]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/arc.c
cbc9b9feeb9738910d2b919fa3cf59230b290dce
[mirror_zfs.git] / module / zfs / arc.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24 * Copyright (c) 2013 by Delphix. All rights reserved.
25 * Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
26 */
27
28 /*
29 * DVA-based Adjustable Replacement Cache
30 *
31 * While much of the theory of operation used here is
32 * based on the self-tuning, low overhead replacement cache
33 * presented by Megiddo and Modha at FAST 2003, there are some
34 * significant differences:
35 *
36 * 1. The Megiddo and Modha model assumes any page is evictable.
37 * Pages in its cache cannot be "locked" into memory. This makes
38 * the eviction algorithm simple: evict the last page in the list.
39 * This also make the performance characteristics easy to reason
40 * about. Our cache is not so simple. At any given moment, some
41 * subset of the blocks in the cache are un-evictable because we
42 * have handed out a reference to them. Blocks are only evictable
43 * when there are no external references active. This makes
44 * eviction far more problematic: we choose to evict the evictable
45 * blocks that are the "lowest" in the list.
46 *
47 * There are times when it is not possible to evict the requested
48 * space. In these circumstances we are unable to adjust the cache
49 * size. To prevent the cache growing unbounded at these times we
50 * implement a "cache throttle" that slows the flow of new data
51 * into the cache until we can make space available.
52 *
53 * 2. The Megiddo and Modha model assumes a fixed cache size.
54 * Pages are evicted when the cache is full and there is a cache
55 * miss. Our model has a variable sized cache. It grows with
56 * high use, but also tries to react to memory pressure from the
57 * operating system: decreasing its size when system memory is
58 * tight.
59 *
60 * 3. The Megiddo and Modha model assumes a fixed page size. All
61 * elements of the cache are therefore exactly the same size. So
62 * when adjusting the cache size following a cache miss, its simply
63 * a matter of choosing a single page to evict. In our model, we
64 * have variable sized cache blocks (rangeing from 512 bytes to
65 * 128K bytes). We therefore choose a set of blocks to evict to make
66 * space for a cache miss that approximates as closely as possible
67 * the space used by the new block.
68 *
69 * See also: "ARC: A Self-Tuning, Low Overhead Replacement Cache"
70 * by N. Megiddo & D. Modha, FAST 2003
71 */
72
73 /*
74 * The locking model:
75 *
76 * A new reference to a cache buffer can be obtained in two
77 * ways: 1) via a hash table lookup using the DVA as a key,
78 * or 2) via one of the ARC lists. The arc_read() interface
79 * uses method 1, while the internal arc algorithms for
80 * adjusting the cache use method 2. We therefore provide two
81 * types of locks: 1) the hash table lock array, and 2) the
82 * arc list locks.
83 *
84 * Buffers do not have their own mutexes, rather they rely on the
85 * hash table mutexes for the bulk of their protection (i.e. most
86 * fields in the arc_buf_hdr_t are protected by these mutexes).
87 *
88 * buf_hash_find() returns the appropriate mutex (held) when it
89 * locates the requested buffer in the hash table. It returns
90 * NULL for the mutex if the buffer was not in the table.
91 *
92 * buf_hash_remove() expects the appropriate hash mutex to be
93 * already held before it is invoked.
94 *
95 * Each arc state also has a mutex which is used to protect the
96 * buffer list associated with the state. When attempting to
97 * obtain a hash table lock while holding an arc list lock you
98 * must use: mutex_tryenter() to avoid deadlock. Also note that
99 * the active state mutex must be held before the ghost state mutex.
100 *
101 * Arc buffers may have an associated eviction callback function.
102 * This function will be invoked prior to removing the buffer (e.g.
103 * in arc_do_user_evicts()). Note however that the data associated
104 * with the buffer may be evicted prior to the callback. The callback
105 * must be made with *no locks held* (to prevent deadlock). Additionally,
106 * the users of callbacks must ensure that their private data is
107 * protected from simultaneous callbacks from arc_buf_evict()
108 * and arc_do_user_evicts().
109 *
110 * It as also possible to register a callback which is run when the
111 * arc_meta_limit is reached and no buffers can be safely evicted. In
112 * this case the arc user should drop a reference on some arc buffers so
113 * they can be reclaimed and the arc_meta_limit honored. For example,
114 * when using the ZPL each dentry holds a references on a znode. These
115 * dentries must be pruned before the arc buffer holding the znode can
116 * be safely evicted.
117 *
118 * Note that the majority of the performance stats are manipulated
119 * with atomic operations.
120 *
121 * The L2ARC uses the l2arc_buflist_mtx global mutex for the following:
122 *
123 * - L2ARC buflist creation
124 * - L2ARC buflist eviction
125 * - L2ARC write completion, which walks L2ARC buflists
126 * - ARC header destruction, as it removes from L2ARC buflists
127 * - ARC header release, as it removes from L2ARC buflists
128 */
129
130 #include <sys/spa.h>
131 #include <sys/zio.h>
132 #include <sys/zio_compress.h>
133 #include <sys/zfs_context.h>
134 #include <sys/arc.h>
135 #include <sys/vdev.h>
136 #include <sys/vdev_impl.h>
137 #include <sys/dsl_pool.h>
138 #ifdef _KERNEL
139 #include <sys/vmsystm.h>
140 #include <vm/anon.h>
141 #include <sys/fs/swapnode.h>
142 #include <sys/zpl.h>
143 #endif
144 #include <sys/callb.h>
145 #include <sys/kstat.h>
146 #include <sys/dmu_tx.h>
147 #include <zfs_fletcher.h>
148
149 #ifndef _KERNEL
150 /* set with ZFS_DEBUG=watch, to enable watchpoints on frozen buffers */
151 boolean_t arc_watch = B_FALSE;
152 #endif
153
154 static kmutex_t arc_reclaim_thr_lock;
155 static kcondvar_t arc_reclaim_thr_cv; /* used to signal reclaim thr */
156 static uint8_t arc_thread_exit;
157
158 /* number of bytes to prune from caches when at arc_meta_limit is reached */
159 int zfs_arc_meta_prune = 1048576;
160
161 typedef enum arc_reclaim_strategy {
162 ARC_RECLAIM_AGGR, /* Aggressive reclaim strategy */
163 ARC_RECLAIM_CONS /* Conservative reclaim strategy */
164 } arc_reclaim_strategy_t;
165
166 /*
167 * The number of iterations through arc_evict_*() before we
168 * drop & reacquire the lock.
169 */
170 int arc_evict_iterations = 100;
171
172 /* number of seconds before growing cache again */
173 int zfs_arc_grow_retry = 5;
174
175 /* shift of arc_c for calculating both min and max arc_p */
176 int zfs_arc_p_min_shift = 4;
177
178 /* log2(fraction of arc to reclaim) */
179 int zfs_arc_shrink_shift = 5;
180
181 /*
182 * minimum lifespan of a prefetch block in clock ticks
183 * (initialized in arc_init())
184 */
185 int zfs_arc_min_prefetch_lifespan = HZ;
186
187 /* disable arc proactive arc throttle due to low memory */
188 int zfs_arc_memory_throttle_disable = 1;
189
190 /* disable duplicate buffer eviction */
191 int zfs_disable_dup_eviction = 0;
192
193 /*
194 * If this percent of memory is free, don't throttle.
195 */
196 int arc_lotsfree_percent = 10;
197
198 static int arc_dead;
199
200 /* expiration time for arc_no_grow */
201 static clock_t arc_grow_time = 0;
202
203 /*
204 * The arc has filled available memory and has now warmed up.
205 */
206 static boolean_t arc_warm;
207
208 /*
209 * These tunables are for performance analysis.
210 */
211 unsigned long zfs_arc_max = 0;
212 unsigned long zfs_arc_min = 0;
213 unsigned long zfs_arc_meta_limit = 0;
214
215 /*
216 * Note that buffers can be in one of 6 states:
217 * ARC_anon - anonymous (discussed below)
218 * ARC_mru - recently used, currently cached
219 * ARC_mru_ghost - recentely used, no longer in cache
220 * ARC_mfu - frequently used, currently cached
221 * ARC_mfu_ghost - frequently used, no longer in cache
222 * ARC_l2c_only - exists in L2ARC but not other states
223 * When there are no active references to the buffer, they are
224 * are linked onto a list in one of these arc states. These are
225 * the only buffers that can be evicted or deleted. Within each
226 * state there are multiple lists, one for meta-data and one for
227 * non-meta-data. Meta-data (indirect blocks, blocks of dnodes,
228 * etc.) is tracked separately so that it can be managed more
229 * explicitly: favored over data, limited explicitly.
230 *
231 * Anonymous buffers are buffers that are not associated with
232 * a DVA. These are buffers that hold dirty block copies
233 * before they are written to stable storage. By definition,
234 * they are "ref'd" and are considered part of arc_mru
235 * that cannot be freed. Generally, they will aquire a DVA
236 * as they are written and migrate onto the arc_mru list.
237 *
238 * The ARC_l2c_only state is for buffers that are in the second
239 * level ARC but no longer in any of the ARC_m* lists. The second
240 * level ARC itself may also contain buffers that are in any of
241 * the ARC_m* states - meaning that a buffer can exist in two
242 * places. The reason for the ARC_l2c_only state is to keep the
243 * buffer header in the hash table, so that reads that hit the
244 * second level ARC benefit from these fast lookups.
245 */
246
247 typedef struct arc_state {
248 list_t arcs_list[ARC_BUFC_NUMTYPES]; /* list of evictable buffers */
249 uint64_t arcs_lsize[ARC_BUFC_NUMTYPES]; /* amount of evictable data */
250 uint64_t arcs_size; /* total amount of data in this state */
251 kmutex_t arcs_mtx;
252 arc_state_type_t arcs_state;
253 } arc_state_t;
254
255 /* The 6 states: */
256 static arc_state_t ARC_anon;
257 static arc_state_t ARC_mru;
258 static arc_state_t ARC_mru_ghost;
259 static arc_state_t ARC_mfu;
260 static arc_state_t ARC_mfu_ghost;
261 static arc_state_t ARC_l2c_only;
262
263 typedef struct arc_stats {
264 kstat_named_t arcstat_hits;
265 kstat_named_t arcstat_misses;
266 kstat_named_t arcstat_demand_data_hits;
267 kstat_named_t arcstat_demand_data_misses;
268 kstat_named_t arcstat_demand_metadata_hits;
269 kstat_named_t arcstat_demand_metadata_misses;
270 kstat_named_t arcstat_prefetch_data_hits;
271 kstat_named_t arcstat_prefetch_data_misses;
272 kstat_named_t arcstat_prefetch_metadata_hits;
273 kstat_named_t arcstat_prefetch_metadata_misses;
274 kstat_named_t arcstat_mru_hits;
275 kstat_named_t arcstat_mru_ghost_hits;
276 kstat_named_t arcstat_mfu_hits;
277 kstat_named_t arcstat_mfu_ghost_hits;
278 kstat_named_t arcstat_deleted;
279 kstat_named_t arcstat_recycle_miss;
280 /*
281 * Number of buffers that could not be evicted because the hash lock
282 * was held by another thread. The lock may not necessarily be held
283 * by something using the same buffer, since hash locks are shared
284 * by multiple buffers.
285 */
286 kstat_named_t arcstat_mutex_miss;
287 /*
288 * Number of buffers skipped because they have I/O in progress, are
289 * indrect prefetch buffers that have not lived long enough, or are
290 * not from the spa we're trying to evict from.
291 */
292 kstat_named_t arcstat_evict_skip;
293 kstat_named_t arcstat_evict_l2_cached;
294 kstat_named_t arcstat_evict_l2_eligible;
295 kstat_named_t arcstat_evict_l2_ineligible;
296 kstat_named_t arcstat_hash_elements;
297 kstat_named_t arcstat_hash_elements_max;
298 kstat_named_t arcstat_hash_collisions;
299 kstat_named_t arcstat_hash_chains;
300 kstat_named_t arcstat_hash_chain_max;
301 kstat_named_t arcstat_p;
302 kstat_named_t arcstat_c;
303 kstat_named_t arcstat_c_min;
304 kstat_named_t arcstat_c_max;
305 kstat_named_t arcstat_size;
306 kstat_named_t arcstat_hdr_size;
307 kstat_named_t arcstat_data_size;
308 kstat_named_t arcstat_other_size;
309 kstat_named_t arcstat_anon_size;
310 kstat_named_t arcstat_anon_evict_data;
311 kstat_named_t arcstat_anon_evict_metadata;
312 kstat_named_t arcstat_mru_size;
313 kstat_named_t arcstat_mru_evict_data;
314 kstat_named_t arcstat_mru_evict_metadata;
315 kstat_named_t arcstat_mru_ghost_size;
316 kstat_named_t arcstat_mru_ghost_evict_data;
317 kstat_named_t arcstat_mru_ghost_evict_metadata;
318 kstat_named_t arcstat_mfu_size;
319 kstat_named_t arcstat_mfu_evict_data;
320 kstat_named_t arcstat_mfu_evict_metadata;
321 kstat_named_t arcstat_mfu_ghost_size;
322 kstat_named_t arcstat_mfu_ghost_evict_data;
323 kstat_named_t arcstat_mfu_ghost_evict_metadata;
324 kstat_named_t arcstat_l2_hits;
325 kstat_named_t arcstat_l2_misses;
326 kstat_named_t arcstat_l2_feeds;
327 kstat_named_t arcstat_l2_rw_clash;
328 kstat_named_t arcstat_l2_read_bytes;
329 kstat_named_t arcstat_l2_write_bytes;
330 kstat_named_t arcstat_l2_writes_sent;
331 kstat_named_t arcstat_l2_writes_done;
332 kstat_named_t arcstat_l2_writes_error;
333 kstat_named_t arcstat_l2_writes_hdr_miss;
334 kstat_named_t arcstat_l2_evict_lock_retry;
335 kstat_named_t arcstat_l2_evict_reading;
336 kstat_named_t arcstat_l2_free_on_write;
337 kstat_named_t arcstat_l2_abort_lowmem;
338 kstat_named_t arcstat_l2_cksum_bad;
339 kstat_named_t arcstat_l2_io_error;
340 kstat_named_t arcstat_l2_size;
341 kstat_named_t arcstat_l2_asize;
342 kstat_named_t arcstat_l2_hdr_size;
343 kstat_named_t arcstat_l2_compress_successes;
344 kstat_named_t arcstat_l2_compress_zeros;
345 kstat_named_t arcstat_l2_compress_failures;
346 kstat_named_t arcstat_memory_throttle_count;
347 kstat_named_t arcstat_duplicate_buffers;
348 kstat_named_t arcstat_duplicate_buffers_size;
349 kstat_named_t arcstat_duplicate_reads;
350 kstat_named_t arcstat_memory_direct_count;
351 kstat_named_t arcstat_memory_indirect_count;
352 kstat_named_t arcstat_no_grow;
353 kstat_named_t arcstat_tempreserve;
354 kstat_named_t arcstat_loaned_bytes;
355 kstat_named_t arcstat_prune;
356 kstat_named_t arcstat_meta_used;
357 kstat_named_t arcstat_meta_limit;
358 kstat_named_t arcstat_meta_max;
359 } arc_stats_t;
360
361 static arc_stats_t arc_stats = {
362 { "hits", KSTAT_DATA_UINT64 },
363 { "misses", KSTAT_DATA_UINT64 },
364 { "demand_data_hits", KSTAT_DATA_UINT64 },
365 { "demand_data_misses", KSTAT_DATA_UINT64 },
366 { "demand_metadata_hits", KSTAT_DATA_UINT64 },
367 { "demand_metadata_misses", KSTAT_DATA_UINT64 },
368 { "prefetch_data_hits", KSTAT_DATA_UINT64 },
369 { "prefetch_data_misses", KSTAT_DATA_UINT64 },
370 { "prefetch_metadata_hits", KSTAT_DATA_UINT64 },
371 { "prefetch_metadata_misses", KSTAT_DATA_UINT64 },
372 { "mru_hits", KSTAT_DATA_UINT64 },
373 { "mru_ghost_hits", KSTAT_DATA_UINT64 },
374 { "mfu_hits", KSTAT_DATA_UINT64 },
375 { "mfu_ghost_hits", KSTAT_DATA_UINT64 },
376 { "deleted", KSTAT_DATA_UINT64 },
377 { "recycle_miss", KSTAT_DATA_UINT64 },
378 { "mutex_miss", KSTAT_DATA_UINT64 },
379 { "evict_skip", KSTAT_DATA_UINT64 },
380 { "evict_l2_cached", KSTAT_DATA_UINT64 },
381 { "evict_l2_eligible", KSTAT_DATA_UINT64 },
382 { "evict_l2_ineligible", KSTAT_DATA_UINT64 },
383 { "hash_elements", KSTAT_DATA_UINT64 },
384 { "hash_elements_max", KSTAT_DATA_UINT64 },
385 { "hash_collisions", KSTAT_DATA_UINT64 },
386 { "hash_chains", KSTAT_DATA_UINT64 },
387 { "hash_chain_max", KSTAT_DATA_UINT64 },
388 { "p", KSTAT_DATA_UINT64 },
389 { "c", KSTAT_DATA_UINT64 },
390 { "c_min", KSTAT_DATA_UINT64 },
391 { "c_max", KSTAT_DATA_UINT64 },
392 { "size", KSTAT_DATA_UINT64 },
393 { "hdr_size", KSTAT_DATA_UINT64 },
394 { "data_size", KSTAT_DATA_UINT64 },
395 { "other_size", KSTAT_DATA_UINT64 },
396 { "anon_size", KSTAT_DATA_UINT64 },
397 { "anon_evict_data", KSTAT_DATA_UINT64 },
398 { "anon_evict_metadata", KSTAT_DATA_UINT64 },
399 { "mru_size", KSTAT_DATA_UINT64 },
400 { "mru_evict_data", KSTAT_DATA_UINT64 },
401 { "mru_evict_metadata", KSTAT_DATA_UINT64 },
402 { "mru_ghost_size", KSTAT_DATA_UINT64 },
403 { "mru_ghost_evict_data", KSTAT_DATA_UINT64 },
404 { "mru_ghost_evict_metadata", KSTAT_DATA_UINT64 },
405 { "mfu_size", KSTAT_DATA_UINT64 },
406 { "mfu_evict_data", KSTAT_DATA_UINT64 },
407 { "mfu_evict_metadata", KSTAT_DATA_UINT64 },
408 { "mfu_ghost_size", KSTAT_DATA_UINT64 },
409 { "mfu_ghost_evict_data", KSTAT_DATA_UINT64 },
410 { "mfu_ghost_evict_metadata", KSTAT_DATA_UINT64 },
411 { "l2_hits", KSTAT_DATA_UINT64 },
412 { "l2_misses", KSTAT_DATA_UINT64 },
413 { "l2_feeds", KSTAT_DATA_UINT64 },
414 { "l2_rw_clash", KSTAT_DATA_UINT64 },
415 { "l2_read_bytes", KSTAT_DATA_UINT64 },
416 { "l2_write_bytes", KSTAT_DATA_UINT64 },
417 { "l2_writes_sent", KSTAT_DATA_UINT64 },
418 { "l2_writes_done", KSTAT_DATA_UINT64 },
419 { "l2_writes_error", KSTAT_DATA_UINT64 },
420 { "l2_writes_hdr_miss", KSTAT_DATA_UINT64 },
421 { "l2_evict_lock_retry", KSTAT_DATA_UINT64 },
422 { "l2_evict_reading", KSTAT_DATA_UINT64 },
423 { "l2_free_on_write", KSTAT_DATA_UINT64 },
424 { "l2_abort_lowmem", KSTAT_DATA_UINT64 },
425 { "l2_cksum_bad", KSTAT_DATA_UINT64 },
426 { "l2_io_error", KSTAT_DATA_UINT64 },
427 { "l2_size", KSTAT_DATA_UINT64 },
428 { "l2_asize", KSTAT_DATA_UINT64 },
429 { "l2_hdr_size", KSTAT_DATA_UINT64 },
430 { "l2_compress_successes", KSTAT_DATA_UINT64 },
431 { "l2_compress_zeros", KSTAT_DATA_UINT64 },
432 { "l2_compress_failures", KSTAT_DATA_UINT64 },
433 { "memory_throttle_count", KSTAT_DATA_UINT64 },
434 { "duplicate_buffers", KSTAT_DATA_UINT64 },
435 { "duplicate_buffers_size", KSTAT_DATA_UINT64 },
436 { "duplicate_reads", KSTAT_DATA_UINT64 },
437 { "memory_direct_count", KSTAT_DATA_UINT64 },
438 { "memory_indirect_count", KSTAT_DATA_UINT64 },
439 { "arc_no_grow", KSTAT_DATA_UINT64 },
440 { "arc_tempreserve", KSTAT_DATA_UINT64 },
441 { "arc_loaned_bytes", KSTAT_DATA_UINT64 },
442 { "arc_prune", KSTAT_DATA_UINT64 },
443 { "arc_meta_used", KSTAT_DATA_UINT64 },
444 { "arc_meta_limit", KSTAT_DATA_UINT64 },
445 { "arc_meta_max", KSTAT_DATA_UINT64 },
446 };
447
448 #define ARCSTAT(stat) (arc_stats.stat.value.ui64)
449
450 #define ARCSTAT_INCR(stat, val) \
451 atomic_add_64(&arc_stats.stat.value.ui64, (val))
452
453 #define ARCSTAT_BUMP(stat) ARCSTAT_INCR(stat, 1)
454 #define ARCSTAT_BUMPDOWN(stat) ARCSTAT_INCR(stat, -1)
455
456 #define ARCSTAT_MAX(stat, val) { \
457 uint64_t m; \
458 while ((val) > (m = arc_stats.stat.value.ui64) && \
459 (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val)))) \
460 continue; \
461 }
462
463 #define ARCSTAT_MAXSTAT(stat) \
464 ARCSTAT_MAX(stat##_max, arc_stats.stat.value.ui64)
465
466 /*
467 * We define a macro to allow ARC hits/misses to be easily broken down by
468 * two separate conditions, giving a total of four different subtypes for
469 * each of hits and misses (so eight statistics total).
470 */
471 #define ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \
472 if (cond1) { \
473 if (cond2) { \
474 ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \
475 } else { \
476 ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \
477 } \
478 } else { \
479 if (cond2) { \
480 ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \
481 } else { \
482 ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\
483 } \
484 }
485
486 kstat_t *arc_ksp;
487 static arc_state_t *arc_anon;
488 static arc_state_t *arc_mru;
489 static arc_state_t *arc_mru_ghost;
490 static arc_state_t *arc_mfu;
491 static arc_state_t *arc_mfu_ghost;
492 static arc_state_t *arc_l2c_only;
493
494 /*
495 * There are several ARC variables that are critical to export as kstats --
496 * but we don't want to have to grovel around in the kstat whenever we wish to
497 * manipulate them. For these variables, we therefore define them to be in
498 * terms of the statistic variable. This assures that we are not introducing
499 * the possibility of inconsistency by having shadow copies of the variables,
500 * while still allowing the code to be readable.
501 */
502 #define arc_size ARCSTAT(arcstat_size) /* actual total arc size */
503 #define arc_p ARCSTAT(arcstat_p) /* target size of MRU */
504 #define arc_c ARCSTAT(arcstat_c) /* target size of cache */
505 #define arc_c_min ARCSTAT(arcstat_c_min) /* min target cache size */
506 #define arc_c_max ARCSTAT(arcstat_c_max) /* max target cache size */
507 #define arc_no_grow ARCSTAT(arcstat_no_grow)
508 #define arc_tempreserve ARCSTAT(arcstat_tempreserve)
509 #define arc_loaned_bytes ARCSTAT(arcstat_loaned_bytes)
510 #define arc_meta_limit ARCSTAT(arcstat_meta_limit) /* max size for metadata */
511 #define arc_meta_used ARCSTAT(arcstat_meta_used) /* size of metadata */
512 #define arc_meta_max ARCSTAT(arcstat_meta_max) /* max size of metadata */
513
514 #define L2ARC_IS_VALID_COMPRESS(_c_) \
515 ((_c_) == ZIO_COMPRESS_LZ4 || (_c_) == ZIO_COMPRESS_EMPTY)
516
517 typedef struct l2arc_buf_hdr l2arc_buf_hdr_t;
518
519 typedef struct arc_callback arc_callback_t;
520
521 struct arc_callback {
522 void *acb_private;
523 arc_done_func_t *acb_done;
524 arc_buf_t *acb_buf;
525 zio_t *acb_zio_dummy;
526 arc_callback_t *acb_next;
527 };
528
529 typedef struct arc_write_callback arc_write_callback_t;
530
531 struct arc_write_callback {
532 void *awcb_private;
533 arc_done_func_t *awcb_ready;
534 arc_done_func_t *awcb_physdone;
535 arc_done_func_t *awcb_done;
536 arc_buf_t *awcb_buf;
537 };
538
539 struct arc_buf_hdr {
540 /* protected by hash lock */
541 dva_t b_dva;
542 uint64_t b_birth;
543 uint64_t b_cksum0;
544
545 kmutex_t b_freeze_lock;
546 zio_cksum_t *b_freeze_cksum;
547
548 arc_buf_hdr_t *b_hash_next;
549 arc_buf_t *b_buf;
550 uint32_t b_flags;
551 uint32_t b_datacnt;
552
553 arc_callback_t *b_acb;
554 kcondvar_t b_cv;
555
556 /* immutable */
557 arc_buf_contents_t b_type;
558 uint64_t b_size;
559 uint64_t b_spa;
560
561 /* protected by arc state mutex */
562 arc_state_t *b_state;
563 list_node_t b_arc_node;
564
565 /* updated atomically */
566 clock_t b_arc_access;
567 uint32_t b_mru_hits;
568 uint32_t b_mru_ghost_hits;
569 uint32_t b_mfu_hits;
570 uint32_t b_mfu_ghost_hits;
571 uint32_t b_l2_hits;
572
573 /* self protecting */
574 refcount_t b_refcnt;
575
576 l2arc_buf_hdr_t *b_l2hdr;
577 list_node_t b_l2node;
578 };
579
580 static list_t arc_prune_list;
581 static kmutex_t arc_prune_mtx;
582 static arc_buf_t *arc_eviction_list;
583 static kmutex_t arc_eviction_mtx;
584 static arc_buf_hdr_t arc_eviction_hdr;
585 static void arc_get_data_buf(arc_buf_t *buf);
586 static void arc_access(arc_buf_hdr_t *buf, kmutex_t *hash_lock);
587 static int arc_evict_needed(arc_buf_contents_t type);
588 static void arc_evict_ghost(arc_state_t *state, uint64_t spa, int64_t bytes,
589 arc_buf_contents_t type);
590 static void arc_buf_watch(arc_buf_t *buf);
591
592 static boolean_t l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *ab);
593
594 #define GHOST_STATE(state) \
595 ((state) == arc_mru_ghost || (state) == arc_mfu_ghost || \
596 (state) == arc_l2c_only)
597
598 /*
599 * Private ARC flags. These flags are private ARC only flags that will show up
600 * in b_flags in the arc_hdr_buf_t. Some flags are publicly declared, and can
601 * be passed in as arc_flags in things like arc_read. However, these flags
602 * should never be passed and should only be set by ARC code. When adding new
603 * public flags, make sure not to smash the private ones.
