]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/dbuf.c
64c1a68af28c1de10030a1c6b6ece696ec1c69ed
[mirror_zfs.git] / module / zfs / dbuf.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24 * Copyright (c) 2012, 2017 by Delphix. All rights reserved.
25 * Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
26 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
27 */
28
29 #include <sys/zfs_context.h>
30 #include <sys/arc.h>
31 #include <sys/dmu.h>
32 #include <sys/dmu_send.h>
33 #include <sys/dmu_impl.h>
34 #include <sys/dbuf.h>
35 #include <sys/dmu_objset.h>
36 #include <sys/dsl_dataset.h>
37 #include <sys/dsl_dir.h>
38 #include <sys/dmu_tx.h>
39 #include <sys/spa.h>
40 #include <sys/zio.h>
41 #include <sys/dmu_zfetch.h>
42 #include <sys/sa.h>
43 #include <sys/sa_impl.h>
44 #include <sys/zfeature.h>
45 #include <sys/blkptr.h>
46 #include <sys/range_tree.h>
47 #include <sys/trace_dbuf.h>
48 #include <sys/callb.h>
49 #include <sys/abd.h>
50
51 struct dbuf_hold_impl_data {
52 /* Function arguments */
53 dnode_t *dh_dn;
54 uint8_t dh_level;
55 uint64_t dh_blkid;
56 boolean_t dh_fail_sparse;
57 boolean_t dh_fail_uncached;
58 void *dh_tag;
59 dmu_buf_impl_t **dh_dbp;
60 /* Local variables */
61 dmu_buf_impl_t *dh_db;
62 dmu_buf_impl_t *dh_parent;
63 blkptr_t *dh_bp;
64 int dh_err;
65 dbuf_dirty_record_t *dh_dr;
66 int dh_depth;
67 };
68
69 static void __dbuf_hold_impl_init(struct dbuf_hold_impl_data *dh,
70 dnode_t *dn, uint8_t level, uint64_t blkid, boolean_t fail_sparse,
71 boolean_t fail_uncached,
72 void *tag, dmu_buf_impl_t **dbp, int depth);
73 static int __dbuf_hold_impl(struct dbuf_hold_impl_data *dh);
74
75 uint_t zfs_dbuf_evict_key;
76
77 static boolean_t dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx);
78 static void dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx);
79
80 extern inline void dmu_buf_init_user(dmu_buf_user_t *dbu,
81 dmu_buf_evict_func_t *evict_func_sync,
82 dmu_buf_evict_func_t *evict_func_async,
83 dmu_buf_t **clear_on_evict_dbufp);
84
85 /*
86 * Global data structures and functions for the dbuf cache.
87 */
88 static kmem_cache_t *dbuf_kmem_cache;
89 static taskq_t *dbu_evict_taskq;
90
91 static kthread_t *dbuf_cache_evict_thread;
92 static kmutex_t dbuf_evict_lock;
93 static kcondvar_t dbuf_evict_cv;
94 static boolean_t dbuf_evict_thread_exit;
95
96 /*
97 * LRU cache of dbufs. The dbuf cache maintains a list of dbufs that
98 * are not currently held but have been recently released. These dbufs
99 * are not eligible for arc eviction until they are aged out of the cache.
100 * Dbufs are added to the dbuf cache once the last hold is released. If a
101 * dbuf is later accessed and still exists in the dbuf cache, then it will
102 * be removed from the cache and later re-added to the head of the cache.
103 * Dbufs that are aged out of the cache will be immediately destroyed and
104 * become eligible for arc eviction.
105 */
106 static multilist_t *dbuf_cache;
107 static refcount_t dbuf_cache_size;
108 unsigned long dbuf_cache_max_bytes = 100 * 1024 * 1024;
109
110 /* Cap the size of the dbuf cache to log2 fraction of arc size. */
111 int dbuf_cache_max_shift = 5;
112
113 /*
114 * The dbuf cache uses a three-stage eviction policy:
115 * - A low water marker designates when the dbuf eviction thread
116 * should stop evicting from the dbuf cache.
117 * - When we reach the maximum size (aka mid water mark), we
118 * signal the eviction thread to run.
119 * - The high water mark indicates when the eviction thread
120 * is unable to keep up with the incoming load and eviction must
121 * happen in the context of the calling thread.
