4008 #endif /* _KERNEL */
4009
4010 /*
4011 * Return the amount of memory that can be consumed before reclaim will be
4012 * needed. Positive if there is sufficient free memory, negative indicates
4013 * the amount of memory that needs to be freed up.
4014 */
4015 static int64_t
4016 arc_available_memory(void)
4017 {
4018 int64_t lowest = INT64_MAX;
4019 free_memory_reason_t r = FMR_UNKNOWN;
4020 #ifdef _KERNEL
4021 uint64_t available_memory = ptob(freemem);
4022 int64_t n;
4023 #ifdef __linux__
4024 pgcnt_t needfree = btop(arc_need_free);
4025 pgcnt_t lotsfree = btop(arc_sys_free);
4026 pgcnt_t desfree = 0;
4027 #endif
4028
4029 #if defined(__i386)
4030 available_memory =
4031 MIN(available_memory, vmem_size(heap_arena, VMEM_FREE));
4032 #endif
4033
4034 if (needfree > 0) {
4035 n = PAGESIZE * (-needfree);
4036 if (n < lowest) {
4037 lowest = n;
4038 r = FMR_NEEDFREE;
4039 }
4040 }
4041
4042 /*
4043 * check that we're out of range of the pageout scanner. It starts to
4044 * schedule paging if freemem is less than lotsfree and needfree.
4045 * lotsfree is the high-water mark for pageout, and needfree is the
4046 * number of needed free pages. We add extra pages here to make sure
4047 * the scanner doesn't start up while we're freeing memory.
4048 */
4049 n = PAGESIZE * (btop(available_memory) - lotsfree - needfree - desfree);
4050 if (n < lowest) {
4051 lowest = n;
4052 r = FMR_LOTSFREE;
4053 }
4054
4055 #ifndef __linux__
4056 /*
4057 * check to make sure that swapfs has enough space so that anon
4058 * reservations can still succeed. anon_resvmem() checks that the
4059 * availrmem is greater than swapfs_minfree, and the number of reserved
4060 * swap pages. We also add a bit of extra here just to prevent
4061 * circumstances from getting really dire.
4062 */
4063 n = PAGESIZE * (availrmem - swapfs_minfree - swapfs_reserve -
4064 desfree - arc_swapfs_reserve);
4065 if (n < lowest) {
4066 lowest = n;
4067 r = FMR_SWAPFS_MINFREE;
4068 }
4069
4070
4071 /*
4072 * Check that we have enough availrmem that memory locking (e.g., via
4073 * mlock(3C) or memcntl(2)) can still succeed. (pages_pp_maximum
4074 * stores the number of pages that cannot be locked; when availrmem
4075 * drops below pages_pp_maximum, page locking mechanisms such as
4076 * page_pp_lock() will fail.)
4077 */
4078 n = PAGESIZE * (availrmem - pages_pp_maximum -
4079 arc_pages_pp_reserve);
4080 if (n < lowest) {
4081 lowest = n;
4082 r = FMR_PAGES_PP_MAXIMUM;
4083 }
4084 #endif
4085
4086 #if defined(__i386)
4087 /*
4088 * If we're on an i386 platform, it's possible that we'll exhaust the
4089 * kernel heap space before we ever run out of available physical
4090 * memory. Most checks of the size of the heap_area compare against
4091 * tune.t_minarmem, which is the minimum available real memory that we
4092 * can have in the system. However, this is generally fixed at 25 pages
4093 * which is so low that it's useless. In this comparison, we seek to
4094 * calculate the total heap-size, and reclaim if more than 3/4ths of the
4095 * heap is allocated. (Or, in the calculation, if less than 1/4th is
4096 * free)
4097 */
4098 n = vmem_size(heap_arena, VMEM_FREE) -
4099 (vmem_size(heap_arena, VMEM_FREE | VMEM_ALLOC) >> 2);
4100 if (n < lowest) {
4101 lowest = n;
4102 r = FMR_HEAP_ARENA;
4103 }
4104 #endif
4105
4106 /*
4107 * If zio data pages are being allocated out of a separate heap segment,
4108 * then enforce that the size of available vmem for this arena remains
4109 * above about 1/4th (1/(2^arc_zio_arena_free_shift)) free.
4110 *
4111 * Note that reducing the arc_zio_arena_free_shift keeps more virtual
4112 * memory (in the zio_arena) free, which can avoid memory
4113 * fragmentation issues.
4114 */
4115 if (zio_arena != NULL) {
4116 n = (int64_t)vmem_size(zio_arena, VMEM_FREE) -
4117 (vmem_size(zio_arena, VMEM_ALLOC) >>
4118 arc_zio_arena_free_shift);
4119 if (n < lowest) {
4120 lowest = n;
4121 r = FMR_ZIO_ARENA;
4122 }
4123 }
4124 #else /* _KERNEL */
4125 /* Every 100 calls, free a small amount */
4126 if (spa_get_random(100) == 0)
4127 lowest = -1024;
4128 #endif /* _KERNEL */
4129
4130 last_free_memory = lowest;
4131 last_free_reason = r;
4132
4133 return (lowest);
4134 }
4135
4136 /*
4137 * Determine if the system is under memory pressure and is asking
4138 * to reclaim memory. A return value of B_TRUE indicates that the system
4139 * is under memory pressure and that the arc should adjust accordingly.
4140 */
4141 static boolean_t
4142 arc_reclaim_needed(void)
4143 {
4144 return (arc_available_memory() < 0);
4145 }
4146
4147 static void
4148 arc_kmem_reap_now(void)
4149 {
4150 size_t i;
4151 kmem_cache_t *prev_cache = NULL;
4152 kmem_cache_t *prev_data_cache = NULL;
4153 extern kmem_cache_t *zio_buf_cache[];
4154 extern kmem_cache_t *zio_data_buf_cache[];
4155 extern kmem_cache_t *range_seg_cache;
4156
4157 if ((arc_meta_used >= arc_meta_limit) && zfs_arc_meta_prune) {
4158 /*
4159 * We are exceeding our meta-data cache limit.
4160 * Prune some entries to release holds on meta-data.
4161 */
4162 arc_prune_async(zfs_arc_meta_prune);
4163 }
4164
4165 for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) {
4166 #ifdef _ILP32
4167 /* reach upper limit of cache size on 32-bit */
4168 if (zio_buf_cache[i] == NULL)
4169 break;
4170 #endif
4171 if (zio_buf_cache[i] != prev_cache) {
4172 prev_cache = zio_buf_cache[i];
4173 kmem_cache_reap_now(zio_buf_cache[i]);
4174 }
4175 if (zio_data_buf_cache[i] != prev_data_cache) {
4176 prev_data_cache = zio_data_buf_cache[i];
4177 kmem_cache_reap_now(zio_data_buf_cache[i]);
4178 }
4179 }
4180 kmem_cache_reap_now(buf_cache);
4181 kmem_cache_reap_now(hdr_full_cache);
4182 kmem_cache_reap_now(hdr_l2only_cache);
4183 kmem_cache_reap_now(range_seg_cache);
4184
4185 if (zio_arena != NULL) {
4186 /*
4187 * Ask the vmem arena to reclaim unused memory from its
4188 * quantum caches.
4189 */
4190 vmem_qcache_reap(zio_arena);
4191 }
4192 }
4193
4194 /*
4195 * Threads can block in arc_get_data_impl() waiting for this thread to evict
4196 * enough data and signal them to proceed. When this happens, the threads in
4197 * arc_get_data_impl() are sleeping while holding the hash lock for their
4198 * particular arc header. Thus, we must be careful to never sleep on a
4199 * hash lock in this thread. This is to prevent the following deadlock:
4200 *
4201 * - Thread A sleeps on CV in arc_get_data_impl() holding hash lock "L",
4202 * waiting for the reclaim thread to signal it.
4203 *
4204 * - arc_reclaim_thread() tries to acquire hash lock "L" using mutex_enter,
4205 * fails, and goes to sleep forever.
4206 *
4207 * This possible deadlock is avoided by always acquiring a hash lock
4208 * using mutex_tryenter() from arc_reclaim_thread().
4209 */
4210 static void
4211 arc_reclaim_thread(void)
4212 {
4213 fstrans_cookie_t cookie = spl_fstrans_mark();
4214 hrtime_t growtime = 0;
4215 callb_cpr_t cpr;
4216
4217 CALLB_CPR_INIT(&cpr, &arc_reclaim_lock, callb_generic_cpr, FTAG);
4218
4219 mutex_enter(&arc_reclaim_lock);
4220 while (!arc_reclaim_thread_exit) {
4221 int64_t to_free;
4222 uint64_t evicted = 0;
4223 uint64_t need_free = arc_need_free;
4224 arc_tuning_update();
4225
4226 /*
4227 * This is necessary in order for the mdb ::arc dcmd to
4228 * show up to date information. Since the ::arc command
4229 * does not call the kstat's update function, without
4230 * this call, the command may show stale stats for the
4231 * anon, mru, mru_ghost, mfu, and mfu_ghost lists. Even
4232 * with this change, the data might be up to 1 second
4233 * out of date; but that should suffice. The arc_state_t
4234 * structures can be queried directly if more accurate
4235 * information is needed.
4236 */
4237 #ifndef __linux__
4238 if (arc_ksp != NULL)
4239 arc_ksp->ks_update(arc_ksp, KSTAT_READ);
4240 #endif
4241 mutex_exit(&arc_reclaim_lock);
4242
4243 /*
4244 * We call arc_adjust() before (possibly) calling
4245 * arc_kmem_reap_now(), so that we can wake up
4246 * arc_get_data_buf() sooner.
4247 */
4248 evicted = arc_adjust();
4249
4250 int64_t free_memory = arc_available_memory();
4251 if (free_memory < 0) {
4252
4253 arc_no_grow = B_TRUE;
4254 arc_warm = B_TRUE;
4255
4256 /*
4257 * Wait at least zfs_grow_retry (default 5) seconds
4258 * before considering growing.
4259 */
4260 growtime = gethrtime() + SEC2NSEC(arc_grow_retry);
4261
4262 arc_kmem_reap_now();
4263
4264 /*
4265 * If we are still low on memory, shrink the ARC
4266 * so that we have arc_shrink_min free space.
4267 */
4268 free_memory = arc_available_memory();
4269
4270 to_free = (arc_c >> arc_shrink_shift) - free_memory;
4271 if (to_free > 0) {
4272 #ifdef _KERNEL
4273 to_free = MAX(to_free, need_free);
4274 #endif
4275 arc_shrink(to_free);
4276 }
4277 } else if (free_memory < arc_c >> arc_no_grow_shift) {
4278 arc_no_grow = B_TRUE;
4279 } else if (gethrtime() >= growtime) {
4280 arc_no_grow = B_FALSE;
4281 }
4282
4283 mutex_enter(&arc_reclaim_lock);
4284
4285 /*
4286 * If evicted is zero, we couldn't evict anything via
4287 * arc_adjust(). This could be due to hash lock
4288 * collisions, but more likely due to the majority of
4289 * arc buffers being unevictable. Therefore, even if
4290 * arc_size is above arc_c, another pass is unlikely to
4291 * be helpful and could potentially cause us to enter an
4292 * infinite loop.
4293 */
4294 if (arc_size <= arc_c || evicted == 0) {
4295 /*
4296 * We're either no longer overflowing, or we
4297 * can't evict anything more, so we should wake
4298 * up any threads before we go to sleep and remove
4299 * the bytes we were working on from arc_need_free
4300 * since nothing more will be done here.
4301 */
4302 cv_broadcast(&arc_reclaim_waiters_cv);
4303 ARCSTAT_INCR(arcstat_need_free, -need_free);
4304
4305 /*
4306 * Block until signaled, or after one second (we
4307 * might need to perform arc_kmem_reap_now()
4308 * even if we aren't being signalled)
4309 */
4310 CALLB_CPR_SAFE_BEGIN(&cpr);
4311 (void) cv_timedwait_sig_hires(&arc_reclaim_thread_cv,
4312 &arc_reclaim_lock, SEC2NSEC(1), MSEC2NSEC(1), 0);
4313 CALLB_CPR_SAFE_END(&cpr, &arc_reclaim_lock);
4314 }
4315 }
4316
4317 arc_reclaim_thread_exit = B_FALSE;
4318 cv_broadcast(&arc_reclaim_thread_cv);
4319 CALLB_CPR_EXIT(&cpr); /* drops arc_reclaim_lock */
4320 spl_fstrans_unmark(cookie);
4321 thread_exit();
4322 }
4323
4324 #ifdef _KERNEL
4325 /*
4326 * Determine the amount of memory eligible for eviction contained in the
4327 * ARC. All clean data reported by the ghost lists can always be safely
4328 * evicted. Due to arc_c_min, the same does not hold for all clean data
4329 * contained by the regular mru and mfu lists.
4330 *
4331 * In the case of the regular mru and mfu lists, we need to report as
4332 * much clean data as possible, such that evicting that same reported
4333 * data will not bring arc_size below arc_c_min. Thus, in certain
4334 * circumstances, the total amount of clean data in the mru and mfu
4335 * lists might not actually be evictable.
4336 *
4337 * The following two distinct cases are accounted for:
4338 *
4339 * 1. The sum of the amount of dirty data contained by both the mru and
4340 * mfu lists, plus the ARC's other accounting (e.g. the anon list),
4341 * is greater than or equal to arc_c_min.
4342 * (i.e. amount of dirty data >= arc_c_min)
4343 *
4344 * This is the easy case; all clean data contained by the mru and mfu
4345 * lists is evictable. Evicting all clean data can only drop arc_size
4346 * to the amount of dirty data, which is greater than arc_c_min.
4347 *
4348 * 2. The sum of the amount of dirty data contained by both the mru and
4349 * mfu lists, plus the ARC's other accounting (e.g. the anon list),
4350 * is less than arc_c_min.
4351 * (i.e. arc_c_min > amount of dirty data)
4352 *
4353 * 2.1. arc_size is greater than or equal arc_c_min.
4354 * (i.e. arc_size >= arc_c_min > amount of dirty data)
4355 *
4356 * In this case, not all clean data from the regular mru and mfu
4357 * lists is actually evictable; we must leave enough clean data
4358 * to keep arc_size above arc_c_min. Thus, the maximum amount of
4359 * evictable data from the two lists combined, is exactly the
4360 * difference between arc_size and arc_c_min.
4361 *
4362 * 2.2. arc_size is less than arc_c_min
4363 * (i.e. arc_c_min > arc_size > amount of dirty data)
4364 *
4365 * In this case, none of the data contained in the mru and mfu
4366 * lists is evictable, even if it's clean. Since arc_size is
4367 * already below arc_c_min, evicting any more would only
4368 * increase this negative difference.
4369 */
4370 static uint64_t
4371 arc_evictable_memory(void)
4372 {
4373 uint64_t arc_clean =
4374 refcount_count(&arc_mru->arcs_esize[ARC_BUFC_DATA]) +
4375 refcount_count(&arc_mru->arcs_esize[ARC_BUFC_METADATA]) +
4376 refcount_count(&arc_mfu->arcs_esize[ARC_BUFC_DATA]) +
4377 refcount_count(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]);
4378 uint64_t arc_dirty = MAX((int64_t)arc_size - (int64_t)arc_clean, 0);
4379
4380 if (arc_dirty >= arc_c_min)
4381 return (arc_clean);
4382
4383 return (MAX((int64_t)arc_size - (int64_t)arc_c_min, 0));
4384 }
4385
4386 /*
4387 * If sc->nr_to_scan is zero, the caller is requesting a query of the
4388 * number of objects which can potentially be freed. If it is nonzero,
4389 * the request is to free that many objects.
4390 *
4391 * Linux kernels >= 3.12 have the count_objects and scan_objects callbacks
4392 * in struct shrinker and also require the shrinker to return the number
4393 * of objects freed.
4394 *
4395 * Older kernels require the shrinker to return the number of freeable
4396 * objects following the freeing of nr_to_free.
4397 */
4398 static spl_shrinker_t
4399 __arc_shrinker_func(struct shrinker *shrink, struct shrink_control *sc)
4400 {
4401 int64_t pages;
4402
4403 /* The arc is considered warm once reclaim has occurred */
4404 if (unlikely(arc_warm == B_FALSE))
4405 arc_warm = B_TRUE;
4406
4407 /* Return the potential number of reclaimable pages */
4408 pages = btop((int64_t)arc_evictable_memory());
4409 if (sc->nr_to_scan == 0)
4410 return (pages);
4411
4412 /* Not allowed to perform filesystem reclaim */
4413 if (!(sc->gfp_mask & __GFP_FS))
4414 return (SHRINK_STOP);
4415
4416 /* Reclaim in progress */
4417 if (mutex_tryenter(&arc_reclaim_lock) == 0) {
4418 ARCSTAT_INCR(arcstat_need_free, ptob(sc->nr_to_scan));
4419 return (0);
4420 }
4421
4422 mutex_exit(&arc_reclaim_lock);
4423
4424 /*
4425 * Evict the requested number of pages by shrinking arc_c the
4426 * requested amount. If there is nothing left to evict just
4427 * reap whatever we can from the various arc slabs.
4428 */
4429 if (pages > 0) {
4430 arc_shrink(ptob(sc->nr_to_scan));
4431 arc_kmem_reap_now();
4432 #ifdef HAVE_SPLIT_SHRINKER_CALLBACK
4433 pages = MAX(pages - btop(arc_evictable_memory()), 0);
4434 #else
4435 pages = btop(arc_evictable_memory());
4436 #endif
4437 /*
4438 * We've shrunk what we can, wake up threads.
4439 */
4440 cv_broadcast(&arc_reclaim_waiters_cv);
4441
4442 } else {
4443 arc_kmem_reap_now();
4444 pages = SHRINK_STOP;
4445 }
4446
4447 /*
4448 * When direct reclaim is observed it usually indicates a rapid
4449 * increase in memory pressure. This occurs because the kswapd
4450 * threads were unable to asynchronously keep enough free memory
4451 * available. In this case set arc_no_grow to briefly pause arc
4452 * growth to avoid compounding the memory pressure.
4453 */
4454 if (current_is_kswapd()) {
4455 ARCSTAT_BUMP(arcstat_memory_indirect_count);
4456 } else {
4457 arc_no_grow = B_TRUE;
4458 ARCSTAT_BUMP(arcstat_memory_direct_count);
4459 }
4460
4461 return (pages);
4462 }
4463 SPL_SHRINKER_CALLBACK_WRAPPER(arc_shrinker_func);
4464
4465 SPL_SHRINKER_DECLARE(arc_shrinker, arc_shrinker_func, DEFAULT_SEEKS);
4466 #endif /* _KERNEL */
4467
4468 /*
4469 * Adapt arc info given the number of bytes we are trying to add and
4470 * the state that we are coming from. This function is only called
4471 * when we are adding new content to the cache.
4472 */
4473 static void
4474 arc_adapt(int bytes, arc_state_t *state)
4475 {
4476 int mult;
4477 uint64_t arc_p_min = (arc_c >> arc_p_min_shift);
4478 int64_t mrug_size = refcount_count(&arc_mru_ghost->arcs_size);
4479 int64_t mfug_size = refcount_count(&arc_mfu_ghost->arcs_size);
4480
4481 if (state == arc_l2c_only)
4482 return;
4483
4484 ASSERT(bytes > 0);
4485 /*
4486 * Adapt the target size of the MRU list:
4487 * - if we just hit in the MRU ghost list, then increase
4488 * the target size of the MRU list.
4489 * - if we just hit in the MFU ghost list, then increase
4490 * the target size of the MFU list by decreasing the
4491 * target size of the MRU list.