604 */
605
606 #define ARC_IN_HASH_TABLE (1 << 9) /* this buffer is hashed */
607 #define ARC_IO_IN_PROGRESS (1 << 10) /* I/O in progress for buf */
608 #define ARC_IO_ERROR (1 << 11) /* I/O failed for buf */
609 #define ARC_FREED_IN_READ (1 << 12) /* buf freed while in read */
610 #define ARC_BUF_AVAILABLE (1 << 13) /* block not in active use */
611 #define ARC_INDIRECT (1 << 14) /* this is an indirect block */
612 #define ARC_FREE_IN_PROGRESS (1 << 15) /* hdr about to be freed */
613 #define ARC_L2_WRITING (1 << 16) /* L2ARC write in progress */
614 #define ARC_L2_EVICTED (1 << 17) /* evicted during I/O */
615 #define ARC_L2_WRITE_HEAD (1 << 18) /* head of write list */
616
617 #define HDR_IN_HASH_TABLE(hdr) ((hdr)->b_flags & ARC_IN_HASH_TABLE)
618 #define HDR_IO_IN_PROGRESS(hdr) ((hdr)->b_flags & ARC_IO_IN_PROGRESS)
619 #define HDR_IO_ERROR(hdr) ((hdr)->b_flags & ARC_IO_ERROR)
620 #define HDR_PREFETCH(hdr) ((hdr)->b_flags & ARC_PREFETCH)
621 #define HDR_FREED_IN_READ(hdr) ((hdr)->b_flags & ARC_FREED_IN_READ)
622 #define HDR_BUF_AVAILABLE(hdr) ((hdr)->b_flags & ARC_BUF_AVAILABLE)
623 #define HDR_FREE_IN_PROGRESS(hdr) ((hdr)->b_flags & ARC_FREE_IN_PROGRESS)
624 #define HDR_L2CACHE(hdr) ((hdr)->b_flags & ARC_L2CACHE)
625 #define HDR_L2_READING(hdr) ((hdr)->b_flags & ARC_IO_IN_PROGRESS && \
626 (hdr)->b_l2hdr != NULL)
627 #define HDR_L2_WRITING(hdr) ((hdr)->b_flags & ARC_L2_WRITING)
628 #define HDR_L2_EVICTED(hdr) ((hdr)->b_flags & ARC_L2_EVICTED)
629 #define HDR_L2_WRITE_HEAD(hdr) ((hdr)->b_flags & ARC_L2_WRITE_HEAD)
630
631 /*
632 * Other sizes
633 */
634
635 #define HDR_SIZE ((int64_t)sizeof (arc_buf_hdr_t))
636 #define L2HDR_SIZE ((int64_t)sizeof (l2arc_buf_hdr_t))
637
638 /*
639 * Hash table routines
640 */
641
642 #define HT_LOCK_ALIGN 64
643 #define HT_LOCK_PAD (P2NPHASE(sizeof (kmutex_t), (HT_LOCK_ALIGN)))
644
645 struct ht_lock {
646 kmutex_t ht_lock;
647 #ifdef _KERNEL
648 unsigned char pad[HT_LOCK_PAD];
649 #endif
650 };
651
652 #define BUF_LOCKS 256
653 typedef struct buf_hash_table {
654 uint64_t ht_mask;
655 arc_buf_hdr_t **ht_table;
656 struct ht_lock ht_locks[BUF_LOCKS];
657 } buf_hash_table_t;
658
659 static buf_hash_table_t buf_hash_table;
660
661 #define BUF_HASH_INDEX(spa, dva, birth) \
662 (buf_hash(spa, dva, birth) & buf_hash_table.ht_mask)
663 #define BUF_HASH_LOCK_NTRY(idx) (buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)])
664 #define BUF_HASH_LOCK(idx) (&(BUF_HASH_LOCK_NTRY(idx).ht_lock))
665 #define HDR_LOCK(hdr) \
666 (BUF_HASH_LOCK(BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth)))
667
668 uint64_t zfs_crc64_table[256];
669
670 /*
671 * Level 2 ARC
672 */
673
674 #define L2ARC_WRITE_SIZE (8 * 1024 * 1024) /* initial write max */
675 #define L2ARC_HEADROOM 2 /* num of writes */
676 /*
677 * If we discover during ARC scan any buffers to be compressed, we boost
678 * our headroom for the next scanning cycle by this percentage multiple.
679 */
680 #define L2ARC_HEADROOM_BOOST 200
681 #define L2ARC_FEED_SECS 1 /* caching interval secs */
682 #define L2ARC_FEED_MIN_MS 200 /* min caching interval ms */
683
684 #define l2arc_writes_sent ARCSTAT(arcstat_l2_writes_sent)
685 #define l2arc_writes_done ARCSTAT(arcstat_l2_writes_done)
686
687 /* L2ARC Performance Tunables */
688 unsigned long l2arc_write_max = L2ARC_WRITE_SIZE; /* def max write size */
689 unsigned long l2arc_write_boost = L2ARC_WRITE_SIZE; /* extra warmup write */
690 unsigned long l2arc_headroom = L2ARC_HEADROOM; /* # of dev writes */
691 unsigned long l2arc_headroom_boost = L2ARC_HEADROOM_BOOST;
692 unsigned long l2arc_feed_secs = L2ARC_FEED_SECS; /* interval seconds */
693 unsigned long l2arc_feed_min_ms = L2ARC_FEED_MIN_MS; /* min interval msecs */
694 int l2arc_noprefetch = B_TRUE; /* don't cache prefetch bufs */
695 int l2arc_nocompress = B_FALSE; /* don't compress bufs */
696 int l2arc_feed_again = B_TRUE; /* turbo warmup */
697 int l2arc_norw = B_FALSE; /* no reads during writes */
698
699 /*
700 * L2ARC Internals
701 */
702 typedef struct l2arc_dev {
703 vdev_t *l2ad_vdev; /* vdev */
704 spa_t *l2ad_spa; /* spa */
705 uint64_t l2ad_hand; /* next write location */
706 uint64_t l2ad_start; /* first addr on device */
707 uint64_t l2ad_end; /* last addr on device */
708 uint64_t l2ad_evict; /* last addr eviction reached */
709 boolean_t l2ad_first; /* first sweep through */
710 boolean_t l2ad_writing; /* currently writing */
711 list_t *l2ad_buflist; /* buffer list */
712 list_node_t l2ad_node; /* device list node */
713 } l2arc_dev_t;
714
715 static list_t L2ARC_dev_list; /* device list */
716 static list_t *l2arc_dev_list; /* device list pointer */
717 static kmutex_t l2arc_dev_mtx; /* device list mutex */
718 static l2arc_dev_t *l2arc_dev_last; /* last device used */
719 static kmutex_t l2arc_buflist_mtx; /* mutex for all buflists */
720 static list_t L2ARC_free_on_write; /* free after write buf list */
721 static list_t *l2arc_free_on_write; /* free after write list ptr */
722 static kmutex_t l2arc_free_on_write_mtx; /* mutex for list */
723 static uint64_t l2arc_ndev; /* number of devices */
724
725 typedef struct l2arc_read_callback {
726 arc_buf_t *l2rcb_buf; /* read buffer */
727 spa_t *l2rcb_spa; /* spa */
728 blkptr_t l2rcb_bp; /* original blkptr */
729 zbookmark_t l2rcb_zb; /* original bookmark */
730 int l2rcb_flags; /* original flags */
731 enum zio_compress l2rcb_compress; /* applied compress */
732 } l2arc_read_callback_t;
733
734 typedef struct l2arc_write_callback {
735 l2arc_dev_t *l2wcb_dev; /* device info */
736 arc_buf_hdr_t *l2wcb_head; /* head of write buflist */
737 } l2arc_write_callback_t;
738
739 struct l2arc_buf_hdr {
740 /* protected by arc_buf_hdr mutex */
741 l2arc_dev_t *b_dev; /* L2ARC device */
742 uint64_t b_daddr; /* disk address, offset byte */
743 /* compression applied to buffer data */
744 enum zio_compress b_compress;
745 /* real alloc'd buffer size depending on b_compress applied */
746 uint32_t b_hits;
747 uint64_t b_asize;
748 /* temporary buffer holder for in-flight compressed data */
749 void *b_tmp_cdata;
750 };
751
752 typedef struct l2arc_data_free {
753 /* protected by l2arc_free_on_write_mtx */
754 void *l2df_data;
755 size_t l2df_size;
756 void (*l2df_func)(void *, size_t);
757 list_node_t l2df_list_node;
758 } l2arc_data_free_t;
759
760 static kmutex_t l2arc_feed_thr_lock;
761 static kcondvar_t l2arc_feed_thr_cv;
762 static uint8_t l2arc_thread_exit;
763
764 static void l2arc_read_done(zio_t *zio);
765 static void l2arc_hdr_stat_add(void);
766 static void l2arc_hdr_stat_remove(void);
767
768 static boolean_t l2arc_compress_buf(l2arc_buf_hdr_t *l2hdr);
769 static void l2arc_decompress_zio(zio_t *zio, arc_buf_hdr_t *hdr,
770 enum zio_compress c);
771 static void l2arc_release_cdata_buf(arc_buf_hdr_t *ab);
772
773 static uint64_t
774 buf_hash(uint64_t spa, const dva_t *dva, uint64_t birth)
775 {
776 uint8_t *vdva = (uint8_t *)dva;
777 uint64_t crc = -1ULL;
778 int i;
779
780 ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
781
782 for (i = 0; i < sizeof (dva_t); i++)
783 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ vdva[i]) & 0xFF];
784
785 crc ^= (spa>>8) ^ birth;
786
787 return (crc);
788 }
789
790 #define BUF_EMPTY(buf) \
791 ((buf)->b_dva.dva_word[0] == 0 && \
792 (buf)->b_dva.dva_word[1] == 0 && \
793 (buf)->b_birth == 0)
794
795 #define BUF_EQUAL(spa, dva, birth, buf) \
796 ((buf)->b_dva.dva_word[0] == (dva)->dva_word[0]) && \
797 ((buf)->b_dva.dva_word[1] == (dva)->dva_word[1]) && \
798 ((buf)->b_birth == birth) && ((buf)->b_spa == spa)
799
800 static void
801 buf_discard_identity(arc_buf_hdr_t *hdr)
802 {
803 hdr->b_dva.dva_word[0] = 0;
804 hdr->b_dva.dva_word[1] = 0;
805 hdr->b_birth = 0;
806 hdr->b_cksum0 = 0;
807 }
808
809 static arc_buf_hdr_t *
810 buf_hash_find(uint64_t spa, const dva_t *dva, uint64_t birth, kmutex_t **lockp)
811 {
812 uint64_t idx = BUF_HASH_INDEX(spa, dva, birth);
813 kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
814 arc_buf_hdr_t *buf;
815
816 mutex_enter(hash_lock);
817 for (buf = buf_hash_table.ht_table[idx]; buf != NULL;
818 buf = buf->b_hash_next) {
819 if (BUF_EQUAL(spa, dva, birth, buf)) {
820 *lockp = hash_lock;
821 return (buf);
822 }
823 }
824 mutex_exit(hash_lock);
825 *lockp = NULL;
826 return (NULL);
827 }
828
829 /*
830 * Insert an entry into the hash table. If there is already an element
831 * equal to elem in the hash table, then the already existing element
832 * will be returned and the new element will not be inserted.
833 * Otherwise returns NULL.
834 */
835 static arc_buf_hdr_t *
836 buf_hash_insert(arc_buf_hdr_t *buf, kmutex_t **lockp)
837 {
838 uint64_t idx = BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth);
839 kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
840 arc_buf_hdr_t *fbuf;
841 uint32_t i;
842
843 ASSERT(!HDR_IN_HASH_TABLE(buf));
844 *lockp = hash_lock;
845 mutex_enter(hash_lock);
846 for (fbuf = buf_hash_table.ht_table[idx], i = 0; fbuf != NULL;
847 fbuf = fbuf->b_hash_next, i++) {
848 if (BUF_EQUAL(buf->b_spa, &buf->b_dva, buf->b_birth, fbuf))
849 return (fbuf);
850 }
851
852 buf->b_hash_next = buf_hash_table.ht_table[idx];
853 buf_hash_table.ht_table[idx] = buf;
854 buf->b_flags |= ARC_IN_HASH_TABLE;
855
856 /* collect some hash table performance data */
857 if (i > 0) {
858 ARCSTAT_BUMP(arcstat_hash_collisions);
859 if (i == 1)
860 ARCSTAT_BUMP(arcstat_hash_chains);
861
862 ARCSTAT_MAX(arcstat_hash_chain_max, i);
863 }
864
865 ARCSTAT_BUMP(arcstat_hash_elements);
866 ARCSTAT_MAXSTAT(arcstat_hash_elements);
867
868 return (NULL);
869 }
870
871 static void
872 buf_hash_remove(arc_buf_hdr_t *buf)
873 {
874 arc_buf_hdr_t *fbuf, **bufp;
875 uint64_t idx = BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth);
876
877 ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx)));
878 ASSERT(HDR_IN_HASH_TABLE(buf));
879
880 bufp = &buf_hash_table.ht_table[idx];
881 while ((fbuf = *bufp) != buf) {
882 ASSERT(fbuf != NULL);
883 bufp = &fbuf->b_hash_next;
884 }
885 *bufp = buf->b_hash_next;
886 buf->b_hash_next = NULL;
887 buf->b_flags &= ~ARC_IN_HASH_TABLE;
888
889 /* collect some hash table performance data */
890 ARCSTAT_BUMPDOWN(arcstat_hash_elements);
891
892 if (buf_hash_table.ht_table[idx] &&
893 buf_hash_table.ht_table[idx]->b_hash_next == NULL)
894 ARCSTAT_BUMPDOWN(arcstat_hash_chains);
895 }
896
897 /*
898 * Global data structures and functions for the buf kmem cache.
899 */
900 static kmem_cache_t *hdr_cache;
901 static kmem_cache_t *buf_cache;
902 static kmem_cache_t *l2arc_hdr_cache;
903
904 static void
905 buf_fini(void)
906 {
907 int i;
908
909 #if defined(_KERNEL) && defined(HAVE_SPL)
910 /*
911 * Large allocations which do not require contiguous pages
912 * should be using vmem_free() in the linux kernel\
913 */
914 vmem_free(buf_hash_table.ht_table,
915 (buf_hash_table.ht_mask + 1) * sizeof (void *));
916 #else
917 kmem_free(buf_hash_table.ht_table,
918 (buf_hash_table.ht_mask + 1) * sizeof (void *));
919 #endif
920 for (i = 0; i < BUF_LOCKS; i++)
921 mutex_destroy(&buf_hash_table.ht_locks[i].ht_lock);
922 kmem_cache_destroy(hdr_cache);
923 kmem_cache_destroy(buf_cache);
924 kmem_cache_destroy(l2arc_hdr_cache);
925 }
926
927 /*
928 * Constructor callback - called when the cache is empty
929 * and a new buf is requested.
930 */
931 /* ARGSUSED */
932 static int
933 hdr_cons(void *vbuf, void *unused, int kmflag)
934 {
935 arc_buf_hdr_t *buf = vbuf;
936
937 bzero(buf, sizeof (arc_buf_hdr_t));
938 refcount_create(&buf->b_refcnt);
939 cv_init(&buf->b_cv, NULL, CV_DEFAULT, NULL);
940 mutex_init(&buf->b_freeze_lock, NULL, MUTEX_DEFAULT, NULL);
941 list_link_init(&buf->b_arc_node);
942 list_link_init(&buf->b_l2node);
943 arc_space_consume(sizeof (arc_buf_hdr_t), ARC_SPACE_HDRS);
944
945 return (0);
946 }
947
948 /* ARGSUSED */
949 static int
950 buf_cons(void *vbuf, void *unused, int kmflag)
951 {
952 arc_buf_t *buf = vbuf;
953
954 bzero(buf, sizeof (arc_buf_t));
955 mutex_init(&buf->b_evict_lock, NULL, MUTEX_DEFAULT, NULL);
956 arc_space_consume(sizeof (arc_buf_t), ARC_SPACE_HDRS);
957
958 return (0);
959 }
960
961 /*
962 * Destructor callback - called when a cached buf is
963 * no longer required.
964 */
965 /* ARGSUSED */
966 static void
967 hdr_dest(void *vbuf, void *unused)
968 {
969 arc_buf_hdr_t *buf = vbuf;
970
971 ASSERT(BUF_EMPTY(buf));
972 refcount_destroy(&buf->b_refcnt);
973 cv_destroy(&buf->b_cv);
974 mutex_destroy(&buf->b_freeze_lock);
975 arc_space_return(sizeof (arc_buf_hdr_t), ARC_SPACE_HDRS);
976 }
977
978 /* ARGSUSED */
979 static void
980 buf_dest(void *vbuf, void *unused)
981 {
982 arc_buf_t *buf = vbuf;
983
984 mutex_destroy(&buf->b_evict_lock);
985 arc_space_return(sizeof (arc_buf_t), ARC_SPACE_HDRS);
986 }
987
988 static void
989 buf_init(void)
990 {
991 uint64_t *ct;
992 uint64_t hsize = 1ULL << 12;
993 int i, j;
994
995 /*
996 * The hash table is big enough to fill all of physical memory
997 * with an average 64K block size. The table will take up
998 * totalmem*sizeof(void*)/64K (eg. 128KB/GB with 8-byte pointers).
999 */
1000 while (hsize * 65536 < physmem * PAGESIZE)
1001 hsize <<= 1;
1002 retry:
1003 buf_hash_table.ht_mask = hsize - 1;
1004 #if defined(_KERNEL) && defined(HAVE_SPL)
1005 /*
1006 * Large allocations which do not require contiguous pages
1007 * should be using vmem_alloc() in the linux kernel
1008 */
1009 buf_hash_table.ht_table =
1010 vmem_zalloc(hsize * sizeof (void*), KM_SLEEP);
1011 #else
1012 buf_hash_table.ht_table =
1013 kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP);
1014 #endif
1015 if (buf_hash_table.ht_table == NULL) {
1016 ASSERT(hsize > (1ULL << 8));
1017 hsize >>= 1;
1018 goto retry;
1019 }
1020
1021 hdr_cache = kmem_cache_create("arc_buf_hdr_t", sizeof (arc_buf_hdr_t),
1022 0, hdr_cons, hdr_dest, NULL, NULL, NULL, 0);
1023 buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t),
1024 0, buf_cons, buf_dest, NULL, NULL, NULL, 0);
1025 l2arc_hdr_cache = kmem_cache_create("l2arc_buf_hdr_t", L2HDR_SIZE,
1026 0, NULL, NULL, NULL, NULL, NULL, 0);
1027
1028 for (i = 0; i < 256; i++)
1029 for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--)
1030 *ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY);
1031
1032 for (i = 0; i < BUF_LOCKS; i++) {
1033 mutex_init(&buf_hash_table.ht_locks[i].ht_lock,
1034 NULL, MUTEX_DEFAULT, NULL);
1035 }
1036 }
1037
1038 #define ARC_MINTIME (hz>>4) /* 62 ms */
1039
1040 static void
1041 arc_cksum_verify(arc_buf_t *buf)
1042 {
1043 zio_cksum_t zc;
1044
1045 if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1046 return;
1047
1048 mutex_enter(&buf->b_hdr->b_freeze_lock);
1049 if (buf->b_hdr->b_freeze_cksum == NULL ||
1050 (buf->b_hdr->b_flags & ARC_IO_ERROR)) {
1051 mutex_exit(&buf->b_hdr->b_freeze_lock);
1052 return;
1053 }
1054 fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc);
1055 if (!ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc))
1056 panic("buffer modified while frozen!");
1057 mutex_exit(&buf->b_hdr->b_freeze_lock);
1058 }
1059
1060 static int
1061 arc_cksum_equal(arc_buf_t *buf)
1062 {
1063 zio_cksum_t zc;
1064 int equal;
1065
1066 mutex_enter(&buf->b_hdr->b_freeze_lock);
1067 fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc);
1068 equal = ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc);
1069 mutex_exit(&buf->b_hdr->b_freeze_lock);
1070
1071 return (equal);
1072 }
1073
1074 static void
1075 arc_cksum_compute(arc_buf_t *buf, boolean_t force)
1076 {
1077 if (!force && !(zfs_flags & ZFS_DEBUG_MODIFY))
1078 return;
1079
1080 mutex_enter(&buf->b_hdr->b_freeze_lock);
1081 if (buf->b_hdr->b_freeze_cksum != NULL) {
1082 mutex_exit(&buf->b_hdr->b_freeze_lock);
1083 return;
1084 }
1085 buf->b_hdr->b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t),
1086 KM_PUSHPAGE);
1087 fletcher_2_native(buf->b_data, buf->b_hdr->b_size,
1088 buf->b_hdr->b_freeze_cksum);
1089 mutex_exit(&buf->b_hdr->b_freeze_lock);
1090 arc_buf_watch(buf);
1091 }
1092
1093 #ifndef _KERNEL
1094 void
1095 arc_buf_sigsegv(int sig, siginfo_t *si, void *unused)
1096 {
1097 panic("Got SIGSEGV at address: 0x%lx\n", (long) si->si_addr);
1098 }
1099 #endif
1100
1101 /* ARGSUSED */
1102 static void
1103 arc_buf_unwatch(arc_buf_t *buf)
1104 {
1105 #ifndef _KERNEL
1106 if (arc_watch) {
1107 ASSERT0(mprotect(buf->b_data, buf->b_hdr->b_size,
1108 PROT_READ | PROT_WRITE));
1109 }
1110 #endif
1111 }
1112
1113 /* ARGSUSED */
1114 static void
1115 arc_buf_watch(arc_buf_t *buf)
1116 {
1117 #ifndef _KERNEL
1118 if (arc_watch)
1119 ASSERT0(mprotect(buf->b_data, buf->b_hdr->b_size, PROT_READ));
1120 #endif
1121 }
1122
1123 void
1124 arc_buf_thaw(arc_buf_t *buf)
1125 {
1126 if (zfs_flags & ZFS_DEBUG_MODIFY) {
1127 if (buf->b_hdr->b_state != arc_anon)
1128 panic("modifying non-anon buffer!");
1129 if (buf->b_hdr->b_flags & ARC_IO_IN_PROGRESS)
1130 panic("modifying buffer while i/o in progress!");
1131 arc_cksum_verify(buf);
1132 }
1133
1134 mutex_enter(&buf->b_hdr->b_freeze_lock);
1135 if (buf->b_hdr->b_freeze_cksum != NULL) {
1136 kmem_free(buf->b_hdr->b_freeze_cksum, sizeof (zio_cksum_t));
1137 buf->b_hdr->b_freeze_cksum = NULL;
1138 }
1139
1140 mutex_exit(&buf->b_hdr->b_freeze_lock);
1141
1142 arc_buf_unwatch(buf);
1143 }
1144
1145 void
1146 arc_buf_freeze(arc_buf_t *buf)
1147 {
1148 kmutex_t *hash_lock;
1149
1150 if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1151 return;
1152
1153 hash_lock = HDR_LOCK(buf->b_hdr);
1154 mutex_enter(hash_lock);
1155
1156 ASSERT(buf->b_hdr->b_freeze_cksum != NULL ||
1157 buf->b_hdr->b_state == arc_anon);
1158 arc_cksum_compute(buf, B_FALSE);
1159 mutex_exit(hash_lock);
1160
1161 }
1162
1163 static void
1164 add_reference(arc_buf_hdr_t *ab, kmutex_t *hash_lock, void *tag)
1165 {
1166 ASSERT(MUTEX_HELD(hash_lock));
1167
1168 if ((refcount_add(&ab->b_refcnt, tag) == 1) &&
1169 (ab->b_state != arc_anon)) {
1170 uint64_t delta = ab->b_size * ab->b_datacnt;
1171 list_t *list = &ab->b_state->arcs_list[ab->b_type];
1172 uint64_t *size = &ab->b_state->arcs_lsize[ab->b_type];
1173
1174 ASSERT(!MUTEX_HELD(&ab->b_state->arcs_mtx));
1175 mutex_enter(&ab->b_state->arcs_mtx);
1176 ASSERT(list_link_active(&ab->b_arc_node));
1177 list_remove(list, ab);
1178 if (GHOST_STATE(ab->b_state)) {
1179 ASSERT0(ab->b_datacnt);
1180 ASSERT3P(ab->b_buf, ==, NULL);
1181 delta = ab->b_size;
1182 }
1183 ASSERT(delta > 0);
1184 ASSERT3U(*size, >=, delta);
1185 atomic_add_64(size, -delta);
1186 mutex_exit(&ab->b_state->arcs_mtx);
1187 /* remove the prefetch flag if we get a reference */
1188 if (ab->b_flags & ARC_PREFETCH)
1189 ab->b_flags &= ~ARC_PREFETCH;
1190 }
1191 }
1192
1193 static int
1194 remove_reference(arc_buf_hdr_t *ab, kmutex_t *hash_lock, void *tag)
1195 {
1196 int cnt;
1197 arc_state_t *state = ab->b_state;
1198
1199 ASSERT(state == arc_anon || MUTEX_HELD(hash_lock));
1200 ASSERT(!GHOST_STATE(state));
1201
1202 if (((cnt = refcount_remove(&ab->b_refcnt, tag)) == 0) &&
1203 (state != arc_anon)) {
1204 uint64_t *size = &state->arcs_lsize[ab->b_type];
1205
1206 ASSERT(!MUTEX_HELD(&state->arcs_mtx));
1207 mutex_enter(&state->arcs_mtx);
1208 ASSERT(!list_link_active(&ab->b_arc_node));
1209 list_insert_head(&state->arcs_list[ab->b_type], ab);
1210 ASSERT(ab->b_datacnt > 0);
1211 atomic_add_64(size, ab->b_size * ab->b_datacnt);
1212 mutex_exit(&state->arcs_mtx);
1213 }
1214 return (cnt);
1215 }
1216
1217 /*
1218 * Returns detailed information about a specific arc buffer. When the
1219 * state_index argument is set the function will calculate the arc header
1220 * list position for its arc state. Since this requires a linear traversal
1221 * callers are strongly encourage not to do this. However, it can be helpful
1222 * for targeted analysis so the functionality is provided.
1223 */
1224 void
1225 arc_buf_info(arc_buf_t *ab, arc_buf_info_t *abi, int state_index)
1226 {
1227 arc_buf_hdr_t *hdr = ab->b_hdr;
1228 arc_state_t *state = hdr->b_state;
1229
1230 memset(abi, 0, sizeof (arc_buf_info_t));
1231 abi->abi_flags = hdr->b_flags;
1232 abi->abi_datacnt = hdr->b_datacnt;
1233 abi->abi_state_type = state ? state->arcs_state : ARC_STATE_ANON;
1234 abi->abi_state_contents = hdr->b_type;
1235 abi->abi_state_index = -1;
1236 abi->abi_size = hdr->b_size;
1237 abi->abi_access = hdr->b_arc_access;
1238 abi->abi_mru_hits = hdr->b_mru_hits;
1239 abi->abi_mru_ghost_hits = hdr->b_mru_ghost_hits;
1240 abi->abi_mfu_hits = hdr->b_mfu_hits;
1241 abi->abi_mfu_ghost_hits = hdr->b_mfu_ghost_hits;
1242 abi->abi_holds = refcount_count(&hdr->b_refcnt);
1243
1244 if (hdr->b_l2hdr) {
1245 abi->abi_l2arc_dattr = hdr->b_l2hdr->b_daddr;
1246 abi->abi_l2arc_asize = hdr->b_l2hdr->b_asize;
1247 abi->abi_l2arc_compress = hdr->b_l2hdr->b_compress;
1248 abi->abi_l2arc_hits = hdr->b_l2hdr->b_hits;
1249 }
1250
1251 if (state && state_index && list_link_active(&hdr->b_arc_node)) {
1252 list_t *list = &state->arcs_list[hdr->b_type];
1253 arc_buf_hdr_t *h;
1254
1255 mutex_enter(&state->arcs_mtx);
1256 for (h = list_head(list); h != NULL; h = list_next(list, h)) {
1257 abi->abi_state_index++;
1258 if (h == hdr)
1259 break;
1260 }
1261 mutex_exit(&state->arcs_mtx);
1262 }
1263 }
1264
1265 /*
1266 * Move the supplied buffer to the indicated state. The mutex
1267 * for the buffer must be held by the caller.
1268 */
1269 static void
1270 arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *ab, kmutex_t *hash_lock)
1271 {
1272 arc_state_t *old_state = ab->b_state;
1273 int64_t refcnt = refcount_count(&ab->b_refcnt);
1274 uint64_t from_delta, to_delta;
1275
1276 ASSERT(MUTEX_HELD(hash_lock));
1277 ASSERT3P(new_state, !=, old_state);
1278 ASSERT(refcnt == 0 || ab->b_datacnt > 0);
1279 ASSERT(ab->b_datacnt == 0 || !GHOST_STATE(new_state));
1280 ASSERT(ab->b_datacnt <= 1 || old_state != arc_anon);
1281
1282 from_delta = to_delta = ab->b_datacnt * ab->b_size;
1283
1284 /*
1285 * If this buffer is evictable, transfer it from the
1286 * old state list to the new state list.
1287 */
1288 if (refcnt == 0) {
1289 if (old_state != arc_anon) {
1290 int use_mutex = !MUTEX_HELD(&old_state->arcs_mtx);
1291 uint64_t *size = &old_state->arcs_lsize[ab->b_type];
1292
1293 if (use_mutex)
1294 mutex_enter(&old_state->arcs_mtx);
1295
1296 ASSERT(list_link_active(&ab->b_arc_node));
1297 list_remove(&old_state->arcs_list[ab->b_type], ab);
1298
1299 /*
1300 * If prefetching out of the ghost cache,
1301 * we will have a non-zero datacnt.