122 *
123 * The dbuf cache:
124 * (max size)
125 * low water mid water hi water
126 * +----------------------------------------+----------+----------+
127 * | | | |
128 * | | | |
129 * | | | |
130 * | | | |
131 * +----------------------------------------+----------+----------+
132 * stop signal evict
133 * evicting eviction directly
134 * thread
135 *
136 * The high and low water marks indicate the operating range for the eviction
137 * thread. The low water mark is, by default, 90% of the total size of the
138 * cache and the high water mark is at 110% (both of these percentages can be
139 * changed by setting dbuf_cache_lowater_pct and dbuf_cache_hiwater_pct,
140 * respectively). The eviction thread will try to ensure that the cache remains
141 * within this range by waking up every second and checking if the cache is
142 * above the low water mark. The thread can also be woken up by callers adding
143 * elements into the cache if the cache is larger than the mid water (i.e max
144 * cache size). Once the eviction thread is woken up and eviction is required,
145 * it will continue evicting buffers until it's able to reduce the cache size
146 * to the low water mark. If the cache size continues to grow and hits the high
147 * water mark, then callers adding elements to the cache will begin to evict
148 * directly from the cache until the cache is no longer above the high water
149 * mark.
150 */
151
152 /*
153 * The percentage above and below the maximum cache size.
154 */
155 uint_t dbuf_cache_hiwater_pct = 10;
156 uint_t dbuf_cache_lowater_pct = 10;
157
158 /* ARGSUSED */
159 static int
160 dbuf_cons(void *vdb, void *unused, int kmflag)
161 {
162 dmu_buf_impl_t *db = vdb;
163 bzero(db, sizeof (dmu_buf_impl_t));
164
165 mutex_init(&db->db_mtx, NULL, MUTEX_DEFAULT, NULL);
166 cv_init(&db->db_changed, NULL, CV_DEFAULT, NULL);
167 multilist_link_init(&db->db_cache_link);
168 refcount_create(&db->db_holds);
169
170 return (0);
171 }
172
173 /* ARGSUSED */
174 static void
175 dbuf_dest(void *vdb, void *unused)
176 {
177 dmu_buf_impl_t *db = vdb;
178 mutex_destroy(&db->db_mtx);
179 cv_destroy(&db->db_changed);
180 ASSERT(!multilist_link_active(&db->db_cache_link));
181 refcount_destroy(&db->db_holds);
182 }
183
184 /*
185 * dbuf hash table routines
186 */
187 static dbuf_hash_table_t dbuf_hash_table;
188
189 static uint64_t dbuf_hash_count;
190
191 static uint64_t
192 dbuf_hash(void *os, uint64_t obj, uint8_t lvl, uint64_t blkid)
193 {
194 uintptr_t osv = (uintptr_t)os;
195 uint64_t crc = -1ULL;
196
197 ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
198 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (lvl)) & 0xFF];
199 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (osv >> 6)) & 0xFF];
200 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (obj >> 0)) & 0xFF];
201 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (obj >> 8)) & 0xFF];
202 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (blkid >> 0)) & 0xFF];
203 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (blkid >> 8)) & 0xFF];
204
205 crc ^= (osv>>14) ^ (obj>>16) ^ (blkid>>16);
206
207 return (crc);
208 }
209
210 #define DBUF_EQUAL(dbuf, os, obj, level, blkid) \
211 ((dbuf)->db.db_object == (obj) && \
212 (dbuf)->db_objset == (os) && \
213 (dbuf)->db_level == (level) && \
214 (dbuf)->db_blkid == (blkid))
215
216 dmu_buf_impl_t *
217 dbuf_find(objset_t *os, uint64_t obj, uint8_t level, uint64_t blkid)
218 {
219 dbuf_hash_table_t *h = &dbuf_hash_table;
220 uint64_t hv;
221 uint64_t idx;
222 dmu_buf_impl_t *db;
223
224 hv = dbuf_hash(os, obj, level, blkid);
225 idx = hv & h->hash_table_mask;
226
227 mutex_enter(DBUF_HASH_MUTEX(h, idx));
228 for (db = h->hash_table[idx]; db != NULL; db = db->db_hash_next) {
229 if (DBUF_EQUAL(db, os, obj, level, blkid)) {
230 mutex_enter(&db->db_mtx);
231 if (db->db_state != DB_EVICTING) {
232 mutex_exit(DBUF_HASH_MUTEX(h, idx));
233 return (db);
234 }
235 mutex_exit(&db->db_mtx);
236 }
237 }
238 mutex_exit(DBUF_HASH_MUTEX(h, idx));
239 return (NULL);
240 }
241
242 static dmu_buf_impl_t *
243 dbuf_find_bonus(objset_t *os, uint64_t object)
244 {
245 dnode_t *dn;
246 dmu_buf_impl_t *db = NULL;
247
248 if (dnode_hold(os, object, FTAG, &dn) == 0) {
249 rw_enter(&dn->dn_struct_rwlock, RW_READER);
250 if (dn->dn_bonus != NULL) {
251 db = dn->dn_bonus;
252 mutex_enter(&db->db_mtx);
253 }
254 rw_exit(&dn->dn_struct_rwlock);
255 dnode_rele(dn, FTAG);
256 }
257 return (db);
258 }
259
260 /*
261 * Insert an entry into the hash table. If there is already an element
262 * equal to elem in the hash table, then the already existing element
263 * will be returned and the new element will not be inserted.