4492 */
4493 if (state == arc_mru_ghost) {
4494 mult = (mrug_size >= mfug_size) ? 1 : (mfug_size / mrug_size);
4495 if (!zfs_arc_p_dampener_disable)
4496 mult = MIN(mult, 10); /* avoid wild arc_p adjustment */
4497
4498 arc_p = MIN(arc_c - arc_p_min, arc_p + bytes * mult);
4499 } else if (state == arc_mfu_ghost) {
4500 uint64_t delta;
4501
4502 mult = (mfug_size >= mrug_size) ? 1 : (mrug_size / mfug_size);
4503 if (!zfs_arc_p_dampener_disable)
4504 mult = MIN(mult, 10);
4505
4506 delta = MIN(bytes * mult, arc_p);
4507 arc_p = MAX(arc_p_min, arc_p - delta);
4508 }
4509 ASSERT((int64_t)arc_p >= 0);
4510
4511 if (arc_reclaim_needed()) {
4512 cv_signal(&arc_reclaim_thread_cv);
4513 return;
4514 }
4515
4516 if (arc_no_grow)
4517 return;
4518
4519 if (arc_c >= arc_c_max)
4520 return;
4521
4522 /*
4523 * If we're within (2 * maxblocksize) bytes of the target
4524 * cache size, increment the target cache size
4525 */
4526 ASSERT3U(arc_c, >=, 2ULL << SPA_MAXBLOCKSHIFT);
4527 if (arc_size >= arc_c - (2ULL << SPA_MAXBLOCKSHIFT)) {
4528 atomic_add_64(&arc_c, (int64_t)bytes);
4529 if (arc_c > arc_c_max)
4530 arc_c = arc_c_max;
4531 else if (state == arc_anon)
4532 atomic_add_64(&arc_p, (int64_t)bytes);
4533 if (arc_p > arc_c)
4534 arc_p = arc_c;
4535 }
4536 ASSERT((int64_t)arc_p >= 0);
4537 }
4538
4539 /*
4540 * Check if arc_size has grown past our upper threshold, determined by
4541 * zfs_arc_overflow_shift.
4542 */
4543 static boolean_t
4544 arc_is_overflowing(void)
4545 {
4546 /* Always allow at least one block of overflow */
4547 uint64_t overflow = MAX(SPA_MAXBLOCKSIZE,
4548 arc_c >> zfs_arc_overflow_shift);
4549
4550 return (arc_size >= arc_c + overflow);
4551 }
4552
4553 static abd_t *
4554 arc_get_data_abd(arc_buf_hdr_t *hdr, uint64_t size, void *tag)
4555 {
4556 arc_buf_contents_t type = arc_buf_type(hdr);
4557
4558 arc_get_data_impl(hdr, size, tag);
4559 if (type == ARC_BUFC_METADATA) {
4560 return (abd_alloc(size, B_TRUE));
4561 } else {
4562 ASSERT(type == ARC_BUFC_DATA);
4563 return (abd_alloc(size, B_FALSE));
4564 }
4565 }
4566
4567 static void *
4568 arc_get_data_buf(arc_buf_hdr_t *hdr, uint64_t size, void *tag)
4569 {
4570 arc_buf_contents_t type = arc_buf_type(hdr);
4571
4572 arc_get_data_impl(hdr, size, tag);
4573 if (type == ARC_BUFC_METADATA) {
4574 return (zio_buf_alloc(size));
4575 } else {
4576 ASSERT(type == ARC_BUFC_DATA);
4577 return (zio_data_buf_alloc(size));
4578 }
4579 }
4580
4581 /*
4582 * Allocate a block and return it to the caller. If we are hitting the
4583 * hard limit for the cache size, we must sleep, waiting for the eviction
4584 * thread to catch up. If we're past the target size but below the hard
4585 * limit, we'll only signal the reclaim thread and continue on.
4586 */
4587 static void
4588 arc_get_data_impl(arc_buf_hdr_t *hdr, uint64_t size, void *tag)
4589 {
4590 arc_state_t *state = hdr->b_l1hdr.b_state;
4591 arc_buf_contents_t type = arc_buf_type(hdr);
4592
4593 arc_adapt(size, state);
4594
4595 /*
4596 * If arc_size is currently overflowing, and has grown past our
4597 * upper limit, we must be adding data faster than the evict
4598 * thread can evict. Thus, to ensure we don't compound the
4599 * problem by adding more data and forcing arc_size to grow even
4600 * further past it's target size, we halt and wait for the
4601 * eviction thread to catch up.
4602 *
4603 * It's also possible that the reclaim thread is unable to evict
4604 * enough buffers to get arc_size below the overflow limit (e.g.
4605 * due to buffers being un-evictable, or hash lock collisions).
4606 * In this case, we want to proceed regardless if we're
4607 * overflowing; thus we don't use a while loop here.
4608 */
4609 if (arc_is_overflowing()) {
4610 mutex_enter(&arc_reclaim_lock);
4611
4612 /*
4613 * Now that we've acquired the lock, we may no longer be
4614 * over the overflow limit, lets check.
4615 *
4616 * We're ignoring the case of spurious wake ups. If that
4617 * were to happen, it'd let this thread consume an ARC
4618 * buffer before it should have (i.e. before we're under
4619 * the overflow limit and were signalled by the reclaim
4620 * thread). As long as that is a rare occurrence, it
4621 * shouldn't cause any harm.
4622 */
4623 if (arc_is_overflowing()) {
4624 cv_signal(&arc_reclaim_thread_cv);
4625 cv_wait(&arc_reclaim_waiters_cv, &arc_reclaim_lock);
4626 }
4627
4628 mutex_exit(&arc_reclaim_lock);
4629 }
4630
4631 VERIFY3U(hdr->b_type, ==, type);
4632 if (type == ARC_BUFC_METADATA) {
4633 arc_space_consume(size, ARC_SPACE_META);
4634 } else {
4635 arc_space_consume(size, ARC_SPACE_DATA);
4636 }
4637
4638 /*
4639 * Update the state size. Note that ghost states have a
4640 * "ghost size" and so don't need to be updated.
4641 */
4642 if (!GHOST_STATE(state)) {
4643
4644 (void) refcount_add_many(&state->arcs_size, size, tag);
4645
4646 /*
4647 * If this is reached via arc_read, the link is
4648 * protected by the hash lock. If reached via
4649 * arc_buf_alloc, the header should not be accessed by
4650 * any other thread. And, if reached via arc_read_done,
4651 * the hash lock will protect it if it's found in the
4652 * hash table; otherwise no other thread should be
4653 * trying to [add|remove]_reference it.
4654 */
4655 if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
4656 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
4657 (void) refcount_add_many(&state->arcs_esize[type],
4658 size, tag);
4659 }
4660
4661 /*
4662 * If we are growing the cache, and we are adding anonymous
4663 * data, and we have outgrown arc_p, update arc_p
4664 */
4665 if (arc_size < arc_c && hdr->b_l1hdr.b_state == arc_anon &&
4666 (refcount_count(&arc_anon->arcs_size) +
4667 refcount_count(&arc_mru->arcs_size) > arc_p))
4668 arc_p = MIN(arc_c, arc_p + size);
4669 }
4670 }
4671
4672 static void
4673 arc_free_data_abd(arc_buf_hdr_t *hdr, abd_t *abd, uint64_t size, void *tag)
4674 {
4675 arc_free_data_impl(hdr, size, tag);
4676 abd_free(abd);
4677 }
4678
4679 static void
4680 arc_free_data_buf(arc_buf_hdr_t *hdr, void *buf, uint64_t size, void *tag)
4681 {
4682 arc_buf_contents_t type = arc_buf_type(hdr);
4683
4684 arc_free_data_impl(hdr, size, tag);
4685 if (type == ARC_BUFC_METADATA) {
4686 zio_buf_free(buf, size);
4687 } else {
4688 ASSERT(type == ARC_BUFC_DATA);
4689 zio_data_buf_free(buf, size);
4690 }
4691 }
4692
4693 /*
4694 * Free the arc data buffer.
4695 */
4696 static void
4697 arc_free_data_impl(arc_buf_hdr_t *hdr, uint64_t size, void *tag)
4698 {
4699 arc_state_t *state = hdr->b_l1hdr.b_state;
4700 arc_buf_contents_t type = arc_buf_type(hdr);
4701
4702 /* protected by hash lock, if in the hash table */
4703 if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
4704 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
4705 ASSERT(state != arc_anon && state != arc_l2c_only);
4706
4707 (void) refcount_remove_many(&state->arcs_esize[type],
4708 size, tag);
4709 }
4710 (void) refcount_remove_many(&state->arcs_size, size, tag);
4711
4712 VERIFY3U(hdr->b_type, ==, type);
4713 if (type == ARC_BUFC_METADATA) {
4714 arc_space_return(size, ARC_SPACE_META);
4715 } else {
4716 ASSERT(type == ARC_BUFC_DATA);
4717 arc_space_return(size, ARC_SPACE_DATA);
4718 }
4719 }
4720
4721 /*
4722 * This routine is called whenever a buffer is accessed.
4723 * NOTE: the hash lock is dropped in this function.
4724 */
4725 static void
4726 arc_access(arc_buf_hdr_t *hdr, kmutex_t *hash_lock)
4727 {
4728 clock_t now;
4729
4730 ASSERT(MUTEX_HELD(hash_lock));
4731 ASSERT(HDR_HAS_L1HDR(hdr));
4732
4733 if (hdr->b_l1hdr.b_state == arc_anon) {
4734 /*
4735 * This buffer is not in the cache, and does not
4736 * appear in our "ghost" list. Add the new buffer
4737 * to the MRU state.
4738 */
4739
4740 ASSERT0(hdr->b_l1hdr.b_arc_access);
4741 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
4742 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr);
4743 arc_change_state(arc_mru, hdr, hash_lock);
4744
4745 } else if (hdr->b_l1hdr.b_state == arc_mru) {
4746 now = ddi_get_lbolt();
4747
4748 /*
4749 * If this buffer is here because of a prefetch, then either:
4750 * - clear the flag if this is a "referencing" read
4751 * (any subsequent access will bump this into the MFU state).
4752 * or
4753 * - move the buffer to the head of the list if this is
4754 * another prefetch (to make it less likely to be evicted).
4755 */
4756 if (HDR_PREFETCH(hdr)) {
4757 if (refcount_count(&hdr->b_l1hdr.b_refcnt) == 0) {
4758 /* link protected by hash lock */
4759 ASSERT(multilist_link_active(
4760 &hdr->b_l1hdr.b_arc_node));
4761 } else {
4762 arc_hdr_clear_flags(hdr, ARC_FLAG_PREFETCH);
4763 atomic_inc_32(&hdr->b_l1hdr.b_mru_hits);
4764 ARCSTAT_BUMP(arcstat_mru_hits);
4765 }
4766 hdr->b_l1hdr.b_arc_access = now;
4767 return;
4768 }
4769
4770 /*
4771 * This buffer has been "accessed" only once so far,
4772 * but it is still in the cache. Move it to the MFU
4773 * state.
4774 */
4775 if (ddi_time_after(now, hdr->b_l1hdr.b_arc_access +
4776 ARC_MINTIME)) {
4777 /*
4778 * More than 125ms have passed since we
4779 * instantiated this buffer. Move it to the
4780 * most frequently used state.
4781 */
4782 hdr->b_l1hdr.b_arc_access = now;
4783 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
4784 arc_change_state(arc_mfu, hdr, hash_lock);
4785 }
4786 atomic_inc_32(&hdr->b_l1hdr.b_mru_hits);
4787 ARCSTAT_BUMP(arcstat_mru_hits);
4788 } else if (hdr->b_l1hdr.b_state == arc_mru_ghost) {
4789 arc_state_t *new_state;
4790 /*
4791 * This buffer has been "accessed" recently, but
4792 * was evicted from the cache. Move it to the
4793 * MFU state.
4794 */
4795
4796 if (HDR_PREFETCH(hdr)) {
4797 new_state = arc_mru;
4798 if (refcount_count(&hdr->b_l1hdr.b_refcnt) > 0)
4799 arc_hdr_clear_flags(hdr, ARC_FLAG_PREFETCH);
4800 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr);
4801 } else {
4802 new_state = arc_mfu;
4803 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
4804 }
4805
4806 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
4807 arc_change_state(new_state, hdr, hash_lock);
4808
4809 atomic_inc_32(&hdr->b_l1hdr.b_mru_ghost_hits);
4810 ARCSTAT_BUMP(arcstat_mru_ghost_hits);
4811 } else if (hdr->b_l1hdr.b_state == arc_mfu) {
4812 /*
4813 * This buffer has been accessed more than once and is
4814 * still in the cache. Keep it in the MFU state.
4815 *
4816 * NOTE: an add_reference() that occurred when we did
4817 * the arc_read() will have kicked this off the list.
4818 * If it was a prefetch, we will explicitly move it to
4819 * the head of the list now.
4820 */
4821 if ((HDR_PREFETCH(hdr)) != 0) {
4822 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
4823 /* link protected by hash_lock */
4824 ASSERT(multilist_link_active(&hdr->b_l1hdr.b_arc_node));
4825 }
4826 atomic_inc_32(&hdr->b_l1hdr.b_mfu_hits);
4827 ARCSTAT_BUMP(arcstat_mfu_hits);
4828 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
4829 } else if (hdr->b_l1hdr.b_state == arc_mfu_ghost) {
4830 arc_state_t *new_state = arc_mfu;
4831 /*
4832 * This buffer has been accessed more than once but has
4833 * been evicted from the cache. Move it back to the
4834 * MFU state.
4835 */
4836
4837 if (HDR_PREFETCH(hdr)) {
4838 /*
4839 * This is a prefetch access...
4840 * move this block back to the MRU state.
4841 */
4842 ASSERT0(refcount_count(&hdr->b_l1hdr.b_refcnt));
4843 new_state = arc_mru;
4844 }
4845
4846 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
4847 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
4848 arc_change_state(new_state, hdr, hash_lock);
4849
4850 atomic_inc_32(&hdr->b_l1hdr.b_mfu_ghost_hits);
4851 ARCSTAT_BUMP(arcstat_mfu_ghost_hits);
4852 } else if (hdr->b_l1hdr.b_state == arc_l2c_only) {
4853 /*
4854 * This buffer is on the 2nd Level ARC.
4855 */
4856
4857 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
4858 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
4859 arc_change_state(arc_mfu, hdr, hash_lock);
4860 } else {
4861 cmn_err(CE_PANIC, "invalid arc state 0x%p",
4862 hdr->b_l1hdr.b_state);
4863 }
4864 }
4865
4866 /* a generic arc_done_func_t which you can use */
4867 /* ARGSUSED */
4868 void
4869 arc_bcopy_func(zio_t *zio, arc_buf_t *buf, void *arg)
4870 {
4871 if (zio == NULL || zio->io_error == 0)
4872 bcopy(buf->b_data, arg, arc_buf_size(buf));
4873 arc_buf_destroy(buf, arg);
4874 }
4875
4876 /* a generic arc_done_func_t */
4877 void
4878 arc_getbuf_func(zio_t *zio, arc_buf_t *buf, void *arg)
4879 {
4880 arc_buf_t **bufp = arg;
4881 if (zio && zio->io_error) {
4882 arc_buf_destroy(buf, arg);
4883 *bufp = NULL;
4884 } else {
4885 *bufp = buf;
4886 ASSERT(buf->b_data);
4887 }
4888 }
4889
4890 static void
4891 arc_hdr_verify(arc_buf_hdr_t *hdr, blkptr_t *bp)
4892 {
4893 if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp)) {
4894 ASSERT3U(HDR_GET_PSIZE(hdr), ==, 0);
4895 ASSERT3U(HDR_GET_COMPRESS(hdr), ==, ZIO_COMPRESS_OFF);
4896 } else {
4897 if (HDR_COMPRESSION_ENABLED(hdr)) {
4898 ASSERT3U(HDR_GET_COMPRESS(hdr), ==,
4899 BP_GET_COMPRESS(bp));
4900 }
4901 ASSERT3U(HDR_GET_LSIZE(hdr), ==, BP_GET_LSIZE(bp));
4902 ASSERT3U(HDR_GET_PSIZE(hdr), ==, BP_GET_PSIZE(bp));
4903 }
4904 }
4905
4906 static void
4907 arc_read_done(zio_t *zio)
4908 {
4909 arc_buf_hdr_t *hdr = zio->io_private;
4910 kmutex_t *hash_lock = NULL;
4911 arc_callback_t *callback_list;
4912 arc_callback_t *acb;
4913 boolean_t freeable = B_FALSE;
4914 boolean_t no_zio_error = (zio->io_error == 0);
4915
4916 /*
4917 * The hdr was inserted into hash-table and removed from lists
4918 * prior to starting I/O. We should find this header, since
4919 * it's in the hash table, and it should be legit since it's
4920 * not possible to evict it during the I/O. The only possible
4921 * reason for it not to be found is if we were freed during the
4922 * read.
4923 */
4924 if (HDR_IN_HASH_TABLE(hdr)) {
4925 arc_buf_hdr_t *found;
4926
4927 ASSERT3U(hdr->b_birth, ==, BP_PHYSICAL_BIRTH(zio->io_bp));
4928 ASSERT3U(hdr->b_dva.dva_word[0], ==,
4929 BP_IDENTITY(zio->io_bp)->dva_word[0]);
4930 ASSERT3U(hdr->b_dva.dva_word[1], ==,
4931 BP_IDENTITY(zio->io_bp)->dva_word[1]);
4932
4933 found = buf_hash_find(hdr->b_spa, zio->io_bp, &hash_lock);
4934
4935 ASSERT((found == hdr &&
4936 DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))) ||
4937 (found == hdr && HDR_L2_READING(hdr)));
4938 ASSERT3P(hash_lock, !=, NULL);
4939 }
4940
4941 if (no_zio_error) {
4942 /* byteswap if necessary */
4943 if (BP_SHOULD_BYTESWAP(zio->io_bp)) {
4944 if (BP_GET_LEVEL(zio->io_bp) > 0) {
4945 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_UINT64;
4946 } else {
4947 hdr->b_l1hdr.b_byteswap =
4948 DMU_OT_BYTESWAP(BP_GET_TYPE(zio->io_bp));
4949 }
4950 } else {
4951 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS;
4952 }
4953 }
4954
4955 arc_hdr_clear_flags(hdr, ARC_FLAG_L2_EVICTED);
4956 if (l2arc_noprefetch && HDR_PREFETCH(hdr))
4957 arc_hdr_clear_flags(hdr, ARC_FLAG_L2CACHE);
4958
4959 callback_list = hdr->b_l1hdr.b_acb;
4960 ASSERT3P(callback_list, !=, NULL);
4961
4962 if (hash_lock && no_zio_error && hdr->b_l1hdr.b_state == arc_anon) {
4963 /*
4964 * Only call arc_access on anonymous buffers. This is because
4965 * if we've issued an I/O for an evicted buffer, we've already
4966 * called arc_access (to prevent any simultaneous readers from
4967 * getting confused).
4968 */
4969 arc_access(hdr, hash_lock);
4970 }
4971
4972 /*
4973 * If a read request has a callback (i.e. acb_done is not NULL), then we
4974 * make a buf containing the data according to the parameters which were
4975 * passed in. The implementation of arc_buf_alloc_impl() ensures that we
4976 * aren't needlessly decompressing the data multiple times.
4977 */
4978 int callback_cnt = 0;
4979 for (acb = callback_list; acb != NULL; acb = acb->acb_next) {
4980 if (!acb->acb_done)
4981 continue;
4982
4983 /* This is a demand read since prefetches don't use callbacks */
4984 callback_cnt++;
4985
4986 int error = arc_buf_alloc_impl(hdr, acb->acb_private,
4987 acb->acb_compressed, no_zio_error, &acb->acb_buf);
4988 if (no_zio_error) {
4989 zio->io_error = error;
4990 }
4991 }
4992 hdr->b_l1hdr.b_acb = NULL;
4993 arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
4994 if (callback_cnt == 0) {
4995 ASSERT(HDR_PREFETCH(hdr));
4996 ASSERT0(hdr->b_l1hdr.b_bufcnt);
4997 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
4998 }
4999
5000 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt) ||
5001 callback_list != NULL);
5002
5003 if (no_zio_error) {
5004 arc_hdr_verify(hdr, zio->io_bp);
5005 } else {
5006 arc_hdr_set_flags(hdr, ARC_FLAG_IO_ERROR);
5007 if (hdr->b_l1hdr.b_state != arc_anon)
5008 arc_change_state(arc_anon, hdr, hash_lock);
5009 if (HDR_IN_HASH_TABLE(hdr))
5010 buf_hash_remove(hdr);
5011 freeable = refcount_is_zero(&hdr->b_l1hdr.b_refcnt);
5012 }
5013
5014 /*
5015 * Broadcast before we drop the hash_lock to avoid the possibility
5016 * that the hdr (and hence the cv) might be freed before we get to
5017 * the cv_broadcast().