1302 */
1303 if (GHOST_STATE(old_state) && ab->b_datacnt == 0) {
1304 /* ghost elements have a ghost size */
1305 ASSERT(ab->b_buf == NULL);
1306 from_delta = ab->b_size;
1307 }
1308 ASSERT3U(*size, >=, from_delta);
1309 atomic_add_64(size, -from_delta);
1310
1311 if (use_mutex)
1312 mutex_exit(&old_state->arcs_mtx);
1313 }
1314 if (new_state != arc_anon) {
1315 int use_mutex = !MUTEX_HELD(&new_state->arcs_mtx);
1316 uint64_t *size = &new_state->arcs_lsize[ab->b_type];
1317
1318 if (use_mutex)
1319 mutex_enter(&new_state->arcs_mtx);
1320
1321 list_insert_head(&new_state->arcs_list[ab->b_type], ab);
1322
1323 /* ghost elements have a ghost size */
1324 if (GHOST_STATE(new_state)) {
1325 ASSERT(ab->b_datacnt == 0);
1326 ASSERT(ab->b_buf == NULL);
1327 to_delta = ab->b_size;
1328 }
1329 atomic_add_64(size, to_delta);
1330
1331 if (use_mutex)
1332 mutex_exit(&new_state->arcs_mtx);
1333 }
1334 }
1335
1336 ASSERT(!BUF_EMPTY(ab));
1337 if (new_state == arc_anon && HDR_IN_HASH_TABLE(ab))
1338 buf_hash_remove(ab);
1339
1340 /* adjust state sizes */
1341 if (to_delta)
1342 atomic_add_64(&new_state->arcs_size, to_delta);
1343 if (from_delta) {
1344 ASSERT3U(old_state->arcs_size, >=, from_delta);
1345 atomic_add_64(&old_state->arcs_size, -from_delta);
1346 }
1347 ab->b_state = new_state;
1348
1349 /* adjust l2arc hdr stats */
1350 if (new_state == arc_l2c_only)
1351 l2arc_hdr_stat_add();
1352 else if (old_state == arc_l2c_only)
1353 l2arc_hdr_stat_remove();
1354 }
1355
1356 void
1357 arc_space_consume(uint64_t space, arc_space_type_t type)
1358 {
1359 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
1360
1361 switch (type) {
1362 default:
1363 break;
1364 case ARC_SPACE_DATA:
1365 ARCSTAT_INCR(arcstat_data_size, space);
1366 break;
1367 case ARC_SPACE_OTHER:
1368 ARCSTAT_INCR(arcstat_other_size, space);
1369 break;
1370 case ARC_SPACE_HDRS:
1371 ARCSTAT_INCR(arcstat_hdr_size, space);
1372 break;
1373 case ARC_SPACE_L2HDRS:
1374 ARCSTAT_INCR(arcstat_l2_hdr_size, space);
1375 break;
1376 }
1377
1378 ARCSTAT_INCR(arcstat_meta_used, space);
1379 atomic_add_64(&arc_size, space);
1380 }
1381
1382 void
1383 arc_space_return(uint64_t space, arc_space_type_t type)
1384 {
1385 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
1386
1387 switch (type) {
1388 default:
1389 break;
1390 case ARC_SPACE_DATA:
1391 ARCSTAT_INCR(arcstat_data_size, -space);
1392 break;
1393 case ARC_SPACE_OTHER:
1394 ARCSTAT_INCR(arcstat_other_size, -space);
1395 break;
1396 case ARC_SPACE_HDRS:
1397 ARCSTAT_INCR(arcstat_hdr_size, -space);
1398 break;
1399 case ARC_SPACE_L2HDRS:
1400 ARCSTAT_INCR(arcstat_l2_hdr_size, -space);
1401 break;
1402 }
1403
1404 ASSERT(arc_meta_used >= space);
1405 if (arc_meta_max < arc_meta_used)
1406 arc_meta_max = arc_meta_used;
1407 ARCSTAT_INCR(arcstat_meta_used, -space);
1408 ASSERT(arc_size >= space);
1409 atomic_add_64(&arc_size, -space);
1410 }
1411
1412 arc_buf_t *
1413 arc_buf_alloc(spa_t *spa, int size, void *tag, arc_buf_contents_t type)
1414 {
1415 arc_buf_hdr_t *hdr;
1416 arc_buf_t *buf;
1417
1418 ASSERT3U(size, >, 0);
1419 hdr = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE);
1420 ASSERT(BUF_EMPTY(hdr));
1421 hdr->b_size = size;
1422 hdr->b_type = type;
1423 hdr->b_spa = spa_load_guid(spa);
1424 hdr->b_state = arc_anon;
1425 hdr->b_arc_access = 0;
1426 hdr->b_mru_hits = 0;
1427 hdr->b_mru_ghost_hits = 0;
1428 hdr->b_mfu_hits = 0;
1429 hdr->b_mfu_ghost_hits = 0;
1430 hdr->b_l2_hits = 0;
1431 buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
1432 buf->b_hdr = hdr;
1433 buf->b_data = NULL;
1434 buf->b_efunc = NULL;
1435 buf->b_private = NULL;
1436 buf->b_next = NULL;
1437 hdr->b_buf = buf;
1438 arc_get_data_buf(buf);
1439 hdr->b_datacnt = 1;
1440 hdr->b_flags = 0;
1441 ASSERT(refcount_is_zero(&hdr->b_refcnt));
1442 (void) refcount_add(&hdr->b_refcnt, tag);
1443
1444 return (buf);
1445 }
1446
1447 static char *arc_onloan_tag = "onloan";
1448
1449 /*
1450 * Loan out an anonymous arc buffer. Loaned buffers are not counted as in
1451 * flight data by arc_tempreserve_space() until they are "returned". Loaned
1452 * buffers must be returned to the arc before they can be used by the DMU or
1453 * freed.
1454 */
1455 arc_buf_t *
1456 arc_loan_buf(spa_t *spa, int size)
1457 {
1458 arc_buf_t *buf;
1459
1460 buf = arc_buf_alloc(spa, size, arc_onloan_tag, ARC_BUFC_DATA);
1461
1462 atomic_add_64(&arc_loaned_bytes, size);
1463 return (buf);
1464 }
1465
1466 /*
1467 * Return a loaned arc buffer to the arc.
1468 */
1469 void
1470 arc_return_buf(arc_buf_t *buf, void *tag)
1471 {
1472 arc_buf_hdr_t *hdr = buf->b_hdr;
1473
1474 ASSERT(buf->b_data != NULL);
1475 (void) refcount_add(&hdr->b_refcnt, tag);
1476 (void) refcount_remove(&hdr->b_refcnt, arc_onloan_tag);
1477
1478 atomic_add_64(&arc_loaned_bytes, -hdr->b_size);
1479 }
1480
1481 /* Detach an arc_buf from a dbuf (tag) */
1482 void
1483 arc_loan_inuse_buf(arc_buf_t *buf, void *tag)
1484 {
1485 arc_buf_hdr_t *hdr;
1486
1487 ASSERT(buf->b_data != NULL);
1488 hdr = buf->b_hdr;
1489 (void) refcount_add(&hdr->b_refcnt, arc_onloan_tag);
1490 (void) refcount_remove(&hdr->b_refcnt, tag);
1491 buf->b_efunc = NULL;
1492 buf->b_private = NULL;
1493
1494 atomic_add_64(&arc_loaned_bytes, hdr->b_size);
1495 }
1496
1497 static arc_buf_t *
1498 arc_buf_clone(arc_buf_t *from)
1499 {
1500 arc_buf_t *buf;
1501 arc_buf_hdr_t *hdr = from->b_hdr;
1502 uint64_t size = hdr->b_size;
1503
1504 ASSERT(hdr->b_state != arc_anon);
1505
1506 buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
1507 buf->b_hdr = hdr;
1508 buf->b_data = NULL;
1509 buf->b_efunc = NULL;
1510 buf->b_private = NULL;
1511 buf->b_next = hdr->b_buf;
1512 hdr->b_buf = buf;
1513 arc_get_data_buf(buf);
1514 bcopy(from->b_data, buf->b_data, size);
1515
1516 /*
1517 * This buffer already exists in the arc so create a duplicate
1518 * copy for the caller. If the buffer is associated with user data
1519 * then track the size and number of duplicates. These stats will be
1520 * updated as duplicate buffers are created and destroyed.
1521 */
1522 if (hdr->b_type == ARC_BUFC_DATA) {
1523 ARCSTAT_BUMP(arcstat_duplicate_buffers);
1524 ARCSTAT_INCR(arcstat_duplicate_buffers_size, size);
1525 }
1526 hdr->b_datacnt += 1;
1527 return (buf);
1528 }
1529
1530 void
1531 arc_buf_add_ref(arc_buf_t *buf, void* tag)
1532 {
1533 arc_buf_hdr_t *hdr;
1534 kmutex_t *hash_lock;
1535
1536 /*
1537 * Check to see if this buffer is evicted. Callers
1538 * must verify b_data != NULL to know if the add_ref
1539 * was successful.
1540 */
1541 mutex_enter(&buf->b_evict_lock);
1542 if (buf->b_data == NULL) {
1543 mutex_exit(&buf->b_evict_lock);
1544 return;
1545 }
1546 hash_lock = HDR_LOCK(buf->b_hdr);
1547 mutex_enter(hash_lock);
1548 hdr = buf->b_hdr;
1549 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
1550 mutex_exit(&buf->b_evict_lock);
1551
1552 ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu);
1553 add_reference(hdr, hash_lock, tag);
1554 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
1555 arc_access(hdr, hash_lock);
1556 mutex_exit(hash_lock);
1557 ARCSTAT_BUMP(arcstat_hits);
1558 ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH),
1559 demand, prefetch, hdr->b_type != ARC_BUFC_METADATA,
1560 data, metadata, hits);
1561 }
1562
1563 /*
1564 * Free the arc data buffer. If it is an l2arc write in progress,
1565 * the buffer is placed on l2arc_free_on_write to be freed later.
1566 */
1567 static void
1568 arc_buf_data_free(arc_buf_t *buf, void (*free_func)(void *, size_t))
1569 {
1570 arc_buf_hdr_t *hdr = buf->b_hdr;
1571
1572 if (HDR_L2_WRITING(hdr)) {
1573 l2arc_data_free_t *df;
1574 df = kmem_alloc(sizeof (l2arc_data_free_t), KM_PUSHPAGE);
1575 df->l2df_data = buf->b_data;
1576 df->l2df_size = hdr->b_size;
1577 df->l2df_func = free_func;
1578 mutex_enter(&l2arc_free_on_write_mtx);
1579 list_insert_head(l2arc_free_on_write, df);
1580 mutex_exit(&l2arc_free_on_write_mtx);
1581 ARCSTAT_BUMP(arcstat_l2_free_on_write);
1582 } else {
1583 free_func(buf->b_data, hdr->b_size);
1584 }
1585 }
1586
1587 static void
1588 arc_buf_destroy(arc_buf_t *buf, boolean_t recycle, boolean_t all)
1589 {
1590 arc_buf_t **bufp;
1591
1592 /* free up data associated with the buf */
1593 if (buf->b_data) {
1594 arc_state_t *state = buf->b_hdr->b_state;
1595 uint64_t size = buf->b_hdr->b_size;
1596 arc_buf_contents_t type = buf->b_hdr->b_type;
1597
1598 arc_cksum_verify(buf);
1599 arc_buf_unwatch(buf);
1600
1601 if (!recycle) {
1602 if (type == ARC_BUFC_METADATA) {
1603 arc_buf_data_free(buf, zio_buf_free);
1604 arc_space_return(size, ARC_SPACE_DATA);
1605 } else {
1606 ASSERT(type == ARC_BUFC_DATA);
1607 arc_buf_data_free(buf, zio_data_buf_free);
1608 ARCSTAT_INCR(arcstat_data_size, -size);
1609 atomic_add_64(&arc_size, -size);
1610 }
1611 }
1612 if (list_link_active(&buf->b_hdr->b_arc_node)) {
1613 uint64_t *cnt = &state->arcs_lsize[type];
1614
1615 ASSERT(refcount_is_zero(&buf->b_hdr->b_refcnt));
1616 ASSERT(state != arc_anon);
1617
1618 ASSERT3U(*cnt, >=, size);
1619 atomic_add_64(cnt, -size);
1620 }
1621 ASSERT3U(state->arcs_size, >=, size);
1622 atomic_add_64(&state->arcs_size, -size);
1623 buf->b_data = NULL;
1624
1625 /*
1626 * If we're destroying a duplicate buffer make sure
1627 * that the appropriate statistics are updated.
1628 */
1629 if (buf->b_hdr->b_datacnt > 1 &&
1630 buf->b_hdr->b_type == ARC_BUFC_DATA) {
1631 ARCSTAT_BUMPDOWN(arcstat_duplicate_buffers);
1632 ARCSTAT_INCR(arcstat_duplicate_buffers_size, -size);
1633 }
1634 ASSERT(buf->b_hdr->b_datacnt > 0);
1635 buf->b_hdr->b_datacnt -= 1;
1636 }
1637
1638 /* only remove the buf if requested */
1639 if (!all)
1640 return;
1641
1642 /* remove the buf from the hdr list */
1643 for (bufp = &buf->b_hdr->b_buf; *bufp != buf; bufp = &(*bufp)->b_next)
1644 continue;
1645 *bufp = buf->b_next;
1646 buf->b_next = NULL;
1647
1648 ASSERT(buf->b_efunc == NULL);
1649
1650 /* clean up the buf */
1651 buf->b_hdr = NULL;
1652 kmem_cache_free(buf_cache, buf);
1653 }
1654
1655 static void
1656 arc_hdr_destroy(arc_buf_hdr_t *hdr)
1657 {
1658 l2arc_buf_hdr_t *l2hdr = hdr->b_l2hdr;
1659
1660 ASSERT(refcount_is_zero(&hdr->b_refcnt));
1661 ASSERT3P(hdr->b_state, ==, arc_anon);
1662 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
1663
1664 if (l2hdr != NULL) {
1665 boolean_t buflist_held = MUTEX_HELD(&l2arc_buflist_mtx);
1666 /*
1667 * To prevent arc_free() and l2arc_evict() from
1668 * attempting to free the same buffer at the same time,
1669 * a FREE_IN_PROGRESS flag is given to arc_free() to
1670 * give it priority. l2arc_evict() can't destroy this
1671 * header while we are waiting on l2arc_buflist_mtx.
1672 *
1673 * The hdr may be removed from l2ad_buflist before we
1674 * grab l2arc_buflist_mtx, so b_l2hdr is rechecked.
1675 */
1676 if (!buflist_held) {
1677 mutex_enter(&l2arc_buflist_mtx);
1678 l2hdr = hdr->b_l2hdr;
1679 }
1680
1681 if (l2hdr != NULL) {
1682 list_remove(l2hdr->b_dev->l2ad_buflist, hdr);
1683 ARCSTAT_INCR(arcstat_l2_size, -hdr->b_size);
1684 ARCSTAT_INCR(arcstat_l2_asize, -l2hdr->b_asize);
1685 kmem_cache_free(l2arc_hdr_cache, l2hdr);
1686 arc_space_return(L2HDR_SIZE, ARC_SPACE_L2HDRS);
1687 if (hdr->b_state == arc_l2c_only)
1688 l2arc_hdr_stat_remove();
1689 hdr->b_l2hdr = NULL;
1690 }
1691
1692 if (!buflist_held)
1693 mutex_exit(&l2arc_buflist_mtx);
1694 }
1695
1696 if (!BUF_EMPTY(hdr)) {
1697 ASSERT(!HDR_IN_HASH_TABLE(hdr));
1698 buf_discard_identity(hdr);
1699 }
1700 while (hdr->b_buf) {
1701 arc_buf_t *buf = hdr->b_buf;
1702
1703 if (buf->b_efunc) {
1704 mutex_enter(&arc_eviction_mtx);
1705 mutex_enter(&buf->b_evict_lock);
1706 ASSERT(buf->b_hdr != NULL);
1707 arc_buf_destroy(hdr->b_buf, FALSE, FALSE);
1708 hdr->b_buf = buf->b_next;
1709 buf->b_hdr = &arc_eviction_hdr;
1710 buf->b_next = arc_eviction_list;
1711 arc_eviction_list = buf;
1712 mutex_exit(&buf->b_evict_lock);
1713 mutex_exit(&arc_eviction_mtx);
1714 } else {
1715 arc_buf_destroy(hdr->b_buf, FALSE, TRUE);
1716 }
1717 }
1718 if (hdr->b_freeze_cksum != NULL) {
1719 kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t));
1720 hdr->b_freeze_cksum = NULL;
1721 }
1722
1723 ASSERT(!list_link_active(&hdr->b_arc_node));
1724 ASSERT3P(hdr->b_hash_next, ==, NULL);
1725 ASSERT3P(hdr->b_acb, ==, NULL);
1726 kmem_cache_free(hdr_cache, hdr);
1727 }
1728
1729 void
1730 arc_buf_free(arc_buf_t *buf, void *tag)
1731 {
1732 arc_buf_hdr_t *hdr = buf->b_hdr;
1733 int hashed = hdr->b_state != arc_anon;
1734
1735 ASSERT(buf->b_efunc == NULL);
1736 ASSERT(buf->b_data != NULL);
1737
1738 if (hashed) {
1739 kmutex_t *hash_lock = HDR_LOCK(hdr);
1740
1741 mutex_enter(hash_lock);
1742 hdr = buf->b_hdr;
1743 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
1744
1745 (void) remove_reference(hdr, hash_lock, tag);
1746 if (hdr->b_datacnt > 1) {
1747 arc_buf_destroy(buf, FALSE, TRUE);
1748 } else {
1749 ASSERT(buf == hdr->b_buf);
1750 ASSERT(buf->b_efunc == NULL);
1751 hdr->b_flags |= ARC_BUF_AVAILABLE;
1752 }
1753 mutex_exit(hash_lock);
1754 } else if (HDR_IO_IN_PROGRESS(hdr)) {
1755 int destroy_hdr;
1756 /*
1757 * We are in the middle of an async write. Don't destroy
1758 * this buffer unless the write completes before we finish
1759 * decrementing the reference count.
1760 */
1761 mutex_enter(&arc_eviction_mtx);
1762 (void) remove_reference(hdr, NULL, tag);
1763 ASSERT(refcount_is_zero(&hdr->b_refcnt));
1764 destroy_hdr = !HDR_IO_IN_PROGRESS(hdr);
1765 mutex_exit(&arc_eviction_mtx);
1766 if (destroy_hdr)
1767 arc_hdr_destroy(hdr);
1768 } else {
1769 if (remove_reference(hdr, NULL, tag) > 0)
1770 arc_buf_destroy(buf, FALSE, TRUE);
1771 else
1772 arc_hdr_destroy(hdr);
1773 }
1774 }
1775
1776 boolean_t
1777 arc_buf_remove_ref(arc_buf_t *buf, void* tag)
1778 {
1779 arc_buf_hdr_t *hdr = buf->b_hdr;
1780 kmutex_t *hash_lock = NULL;
1781 boolean_t no_callback = (buf->b_efunc == NULL);
1782
1783 if (hdr->b_state == arc_anon) {
1784 ASSERT(hdr->b_datacnt == 1);
1785 arc_buf_free(buf, tag);
1786 return (no_callback);
1787 }
1788
1789 hash_lock = HDR_LOCK(hdr);
1790 mutex_enter(hash_lock);
1791 hdr = buf->b_hdr;
1792 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
1793 ASSERT(hdr->b_state != arc_anon);
1794 ASSERT(buf->b_data != NULL);
1795
1796 (void) remove_reference(hdr, hash_lock, tag);
1797 if (hdr->b_datacnt > 1) {
1798 if (no_callback)
1799 arc_buf_destroy(buf, FALSE, TRUE);
1800 } else if (no_callback) {
1801 ASSERT(hdr->b_buf == buf && buf->b_next == NULL);
1802 ASSERT(buf->b_efunc == NULL);
1803 hdr->b_flags |= ARC_BUF_AVAILABLE;
1804 }
1805 ASSERT(no_callback || hdr->b_datacnt > 1 ||
1806 refcount_is_zero(&hdr->b_refcnt));
1807 mutex_exit(hash_lock);
1808 return (no_callback);
1809 }
1810
1811 int
1812 arc_buf_size(arc_buf_t *buf)
1813 {
1814 return (buf->b_hdr->b_size);
1815 }
1816
1817 /*
1818 * Called from the DMU to determine if the current buffer should be
1819 * evicted. In order to ensure proper locking, the eviction must be initiated
1820 * from the DMU. Return true if the buffer is associated with user data and
1821 * duplicate buffers still exist.
1822 */
1823 boolean_t
1824 arc_buf_eviction_needed(arc_buf_t *buf)
1825 {
1826 arc_buf_hdr_t *hdr;
1827 boolean_t evict_needed = B_FALSE;
1828
1829 if (zfs_disable_dup_eviction)
1830 return (B_FALSE);
1831
1832 mutex_enter(&buf->b_evict_lock);
1833 hdr = buf->b_hdr;
1834 if (hdr == NULL) {
1835 /*
1836 * We are in arc_do_user_evicts(); let that function
1837 * perform the eviction.
1838 */
1839 ASSERT(buf->b_data == NULL);
1840 mutex_exit(&buf->b_evict_lock);
1841 return (B_FALSE);
1842 } else if (buf->b_data == NULL) {
1843 /*
1844 * We have already been added to the arc eviction list;
1845 * recommend eviction.
1846 */
1847 ASSERT3P(hdr, ==, &arc_eviction_hdr);
1848 mutex_exit(&buf->b_evict_lock);
1849 return (B_TRUE);
1850 }
1851
1852 if (hdr->b_datacnt > 1 && hdr->b_type == ARC_BUFC_DATA)
1853 evict_needed = B_TRUE;
1854
1855 mutex_exit(&buf->b_evict_lock);
1856 return (evict_needed);
1857 }
1858
1859 /*
1860 * Evict buffers from list until we've removed the specified number of
1861 * bytes. Move the removed buffers to the appropriate evict state.
1862 * If the recycle flag is set, then attempt to "recycle" a buffer:
1863 * - look for a buffer to evict that is `bytes' long.
1864 * - return the data block from this buffer rather than freeing it.
1865 * This flag is used by callers that are trying to make space for a
1866 * new buffer in a full arc cache.
1867 *
1868 * This function makes a "best effort". It skips over any buffers
1869 * it can't get a hash_lock on, and so may not catch all candidates.
1870 * It may also return without evicting as much space as requested.
1871 */
1872 static void *
1873 arc_evict(arc_state_t *state, uint64_t spa, int64_t bytes, boolean_t recycle,
1874 arc_buf_contents_t type)
1875 {
1876 arc_state_t *evicted_state;
1877 uint64_t bytes_evicted = 0, skipped = 0, missed = 0;
1878 arc_buf_hdr_t *ab, *ab_prev = NULL;
1879 list_t *list = &state->arcs_list[type];
1880 kmutex_t *hash_lock;
1881 boolean_t have_lock;
1882 void *stolen = NULL;
1883 arc_buf_hdr_t marker = {{{ 0 }}};
1884 int count = 0;
1885
1886 ASSERT(state == arc_mru || state == arc_mfu);
1887
1888 evicted_state = (state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost;
1889
1890 mutex_enter(&state->arcs_mtx);
1891 mutex_enter(&evicted_state->arcs_mtx);
1892
1893 for (ab = list_tail(list); ab; ab = ab_prev) {
1894 ab_prev = list_prev(list, ab);
1895 /* prefetch buffers have a minimum lifespan */
1896 if (HDR_IO_IN_PROGRESS(ab) ||
1897 (spa && ab->b_spa != spa) ||
1898 (ab->b_flags & (ARC_PREFETCH|ARC_INDIRECT) &&
1899 ddi_get_lbolt() - ab->b_arc_access <
1900 zfs_arc_min_prefetch_lifespan)) {
1901 skipped++;
1902 continue;
1903 }
1904 /* "lookahead" for better eviction candidate */
1905 if (recycle && ab->b_size != bytes &&
1906 ab_prev && ab_prev->b_size == bytes)
1907 continue;
1908
1909 /* ignore markers */
1910 if (ab->b_spa == 0)
1911 continue;
1912
1913 /*
1914 * It may take a long time to evict all the bufs requested.
1915 * To avoid blocking all arc activity, periodically drop
1916 * the arcs_mtx and give other threads a chance to run
1917 * before reacquiring the lock.
1918 *
1919 * If we are looking for a buffer to recycle, we are in
1920 * the hot code path, so don't sleep.
1921 */
1922 if (!recycle && count++ > arc_evict_iterations) {
1923 list_insert_after(list, ab, &marker);
1924 mutex_exit(&evicted_state->arcs_mtx);
1925 mutex_exit(&state->arcs_mtx);
1926 kpreempt(KPREEMPT_SYNC);
1927 mutex_enter(&state->arcs_mtx);
1928 mutex_enter(&evicted_state->arcs_mtx);
1929 ab_prev = list_prev(list, &marker);
1930 list_remove(list, &marker);
1931 count = 0;
1932 continue;
1933 }
1934
1935 hash_lock = HDR_LOCK(ab);
1936 have_lock = MUTEX_HELD(hash_lock);
1937 if (have_lock || mutex_tryenter(hash_lock)) {
1938 ASSERT0(refcount_count(&ab->b_refcnt));
1939 ASSERT(ab->b_datacnt > 0);
1940 while (ab->b_buf) {
1941 arc_buf_t *buf = ab->b_buf;
1942 if (!mutex_tryenter(&buf->b_evict_lock)) {
1943 missed += 1;
1944 break;
1945 }
1946 if (buf->b_data) {
1947 bytes_evicted += ab->b_size;
1948 if (recycle && ab->b_type == type &&
1949 ab->b_size == bytes &&
1950 !HDR_L2_WRITING(ab)) {
1951 stolen = buf->b_data;
1952 recycle = FALSE;
1953 }
1954 }
1955 if (buf->b_efunc) {
1956 mutex_enter(&arc_eviction_mtx);
1957 arc_buf_destroy(buf,
1958 buf->b_data == stolen, FALSE);
1959 ab->b_buf = buf->b_next;
1960 buf->b_hdr = &arc_eviction_hdr;
1961 buf->b_next = arc_eviction_list;
1962 arc_eviction_list = buf;
1963 mutex_exit(&arc_eviction_mtx);
1964 mutex_exit(&buf->b_evict_lock);
1965 } else {
1966 mutex_exit(&buf->b_evict_lock);
1967 arc_buf_destroy(buf,
1968 buf->b_data == stolen, TRUE);
1969 }
1970 }
1971
1972 if (ab->b_l2hdr) {
1973 ARCSTAT_INCR(arcstat_evict_l2_cached,
1974 ab->b_size);
1975 } else {
1976 if (l2arc_write_eligible(ab->b_spa, ab)) {
1977 ARCSTAT_INCR(arcstat_evict_l2_eligible,
1978 ab->b_size);
1979 } else {
1980 ARCSTAT_INCR(
1981 arcstat_evict_l2_ineligible,
1982 ab->b_size);
1983 }
1984 }
1985
1986 if (ab->b_datacnt == 0) {
1987 arc_change_state(evicted_state, ab, hash_lock);
1988 ASSERT(HDR_IN_HASH_TABLE(ab));
1989 ab->b_flags |= ARC_IN_HASH_TABLE;
1990 ab->b_flags &= ~ARC_BUF_AVAILABLE;
1991 DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, ab);
1992 }
1993 if (!have_lock)
1994 mutex_exit(hash_lock);
1995 if (bytes >= 0 && bytes_evicted >= bytes)
1996 break;
1997 } else {
1998 missed += 1;
1999 }
2000 }
2001
2002 mutex_exit(&evicted_state->arcs_mtx);
2003 mutex_exit(&state->arcs_mtx);
2004
2005 if (bytes_evicted < bytes)
2006 dprintf("only evicted %lld bytes from %x\n",
2007 (longlong_t)bytes_evicted, state);
2008
2009 if (skipped)
2010 ARCSTAT_INCR(arcstat_evict_skip, skipped);
2011
2012 if (missed)
2013 ARCSTAT_INCR(arcstat_mutex_miss, missed);
2014
2015 /*
2016 * Note: we have just evicted some data into the ghost state,
2017 * potentially putting the ghost size over the desired size. Rather
2018 * that evicting from the ghost list in this hot code path, leave
2019 * this chore to the arc_reclaim_thread().
2020 */
2021
2022 return (stolen);
2023 }
2024
2025 /*
2026 * Remove buffers from list until we've removed the specified number of
2027 * bytes. Destroy the buffers that are removed.
2028 */
2029 static void
2030 arc_evict_ghost(arc_state_t *state, uint64_t spa, int64_t bytes,
2031 arc_buf_contents_t type)
2032 {
2033 arc_buf_hdr_t *ab, *ab_prev;
2034 arc_buf_hdr_t marker;
2035 list_t *list = &state->arcs_list[type];
2036 kmutex_t *hash_lock;
2037 uint64_t bytes_deleted = 0;
2038 uint64_t bufs_skipped = 0;
2039 int count = 0;
2040
2041 ASSERT(GHOST_STATE(state));
2042 bzero(&marker, sizeof (marker));
2043 top:
2044 mutex_enter(&state->arcs_mtx);
2045 for (ab = list_tail(list); ab; ab = ab_prev) {
2046 ab_prev = list_prev(list, ab);
2047 if (ab->b_type > ARC_BUFC_NUMTYPES)
2048 panic("invalid ab=%p", (void *)ab);
2049 if (spa && ab->b_spa != spa)
2050 continue;
2051
2052 /* ignore markers */
2053 if (ab->b_spa == 0)
2054 continue;
2055
2056 hash_lock = HDR_LOCK(ab);
2057 /* caller may be trying to modify this buffer, skip it */
2058 if (MUTEX_HELD(hash_lock))
2059 continue;
2060
2061 /*
2062 * It may take a long time to evict all the bufs requested.