264 * Otherwise returns NULL.
265 */
266 static dmu_buf_impl_t *
267 dbuf_hash_insert(dmu_buf_impl_t *db)
268 {
269 dbuf_hash_table_t *h = &dbuf_hash_table;
270 objset_t *os = db->db_objset;
271 uint64_t obj = db->db.db_object;
272 int level = db->db_level;
273 uint64_t blkid, hv, idx;
274 dmu_buf_impl_t *dbf;
275
276 blkid = db->db_blkid;
277 hv = dbuf_hash(os, obj, level, blkid);
278 idx = hv & h->hash_table_mask;
279
280 mutex_enter(DBUF_HASH_MUTEX(h, idx));
281 for (dbf = h->hash_table[idx]; dbf != NULL; dbf = dbf->db_hash_next) {
282 if (DBUF_EQUAL(dbf, os, obj, level, blkid)) {
283 mutex_enter(&dbf->db_mtx);
284 if (dbf->db_state != DB_EVICTING) {
285 mutex_exit(DBUF_HASH_MUTEX(h, idx));
286 return (dbf);
287 }
288 mutex_exit(&dbf->db_mtx);
289 }
290 }
291
292 mutex_enter(&db->db_mtx);
293 db->db_hash_next = h->hash_table[idx];
294 h->hash_table[idx] = db;
295 mutex_exit(DBUF_HASH_MUTEX(h, idx));
296 atomic_inc_64(&dbuf_hash_count);
297
298 return (NULL);
299 }
300
301 /*
302 * Remove an entry from the hash table. It must be in the EVICTING state.
303 */
304 static void
305 dbuf_hash_remove(dmu_buf_impl_t *db)
306 {
307 dbuf_hash_table_t *h = &dbuf_hash_table;
308 uint64_t hv, idx;
309 dmu_buf_impl_t *dbf, **dbp;
310
311 hv = dbuf_hash(db->db_objset, db->db.db_object,
312 db->db_level, db->db_blkid);
313 idx = hv & h->hash_table_mask;
314
315 /*
316 * We mustn't hold db_mtx to maintain lock ordering:
317 * DBUF_HASH_MUTEX > db_mtx.
318 */
319 ASSERT(refcount_is_zero(&db->db_holds));
320 ASSERT(db->db_state == DB_EVICTING);
321 ASSERT(!MUTEX_HELD(&db->db_mtx));
322
323 mutex_enter(DBUF_HASH_MUTEX(h, idx));
324 dbp = &h->hash_table[idx];
325 while ((dbf = *dbp) != db) {
326 dbp = &dbf->db_hash_next;
327 ASSERT(dbf != NULL);
328 }
329 *dbp = db->db_hash_next;
330 db->db_hash_next = NULL;
331 mutex_exit(DBUF_HASH_MUTEX(h, idx));
332 atomic_dec_64(&dbuf_hash_count);
333 }
334
335 typedef enum {
336 DBVU_EVICTING,
337 DBVU_NOT_EVICTING
338 } dbvu_verify_type_t;
339
340 static void
341 dbuf_verify_user(dmu_buf_impl_t *db, dbvu_verify_type_t verify_type)
342 {
343 #ifdef ZFS_DEBUG
344 int64_t holds;
345
346 if (db->db_user == NULL)
347 return;
348
349 /* Only data blocks support the attachment of user data. */
350 ASSERT(db->db_level == 0);
351
352 /* Clients must resolve a dbuf before attaching user data. */
353 ASSERT(db->db.db_data != NULL);
354 ASSERT3U(db->db_state, ==, DB_CACHED);
355
356 holds = refcount_count(&db->db_holds);
357 if (verify_type == DBVU_EVICTING) {
358 /*
359 * Immediate eviction occurs when holds == dirtycnt.