5018 */
5019 cv_broadcast(&hdr->b_l1hdr.b_cv);
5020
5021 if (hash_lock != NULL) {
5022 mutex_exit(hash_lock);
5023 } else {
5024 /*
5025 * This block was freed while we waited for the read to
5026 * complete. It has been removed from the hash table and
5027 * moved to the anonymous state (so that it won't show up
5028 * in the cache).
5029 */
5030 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
5031 freeable = refcount_is_zero(&hdr->b_l1hdr.b_refcnt);
5032 }
5033
5034 /* execute each callback and free its structure */
5035 while ((acb = callback_list) != NULL) {
5036 if (acb->acb_done)
5037 acb->acb_done(zio, acb->acb_buf, acb->acb_private);
5038
5039 if (acb->acb_zio_dummy != NULL) {
5040 acb->acb_zio_dummy->io_error = zio->io_error;
5041 zio_nowait(acb->acb_zio_dummy);
5042 }
5043
5044 callback_list = acb->acb_next;
5045 kmem_free(acb, sizeof (arc_callback_t));
5046 }
5047
5048 if (freeable)
5049 arc_hdr_destroy(hdr);
5050 }
5051
5052 /*
5053 * "Read" the block at the specified DVA (in bp) via the
5054 * cache. If the block is found in the cache, invoke the provided
5055 * callback immediately and return. Note that the `zio' parameter
5056 * in the callback will be NULL in this case, since no IO was
5057 * required. If the block is not in the cache pass the read request
5058 * on to the spa with a substitute callback function, so that the
5059 * requested block will be added to the cache.
5060 *
5061 * If a read request arrives for a block that has a read in-progress,
5062 * either wait for the in-progress read to complete (and return the
5063 * results); or, if this is a read with a "done" func, add a record
5064 * to the read to invoke the "done" func when the read completes,
5065 * and return; or just return.
5066 *
5067 * arc_read_done() will invoke all the requested "done" functions
5068 * for readers of this block.
5069 */
5070 int
5071 arc_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, arc_done_func_t *done,
5072 void *private, zio_priority_t priority, int zio_flags,
5073 arc_flags_t *arc_flags, const zbookmark_phys_t *zb)
5074 {
5075 arc_buf_hdr_t *hdr = NULL;
5076 kmutex_t *hash_lock = NULL;
5077 zio_t *rzio;
5078 uint64_t guid = spa_load_guid(spa);
5079 boolean_t compressed_read = (zio_flags & ZIO_FLAG_RAW) != 0;
5080 int rc = 0;
5081
5082 ASSERT(!BP_IS_EMBEDDED(bp) ||
5083 BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA);
5084
5085 top:
5086 if (!BP_IS_EMBEDDED(bp)) {
5087 /*
5088 * Embedded BP's have no DVA and require no I/O to "read".
5089 * Create an anonymous arc buf to back it.
5090 */
5091 hdr = buf_hash_find(guid, bp, &hash_lock);
5092 }
5093
5094 if (hdr != NULL && HDR_HAS_L1HDR(hdr) && hdr->b_l1hdr.b_pabd != NULL) {
5095 arc_buf_t *buf = NULL;
5096 *arc_flags |= ARC_FLAG_CACHED;
5097
5098 if (HDR_IO_IN_PROGRESS(hdr)) {
5099
5100 if ((hdr->b_flags & ARC_FLAG_PRIO_ASYNC_READ) &&
5101 priority == ZIO_PRIORITY_SYNC_READ) {
5102 /*
5103 * This sync read must wait for an
5104 * in-progress async read (e.g. a predictive
5105 * prefetch). Async reads are queued
5106 * separately at the vdev_queue layer, so
5107 * this is a form of priority inversion.
5108 * Ideally, we would "inherit" the demand
5109 * i/o's priority by moving the i/o from
5110 * the async queue to the synchronous queue,
5111 * but there is currently no mechanism to do
5112 * so. Track this so that we can evaluate
5113 * the magnitude of this potential performance
5114 * problem.
5115 *
5116 * Note that if the prefetch i/o is already
5117 * active (has been issued to the device),
5118 * the prefetch improved performance, because
5119 * we issued it sooner than we would have
5120 * without the prefetch.
5121 */
5122 DTRACE_PROBE1(arc__sync__wait__for__async,
5123 arc_buf_hdr_t *, hdr);
5124 ARCSTAT_BUMP(arcstat_sync_wait_for_async);
5125 }
5126 if (hdr->b_flags & ARC_FLAG_PREDICTIVE_PREFETCH) {
5127 arc_hdr_clear_flags(hdr,
5128 ARC_FLAG_PREDICTIVE_PREFETCH);
5129 }
5130
5131 if (*arc_flags & ARC_FLAG_WAIT) {
5132 cv_wait(&hdr->b_l1hdr.b_cv, hash_lock);
5133 mutex_exit(hash_lock);
5134 goto top;
5135 }
5136 ASSERT(*arc_flags & ARC_FLAG_NOWAIT);
5137
5138 if (done) {
5139 arc_callback_t *acb = NULL;
5140
5141 acb = kmem_zalloc(sizeof (arc_callback_t),
5142 KM_SLEEP);
5143 acb->acb_done = done;
5144 acb->acb_private = private;
5145 acb->acb_compressed = compressed_read;
5146 if (pio != NULL)
5147 acb->acb_zio_dummy = zio_null(pio,
5148 spa, NULL, NULL, NULL, zio_flags);
5149
5150 ASSERT3P(acb->acb_done, !=, NULL);
5151 acb->acb_next = hdr->b_l1hdr.b_acb;
5152 hdr->b_l1hdr.b_acb = acb;
5153 mutex_exit(hash_lock);
5154 goto out;
5155 }
5156 mutex_exit(hash_lock);
5157 goto out;
5158 }
5159
5160 ASSERT(hdr->b_l1hdr.b_state == arc_mru ||
5161 hdr->b_l1hdr.b_state == arc_mfu);
5162
5163 if (done) {
5164 if (hdr->b_flags & ARC_FLAG_PREDICTIVE_PREFETCH) {
5165 /*
5166 * This is a demand read which does not have to
5167 * wait for i/o because we did a predictive
5168 * prefetch i/o for it, which has completed.
5169 */
5170 DTRACE_PROBE1(
5171 arc__demand__hit__predictive__prefetch,
5172 arc_buf_hdr_t *, hdr);
5173 ARCSTAT_BUMP(
5174 arcstat_demand_hit_predictive_prefetch);
5175 arc_hdr_clear_flags(hdr,
5176 ARC_FLAG_PREDICTIVE_PREFETCH);
5177 }
5178 ASSERT(!BP_IS_EMBEDDED(bp) || !BP_IS_HOLE(bp));
5179
5180 /* Get a buf with the desired data in it. */
5181 VERIFY0(arc_buf_alloc_impl(hdr, private,
5182 compressed_read, B_TRUE, &buf));
5183 } else if (*arc_flags & ARC_FLAG_PREFETCH &&
5184 refcount_count(&hdr->b_l1hdr.b_refcnt) == 0) {
5185 arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH);
5186 }
5187 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
5188 arc_access(hdr, hash_lock);
5189 if (*arc_flags & ARC_FLAG_L2CACHE)
5190 arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE);
5191 mutex_exit(hash_lock);
5192 ARCSTAT_BUMP(arcstat_hits);
5193 ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr),
5194 demand, prefetch, !HDR_ISTYPE_METADATA(hdr),
5195 data, metadata, hits);
5196
5197 if (done)
5198 done(NULL, buf, private);
5199 } else {
5200 uint64_t lsize = BP_GET_LSIZE(bp);
5201 uint64_t psize = BP_GET_PSIZE(bp);
5202 arc_callback_t *acb;
5203 vdev_t *vd = NULL;
5204 uint64_t addr = 0;
5205 boolean_t devw = B_FALSE;
5206 uint64_t size;
5207
5208 /*
5209 * Gracefully handle a damaged logical block size as a
5210 * checksum error.
5211 */
5212 if (lsize > spa_maxblocksize(spa)) {
5213 rc = SET_ERROR(ECKSUM);
5214 goto out;
5215 }
5216
5217 if (hdr == NULL) {
5218 /* this block is not in the cache */
5219 arc_buf_hdr_t *exists = NULL;
5220 arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp);
5221 hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize,
5222 BP_GET_COMPRESS(bp), type);
5223
5224 if (!BP_IS_EMBEDDED(bp)) {
5225 hdr->b_dva = *BP_IDENTITY(bp);
5226 hdr->b_birth = BP_PHYSICAL_BIRTH(bp);
5227 exists = buf_hash_insert(hdr, &hash_lock);
5228 }
5229 if (exists != NULL) {
5230 /* somebody beat us to the hash insert */
5231 mutex_exit(hash_lock);
5232 buf_discard_identity(hdr);
5233 arc_hdr_destroy(hdr);
5234 goto top; /* restart the IO request */
5235 }
5236 } else {
5237 /*
5238 * This block is in the ghost cache. If it was L2-only
5239 * (and thus didn't have an L1 hdr), we realloc the
5240 * header to add an L1 hdr.
5241 */
5242 if (!HDR_HAS_L1HDR(hdr)) {
5243 hdr = arc_hdr_realloc(hdr, hdr_l2only_cache,
5244 hdr_full_cache);
5245 }
5246
5247 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
5248 ASSERT(GHOST_STATE(hdr->b_l1hdr.b_state));
5249 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
5250 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
5251 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
5252 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
5253
5254 /*
5255 * This is a delicate dance that we play here.
5256 * This hdr is in the ghost list so we access it
5257 * to move it out of the ghost list before we
5258 * initiate the read. If it's a prefetch then
5259 * it won't have a callback so we'll remove the
5260 * reference that arc_buf_alloc_impl() created. We
5261 * do this after we've called arc_access() to
5262 * avoid hitting an assert in remove_reference().
5263 */
5264 arc_access(hdr, hash_lock);
5265 arc_hdr_alloc_pabd(hdr);
5266 }
5267 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
5268 size = arc_hdr_size(hdr);
5269
5270 /*
5271 * If compression is enabled on the hdr, then will do
5272 * RAW I/O and will store the compressed data in the hdr's
5273 * data block. Otherwise, the hdr's data block will contain
5274 * the uncompressed data.
5275 */
5276 if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF) {
5277 zio_flags |= ZIO_FLAG_RAW;
5278 }
5279
5280 if (*arc_flags & ARC_FLAG_PREFETCH)
5281 arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH);
5282 if (*arc_flags & ARC_FLAG_L2CACHE)
5283 arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE);
5284 if (BP_GET_LEVEL(bp) > 0)
5285 arc_hdr_set_flags(hdr, ARC_FLAG_INDIRECT);
5286 if (*arc_flags & ARC_FLAG_PREDICTIVE_PREFETCH)
5287 arc_hdr_set_flags(hdr, ARC_FLAG_PREDICTIVE_PREFETCH);
5288 ASSERT(!GHOST_STATE(hdr->b_l1hdr.b_state));
5289
5290 acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP);
5291 acb->acb_done = done;
5292 acb->acb_private = private;
5293 acb->acb_compressed = compressed_read;
5294
5295 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
5296 hdr->b_l1hdr.b_acb = acb;
5297 arc_hdr_set_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
5298
5299 if (HDR_HAS_L2HDR(hdr) &&
5300 (vd = hdr->b_l2hdr.b_dev->l2ad_vdev) != NULL) {
5301 devw = hdr->b_l2hdr.b_dev->l2ad_writing;
5302 addr = hdr->b_l2hdr.b_daddr;
5303 /*
5304 * Lock out device removal.
5305 */
5306 if (vdev_is_dead(vd) ||
5307 !spa_config_tryenter(spa, SCL_L2ARC, vd, RW_READER))
5308 vd = NULL;
5309 }
5310
5311 if (priority == ZIO_PRIORITY_ASYNC_READ)
5312 arc_hdr_set_flags(hdr, ARC_FLAG_PRIO_ASYNC_READ);
5313 else
5314 arc_hdr_clear_flags(hdr, ARC_FLAG_PRIO_ASYNC_READ);
5315
5316 if (hash_lock != NULL)
5317 mutex_exit(hash_lock);
5318
5319 /*
5320 * At this point, we have a level 1 cache miss. Try again in
5321 * L2ARC if possible.
5322 */
5323 ASSERT3U(HDR_GET_LSIZE(hdr), ==, lsize);
5324
5325 DTRACE_PROBE4(arc__miss, arc_buf_hdr_t *, hdr, blkptr_t *, bp,
5326 uint64_t, lsize, zbookmark_phys_t *, zb);
5327 ARCSTAT_BUMP(arcstat_misses);
5328 ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr),
5329 demand, prefetch, !HDR_ISTYPE_METADATA(hdr),
5330 data, metadata, misses);
5331
5332 if (vd != NULL && l2arc_ndev != 0 && !(l2arc_norw && devw)) {
5333 /*
5334 * Read from the L2ARC if the following are true:
5335 * 1. The L2ARC vdev was previously cached.
5336 * 2. This buffer still has L2ARC metadata.
5337 * 3. This buffer isn't currently writing to the L2ARC.
5338 * 4. The L2ARC entry wasn't evicted, which may
5339 * also have invalidated the vdev.
5340 * 5. This isn't prefetch and l2arc_noprefetch is set.
5341 */
5342 if (HDR_HAS_L2HDR(hdr) &&
5343 !HDR_L2_WRITING(hdr) && !HDR_L2_EVICTED(hdr) &&
5344 !(l2arc_noprefetch && HDR_PREFETCH(hdr))) {
5345 l2arc_read_callback_t *cb;
5346
5347 DTRACE_PROBE1(l2arc__hit, arc_buf_hdr_t *, hdr);
5348 ARCSTAT_BUMP(arcstat_l2_hits);
5349 atomic_inc_32(&hdr->b_l2hdr.b_hits);
5350
5351 cb = kmem_zalloc(sizeof (l2arc_read_callback_t),
5352 KM_SLEEP);
5353 cb->l2rcb_hdr = hdr;
5354 cb->l2rcb_bp = *bp;
5355 cb->l2rcb_zb = *zb;
5356 cb->l2rcb_flags = zio_flags;
5357
5358 ASSERT(addr >= VDEV_LABEL_START_SIZE &&
5359 addr + lsize < vd->vdev_psize -
5360 VDEV_LABEL_END_SIZE);
5361
5362 /*
5363 * l2arc read. The SCL_L2ARC lock will be
5364 * released by l2arc_read_done().
5365 * Issue a null zio if the underlying buffer
5366 * was squashed to zero size by compression.
5367 */
5368 ASSERT3U(HDR_GET_COMPRESS(hdr), !=,
5369 ZIO_COMPRESS_EMPTY);
5370 rzio = zio_read_phys(pio, vd, addr,
5371 size, hdr->b_l1hdr.b_pabd,
5372 ZIO_CHECKSUM_OFF,
5373 l2arc_read_done, cb, priority,
5374 zio_flags | ZIO_FLAG_DONT_CACHE |
5375 ZIO_FLAG_CANFAIL |
5376 ZIO_FLAG_DONT_PROPAGATE |
5377 ZIO_FLAG_DONT_RETRY, B_FALSE);
5378
5379 DTRACE_PROBE2(l2arc__read, vdev_t *, vd,
5380 zio_t *, rzio);
5381 ARCSTAT_INCR(arcstat_l2_read_bytes, size);
5382
5383 if (*arc_flags & ARC_FLAG_NOWAIT) {
5384 zio_nowait(rzio);
5385 goto out;
5386 }
5387
5388 ASSERT(*arc_flags & ARC_FLAG_WAIT);
5389 if (zio_wait(rzio) == 0)
5390 goto out;
5391
5392 /* l2arc read error; goto zio_read() */
5393 } else {
5394 DTRACE_PROBE1(l2arc__miss,
5395 arc_buf_hdr_t *, hdr);
5396 ARCSTAT_BUMP(arcstat_l2_misses);
5397 if (HDR_L2_WRITING(hdr))
5398 ARCSTAT_BUMP(arcstat_l2_rw_clash);
5399 spa_config_exit(spa, SCL_L2ARC, vd);
5400 }
5401 } else {
5402 if (vd != NULL)
5403 spa_config_exit(spa, SCL_L2ARC, vd);
5404 if (l2arc_ndev != 0) {
5405 DTRACE_PROBE1(l2arc__miss,
5406 arc_buf_hdr_t *, hdr);
5407 ARCSTAT_BUMP(arcstat_l2_misses);
5408 }
5409 }
5410
5411 rzio = zio_read(pio, spa, bp, hdr->b_l1hdr.b_pabd, size,
5412 arc_read_done, hdr, priority, zio_flags, zb);
5413
5414 if (*arc_flags & ARC_FLAG_WAIT) {
5415 rc = zio_wait(rzio);
5416 goto out;
5417 }
5418
5419 ASSERT(*arc_flags & ARC_FLAG_NOWAIT);
5420 zio_nowait(rzio);
5421 }
5422
5423 out:
5424 spa_read_history_add(spa, zb, *arc_flags);
5425 return (rc);
5426 }
5427
5428 arc_prune_t *
5429 arc_add_prune_callback(arc_prune_func_t *func, void *private)
5430 {
5431 arc_prune_t *p;
5432
5433 p = kmem_alloc(sizeof (*p), KM_SLEEP);
5434 p->p_pfunc = func;
5435 p->p_private = private;
5436 list_link_init(&p->p_node);
5437 refcount_create(&p->p_refcnt);
5438
5439 mutex_enter(&arc_prune_mtx);
5440 refcount_add(&p->p_refcnt, &arc_prune_list);
5441 list_insert_head(&arc_prune_list, p);
5442 mutex_exit(&arc_prune_mtx);
5443
5444 return (p);
5445 }
5446
5447 void
5448 arc_remove_prune_callback(arc_prune_t *p)
5449 {
5450 boolean_t wait = B_FALSE;
5451 mutex_enter(&arc_prune_mtx);
5452 list_remove(&arc_prune_list, p);
5453 if (refcount_remove(&p->p_refcnt, &arc_prune_list) > 0)
5454 wait = B_TRUE;
5455 mutex_exit(&arc_prune_mtx);
5456
5457 /* wait for arc_prune_task to finish */
5458 if (wait)
5459 taskq_wait_outstanding(arc_prune_taskq, 0);
5460 ASSERT0(refcount_count(&p->p_refcnt));
5461 refcount_destroy(&p->p_refcnt);
5462 kmem_free(p, sizeof (*p));
5463 }
5464
5465 /*
5466 * Notify the arc that a block was freed, and thus will never be used again.
5467 */
5468 void
5469 arc_freed(spa_t *spa, const blkptr_t *bp)
5470 {
5471 arc_buf_hdr_t *hdr;
5472 kmutex_t *hash_lock;
5473 uint64_t guid = spa_load_guid(spa);
5474
5475 ASSERT(!BP_IS_EMBEDDED(bp));
5476
5477 hdr = buf_hash_find(guid, bp, &hash_lock);
5478 if (hdr == NULL)
5479 return;
5480
5481 /*
5482 * We might be trying to free a block that is still doing I/O
5483 * (i.e. prefetch) or has a reference (i.e. a dedup-ed,
5484 * dmu_sync-ed block). If this block is being prefetched, then it
5485 * would still have the ARC_FLAG_IO_IN_PROGRESS flag set on the hdr
5486 * until the I/O completes. A block may also have a reference if it is
5487 * part of a dedup-ed, dmu_synced write. The dmu_sync() function would
5488 * have written the new block to its final resting place on disk but
5489 * without the dedup flag set. This would have left the hdr in the MRU
5490 * state and discoverable. When the txg finally syncs it detects that
5491 * the block was overridden in open context and issues an override I/O.