2063 * To avoid blocking all arc activity, periodically drop
2064 * the arcs_mtx and give other threads a chance to run
2065 * before reacquiring the lock.
2066 */
2067 if (count++ > arc_evict_iterations) {
2068 list_insert_after(list, ab, &marker);
2069 mutex_exit(&state->arcs_mtx);
2070 kpreempt(KPREEMPT_SYNC);
2071 mutex_enter(&state->arcs_mtx);
2072 ab_prev = list_prev(list, &marker);
2073 list_remove(list, &marker);
2074 count = 0;
2075 continue;
2076 }
2077 if (mutex_tryenter(hash_lock)) {
2078 ASSERT(!HDR_IO_IN_PROGRESS(ab));
2079 ASSERT(ab->b_buf == NULL);
2080 ARCSTAT_BUMP(arcstat_deleted);
2081 bytes_deleted += ab->b_size;
2082
2083 if (ab->b_l2hdr != NULL) {
2084 /*
2085 * This buffer is cached on the 2nd Level ARC;
2086 * don't destroy the header.
2087 */
2088 arc_change_state(arc_l2c_only, ab, hash_lock);
2089 mutex_exit(hash_lock);
2090 } else {
2091 arc_change_state(arc_anon, ab, hash_lock);
2092 mutex_exit(hash_lock);
2093 arc_hdr_destroy(ab);
2094 }
2095
2096 DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, ab);
2097 if (bytes >= 0 && bytes_deleted >= bytes)
2098 break;
2099 } else if (bytes < 0) {
2100 /*
2101 * Insert a list marker and then wait for the
2102 * hash lock to become available. Once its
2103 * available, restart from where we left off.
2104 */
2105 list_insert_after(list, ab, &marker);
2106 mutex_exit(&state->arcs_mtx);
2107 mutex_enter(hash_lock);
2108 mutex_exit(hash_lock);
2109 mutex_enter(&state->arcs_mtx);
2110 ab_prev = list_prev(list, &marker);
2111 list_remove(list, &marker);
2112 } else {
2113 bufs_skipped += 1;
2114 }
2115 }
2116 mutex_exit(&state->arcs_mtx);
2117
2118 if (list == &state->arcs_list[ARC_BUFC_DATA] &&
2119 (bytes < 0 || bytes_deleted < bytes)) {
2120 list = &state->arcs_list[ARC_BUFC_METADATA];
2121 goto top;
2122 }
2123
2124 if (bufs_skipped) {
2125 ARCSTAT_INCR(arcstat_mutex_miss, bufs_skipped);
2126 ASSERT(bytes >= 0);
2127 }
2128
2129 if (bytes_deleted < bytes)
2130 dprintf("only deleted %lld bytes from %p\n",
2131 (longlong_t)bytes_deleted, state);
2132 }
2133
2134 static void
2135 arc_adjust(void)
2136 {
2137 int64_t adjustment, delta;
2138
2139 /*
2140 * Adjust MRU size
2141 */
2142
2143 adjustment = MIN((int64_t)(arc_size - arc_c),
2144 (int64_t)(arc_anon->arcs_size + arc_mru->arcs_size + arc_meta_used -
2145 arc_p));
2146
2147 if (adjustment > 0 && arc_mru->arcs_lsize[ARC_BUFC_DATA] > 0) {
2148 delta = MIN(arc_mru->arcs_lsize[ARC_BUFC_DATA], adjustment);
2149 (void) arc_evict(arc_mru, 0, delta, FALSE, ARC_BUFC_DATA);
2150 adjustment -= delta;
2151 }
2152
2153 if (adjustment > 0 && arc_mru->arcs_lsize[ARC_BUFC_METADATA] > 0) {
2154 delta = MIN(arc_mru->arcs_lsize[ARC_BUFC_METADATA], adjustment);
2155 (void) arc_evict(arc_mru, 0, delta, FALSE,
2156 ARC_BUFC_METADATA);
2157 }
2158
2159 /*
2160 * Adjust MFU size
2161 */
2162
2163 adjustment = arc_size - arc_c;
2164
2165 if (adjustment > 0 && arc_mfu->arcs_lsize[ARC_BUFC_DATA] > 0) {
2166 delta = MIN(adjustment, arc_mfu->arcs_lsize[ARC_BUFC_DATA]);
2167 (void) arc_evict(arc_mfu, 0, delta, FALSE, ARC_BUFC_DATA);
2168 adjustment -= delta;
2169 }
2170
2171 if (adjustment > 0 && arc_mfu->arcs_lsize[ARC_BUFC_METADATA] > 0) {
2172 int64_t delta = MIN(adjustment,
2173 arc_mfu->arcs_lsize[ARC_BUFC_METADATA]);
2174 (void) arc_evict(arc_mfu, 0, delta, FALSE,
2175 ARC_BUFC_METADATA);
2176 }
2177
2178 /*
2179 * Adjust ghost lists
2180 */
2181
2182 adjustment = arc_mru->arcs_size + arc_mru_ghost->arcs_size - arc_c;
2183
2184 if (adjustment > 0 && arc_mru_ghost->arcs_size > 0) {
2185 delta = MIN(arc_mru_ghost->arcs_size, adjustment);
2186 arc_evict_ghost(arc_mru_ghost, 0, delta, ARC_BUFC_DATA);
2187 }
2188
2189 adjustment =
2190 arc_mru_ghost->arcs_size + arc_mfu_ghost->arcs_size - arc_c;
2191
2192 if (adjustment > 0 && arc_mfu_ghost->arcs_size > 0) {
2193 delta = MIN(arc_mfu_ghost->arcs_size, adjustment);
2194 arc_evict_ghost(arc_mfu_ghost, 0, delta, ARC_BUFC_DATA);
2195 }
2196 }
2197
2198 /*
2199 * Request that arc user drop references so that N bytes can be released
2200 * from the cache. This provides a mechanism to ensure the arc can honor
2201 * the arc_meta_limit and reclaim buffers which are pinned in the cache
2202 * by higher layers. (i.e. the zpl)
2203 */
2204 static void
2205 arc_do_user_prune(int64_t adjustment)
2206 {
2207 arc_prune_func_t *func;
2208 void *private;
2209 arc_prune_t *cp, *np;
2210
2211 mutex_enter(&arc_prune_mtx);
2212
2213 cp = list_head(&arc_prune_list);
2214 while (cp != NULL) {
2215 func = cp->p_pfunc;
2216 private = cp->p_private;
2217 np = list_next(&arc_prune_list, cp);
2218 refcount_add(&cp->p_refcnt, func);
2219 mutex_exit(&arc_prune_mtx);
2220
2221 if (func != NULL)
2222 func(adjustment, private);
2223
2224 mutex_enter(&arc_prune_mtx);
2225
2226 /* User removed prune callback concurrently with execution */
2227 if (refcount_remove(&cp->p_refcnt, func) == 0) {
2228 ASSERT(!list_link_active(&cp->p_node));
2229 refcount_destroy(&cp->p_refcnt);
2230 kmem_free(cp, sizeof (*cp));
2231 }
2232
2233 cp = np;
2234 }
2235
2236 ARCSTAT_BUMP(arcstat_prune);
2237 mutex_exit(&arc_prune_mtx);
2238 }
2239
2240 static void
2241 arc_do_user_evicts(void)
2242 {
2243 mutex_enter(&arc_eviction_mtx);
2244 while (arc_eviction_list != NULL) {
2245 arc_buf_t *buf = arc_eviction_list;
2246 arc_eviction_list = buf->b_next;
2247 mutex_enter(&buf->b_evict_lock);
2248 buf->b_hdr = NULL;
2249 mutex_exit(&buf->b_evict_lock);
2250 mutex_exit(&arc_eviction_mtx);
2251
2252 if (buf->b_efunc != NULL)
2253 VERIFY(buf->b_efunc(buf) == 0);
2254
2255 buf->b_efunc = NULL;
2256 buf->b_private = NULL;
2257 kmem_cache_free(buf_cache, buf);
2258 mutex_enter(&arc_eviction_mtx);
2259 }
2260 mutex_exit(&arc_eviction_mtx);
2261 }
2262
2263 /*
2264 * Evict only meta data objects from the cache leaving the data objects.
2265 * This is only used to enforce the tunable arc_meta_limit, if we are
2266 * unable to evict enough buffers notify the user via the prune callback.
2267 */
2268 void
2269 arc_adjust_meta(int64_t adjustment, boolean_t may_prune)
2270 {
2271 int64_t delta;
2272
2273 if (adjustment > 0 && arc_mru->arcs_lsize[ARC_BUFC_METADATA] > 0) {
2274 delta = MIN(arc_mru->arcs_lsize[ARC_BUFC_METADATA], adjustment);
2275 arc_evict(arc_mru, 0, delta, FALSE, ARC_BUFC_METADATA);
2276 adjustment -= delta;
2277 }
2278
2279 if (adjustment > 0 && arc_mfu->arcs_lsize[ARC_BUFC_METADATA] > 0) {
2280 delta = MIN(arc_mfu->arcs_lsize[ARC_BUFC_METADATA], adjustment);
2281 arc_evict(arc_mfu, 0, delta, FALSE, ARC_BUFC_METADATA);
2282 adjustment -= delta;
2283 }
2284
2285 if (may_prune && (adjustment > 0) && (arc_meta_used > arc_meta_limit))
2286 arc_do_user_prune(zfs_arc_meta_prune);
2287 }
2288
2289 /*
2290 * Flush all *evictable* data from the cache for the given spa.
2291 * NOTE: this will not touch "active" (i.e. referenced) data.
2292 */
2293 void
2294 arc_flush(spa_t *spa)
2295 {
2296 uint64_t guid = 0;
2297
2298 if (spa)
2299 guid = spa_load_guid(spa);
2300
2301 while (list_head(&arc_mru->arcs_list[ARC_BUFC_DATA])) {
2302 (void) arc_evict(arc_mru, guid, -1, FALSE, ARC_BUFC_DATA);
2303 if (spa)
2304 break;
2305 }
2306 while (list_head(&arc_mru->arcs_list[ARC_BUFC_METADATA])) {
2307 (void) arc_evict(arc_mru, guid, -1, FALSE, ARC_BUFC_METADATA);
2308 if (spa)
2309 break;
2310 }
2311 while (list_head(&arc_mfu->arcs_list[ARC_BUFC_DATA])) {
2312 (void) arc_evict(arc_mfu, guid, -1, FALSE, ARC_BUFC_DATA);
2313 if (spa)
2314 break;
2315 }
2316 while (list_head(&arc_mfu->arcs_list[ARC_BUFC_METADATA])) {
2317 (void) arc_evict(arc_mfu, guid, -1, FALSE, ARC_BUFC_METADATA);
2318 if (spa)
2319 break;
2320 }
2321
2322 arc_evict_ghost(arc_mru_ghost, guid, -1, ARC_BUFC_DATA);
2323 arc_evict_ghost(arc_mfu_ghost, guid, -1, ARC_BUFC_DATA);
2324
2325 mutex_enter(&arc_reclaim_thr_lock);
2326 arc_do_user_evicts();
2327 mutex_exit(&arc_reclaim_thr_lock);
2328 ASSERT(spa || arc_eviction_list == NULL);
2329 }
2330
2331 void
2332 arc_shrink(uint64_t bytes)
2333 {
2334 if (arc_c > arc_c_min) {
2335 uint64_t arc_p_min;
2336 uint64_t to_free;
2337
2338 to_free = bytes ? bytes : arc_c >> zfs_arc_shrink_shift;
2339
2340 if (arc_c > arc_c_min + to_free)
2341 atomic_add_64(&arc_c, -to_free);
2342 else
2343 arc_c = arc_c_min;
2344
2345 arc_p_min = (arc_c >> zfs_arc_p_min_shift);
2346 to_free = bytes ? bytes : arc_p >> zfs_arc_shrink_shift;
2347
2348 if (arc_p > arc_p_min + to_free)
2349 atomic_add_64(&arc_p, -to_free);
2350 else
2351 arc_p = arc_p_min;
2352
2353 if (arc_c > arc_size)
2354 arc_c = MAX(arc_size, arc_c_min);
2355 if (arc_p > arc_c)
2356 arc_p = (arc_c >> 1);
2357 ASSERT(arc_c >= arc_c_min);
2358 ASSERT((int64_t)arc_p >= 0);
2359 }
2360
2361 if (arc_size > arc_c)
2362 arc_adjust();
2363 }
2364
2365 static void
2366 arc_kmem_reap_now(arc_reclaim_strategy_t strat, uint64_t bytes)
2367 {
2368 size_t i;
2369 kmem_cache_t *prev_cache = NULL;
2370 kmem_cache_t *prev_data_cache = NULL;
2371 extern kmem_cache_t *zio_buf_cache[];
2372 extern kmem_cache_t *zio_data_buf_cache[];
2373
2374 /*
2375 * An aggressive reclamation will shrink the cache size as well as
2376 * reap free buffers from the arc kmem caches.
2377 */
2378 if (strat == ARC_RECLAIM_AGGR)
2379 arc_shrink(bytes);
2380
2381 for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) {
2382 if (zio_buf_cache[i] != prev_cache) {
2383 prev_cache = zio_buf_cache[i];
2384 kmem_cache_reap_now(zio_buf_cache[i]);
2385 }
2386 if (zio_data_buf_cache[i] != prev_data_cache) {
2387 prev_data_cache = zio_data_buf_cache[i];
2388 kmem_cache_reap_now(zio_data_buf_cache[i]);
2389 }
2390 }
2391
2392 kmem_cache_reap_now(buf_cache);
2393 kmem_cache_reap_now(hdr_cache);
2394 }
2395
2396 /*
2397 * Unlike other ZFS implementations this thread is only responsible for
2398 * adapting the target ARC size on Linux. The responsibility for memory
2399 * reclamation has been entirely delegated to the arc_shrinker_func()
2400 * which is registered with the VM. To reflect this change in behavior
2401 * the arc_reclaim thread has been renamed to arc_adapt.
2402 */
2403 static void
2404 arc_adapt_thread(void)
2405 {
2406 callb_cpr_t cpr;
2407 int64_t prune;
2408
2409 CALLB_CPR_INIT(&cpr, &arc_reclaim_thr_lock, callb_generic_cpr, FTAG);
2410
2411 mutex_enter(&arc_reclaim_thr_lock);
2412 while (arc_thread_exit == 0) {
2413 #ifndef _KERNEL
2414 arc_reclaim_strategy_t last_reclaim = ARC_RECLAIM_CONS;
2415
2416 if (spa_get_random(100) == 0) {
2417
2418 if (arc_no_grow) {
2419 if (last_reclaim == ARC_RECLAIM_CONS) {
2420 last_reclaim = ARC_RECLAIM_AGGR;
2421 } else {
2422 last_reclaim = ARC_RECLAIM_CONS;
2423 }
2424 } else {
2425 arc_no_grow = TRUE;
2426 last_reclaim = ARC_RECLAIM_AGGR;
2427 membar_producer();
2428 }
2429
2430 /* reset the growth delay for every reclaim */
2431 arc_grow_time = ddi_get_lbolt() +
2432 (zfs_arc_grow_retry * hz);
2433
2434 arc_kmem_reap_now(last_reclaim, 0);
2435 arc_warm = B_TRUE;
2436 }
2437 #endif /* !_KERNEL */
2438
2439 /* No recent memory pressure allow the ARC to grow. */
2440 if (arc_no_grow && ddi_get_lbolt() >= arc_grow_time)
2441 arc_no_grow = FALSE;
2442
2443 /*
2444 * Keep meta data usage within limits, arc_shrink() is not
2445 * used to avoid collapsing the arc_c value when only the
2446 * arc_meta_limit is being exceeded.
2447 */
2448 prune = (int64_t)arc_meta_used - (int64_t)arc_meta_limit;
2449 if (prune > 0)
2450 arc_adjust_meta(prune, B_TRUE);
2451
2452 arc_adjust();
2453
2454 if (arc_eviction_list != NULL)
2455 arc_do_user_evicts();
2456
2457 /* block until needed, or one second, whichever is shorter */
2458 CALLB_CPR_SAFE_BEGIN(&cpr);
2459 (void) cv_timedwait_interruptible(&arc_reclaim_thr_cv,
2460 &arc_reclaim_thr_lock, (ddi_get_lbolt() + hz));
2461 CALLB_CPR_SAFE_END(&cpr, &arc_reclaim_thr_lock);
2462
2463
2464 /* Allow the module options to be changed */
2465 if (zfs_arc_max > 64 << 20 &&
2466 zfs_arc_max < physmem * PAGESIZE &&
2467 zfs_arc_max != arc_c_max)
2468 arc_c_max = zfs_arc_max;
2469
2470 if (zfs_arc_min > 0 &&
2471 zfs_arc_min < arc_c_max &&
2472 zfs_arc_min != arc_c_min)
2473 arc_c_min = zfs_arc_min;
2474
2475 if (zfs_arc_meta_limit > 0 &&
2476 zfs_arc_meta_limit <= arc_c_max &&
2477 zfs_arc_meta_limit != arc_meta_limit)
2478 arc_meta_limit = zfs_arc_meta_limit;
2479
2480
2481
2482 }
2483
2484 arc_thread_exit = 0;
2485 cv_broadcast(&arc_reclaim_thr_cv);
2486 CALLB_CPR_EXIT(&cpr); /* drops arc_reclaim_thr_lock */
2487 thread_exit();
2488 }
2489
2490 #ifdef _KERNEL
2491 /*
2492 * Determine the amount of memory eligible for eviction contained in the
2493 * ARC. All clean data reported by the ghost lists can always be safely
2494 * evicted. Due to arc_c_min, the same does not hold for all clean data
2495 * contained by the regular mru and mfu lists.
2496 *
2497 * In the case of the regular mru and mfu lists, we need to report as
2498 * much clean data as possible, such that evicting that same reported
2499 * data will not bring arc_size below arc_c_min. Thus, in certain
2500 * circumstances, the total amount of clean data in the mru and mfu
2501 * lists might not actually be evictable.
2502 *
2503 * The following two distinct cases are accounted for:
2504 *
2505 * 1. The sum of the amount of dirty data contained by both the mru and
2506 * mfu lists, plus the ARC's other accounting (e.g. the anon list),
2507 * is greater than or equal to arc_c_min.
2508 * (i.e. amount of dirty data >= arc_c_min)
2509 *
2510 * This is the easy case; all clean data contained by the mru and mfu
2511 * lists is evictable. Evicting all clean data can only drop arc_size
2512 * to the amount of dirty data, which is greater than arc_c_min.
2513 *
2514 * 2. The sum of the amount of dirty data contained by both the mru and
2515 * mfu lists, plus the ARC's other accounting (e.g. the anon list),
2516 * is less than arc_c_min.
2517 * (i.e. arc_c_min > amount of dirty data)
2518 *
2519 * 2.1. arc_size is greater than or equal arc_c_min.
2520 * (i.e. arc_size >= arc_c_min > amount of dirty data)
2521 *
2522 * In this case, not all clean data from the regular mru and mfu
2523 * lists is actually evictable; we must leave enough clean data
2524 * to keep arc_size above arc_c_min. Thus, the maximum amount of
2525 * evictable data from the two lists combined, is exactly the
2526 * difference between arc_size and arc_c_min.
2527 *
2528 * 2.2. arc_size is less than arc_c_min
2529 * (i.e. arc_c_min > arc_size > amount of dirty data)
2530 *
2531 * In this case, none of the data contained in the mru and mfu
2532 * lists is evictable, even if it's clean. Since arc_size is
2533 * already below arc_c_min, evicting any more would only
2534 * increase this negative difference.
2535 */
2536 static uint64_t
2537 arc_evictable_memory(void) {
2538 uint64_t arc_clean =
2539 arc_mru->arcs_lsize[ARC_BUFC_DATA] +
2540 arc_mru->arcs_lsize[ARC_BUFC_METADATA] +
2541 arc_mfu->arcs_lsize[ARC_BUFC_DATA] +
2542 arc_mfu->arcs_lsize[ARC_BUFC_METADATA];
2543 uint64_t ghost_clean =
2544 arc_mru_ghost->arcs_lsize[ARC_BUFC_DATA] +
2545 arc_mru_ghost->arcs_lsize[ARC_BUFC_METADATA] +
2546 arc_mfu_ghost->arcs_lsize[ARC_BUFC_DATA] +
2547 arc_mfu_ghost->arcs_lsize[ARC_BUFC_METADATA];
2548 uint64_t arc_dirty = MAX((int64_t)arc_size - (int64_t)arc_clean, 0);
2549
2550 if (arc_dirty >= arc_c_min)
2551 return (ghost_clean + arc_clean);
2552
2553 return (ghost_clean + MAX((int64_t)arc_size - (int64_t)arc_c_min, 0));
2554 }
2555
2556 static int
2557 __arc_shrinker_func(struct shrinker *shrink, struct shrink_control *sc)
2558 {
2559 uint64_t pages;
2560
2561 /* The arc is considered warm once reclaim has occurred */
2562 if (unlikely(arc_warm == B_FALSE))
2563 arc_warm = B_TRUE;
2564
2565 /* Return the potential number of reclaimable pages */
2566 pages = btop(arc_evictable_memory());
2567 if (sc->nr_to_scan == 0)
2568 return (pages);
2569
2570 /* Not allowed to perform filesystem reclaim */
2571 if (!(sc->gfp_mask & __GFP_FS))
2572 return (-1);
2573
2574 /* Reclaim in progress */
2575 if (mutex_tryenter(&arc_reclaim_thr_lock) == 0)
2576 return (-1);
2577
2578 /*
2579 * Evict the requested number of pages by shrinking arc_c the
2580 * requested amount. If there is nothing left to evict just
2581 * reap whatever we can from the various arc slabs.
2582 */
2583 if (pages > 0) {
2584 arc_kmem_reap_now(ARC_RECLAIM_AGGR, ptob(sc->nr_to_scan));
2585 } else {
2586 arc_kmem_reap_now(ARC_RECLAIM_CONS, ptob(sc->nr_to_scan));
2587 }
2588
2589 /*
2590 * When direct reclaim is observed it usually indicates a rapid
2591 * increase in memory pressure. This occurs because the kswapd
2592 * threads were unable to asynchronously keep enough free memory
2593 * available. In this case set arc_no_grow to briefly pause arc
2594 * growth to avoid compounding the memory pressure.
2595 */
2596 if (current_is_kswapd()) {
2597 ARCSTAT_BUMP(arcstat_memory_indirect_count);
2598 } else {
2599 arc_no_grow = B_TRUE;
2600 arc_grow_time = ddi_get_lbolt() + (zfs_arc_grow_retry * hz);
2601 ARCSTAT_BUMP(arcstat_memory_direct_count);
2602 }
2603
2604 mutex_exit(&arc_reclaim_thr_lock);
2605
2606 return (-1);
2607 }
2608 SPL_SHRINKER_CALLBACK_WRAPPER(arc_shrinker_func);
2609
2610 SPL_SHRINKER_DECLARE(arc_shrinker, arc_shrinker_func, DEFAULT_SEEKS);
2611 #endif /* _KERNEL */
2612
2613 /*
2614 * Adapt arc info given the number of bytes we are trying to add and
2615 * the state that we are comming from. This function is only called
2616 * when we are adding new content to the cache.
2617 */
2618 static void
2619 arc_adapt(int bytes, arc_state_t *state)
2620 {
2621 int mult;
2622 uint64_t arc_p_min = (arc_c >> zfs_arc_p_min_shift);
2623
2624 if (state == arc_l2c_only)
2625 return;
2626
2627 ASSERT(bytes > 0);
2628 /*
2629 * Adapt the target size of the MRU list:
2630 * - if we just hit in the MRU ghost list, then increase
2631 * the target size of the MRU list.
2632 * - if we just hit in the MFU ghost list, then increase
2633 * the target size of the MFU list by decreasing the
2634 * target size of the MRU list.
2635 */
2636 if (state == arc_mru_ghost) {
2637 mult = ((arc_mru_ghost->arcs_size >= arc_mfu_ghost->arcs_size) ?
2638 1 : (arc_mfu_ghost->arcs_size/arc_mru_ghost->arcs_size));
2639 mult = MIN(mult, 10); /* avoid wild arc_p adjustment */
2640
2641 arc_p = MIN(arc_c - arc_p_min, arc_p + bytes * mult);
2642 } else if (state == arc_mfu_ghost) {
2643 uint64_t delta;
2644
2645 mult = ((arc_mfu_ghost->arcs_size >= arc_mru_ghost->arcs_size) ?
2646 1 : (arc_mru_ghost->arcs_size/arc_mfu_ghost->arcs_size));
2647 mult = MIN(mult, 10);
2648
2649 delta = MIN(bytes * mult, arc_p);
2650 arc_p = MAX(arc_p_min, arc_p - delta);
2651 }
2652 ASSERT((int64_t)arc_p >= 0);
2653
2654 if (arc_no_grow)
2655 return;
2656
2657 if (arc_c >= arc_c_max)
2658 return;
2659
2660 /*
2661 * If we're within (2 * maxblocksize) bytes of the target
2662 * cache size, increment the target cache size
2663 */
2664 if (arc_size > arc_c - (2ULL << SPA_MAXBLOCKSHIFT)) {
2665 atomic_add_64(&arc_c, (int64_t)bytes);
2666 if (arc_c > arc_c_max)
2667 arc_c = arc_c_max;
2668 else if (state == arc_anon)
2669 atomic_add_64(&arc_p, (int64_t)bytes);
2670 if (arc_p > arc_c)
2671 arc_p = arc_c;
2672 }
2673 ASSERT((int64_t)arc_p >= 0);
2674 }
2675
2676 /*
2677 * Check if the cache has reached its limits and eviction is required
2678 * prior to insert.
2679 */
2680 static int
2681 arc_evict_needed(arc_buf_contents_t type)
2682 {
2683 if (type == ARC_BUFC_METADATA && arc_meta_used >= arc_meta_limit)
2684 return (1);
2685
2686 if (arc_no_grow)
2687 return (1);
2688
2689 return (arc_size > arc_c);
2690 }
2691
2692 /*
2693 * The buffer, supplied as the first argument, needs a data block.
2694 * So, if we are at cache max, determine which cache should be victimized.
2695 * We have the following cases:
2696 *
2697 * 1. Insert for MRU, p > sizeof(arc_anon + arc_mru) ->
2698 * In this situation if we're out of space, but the resident size of the MFU is
2699 * under the limit, victimize the MFU cache to satisfy this insertion request.
2700 *
2701 * 2. Insert for MRU, p <= sizeof(arc_anon + arc_mru) ->
2702 * Here, we've used up all of the available space for the MRU, so we need to
2703 * evict from our own cache instead. Evict from the set of resident MRU
2704 * entries.
2705 *
2706 * 3. Insert for MFU (c - p) > sizeof(arc_mfu) ->
2707 * c minus p represents the MFU space in the cache, since p is the size of the
2708 * cache that is dedicated to the MRU. In this situation there's still space on
2709 * the MFU side, so the MRU side needs to be victimized.
2710 *
2711 * 4. Insert for MFU (c - p) < sizeof(arc_mfu) ->
2712 * MFU's resident set is consuming more space than it has been allotted. In
2713 * this situation, we must victimize our own cache, the MFU, for this insertion.
2714 */
2715 static void
2716 arc_get_data_buf(arc_buf_t *buf)
2717 {
2718 arc_state_t *state = buf->b_hdr->b_state;
2719 uint64_t size = buf->b_hdr->b_size;
2720 arc_buf_contents_t type = buf->b_hdr->b_type;
2721
2722 arc_adapt(size, state);
2723
2724 /*
2725 * We have not yet reached cache maximum size,
2726 * just allocate a new buffer.
2727 */
2728 if (!arc_evict_needed(type)) {
2729 if (type == ARC_BUFC_METADATA) {
2730 buf->b_data = zio_buf_alloc(size);
2731 arc_space_consume(size, ARC_SPACE_DATA);
2732 } else {
2733 ASSERT(type == ARC_BUFC_DATA);
2734 buf->b_data = zio_data_buf_alloc(size);
2735 ARCSTAT_INCR(arcstat_data_size, size);
2736 atomic_add_64(&arc_size, size);
2737 }
2738 goto out;
2739 }
2740
2741 /*
2742 * If we are prefetching from the mfu ghost list, this buffer
2743 * will end up on the mru list; so steal space from there.