360 * For normal eviction buffers, holds is zero on
361 * eviction, except when dbuf_fix_old_data() calls
362 * dbuf_clear_data(). However, the hold count can grow
363 * during eviction even though db_mtx is held (see
364 * dmu_bonus_hold() for an example), so we can only
365 * test the generic invariant that holds >= dirtycnt.
366 */
367 ASSERT3U(holds, >=, db->db_dirtycnt);
368 } else {
369 if (db->db_user_immediate_evict == TRUE)
370 ASSERT3U(holds, >=, db->db_dirtycnt);
371 else
372 ASSERT3U(holds, >, 0);
373 }
374 #endif
375 }
376
377 static void
378 dbuf_evict_user(dmu_buf_impl_t *db)
379 {
380 dmu_buf_user_t *dbu = db->db_user;
381
382 ASSERT(MUTEX_HELD(&db->db_mtx));
383
384 if (dbu == NULL)
385 return;
386
387 dbuf_verify_user(db, DBVU_EVICTING);
388 db->db_user = NULL;
389
390 #ifdef ZFS_DEBUG
391 if (dbu->dbu_clear_on_evict_dbufp != NULL)
392 *dbu->dbu_clear_on_evict_dbufp = NULL;
393 #endif
394
395 /*
396 * There are two eviction callbacks - one that we call synchronously
397 * and one that we invoke via a taskq. The async one is useful for
398 * avoiding lock order reversals and limiting stack depth.
399 *
400 * Note that if we have a sync callback but no async callback,
401 * it's likely that the sync callback will free the structure
402 * containing the dbu. In that case we need to take care to not
403 * dereference dbu after calling the sync evict func.
404 */
405 boolean_t has_async = (dbu->dbu_evict_func_async != NULL);
406
407 if (dbu->dbu_evict_func_sync != NULL)
408 dbu->dbu_evict_func_sync(dbu);
409
410 if (has_async) {
411 taskq_dispatch_ent(dbu_evict_taskq, dbu->dbu_evict_func_async,
412 dbu, 0, &dbu->dbu_tqent);
413 }
414 }
415
416 boolean_t
417 dbuf_is_metadata(dmu_buf_impl_t *db)
418 {
419 /*
420 * Consider indirect blocks and spill blocks to be meta data.
421 */
422 if (db->db_level > 0 || db->db_blkid == DMU_SPILL_BLKID) {
423 return (B_TRUE);
424 } else {
425 boolean_t is_metadata;
426
427 DB_DNODE_ENTER(db);
428 is_metadata = DMU_OT_IS_METADATA(DB_DNODE(db)->dn_type);
429 DB_DNODE_EXIT(db);
430
431 return (is_metadata);
432 }
433 }
434
435
436 /*
437 * This function *must* return indices evenly distributed between all
438 * sublists of the multilist. This is needed due to how the dbuf eviction
439 * code is laid out; dbuf_evict_thread() assumes dbufs are evenly
440 * distributed between all sublists and uses this assumption when
441 * deciding which sublist to evict from and how much to evict from it.
442 */
443 unsigned int
444 dbuf_cache_multilist_index_func(multilist_t *ml, void *obj)
445 {
446 dmu_buf_impl_t *db = obj;
447
448 /*
449 * The assumption here, is the hash value for a given
450 * dmu_buf_impl_t will remain constant throughout it's lifetime
451 * (i.e. it's objset, object, level and blkid fields don't change).
452 * Thus, we don't need to store the dbuf's sublist index
453 * on insertion, as this index can be recalculated on removal.
454 *
455 * Also, the low order bits of the hash value are thought to be
456 * distributed evenly. Otherwise, in the case that the multilist
457 * has a power of two number of sublists, each sublists' usage
458 * would not be evenly distributed.