5492 * Since this is a dedup block, the override I/O will determine if the
5493 * block is already in the DDT. If so, then it will replace the io_bp
5494 * with the bp from the DDT and allow the I/O to finish. When the I/O
5495 * reaches the done callback, dbuf_write_override_done, it will
5496 * check to see if the io_bp and io_bp_override are identical.
5497 * If they are not, then it indicates that the bp was replaced with
5498 * the bp in the DDT and the override bp is freed. This allows
5499 * us to arrive here with a reference on a block that is being
5500 * freed. So if we have an I/O in progress, or a reference to
5501 * this hdr, then we don't destroy the hdr.
5502 */
5503 if (!HDR_HAS_L1HDR(hdr) || (!HDR_IO_IN_PROGRESS(hdr) &&
5504 refcount_is_zero(&hdr->b_l1hdr.b_refcnt))) {
5505 arc_change_state(arc_anon, hdr, hash_lock);
5506 arc_hdr_destroy(hdr);
5507 mutex_exit(hash_lock);
5508 } else {
5509 mutex_exit(hash_lock);
5510 }
5511
5512 }
5513
5514 /*
5515 * Release this buffer from the cache, making it an anonymous buffer. This
5516 * must be done after a read and prior to modifying the buffer contents.
5517 * If the buffer has more than one reference, we must make
5518 * a new hdr for the buffer.
5519 */
5520 void
5521 arc_release(arc_buf_t *buf, void *tag)
5522 {
5523 kmutex_t *hash_lock;
5524 arc_state_t *state;
5525 arc_buf_hdr_t *hdr = buf->b_hdr;
5526
5527 /*
5528 * It would be nice to assert that if its DMU metadata (level >
5529 * 0 || it's the dnode file), then it must be syncing context.
5530 * But we don't know that information at this level.
5531 */
5532
5533 mutex_enter(&buf->b_evict_lock);
5534
5535 ASSERT(HDR_HAS_L1HDR(hdr));
5536
5537 /*
5538 * We don't grab the hash lock prior to this check, because if
5539 * the buffer's header is in the arc_anon state, it won't be
5540 * linked into the hash table.
5541 */
5542 if (hdr->b_l1hdr.b_state == arc_anon) {
5543 mutex_exit(&buf->b_evict_lock);
5544 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
5545 ASSERT(!HDR_IN_HASH_TABLE(hdr));
5546 ASSERT(!HDR_HAS_L2HDR(hdr));
5547 ASSERT(HDR_EMPTY(hdr));
5548
5549 ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1);
5550 ASSERT3S(refcount_count(&hdr->b_l1hdr.b_refcnt), ==, 1);
5551 ASSERT(!list_link_active(&hdr->b_l1hdr.b_arc_node));
5552
5553 hdr->b_l1hdr.b_arc_access = 0;
5554
5555 /*
5556 * If the buf is being overridden then it may already
5557 * have a hdr that is not empty.
5558 */
5559 buf_discard_identity(hdr);
5560 arc_buf_thaw(buf);
5561
5562 return;
5563 }
5564
5565 hash_lock = HDR_LOCK(hdr);
5566 mutex_enter(hash_lock);
5567
5568 /*
5569 * This assignment is only valid as long as the hash_lock is
5570 * held, we must be careful not to reference state or the
5571 * b_state field after dropping the lock.
5572 */
5573 state = hdr->b_l1hdr.b_state;
5574 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
5575 ASSERT3P(state, !=, arc_anon);
5576
5577 /* this buffer is not on any list */
5578 ASSERT3S(refcount_count(&hdr->b_l1hdr.b_refcnt), >, 0);
5579
5580 if (HDR_HAS_L2HDR(hdr)) {
5581 mutex_enter(&hdr->b_l2hdr.b_dev->l2ad_mtx);
5582
5583 /*
5584 * We have to recheck this conditional again now that
5585 * we're holding the l2ad_mtx to prevent a race with
5586 * another thread which might be concurrently calling
5587 * l2arc_evict(). In that case, l2arc_evict() might have
5588 * destroyed the header's L2 portion as we were waiting
5589 * to acquire the l2ad_mtx.
5590 */
5591 if (HDR_HAS_L2HDR(hdr))
5592 arc_hdr_l2hdr_destroy(hdr);
5593
5594 mutex_exit(&hdr->b_l2hdr.b_dev->l2ad_mtx);
5595 }
5596
5597 /*
5598 * Do we have more than one buf?
5599 */
5600 if (hdr->b_l1hdr.b_bufcnt > 1) {
5601 arc_buf_hdr_t *nhdr;
5602 uint64_t spa = hdr->b_spa;
5603 uint64_t psize = HDR_GET_PSIZE(hdr);
5604 uint64_t lsize = HDR_GET_LSIZE(hdr);
5605 enum zio_compress compress = HDR_GET_COMPRESS(hdr);
5606 arc_buf_contents_t type = arc_buf_type(hdr);
5607 VERIFY3U(hdr->b_type, ==, type);
5608
5609 ASSERT(hdr->b_l1hdr.b_buf != buf || buf->b_next != NULL);
5610 (void) remove_reference(hdr, hash_lock, tag);
5611
5612 if (arc_buf_is_shared(buf) && !ARC_BUF_COMPRESSED(buf)) {
5613 ASSERT3P(hdr->b_l1hdr.b_buf, !=, buf);
5614 ASSERT(ARC_BUF_LAST(buf));
5615 }
5616
5617 /*
5618 * Pull the data off of this hdr and attach it to
5619 * a new anonymous hdr. Also find the last buffer
5620 * in the hdr's buffer list.
5621 */
5622 arc_buf_t *lastbuf = arc_buf_remove(hdr, buf);
5623 ASSERT3P(lastbuf, !=, NULL);
5624
5625 /*
5626 * If the current arc_buf_t and the hdr are sharing their data
5627 * buffer, then we must stop sharing that block.
5628 */
5629 if (arc_buf_is_shared(buf)) {
5630 ASSERT3P(hdr->b_l1hdr.b_buf, !=, buf);
5631 VERIFY(!arc_buf_is_shared(lastbuf));
5632
5633 /*
5634 * First, sever the block sharing relationship between
5635 * buf and the arc_buf_hdr_t.
5636 */
5637 arc_unshare_buf(hdr, buf);
5638
5639 /*
5640 * Now we need to recreate the hdr's b_pabd. Since we
5641 * have lastbuf handy, we try to share with it, but if
5642 * we can't then we allocate a new b_pabd and copy the
5643 * data from buf into it.
5644 */
5645 if (arc_can_share(hdr, lastbuf)) {
5646 arc_share_buf(hdr, lastbuf);
5647 } else {
5648 arc_hdr_alloc_pabd(hdr);
5649 abd_copy_from_buf(hdr->b_l1hdr.b_pabd,
5650 buf->b_data, psize);
5651 }
5652 VERIFY3P(lastbuf->b_data, !=, NULL);
5653 } else if (HDR_SHARED_DATA(hdr)) {
5654 /*
5655 * Uncompressed shared buffers are always at the end
5656 * of the list. Compressed buffers don't have the
5657 * same requirements. This makes it hard to
5658 * simply assert that the lastbuf is shared so
5659 * we rely on the hdr's compression flags to determine
5660 * if we have a compressed, shared buffer.
5661 */
5662 ASSERT(arc_buf_is_shared(lastbuf) ||
5663 HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF);
5664 ASSERT(!ARC_BUF_SHARED(buf));
5665 }
5666 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
5667 ASSERT3P(state, !=, arc_l2c_only);
5668
5669 (void) refcount_remove_many(&state->arcs_size,
5670 arc_buf_size(buf), buf);
5671
5672 if (refcount_is_zero(&hdr->b_l1hdr.b_refcnt)) {
5673 ASSERT3P(state, !=, arc_l2c_only);
5674 (void) refcount_remove_many(&state->arcs_esize[type],
5675 arc_buf_size(buf), buf);
5676 }
5677
5678 hdr->b_l1hdr.b_bufcnt -= 1;
5679 arc_cksum_verify(buf);
5680 arc_buf_unwatch(buf);
5681
5682 mutex_exit(hash_lock);
5683
5684 /*
5685 * Allocate a new hdr. The new hdr will contain a b_pabd
5686 * buffer which will be freed in arc_write().
5687 */
5688 nhdr = arc_hdr_alloc(spa, psize, lsize, compress, type);
5689 ASSERT3P(nhdr->b_l1hdr.b_buf, ==, NULL);
5690 ASSERT0(nhdr->b_l1hdr.b_bufcnt);
5691 ASSERT0(refcount_count(&nhdr->b_l1hdr.b_refcnt));
5692 VERIFY3U(nhdr->b_type, ==, type);
5693 ASSERT(!HDR_SHARED_DATA(nhdr));
5694
5695 nhdr->b_l1hdr.b_buf = buf;
5696 nhdr->b_l1hdr.b_bufcnt = 1;
5697 nhdr->b_l1hdr.b_mru_hits = 0;
5698 nhdr->b_l1hdr.b_mru_ghost_hits = 0;
5699 nhdr->b_l1hdr.b_mfu_hits = 0;
5700 nhdr->b_l1hdr.b_mfu_ghost_hits = 0;
5701 nhdr->b_l1hdr.b_l2_hits = 0;
5702 (void) refcount_add(&nhdr->b_l1hdr.b_refcnt, tag);
5703 buf->b_hdr = nhdr;
5704
5705 mutex_exit(&buf->b_evict_lock);
5706 (void) refcount_add_many(&arc_anon->arcs_size,
5707 HDR_GET_LSIZE(nhdr), buf);
5708 } else {
5709 mutex_exit(&buf->b_evict_lock);
5710 ASSERT(refcount_count(&hdr->b_l1hdr.b_refcnt) == 1);
5711 /* protected by hash lock, or hdr is on arc_anon */
5712 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
5713 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
5714 hdr->b_l1hdr.b_mru_hits = 0;
5715 hdr->b_l1hdr.b_mru_ghost_hits = 0;
5716 hdr->b_l1hdr.b_mfu_hits = 0;
5717 hdr->b_l1hdr.b_mfu_ghost_hits = 0;
5718 hdr->b_l1hdr.b_l2_hits = 0;
5719 arc_change_state(arc_anon, hdr, hash_lock);
5720 hdr->b_l1hdr.b_arc_access = 0;
5721 mutex_exit(hash_lock);
5722
5723 buf_discard_identity(hdr);
5724 arc_buf_thaw(buf);
5725 }
5726 }
5727
5728 int
5729 arc_released(arc_buf_t *buf)
5730 {
5731 int released;
5732
5733 mutex_enter(&buf->b_evict_lock);
5734 released = (buf->b_data != NULL &&
5735 buf->b_hdr->b_l1hdr.b_state == arc_anon);
5736 mutex_exit(&buf->b_evict_lock);
5737 return (released);
5738 }
5739
5740 #ifdef ZFS_DEBUG
5741 int
5742 arc_referenced(arc_buf_t *buf)
5743 {
5744 int referenced;
5745
5746 mutex_enter(&buf->b_evict_lock);
5747 referenced = (refcount_count(&buf->b_hdr->b_l1hdr.b_refcnt));
5748 mutex_exit(&buf->b_evict_lock);
5749 return (referenced);
5750 }
5751 #endif
5752
5753 static void
5754 arc_write_ready(zio_t *zio)
5755 {
5756 arc_write_callback_t *callback = zio->io_private;
5757 arc_buf_t *buf = callback->awcb_buf;
5758 arc_buf_hdr_t *hdr = buf->b_hdr;
5759 uint64_t psize = BP_IS_HOLE(zio->io_bp) ? 0 : BP_GET_PSIZE(zio->io_bp);
5760 enum zio_compress compress;
5761 fstrans_cookie_t cookie = spl_fstrans_mark();
5762
5763 ASSERT(HDR_HAS_L1HDR(hdr));
5764 ASSERT(!refcount_is_zero(&buf->b_hdr->b_l1hdr.b_refcnt));
5765 ASSERT(hdr->b_l1hdr.b_bufcnt > 0);
5766
5767 /*
5768 * If we're reexecuting this zio because the pool suspended, then
5769 * cleanup any state that was previously set the first time the
5770 * callback was invoked.
5771 */
5772 if (zio->io_flags & ZIO_FLAG_REEXECUTED) {
5773 arc_cksum_free(hdr);
5774 arc_buf_unwatch(buf);
5775 if (hdr->b_l1hdr.b_pabd != NULL) {
5776 if (arc_buf_is_shared(buf)) {
5777 arc_unshare_buf(hdr, buf);
5778 } else {
5779 arc_hdr_free_pabd(hdr);
5780 }
5781 }
5782 }
5783 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
5784 ASSERT(!HDR_SHARED_DATA(hdr));
5785 ASSERT(!arc_buf_is_shared(buf));
5786
5787 callback->awcb_ready(zio, buf, callback->awcb_private);
5788
5789 if (HDR_IO_IN_PROGRESS(hdr))
5790 ASSERT(zio->io_flags & ZIO_FLAG_REEXECUTED);
5791
5792 arc_cksum_compute(buf);
5793 arc_hdr_set_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
5794
5795 if (BP_IS_HOLE(zio->io_bp) || BP_IS_EMBEDDED(zio->io_bp)) {
5796 compress = ZIO_COMPRESS_OFF;
5797 } else {
5798 ASSERT3U(HDR_GET_LSIZE(hdr), ==, BP_GET_LSIZE(zio->io_bp));
5799 compress = BP_GET_COMPRESS(zio->io_bp);
5800 }
5801 HDR_SET_PSIZE(hdr, psize);
5802 arc_hdr_set_compress(hdr, compress);
5803
5804 /*
5805 * Fill the hdr with data. If the hdr is compressed, the data we want
5806 * is available from the zio, otherwise we can take it from the buf.
5807 *
5808 * We might be able to share the buf's data with the hdr here. However,
5809 * doing so would cause the ARC to be full of linear ABDs if we write a
5810 * lot of shareable data. As a compromise, we check whether scattered
5811 * ABDs are allowed, and assume that if they are then the user wants
5812 * the ARC to be primarily filled with them regardless of the data being
5813 * written. Therefore, if they're allowed then we allocate one and copy
5814 * the data into it; otherwise, we share the data directly if we can.
5815 */
5816 if (zfs_abd_scatter_enabled || !arc_can_share(hdr, buf)) {
5817 arc_hdr_alloc_pabd(hdr);
5818
5819 /*
5820 * Ideally, we would always copy the io_abd into b_pabd, but the
5821 * user may have disabled compressed ARC, thus we must check the
5822 * hdr's compression setting rather than the io_bp's.
5823 */
5824 if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF) {
5825 ASSERT3U(BP_GET_COMPRESS(zio->io_bp), !=,
5826 ZIO_COMPRESS_OFF);
5827 ASSERT3U(psize, >, 0);
5828
5829 abd_copy(hdr->b_l1hdr.b_pabd, zio->io_abd, psize);
5830 } else {
5831 ASSERT3U(zio->io_orig_size, ==, arc_hdr_size(hdr));
5832
5833 abd_copy_from_buf(hdr->b_l1hdr.b_pabd, buf->b_data,
5834 arc_buf_size(buf));
5835 }
5836 } else {
5837 ASSERT3P(buf->b_data, ==, abd_to_buf(zio->io_orig_abd));
5838 ASSERT3U(zio->io_orig_size, ==, arc_buf_size(buf));
5839 ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1);
5840
5841 arc_share_buf(hdr, buf);
5842 }
5843
5844 arc_hdr_verify(hdr, zio->io_bp);
5845 spl_fstrans_unmark(cookie);
5846 }
5847
5848 static void
5849 arc_write_children_ready(zio_t *zio)
5850 {
5851 arc_write_callback_t *callback = zio->io_private;
5852 arc_buf_t *buf = callback->awcb_buf;
5853
5854 callback->awcb_children_ready(zio, buf, callback->awcb_private);
5855 }
5856
5857 /*
5858 * The SPA calls this callback for each physical write that happens on behalf
5859 * of a logical write. See the comment in dbuf_write_physdone() for details.
5860 */
5861 static void
5862 arc_write_physdone(zio_t *zio)
5863 {
5864 arc_write_callback_t *cb = zio->io_private;
5865 if (cb->awcb_physdone != NULL)
5866 cb->awcb_physdone(zio, cb->awcb_buf, cb->awcb_private);
5867 }
5868
5869 static void
5870 arc_write_done(zio_t *zio)
5871 {
5872 arc_write_callback_t *callback = zio->io_private;
5873 arc_buf_t *buf = callback->awcb_buf;
5874 arc_buf_hdr_t *hdr = buf->b_hdr;
5875
5876 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
5877
5878 if (zio->io_error == 0) {
5879 arc_hdr_verify(hdr, zio->io_bp);
5880
5881 if (BP_IS_HOLE(zio->io_bp) || BP_IS_EMBEDDED(zio->io_bp)) {
5882 buf_discard_identity(hdr);
5883 } else {
5884 hdr->b_dva = *BP_IDENTITY(zio->io_bp);
5885 hdr->b_birth = BP_PHYSICAL_BIRTH(zio->io_bp);
5886 }
5887 } else {
5888 ASSERT(HDR_EMPTY(hdr));
5889 }
5890
5891 /*
5892 * If the block to be written was all-zero or compressed enough to be
5893 * embedded in the BP, no write was performed so there will be no
5894 * dva/birth/checksum. The buffer must therefore remain anonymous
5895 * (and uncached).
5896 */
5897 if (!HDR_EMPTY(hdr)) {
5898 arc_buf_hdr_t *exists;
5899 kmutex_t *hash_lock;
5900
5901 ASSERT3U(zio->io_error, ==, 0);
5902
5903 arc_cksum_verify(buf);
5904
5905 exists = buf_hash_insert(hdr, &hash_lock);
5906 if (exists != NULL) {
5907 /*
5908 * This can only happen if we overwrite for
5909 * sync-to-convergence, because we remove
5910 * buffers from the hash table when we arc_free().