2744 */
2745 if (state == arc_mfu_ghost)
2746 state = buf->b_hdr->b_flags & ARC_PREFETCH ? arc_mru : arc_mfu;
2747 else if (state == arc_mru_ghost)
2748 state = arc_mru;
2749
2750 if (state == arc_mru || state == arc_anon) {
2751 uint64_t mru_used = arc_anon->arcs_size + arc_mru->arcs_size;
2752 state = (arc_mfu->arcs_lsize[type] >= size &&
2753 arc_p > mru_used) ? arc_mfu : arc_mru;
2754 } else {
2755 /* MFU cases */
2756 uint64_t mfu_space = arc_c - arc_p;
2757 state = (arc_mru->arcs_lsize[type] >= size &&
2758 mfu_space > arc_mfu->arcs_size) ? arc_mru : arc_mfu;
2759 }
2760
2761 if ((buf->b_data = arc_evict(state, 0, size, TRUE, type)) == NULL) {
2762 if (type == ARC_BUFC_METADATA) {
2763 buf->b_data = zio_buf_alloc(size);
2764 arc_space_consume(size, ARC_SPACE_DATA);
2765
2766 /*
2767 * If we are unable to recycle an existing meta buffer
2768 * signal the reclaim thread. It will notify users
2769 * via the prune callback to drop references. The
2770 * prune callback in run in the context of the reclaim
2771 * thread to avoid deadlocking on the hash_lock.
2772 */
2773 cv_signal(&arc_reclaim_thr_cv);
2774 } else {
2775 ASSERT(type == ARC_BUFC_DATA);
2776 buf->b_data = zio_data_buf_alloc(size);
2777 ARCSTAT_INCR(arcstat_data_size, size);
2778 atomic_add_64(&arc_size, size);
2779 }
2780
2781 ARCSTAT_BUMP(arcstat_recycle_miss);
2782 }
2783 ASSERT(buf->b_data != NULL);
2784 out:
2785 /*
2786 * Update the state size. Note that ghost states have a
2787 * "ghost size" and so don't need to be updated.
2788 */
2789 if (!GHOST_STATE(buf->b_hdr->b_state)) {
2790 arc_buf_hdr_t *hdr = buf->b_hdr;
2791
2792 atomic_add_64(&hdr->b_state->arcs_size, size);
2793 if (list_link_active(&hdr->b_arc_node)) {
2794 ASSERT(refcount_is_zero(&hdr->b_refcnt));
2795 atomic_add_64(&hdr->b_state->arcs_lsize[type], size);
2796 }
2797 /*
2798 * If we are growing the cache, and we are adding anonymous
2799 * data, and we have outgrown arc_p, update arc_p
2800 */
2801 if (arc_size < arc_c && hdr->b_state == arc_anon &&
2802 arc_anon->arcs_size + arc_mru->arcs_size > arc_p)
2803 arc_p = MIN(arc_c, arc_p + size);
2804 }
2805 }
2806
2807 /*
2808 * This routine is called whenever a buffer is accessed.
2809 * NOTE: the hash lock is dropped in this function.
2810 */
2811 static void
2812 arc_access(arc_buf_hdr_t *buf, kmutex_t *hash_lock)
2813 {
2814 clock_t now;
2815
2816 ASSERT(MUTEX_HELD(hash_lock));
2817
2818 if (buf->b_state == arc_anon) {
2819 /*
2820 * This buffer is not in the cache, and does not
2821 * appear in our "ghost" list. Add the new buffer
2822 * to the MRU state.
2823 */
2824
2825 ASSERT(buf->b_arc_access == 0);
2826 buf->b_arc_access = ddi_get_lbolt();
2827 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, buf);
2828 arc_change_state(arc_mru, buf, hash_lock);
2829
2830 } else if (buf->b_state == arc_mru) {
2831 now = ddi_get_lbolt();
2832
2833 /*
2834 * If this buffer is here because of a prefetch, then either:
2835 * - clear the flag if this is a "referencing" read
2836 * (any subsequent access will bump this into the MFU state).
2837 * or
2838 * - move the buffer to the head of the list if this is
2839 * another prefetch (to make it less likely to be evicted).
2840 */
2841 if ((buf->b_flags & ARC_PREFETCH) != 0) {
2842 if (refcount_count(&buf->b_refcnt) == 0) {
2843 ASSERT(list_link_active(&buf->b_arc_node));
2844 } else {
2845 buf->b_flags &= ~ARC_PREFETCH;
2846 atomic_inc_32(&buf->b_mru_hits);
2847 ARCSTAT_BUMP(arcstat_mru_hits);
2848 }
2849 buf->b_arc_access = now;
2850 return;
2851 }
2852
2853 /*
2854 * This buffer has been "accessed" only once so far,
2855 * but it is still in the cache. Move it to the MFU
2856 * state.
2857 */
2858 if (now > buf->b_arc_access + ARC_MINTIME) {
2859 /*
2860 * More than 125ms have passed since we
2861 * instantiated this buffer. Move it to the
2862 * most frequently used state.
2863 */
2864 buf->b_arc_access = now;
2865 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
2866 arc_change_state(arc_mfu, buf, hash_lock);
2867 }
2868 atomic_inc_32(&buf->b_mru_hits);
2869 ARCSTAT_BUMP(arcstat_mru_hits);
2870 } else if (buf->b_state == arc_mru_ghost) {
2871 arc_state_t *new_state;
2872 /*
2873 * This buffer has been "accessed" recently, but
2874 * was evicted from the cache. Move it to the
2875 * MFU state.
2876 */
2877
2878 if (buf->b_flags & ARC_PREFETCH) {
2879 new_state = arc_mru;
2880 if (refcount_count(&buf->b_refcnt) > 0)
2881 buf->b_flags &= ~ARC_PREFETCH;
2882 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, buf);
2883 } else {
2884 new_state = arc_mfu;
2885 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
2886 }
2887
2888 buf->b_arc_access = ddi_get_lbolt();
2889 arc_change_state(new_state, buf, hash_lock);
2890
2891 atomic_inc_32(&buf->b_mru_ghost_hits);
2892 ARCSTAT_BUMP(arcstat_mru_ghost_hits);
2893 } else if (buf->b_state == arc_mfu) {
2894 /*
2895 * This buffer has been accessed more than once and is
2896 * still in the cache. Keep it in the MFU state.
2897 *
2898 * NOTE: an add_reference() that occurred when we did
2899 * the arc_read() will have kicked this off the list.
2900 * If it was a prefetch, we will explicitly move it to
2901 * the head of the list now.
2902 */
2903 if ((buf->b_flags & ARC_PREFETCH) != 0) {
2904 ASSERT(refcount_count(&buf->b_refcnt) == 0);
2905 ASSERT(list_link_active(&buf->b_arc_node));
2906 }
2907 atomic_inc_32(&buf->b_mfu_hits);
2908 ARCSTAT_BUMP(arcstat_mfu_hits);
2909 buf->b_arc_access = ddi_get_lbolt();
2910 } else if (buf->b_state == arc_mfu_ghost) {
2911 arc_state_t *new_state = arc_mfu;
2912 /*
2913 * This buffer has been accessed more than once but has
2914 * been evicted from the cache. Move it back to the
2915 * MFU state.
2916 */
2917
2918 if (buf->b_flags & ARC_PREFETCH) {
2919 /*
2920 * This is a prefetch access...
2921 * move this block back to the MRU state.
2922 */
2923 ASSERT0(refcount_count(&buf->b_refcnt));
2924 new_state = arc_mru;
2925 }
2926
2927 buf->b_arc_access = ddi_get_lbolt();
2928 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
2929 arc_change_state(new_state, buf, hash_lock);
2930
2931 atomic_inc_32(&buf->b_mfu_ghost_hits);
2932 ARCSTAT_BUMP(arcstat_mfu_ghost_hits);
2933 } else if (buf->b_state == arc_l2c_only) {
2934 /*
2935 * This buffer is on the 2nd Level ARC.
2936 */
2937
2938 buf->b_arc_access = ddi_get_lbolt();
2939 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
2940 arc_change_state(arc_mfu, buf, hash_lock);
2941 } else {
2942 ASSERT(!"invalid arc state");
2943 }
2944 }
2945
2946 /* a generic arc_done_func_t which you can use */
2947 /* ARGSUSED */
2948 void
2949 arc_bcopy_func(zio_t *zio, arc_buf_t *buf, void *arg)
2950 {
2951 if (zio == NULL || zio->io_error == 0)
2952 bcopy(buf->b_data, arg, buf->b_hdr->b_size);
2953 VERIFY(arc_buf_remove_ref(buf, arg));
2954 }
2955
2956 /* a generic arc_done_func_t */
2957 void
2958 arc_getbuf_func(zio_t *zio, arc_buf_t *buf, void *arg)
2959 {
2960 arc_buf_t **bufp = arg;
2961 if (zio && zio->io_error) {
2962 VERIFY(arc_buf_remove_ref(buf, arg));
2963 *bufp = NULL;
2964 } else {
2965 *bufp = buf;
2966 ASSERT(buf->b_data);
2967 }
2968 }
2969
2970 static void
2971 arc_read_done(zio_t *zio)
2972 {
2973 arc_buf_hdr_t *hdr, *found;
2974 arc_buf_t *buf;
2975 arc_buf_t *abuf; /* buffer we're assigning to callback */
2976 kmutex_t *hash_lock;
2977 arc_callback_t *callback_list, *acb;
2978 int freeable = FALSE;
2979
2980 buf = zio->io_private;
2981 hdr = buf->b_hdr;
2982
2983 /*
2984 * The hdr was inserted into hash-table and removed from lists
2985 * prior to starting I/O. We should find this header, since
2986 * it's in the hash table, and it should be legit since it's
2987 * not possible to evict it during the I/O. The only possible
2988 * reason for it not to be found is if we were freed during the
2989 * read.
2990 */
2991 found = buf_hash_find(hdr->b_spa, &hdr->b_dva, hdr->b_birth,
2992 &hash_lock);
2993
2994 ASSERT((found == NULL && HDR_FREED_IN_READ(hdr) && hash_lock == NULL) ||
2995 (found == hdr && DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))) ||
2996 (found == hdr && HDR_L2_READING(hdr)));
2997
2998 hdr->b_flags &= ~ARC_L2_EVICTED;
2999 if (l2arc_noprefetch && (hdr->b_flags & ARC_PREFETCH))
3000 hdr->b_flags &= ~ARC_L2CACHE;
3001
3002 /* byteswap if necessary */
3003 callback_list = hdr->b_acb;
3004 ASSERT(callback_list != NULL);
3005 if (BP_SHOULD_BYTESWAP(zio->io_bp) && zio->io_error == 0) {
3006 dmu_object_byteswap_t bswap =
3007 DMU_OT_BYTESWAP(BP_GET_TYPE(zio->io_bp));
3008 if (BP_GET_LEVEL(zio->io_bp) > 0)
3009 byteswap_uint64_array(buf->b_data, hdr->b_size);
3010 else
3011 dmu_ot_byteswap[bswap].ob_func(buf->b_data, hdr->b_size);
3012 }
3013
3014 arc_cksum_compute(buf, B_FALSE);
3015 arc_buf_watch(buf);
3016
3017 if (hash_lock && zio->io_error == 0 && hdr->b_state == arc_anon) {
3018 /*
3019 * Only call arc_access on anonymous buffers. This is because
3020 * if we've issued an I/O for an evicted buffer, we've already
3021 * called arc_access (to prevent any simultaneous readers from
3022 * getting confused).
3023 */
3024 arc_access(hdr, hash_lock);
3025 }
3026
3027 /* create copies of the data buffer for the callers */
3028 abuf = buf;
3029 for (acb = callback_list; acb; acb = acb->acb_next) {
3030 if (acb->acb_done) {
3031 if (abuf == NULL) {
3032 ARCSTAT_BUMP(arcstat_duplicate_reads);
3033 abuf = arc_buf_clone(buf);
3034 }
3035 acb->acb_buf = abuf;
3036 abuf = NULL;
3037 }
3038 }
3039 hdr->b_acb = NULL;
3040 hdr->b_flags &= ~ARC_IO_IN_PROGRESS;
3041 ASSERT(!HDR_BUF_AVAILABLE(hdr));
3042 if (abuf == buf) {
3043 ASSERT(buf->b_efunc == NULL);
3044 ASSERT(hdr->b_datacnt == 1);
3045 hdr->b_flags |= ARC_BUF_AVAILABLE;
3046 }
3047
3048 ASSERT(refcount_is_zero(&hdr->b_refcnt) || callback_list != NULL);
3049
3050 if (zio->io_error != 0) {
3051 hdr->b_flags |= ARC_IO_ERROR;
3052 if (hdr->b_state != arc_anon)
3053 arc_change_state(arc_anon, hdr, hash_lock);
3054 if (HDR_IN_HASH_TABLE(hdr))
3055 buf_hash_remove(hdr);
3056 freeable = refcount_is_zero(&hdr->b_refcnt);
3057 }
3058
3059 /*
3060 * Broadcast before we drop the hash_lock to avoid the possibility
3061 * that the hdr (and hence the cv) might be freed before we get to
3062 * the cv_broadcast().
3063 */
3064 cv_broadcast(&hdr->b_cv);
3065
3066 if (hash_lock) {
3067 mutex_exit(hash_lock);
3068 } else {
3069 /*
3070 * This block was freed while we waited for the read to
3071 * complete. It has been removed from the hash table and
3072 * moved to the anonymous state (so that it won't show up
3073 * in the cache).
3074 */
3075 ASSERT3P(hdr->b_state, ==, arc_anon);
3076 freeable = refcount_is_zero(&hdr->b_refcnt);
3077 }
3078
3079 /* execute each callback and free its structure */
3080 while ((acb = callback_list) != NULL) {
3081 if (acb->acb_done)
3082 acb->acb_done(zio, acb->acb_buf, acb->acb_private);
3083
3084 if (acb->acb_zio_dummy != NULL) {
3085 acb->acb_zio_dummy->io_error = zio->io_error;
3086 zio_nowait(acb->acb_zio_dummy);
3087 }
3088
3089 callback_list = acb->acb_next;
3090 kmem_free(acb, sizeof (arc_callback_t));
3091 }
3092
3093 if (freeable)
3094 arc_hdr_destroy(hdr);
3095 }
3096
3097 /*
3098 * "Read" the block at the specified DVA (in bp) via the
3099 * cache. If the block is found in the cache, invoke the provided
3100 * callback immediately and return. Note that the `zio' parameter
3101 * in the callback will be NULL in this case, since no IO was
3102 * required. If the block is not in the cache pass the read request
3103 * on to the spa with a substitute callback function, so that the
3104 * requested block will be added to the cache.
3105 *
3106 * If a read request arrives for a block that has a read in-progress,
3107 * either wait for the in-progress read to complete (and return the
3108 * results); or, if this is a read with a "done" func, add a record
3109 * to the read to invoke the "done" func when the read completes,
3110 * and return; or just return.
3111 *
3112 * arc_read_done() will invoke all the requested "done" functions
3113 * for readers of this block.
3114 */
3115 int
3116 arc_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, arc_done_func_t *done,
3117 void *private, zio_priority_t priority, int zio_flags, uint32_t *arc_flags,
3118 const zbookmark_t *zb)
3119 {
3120 arc_buf_hdr_t *hdr;
3121 arc_buf_t *buf = NULL;
3122 kmutex_t *hash_lock;
3123 zio_t *rzio;
3124 uint64_t guid = spa_load_guid(spa);
3125 int rc = 0;
3126
3127 top:
3128 hdr = buf_hash_find(guid, BP_IDENTITY(bp), BP_PHYSICAL_BIRTH(bp),
3129 &hash_lock);
3130 if (hdr && hdr->b_datacnt > 0) {
3131
3132 *arc_flags |= ARC_CACHED;
3133
3134 if (HDR_IO_IN_PROGRESS(hdr)) {
3135
3136 if (*arc_flags & ARC_WAIT) {
3137 cv_wait(&hdr->b_cv, hash_lock);
3138 mutex_exit(hash_lock);
3139 goto top;
3140 }
3141 ASSERT(*arc_flags & ARC_NOWAIT);
3142
3143 if (done) {
3144 arc_callback_t *acb = NULL;
3145
3146 acb = kmem_zalloc(sizeof (arc_callback_t),
3147 KM_PUSHPAGE);
3148 acb->acb_done = done;
3149 acb->acb_private = private;
3150 if (pio != NULL)
3151 acb->acb_zio_dummy = zio_null(pio,
3152 spa, NULL, NULL, NULL, zio_flags);
3153
3154 ASSERT(acb->acb_done != NULL);
3155 acb->acb_next = hdr->b_acb;
3156 hdr->b_acb = acb;
3157 add_reference(hdr, hash_lock, private);
3158 mutex_exit(hash_lock);
3159 goto out;
3160 }
3161 mutex_exit(hash_lock);
3162 goto out;
3163 }
3164
3165 ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu);
3166
3167 if (done) {
3168 add_reference(hdr, hash_lock, private);
3169 /*
3170 * If this block is already in use, create a new
3171 * copy of the data so that we will be guaranteed
3172 * that arc_release() will always succeed.
3173 */
3174 buf = hdr->b_buf;
3175 ASSERT(buf);
3176 ASSERT(buf->b_data);
3177 if (HDR_BUF_AVAILABLE(hdr)) {
3178 ASSERT(buf->b_efunc == NULL);
3179 hdr->b_flags &= ~ARC_BUF_AVAILABLE;
3180 } else {
3181 buf = arc_buf_clone(buf);
3182 }
3183
3184 } else if (*arc_flags & ARC_PREFETCH &&
3185 refcount_count(&hdr->b_refcnt) == 0) {
3186 hdr->b_flags |= ARC_PREFETCH;
3187 }
3188 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
3189 arc_access(hdr, hash_lock);
3190 if (*arc_flags & ARC_L2CACHE)
3191 hdr->b_flags |= ARC_L2CACHE;
3192 if (*arc_flags & ARC_L2COMPRESS)
3193 hdr->b_flags |= ARC_L2COMPRESS;
3194 mutex_exit(hash_lock);
3195 ARCSTAT_BUMP(arcstat_hits);
3196 ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH),
3197 demand, prefetch, hdr->b_type != ARC_BUFC_METADATA,
3198 data, metadata, hits);
3199
3200 if (done)
3201 done(NULL, buf, private);
3202 } else {
3203 uint64_t size = BP_GET_LSIZE(bp);
3204 arc_callback_t *acb;
3205 vdev_t *vd = NULL;
3206 uint64_t addr = 0;
3207 boolean_t devw = B_FALSE;
3208
3209 if (hdr == NULL) {
3210 /* this block is not in the cache */
3211 arc_buf_hdr_t *exists;
3212 arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp);
3213 buf = arc_buf_alloc(spa, size, private, type);
3214 hdr = buf->b_hdr;
3215 hdr->b_dva = *BP_IDENTITY(bp);
3216 hdr->b_birth = BP_PHYSICAL_BIRTH(bp);
3217 hdr->b_cksum0 = bp->blk_cksum.zc_word[0];
3218 exists = buf_hash_insert(hdr, &hash_lock);
3219 if (exists) {
3220 /* somebody beat us to the hash insert */
3221 mutex_exit(hash_lock);
3222 buf_discard_identity(hdr);
3223 (void) arc_buf_remove_ref(buf, private);
3224 goto top; /* restart the IO request */
3225 }
3226 /* if this is a prefetch, we don't have a reference */
3227 if (*arc_flags & ARC_PREFETCH) {
3228 (void) remove_reference(hdr, hash_lock,
3229 private);
3230 hdr->b_flags |= ARC_PREFETCH;
3231 }
3232 if (*arc_flags & ARC_L2CACHE)
3233 hdr->b_flags |= ARC_L2CACHE;
3234 if (*arc_flags & ARC_L2COMPRESS)
3235 hdr->b_flags |= ARC_L2COMPRESS;
3236 if (BP_GET_LEVEL(bp) > 0)
3237 hdr->b_flags |= ARC_INDIRECT;
3238 } else {
3239 /* this block is in the ghost cache */
3240 ASSERT(GHOST_STATE(hdr->b_state));
3241 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
3242 ASSERT0(refcount_count(&hdr->b_refcnt));
3243 ASSERT(hdr->b_buf == NULL);
3244
3245 /* if this is a prefetch, we don't have a reference */
3246 if (*arc_flags & ARC_PREFETCH)
3247 hdr->b_flags |= ARC_PREFETCH;
3248 else
3249 add_reference(hdr, hash_lock, private);
3250 if (*arc_flags & ARC_L2CACHE)
3251 hdr->b_flags |= ARC_L2CACHE;
3252 if (*arc_flags & ARC_L2COMPRESS)
3253 hdr->b_flags |= ARC_L2COMPRESS;
3254 buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
3255 buf->b_hdr = hdr;
3256 buf->b_data = NULL;
3257 buf->b_efunc = NULL;
3258 buf->b_private = NULL;
3259 buf->b_next = NULL;
3260 hdr->b_buf = buf;
3261 ASSERT(hdr->b_datacnt == 0);
3262 hdr->b_datacnt = 1;
3263 arc_get_data_buf(buf);
3264 arc_access(hdr, hash_lock);
3265 }
3266
3267 ASSERT(!GHOST_STATE(hdr->b_state));
3268
3269 acb = kmem_zalloc(sizeof (arc_callback_t), KM_PUSHPAGE);
3270 acb->acb_done = done;
3271 acb->acb_private = private;
3272
3273 ASSERT(hdr->b_acb == NULL);
3274 hdr->b_acb = acb;
3275 hdr->b_flags |= ARC_IO_IN_PROGRESS;
3276
3277 if (HDR_L2CACHE(hdr) && hdr->b_l2hdr != NULL &&
3278 (vd = hdr->b_l2hdr->b_dev->l2ad_vdev) != NULL) {
3279 devw = hdr->b_l2hdr->b_dev->l2ad_writing;
3280 addr = hdr->b_l2hdr->b_daddr;
3281 /*
3282 * Lock out device removal.
3283 */
3284 if (vdev_is_dead(vd) ||
3285 !spa_config_tryenter(spa, SCL_L2ARC, vd, RW_READER))
3286 vd = NULL;
3287 }
3288
3289 mutex_exit(hash_lock);
3290
3291 /*
3292 * At this point, we have a level 1 cache miss. Try again in
3293 * L2ARC if possible.
3294 */
3295 ASSERT3U(hdr->b_size, ==, size);
3296 DTRACE_PROBE4(arc__miss, arc_buf_hdr_t *, hdr, blkptr_t *, bp,
3297 uint64_t, size, zbookmark_t *, zb);
3298 ARCSTAT_BUMP(arcstat_misses);
3299 ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH),
3300 demand, prefetch, hdr->b_type != ARC_BUFC_METADATA,
3301 data, metadata, misses);
3302
3303 if (vd != NULL && l2arc_ndev != 0 && !(l2arc_norw && devw)) {
3304 /*
3305 * Read from the L2ARC if the following are true:
3306 * 1. The L2ARC vdev was previously cached.
3307 * 2. This buffer still has L2ARC metadata.
3308 * 3. This buffer isn't currently writing to the L2ARC.
3309 * 4. The L2ARC entry wasn't evicted, which may
3310 * also have invalidated the vdev.
3311 * 5. This isn't prefetch and l2arc_noprefetch is set.
3312 */
3313 if (hdr->b_l2hdr != NULL &&
3314 !HDR_L2_WRITING(hdr) && !HDR_L2_EVICTED(hdr) &&
3315 !(l2arc_noprefetch && HDR_PREFETCH(hdr))) {
3316 l2arc_read_callback_t *cb;
3317
3318 DTRACE_PROBE1(l2arc__hit, arc_buf_hdr_t *, hdr);
3319 ARCSTAT_BUMP(arcstat_l2_hits);
3320 atomic_inc_32(&hdr->b_l2hdr->b_hits);
3321
3322 cb = kmem_zalloc(sizeof (l2arc_read_callback_t),
3323 KM_PUSHPAGE);
3324 cb->l2rcb_buf = buf;
3325 cb->l2rcb_spa = spa;
3326 cb->l2rcb_bp = *bp;
3327 cb->l2rcb_zb = *zb;
3328 cb->l2rcb_flags = zio_flags;
3329 cb->l2rcb_compress = hdr->b_l2hdr->b_compress;
3330
3331 ASSERT(addr >= VDEV_LABEL_START_SIZE &&
3332 addr + size < vd->vdev_psize -
3333 VDEV_LABEL_END_SIZE);
3334
3335 /*
3336 * l2arc read. The SCL_L2ARC lock will be
3337 * released by l2arc_read_done().
3338 * Issue a null zio if the underlying buffer
3339 * was squashed to zero size by compression.
3340 */
3341 if (hdr->b_l2hdr->b_compress ==
3342 ZIO_COMPRESS_EMPTY) {
3343 rzio = zio_null(pio, spa, vd,
3344 l2arc_read_done, cb,
3345 zio_flags | ZIO_FLAG_DONT_CACHE |
3346 ZIO_FLAG_CANFAIL |
3347 ZIO_FLAG_DONT_PROPAGATE |
3348 ZIO_FLAG_DONT_RETRY);
3349 } else {
3350 rzio = zio_read_phys(pio, vd, addr,
3351 hdr->b_l2hdr->b_asize,
3352 buf->b_data, ZIO_CHECKSUM_OFF,
3353 l2arc_read_done, cb, priority,
3354 zio_flags | ZIO_FLAG_DONT_CACHE |
3355 ZIO_FLAG_CANFAIL |
3356 ZIO_FLAG_DONT_PROPAGATE |
3357 ZIO_FLAG_DONT_RETRY, B_FALSE);
3358 }
3359 DTRACE_PROBE2(l2arc__read, vdev_t *, vd,
3360 zio_t *, rzio);
3361 ARCSTAT_INCR(arcstat_l2_read_bytes,
3362 hdr->b_l2hdr->b_asize);
3363
3364 if (*arc_flags & ARC_NOWAIT) {
3365 zio_nowait(rzio);
3366 goto out;
3367 }
3368
3369 ASSERT(*arc_flags & ARC_WAIT);
3370 if (zio_wait(rzio) == 0)
3371 goto out;
3372
3373 /* l2arc read error; goto zio_read() */
3374 } else {
3375 DTRACE_PROBE1(l2arc__miss,
3376 arc_buf_hdr_t *, hdr);
3377 ARCSTAT_BUMP(arcstat_l2_misses);
3378 if (HDR_L2_WRITING(hdr))
3379 ARCSTAT_BUMP(arcstat_l2_rw_clash);
3380 spa_config_exit(spa, SCL_L2ARC, vd);
3381 }
3382 } else {
3383 if (vd != NULL)
3384 spa_config_exit(spa, SCL_L2ARC, vd);
3385 if (l2arc_ndev != 0) {
3386 DTRACE_PROBE1(l2arc__miss,
3387 arc_buf_hdr_t *, hdr);
3388 ARCSTAT_BUMP(arcstat_l2_misses);
3389 }
3390 }
3391
3392 rzio = zio_read(pio, spa, bp, buf->b_data, size,
3393 arc_read_done, buf, priority, zio_flags, zb);
3394
3395 if (*arc_flags & ARC_WAIT) {
3396 rc = zio_wait(rzio);
3397 goto out;
3398 }
3399
3400 ASSERT(*arc_flags & ARC_NOWAIT);
3401 zio_nowait(rzio);
3402 }
3403
3404 out:
3405 spa_read_history_add(spa, zb, *arc_flags);
3406 return (rc);
3407 }
3408
3409 arc_prune_t *
3410 arc_add_prune_callback(arc_prune_func_t *func, void *private)
3411 {
3412 arc_prune_t *p;
3413
3414 p = kmem_alloc(sizeof (*p), KM_SLEEP);
3415 p->p_pfunc = func;
3416 p->p_private = private;
3417 list_link_init(&p->p_node);
3418 refcount_create(&p->p_refcnt);
3419
3420 mutex_enter(&arc_prune_mtx);
3421 refcount_add(&p->p_refcnt, &arc_prune_list);
3422 list_insert_head(&arc_prune_list, p);
3423 mutex_exit(&arc_prune_mtx);
3424
3425 return (p);
3426 }
3427
3428 void
3429 arc_remove_prune_callback(arc_prune_t *p)
3430 {
3431 mutex_enter(&arc_prune_mtx);
3432 list_remove(&arc_prune_list, p);
3433 if (refcount_remove(&p->p_refcnt, &arc_prune_list) == 0) {
3434 refcount_destroy(&p->p_refcnt);
3435 kmem_free(p, sizeof (*p));
3436 }
3437 mutex_exit(&arc_prune_mtx);
3438 }
3439
3440 void
3441 arc_set_callback(arc_buf_t *buf, arc_evict_func_t *func, void *private)
3442 {
3443 ASSERT(buf->b_hdr != NULL);
3444 ASSERT(buf->b_hdr->b_state != arc_anon);
3445 ASSERT(!refcount_is_zero(&buf->b_hdr->b_refcnt) || func == NULL);
3446 ASSERT(buf->b_efunc == NULL);
3447 ASSERT(!HDR_BUF_AVAILABLE(buf->b_hdr));
3448
3449 buf->b_efunc = func;
3450 buf->b_private = private;
3451 }
3452
3453 /*
3454 * Notify the arc that a block was freed, and thus will never be used again.