459 */
460 return (dbuf_hash(db->db_objset, db->db.db_object,
461 db->db_level, db->db_blkid) %
462 multilist_get_num_sublists(ml));
463 }
464
465 static inline unsigned long
466 dbuf_cache_target_bytes(void)
467 {
468 return MIN(dbuf_cache_max_bytes,
469 arc_target_bytes() >> dbuf_cache_max_shift);
470 }
471
472 static inline boolean_t
473 dbuf_cache_above_hiwater(void)
474 {
475 uint64_t dbuf_cache_target = dbuf_cache_target_bytes();
476
477 uint64_t dbuf_cache_hiwater_bytes =
478 (dbuf_cache_target * dbuf_cache_hiwater_pct) / 100;
479
480 return (refcount_count(&dbuf_cache_size) >
481 dbuf_cache_target + dbuf_cache_hiwater_bytes);
482 }
483
484 static inline boolean_t
485 dbuf_cache_above_lowater(void)
486 {
487 uint64_t dbuf_cache_target = dbuf_cache_target_bytes();
488
489 uint64_t dbuf_cache_lowater_bytes =
490 (dbuf_cache_target * dbuf_cache_lowater_pct) / 100;
491
492 return (refcount_count(&dbuf_cache_size) >
493 dbuf_cache_target - dbuf_cache_lowater_bytes);
494 }
495
496 /*
497 * Evict the oldest eligible dbuf from the dbuf cache.
498 */
499 static void
500 dbuf_evict_one(void)
501 {
502 int idx = multilist_get_random_index(dbuf_cache);
503 multilist_sublist_t *mls = multilist_sublist_lock(dbuf_cache, idx);
504
505 ASSERT(!MUTEX_HELD(&dbuf_evict_lock));
506
507 /*
508 * Set the thread's tsd to indicate that it's processing evictions.
509 * Once a thread stops evicting from the dbuf cache it will
510 * reset its tsd to NULL.
511 */
512 ASSERT3P(tsd_get(zfs_dbuf_evict_key), ==, NULL);
513 (void) tsd_set(zfs_dbuf_evict_key, (void *)B_TRUE);
514
515 dmu_buf_impl_t *db = multilist_sublist_tail(mls);
516 while (db != NULL && mutex_tryenter(&db->db_mtx) == 0) {
517 db = multilist_sublist_prev(mls, db);
518 }
519
520 DTRACE_PROBE2(dbuf__evict__one, dmu_buf_impl_t *, db,
521 multilist_sublist_t *, mls);
522
523 if (db != NULL) {
524 multilist_sublist_remove(mls, db);
525 multilist_sublist_unlock(mls);
526 (void) refcount_remove_many(&dbuf_cache_size,
527 db->db.db_size, db);
528 dbuf_destroy(db);
529 } else {
530 multilist_sublist_unlock(mls);
531 }
532 (void) tsd_set(zfs_dbuf_evict_key, NULL);
533 }
534
535 /*
536 * The dbuf evict thread is responsible for aging out dbufs from the
537 * cache. Once the cache has reached it's maximum size, dbufs are removed
538 * and destroyed. The eviction thread will continue running until the size
539 * of the dbuf cache is at or below the maximum size. Once the dbuf is aged
540 * out of the cache it is destroyed and becomes eligible for arc eviction.
541 */
542 /* ARGSUSED */
543 static void
544 dbuf_evict_thread(void *unused)
545 {
546 callb_cpr_t cpr;
547
548 CALLB_CPR_INIT(&cpr, &dbuf_evict_lock, callb_generic_cpr, FTAG);
549
550 mutex_enter(&dbuf_evict_lock);
551 while (!dbuf_evict_thread_exit) {
552 while (!dbuf_cache_above_lowater() && !dbuf_evict_thread_exit) {
553 CALLB_CPR_SAFE_BEGIN(&cpr);
554 (void) cv_timedwait_sig_hires(&dbuf_evict_cv,
555 &dbuf_evict_lock, SEC2NSEC(1), MSEC2NSEC(1), 0);
556 CALLB_CPR_SAFE_END(&cpr, &dbuf_evict_lock);
557 }
558 mutex_exit(&dbuf_evict_lock);
559
560 /*
561 * Keep evicting as long as we're above the low water mark
562 * for the cache. We do this without holding the locks to
563 * minimize lock contention.