5911 */
5912 if (zio->io_flags & ZIO_FLAG_IO_REWRITE) {
5913 if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
5914 panic("bad overwrite, hdr=%p exists=%p",
5915 (void *)hdr, (void *)exists);
5916 ASSERT(refcount_is_zero(
5917 &exists->b_l1hdr.b_refcnt));
5918 arc_change_state(arc_anon, exists, hash_lock);
5919 mutex_exit(hash_lock);
5920 arc_hdr_destroy(exists);
5921 exists = buf_hash_insert(hdr, &hash_lock);
5922 ASSERT3P(exists, ==, NULL);
5923 } else if (zio->io_flags & ZIO_FLAG_NOPWRITE) {
5924 /* nopwrite */
5925 ASSERT(zio->io_prop.zp_nopwrite);
5926 if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
5927 panic("bad nopwrite, hdr=%p exists=%p",
5928 (void *)hdr, (void *)exists);
5929 } else {
5930 /* Dedup */
5931 ASSERT(hdr->b_l1hdr.b_bufcnt == 1);
5932 ASSERT(hdr->b_l1hdr.b_state == arc_anon);
5933 ASSERT(BP_GET_DEDUP(zio->io_bp));
5934 ASSERT(BP_GET_LEVEL(zio->io_bp) == 0);
5935 }
5936 }
5937 arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
5938 /* if it's not anon, we are doing a scrub */
5939 if (exists == NULL && hdr->b_l1hdr.b_state == arc_anon)
5940 arc_access(hdr, hash_lock);
5941 mutex_exit(hash_lock);
5942 } else {
5943 arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
5944 }
5945
5946 ASSERT(!refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
5947 callback->awcb_done(zio, buf, callback->awcb_private);
5948
5949 abd_put(zio->io_abd);
5950 kmem_free(callback, sizeof (arc_write_callback_t));
5951 }
5952
5953 zio_t *
5954 arc_write(zio_t *pio, spa_t *spa, uint64_t txg,
5955 blkptr_t *bp, arc_buf_t *buf, boolean_t l2arc,
5956 const zio_prop_t *zp, arc_done_func_t *ready,
5957 arc_done_func_t *children_ready, arc_done_func_t *physdone,
5958 arc_done_func_t *done, void *private, zio_priority_t priority,
5959 int zio_flags, const zbookmark_phys_t *zb)
5960 {
5961 arc_buf_hdr_t *hdr = buf->b_hdr;
5962 arc_write_callback_t *callback;
5963 zio_t *zio;
5964
5965 ASSERT3P(ready, !=, NULL);
5966 ASSERT3P(done, !=, NULL);
5967 ASSERT(!HDR_IO_ERROR(hdr));
5968 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
5969 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
5970 ASSERT3U(hdr->b_l1hdr.b_bufcnt, >, 0);
5971 if (l2arc)
5972 arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE);
5973 if (ARC_BUF_COMPRESSED(buf)) {
5974 ASSERT3U(zp->zp_compress, !=, ZIO_COMPRESS_OFF);
5975 ASSERT3U(HDR_GET_LSIZE(hdr), !=, arc_buf_size(buf));
5976 zio_flags |= ZIO_FLAG_RAW;
5977 }
5978 callback = kmem_zalloc(sizeof (arc_write_callback_t), KM_SLEEP);
5979 callback->awcb_ready = ready;
5980 callback->awcb_children_ready = children_ready;
5981 callback->awcb_physdone = physdone;
5982 callback->awcb_done = done;
5983 callback->awcb_private = private;
5984 callback->awcb_buf = buf;
5985
5986 /*
5987 * The hdr's b_pabd is now stale, free it now. A new data block
5988 * will be allocated when the zio pipeline calls arc_write_ready().
5989 */
5990 if (hdr->b_l1hdr.b_pabd != NULL) {
5991 /*
5992 * If the buf is currently sharing the data block with
5993 * the hdr then we need to break that relationship here.
5994 * The hdr will remain with a NULL data pointer and the
5995 * buf will take sole ownership of the block.
5996 */
5997 if (arc_buf_is_shared(buf)) {
5998 arc_unshare_buf(hdr, buf);
5999 } else {
6000 arc_hdr_free_pabd(hdr);
6001 }
6002 VERIFY3P(buf->b_data, !=, NULL);
6003 arc_hdr_set_compress(hdr, ZIO_COMPRESS_OFF);
6004 }
6005 ASSERT(!arc_buf_is_shared(buf));
6006 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
6007
6008 zio = zio_write(pio, spa, txg, bp,
6009 abd_get_from_buf(buf->b_data, HDR_GET_LSIZE(hdr)),
6010 HDR_GET_LSIZE(hdr), arc_buf_size(buf), zp,
6011 arc_write_ready,
6012 (children_ready != NULL) ? arc_write_children_ready : NULL,
6013 arc_write_physdone, arc_write_done, callback,
6014 priority, zio_flags, zb);
6015
6016 return (zio);
6017 }
6018
6019 static int
6020 arc_memory_throttle(uint64_t reserve, uint64_t txg)
6021 {
6022 #ifdef _KERNEL
6023 uint64_t available_memory = ptob(freemem);
6024 static uint64_t page_load = 0;
6025 static uint64_t last_txg = 0;
6026 #ifdef __linux__
6027 pgcnt_t minfree = btop(arc_sys_free / 4);
6028 #endif
6029
6030 #if defined(__i386)
6031 available_memory =
6032 MIN(available_memory, vmem_size(heap_arena, VMEM_FREE));
6033 #endif
6034
6035 if (available_memory > arc_all_memory() * arc_lotsfree_percent / 100)
6036 return (0);
6037
6038 if (txg > last_txg) {
6039 last_txg = txg;
6040 page_load = 0;
6041 }
6042 /*
6043 * If we are in pageout, we know that memory is already tight,
6044 * the arc is already going to be evicting, so we just want to
6045 * continue to let page writes occur as quickly as possible.
6046 */
6047 if (current_is_kswapd()) {
6048 if (page_load > MAX(ptob(minfree), available_memory) / 4) {
6049 DMU_TX_STAT_BUMP(dmu_tx_memory_reclaim);
6050 return (SET_ERROR(ERESTART));
6051 }
6052 /* Note: reserve is inflated, so we deflate */
6053 page_load += reserve / 8;
6054 return (0);
6055 } else if (page_load > 0 && arc_reclaim_needed()) {
6056 /* memory is low, delay before restarting */
6057 ARCSTAT_INCR(arcstat_memory_throttle_count, 1);
6058 DMU_TX_STAT_BUMP(dmu_tx_memory_reclaim);
6059 return (SET_ERROR(EAGAIN));
6060 }
6061 page_load = 0;
6062 #endif
6063 return (0);
6064 }
6065
6066 void
6067 arc_tempreserve_clear(uint64_t reserve)
6068 {
6069 atomic_add_64(&arc_tempreserve, -reserve);
6070 ASSERT((int64_t)arc_tempreserve >= 0);
6071 }
6072
6073 int
6074 arc_tempreserve_space(uint64_t reserve, uint64_t txg)
6075 {
6076 int error;
6077 uint64_t anon_size;
6078
6079 if (!arc_no_grow &&
6080 reserve > arc_c/4 &&
6081 reserve * 4 > (2ULL << SPA_MAXBLOCKSHIFT))
6082 arc_c = MIN(arc_c_max, reserve * 4);
6083
6084 /*
6085 * Throttle when the calculated memory footprint for the TXG
6086 * exceeds the target ARC size.
6087 */
6088 if (reserve > arc_c) {
6089 DMU_TX_STAT_BUMP(dmu_tx_memory_reserve);
6090 return (SET_ERROR(ERESTART));
6091 }
6092
6093 /*
6094 * Don't count loaned bufs as in flight dirty data to prevent long
6095 * network delays from blocking transactions that are ready to be
6096 * assigned to a txg.
6097 */
6098
6099 /* assert that it has not wrapped around */
6100 ASSERT3S(atomic_add_64_nv(&arc_loaned_bytes, 0), >=, 0);
6101
6102 anon_size = MAX((int64_t)(refcount_count(&arc_anon->arcs_size) -
6103 arc_loaned_bytes), 0);
6104
6105 /*
6106 * Writes will, almost always, require additional memory allocations
6107 * in order to compress/encrypt/etc the data. We therefore need to
6108 * make sure that there is sufficient available memory for this.
6109 */
6110 error = arc_memory_throttle(reserve, txg);
6111 if (error != 0)
6112 return (error);
6113
6114 /*
6115 * Throttle writes when the amount of dirty data in the cache
6116 * gets too large. We try to keep the cache less than half full
6117 * of dirty blocks so that our sync times don't grow too large.
6118 * Note: if two requests come in concurrently, we might let them
6119 * both succeed, when one of them should fail. Not a huge deal.
6120 */
6121
6122 if (reserve + arc_tempreserve + anon_size > arc_c / 2 &&
6123 anon_size > arc_c / 4) {
6124 uint64_t meta_esize =
6125 refcount_count(&arc_anon->arcs_esize[ARC_BUFC_METADATA]);
6126 uint64_t data_esize =
6127 refcount_count(&arc_anon->arcs_esize[ARC_BUFC_DATA]);
6128 dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK "
6129 "anon_data=%lluK tempreserve=%lluK arc_c=%lluK\n",
6130 arc_tempreserve >> 10, meta_esize >> 10,
6131 data_esize >> 10, reserve >> 10, arc_c >> 10);
6132 DMU_TX_STAT_BUMP(dmu_tx_dirty_throttle);
6133 return (SET_ERROR(ERESTART));
6134 }
6135 atomic_add_64(&arc_tempreserve, reserve);
6136 return (0);
6137 }
6138
6139 static void
6140 arc_kstat_update_state(arc_state_t *state, kstat_named_t *size,
6141 kstat_named_t *evict_data, kstat_named_t *evict_metadata)
6142 {
6143 size->value.ui64 = refcount_count(&state->arcs_size);
6144 evict_data->value.ui64 =
6145 refcount_count(&state->arcs_esize[ARC_BUFC_DATA]);
6146 evict_metadata->value.ui64 =
6147 refcount_count(&state->arcs_esize[ARC_BUFC_METADATA]);
6148 }
6149
6150 static int
6151 arc_kstat_update(kstat_t *ksp, int rw)
6152 {
6153 arc_stats_t *as = ksp->ks_data;
6154
6155 if (rw == KSTAT_WRITE) {
6156 return (EACCES);
6157 } else {
6158 arc_kstat_update_state(arc_anon,
6159 &as->arcstat_anon_size,
6160 &as->arcstat_anon_evictable_data,
6161 &as->arcstat_anon_evictable_metadata);
6162 arc_kstat_update_state(arc_mru,
6163 &as->arcstat_mru_size,
6164 &as->arcstat_mru_evictable_data,
6165 &as->arcstat_mru_evictable_metadata);
6166 arc_kstat_update_state(arc_mru_ghost,
6167 &as->arcstat_mru_ghost_size,
6168 &as->arcstat_mru_ghost_evictable_data,
6169 &as->arcstat_mru_ghost_evictable_metadata);
6170 arc_kstat_update_state(arc_mfu,
6171 &as->arcstat_mfu_size,
6172 &as->arcstat_mfu_evictable_data,
6173 &as->arcstat_mfu_evictable_metadata);
6174 arc_kstat_update_state(arc_mfu_ghost,
6175 &as->arcstat_mfu_ghost_size,
6176 &as->arcstat_mfu_ghost_evictable_data,
6177 &as->arcstat_mfu_ghost_evictable_metadata);
6178 }
6179
6180 return (0);
6181 }
6182
6183 /*
6184 * This function *must* return indices evenly distributed between all
6185 * sublists of the multilist. This is needed due to how the ARC eviction
6186 * code is laid out; arc_evict_state() assumes ARC buffers are evenly
6187 * distributed between all sublists and uses this assumption when
6188 * deciding which sublist to evict from and how much to evict from it.
6189 */
6190 unsigned int
6191 arc_state_multilist_index_func(multilist_t *ml, void *obj)
6192 {
6193 arc_buf_hdr_t *hdr = obj;
6194
6195 /*
6196 * We rely on b_dva to generate evenly distributed index
6197 * numbers using buf_hash below. So, as an added precaution,
6198 * let's make sure we never add empty buffers to the arc lists.
6199 */
6200 ASSERT(!HDR_EMPTY(hdr));
6201
6202 /*
6203 * The assumption here, is the hash value for a given
6204 * arc_buf_hdr_t will remain constant throughout its lifetime
6205 * (i.e. its b_spa, b_dva, and b_birth fields don't change).
6206 * Thus, we don't need to store the header's sublist index
6207 * on insertion, as this index can be recalculated on removal.
6208 *
6209 * Also, the low order bits of the hash value are thought to be
6210 * distributed evenly. Otherwise, in the case that the multilist
6211 * has a power of two number of sublists, each sublists' usage
6212 * would not be evenly distributed.
6213 */
6214 return (buf_hash(hdr->b_spa, &hdr->b_dva, hdr->b_birth) %
6215 multilist_get_num_sublists(ml));
6216 }
6217
6218 /*
6219 * Called during module initialization and periodically thereafter to
6220 * apply reasonable changes to the exposed performance tunings. Non-zero
6221 * zfs_* values which differ from the currently set values will be applied.
6222 */
6223 static void
6224 arc_tuning_update(void)
6225 {
6226 uint64_t percent, allmem = arc_all_memory();
6227
6228 /* Valid range: 64M - <all physical memory> */
6229 if ((zfs_arc_max) && (zfs_arc_max != arc_c_max) &&
6230 (zfs_arc_max > 64 << 20) && (zfs_arc_max < allmem) &&
6231 (zfs_arc_max > arc_c_min)) {
6232 arc_c_max = zfs_arc_max;
6233 arc_c = arc_c_max;
6234 arc_p = (arc_c >> 1);
6235 /* Valid range of arc_meta_limit: arc_meta_min - arc_c_max */
6236 percent = MIN(zfs_arc_meta_limit_percent, 100);
6237 arc_meta_limit = MAX(arc_meta_min, (percent * arc_c_max) / 100);
6238 percent = MIN(zfs_arc_dnode_limit_percent, 100);
6239 arc_dnode_limit = (percent * arc_meta_limit) / 100;
6240 }
6241
6242 /* Valid range: 32M - <arc_c_max> */
6243 if ((zfs_arc_min) && (zfs_arc_min != arc_c_min) &&
6244 (zfs_arc_min >= 2ULL << SPA_MAXBLOCKSHIFT) &&
6245 (zfs_arc_min <= arc_c_max)) {
6246 arc_c_min = zfs_arc_min;
6247 arc_c = MAX(arc_c, arc_c_min);
6248 }
6249
6250 /* Valid range: 16M - <arc_c_max> */
6251 if ((zfs_arc_meta_min) && (zfs_arc_meta_min != arc_meta_min) &&
6252 (zfs_arc_meta_min >= 1ULL << SPA_MAXBLOCKSHIFT) &&
6253 (zfs_arc_meta_min <= arc_c_max)) {
6254 arc_meta_min = zfs_arc_meta_min;
6255 arc_meta_limit = MAX(arc_meta_limit, arc_meta_min);
6256 arc_dnode_limit = arc_meta_limit / 10;
6257 }
6258
6259 /* Valid range: <arc_meta_min> - <arc_c_max> */
6260 if ((zfs_arc_meta_limit) && (zfs_arc_meta_limit != arc_meta_limit) &&
6261 (zfs_arc_meta_limit >= zfs_arc_meta_min) &&
6262 (zfs_arc_meta_limit <= arc_c_max))
6263 arc_meta_limit = zfs_arc_meta_limit;
6264
6265 /* Valid range: <arc_meta_min> - <arc_c_max> */
6266 if ((zfs_arc_dnode_limit) && (zfs_arc_dnode_limit != arc_dnode_limit) &&
6267 (zfs_arc_dnode_limit >= zfs_arc_meta_min) &&
6268 (zfs_arc_dnode_limit <= arc_c_max))
6269 arc_dnode_limit = zfs_arc_dnode_limit;
6270
6271 /* Valid range: 1 - N */
6272 if (zfs_arc_grow_retry)
6273 arc_grow_retry = zfs_arc_grow_retry;
6274
6275 /* Valid range: 1 - N */
6276 if (zfs_arc_shrink_shift) {
6277 arc_shrink_shift = zfs_arc_shrink_shift;
6278 arc_no_grow_shift = MIN(arc_no_grow_shift, arc_shrink_shift -1);
6279 }
6280
6281 /* Valid range: 1 - N */
6282 if (zfs_arc_p_min_shift)
6283 arc_p_min_shift = zfs_arc_p_min_shift;
6284
6285 /* Valid range: 1 - N ticks */
6286 if (zfs_arc_min_prefetch_lifespan)
6287 arc_min_prefetch_lifespan = zfs_arc_min_prefetch_lifespan;
6288
6289 /* Valid range: 0 - 100 */
6290 if ((zfs_arc_lotsfree_percent >= 0) &&
6291 (zfs_arc_lotsfree_percent <= 100))
6292 arc_lotsfree_percent = zfs_arc_lotsfree_percent;
6293
6294 /* Valid range: 0 - <all physical memory> */
6295 if ((zfs_arc_sys_free) && (zfs_arc_sys_free != arc_sys_free))
6296 arc_sys_free = MIN(MAX(zfs_arc_sys_free, 0), allmem);
6297
6298 }
6299
6300 static void
6301 arc_state_init(void)
6302 {
6303 arc_anon = &ARC_anon;
6304 arc_mru = &ARC_mru;
6305 arc_mru_ghost = &ARC_mru_ghost;
6306 arc_mfu = &ARC_mfu;
6307 arc_mfu_ghost = &ARC_mfu_ghost;
6308 arc_l2c_only = &ARC_l2c_only;
6309
6310 arc_mru->arcs_list[ARC_BUFC_METADATA] =
6311 multilist_create(sizeof (arc_buf_hdr_t),
6312 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
6313 arc_state_multilist_index_func);
6314 arc_mru->arcs_list[ARC_BUFC_DATA] =
6315 multilist_create(sizeof (arc_buf_hdr_t),
6316 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
6317 arc_state_multilist_index_func);
6318 arc_mru_ghost->arcs_list[ARC_BUFC_METADATA] =
6319 multilist_create(sizeof (arc_buf_hdr_t),
6320 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
6321 arc_state_multilist_index_func);
6322 arc_mru_ghost->arcs_list[ARC_BUFC_DATA] =
6323 multilist_create(sizeof (arc_buf_hdr_t),
6324 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
6325 arc_state_multilist_index_func);
6326 arc_mfu->arcs_list[ARC_BUFC_METADATA] =
6327 multilist_create(sizeof (arc_buf_hdr_t),
6328 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
6329 arc_state_multilist_index_func);
6330 arc_mfu->arcs_list[ARC_BUFC_DATA] =
6331 multilist_create(sizeof (arc_buf_hdr_t),
6332 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
6333 arc_state_multilist_index_func);
6334 arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA] =
6335 multilist_create(sizeof (arc_buf_hdr_t),
6336 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
6337 arc_state_multilist_index_func);
6338 arc_mfu_ghost->arcs_list[ARC_BUFC_DATA] =
6339 multilist_create(sizeof (arc_buf_hdr_t),
6340 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
6341 arc_state_multilist_index_func);
6342 arc_l2c_only->arcs_list[ARC_BUFC_METADATA] =
6343 multilist_create(sizeof (arc_buf_hdr_t),
6344 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
6345 arc_state_multilist_index_func);
6346 arc_l2c_only->arcs_list[ARC_BUFC_DATA] =
6347 multilist_create(sizeof (arc_buf_hdr_t),
6348 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
6349 arc_state_multilist_index_func);
6350
6351 refcount_create(&arc_anon->arcs_esize[ARC_BUFC_METADATA]);
6352 refcount_create(&arc_anon->arcs_esize[ARC_BUFC_DATA]);
6353 refcount_create(&arc_mru->arcs_esize[ARC_BUFC_METADATA]);
6354 refcount_create(&arc_mru->arcs_esize[ARC_BUFC_DATA]);
6355 refcount_create(&arc_mru_ghost->arcs_esize[ARC_BUFC_METADATA]);
6356 refcount_create(&arc_mru_ghost->arcs_esize[ARC_BUFC_DATA]);
6357 refcount_create(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]);
6358 refcount_create(&arc_mfu->arcs_esize[ARC_BUFC_DATA]);
6359 refcount_create(&arc_mfu_ghost->arcs_esize[ARC_BUFC_METADATA]);
6360 refcount_create(&arc_mfu_ghost->arcs_esize[ARC_BUFC_DATA]);
6361 refcount_create(&arc_l2c_only->arcs_esize[ARC_BUFC_METADATA]);
6362 refcount_create(&arc_l2c_only->arcs_esize[ARC_BUFC_DATA]);
6363
6364 refcount_create(&arc_anon->arcs_size);
6365 refcount_create(&arc_mru->arcs_size);
6366 refcount_create(&arc_mru_ghost->arcs_size);
6367 refcount_create(&arc_mfu->arcs_size);
6368 refcount_create(&arc_mfu_ghost->arcs_size);
6369 refcount_create(&arc_l2c_only->arcs_size);
6370
6371 arc_anon->arcs_state = ARC_STATE_ANON;
6372 arc_mru->arcs_state = ARC_STATE_MRU;
6373 arc_mru_ghost->arcs_state = ARC_STATE_MRU_GHOST;
6374 arc_mfu->arcs_state = ARC_STATE_MFU;
6375 arc_mfu_ghost->arcs_state = ARC_STATE_MFU_GHOST;
6376 arc_l2c_only->arcs_state = ARC_STATE_L2C_ONLY;
6377 }
6378
6379 static void
6380 arc_state_fini(void)
6381 {
6382 refcount_destroy(&arc_anon->arcs_esize[ARC_BUFC_METADATA]);
6383 refcount_destroy(&arc_anon->arcs_esize[ARC_BUFC_DATA]);
6384 refcount_destroy(&arc_mru->arcs_esize[ARC_BUFC_METADATA]);
6385 refcount_destroy(&arc_mru->arcs_esize[ARC_BUFC_DATA]);
6386 refcount_destroy(&arc_mru_ghost->arcs_esize[ARC_BUFC_METADATA]);
6387 refcount_destroy(&arc_mru_ghost->arcs_esize[ARC_BUFC_DATA]);
6388 refcount_destroy(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]);
6389 refcount_destroy(&arc_mfu->arcs_esize[ARC_BUFC_DATA]);
6390 refcount_destroy(&arc_mfu_ghost->arcs_esize[ARC_BUFC_METADATA]);
6391 refcount_destroy(&arc_mfu_ghost->arcs_esize[ARC_BUFC_DATA]);
6392 refcount_destroy(&arc_l2c_only->arcs_esize[ARC_BUFC_METADATA]);
6393 refcount_destroy(&arc_l2c_only->arcs_esize[ARC_BUFC_DATA]);
6394
6395 refcount_destroy(&arc_anon->arcs_size);
6396 refcount_destroy(&arc_mru->arcs_size);
6397 refcount_destroy(&arc_mru_ghost->arcs_size);
6398 refcount_destroy(&arc_mfu->arcs_size);
6399 refcount_destroy(&arc_mfu_ghost->arcs_size);
6400 refcount_destroy(&arc_l2c_only->arcs_size);
6401
6402 multilist_destroy(arc_mru->arcs_list[ARC_BUFC_METADATA]);
6403 multilist_destroy(arc_mru_ghost->arcs_list[ARC_BUFC_METADATA]);
6404 multilist_destroy(arc_mfu->arcs_list[ARC_BUFC_METADATA]);
6405 multilist_destroy(arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA]);
6406 multilist_destroy(arc_mru->arcs_list[ARC_BUFC_DATA]);
6407 multilist_destroy(arc_mru_ghost->arcs_list[ARC_BUFC_DATA]);
6408 multilist_destroy(arc_mfu->arcs_list[ARC_BUFC_DATA]);
6409 multilist_destroy(arc_mfu_ghost->arcs_list[ARC_BUFC_DATA]);
6410 multilist_destroy(arc_l2c_only->arcs_list[ARC_BUFC_METADATA]);
6411 multilist_destroy(arc_l2c_only->arcs_list[ARC_BUFC_DATA]);
6412 }
6413
6414 uint64_t
6415 arc_max_bytes(void)
6416 {
6417 return (arc_c_max);
6418 }
6419
6420 void
6421 arc_init(void)
6422 {
6423 uint64_t percent, allmem = arc_all_memory();
6424
6425 mutex_init(&arc_reclaim_lock, NULL, MUTEX_DEFAULT, NULL);
6426 cv_init(&arc_reclaim_thread_cv, NULL, CV_DEFAULT, NULL);
6427 cv_init(&arc_reclaim_waiters_cv, NULL, CV_DEFAULT, NULL);
6428
6429 /* Convert seconds to clock ticks */
6430 arc_min_prefetch_lifespan = 1 * hz;
6431
6432 #ifdef _KERNEL
6433 /*
6434 * Register a shrinker to support synchronous (direct) memory
6435 * reclaim from the arc. This is done to prevent kswapd from
6436 * swapping out pages when it is preferable to shrink the arc.