3455 */
3456 void
3457 arc_freed(spa_t *spa, const blkptr_t *bp)
3458 {
3459 arc_buf_hdr_t *hdr;
3460 kmutex_t *hash_lock;
3461 uint64_t guid = spa_load_guid(spa);
3462
3463 hdr = buf_hash_find(guid, BP_IDENTITY(bp), BP_PHYSICAL_BIRTH(bp),
3464 &hash_lock);
3465 if (hdr == NULL)
3466 return;
3467 if (HDR_BUF_AVAILABLE(hdr)) {
3468 arc_buf_t *buf = hdr->b_buf;
3469 add_reference(hdr, hash_lock, FTAG);
3470 hdr->b_flags &= ~ARC_BUF_AVAILABLE;
3471 mutex_exit(hash_lock);
3472
3473 arc_release(buf, FTAG);
3474 (void) arc_buf_remove_ref(buf, FTAG);
3475 } else {
3476 mutex_exit(hash_lock);
3477 }
3478
3479 }
3480
3481 /*
3482 * This is used by the DMU to let the ARC know that a buffer is
3483 * being evicted, so the ARC should clean up. If this arc buf
3484 * is not yet in the evicted state, it will be put there.
3485 */
3486 int
3487 arc_buf_evict(arc_buf_t *buf)
3488 {
3489 arc_buf_hdr_t *hdr;
3490 kmutex_t *hash_lock;
3491 arc_buf_t **bufp;
3492
3493 mutex_enter(&buf->b_evict_lock);
3494 hdr = buf->b_hdr;
3495 if (hdr == NULL) {
3496 /*
3497 * We are in arc_do_user_evicts().
3498 */
3499 ASSERT(buf->b_data == NULL);
3500 mutex_exit(&buf->b_evict_lock);
3501 return (0);
3502 } else if (buf->b_data == NULL) {
3503 arc_buf_t copy = *buf; /* structure assignment */
3504 /*
3505 * We are on the eviction list; process this buffer now
3506 * but let arc_do_user_evicts() do the reaping.
3507 */
3508 buf->b_efunc = NULL;
3509 mutex_exit(&buf->b_evict_lock);
3510 VERIFY(copy.b_efunc(&copy) == 0);
3511 return (1);
3512 }
3513 hash_lock = HDR_LOCK(hdr);
3514 mutex_enter(hash_lock);
3515 hdr = buf->b_hdr;
3516 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
3517
3518 ASSERT3U(refcount_count(&hdr->b_refcnt), <, hdr->b_datacnt);
3519 ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu);
3520
3521 /*
3522 * Pull this buffer off of the hdr
3523 */
3524 bufp = &hdr->b_buf;
3525 while (*bufp != buf)
3526 bufp = &(*bufp)->b_next;
3527 *bufp = buf->b_next;
3528
3529 ASSERT(buf->b_data != NULL);
3530 arc_buf_destroy(buf, FALSE, FALSE);
3531
3532 if (hdr->b_datacnt == 0) {
3533 arc_state_t *old_state = hdr->b_state;
3534 arc_state_t *evicted_state;
3535
3536 ASSERT(hdr->b_buf == NULL);
3537 ASSERT(refcount_is_zero(&hdr->b_refcnt));
3538
3539 evicted_state =
3540 (old_state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost;
3541
3542 mutex_enter(&old_state->arcs_mtx);
3543 mutex_enter(&evicted_state->arcs_mtx);
3544
3545 arc_change_state(evicted_state, hdr, hash_lock);
3546 ASSERT(HDR_IN_HASH_TABLE(hdr));
3547 hdr->b_flags |= ARC_IN_HASH_TABLE;
3548 hdr->b_flags &= ~ARC_BUF_AVAILABLE;
3549
3550 mutex_exit(&evicted_state->arcs_mtx);
3551 mutex_exit(&old_state->arcs_mtx);
3552 }
3553 mutex_exit(hash_lock);
3554 mutex_exit(&buf->b_evict_lock);
3555
3556 VERIFY(buf->b_efunc(buf) == 0);
3557 buf->b_efunc = NULL;
3558 buf->b_private = NULL;
3559 buf->b_hdr = NULL;
3560 buf->b_next = NULL;
3561 kmem_cache_free(buf_cache, buf);
3562 return (1);
3563 }
3564
3565 /*
3566 * Release this buffer from the cache, making it an anonymous buffer. This
3567 * must be done after a read and prior to modifying the buffer contents.
3568 * If the buffer has more than one reference, we must make
3569 * a new hdr for the buffer.
3570 */
3571 void
3572 arc_release(arc_buf_t *buf, void *tag)
3573 {
3574 arc_buf_hdr_t *hdr;
3575 kmutex_t *hash_lock = NULL;
3576 l2arc_buf_hdr_t *l2hdr;
3577 uint64_t buf_size = 0;
3578
3579 /*
3580 * It would be nice to assert that if it's DMU metadata (level >
3581 * 0 || it's the dnode file), then it must be syncing context.
3582 * But we don't know that information at this level.
3583 */
3584
3585 mutex_enter(&buf->b_evict_lock);
3586 hdr = buf->b_hdr;
3587
3588 /* this buffer is not on any list */
3589 ASSERT(refcount_count(&hdr->b_refcnt) > 0);
3590
3591 if (hdr->b_state == arc_anon) {
3592 /* this buffer is already released */
3593 ASSERT(buf->b_efunc == NULL);
3594 } else {
3595 hash_lock = HDR_LOCK(hdr);
3596 mutex_enter(hash_lock);
3597 hdr = buf->b_hdr;
3598 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
3599 }
3600
3601 l2hdr = hdr->b_l2hdr;
3602 if (l2hdr) {
3603 mutex_enter(&l2arc_buflist_mtx);
3604 hdr->b_l2hdr = NULL;
3605 }
3606 buf_size = hdr->b_size;
3607
3608 /*
3609 * Do we have more than one buf?
3610 */
3611 if (hdr->b_datacnt > 1) {
3612 arc_buf_hdr_t *nhdr;
3613 arc_buf_t **bufp;
3614 uint64_t blksz = hdr->b_size;
3615 uint64_t spa = hdr->b_spa;
3616 arc_buf_contents_t type = hdr->b_type;
3617 uint32_t flags = hdr->b_flags;
3618
3619 ASSERT(hdr->b_buf != buf || buf->b_next != NULL);
3620 /*
3621 * Pull the data off of this hdr and attach it to
3622 * a new anonymous hdr.
3623 */
3624 (void) remove_reference(hdr, hash_lock, tag);
3625 bufp = &hdr->b_buf;
3626 while (*bufp != buf)
3627 bufp = &(*bufp)->b_next;
3628 *bufp = buf->b_next;
3629 buf->b_next = NULL;
3630
3631 ASSERT3U(hdr->b_state->arcs_size, >=, hdr->b_size);
3632 atomic_add_64(&hdr->b_state->arcs_size, -hdr->b_size);
3633 if (refcount_is_zero(&hdr->b_refcnt)) {
3634 uint64_t *size = &hdr->b_state->arcs_lsize[hdr->b_type];
3635 ASSERT3U(*size, >=, hdr->b_size);
3636 atomic_add_64(size, -hdr->b_size);
3637 }
3638
3639 /*
3640 * We're releasing a duplicate user data buffer, update
3641 * our statistics accordingly.
3642 */
3643 if (hdr->b_type == ARC_BUFC_DATA) {
3644 ARCSTAT_BUMPDOWN(arcstat_duplicate_buffers);
3645 ARCSTAT_INCR(arcstat_duplicate_buffers_size,
3646 -hdr->b_size);
3647 }
3648 hdr->b_datacnt -= 1;
3649 arc_cksum_verify(buf);
3650 arc_buf_unwatch(buf);
3651
3652 mutex_exit(hash_lock);
3653
3654 nhdr = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE);
3655 nhdr->b_size = blksz;
3656 nhdr->b_spa = spa;
3657 nhdr->b_type = type;
3658 nhdr->b_buf = buf;
3659 nhdr->b_state = arc_anon;
3660 nhdr->b_arc_access = 0;
3661 nhdr->b_mru_hits = 0;
3662 nhdr->b_mru_ghost_hits = 0;
3663 nhdr->b_mfu_hits = 0;
3664 nhdr->b_mfu_ghost_hits = 0;
3665 nhdr->b_l2_hits = 0;
3666 nhdr->b_flags = flags & ARC_L2_WRITING;
3667 nhdr->b_l2hdr = NULL;
3668 nhdr->b_datacnt = 1;
3669 nhdr->b_freeze_cksum = NULL;
3670 (void) refcount_add(&nhdr->b_refcnt, tag);
3671 buf->b_hdr = nhdr;
3672 mutex_exit(&buf->b_evict_lock);
3673 atomic_add_64(&arc_anon->arcs_size, blksz);
3674 } else {
3675 mutex_exit(&buf->b_evict_lock);
3676 ASSERT(refcount_count(&hdr->b_refcnt) == 1);
3677 ASSERT(!list_link_active(&hdr->b_arc_node));
3678 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
3679 if (hdr->b_state != arc_anon)
3680 arc_change_state(arc_anon, hdr, hash_lock);
3681 hdr->b_arc_access = 0;
3682 hdr->b_mru_hits = 0;
3683 hdr->b_mru_ghost_hits = 0;
3684 hdr->b_mfu_hits = 0;
3685 hdr->b_mfu_ghost_hits = 0;
3686 hdr->b_l2_hits = 0;
3687 if (hash_lock)
3688 mutex_exit(hash_lock);
3689
3690 buf_discard_identity(hdr);
3691 arc_buf_thaw(buf);
3692 }
3693 buf->b_efunc = NULL;
3694 buf->b_private = NULL;
3695
3696 if (l2hdr) {
3697 ARCSTAT_INCR(arcstat_l2_asize, -l2hdr->b_asize);
3698 list_remove(l2hdr->b_dev->l2ad_buflist, hdr);
3699 kmem_cache_free(l2arc_hdr_cache, l2hdr);
3700 arc_space_return(L2HDR_SIZE, ARC_SPACE_L2HDRS);
3701 ARCSTAT_INCR(arcstat_l2_size, -buf_size);
3702 mutex_exit(&l2arc_buflist_mtx);
3703 }
3704 }
3705
3706 int
3707 arc_released(arc_buf_t *buf)
3708 {
3709 int released;
3710
3711 mutex_enter(&buf->b_evict_lock);
3712 released = (buf->b_data != NULL && buf->b_hdr->b_state == arc_anon);
3713 mutex_exit(&buf->b_evict_lock);
3714 return (released);
3715 }
3716
3717 int
3718 arc_has_callback(arc_buf_t *buf)
3719 {
3720 int callback;
3721
3722 mutex_enter(&buf->b_evict_lock);
3723 callback = (buf->b_efunc != NULL);
3724 mutex_exit(&buf->b_evict_lock);
3725 return (callback);
3726 }
3727
3728 #ifdef ZFS_DEBUG
3729 int
3730 arc_referenced(arc_buf_t *buf)
3731 {
3732 int referenced;
3733
3734 mutex_enter(&buf->b_evict_lock);
3735 referenced = (refcount_count(&buf->b_hdr->b_refcnt));
3736 mutex_exit(&buf->b_evict_lock);
3737 return (referenced);
3738 }
3739 #endif
3740
3741 static void
3742 arc_write_ready(zio_t *zio)
3743 {
3744 arc_write_callback_t *callback = zio->io_private;
3745 arc_buf_t *buf = callback->awcb_buf;
3746 arc_buf_hdr_t *hdr = buf->b_hdr;
3747
3748 ASSERT(!refcount_is_zero(&buf->b_hdr->b_refcnt));
3749 callback->awcb_ready(zio, buf, callback->awcb_private);
3750
3751 /*
3752 * If the IO is already in progress, then this is a re-write
3753 * attempt, so we need to thaw and re-compute the cksum.
3754 * It is the responsibility of the callback to handle the
3755 * accounting for any re-write attempt.
3756 */
3757 if (HDR_IO_IN_PROGRESS(hdr)) {
3758 mutex_enter(&hdr->b_freeze_lock);
3759 if (hdr->b_freeze_cksum != NULL) {
3760 kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t));
3761 hdr->b_freeze_cksum = NULL;
3762 }
3763 mutex_exit(&hdr->b_freeze_lock);
3764 }
3765 arc_cksum_compute(buf, B_FALSE);
3766 hdr->b_flags |= ARC_IO_IN_PROGRESS;
3767 }
3768
3769 /*
3770 * The SPA calls this callback for each physical write that happens on behalf
3771 * of a logical write. See the comment in dbuf_write_physdone() for details.
3772 */
3773 static void
3774 arc_write_physdone(zio_t *zio)
3775 {
3776 arc_write_callback_t *cb = zio->io_private;
3777 if (cb->awcb_physdone != NULL)
3778 cb->awcb_physdone(zio, cb->awcb_buf, cb->awcb_private);
3779 }
3780
3781 static void
3782 arc_write_done(zio_t *zio)
3783 {
3784 arc_write_callback_t *callback = zio->io_private;
3785 arc_buf_t *buf = callback->awcb_buf;
3786 arc_buf_hdr_t *hdr = buf->b_hdr;
3787
3788 ASSERT(hdr->b_acb == NULL);
3789
3790 if (zio->io_error == 0) {
3791 hdr->b_dva = *BP_IDENTITY(zio->io_bp);
3792 hdr->b_birth = BP_PHYSICAL_BIRTH(zio->io_bp);
3793 hdr->b_cksum0 = zio->io_bp->blk_cksum.zc_word[0];
3794 } else {
3795 ASSERT(BUF_EMPTY(hdr));
3796 }
3797
3798 /*
3799 * If the block to be written was all-zero, we may have
3800 * compressed it away. In this case no write was performed
3801 * so there will be no dva/birth/checksum. The buffer must
3802 * therefore remain anonymous (and uncached).
3803 */
3804 if (!BUF_EMPTY(hdr)) {
3805 arc_buf_hdr_t *exists;
3806 kmutex_t *hash_lock;
3807
3808 ASSERT(zio->io_error == 0);
3809
3810 arc_cksum_verify(buf);
3811
3812 exists = buf_hash_insert(hdr, &hash_lock);
3813 if (exists) {
3814 /*
3815 * This can only happen if we overwrite for
3816 * sync-to-convergence, because we remove
3817 * buffers from the hash table when we arc_free().
3818 */
3819 if (zio->io_flags & ZIO_FLAG_IO_REWRITE) {
3820 if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
3821 panic("bad overwrite, hdr=%p exists=%p",
3822 (void *)hdr, (void *)exists);
3823 ASSERT(refcount_is_zero(&exists->b_refcnt));
3824 arc_change_state(arc_anon, exists, hash_lock);
3825 mutex_exit(hash_lock);
3826 arc_hdr_destroy(exists);
3827 exists = buf_hash_insert(hdr, &hash_lock);
3828 ASSERT3P(exists, ==, NULL);
3829 } else if (zio->io_flags & ZIO_FLAG_NOPWRITE) {
3830 /* nopwrite */
3831 ASSERT(zio->io_prop.zp_nopwrite);
3832 if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
3833 panic("bad nopwrite, hdr=%p exists=%p",
3834 (void *)hdr, (void *)exists);
3835 } else {
3836 /* Dedup */
3837 ASSERT(hdr->b_datacnt == 1);
3838 ASSERT(hdr->b_state == arc_anon);
3839 ASSERT(BP_GET_DEDUP(zio->io_bp));
3840 ASSERT(BP_GET_LEVEL(zio->io_bp) == 0);
3841 }
3842 }
3843 hdr->b_flags &= ~ARC_IO_IN_PROGRESS;
3844 /* if it's not anon, we are doing a scrub */
3845 if (!exists && hdr->b_state == arc_anon)
3846 arc_access(hdr, hash_lock);
3847 mutex_exit(hash_lock);
3848 } else {
3849 hdr->b_flags &= ~ARC_IO_IN_PROGRESS;
3850 }
3851
3852 ASSERT(!refcount_is_zero(&hdr->b_refcnt));
3853 callback->awcb_done(zio, buf, callback->awcb_private);
3854
3855 kmem_free(callback, sizeof (arc_write_callback_t));
3856 }
3857
3858 zio_t *
3859 arc_write(zio_t *pio, spa_t *spa, uint64_t txg,
3860 blkptr_t *bp, arc_buf_t *buf, boolean_t l2arc, boolean_t l2arc_compress,
3861 const zio_prop_t *zp, arc_done_func_t *ready, arc_done_func_t *physdone,
3862 arc_done_func_t *done, void *private, zio_priority_t priority,
3863 int zio_flags, const zbookmark_t *zb)
3864 {
3865 arc_buf_hdr_t *hdr = buf->b_hdr;
3866 arc_write_callback_t *callback;
3867 zio_t *zio;
3868
3869 ASSERT(ready != NULL);
3870 ASSERT(done != NULL);
3871 ASSERT(!HDR_IO_ERROR(hdr));
3872 ASSERT((hdr->b_flags & ARC_IO_IN_PROGRESS) == 0);
3873 ASSERT(hdr->b_acb == NULL);
3874 if (l2arc)
3875 hdr->b_flags |= ARC_L2CACHE;
3876 if (l2arc_compress)
3877 hdr->b_flags |= ARC_L2COMPRESS;
3878 callback = kmem_zalloc(sizeof (arc_write_callback_t), KM_PUSHPAGE);
3879 callback->awcb_ready = ready;
3880 callback->awcb_physdone = physdone;
3881 callback->awcb_done = done;
3882 callback->awcb_private = private;
3883 callback->awcb_buf = buf;
3884
3885 zio = zio_write(pio, spa, txg, bp, buf->b_data, hdr->b_size, zp,
3886 arc_write_ready, arc_write_physdone, arc_write_done, callback,
3887 priority, zio_flags, zb);
3888
3889 return (zio);
3890 }
3891
3892 static int
3893 arc_memory_throttle(uint64_t reserve, uint64_t txg)
3894 {
3895 #ifdef _KERNEL
3896 if (zfs_arc_memory_throttle_disable)
3897 return (0);
3898
3899 if (freemem <= physmem * arc_lotsfree_percent / 100) {
3900 ARCSTAT_INCR(arcstat_memory_throttle_count, 1);
3901 DMU_TX_STAT_BUMP(dmu_tx_memory_reclaim);
3902 return (SET_ERROR(EAGAIN));
3903 }
3904 #endif
3905 return (0);
3906 }
3907
3908 void
3909 arc_tempreserve_clear(uint64_t reserve)
3910 {
3911 atomic_add_64(&arc_tempreserve, -reserve);
3912 ASSERT((int64_t)arc_tempreserve >= 0);
3913 }
3914
3915 int
3916 arc_tempreserve_space(uint64_t reserve, uint64_t txg)
3917 {
3918 int error;
3919 uint64_t anon_size;
3920
3921 if (reserve > arc_c/4 && !arc_no_grow)
3922 arc_c = MIN(arc_c_max, reserve * 4);
3923 if (reserve > arc_c) {
3924 DMU_TX_STAT_BUMP(dmu_tx_memory_reserve);
3925 return (SET_ERROR(ENOMEM));
3926 }
3927
3928 /*
3929 * Don't count loaned bufs as in flight dirty data to prevent long
3930 * network delays from blocking transactions that are ready to be
3931 * assigned to a txg.
3932 */
3933 anon_size = MAX((int64_t)(arc_anon->arcs_size - arc_loaned_bytes), 0);
3934
3935 /*
3936 * Writes will, almost always, require additional memory allocations
3937 * in order to compress/encrypt/etc the data. We therefore need to
3938 * make sure that there is sufficient available memory for this.
3939 */
3940 error = arc_memory_throttle(reserve, txg);
3941 if (error != 0)
3942 return (error);
3943
3944 /*
3945 * Throttle writes when the amount of dirty data in the cache
3946 * gets too large. We try to keep the cache less than half full
3947 * of dirty blocks so that our sync times don't grow too large.
3948 * Note: if two requests come in concurrently, we might let them
3949 * both succeed, when one of them should fail. Not a huge deal.
3950 */
3951
3952 if (reserve + arc_tempreserve + anon_size > arc_c / 2 &&
3953 anon_size > arc_c / 4) {
3954 dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK "
3955 "anon_data=%lluK tempreserve=%lluK arc_c=%lluK\n",
3956 arc_tempreserve>>10,
3957 arc_anon->arcs_lsize[ARC_BUFC_METADATA]>>10,
3958 arc_anon->arcs_lsize[ARC_BUFC_DATA]>>10,
3959 reserve>>10, arc_c>>10);
3960 DMU_TX_STAT_BUMP(dmu_tx_dirty_throttle);
3961 return (SET_ERROR(ERESTART));
3962 }
3963 atomic_add_64(&arc_tempreserve, reserve);
3964 return (0);
3965 }
3966
3967 static void
3968 arc_kstat_update_state(arc_state_t *state, kstat_named_t *size,
3969 kstat_named_t *evict_data, kstat_named_t *evict_metadata)
3970 {
3971 size->value.ui64 = state->arcs_size;
3972 evict_data->value.ui64 = state->arcs_lsize[ARC_BUFC_DATA];
3973 evict_metadata->value.ui64 = state->arcs_lsize[ARC_BUFC_METADATA];
3974 }
3975
3976 static int
3977 arc_kstat_update(kstat_t *ksp, int rw)
3978 {
3979 arc_stats_t *as = ksp->ks_data;
3980
3981 if (rw == KSTAT_WRITE) {
3982 return (SET_ERROR(EACCES));
3983 } else {
3984 arc_kstat_update_state(arc_anon,
3985 &as->arcstat_anon_size,
3986 &as->arcstat_anon_evict_data,
3987 &as->arcstat_anon_evict_metadata);
3988 arc_kstat_update_state(arc_mru,
3989 &as->arcstat_mru_size,
3990 &as->arcstat_mru_evict_data,
3991 &as->arcstat_mru_evict_metadata);
3992 arc_kstat_update_state(arc_mru_ghost,
3993 &as->arcstat_mru_ghost_size,
3994 &as->arcstat_mru_ghost_evict_data,
3995 &as->arcstat_mru_ghost_evict_metadata);
3996 arc_kstat_update_state(arc_mfu,
3997 &as->arcstat_mfu_size,
3998 &as->arcstat_mfu_evict_data,
3999 &as->arcstat_mfu_evict_metadata);
4000 arc_kstat_update_state(arc_mfu_ghost,
4001 &as->arcstat_mfu_ghost_size,
4002 &as->arcstat_mfu_ghost_evict_data,
4003 &as->arcstat_mfu_ghost_evict_metadata);
4004 }
4005
4006 return (0);
4007 }
4008
4009 void
4010 arc_init(void)
4011 {
4012 mutex_init(&arc_reclaim_thr_lock, NULL, MUTEX_DEFAULT, NULL);
4013 cv_init(&arc_reclaim_thr_cv, NULL, CV_DEFAULT, NULL);
4014
4015 /* Convert seconds to clock ticks */
4016 zfs_arc_min_prefetch_lifespan = 1 * hz;
4017
4018 /* Start out with 1/8 of all memory */
4019 arc_c = physmem * PAGESIZE / 8;
4020
4021 #ifdef _KERNEL
4022 /*
4023 * On architectures where the physical memory can be larger
4024 * than the addressable space (intel in 32-bit mode), we may
4025 * need to limit the cache to 1/8 of VM size.
4026 */
4027 arc_c = MIN(arc_c, vmem_size(heap_arena, VMEM_ALLOC | VMEM_FREE) / 8);
4028 /*
4029 * Register a shrinker to support synchronous (direct) memory
4030 * reclaim from the arc. This is done to prevent kswapd from
4031 * swapping out pages when it is preferable to shrink the arc.
4032 */
4033 spl_register_shrinker(&arc_shrinker);
4034 #endif
4035
4036 /* set min cache to zero */
4037 arc_c_min = 4<<20;
4038 /* set max to 1/2 of all memory */
4039 arc_c_max = arc_c * 4;
4040
4041 /*
4042 * Allow the tunables to override our calculations if they are
4043 * reasonable (ie. over 64MB)
4044 */
4045 if (zfs_arc_max > 64<<20 && zfs_arc_max < physmem * PAGESIZE)
4046 arc_c_max = zfs_arc_max;
4047 if (zfs_arc_min > 0 && zfs_arc_min <= arc_c_max)
4048 arc_c_min = zfs_arc_min;
4049
4050 arc_c = arc_c_max;
4051 arc_p = (arc_c >> 1);
4052
4053 /* limit meta-data to 1/4 of the arc capacity */
4054 arc_meta_limit = arc_c_max / 4;
4055 arc_meta_max = 0;
4056
4057 /* Allow the tunable to override if it is reasonable */
4058 if (zfs_arc_meta_limit > 0 && zfs_arc_meta_limit <= arc_c_max)
4059 arc_meta_limit = zfs_arc_meta_limit;
4060
4061 /* if kmem_flags are set, lets try to use less memory */
4062 if (kmem_debugging())
4063 arc_c = arc_c / 2;
4064 if (arc_c < arc_c_min)
4065 arc_c = arc_c_min;
4066
4067 arc_anon = &ARC_anon;
4068 arc_mru = &ARC_mru;
4069 arc_mru_ghost = &ARC_mru_ghost;
4070 arc_mfu = &ARC_mfu;
4071 arc_mfu_ghost = &ARC_mfu_ghost;
4072 arc_l2c_only = &ARC_l2c_only;
4073 arc_size = 0;
4074
4075 mutex_init(&arc_anon->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
4076 mutex_init(&arc_mru->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
4077 mutex_init(&arc_mru_ghost->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
4078 mutex_init(&arc_mfu->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
4079 mutex_init(&arc_mfu_ghost->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
4080 mutex_init(&arc_l2c_only->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
4081
4082 list_create(&arc_mru->arcs_list[ARC_BUFC_METADATA],
4083 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
4084 list_create(&arc_mru->arcs_list[ARC_BUFC_DATA],
4085 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
4086 list_create(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA],
4087 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
4088 list_create(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA],
4089 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
4090 list_create(&arc_mfu->arcs_list[ARC_BUFC_METADATA],
4091 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
4092 list_create(&arc_mfu->arcs_list[ARC_BUFC_DATA],
4093 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
4094 list_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA],
4095 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
4096 list_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA],
4097 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
4098 list_create(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA],
4099 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
4100 list_create(&arc_l2c_only->arcs_list[ARC_BUFC_DATA],
4101 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
4102
4103 arc_anon->arcs_state = ARC_STATE_ANON;
4104 arc_mru->arcs_state = ARC_STATE_MRU;
4105 arc_mru_ghost->arcs_state = ARC_STATE_MRU_GHOST;
4106 arc_mfu->arcs_state = ARC_STATE_MFU;
4107 arc_mfu_ghost->arcs_state = ARC_STATE_MFU_GHOST;
4108 arc_l2c_only->arcs_state = ARC_STATE_L2C_ONLY;
4109
4110 buf_init();
4111
4112 arc_thread_exit = 0;
4113 list_create(&arc_prune_list, sizeof (arc_prune_t),
4114 offsetof(arc_prune_t, p_node));
4115 arc_eviction_list = NULL;
4116 mutex_init(&arc_prune_mtx, NULL, MUTEX_DEFAULT, NULL);
4117 mutex_init(&arc_eviction_mtx, NULL, MUTEX_DEFAULT, NULL);
4118 bzero(&arc_eviction_hdr, sizeof (arc_buf_hdr_t));
4119
4120 arc_ksp = kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED,
4121 sizeof (arc_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
4122
4123 if (arc_ksp != NULL) {
4124 arc_ksp->ks_data = &arc_stats;
4125 arc_ksp->ks_update = arc_kstat_update;
4126 kstat_install(arc_ksp);
4127 }
4128
4129 (void) thread_create(NULL, 0, arc_adapt_thread, NULL, 0, &p0,
4130 TS_RUN, minclsyspri);
4131
4132 arc_dead = FALSE;
4133 arc_warm = B_FALSE;
4134
4135 /*
4136 * Calculate maximum amount of dirty data per pool.
4137 *
4138 * If it has been set by a module parameter, take that.
4139 * Otherwise, use a percentage of physical memory defined by
4140 * zfs_dirty_data_max_percent (default 10%) with a cap at
4141 * zfs_dirty_data_max_max (default 25% of physical memory).