564 */
565 while (dbuf_cache_above_lowater() && !dbuf_evict_thread_exit) {
566 dbuf_evict_one();
567 }
568
569 mutex_enter(&dbuf_evict_lock);
570 }
571
572 dbuf_evict_thread_exit = B_FALSE;
573 cv_broadcast(&dbuf_evict_cv);
574 CALLB_CPR_EXIT(&cpr); /* drops dbuf_evict_lock */
575 thread_exit();
576 }
577
578 /*
579 * Wake up the dbuf eviction thread if the dbuf cache is at its max size.
580 * If the dbuf cache is at its high water mark, then evict a dbuf from the
581 * dbuf cache using the callers context.
582 */
583 static void
584 dbuf_evict_notify(void)
585 {
586
587 /*
588 * We use thread specific data to track when a thread has
589 * started processing evictions. This allows us to avoid deeply
590 * nested stacks that would have a call flow similar to this:
591 *
592 * dbuf_rele()-->dbuf_rele_and_unlock()-->dbuf_evict_notify()
593 * ^ |
594 * | |
595 * +-----dbuf_destroy()<--dbuf_evict_one()<--------+
596 *
597 * The dbuf_eviction_thread will always have its tsd set until
598 * that thread exits. All other threads will only set their tsd
599 * if they are participating in the eviction process. This only
600 * happens if the eviction thread is unable to process evictions
601 * fast enough. To keep the dbuf cache size in check, other threads
602 * can evict from the dbuf cache directly. Those threads will set
603 * their tsd values so that we ensure that they only evict one dbuf
604 * from the dbuf cache.
605 */
606 if (tsd_get(zfs_dbuf_evict_key) != NULL)
607 return;
608
609 /*
610 * We check if we should evict without holding the dbuf_evict_lock,
611 * because it's OK to occasionally make the wrong decision here,
612 * and grabbing the lock results in massive lock contention.
613 */
614 if (refcount_count(&dbuf_cache_size) > dbuf_cache_target_bytes()) {
615 if (dbuf_cache_above_hiwater())
616 dbuf_evict_one();
617 cv_signal(&dbuf_evict_cv);
618 }
619 }
620
621
622
623 void
624 dbuf_init(void)
625 {
626 uint64_t hsize = 1ULL << 16;
627 dbuf_hash_table_t *h = &dbuf_hash_table;
628 int i;
629
630 /*
631 * The hash table is big enough to fill all of physical memory
632 * with an average block size of zfs_arc_average_blocksize (default 8K).
633 * By default, the table will take up
634 * totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers).
635 */
636 while (hsize * zfs_arc_average_blocksize < physmem * PAGESIZE)
637 hsize <<= 1;
638
639 retry:
640 h->hash_table_mask = hsize - 1;
641 #if defined(_KERNEL) && defined(HAVE_SPL)
642 /*
643 * Large allocations which do not require contiguous pages
644 * should be using vmem_alloc() in the linux kernel
645 */
646 h->hash_table = vmem_zalloc(hsize * sizeof (void *), KM_SLEEP);
647 #else
648 h->hash_table = kmem_zalloc(hsize * sizeof (void *), KM_NOSLEEP);
649 #endif
650 if (h->hash_table == NULL) {
651 /* XXX - we should really return an error instead of assert */
652 ASSERT(hsize > (1ULL << 10));
653 hsize >>= 1;
654 goto retry;
655 }
656
657 dbuf_kmem_cache = kmem_cache_create("dmu_buf_impl_t",
658 sizeof (dmu_buf_impl_t),
659 0, dbuf_cons, dbuf_dest, NULL, NULL, NULL, 0);
660
661 for (i = 0; i < DBUF_MUTEXES; i++)
662 mutex_init(&h->hash_mutexes[i], NULL, MUTEX_DEFAULT, NULL);
663
664 dbuf_stats_init(h);
665
666 /*
667 * Setup the parameters for the dbuf cache. We cap the size of the
668 * dbuf cache to 1/32nd (default) of the size of the ARC.
669 */
670 dbuf_cache_max_bytes = MIN(dbuf_cache_max_bytes,
671 arc_target_bytes() >> dbuf_cache_max_shift);
672
673 /*
674 * All entries are queued via taskq_dispatch_ent(), so min/maxalloc
675 * configuration is not required.