6437 */
6438 spl_register_shrinker(&arc_shrinker);
6439
6440 /* Set to 1/64 of all memory or a minimum of 512K */
6441 arc_sys_free = MAX(allmem / 64, (512 * 1024));
6442 arc_need_free = 0;
6443 #endif
6444
6445 /* Set max to 1/2 of all memory */
6446 arc_c_max = allmem / 2;
6447
6448 /*
6449 * In userland, there's only the memory pressure that we artificially
6450 * create (see arc_available_memory()). Don't let arc_c get too
6451 * small, because it can cause transactions to be larger than
6452 * arc_c, causing arc_tempreserve_space() to fail.
6453 */
6454 #ifndef _KERNEL
6455 arc_c_min = MAX(arc_c_max / 2, 2ULL << SPA_MAXBLOCKSHIFT);
6456 #else
6457 arc_c_min = 2ULL << SPA_MAXBLOCKSHIFT;
6458 #endif
6459
6460 arc_c = arc_c_max;
6461 arc_p = (arc_c >> 1);
6462 arc_size = 0;
6463
6464 /* Set min to 1/2 of arc_c_min */
6465 arc_meta_min = 1ULL << SPA_MAXBLOCKSHIFT;
6466 /* Initialize maximum observed usage to zero */
6467 arc_meta_max = 0;
6468 /*
6469 * Set arc_meta_limit to a percent of arc_c_max with a floor of
6470 * arc_meta_min, and a ceiling of arc_c_max.
6471 */
6472 percent = MIN(zfs_arc_meta_limit_percent, 100);
6473 arc_meta_limit = MAX(arc_meta_min, (percent * arc_c_max) / 100);
6474 percent = MIN(zfs_arc_dnode_limit_percent, 100);
6475 arc_dnode_limit = (percent * arc_meta_limit) / 100;
6476
6477 /* Apply user specified tunings */
6478 arc_tuning_update();
6479
6480 /* if kmem_flags are set, lets try to use less memory */
6481 if (kmem_debugging())
6482 arc_c = arc_c / 2;
6483 if (arc_c < arc_c_min)
6484 arc_c = arc_c_min;
6485
6486 arc_state_init();
6487 buf_init();
6488
6489 list_create(&arc_prune_list, sizeof (arc_prune_t),
6490 offsetof(arc_prune_t, p_node));
6491 mutex_init(&arc_prune_mtx, NULL, MUTEX_DEFAULT, NULL);
6492
6493 arc_prune_taskq = taskq_create("arc_prune", max_ncpus, defclsyspri,
6494 max_ncpus, INT_MAX, TASKQ_PREPOPULATE | TASKQ_DYNAMIC);
6495
6496 arc_reclaim_thread_exit = B_FALSE;
6497
6498 arc_ksp = kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED,
6499 sizeof (arc_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
6500
6501 if (arc_ksp != NULL) {
6502 arc_ksp->ks_data = &arc_stats;
6503 arc_ksp->ks_update = arc_kstat_update;
6504 kstat_install(arc_ksp);
6505 }
6506
6507 (void) thread_create(NULL, 0, arc_reclaim_thread, NULL, 0, &p0,
6508 TS_RUN, defclsyspri);
6509
6510 arc_dead = B_FALSE;
6511 arc_warm = B_FALSE;
6512
6513 /*
6514 * Calculate maximum amount of dirty data per pool.
6515 *
6516 * If it has been set by a module parameter, take that.
6517 * Otherwise, use a percentage of physical memory defined by
6518 * zfs_dirty_data_max_percent (default 10%) with a cap at
6519 * zfs_dirty_data_max_max (default 4G or 25% of physical memory).
6520 */
6521 if (zfs_dirty_data_max_max == 0)
6522 zfs_dirty_data_max_max = MIN(4ULL * 1024 * 1024 * 1024,
6523 allmem * zfs_dirty_data_max_max_percent / 100);
6524
6525 if (zfs_dirty_data_max == 0) {
6526 zfs_dirty_data_max = allmem *
6527 zfs_dirty_data_max_percent / 100;
6528 zfs_dirty_data_max = MIN(zfs_dirty_data_max,
6529 zfs_dirty_data_max_max);
6530 }
6531 }
6532
6533 void
6534 arc_fini(void)
6535 {
6536 arc_prune_t *p;
6537
6538 #ifdef _KERNEL
6539 spl_unregister_shrinker(&arc_shrinker);
6540 #endif /* _KERNEL */
6541
6542 mutex_enter(&arc_reclaim_lock);
6543 arc_reclaim_thread_exit = B_TRUE;
6544 /*
6545 * The reclaim thread will set arc_reclaim_thread_exit back to
6546 * B_FALSE when it is finished exiting; we're waiting for that.
6547 */
6548 while (arc_reclaim_thread_exit) {
6549 cv_signal(&arc_reclaim_thread_cv);
6550 cv_wait(&arc_reclaim_thread_cv, &arc_reclaim_lock);
6551 }
6552 mutex_exit(&arc_reclaim_lock);
6553
6554 /* Use B_TRUE to ensure *all* buffers are evicted */
6555 arc_flush(NULL, B_TRUE);
6556
6557 arc_dead = B_TRUE;
6558
6559 if (arc_ksp != NULL) {
6560 kstat_delete(arc_ksp);
6561 arc_ksp = NULL;
6562 }
6563
6564 taskq_wait(arc_prune_taskq);
6565 taskq_destroy(arc_prune_taskq);
6566
6567 mutex_enter(&arc_prune_mtx);
6568 while ((p = list_head(&arc_prune_list)) != NULL) {
6569 list_remove(&arc_prune_list, p);
6570 refcount_remove(&p->p_refcnt, &arc_prune_list);
6571 refcount_destroy(&p->p_refcnt);
6572 kmem_free(p, sizeof (*p));
6573 }
6574 mutex_exit(&arc_prune_mtx);
6575
6576 list_destroy(&arc_prune_list);
6577 mutex_destroy(&arc_prune_mtx);
6578 mutex_destroy(&arc_reclaim_lock);
6579 cv_destroy(&arc_reclaim_thread_cv);
6580 cv_destroy(&arc_reclaim_waiters_cv);
6581
6582 arc_state_fini();
6583 buf_fini();
6584
6585 ASSERT0(arc_loaned_bytes);
6586 }
6587
6588 /*
6589 * Level 2 ARC
6590 *
6591 * The level 2 ARC (L2ARC) is a cache layer in-between main memory and disk.
6592 * It uses dedicated storage devices to hold cached data, which are populated
6593 * using large infrequent writes. The main role of this cache is to boost
6594 * the performance of random read workloads. The intended L2ARC devices
6595 * include short-stroked disks, solid state disks, and other media with
6596 * substantially faster read latency than disk.
6597 *
6598 * +-----------------------+
6599 * | ARC |
6600 * +-----------------------+
6601 * | ^ ^
6602 * | | |
6603 * l2arc_feed_thread() arc_read()
6604 * | | |
6605 * | l2arc read |
6606 * V | |
6607 * +---------------+ |
6608 * | L2ARC | |
6609 * +---------------+ |
6610 * | ^ |
6611 * l2arc_write() | |
6612 * | | |
6613 * V | |
6614 * +-------+ +-------+
6615 * | vdev | | vdev |
6616 * | cache | | cache |
6617 * +-------+ +-------+
6618 * +=========+ .-----.
6619 * : L2ARC : |-_____-|
6620 * : devices : | Disks |
6621 * +=========+ `-_____-'
6622 *
6623 * Read requests are satisfied from the following sources, in order:
6624 *
6625 * 1) ARC
6626 * 2) vdev cache of L2ARC devices
6627 * 3) L2ARC devices
6628 * 4) vdev cache of disks
6629 * 5) disks
6630 *
6631 * Some L2ARC device types exhibit extremely slow write performance.
6632 * To accommodate for this there are some significant differences between
6633 * the L2ARC and traditional cache design:
6634 *
6635 * 1. There is no eviction path from the ARC to the L2ARC. Evictions from
6636 * the ARC behave as usual, freeing buffers and placing headers on ghost
6637 * lists. The ARC does not send buffers to the L2ARC during eviction as
6638 * this would add inflated write latencies for all ARC memory pressure.
6639 *
6640 * 2. The L2ARC attempts to cache data from the ARC before it is evicted.
6641 * It does this by periodically scanning buffers from the eviction-end of
6642 * the MFU and MRU ARC lists, copying them to the L2ARC devices if they are
6643 * not already there. It scans until a headroom of buffers is satisfied,
6644 * which itself is a buffer for ARC eviction. If a compressible buffer is
6645 * found during scanning and selected for writing to an L2ARC device, we
6646 * temporarily boost scanning headroom during the next scan cycle to make
6647 * sure we adapt to compression effects (which might significantly reduce
6648 * the data volume we write to L2ARC). The thread that does this is
6649 * l2arc_feed_thread(), illustrated below; example sizes are included to
6650 * provide a better sense of ratio than this diagram:
6651 *
6652 * head --> tail
6653 * +---------------------+----------+
6654 * ARC_mfu |:::::#:::::::::::::::|o#o###o###|-->. # already on L2ARC
6655 * +---------------------+----------+ | o L2ARC eligible
6656 * ARC_mru |:#:::::::::::::::::::|#o#ooo####|-->| : ARC buffer
6657 * +---------------------+----------+ |
6658 * 15.9 Gbytes ^ 32 Mbytes |
6659 * headroom |
6660 * l2arc_feed_thread()
6661 * |
6662 * l2arc write hand <--[oooo]--'
6663 * | 8 Mbyte
6664 * | write max
6665 * V
6666 * +==============================+
6667 * L2ARC dev |####|#|###|###| |####| ... |
6668 * +==============================+
6669 * 32 Gbytes
6670 *
6671 * 3. If an ARC buffer is copied to the L2ARC but then hit instead of
6672 * evicted, then the L2ARC has cached a buffer much sooner than it probably
6673 * needed to, potentially wasting L2ARC device bandwidth and storage. It is
6674 * safe to say that this is an uncommon case, since buffers at the end of
6675 * the ARC lists have moved there due to inactivity.
6676 *
6677 * 4. If the ARC evicts faster than the L2ARC can maintain a headroom,
6678 * then the L2ARC simply misses copying some buffers. This serves as a
6679 * pressure valve to prevent heavy read workloads from both stalling the ARC
6680 * with waits and clogging the L2ARC with writes. This also helps prevent
6681 * the potential for the L2ARC to churn if it attempts to cache content too
6682 * quickly, such as during backups of the entire pool.
6683 *
6684 * 5. After system boot and before the ARC has filled main memory, there are
6685 * no evictions from the ARC and so the tails of the ARC_mfu and ARC_mru
6686 * lists can remain mostly static. Instead of searching from tail of these
6687 * lists as pictured, the l2arc_feed_thread() will search from the list heads
6688 * for eligible buffers, greatly increasing its chance of finding them.
6689 *
6690 * The L2ARC device write speed is also boosted during this time so that
6691 * the L2ARC warms up faster. Since there have been no ARC evictions yet,
6692 * there are no L2ARC reads, and no fear of degrading read performance
6693 * through increased writes.
6694 *
6695 * 6. Writes to the L2ARC devices are grouped and sent in-sequence, so that
6696 * the vdev queue can aggregate them into larger and fewer writes. Each
6697 * device is written to in a rotor fashion, sweeping writes through
6698 * available space then repeating.
6699 *
6700 * 7. The L2ARC does not store dirty content. It never needs to flush
6701 * write buffers back to disk based storage.
6702 *
6703 * 8. If an ARC buffer is written (and dirtied) which also exists in the
6704 * L2ARC, the now stale L2ARC buffer is immediately dropped.
6705 *
6706 * The performance of the L2ARC can be tweaked by a number of tunables, which
6707 * may be necessary for different workloads:
6708 *
6709 * l2arc_write_max max write bytes per interval
6710 * l2arc_write_boost extra write bytes during device warmup
6711 * l2arc_noprefetch skip caching prefetched buffers
6712 * l2arc_headroom number of max device writes to precache
6713 * l2arc_headroom_boost when we find compressed buffers during ARC
6714 * scanning, we multiply headroom by this
6715 * percentage factor for the next scan cycle,
6716 * since more compressed buffers are likely to
6717 * be present
6718 * l2arc_feed_secs seconds between L2ARC writing
6719 *
6720 * Tunables may be removed or added as future performance improvements are
6721 * integrated, and also may become zpool properties.
6722 *
6723 * There are three key functions that control how the L2ARC warms up:
6724 *
6725 * l2arc_write_eligible() check if a buffer is eligible to cache
6726 * l2arc_write_size() calculate how much to write
6727 * l2arc_write_interval() calculate sleep delay between writes
6728 *
6729 * These three functions determine what to write, how much, and how quickly
6730 * to send writes.
6731 */
6732
6733 static boolean_t
6734 l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *hdr)
6735 {
6736 /*
6737 * A buffer is *not* eligible for the L2ARC if it:
6738 * 1. belongs to a different spa.
6739 * 2. is already cached on the L2ARC.
6740 * 3. has an I/O in progress (it may be an incomplete read).
6741 * 4. is flagged not eligible (zfs property).
6742 */
6743 if (hdr->b_spa != spa_guid || HDR_HAS_L2HDR(hdr) ||
6744 HDR_IO_IN_PROGRESS(hdr) || !HDR_L2CACHE(hdr))
6745 return (B_FALSE);
6746
6747 return (B_TRUE);
6748 }
6749
6750 static uint64_t
6751 l2arc_write_size(void)
6752 {
6753 uint64_t size;
6754
6755 /*
6756 * Make sure our globals have meaningful values in case the user
6757 * altered them.
6758 */
6759 size = l2arc_write_max;
6760 if (size == 0) {
6761 cmn_err(CE_NOTE, "Bad value for l2arc_write_max, value must "
6762 "be greater than zero, resetting it to the default (%d)",
6763 L2ARC_WRITE_SIZE);
6764 size = l2arc_write_max = L2ARC_WRITE_SIZE;
6765 }
6766
6767 if (arc_warm == B_FALSE)
6768 size += l2arc_write_boost;
6769
6770 return (size);
6771
6772 }
6773
6774 static clock_t
6775 l2arc_write_interval(clock_t began, uint64_t wanted, uint64_t wrote)
6776 {
6777 clock_t interval, next, now;
6778
6779 /*
6780 * If the ARC lists are busy, increase our write rate; if the
6781 * lists are stale, idle back. This is achieved by checking
6782 * how much we previously wrote - if it was more than half of
6783 * what we wanted, schedule the next write much sooner.
6784 */
6785 if (l2arc_feed_again && wrote > (wanted / 2))
6786 interval = (hz * l2arc_feed_min_ms) / 1000;
6787 else
6788 interval = hz * l2arc_feed_secs;
6789
6790 now = ddi_get_lbolt();
6791 next = MAX(now, MIN(now + interval, began + interval));
6792
6793 return (next);
6794 }
6795
6796 /*
6797 * Cycle through L2ARC devices. This is how L2ARC load balances.
6798 * If a device is returned, this also returns holding the spa config lock.
6799 */
6800 static l2arc_dev_t *
6801 l2arc_dev_get_next(void)
6802 {
6803 l2arc_dev_t *first, *next = NULL;
6804
6805 /*
6806 * Lock out the removal of spas (spa_namespace_lock), then removal
6807 * of cache devices (l2arc_dev_mtx). Once a device has been selected,
6808 * both locks will be dropped and a spa config lock held instead.
6809 */
6810 mutex_enter(&spa_namespace_lock);
6811 mutex_enter(&l2arc_dev_mtx);
6812
6813 /* if there are no vdevs, there is nothing to do */
6814 if (l2arc_ndev == 0)
6815 goto out;
6816
6817 first = NULL;
6818 next = l2arc_dev_last;
6819 do {
6820 /* loop around the list looking for a non-faulted vdev */
6821 if (next == NULL) {
6822 next = list_head(l2arc_dev_list);
6823 } else {
6824 next = list_next(l2arc_dev_list, next);
6825 if (next == NULL)
6826 next = list_head(l2arc_dev_list);
6827 }
6828
6829 /* if we have come back to the start, bail out */
6830 if (first == NULL)
6831 first = next;
6832 else if (next == first)
6833 break;
6834
6835 } while (vdev_is_dead(next->l2ad_vdev));
6836
6837 /* if we were unable to find any usable vdevs, return NULL */
6838 if (vdev_is_dead(next->l2ad_vdev))
6839 next = NULL;
6840
6841 l2arc_dev_last = next;
6842
6843 out:
6844 mutex_exit(&l2arc_dev_mtx);
6845
6846 /*
6847 * Grab the config lock to prevent the 'next' device from being
6848 * removed while we are writing to it.