4142 */
4143 if (zfs_dirty_data_max_max == 0)
4144 zfs_dirty_data_max_max = physmem * PAGESIZE *
4145 zfs_dirty_data_max_max_percent / 100;
4146
4147 if (zfs_dirty_data_max == 0) {
4148 zfs_dirty_data_max = physmem * PAGESIZE *
4149 zfs_dirty_data_max_percent / 100;
4150 zfs_dirty_data_max = MIN(zfs_dirty_data_max,
4151 zfs_dirty_data_max_max);
4152 }
4153 }
4154
4155 void
4156 arc_fini(void)
4157 {
4158 arc_prune_t *p;
4159
4160 mutex_enter(&arc_reclaim_thr_lock);
4161 #ifdef _KERNEL
4162 spl_unregister_shrinker(&arc_shrinker);
4163 #endif /* _KERNEL */
4164
4165 arc_thread_exit = 1;
4166 while (arc_thread_exit != 0)
4167 cv_wait(&arc_reclaim_thr_cv, &arc_reclaim_thr_lock);
4168 mutex_exit(&arc_reclaim_thr_lock);
4169
4170 arc_flush(NULL);
4171
4172 arc_dead = TRUE;
4173
4174 if (arc_ksp != NULL) {
4175 kstat_delete(arc_ksp);
4176 arc_ksp = NULL;
4177 }
4178
4179 mutex_enter(&arc_prune_mtx);
4180 while ((p = list_head(&arc_prune_list)) != NULL) {
4181 list_remove(&arc_prune_list, p);
4182 refcount_remove(&p->p_refcnt, &arc_prune_list);
4183 refcount_destroy(&p->p_refcnt);
4184 kmem_free(p, sizeof (*p));
4185 }
4186 mutex_exit(&arc_prune_mtx);
4187
4188 list_destroy(&arc_prune_list);
4189 mutex_destroy(&arc_prune_mtx);
4190 mutex_destroy(&arc_eviction_mtx);
4191 mutex_destroy(&arc_reclaim_thr_lock);
4192 cv_destroy(&arc_reclaim_thr_cv);
4193
4194 list_destroy(&arc_mru->arcs_list[ARC_BUFC_METADATA]);
4195 list_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA]);
4196 list_destroy(&arc_mfu->arcs_list[ARC_BUFC_METADATA]);
4197 list_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA]);
4198 list_destroy(&arc_mru->arcs_list[ARC_BUFC_DATA]);
4199 list_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA]);
4200 list_destroy(&arc_mfu->arcs_list[ARC_BUFC_DATA]);
4201 list_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA]);
4202
4203 mutex_destroy(&arc_anon->arcs_mtx);
4204 mutex_destroy(&arc_mru->arcs_mtx);
4205 mutex_destroy(&arc_mru_ghost->arcs_mtx);
4206 mutex_destroy(&arc_mfu->arcs_mtx);
4207 mutex_destroy(&arc_mfu_ghost->arcs_mtx);
4208 mutex_destroy(&arc_l2c_only->arcs_mtx);
4209
4210 buf_fini();
4211
4212 ASSERT(arc_loaned_bytes == 0);
4213 }
4214
4215 /*
4216 * Level 2 ARC
4217 *
4218 * The level 2 ARC (L2ARC) is a cache layer in-between main memory and disk.
4219 * It uses dedicated storage devices to hold cached data, which are populated
4220 * using large infrequent writes. The main role of this cache is to boost
4221 * the performance of random read workloads. The intended L2ARC devices
4222 * include short-stroked disks, solid state disks, and other media with
4223 * substantially faster read latency than disk.
4224 *
4225 * +-----------------------+
4226 * | ARC |
4227 * +-----------------------+
4228 * | ^ ^
4229 * | | |
4230 * l2arc_feed_thread() arc_read()
4231 * | | |
4232 * | l2arc read |
4233 * V | |
4234 * +---------------+ |
4235 * | L2ARC | |
4236 * +---------------+ |
4237 * | ^ |
4238 * l2arc_write() | |
4239 * | | |
4240 * V | |
4241 * +-------+ +-------+
4242 * | vdev | | vdev |
4243 * | cache | | cache |
4244 * +-------+ +-------+
4245 * +=========+ .-----.
4246 * : L2ARC : |-_____-|
4247 * : devices : | Disks |
4248 * +=========+ `-_____-'
4249 *
4250 * Read requests are satisfied from the following sources, in order:
4251 *
4252 * 1) ARC
4253 * 2) vdev cache of L2ARC devices
4254 * 3) L2ARC devices
4255 * 4) vdev cache of disks
4256 * 5) disks
4257 *
4258 * Some L2ARC device types exhibit extremely slow write performance.
4259 * To accommodate for this there are some significant differences between
4260 * the L2ARC and traditional cache design:
4261 *
4262 * 1. There is no eviction path from the ARC to the L2ARC. Evictions from
4263 * the ARC behave as usual, freeing buffers and placing headers on ghost
4264 * lists. The ARC does not send buffers to the L2ARC during eviction as
4265 * this would add inflated write latencies for all ARC memory pressure.
4266 *
4267 * 2. The L2ARC attempts to cache data from the ARC before it is evicted.
4268 * It does this by periodically scanning buffers from the eviction-end of
4269 * the MFU and MRU ARC lists, copying them to the L2ARC devices if they are
4270 * not already there. It scans until a headroom of buffers is satisfied,
4271 * which itself is a buffer for ARC eviction. If a compressible buffer is
4272 * found during scanning and selected for writing to an L2ARC device, we
4273 * temporarily boost scanning headroom during the next scan cycle to make
4274 * sure we adapt to compression effects (which might significantly reduce
4275 * the data volume we write to L2ARC). The thread that does this is
4276 * l2arc_feed_thread(), illustrated below; example sizes are included to
4277 * provide a better sense of ratio than this diagram:
4278 *
4279 * head --> tail
4280 * +---------------------+----------+
4281 * ARC_mfu |:::::#:::::::::::::::|o#o###o###|-->. # already on L2ARC
4282 * +---------------------+----------+ | o L2ARC eligible
4283 * ARC_mru |:#:::::::::::::::::::|#o#ooo####|-->| : ARC buffer
4284 * +---------------------+----------+ |
4285 * 15.9 Gbytes ^ 32 Mbytes |
4286 * headroom |
4287 * l2arc_feed_thread()
4288 * |
4289 * l2arc write hand <--[oooo]--'
4290 * | 8 Mbyte
4291 * | write max
4292 * V
4293 * +==============================+
4294 * L2ARC dev |####|#|###|###| |####| ... |
4295 * +==============================+
4296 * 32 Gbytes
4297 *
4298 * 3. If an ARC buffer is copied to the L2ARC but then hit instead of
4299 * evicted, then the L2ARC has cached a buffer much sooner than it probably
4300 * needed to, potentially wasting L2ARC device bandwidth and storage. It is
4301 * safe to say that this is an uncommon case, since buffers at the end of
4302 * the ARC lists have moved there due to inactivity.
4303 *
4304 * 4. If the ARC evicts faster than the L2ARC can maintain a headroom,
4305 * then the L2ARC simply misses copying some buffers. This serves as a
4306 * pressure valve to prevent heavy read workloads from both stalling the ARC
4307 * with waits and clogging the L2ARC with writes. This also helps prevent
4308 * the potential for the L2ARC to churn if it attempts to cache content too
4309 * quickly, such as during backups of the entire pool.
4310 *
4311 * 5. After system boot and before the ARC has filled main memory, there are
4312 * no evictions from the ARC and so the tails of the ARC_mfu and ARC_mru
4313 * lists can remain mostly static. Instead of searching from tail of these
4314 * lists as pictured, the l2arc_feed_thread() will search from the list heads
4315 * for eligible buffers, greatly increasing its chance of finding them.
4316 *
4317 * The L2ARC device write speed is also boosted during this time so that
4318 * the L2ARC warms up faster. Since there have been no ARC evictions yet,
4319 * there are no L2ARC reads, and no fear of degrading read performance
4320 * through increased writes.
4321 *
4322 * 6. Writes to the L2ARC devices are grouped and sent in-sequence, so that
4323 * the vdev queue can aggregate them into larger and fewer writes. Each
4324 * device is written to in a rotor fashion, sweeping writes through
4325 * available space then repeating.
4326 *
4327 * 7. The L2ARC does not store dirty content. It never needs to flush
4328 * write buffers back to disk based storage.
4329 *
4330 * 8. If an ARC buffer is written (and dirtied) which also exists in the
4331 * L2ARC, the now stale L2ARC buffer is immediately dropped.
4332 *
4333 * The performance of the L2ARC can be tweaked by a number of tunables, which
4334 * may be necessary for different workloads:
4335 *
4336 * l2arc_write_max max write bytes per interval
4337 * l2arc_write_boost extra write bytes during device warmup
4338 * l2arc_noprefetch skip caching prefetched buffers
4339 * l2arc_nocompress skip compressing buffers
4340 * l2arc_headroom number of max device writes to precache
4341 * l2arc_headroom_boost when we find compressed buffers during ARC
4342 * scanning, we multiply headroom by this
4343 * percentage factor for the next scan cycle,
4344 * since more compressed buffers are likely to
4345 * be present
4346 * l2arc_feed_secs seconds between L2ARC writing
4347 *
4348 * Tunables may be removed or added as future performance improvements are
4349 * integrated, and also may become zpool properties.
4350 *
4351 * There are three key functions that control how the L2ARC warms up:
4352 *
4353 * l2arc_write_eligible() check if a buffer is eligible to cache
4354 * l2arc_write_size() calculate how much to write
4355 * l2arc_write_interval() calculate sleep delay between writes
4356 *
4357 * These three functions determine what to write, how much, and how quickly
4358 * to send writes.
4359 */
4360
4361 static boolean_t
4362 l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *ab)
4363 {
4364 /*
4365 * A buffer is *not* eligible for the L2ARC if it:
4366 * 1. belongs to a different spa.
4367 * 2. is already cached on the L2ARC.
4368 * 3. has an I/O in progress (it may be an incomplete read).
4369 * 4. is flagged not eligible (zfs property).
4370 */
4371 if (ab->b_spa != spa_guid || ab->b_l2hdr != NULL ||
4372 HDR_IO_IN_PROGRESS(ab) || !HDR_L2CACHE(ab))
4373 return (B_FALSE);
4374
4375 return (B_TRUE);
4376 }
4377
4378 static uint64_t
4379 l2arc_write_size(void)
4380 {
4381 uint64_t size;
4382
4383 /*
4384 * Make sure our globals have meaningful values in case the user
4385 * altered them.
4386 */
4387 size = l2arc_write_max;
4388 if (size == 0) {
4389 cmn_err(CE_NOTE, "Bad value for l2arc_write_max, value must "
4390 "be greater than zero, resetting it to the default (%d)",
4391 L2ARC_WRITE_SIZE);
4392 size = l2arc_write_max = L2ARC_WRITE_SIZE;
4393 }
4394
4395 if (arc_warm == B_FALSE)
4396 size += l2arc_write_boost;
4397
4398 return (size);
4399
4400 }
4401
4402 static clock_t
4403 l2arc_write_interval(clock_t began, uint64_t wanted, uint64_t wrote)
4404 {
4405 clock_t interval, next, now;
4406
4407 /*
4408 * If the ARC lists are busy, increase our write rate; if the
4409 * lists are stale, idle back. This is achieved by checking
4410 * how much we previously wrote - if it was more than half of
4411 * what we wanted, schedule the next write much sooner.
4412 */
4413 if (l2arc_feed_again && wrote > (wanted / 2))
4414 interval = (hz * l2arc_feed_min_ms) / 1000;
4415 else
4416 interval = hz * l2arc_feed_secs;
4417
4418 now = ddi_get_lbolt();
4419 next = MAX(now, MIN(now + interval, began + interval));
4420
4421 return (next);
4422 }
4423
4424 static void
4425 l2arc_hdr_stat_add(void)
4426 {
4427 ARCSTAT_INCR(arcstat_l2_hdr_size, HDR_SIZE);
4428 ARCSTAT_INCR(arcstat_hdr_size, -HDR_SIZE);
4429 }
4430
4431 static void
4432 l2arc_hdr_stat_remove(void)
4433 {
4434 ARCSTAT_INCR(arcstat_l2_hdr_size, -HDR_SIZE);
4435 ARCSTAT_INCR(arcstat_hdr_size, HDR_SIZE);
4436 }
4437
4438 /*
4439 * Cycle through L2ARC devices. This is how L2ARC load balances.
4440 * If a device is returned, this also returns holding the spa config lock.
4441 */
4442 static l2arc_dev_t *
4443 l2arc_dev_get_next(void)
4444 {
4445 l2arc_dev_t *first, *next = NULL;
4446
4447 /*
4448 * Lock out the removal of spas (spa_namespace_lock), then removal
4449 * of cache devices (l2arc_dev_mtx). Once a device has been selected,
4450 * both locks will be dropped and a spa config lock held instead.
4451 */
4452 mutex_enter(&spa_namespace_lock);
4453 mutex_enter(&l2arc_dev_mtx);
4454
4455 /* if there are no vdevs, there is nothing to do */
4456 if (l2arc_ndev == 0)
4457 goto out;
4458
4459 first = NULL;
4460 next = l2arc_dev_last;
4461 do {
4462 /* loop around the list looking for a non-faulted vdev */
4463 if (next == NULL) {
4464 next = list_head(l2arc_dev_list);
4465 } else {
4466 next = list_next(l2arc_dev_list, next);
4467 if (next == NULL)
4468 next = list_head(l2arc_dev_list);
4469 }
4470
4471 /* if we have come back to the start, bail out */
4472 if (first == NULL)
4473 first = next;
4474 else if (next == first)
4475 break;
4476
4477 } while (vdev_is_dead(next->l2ad_vdev));
4478
4479 /* if we were unable to find any usable vdevs, return NULL */
4480 if (vdev_is_dead(next->l2ad_vdev))
4481 next = NULL;
4482
4483 l2arc_dev_last = next;
4484
4485 out:
4486 mutex_exit(&l2arc_dev_mtx);
4487
4488 /*
4489 * Grab the config lock to prevent the 'next' device from being
4490 * removed while we are writing to it.
4491 */
4492 if (next != NULL)
4493 spa_config_enter(next->l2ad_spa, SCL_L2ARC, next, RW_READER);
4494 mutex_exit(&spa_namespace_lock);
4495
4496 return (next);
4497 }
4498
4499 /*
4500 * Free buffers that were tagged for destruction.
4501 */
4502 static void
4503 l2arc_do_free_on_write(void)
4504 {
4505 list_t *buflist;
4506 l2arc_data_free_t *df, *df_prev;
4507
4508 mutex_enter(&l2arc_free_on_write_mtx);
4509 buflist = l2arc_free_on_write;
4510
4511 for (df = list_tail(buflist); df; df = df_prev) {
4512 df_prev = list_prev(buflist, df);
4513 ASSERT(df->l2df_data != NULL);
4514 ASSERT(df->l2df_func != NULL);
4515 df->l2df_func(df->l2df_data, df->l2df_size);
4516 list_remove(buflist, df);
4517 kmem_free(df, sizeof (l2arc_data_free_t));
4518 }
4519
4520 mutex_exit(&l2arc_free_on_write_mtx);
4521 }
4522
4523 /*
4524 * A write to a cache device has completed. Update all headers to allow
4525 * reads from these buffers to begin.
4526 */
4527 static void
4528 l2arc_write_done(zio_t *zio)
4529 {
4530 l2arc_write_callback_t *cb;
4531 l2arc_dev_t *dev;
4532 list_t *buflist;
4533 arc_buf_hdr_t *head, *ab, *ab_prev;
4534 l2arc_buf_hdr_t *abl2;
4535 kmutex_t *hash_lock;
4536
4537 cb = zio->io_private;
4538 ASSERT(cb != NULL);
4539 dev = cb->l2wcb_dev;
4540 ASSERT(dev != NULL);
4541 head = cb->l2wcb_head;
4542 ASSERT(head != NULL);
4543 buflist = dev->l2ad_buflist;
4544 ASSERT(buflist != NULL);
4545 DTRACE_PROBE2(l2arc__iodone, zio_t *, zio,
4546 l2arc_write_callback_t *, cb);
4547
4548 if (zio->io_error != 0)
4549 ARCSTAT_BUMP(arcstat_l2_writes_error);
4550
4551 mutex_enter(&l2arc_buflist_mtx);
4552
4553 /*
4554 * All writes completed, or an error was hit.
4555 */
4556 for (ab = list_prev(buflist, head); ab; ab = ab_prev) {
4557 ab_prev = list_prev(buflist, ab);
4558 abl2 = ab->b_l2hdr;
4559
4560 /*
4561 * Release the temporary compressed buffer as soon as possible.
4562 */
4563 if (abl2->b_compress != ZIO_COMPRESS_OFF)
4564 l2arc_release_cdata_buf(ab);
4565
4566 hash_lock = HDR_LOCK(ab);
4567 if (!mutex_tryenter(hash_lock)) {
4568 /*
4569 * This buffer misses out. It may be in a stage
4570 * of eviction. Its ARC_L2_WRITING flag will be
4571 * left set, denying reads to this buffer.
4572 */
4573 ARCSTAT_BUMP(arcstat_l2_writes_hdr_miss);
4574 continue;
4575 }
4576
4577 if (zio->io_error != 0) {
4578 /*
4579 * Error - drop L2ARC entry.
4580 */
4581 list_remove(buflist, ab);
4582 ARCSTAT_INCR(arcstat_l2_asize, -abl2->b_asize);
4583 ab->b_l2hdr = NULL;
4584 kmem_cache_free(l2arc_hdr_cache, abl2);
4585 arc_space_return(L2HDR_SIZE, ARC_SPACE_L2HDRS);
4586 ARCSTAT_INCR(arcstat_l2_size, -ab->b_size);
4587 }
4588
4589 /*
4590 * Allow ARC to begin reads to this L2ARC entry.
4591 */
4592 ab->b_flags &= ~ARC_L2_WRITING;
4593
4594 mutex_exit(hash_lock);
4595 }
4596
4597 atomic_inc_64(&l2arc_writes_done);
4598 list_remove(buflist, head);
4599 kmem_cache_free(hdr_cache, head);
4600 mutex_exit(&l2arc_buflist_mtx);
4601
4602 l2arc_do_free_on_write();
4603
4604 kmem_free(cb, sizeof (l2arc_write_callback_t));
4605 }
4606
4607 /*
4608 * A read to a cache device completed. Validate buffer contents before
4609 * handing over to the regular ARC routines.
4610 */
4611 static void
4612 l2arc_read_done(zio_t *zio)
4613 {
4614 l2arc_read_callback_t *cb;
4615 arc_buf_hdr_t *hdr;
4616 arc_buf_t *buf;
4617 kmutex_t *hash_lock;
4618 int equal;
4619
4620 ASSERT(zio->io_vd != NULL);
4621 ASSERT(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE);
4622
4623 spa_config_exit(zio->io_spa, SCL_L2ARC, zio->io_vd);
4624
4625 cb = zio->io_private;
4626 ASSERT(cb != NULL);
4627 buf = cb->l2rcb_buf;
4628 ASSERT(buf != NULL);
4629
4630 hash_lock = HDR_LOCK(buf->b_hdr);
4631 mutex_enter(hash_lock);
4632 hdr = buf->b_hdr;
4633 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
4634
4635 /*
4636 * If the buffer was compressed, decompress it first.
4637 */
4638 if (cb->l2rcb_compress != ZIO_COMPRESS_OFF)
4639 l2arc_decompress_zio(zio, hdr, cb->l2rcb_compress);
4640 ASSERT(zio->io_data != NULL);
4641
4642 /*
4643 * Check this survived the L2ARC journey.
4644 */
4645 equal = arc_cksum_equal(buf);
4646 if (equal && zio->io_error == 0 && !HDR_L2_EVICTED(hdr)) {
4647 mutex_exit(hash_lock);
4648 zio->io_private = buf;
4649 zio->io_bp_copy = cb->l2rcb_bp; /* XXX fix in L2ARC 2.0 */
4650 zio->io_bp = &zio->io_bp_copy; /* XXX fix in L2ARC 2.0 */
4651 arc_read_done(zio);
4652 } else {
4653 mutex_exit(hash_lock);
4654 /*
4655 * Buffer didn't survive caching. Increment stats and
4656 * reissue to the original storage device.
4657 */
4658 if (zio->io_error != 0) {
4659 ARCSTAT_BUMP(arcstat_l2_io_error);
4660 } else {
4661 zio->io_error = SET_ERROR(EIO);
4662 }
4663 if (!equal)
4664 ARCSTAT_BUMP(arcstat_l2_cksum_bad);
4665
4666 /*
4667 * If there's no waiter, issue an async i/o to the primary
4668 * storage now. If there *is* a waiter, the caller must
4669 * issue the i/o in a context where it's OK to block.
4670 */
4671 if (zio->io_waiter == NULL) {
4672 zio_t *pio = zio_unique_parent(zio);
4673
4674 ASSERT(!pio || pio->io_child_type == ZIO_CHILD_LOGICAL);
4675
4676 zio_nowait(zio_read(pio, cb->l2rcb_spa, &cb->l2rcb_bp,
4677 buf->b_data, zio->io_size, arc_read_done, buf,
4678 zio->io_priority, cb->l2rcb_flags, &cb->l2rcb_zb));
4679 }
4680 }
4681
4682 kmem_free(cb, sizeof (l2arc_read_callback_t));
4683 }
4684
4685 /*
4686 * This is the list priority from which the L2ARC will search for pages to
4687 * cache. This is used within loops (0..3) to cycle through lists in the
4688 * desired order. This order can have a significant effect on cache
4689 * performance.
4690 *
4691 * Currently the metadata lists are hit first, MFU then MRU, followed by
4692 * the data lists. This function returns a locked list, and also returns
4693 * the lock pointer.
4694 */
4695 static list_t *
4696 l2arc_list_locked(int list_num, kmutex_t **lock)
4697 {
4698 list_t *list = NULL;
4699
4700 ASSERT(list_num >= 0 && list_num <= 3);
4701
4702 switch (list_num) {
4703 case 0:
4704 list = &arc_mfu->arcs_list[ARC_BUFC_METADATA];
4705 *lock = &arc_mfu->arcs_mtx;
4706 break;
4707 case 1:
4708 list = &arc_mru->arcs_list[ARC_BUFC_METADATA];
4709 *lock = &arc_mru->arcs_mtx;
4710 break;
4711 case 2:
4712 list = &arc_mfu->arcs_list[ARC_BUFC_DATA];
4713 *lock = &arc_mfu->arcs_mtx;
4714 break;
4715 case 3:
4716 list = &arc_mru->arcs_list[ARC_BUFC_DATA];
4717 *lock = &arc_mru->arcs_mtx;
4718 break;
4719 }
4720
4721 ASSERT(!(MUTEX_HELD(*lock)));
4722 mutex_enter(*lock);
4723 return (list);
4724 }
4725
4726 /*
4727 * Evict buffers from the device write hand to the distance specified in
4728 * bytes. This distance may span populated buffers, it may span nothing.
4729 * This is clearing a region on the L2ARC device ready for writing.
4730 * If the 'all' boolean is set, every buffer is evicted.
4731 */
4732 static void
4733 l2arc_evict(l2arc_dev_t *dev, uint64_t distance, boolean_t all)
4734 {
4735 list_t *buflist;
4736 l2arc_buf_hdr_t *abl2;
4737 arc_buf_hdr_t *ab, *ab_prev;
4738 kmutex_t *hash_lock;
4739 uint64_t taddr;
4740
4741 buflist = dev->l2ad_buflist;
4742
4743 if (buflist == NULL)
4744 return;
4745
4746 if (!all && dev->l2ad_first) {
4747 /*
4748 * This is the first sweep through the device. There is
4749 * nothing to evict.
4750 */
4751 return;
4752 }
4753
4754 if (dev->l2ad_hand >= (dev->l2ad_end - (2 * distance))) {
4755 /*
4756 * When nearing the end of the device, evict to the end
4757 * before the device write hand jumps to the start.
4758 */
4759 taddr = dev->l2ad_end;
4760 } else {
4761 taddr = dev->l2ad_hand + distance;
4762 }
4763 DTRACE_PROBE4(l2arc__evict, l2arc_dev_t *, dev, list_t *, buflist,
4764 uint64_t, taddr, boolean_t, all);
4765
4766 top:
4767 mutex_enter(&l2arc_buflist_mtx);
4768 for (ab = list_tail(buflist); ab; ab = ab_prev) {
4769 ab_prev = list_prev(buflist, ab);
4770
4771 hash_lock = HDR_LOCK(ab);
4772 if (!mutex_tryenter(hash_lock)) {
4773 /*
4774 * Missed the hash lock. Retry.
4775 */
4776 ARCSTAT_BUMP(arcstat_l2_evict_lock_retry);
4777 mutex_exit(&l2arc_buflist_mtx);
4778 mutex_enter(hash_lock);
4779 mutex_exit(hash_lock);
4780 goto top;
4781 }
4782
4783 if (HDR_L2_WRITE_HEAD(ab)) {
4784 /*
4785 * We hit a write head node. Leave it for
4786 * l2arc_write_done().
4787 */
4788 list_remove(buflist, ab);
4789 mutex_exit(hash_lock);
4790 continue;
4791 }
4792
4793 if (!all && ab->b_l2hdr != NULL &&
4794 (ab->b_l2hdr->b_daddr > taddr ||
4795 ab->b_l2hdr->b_daddr < dev->l2ad_hand)) {
4796 /*
4797 * We've evicted to the target address,
4798 * or the end of the device.
4799 */
4800 mutex_exit(hash_lock);
4801 break;
4802 }
4803
4804 if (HDR_FREE_IN_PROGRESS(ab)) {
4805 /*
4806 * Already on the path to destruction.
4807 */
4808 mutex_exit(hash_lock);
4809 continue;
4810 }
4811
4812 if (ab->b_state == arc_l2c_only) {
4813 ASSERT(!HDR_L2_READING(ab));
4814 /*
4815 * This doesn't exist in the ARC. Destroy.
4816 * arc_hdr_destroy() will call list_remove()
4817 * and decrement arcstat_l2_size.
4818 */
4819 arc_change_state(arc_anon, ab, hash_lock);
4820 arc_hdr_destroy(ab);
4821 } else {
4822 /*
4823 * Invalidate issued or about to be issued
4824 * reads, since we may be about to write
4825 * over this location.
4826 */
4827 if (HDR_L2_READING(ab)) {
4828 ARCSTAT_BUMP(arcstat_l2_evict_reading);
4829 ab->b_flags |= ARC_L2_EVICTED;
4830 }
4831
4832 /*
4833 * Tell ARC this no longer exists in L2ARC.
4834 */
4835 if (ab->b_l2hdr != NULL) {
4836 abl2 = ab->b_l2hdr;
4837 ARCSTAT_INCR(arcstat_l2_asize, -abl2->b_asize);
4838 ab->b_l2hdr = NULL;
4839 kmem_cache_free(l2arc_hdr_cache, abl2);
4840 arc_space_return(L2HDR_SIZE, ARC_SPACE_L2HDRS);
4841 ARCSTAT_INCR(arcstat_l2_size, -ab->b_size);
4842 }
4843 list_remove(buflist, ab);
4844
4845 /*
4846 * This may have been leftover after a
4847 * failed write.
4848 */
4849 ab->b_flags &= ~ARC_L2_WRITING;
4850 }
4851 mutex_exit(hash_lock);
4852 }
4853 mutex_exit(&l2arc_buflist_mtx);
4854
4855 vdev_space_update(dev->l2ad_vdev, -(taddr - dev->l2ad_evict), 0, 0);
4856 dev->l2ad_evict = taddr;
4857 }
4858
4859 /*
4860 * Find and write ARC buffers to the L2ARC device.
4861 *
4862 * An ARC_L2_WRITING flag is set so that the L2ARC buffers are not valid
4863 * for reading until they have completed writing.
4864 * The headroom_boost is an in-out parameter used to maintain headroom boost
4865 * state between calls to this function.
4866 *
4867 * Returns the number of bytes actually written (which may be smaller than
4868 * the delta by which the device hand has changed due to alignment).
4869 */
4870 static uint64_t
4871 l2arc_write_buffers(spa_t *spa, l2arc_dev_t *dev, uint64_t target_sz,
4872 boolean_t *headroom_boost)
4873 {
4874 arc_buf_hdr_t *ab, *ab_prev, *head;
4875 list_t *list;
4876 uint64_t write_asize, write_psize, write_sz, headroom,
4877 buf_compress_minsz;
4878 void *buf_data;
4879 kmutex_t *list_lock = NULL;
4880 boolean_t full;
4881 l2arc_write_callback_t *cb;
4882 zio_t *pio, *wzio;
4883 uint64_t guid = spa_load_guid(spa);
4884 int try;
4885 const boolean_t do_headroom_boost = *headroom_boost;
4886
4887 ASSERT(dev->l2ad_vdev != NULL);
4888
4889 /* Lower the flag now, we might want to raise it again later. */
4890 *headroom_boost = B_FALSE;
4891
4892 pio = NULL;
4893 write_sz = write_asize = write_psize = 0;
4894 full = B_FALSE;
4895 head = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE);
4896 head->b_flags |= ARC_L2_WRITE_HEAD;
4897
4898 /*
4899 * We will want to try to compress buffers that are at least 2x the
4900 * device sector size.