676 */
677 dbu_evict_taskq = taskq_create("dbu_evict", 1, defclsyspri, 0, 0, 0);
678
679 dbuf_cache = multilist_create(sizeof (dmu_buf_impl_t),
680 offsetof(dmu_buf_impl_t, db_cache_link),
681 dbuf_cache_multilist_index_func);
682 refcount_create(&dbuf_cache_size);
683
684 tsd_create(&zfs_dbuf_evict_key, NULL);
685 dbuf_evict_thread_exit = B_FALSE;
686 mutex_init(&dbuf_evict_lock, NULL, MUTEX_DEFAULT, NULL);
687 cv_init(&dbuf_evict_cv, NULL, CV_DEFAULT, NULL);
688 dbuf_cache_evict_thread = thread_create(NULL, 0, dbuf_evict_thread,
689 NULL, 0, &p0, TS_RUN, minclsyspri);
690 }
691
692 void
693 dbuf_fini(void)
694 {
695 dbuf_hash_table_t *h = &dbuf_hash_table;
696 int i;
697
698 dbuf_stats_destroy();
699
700 for (i = 0; i < DBUF_MUTEXES; i++)
701 mutex_destroy(&h->hash_mutexes[i]);
702 #if defined(_KERNEL) && defined(HAVE_SPL)
703 /*
704 * Large allocations which do not require contiguous pages
705 * should be using vmem_free() in the linux kernel
706 */
707 vmem_free(h->hash_table, (h->hash_table_mask + 1) * sizeof (void *));
708 #else
709 kmem_free(h->hash_table, (h->hash_table_mask + 1) * sizeof (void *));
710 #endif
711 kmem_cache_destroy(dbuf_kmem_cache);
712 taskq_destroy(dbu_evict_taskq);
713
714 mutex_enter(&dbuf_evict_lock);
715 dbuf_evict_thread_exit = B_TRUE;
716 while (dbuf_evict_thread_exit) {
717 cv_signal(&dbuf_evict_cv);
718 cv_wait(&dbuf_evict_cv, &dbuf_evict_lock);
719 }
720 mutex_exit(&dbuf_evict_lock);
721 tsd_destroy(&zfs_dbuf_evict_key);
722
723 mutex_destroy(&dbuf_evict_lock);
724 cv_destroy(&dbuf_evict_cv);
725
726 refcount_destroy(&dbuf_cache_size);
727 multilist_destroy(dbuf_cache);
728 }
729
730 /*
731 * Other stuff.
732 */
733
734 #ifdef ZFS_DEBUG
735 static void
736 dbuf_verify(dmu_buf_impl_t *db)
737 {
738 dnode_t *dn;
739 dbuf_dirty_record_t *dr;
740
741 ASSERT(MUTEX_HELD(&db->db_mtx));
742
743 if (!(zfs_flags & ZFS_DEBUG_DBUF_VERIFY))
744 return;
745
746 ASSERT(db->db_objset != NULL);
747 DB_DNODE_ENTER(db);
748 dn = DB_DNODE(db);
749 if (dn == NULL) {
750 ASSERT(db->db_parent == NULL);
751 ASSERT(db->db_blkptr == NULL);
752 } else {
753 ASSERT3U(db->db.db_object, ==, dn->dn_object);
754 ASSERT3P(db->db_objset, ==, dn->dn_objset);
755 ASSERT3U(db->db_level, <, dn->dn_nlevels);
756 ASSERT(db->db_blkid == DMU_BONUS_BLKID ||
757 db->db_blkid == DMU_SPILL_BLKID ||
758 !avl_is_empty(&dn->dn_dbufs));
759 }
760 if (db->db_blkid == DMU_BONUS_BLKID) {
761 ASSERT(dn != NULL);
762 ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen);
763 ASSERT3U(db->db.db_offset, ==, DMU_BONUS_BLKID);
764 } else if (db->db_blkid == DMU_SPILL_BLKID) {
765 ASSERT(dn != NULL);
766 ASSERT0(db->db.db_offset);
767 } else {
768 ASSERT3U(db->db.db_offset, ==, db->db_blkid * db->db.db_size);
769 }
770
771 for (dr = db->db_data_pending; dr != NULL; dr = dr->dr_next)
772 ASSERT(dr->dr_dbuf == db);
773
774 for (dr = db->db_last_dirty; dr != NULL; dr = dr->dr_next)
775 ASSERT(dr->dr_dbuf == db);
776
777 /*
778 * We can't assert that db_size matches dn_datablksz because it
779 * can be momentarily different when another thread is doing
780 * dnode_set_blksz().