6849 */
6850 if (next != NULL)
6851 spa_config_enter(next->l2ad_spa, SCL_L2ARC, next, RW_READER);
6852 mutex_exit(&spa_namespace_lock);
6853
6854 return (next);
6855 }
6856
6857 /*
6858 * Free buffers that were tagged for destruction.
6859 */
6860 static void
6861 l2arc_do_free_on_write(void)
6862 {
6863 list_t *buflist;
6864 l2arc_data_free_t *df, *df_prev;
6865
6866 mutex_enter(&l2arc_free_on_write_mtx);
6867 buflist = l2arc_free_on_write;
6868
6869 for (df = list_tail(buflist); df; df = df_prev) {
6870 df_prev = list_prev(buflist, df);
6871 ASSERT3P(df->l2df_abd, !=, NULL);
6872 abd_free(df->l2df_abd);
6873 list_remove(buflist, df);
6874 kmem_free(df, sizeof (l2arc_data_free_t));
6875 }
6876
6877 mutex_exit(&l2arc_free_on_write_mtx);
6878 }
6879
6880 /*
6881 * A write to a cache device has completed. Update all headers to allow
6882 * reads from these buffers to begin.
6883 */
6884 static void
6885 l2arc_write_done(zio_t *zio)
6886 {
6887 l2arc_write_callback_t *cb;
6888 l2arc_dev_t *dev;
6889 list_t *buflist;
6890 arc_buf_hdr_t *head, *hdr, *hdr_prev;
6891 kmutex_t *hash_lock;
6892 int64_t bytes_dropped = 0;
6893
6894 cb = zio->io_private;
6895 ASSERT3P(cb, !=, NULL);
6896 dev = cb->l2wcb_dev;
6897 ASSERT3P(dev, !=, NULL);
6898 head = cb->l2wcb_head;
6899 ASSERT3P(head, !=, NULL);
6900 buflist = &dev->l2ad_buflist;
6901 ASSERT3P(buflist, !=, NULL);
6902 DTRACE_PROBE2(l2arc__iodone, zio_t *, zio,
6903 l2arc_write_callback_t *, cb);
6904
6905 if (zio->io_error != 0)
6906 ARCSTAT_BUMP(arcstat_l2_writes_error);
6907
6908 /*
6909 * All writes completed, or an error was hit.
6910 */
6911 top:
6912 mutex_enter(&dev->l2ad_mtx);
6913 for (hdr = list_prev(buflist, head); hdr; hdr = hdr_prev) {
6914 hdr_prev = list_prev(buflist, hdr);
6915
6916 hash_lock = HDR_LOCK(hdr);
6917
6918 /*
6919 * We cannot use mutex_enter or else we can deadlock
6920 * with l2arc_write_buffers (due to swapping the order
6921 * the hash lock and l2ad_mtx are taken).
6922 */
6923 if (!mutex_tryenter(hash_lock)) {
6924 /*
6925 * Missed the hash lock. We must retry so we
6926 * don't leave the ARC_FLAG_L2_WRITING bit set.
6927 */
6928 ARCSTAT_BUMP(arcstat_l2_writes_lock_retry);
6929
6930 /*
6931 * We don't want to rescan the headers we've
6932 * already marked as having been written out, so
6933 * we reinsert the head node so we can pick up
6934 * where we left off.
6935 */
6936 list_remove(buflist, head);
6937 list_insert_after(buflist, hdr, head);
6938
6939 mutex_exit(&dev->l2ad_mtx);
6940
6941 /*
6942 * We wait for the hash lock to become available
6943 * to try and prevent busy waiting, and increase
6944 * the chance we'll be able to acquire the lock
6945 * the next time around.
6946 */
6947 mutex_enter(hash_lock);
6948 mutex_exit(hash_lock);
6949 goto top;
6950 }
6951
6952 /*
6953 * We could not have been moved into the arc_l2c_only
6954 * state while in-flight due to our ARC_FLAG_L2_WRITING
6955 * bit being set. Let's just ensure that's being enforced.
6956 */
6957 ASSERT(HDR_HAS_L1HDR(hdr));
6958
6959 /*
6960 * Skipped - drop L2ARC entry and mark the header as no
6961 * longer L2 eligibile.
6962 */
6963 if (zio->io_error != 0) {
6964 /*
6965 * Error - drop L2ARC entry.
6966 */
6967 list_remove(buflist, hdr);
6968 arc_hdr_clear_flags(hdr, ARC_FLAG_HAS_L2HDR);
6969
6970 ARCSTAT_INCR(arcstat_l2_asize, -arc_hdr_size(hdr));
6971 ARCSTAT_INCR(arcstat_l2_size, -HDR_GET_LSIZE(hdr));
6972
6973 bytes_dropped += arc_hdr_size(hdr);
6974 (void) refcount_remove_many(&dev->l2ad_alloc,
6975 arc_hdr_size(hdr), hdr);
6976 }
6977
6978 /*
6979 * Allow ARC to begin reads and ghost list evictions to
6980 * this L2ARC entry.
6981 */
6982 arc_hdr_clear_flags(hdr, ARC_FLAG_L2_WRITING);
6983
6984 mutex_exit(hash_lock);
6985 }
6986
6987 atomic_inc_64(&l2arc_writes_done);
6988 list_remove(buflist, head);
6989 ASSERT(!HDR_HAS_L1HDR(head));
6990 kmem_cache_free(hdr_l2only_cache, head);
6991 mutex_exit(&dev->l2ad_mtx);
6992
6993 vdev_space_update(dev->l2ad_vdev, -bytes_dropped, 0, 0);
6994
6995 l2arc_do_free_on_write();
6996
6997 kmem_free(cb, sizeof (l2arc_write_callback_t));
6998 }
6999
7000 /*
7001 * A read to a cache device completed. Validate buffer contents before
7002 * handing over to the regular ARC routines.
7003 */
7004 static void
7005 l2arc_read_done(zio_t *zio)
7006 {
7007 l2arc_read_callback_t *cb;
7008 arc_buf_hdr_t *hdr;
7009 kmutex_t *hash_lock;
7010 boolean_t valid_cksum;
7011
7012 ASSERT3P(zio->io_vd, !=, NULL);
7013 ASSERT(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE);
7014
7015 spa_config_exit(zio->io_spa, SCL_L2ARC, zio->io_vd);
7016
7017 cb = zio->io_private;
7018 ASSERT3P(cb, !=, NULL);
7019 hdr = cb->l2rcb_hdr;
7020 ASSERT3P(hdr, !=, NULL);
7021
7022 hash_lock = HDR_LOCK(hdr);
7023 mutex_enter(hash_lock);
7024 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
7025
7026 ASSERT3P(zio->io_abd, !=, NULL);
7027
7028 /*
7029 * Check this survived the L2ARC journey.
7030 */
7031 ASSERT3P(zio->io_abd, ==, hdr->b_l1hdr.b_pabd);
7032 zio->io_bp_copy = cb->l2rcb_bp; /* XXX fix in L2ARC 2.0 */
7033 zio->io_bp = &zio->io_bp_copy; /* XXX fix in L2ARC 2.0 */
7034
7035 valid_cksum = arc_cksum_is_equal(hdr, zio);
7036 if (valid_cksum && zio->io_error == 0 && !HDR_L2_EVICTED(hdr)) {
7037 mutex_exit(hash_lock);
7038 zio->io_private = hdr;
7039 arc_read_done(zio);
7040 } else {
7041 mutex_exit(hash_lock);
7042 /*
7043 * Buffer didn't survive caching. Increment stats and
7044 * reissue to the original storage device.
7045 */
7046 if (zio->io_error != 0) {
7047 ARCSTAT_BUMP(arcstat_l2_io_error);
7048 } else {
7049 zio->io_error = SET_ERROR(EIO);
7050 }
7051 if (!valid_cksum)
7052 ARCSTAT_BUMP(arcstat_l2_cksum_bad);
7053
7054 /*
7055 * If there's no waiter, issue an async i/o to the primary
7056 * storage now. If there *is* a waiter, the caller must
7057 * issue the i/o in a context where it's OK to block.
7058 */
7059 if (zio->io_waiter == NULL) {
7060 zio_t *pio = zio_unique_parent(zio);
7061
7062 ASSERT(!pio || pio->io_child_type == ZIO_CHILD_LOGICAL);
7063
7064 zio_nowait(zio_read(pio, zio->io_spa, zio->io_bp,
7065 hdr->b_l1hdr.b_pabd, zio->io_size, arc_read_done,
7066 hdr, zio->io_priority, cb->l2rcb_flags,
7067 &cb->l2rcb_zb));
7068 }
7069 }
7070
7071 kmem_free(cb, sizeof (l2arc_read_callback_t));
7072 }
7073
7074 /*
7075 * This is the list priority from which the L2ARC will search for pages to
7076 * cache. This is used within loops (0..3) to cycle through lists in the
7077 * desired order. This order can have a significant effect on cache
7078 * performance.
7079 *
7080 * Currently the metadata lists are hit first, MFU then MRU, followed by
7081 * the data lists. This function returns a locked list, and also returns
7082 * the lock pointer.
7083 */
7084 static multilist_sublist_t *
7085 l2arc_sublist_lock(int list_num)
7086 {
7087 multilist_t *ml = NULL;
7088 unsigned int idx;
7089
7090 ASSERT(list_num >= 0 && list_num < L2ARC_FEED_TYPES);
7091
7092 switch (list_num) {
7093 case 0:
7094 ml = arc_mfu->arcs_list[ARC_BUFC_METADATA];
7095 break;
7096 case 1:
7097 ml = arc_mru->arcs_list[ARC_BUFC_METADATA];
7098 break;
7099 case 2:
7100 ml = arc_mfu->arcs_list[ARC_BUFC_DATA];
7101 break;
7102 case 3:
7103 ml = arc_mru->arcs_list[ARC_BUFC_DATA];
7104 break;
7105 default:
7106 return (NULL);
7107 }
7108
7109 /*
7110 * Return a randomly-selected sublist. This is acceptable
7111 * because the caller feeds only a little bit of data for each
7112 * call (8MB). Subsequent calls will result in different
7113 * sublists being selected.
7114 */
7115 idx = multilist_get_random_index(ml);
7116 return (multilist_sublist_lock(ml, idx));
7117 }
7118
7119 /*
7120 * Evict buffers from the device write hand to the distance specified in
7121 * bytes. This distance may span populated buffers, it may span nothing.
7122 * This is clearing a region on the L2ARC device ready for writing.
7123 * If the 'all' boolean is set, every buffer is evicted.
7124 */
7125 static void
7126 l2arc_evict(l2arc_dev_t *dev, uint64_t distance, boolean_t all)
7127 {
7128 list_t *buflist;
7129 arc_buf_hdr_t *hdr, *hdr_prev;
7130 kmutex_t *hash_lock;
7131 uint64_t taddr;
7132
7133 buflist = &dev->l2ad_buflist;
7134
7135 if (!all && dev->l2ad_first) {
7136 /*
7137 * This is the first sweep through the device. There is
7138 * nothing to evict.
7139 */
7140 return;
7141 }
7142
7143 if (dev->l2ad_hand >= (dev->l2ad_end - (2 * distance))) {
7144 /*
7145 * When nearing the end of the device, evict to the end
7146 * before the device write hand jumps to the start.
7147 */
7148 taddr = dev->l2ad_end;
7149 } else {
7150 taddr = dev->l2ad_hand + distance;
7151 }
7152 DTRACE_PROBE4(l2arc__evict, l2arc_dev_t *, dev, list_t *, buflist,
7153 uint64_t, taddr, boolean_t, all);
7154
7155 top:
7156 mutex_enter(&dev->l2ad_mtx);
7157 for (hdr = list_tail(buflist); hdr; hdr = hdr_prev) {
7158 hdr_prev = list_prev(buflist, hdr);
7159
7160 hash_lock = HDR_LOCK(hdr);
7161
7162 /*
7163 * We cannot use mutex_enter or else we can deadlock
7164 * with l2arc_write_buffers (due to swapping the order
7165 * the hash lock and l2ad_mtx are taken).
7166 */
7167 if (!mutex_tryenter(hash_lock)) {
7168 /*
7169 * Missed the hash lock. Retry.
7170 */
7171 ARCSTAT_BUMP(arcstat_l2_evict_lock_retry);
7172 mutex_exit(&dev->l2ad_mtx);
7173 mutex_enter(hash_lock);
7174 mutex_exit(hash_lock);
7175 goto top;
7176 }
7177
7178 if (HDR_L2_WRITE_HEAD(hdr)) {
7179 /*
7180 * We hit a write head node. Leave it for
7181 * l2arc_write_done().
7182 */
7183 list_remove(buflist, hdr);
7184 mutex_exit(hash_lock);
7185 continue;
7186 }
7187
7188 if (!all && HDR_HAS_L2HDR(hdr) &&
7189 (hdr->b_l2hdr.b_daddr > taddr ||
7190 hdr->b_l2hdr.b_daddr < dev->l2ad_hand)) {
7191 /*
7192 * We've evicted to the target address,
7193 * or the end of the device.
7194 */
7195 mutex_exit(hash_lock);
7196 break;
7197 }
7198
7199 ASSERT(HDR_HAS_L2HDR(hdr));
7200 if (!HDR_HAS_L1HDR(hdr)) {
7201 ASSERT(!HDR_L2_READING(hdr));
7202 /*
7203 * This doesn't exist in the ARC. Destroy.
7204 * arc_hdr_destroy() will call list_remove()
7205 * and decrement arcstat_l2_size.
7206 */
7207 arc_change_state(arc_anon, hdr, hash_lock);
7208 arc_hdr_destroy(hdr);
7209 } else {
7210 ASSERT(hdr->b_l1hdr.b_state != arc_l2c_only);
7211 ARCSTAT_BUMP(arcstat_l2_evict_l1cached);
7212 /*
7213 * Invalidate issued or about to be issued
7214 * reads, since we may be about to write
7215 * over this location.
7216 */
7217 if (HDR_L2_READING(hdr)) {
7218 ARCSTAT_BUMP(arcstat_l2_evict_reading);
7219 arc_hdr_set_flags(hdr, ARC_FLAG_L2_EVICTED);
7220 }
7221
7222 /* Ensure this header has finished being written */
7223 ASSERT(!HDR_L2_WRITING(hdr));
7224
7225 arc_hdr_l2hdr_destroy(hdr);
7226 }
7227 mutex_exit(hash_lock);
7228 }
7229 mutex_exit(&dev->l2ad_mtx);
7230 }
7231
7232 /*
7233 * Find and write ARC buffers to the L2ARC device.
7234 *
7235 * An ARC_FLAG_L2_WRITING flag is set so that the L2ARC buffers are not valid
7236 * for reading until they have completed writing.
7237 * The headroom_boost is an in-out parameter used to maintain headroom boost
7238 * state between calls to this function.
7239 *
7240 * Returns the number of bytes actually written (which may be smaller than
7241 * the delta by which the device hand has changed due to alignment).
7242 */
7243 static uint64_t
7244 l2arc_write_buffers(spa_t *spa, l2arc_dev_t *dev, uint64_t target_sz)
7245 {
7246 arc_buf_hdr_t *hdr, *hdr_prev, *head;
7247 uint64_t write_asize, write_psize, write_sz, headroom;
7248 boolean_t full;
7249 l2arc_write_callback_t *cb;
7250 zio_t *pio, *wzio;
7251 uint64_t guid = spa_load_guid(spa);
7252 int try;
7253
7254 ASSERT3P(dev->l2ad_vdev, !=, NULL);
7255
7256 pio = NULL;
7257 write_sz = write_asize = write_psize = 0;
7258 full = B_FALSE;
7259 head = kmem_cache_alloc(hdr_l2only_cache, KM_PUSHPAGE);
7260 arc_hdr_set_flags(head, ARC_FLAG_L2_WRITE_HEAD | ARC_FLAG_HAS_L2HDR);
7261
7262 /*
7263 * Copy buffers for L2ARC writing.
7264 */
7265 for (try = 0; try < L2ARC_FEED_TYPES; try++) {
7266 multilist_sublist_t *mls = l2arc_sublist_lock(try);
7267 uint64_t passed_sz = 0;
7268
7269 VERIFY3P(mls, !=, NULL);
7270
7271 /*
7272 * L2ARC fast warmup.
7273 *
7274 * Until the ARC is warm and starts to evict, read from the
7275 * head of the ARC lists rather than the tail.
7276 */
7277 if (arc_warm == B_FALSE)
7278 hdr = multilist_sublist_head(mls);
7279 else
7280 hdr = multilist_sublist_tail(mls);
7281
7282 headroom = target_sz * l2arc_headroom;
7283 if (zfs_compressed_arc_enabled)
7284 headroom = (headroom * l2arc_headroom_boost) / 100;
7285
7286 for (; hdr; hdr = hdr_prev) {
7287 kmutex_t *hash_lock;
7288 uint64_t asize, size;
7289 abd_t *to_write;
7290
7291 if (arc_warm == B_FALSE)
7292 hdr_prev = multilist_sublist_next(mls, hdr);
7293 else
7294 hdr_prev = multilist_sublist_prev(mls, hdr);
7295
7296 hash_lock = HDR_LOCK(hdr);
7297 if (!mutex_tryenter(hash_lock)) {
7298 /*
7299 * Skip this buffer rather than waiting.
7300 */
7301 continue;
7302 }
7303
7304 passed_sz += HDR_GET_LSIZE(hdr);
7305 if (passed_sz > headroom) {
7306 /*
7307 * Searched too far.
7308 */
7309 mutex_exit(hash_lock);
7310 break;
7311 }
7312
7313 if (!l2arc_write_eligible(guid, hdr)) {
7314 mutex_exit(hash_lock);
7315 continue;
7316 }
7317
7318 if ((write_asize + HDR_GET_LSIZE(hdr)) > target_sz) {
7319 full = B_TRUE;
7320 mutex_exit(hash_lock);
7321 break;
7322 }
7323
7324 if (pio == NULL) {
7325 /*
7326 * Insert a dummy header on the buflist so
7327 * l2arc_write_done() can find where the
7328 * write buffers begin without searching.
7329 */
7330 mutex_enter(&dev->l2ad_mtx);
7331 list_insert_head(&dev->l2ad_buflist, head);
7332 mutex_exit(&dev->l2ad_mtx);
7333
7334 cb = kmem_alloc(
7335 sizeof (l2arc_write_callback_t), KM_SLEEP);
7336 cb->l2wcb_dev = dev;
7337 cb->l2wcb_head = head;
7338 pio = zio_root(spa, l2arc_write_done, cb,
7339 ZIO_FLAG_CANFAIL);
7340 }
7341
7342 hdr->b_l2hdr.b_dev = dev;
7343 hdr->b_l2hdr.b_hits = 0;
7344
7345 hdr->b_l2hdr.b_daddr = dev->l2ad_hand;
7346 arc_hdr_set_flags(hdr,
7347 ARC_FLAG_L2_WRITING | ARC_FLAG_HAS_L2HDR);
7348
7349 mutex_enter(&dev->l2ad_mtx);
7350 list_insert_head(&dev->l2ad_buflist, hdr);
7351 mutex_exit(&dev->l2ad_mtx);
7352
7353 /*
7354 * We rely on the L1 portion of the header below, so
7355 * it's invalid for this header to have been evicted out
7356 * of the ghost cache, prior to being written out. The
7357 * ARC_FLAG_L2_WRITING bit ensures this won't happen.