4901 */
4902 buf_compress_minsz = 2 << dev->l2ad_vdev->vdev_ashift;
4903
4904 /*
4905 * Copy buffers for L2ARC writing.
4906 */
4907 mutex_enter(&l2arc_buflist_mtx);
4908 for (try = 0; try <= 3; try++) {
4909 uint64_t passed_sz = 0;
4910
4911 list = l2arc_list_locked(try, &list_lock);
4912
4913 /*
4914 * L2ARC fast warmup.
4915 *
4916 * Until the ARC is warm and starts to evict, read from the
4917 * head of the ARC lists rather than the tail.
4918 */
4919 if (arc_warm == B_FALSE)
4920 ab = list_head(list);
4921 else
4922 ab = list_tail(list);
4923
4924 headroom = target_sz * l2arc_headroom;
4925 if (do_headroom_boost)
4926 headroom = (headroom * l2arc_headroom_boost) / 100;
4927
4928 for (; ab; ab = ab_prev) {
4929 l2arc_buf_hdr_t *l2hdr;
4930 kmutex_t *hash_lock;
4931 uint64_t buf_sz;
4932
4933 if (arc_warm == B_FALSE)
4934 ab_prev = list_next(list, ab);
4935 else
4936 ab_prev = list_prev(list, ab);
4937
4938 hash_lock = HDR_LOCK(ab);
4939 if (!mutex_tryenter(hash_lock)) {
4940 /*
4941 * Skip this buffer rather than waiting.
4942 */
4943 continue;
4944 }
4945
4946 passed_sz += ab->b_size;
4947 if (passed_sz > headroom) {
4948 /*
4949 * Searched too far.
4950 */
4951 mutex_exit(hash_lock);
4952 break;
4953 }
4954
4955 if (!l2arc_write_eligible(guid, ab)) {
4956 mutex_exit(hash_lock);
4957 continue;
4958 }
4959
4960 if ((write_sz + ab->b_size) > target_sz) {
4961 full = B_TRUE;
4962 mutex_exit(hash_lock);
4963 break;
4964 }
4965
4966 if (pio == NULL) {
4967 /*
4968 * Insert a dummy header on the buflist so
4969 * l2arc_write_done() can find where the
4970 * write buffers begin without searching.
4971 */
4972 list_insert_head(dev->l2ad_buflist, head);
4973
4974 cb = kmem_alloc(sizeof (l2arc_write_callback_t),
4975 KM_PUSHPAGE);
4976 cb->l2wcb_dev = dev;
4977 cb->l2wcb_head = head;
4978 pio = zio_root(spa, l2arc_write_done, cb,
4979 ZIO_FLAG_CANFAIL);
4980 }
4981
4982 /*
4983 * Create and add a new L2ARC header.
4984 */
4985 l2hdr = kmem_cache_alloc(l2arc_hdr_cache, KM_PUSHPAGE);
4986 l2hdr->b_dev = dev;
4987 l2hdr->b_daddr = 0;
4988 arc_space_consume(L2HDR_SIZE, ARC_SPACE_L2HDRS);
4989
4990 ab->b_flags |= ARC_L2_WRITING;
4991
4992 /*
4993 * Temporarily stash the data buffer in b_tmp_cdata.
4994 * The subsequent write step will pick it up from
4995 * there. This is because can't access ab->b_buf
4996 * without holding the hash_lock, which we in turn
4997 * can't access without holding the ARC list locks
4998 * (which we want to avoid during compression/writing)
4999 */
5000 l2hdr->b_compress = ZIO_COMPRESS_OFF;
5001 l2hdr->b_asize = ab->b_size;
5002 l2hdr->b_tmp_cdata = ab->b_buf->b_data;
5003 l2hdr->b_hits = 0;
5004
5005 buf_sz = ab->b_size;
5006 ab->b_l2hdr = l2hdr;
5007
5008 list_insert_head(dev->l2ad_buflist, ab);
5009
5010 /*
5011 * Compute and store the buffer cksum before
5012 * writing. On debug the cksum is verified first.
5013 */
5014 arc_cksum_verify(ab->b_buf);
5015 arc_cksum_compute(ab->b_buf, B_TRUE);
5016
5017 mutex_exit(hash_lock);
5018
5019 write_sz += buf_sz;
5020 }
5021
5022 mutex_exit(list_lock);
5023
5024 if (full == B_TRUE)
5025 break;
5026 }
5027
5028 /* No buffers selected for writing? */
5029 if (pio == NULL) {
5030 ASSERT0(write_sz);
5031 mutex_exit(&l2arc_buflist_mtx);
5032 kmem_cache_free(hdr_cache, head);
5033 return (0);
5034 }
5035
5036 /*
5037 * Now start writing the buffers. We're starting at the write head
5038 * and work backwards, retracing the course of the buffer selector
5039 * loop above.
5040 */
5041 for (ab = list_prev(dev->l2ad_buflist, head); ab;
5042 ab = list_prev(dev->l2ad_buflist, ab)) {
5043 l2arc_buf_hdr_t *l2hdr;
5044 uint64_t buf_sz;
5045
5046 /*
5047 * We shouldn't need to lock the buffer here, since we flagged
5048 * it as ARC_L2_WRITING in the previous step, but we must take
5049 * care to only access its L2 cache parameters. In particular,
5050 * ab->b_buf may be invalid by now due to ARC eviction.
5051 */
5052 l2hdr = ab->b_l2hdr;
5053 l2hdr->b_daddr = dev->l2ad_hand;
5054
5055 if (!l2arc_nocompress && (ab->b_flags & ARC_L2COMPRESS) &&
5056 l2hdr->b_asize >= buf_compress_minsz) {
5057 if (l2arc_compress_buf(l2hdr)) {
5058 /*
5059 * If compression succeeded, enable headroom
5060 * boost on the next scan cycle.
5061 */
5062 *headroom_boost = B_TRUE;
5063 }
5064 }
5065
5066 /*
5067 * Pick up the buffer data we had previously stashed away
5068 * (and now potentially also compressed).
5069 */
5070 buf_data = l2hdr->b_tmp_cdata;
5071 buf_sz = l2hdr->b_asize;
5072
5073 /* Compression may have squashed the buffer to zero length. */
5074 if (buf_sz != 0) {
5075 uint64_t buf_p_sz;
5076
5077 wzio = zio_write_phys(pio, dev->l2ad_vdev,
5078 dev->l2ad_hand, buf_sz, buf_data, ZIO_CHECKSUM_OFF,
5079 NULL, NULL, ZIO_PRIORITY_ASYNC_WRITE,
5080 ZIO_FLAG_CANFAIL, B_FALSE);
5081
5082 DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev,
5083 zio_t *, wzio);
5084 (void) zio_nowait(wzio);
5085
5086 write_asize += buf_sz;
5087 /*
5088 * Keep the clock hand suitably device-aligned.
5089 */
5090 buf_p_sz = vdev_psize_to_asize(dev->l2ad_vdev, buf_sz);
5091 write_psize += buf_p_sz;
5092 dev->l2ad_hand += buf_p_sz;
5093 }
5094 }
5095
5096 mutex_exit(&l2arc_buflist_mtx);
5097
5098 ASSERT3U(write_asize, <=, target_sz);
5099 ARCSTAT_BUMP(arcstat_l2_writes_sent);
5100 ARCSTAT_INCR(arcstat_l2_write_bytes, write_asize);
5101 ARCSTAT_INCR(arcstat_l2_size, write_sz);
5102 ARCSTAT_INCR(arcstat_l2_asize, write_asize);
5103 vdev_space_update(dev->l2ad_vdev, write_psize, 0, 0);
5104
5105 /*
5106 * Bump device hand to the device start if it is approaching the end.
5107 * l2arc_evict() will already have evicted ahead for this case.
5108 */
5109 if (dev->l2ad_hand >= (dev->l2ad_end - target_sz)) {
5110 vdev_space_update(dev->l2ad_vdev,
5111 dev->l2ad_end - dev->l2ad_hand, 0, 0);
5112 dev->l2ad_hand = dev->l2ad_start;
5113 dev->l2ad_evict = dev->l2ad_start;
5114 dev->l2ad_first = B_FALSE;
5115 }
5116
5117 dev->l2ad_writing = B_TRUE;
5118 (void) zio_wait(pio);
5119 dev->l2ad_writing = B_FALSE;
5120
5121 return (write_asize);
5122 }
5123
5124 /*
5125 * Compresses an L2ARC buffer.
5126 * The data to be compressed must be prefilled in l2hdr->b_tmp_cdata and its
5127 * size in l2hdr->b_asize. This routine tries to compress the data and
5128 * depending on the compression result there are three possible outcomes:
5129 * *) The buffer was incompressible. The original l2hdr contents were left
5130 * untouched and are ready for writing to an L2 device.
5131 * *) The buffer was all-zeros, so there is no need to write it to an L2
5132 * device. To indicate this situation b_tmp_cdata is NULL'ed, b_asize is
5133 * set to zero and b_compress is set to ZIO_COMPRESS_EMPTY.
5134 * *) Compression succeeded and b_tmp_cdata was replaced with a temporary
5135 * data buffer which holds the compressed data to be written, and b_asize
5136 * tells us how much data there is. b_compress is set to the appropriate
5137 * compression algorithm. Once writing is done, invoke
5138 * l2arc_release_cdata_buf on this l2hdr to free this temporary buffer.
5139 *
5140 * Returns B_TRUE if compression succeeded, or B_FALSE if it didn't (the
5141 * buffer was incompressible).
5142 */
5143 static boolean_t
5144 l2arc_compress_buf(l2arc_buf_hdr_t *l2hdr)
5145 {
5146 void *cdata;
5147 size_t csize, len;
5148
5149 ASSERT(l2hdr->b_compress == ZIO_COMPRESS_OFF);
5150 ASSERT(l2hdr->b_tmp_cdata != NULL);
5151
5152 len = l2hdr->b_asize;
5153 cdata = zio_data_buf_alloc(len);
5154 csize = zio_compress_data(ZIO_COMPRESS_LZ4, l2hdr->b_tmp_cdata,
5155 cdata, l2hdr->b_asize);
5156
5157 if (csize == 0) {
5158 /* zero block, indicate that there's nothing to write */
5159 zio_data_buf_free(cdata, len);
5160 l2hdr->b_compress = ZIO_COMPRESS_EMPTY;
5161 l2hdr->b_asize = 0;
5162 l2hdr->b_tmp_cdata = NULL;
5163 ARCSTAT_BUMP(arcstat_l2_compress_zeros);
5164 return (B_TRUE);
5165 } else if (csize > 0 && csize < len) {
5166 /*
5167 * Compression succeeded, we'll keep the cdata around for
5168 * writing and release it afterwards.
5169 */
5170 l2hdr->b_compress = ZIO_COMPRESS_LZ4;
5171 l2hdr->b_asize = csize;
5172 l2hdr->b_tmp_cdata = cdata;
5173 ARCSTAT_BUMP(arcstat_l2_compress_successes);
5174 return (B_TRUE);
5175 } else {
5176 /*
5177 * Compression failed, release the compressed buffer.
5178 * l2hdr will be left unmodified.
5179 */
5180 zio_data_buf_free(cdata, len);
5181 ARCSTAT_BUMP(arcstat_l2_compress_failures);
5182 return (B_FALSE);
5183 }
5184 }
5185
5186 /*
5187 * Decompresses a zio read back from an l2arc device. On success, the
5188 * underlying zio's io_data buffer is overwritten by the uncompressed
5189 * version. On decompression error (corrupt compressed stream), the
5190 * zio->io_error value is set to signal an I/O error.
5191 *
5192 * Please note that the compressed data stream is not checksummed, so
5193 * if the underlying device is experiencing data corruption, we may feed
5194 * corrupt data to the decompressor, so the decompressor needs to be
5195 * able to handle this situation (LZ4 does).
5196 */
5197 static void
5198 l2arc_decompress_zio(zio_t *zio, arc_buf_hdr_t *hdr, enum zio_compress c)
5199 {
5200 uint64_t csize;
5201 void *cdata;
5202
5203 ASSERT(L2ARC_IS_VALID_COMPRESS(c));
5204
5205 if (zio->io_error != 0) {
5206 /*
5207 * An io error has occured, just restore the original io
5208 * size in preparation for a main pool read.
5209 */
5210 zio->io_orig_size = zio->io_size = hdr->b_size;
5211 return;
5212 }
5213
5214 if (c == ZIO_COMPRESS_EMPTY) {
5215 /*
5216 * An empty buffer results in a null zio, which means we
5217 * need to fill its io_data after we're done restoring the
5218 * buffer's contents.
5219 */
5220 ASSERT(hdr->b_buf != NULL);
5221 bzero(hdr->b_buf->b_data, hdr->b_size);
5222 zio->io_data = zio->io_orig_data = hdr->b_buf->b_data;
5223 } else {
5224 ASSERT(zio->io_data != NULL);
5225 /*
5226 * We copy the compressed data from the start of the arc buffer
5227 * (the zio_read will have pulled in only what we need, the
5228 * rest is garbage which we will overwrite at decompression)
5229 * and then decompress back to the ARC data buffer. This way we
5230 * can minimize copying by simply decompressing back over the
5231 * original compressed data (rather than decompressing to an
5232 * aux buffer and then copying back the uncompressed buffer,
5233 * which is likely to be much larger).
5234 */
5235 csize = zio->io_size;
5236 cdata = zio_data_buf_alloc(csize);
5237 bcopy(zio->io_data, cdata, csize);
5238 if (zio_decompress_data(c, cdata, zio->io_data, csize,
5239 hdr->b_size) != 0)
5240 zio->io_error = SET_ERROR(EIO);
5241 zio_data_buf_free(cdata, csize);
5242 }
5243
5244 /* Restore the expected uncompressed IO size. */
5245 zio->io_orig_size = zio->io_size = hdr->b_size;
5246 }
5247
5248 /*
5249 * Releases the temporary b_tmp_cdata buffer in an l2arc header structure.
5250 * This buffer serves as a temporary holder of compressed data while
5251 * the buffer entry is being written to an l2arc device. Once that is
5252 * done, we can dispose of it.
5253 */
5254 static void
5255 l2arc_release_cdata_buf(arc_buf_hdr_t *ab)
5256 {
5257 l2arc_buf_hdr_t *l2hdr = ab->b_l2hdr;
5258
5259 if (l2hdr->b_compress == ZIO_COMPRESS_LZ4) {
5260 /*
5261 * If the data was compressed, then we've allocated a
5262 * temporary buffer for it, so now we need to release it.
5263 */
5264 ASSERT(l2hdr->b_tmp_cdata != NULL);
5265 zio_data_buf_free(l2hdr->b_tmp_cdata, ab->b_size);
5266 }
5267 l2hdr->b_tmp_cdata = NULL;
5268 }
5269
5270 /*
5271 * This thread feeds the L2ARC at regular intervals. This is the beating
5272 * heart of the L2ARC.
5273 */
5274 static void
5275 l2arc_feed_thread(void)
5276 {
5277 callb_cpr_t cpr;
5278 l2arc_dev_t *dev;
5279 spa_t *spa;
5280 uint64_t size, wrote;
5281 clock_t begin, next = ddi_get_lbolt();
5282 boolean_t headroom_boost = B_FALSE;
5283
5284 CALLB_CPR_INIT(&cpr, &l2arc_feed_thr_lock, callb_generic_cpr, FTAG);
5285
5286 mutex_enter(&l2arc_feed_thr_lock);
5287
5288 while (l2arc_thread_exit == 0) {
5289 CALLB_CPR_SAFE_BEGIN(&cpr);
5290 (void) cv_timedwait_interruptible(&l2arc_feed_thr_cv,
5291 &l2arc_feed_thr_lock, next);
5292 CALLB_CPR_SAFE_END(&cpr, &l2arc_feed_thr_lock);
5293 next = ddi_get_lbolt() + hz;
5294
5295 /*
5296 * Quick check for L2ARC devices.
5297 */
5298 mutex_enter(&l2arc_dev_mtx);
5299 if (l2arc_ndev == 0) {
5300 mutex_exit(&l2arc_dev_mtx);
5301 continue;
5302 }
5303 mutex_exit(&l2arc_dev_mtx);
5304 begin = ddi_get_lbolt();
5305
5306 /*
5307 * This selects the next l2arc device to write to, and in
5308 * doing so the next spa to feed from: dev->l2ad_spa. This
5309 * will return NULL if there are now no l2arc devices or if
5310 * they are all faulted.
5311 *
5312 * If a device is returned, its spa's config lock is also
5313 * held to prevent device removal. l2arc_dev_get_next()
5314 * will grab and release l2arc_dev_mtx.
5315 */
5316 if ((dev = l2arc_dev_get_next()) == NULL)
5317 continue;
5318
5319 spa = dev->l2ad_spa;
5320 ASSERT(spa != NULL);
5321
5322 /*
5323 * If the pool is read-only then force the feed thread to
5324 * sleep a little longer.
5325 */
5326 if (!spa_writeable(spa)) {
5327 next = ddi_get_lbolt() + 5 * l2arc_feed_secs * hz;
5328 spa_config_exit(spa, SCL_L2ARC, dev);
5329 continue;
5330 }
5331
5332 /*
5333 * Avoid contributing to memory pressure.
5334 */
5335 if (arc_no_grow) {
5336 ARCSTAT_BUMP(arcstat_l2_abort_lowmem);
5337 spa_config_exit(spa, SCL_L2ARC, dev);
5338 continue;
5339 }
5340
5341 ARCSTAT_BUMP(arcstat_l2_feeds);
5342
5343 size = l2arc_write_size();
5344
5345 /*
5346 * Evict L2ARC buffers that will be overwritten.
5347 */
5348 l2arc_evict(dev, size, B_FALSE);
5349
5350 /*
5351 * Write ARC buffers.
5352 */
5353 wrote = l2arc_write_buffers(spa, dev, size, &headroom_boost);
5354
5355 /*
5356 * Calculate interval between writes.
5357 */
5358 next = l2arc_write_interval(begin, size, wrote);
5359 spa_config_exit(spa, SCL_L2ARC, dev);
5360 }
5361
5362 l2arc_thread_exit = 0;
5363 cv_broadcast(&l2arc_feed_thr_cv);
5364 CALLB_CPR_EXIT(&cpr); /* drops l2arc_feed_thr_lock */
5365 thread_exit();
5366 }
5367
5368 boolean_t
5369 l2arc_vdev_present(vdev_t *vd)
5370 {
5371 l2arc_dev_t *dev;
5372
5373 mutex_enter(&l2arc_dev_mtx);
5374 for (dev = list_head(l2arc_dev_list); dev != NULL;
5375 dev = list_next(l2arc_dev_list, dev)) {
5376 if (dev->l2ad_vdev == vd)
5377 break;
5378 }
5379 mutex_exit(&l2arc_dev_mtx);
5380
5381 return (dev != NULL);
5382 }
5383
5384 /*
5385 * Add a vdev for use by the L2ARC. By this point the spa has already
5386 * validated the vdev and opened it.
5387 */
5388 void
5389 l2arc_add_vdev(spa_t *spa, vdev_t *vd)
5390 {
5391 l2arc_dev_t *adddev;
5392
5393 ASSERT(!l2arc_vdev_present(vd));
5394
5395 /*
5396 * Create a new l2arc device entry.
5397 */
5398 adddev = kmem_zalloc(sizeof (l2arc_dev_t), KM_SLEEP);
5399 adddev->l2ad_spa = spa;
5400 adddev->l2ad_vdev = vd;
5401 adddev->l2ad_start = VDEV_LABEL_START_SIZE;
5402 adddev->l2ad_end = VDEV_LABEL_START_SIZE + vdev_get_min_asize(vd);
5403 adddev->l2ad_hand = adddev->l2ad_start;
5404 adddev->l2ad_evict = adddev->l2ad_start;
5405 adddev->l2ad_first = B_TRUE;
5406 adddev->l2ad_writing = B_FALSE;
5407 list_link_init(&adddev->l2ad_node);
5408
5409 /*
5410 * This is a list of all ARC buffers that are still valid on the
5411 * device.
5412 */
5413 adddev->l2ad_buflist = kmem_zalloc(sizeof (list_t), KM_SLEEP);
5414 list_create(adddev->l2ad_buflist, sizeof (arc_buf_hdr_t),
5415 offsetof(arc_buf_hdr_t, b_l2node));
5416
5417 vdev_space_update(vd, 0, 0, adddev->l2ad_end - adddev->l2ad_hand);
5418
5419 /*
5420 * Add device to global list
5421 */
5422 mutex_enter(&l2arc_dev_mtx);
5423 list_insert_head(l2arc_dev_list, adddev);
5424 atomic_inc_64(&l2arc_ndev);
5425 mutex_exit(&l2arc_dev_mtx);
5426 }
5427
5428 /*
5429 * Remove a vdev from the L2ARC.
5430 */
5431 void
5432 l2arc_remove_vdev(vdev_t *vd)
5433 {
5434 l2arc_dev_t *dev, *nextdev, *remdev = NULL;
5435
5436 /*
5437 * Find the device by vdev
5438 */
5439 mutex_enter(&l2arc_dev_mtx);
5440 for (dev = list_head(l2arc_dev_list); dev; dev = nextdev) {
5441 nextdev = list_next(l2arc_dev_list, dev);
5442 if (vd == dev->l2ad_vdev) {
5443 remdev = dev;
5444 break;
5445 }
5446 }
5447 ASSERT(remdev != NULL);
5448
5449 /*
5450 * Remove device from global list
5451 */
5452 list_remove(l2arc_dev_list, remdev);
5453 l2arc_dev_last = NULL; /* may have been invalidated */
5454 atomic_dec_64(&l2arc_ndev);
5455 mutex_exit(&l2arc_dev_mtx);
5456
5457 /*
5458 * Clear all buflists and ARC references. L2ARC device flush.
5459 */
5460 l2arc_evict(remdev, 0, B_TRUE);
5461 list_destroy(remdev->l2ad_buflist);
5462 kmem_free(remdev->l2ad_buflist, sizeof (list_t));
5463 kmem_free(remdev, sizeof (l2arc_dev_t));
5464 }
5465
5466 void
5467 l2arc_init(void)
5468 {
5469 l2arc_thread_exit = 0;
5470 l2arc_ndev = 0;
5471 l2arc_writes_sent = 0;
5472 l2arc_writes_done = 0;
5473
5474 mutex_init(&l2arc_feed_thr_lock, NULL, MUTEX_DEFAULT, NULL);
5475 cv_init(&l2arc_feed_thr_cv, NULL, CV_DEFAULT, NULL);
5476 mutex_init(&l2arc_dev_mtx, NULL, MUTEX_DEFAULT, NULL);
5477 mutex_init(&l2arc_buflist_mtx, NULL, MUTEX_DEFAULT, NULL);
5478 mutex_init(&l2arc_free_on_write_mtx, NULL, MUTEX_DEFAULT, NULL);
5479
5480 l2arc_dev_list = &L2ARC_dev_list;
5481 l2arc_free_on_write = &L2ARC_free_on_write;
5482 list_create(l2arc_dev_list, sizeof (l2arc_dev_t),
5483 offsetof(l2arc_dev_t, l2ad_node));
5484 list_create(l2arc_free_on_write, sizeof (l2arc_data_free_t),
5485 offsetof(l2arc_data_free_t, l2df_list_node));
5486 }
5487
5488 void
5489 l2arc_fini(void)
5490 {
5491 /*
5492 * This is called from dmu_fini(), which is called from spa_fini();
5493 * Because of this, we can assume that all l2arc devices have
5494 * already been removed when the pools themselves were removed.
5495 */
5496
5497 l2arc_do_free_on_write();
5498
5499 mutex_destroy(&l2arc_feed_thr_lock);
5500 cv_destroy(&l2arc_feed_thr_cv);
5501 mutex_destroy(&l2arc_dev_mtx);
5502 mutex_destroy(&l2arc_buflist_mtx);
5503 mutex_destroy(&l2arc_free_on_write_mtx);
5504
5505 list_destroy(l2arc_dev_list);
5506 list_destroy(l2arc_free_on_write);
5507 }
5508
5509 void
5510 l2arc_start(void)
5511 {
5512 if (!(spa_mode_global & FWRITE))
5513 return;
5514
5515 (void) thread_create(NULL, 0, l2arc_feed_thread, NULL, 0, &p0,
5516 TS_RUN, minclsyspri);
5517 }
5518
5519 void
5520 l2arc_stop(void)
5521 {
5522 if (!(spa_mode_global & FWRITE))
5523 return;
5524
5525 mutex_enter(&l2arc_feed_thr_lock);
5526 cv_signal(&l2arc_feed_thr_cv); /* kick thread out of startup */
5527 l2arc_thread_exit = 1;
5528 while (l2arc_thread_exit != 0)
5529 cv_wait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock);
5530 mutex_exit(&l2arc_feed_thr_lock);
5531 }
5532
5533 #if defined(_KERNEL) && defined(HAVE_SPL)
5534 EXPORT_SYMBOL(arc_read);
5535 EXPORT_SYMBOL(arc_buf_remove_ref);
5536 EXPORT_SYMBOL(arc_buf_info);
5537 EXPORT_SYMBOL(arc_getbuf_func);
5538 EXPORT_SYMBOL(arc_add_prune_callback);
5539 EXPORT_SYMBOL(arc_remove_prune_callback);
5540
5541 module_param(zfs_arc_min, ulong, 0644);
5542 MODULE_PARM_DESC(zfs_arc_min, "Min arc size");
5543
5544 module_param(zfs_arc_max, ulong, 0644);
5545 MODULE_PARM_DESC(zfs_arc_max, "Max arc size");
5546
5547 module_param(zfs_arc_meta_limit, ulong, 0644);
5548 MODULE_PARM_DESC(zfs_arc_meta_limit, "Meta limit for arc size");
5549
5550 module_param(zfs_arc_meta_prune, int, 0644);
5551 MODULE_PARM_DESC(zfs_arc_meta_prune, "Bytes of meta data to prune");
5552
5553 module_param(zfs_arc_grow_retry, int, 0644);
5554 MODULE_PARM_DESC(zfs_arc_grow_retry, "Seconds before growing arc size");
5555
5556 module_param(zfs_arc_shrink_shift, int, 0644);
5557 MODULE_PARM_DESC(zfs_arc_shrink_shift, "log2(fraction of arc to reclaim)");
5558
5559 module_param(zfs_arc_p_min_shift, int, 0644);
5560 MODULE_PARM_DESC(zfs_arc_p_min_shift, "arc_c shift to calc min/max arc_p");
5561
5562 module_param(zfs_disable_dup_eviction, int, 0644);
5563 MODULE_PARM_DESC(zfs_disable_dup_eviction, "disable duplicate buffer eviction");
5564
5565 module_param(zfs_arc_memory_throttle_disable, int, 0644);
5566 MODULE_PARM_DESC(zfs_arc_memory_throttle_disable, "disable memory throttle");
5567
5568 module_param(zfs_arc_min_prefetch_lifespan, int, 0644);
5569 MODULE_PARM_DESC(zfs_arc_min_prefetch_lifespan, "Min life of prefetch block");
5570
5571 module_param(l2arc_write_max, ulong, 0644);
5572 MODULE_PARM_DESC(l2arc_write_max, "Max write bytes per interval");
5573
5574 module_param(l2arc_write_boost, ulong, 0644);
5575 MODULE_PARM_DESC(l2arc_write_boost, "Extra write bytes during device warmup");
5576
5577 module_param(l2arc_headroom, ulong, 0644);
5578 MODULE_PARM_DESC(l2arc_headroom, "Number of max device writes to precache");
5579
5580 module_param(l2arc_headroom_boost, ulong, 0644);
5581 MODULE_PARM_DESC(l2arc_headroom_boost, "Compressed l2arc_headroom multiplier");
5582
5583 module_param(l2arc_feed_secs, ulong, 0644);
5584 MODULE_PARM_DESC(l2arc_feed_secs, "Seconds between L2ARC writing");
5585
5586 module_param(l2arc_feed_min_ms, ulong, 0644);
5587 MODULE_PARM_DESC(l2arc_feed_min_ms, "Min feed interval in milliseconds");
5588
5589 module_param(l2arc_noprefetch, int, 0644);
5590 MODULE_PARM_DESC(l2arc_noprefetch, "Skip caching prefetched buffers");
5591
5592 module_param(l2arc_nocompress, int, 0644);
5593 MODULE_PARM_DESC(l2arc_nocompress, "Skip compressing L2ARC buffers");
5594
5595 module_param(l2arc_feed_again, int, 0644);
5596 MODULE_PARM_DESC(l2arc_feed_again, "Turbo L2ARC warmup");
5597
5598 module_param(l2arc_norw, int, 0644);
5599 MODULE_PARM_DESC(l2arc_norw, "No reads during writes");
5600
5601 #endif