7358 */
7359 ASSERT(HDR_HAS_L1HDR(hdr));
7360
7361 ASSERT3U(HDR_GET_PSIZE(hdr), >, 0);
7362 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
7363 ASSERT3U(arc_hdr_size(hdr), >, 0);
7364 size = arc_hdr_size(hdr);
7365
7366 (void) refcount_add_many(&dev->l2ad_alloc, size, hdr);
7367
7368 /*
7369 * Normally the L2ARC can use the hdr's data, but if
7370 * we're sharing data between the hdr and one of its
7371 * bufs, L2ARC needs its own copy of the data so that
7372 * the ZIO below can't race with the buf consumer. To
7373 * ensure that this copy will be available for the
7374 * lifetime of the ZIO and be cleaned up afterwards, we
7375 * add it to the l2arc_free_on_write queue.
7376 */
7377 if (!HDR_SHARED_DATA(hdr)) {
7378 to_write = hdr->b_l1hdr.b_pabd;
7379 } else {
7380 to_write = abd_alloc_for_io(size,
7381 HDR_ISTYPE_METADATA(hdr));
7382 abd_copy(to_write, hdr->b_l1hdr.b_pabd, size);
7383 l2arc_free_abd_on_write(to_write, size,
7384 arc_buf_type(hdr));
7385 }
7386 wzio = zio_write_phys(pio, dev->l2ad_vdev,
7387 hdr->b_l2hdr.b_daddr, size, to_write,
7388 ZIO_CHECKSUM_OFF, NULL, hdr,
7389 ZIO_PRIORITY_ASYNC_WRITE,
7390 ZIO_FLAG_CANFAIL, B_FALSE);
7391
7392 write_sz += HDR_GET_LSIZE(hdr);
7393 DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev,
7394 zio_t *, wzio);
7395
7396 write_asize += size;
7397 /*
7398 * Keep the clock hand suitably device-aligned.
7399 */
7400 asize = vdev_psize_to_asize(dev->l2ad_vdev, size);
7401 write_psize += asize;
7402 dev->l2ad_hand += asize;
7403
7404 mutex_exit(hash_lock);
7405
7406 (void) zio_nowait(wzio);
7407 }
7408
7409 multilist_sublist_unlock(mls);
7410
7411 if (full == B_TRUE)
7412 break;
7413 }
7414
7415 /* No buffers selected for writing? */
7416 if (pio == NULL) {
7417 ASSERT0(write_sz);
7418 ASSERT(!HDR_HAS_L1HDR(head));
7419 kmem_cache_free(hdr_l2only_cache, head);
7420 return (0);
7421 }
7422
7423 ASSERT3U(write_asize, <=, target_sz);
7424 ARCSTAT_BUMP(arcstat_l2_writes_sent);
7425 ARCSTAT_INCR(arcstat_l2_write_bytes, write_asize);
7426 ARCSTAT_INCR(arcstat_l2_size, write_sz);
7427 ARCSTAT_INCR(arcstat_l2_asize, write_asize);
7428 vdev_space_update(dev->l2ad_vdev, write_asize, 0, 0);
7429
7430 /*
7431 * Bump device hand to the device start if it is approaching the end.
7432 * l2arc_evict() will already have evicted ahead for this case.
7433 */
7434 if (dev->l2ad_hand >= (dev->l2ad_end - target_sz)) {
7435 dev->l2ad_hand = dev->l2ad_start;
7436 dev->l2ad_first = B_FALSE;
7437 }
7438
7439 dev->l2ad_writing = B_TRUE;
7440 (void) zio_wait(pio);
7441 dev->l2ad_writing = B_FALSE;
7442
7443 return (write_asize);
7444 }
7445
7446 /*
7447 * This thread feeds the L2ARC at regular intervals. This is the beating
7448 * heart of the L2ARC.
7449 */
7450 static void
7451 l2arc_feed_thread(void)
7452 {
7453 callb_cpr_t cpr;
7454 l2arc_dev_t *dev;
7455 spa_t *spa;
7456 uint64_t size, wrote;
7457 clock_t begin, next = ddi_get_lbolt();
7458 fstrans_cookie_t cookie;
7459
7460 CALLB_CPR_INIT(&cpr, &l2arc_feed_thr_lock, callb_generic_cpr, FTAG);
7461
7462 mutex_enter(&l2arc_feed_thr_lock);
7463
7464 cookie = spl_fstrans_mark();
7465 while (l2arc_thread_exit == 0) {
7466 CALLB_CPR_SAFE_BEGIN(&cpr);
7467 (void) cv_timedwait_sig(&l2arc_feed_thr_cv,
7468 &l2arc_feed_thr_lock, next);
7469 CALLB_CPR_SAFE_END(&cpr, &l2arc_feed_thr_lock);
7470 next = ddi_get_lbolt() + hz;
7471
7472 /*
7473 * Quick check for L2ARC devices.
7474 */
7475 mutex_enter(&l2arc_dev_mtx);
7476 if (l2arc_ndev == 0) {
7477 mutex_exit(&l2arc_dev_mtx);
7478 continue;
7479 }
7480 mutex_exit(&l2arc_dev_mtx);
7481 begin = ddi_get_lbolt();
7482
7483 /*
7484 * This selects the next l2arc device to write to, and in
7485 * doing so the next spa to feed from: dev->l2ad_spa. This
7486 * will return NULL if there are now no l2arc devices or if
7487 * they are all faulted.
7488 *
7489 * If a device is returned, its spa's config lock is also
7490 * held to prevent device removal. l2arc_dev_get_next()
7491 * will grab and release l2arc_dev_mtx.
7492 */
7493 if ((dev = l2arc_dev_get_next()) == NULL)
7494 continue;
7495
7496 spa = dev->l2ad_spa;
7497 ASSERT3P(spa, !=, NULL);
7498
7499 /*
7500 * If the pool is read-only then force the feed thread to
7501 * sleep a little longer.
7502 */
7503 if (!spa_writeable(spa)) {
7504 next = ddi_get_lbolt() + 5 * l2arc_feed_secs * hz;
7505 spa_config_exit(spa, SCL_L2ARC, dev);
7506 continue;
7507 }
7508
7509 /*
7510 * Avoid contributing to memory pressure.
7511 */
7512 if (arc_reclaim_needed()) {
7513 ARCSTAT_BUMP(arcstat_l2_abort_lowmem);
7514 spa_config_exit(spa, SCL_L2ARC, dev);
7515 continue;
7516 }
7517
7518 ARCSTAT_BUMP(arcstat_l2_feeds);
7519
7520 size = l2arc_write_size();
7521
7522 /*
7523 * Evict L2ARC buffers that will be overwritten.
7524 */
7525 l2arc_evict(dev, size, B_FALSE);
7526
7527 /*
7528 * Write ARC buffers.
7529 */
7530 wrote = l2arc_write_buffers(spa, dev, size);
7531
7532 /*
7533 * Calculate interval between writes.
7534 */
7535 next = l2arc_write_interval(begin, size, wrote);
7536 spa_config_exit(spa, SCL_L2ARC, dev);
7537 }
7538 spl_fstrans_unmark(cookie);
7539
7540 l2arc_thread_exit = 0;
7541 cv_broadcast(&l2arc_feed_thr_cv);
7542 CALLB_CPR_EXIT(&cpr); /* drops l2arc_feed_thr_lock */
7543 thread_exit();
7544 }
7545
7546 boolean_t
7547 l2arc_vdev_present(vdev_t *vd)
7548 {
7549 l2arc_dev_t *dev;
7550
7551 mutex_enter(&l2arc_dev_mtx);
7552 for (dev = list_head(l2arc_dev_list); dev != NULL;
7553 dev = list_next(l2arc_dev_list, dev)) {
7554 if (dev->l2ad_vdev == vd)
7555 break;
7556 }
7557 mutex_exit(&l2arc_dev_mtx);
7558
7559 return (dev != NULL);
7560 }
7561
7562 /*
7563 * Add a vdev for use by the L2ARC. By this point the spa has already
7564 * validated the vdev and opened it.
7565 */
7566 void
7567 l2arc_add_vdev(spa_t *spa, vdev_t *vd)
7568 {
7569 l2arc_dev_t *adddev;
7570
7571 ASSERT(!l2arc_vdev_present(vd));
7572
7573 /*
7574 * Create a new l2arc device entry.
7575 */
7576 adddev = kmem_zalloc(sizeof (l2arc_dev_t), KM_SLEEP);
7577 adddev->l2ad_spa = spa;
7578 adddev->l2ad_vdev = vd;
7579 adddev->l2ad_start = VDEV_LABEL_START_SIZE;
7580 adddev->l2ad_end = VDEV_LABEL_START_SIZE + vdev_get_min_asize(vd);
7581 adddev->l2ad_hand = adddev->l2ad_start;
7582 adddev->l2ad_first = B_TRUE;
7583 adddev->l2ad_writing = B_FALSE;
7584 list_link_init(&adddev->l2ad_node);
7585
7586 mutex_init(&adddev->l2ad_mtx, NULL, MUTEX_DEFAULT, NULL);
7587 /*
7588 * This is a list of all ARC buffers that are still valid on the
7589 * device.
7590 */
7591 list_create(&adddev->l2ad_buflist, sizeof (arc_buf_hdr_t),
7592 offsetof(arc_buf_hdr_t, b_l2hdr.b_l2node));
7593
7594 vdev_space_update(vd, 0, 0, adddev->l2ad_end - adddev->l2ad_hand);
7595 refcount_create(&adddev->l2ad_alloc);
7596
7597 /*
7598 * Add device to global list
7599 */
7600 mutex_enter(&l2arc_dev_mtx);
7601 list_insert_head(l2arc_dev_list, adddev);
7602 atomic_inc_64(&l2arc_ndev);
7603 mutex_exit(&l2arc_dev_mtx);
7604 }
7605
7606 /*
7607 * Remove a vdev from the L2ARC.
7608 */
7609 void
7610 l2arc_remove_vdev(vdev_t *vd)
7611 {
7612 l2arc_dev_t *dev, *nextdev, *remdev = NULL;
7613
7614 /*
7615 * Find the device by vdev
7616 */
7617 mutex_enter(&l2arc_dev_mtx);
7618 for (dev = list_head(l2arc_dev_list); dev; dev = nextdev) {
7619 nextdev = list_next(l2arc_dev_list, dev);
7620 if (vd == dev->l2ad_vdev) {
7621 remdev = dev;
7622 break;
7623 }
7624 }
7625 ASSERT3P(remdev, !=, NULL);
7626
7627 /*
7628 * Remove device from global list
7629 */
7630 list_remove(l2arc_dev_list, remdev);
7631 l2arc_dev_last = NULL; /* may have been invalidated */
7632 atomic_dec_64(&l2arc_ndev);
7633 mutex_exit(&l2arc_dev_mtx);
7634
7635 /*
7636 * Clear all buflists and ARC references. L2ARC device flush.
7637 */
7638 l2arc_evict(remdev, 0, B_TRUE);
7639 list_destroy(&remdev->l2ad_buflist);
7640 mutex_destroy(&remdev->l2ad_mtx);
7641 refcount_destroy(&remdev->l2ad_alloc);
7642 kmem_free(remdev, sizeof (l2arc_dev_t));
7643 }
7644
7645 void
7646 l2arc_init(void)
7647 {
7648 l2arc_thread_exit = 0;
7649 l2arc_ndev = 0;
7650 l2arc_writes_sent = 0;
7651 l2arc_writes_done = 0;
7652
7653 mutex_init(&l2arc_feed_thr_lock, NULL, MUTEX_DEFAULT, NULL);
7654 cv_init(&l2arc_feed_thr_cv, NULL, CV_DEFAULT, NULL);
7655 mutex_init(&l2arc_dev_mtx, NULL, MUTEX_DEFAULT, NULL);
7656 mutex_init(&l2arc_free_on_write_mtx, NULL, MUTEX_DEFAULT, NULL);
7657
7658 l2arc_dev_list = &L2ARC_dev_list;
7659 l2arc_free_on_write = &L2ARC_free_on_write;
7660 list_create(l2arc_dev_list, sizeof (l2arc_dev_t),
7661 offsetof(l2arc_dev_t, l2ad_node));
7662 list_create(l2arc_free_on_write, sizeof (l2arc_data_free_t),
7663 offsetof(l2arc_data_free_t, l2df_list_node));
7664 }
7665
7666 void
7667 l2arc_fini(void)
7668 {
7669 /*
7670 * This is called from dmu_fini(), which is called from spa_fini();
7671 * Because of this, we can assume that all l2arc devices have
7672 * already been removed when the pools themselves were removed.
7673 */
7674
7675 l2arc_do_free_on_write();
7676
7677 mutex_destroy(&l2arc_feed_thr_lock);
7678 cv_destroy(&l2arc_feed_thr_cv);
7679 mutex_destroy(&l2arc_dev_mtx);
7680 mutex_destroy(&l2arc_free_on_write_mtx);
7681
7682 list_destroy(l2arc_dev_list);
7683 list_destroy(l2arc_free_on_write);
7684 }
7685
7686 void
7687 l2arc_start(void)
7688 {
7689 if (!(spa_mode_global & FWRITE))
7690 return;
7691
7692 (void) thread_create(NULL, 0, l2arc_feed_thread, NULL, 0, &p0,
7693 TS_RUN, defclsyspri);
7694 }
7695
7696 void
7697 l2arc_stop(void)
7698 {
7699 if (!(spa_mode_global & FWRITE))
7700 return;
7701
7702 mutex_enter(&l2arc_feed_thr_lock);
7703 cv_signal(&l2arc_feed_thr_cv); /* kick thread out of startup */
7704 l2arc_thread_exit = 1;
7705 while (l2arc_thread_exit != 0)
7706 cv_wait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock);
7707 mutex_exit(&l2arc_feed_thr_lock);
7708 }
7709
7710 #if defined(_KERNEL) && defined(HAVE_SPL)
7711 EXPORT_SYMBOL(arc_buf_size);
7712 EXPORT_SYMBOL(arc_write);
7713 EXPORT_SYMBOL(arc_read);
7714 EXPORT_SYMBOL(arc_buf_info);
7715 EXPORT_SYMBOL(arc_getbuf_func);
7716 EXPORT_SYMBOL(arc_add_prune_callback);
7717 EXPORT_SYMBOL(arc_remove_prune_callback);
7718
7719 /* BEGIN CSTYLED */
7720 module_param(zfs_arc_min, ulong, 0644);
7721 MODULE_PARM_DESC(zfs_arc_min, "Min arc size");
7722
7723 module_param(zfs_arc_max, ulong, 0644);
7724 MODULE_PARM_DESC(zfs_arc_max, "Max arc size");
7725
7726 module_param(zfs_arc_meta_limit, ulong, 0644);
7727 MODULE_PARM_DESC(zfs_arc_meta_limit, "Meta limit for arc size");
7728
7729 module_param(zfs_arc_meta_limit_percent, ulong, 0644);
7730 MODULE_PARM_DESC(zfs_arc_meta_limit_percent,
7731 "Percent of arc size for arc meta limit");
7732
7733 module_param(zfs_arc_meta_min, ulong, 0644);
7734 MODULE_PARM_DESC(zfs_arc_meta_min, "Min arc metadata");
7735
7736 module_param(zfs_arc_meta_prune, int, 0644);
7737 MODULE_PARM_DESC(zfs_arc_meta_prune, "Meta objects to scan for prune");
7738
7739 module_param(zfs_arc_meta_adjust_restarts, int, 0644);
7740 MODULE_PARM_DESC(zfs_arc_meta_adjust_restarts,
7741 "Limit number of restarts in arc_adjust_meta");
7742
7743 module_param(zfs_arc_meta_strategy, int, 0644);
7744 MODULE_PARM_DESC(zfs_arc_meta_strategy, "Meta reclaim strategy");
7745
7746 module_param(zfs_arc_grow_retry, int, 0644);
7747 MODULE_PARM_DESC(zfs_arc_grow_retry, "Seconds before growing arc size");
7748
7749 module_param(zfs_arc_p_aggressive_disable, int, 0644);
7750 MODULE_PARM_DESC(zfs_arc_p_aggressive_disable, "disable aggressive arc_p grow");
7751
7752 module_param(zfs_arc_p_dampener_disable, int, 0644);
7753 MODULE_PARM_DESC(zfs_arc_p_dampener_disable, "disable arc_p adapt dampener");
7754
7755 module_param(zfs_arc_shrink_shift, int, 0644);
7756 MODULE_PARM_DESC(zfs_arc_shrink_shift, "log2(fraction of arc to reclaim)");
7757
7758 module_param(zfs_arc_p_min_shift, int, 0644);
7759 MODULE_PARM_DESC(zfs_arc_p_min_shift, "arc_c shift to calc min/max arc_p");
7760
7761 module_param(zfs_arc_average_blocksize, int, 0444);
7762 MODULE_PARM_DESC(zfs_arc_average_blocksize, "Target average block size");
7763
7764 module_param(zfs_compressed_arc_enabled, int, 0644);
7765 MODULE_PARM_DESC(zfs_compressed_arc_enabled, "Disable compressed arc buffers");
7766
7767 module_param(zfs_arc_min_prefetch_lifespan, int, 0644);
7768 MODULE_PARM_DESC(zfs_arc_min_prefetch_lifespan, "Min life of prefetch block");
7769
7770 module_param(l2arc_write_max, ulong, 0644);
7771 MODULE_PARM_DESC(l2arc_write_max, "Max write bytes per interval");
7772
7773 module_param(l2arc_write_boost, ulong, 0644);
7774 MODULE_PARM_DESC(l2arc_write_boost, "Extra write bytes during device warmup");
7775
7776 module_param(l2arc_headroom, ulong, 0644);
7777 MODULE_PARM_DESC(l2arc_headroom, "Number of max device writes to precache");
7778
7779 module_param(l2arc_headroom_boost, ulong, 0644);
7780 MODULE_PARM_DESC(l2arc_headroom_boost, "Compressed l2arc_headroom multiplier");
7781
7782 module_param(l2arc_feed_secs, ulong, 0644);
7783 MODULE_PARM_DESC(l2arc_feed_secs, "Seconds between L2ARC writing");
7784
7785 module_param(l2arc_feed_min_ms, ulong, 0644);
7786 MODULE_PARM_DESC(l2arc_feed_min_ms, "Min feed interval in milliseconds");
7787
7788 module_param(l2arc_noprefetch, int, 0644);
7789 MODULE_PARM_DESC(l2arc_noprefetch, "Skip caching prefetched buffers");
7790
7791 module_param(l2arc_feed_again, int, 0644);
7792 MODULE_PARM_DESC(l2arc_feed_again, "Turbo L2ARC warmup");
7793
7794 module_param(l2arc_norw, int, 0644);
7795 MODULE_PARM_DESC(l2arc_norw, "No reads during writes");
7796
7797 module_param(zfs_arc_lotsfree_percent, int, 0644);
7798 MODULE_PARM_DESC(zfs_arc_lotsfree_percent,
7799 "System free memory I/O throttle in bytes");
7800
7801 module_param(zfs_arc_sys_free, ulong, 0644);
7802 MODULE_PARM_DESC(zfs_arc_sys_free, "System free memory target size in bytes");
7803
7804 module_param(zfs_arc_dnode_limit, ulong, 0644);
7805 MODULE_PARM_DESC(zfs_arc_dnode_limit, "Minimum bytes of dnodes in arc");
7806
7807 module_param(zfs_arc_dnode_limit_percent, ulong, 0644);
7808 MODULE_PARM_DESC(zfs_arc_dnode_limit_percent,
7809 "Percent of ARC meta buffers for dnodes");
7810
7811 module_param(zfs_arc_dnode_reduce_percent, ulong, 0644);
7812 MODULE_PARM_DESC(zfs_arc_dnode_reduce_percent,
7813 "Percentage of excess dnodes to try to unpin");
7814 /* END CSTYLED */
7815 #endif