781 */
782 if (db->db_level == 0 && db->db.db_object == DMU_META_DNODE_OBJECT) {
783 dr = db->db_data_pending;
784 /*
785 * It should only be modified in syncing context, so
786 * make sure we only have one copy of the data.
787 */
788 ASSERT(dr == NULL || dr->dt.dl.dr_data == db->db_buf);
789 }
790
791 /* verify db->db_blkptr */
792 if (db->db_blkptr) {
793 if (db->db_parent == dn->dn_dbuf) {
794 /* db is pointed to by the dnode */
795 /* ASSERT3U(db->db_blkid, <, dn->dn_nblkptr); */
796 if (DMU_OBJECT_IS_SPECIAL(db->db.db_object))
797 ASSERT(db->db_parent == NULL);
798 else
799 ASSERT(db->db_parent != NULL);
800 if (db->db_blkid != DMU_SPILL_BLKID)
801 ASSERT3P(db->db_blkptr, ==,
802 &dn->dn_phys->dn_blkptr[db->db_blkid]);
803 } else {
804 /* db is pointed to by an indirect block */
805 ASSERTV(int epb = db->db_parent->db.db_size >>
806 SPA_BLKPTRSHIFT);
807 ASSERT3U(db->db_parent->db_level, ==, db->db_level+1);
808 ASSERT3U(db->db_parent->db.db_object, ==,
809 db->db.db_object);
810 /*
811 * dnode_grow_indblksz() can make this fail if we don't
812 * have the struct_rwlock. XXX indblksz no longer
813 * grows. safe to do this now?
814 */
815 if (RW_WRITE_HELD(&dn->dn_struct_rwlock)) {
816 ASSERT3P(db->db_blkptr, ==,
817 ((blkptr_t *)db->db_parent->db.db_data +
818 db->db_blkid % epb));
819 }
820 }
821 }
822 if ((db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr)) &&
823 (db->db_buf == NULL || db->db_buf->b_data) &&
824 db->db.db_data && db->db_blkid != DMU_BONUS_BLKID &&
825 db->db_state != DB_FILL && !dn->dn_free_txg) {
826 /*
827 * If the blkptr isn't set but they have nonzero data,
828 * it had better be dirty, otherwise we'll lose that
829 * data when we evict this buffer.
830 *
831 * There is an exception to this rule for indirect blocks; in
832 * this case, if the indirect block is a hole, we fill in a few
833 * fields on each of the child blocks (importantly, birth time)
834 * to prevent hole birth times from being lost when you
835 * partially fill in a hole.
836 */
837 if (db->db_dirtycnt == 0) {
838 if (db->db_level == 0) {
839 uint64_t *buf = db->db.db_data;
840 int i;
841
842 for (i = 0; i < db->db.db_size >> 3; i++) {
843 ASSERT(buf[i] == 0);
844 }
845 } else {
846 blkptr_t *bps = db->db.db_data;
847 ASSERT3U(1 << DB_DNODE(db)->dn_indblkshift, ==,
848 db->db.db_size);
849 /*
850 * We want to verify that all the blkptrs in the
851 * indirect block are holes, but we may have
852 * automatically set up a few fields for them.
853 * We iterate through each blkptr and verify
854 * they only have those fields set.
855 */
856 for (int i = 0;
857 i < db->db.db_size / sizeof (blkptr_t);
858 i++) {
859 blkptr_t *bp = &bps[i];
860 ASSERT(ZIO_CHECKSUM_IS_ZERO(
861 &bp->blk_cksum));
862 ASSERT(
863 DVA_IS_EMPTY(&bp->blk_dva[0]) &&
864 DVA_IS_EMPTY(&bp->blk_dva[1]) &&
865 DVA_IS_EMPTY(&bp->blk_dva[2]));
866 ASSERT0(bp->blk_fill);
867 ASSERT0(bp->blk_pad[0]);
868 ASSERT0(bp->blk_pad[1]);
869 ASSERT(!BP_IS_EMBEDDED(bp));
870 ASSERT(BP_IS_HOLE(bp));
871 ASSERT0(bp->blk_phys_birth);
872 }
873 }
874 }
875 }
876 DB_DNODE_EXIT(db);
877 }
878 #endif
879
880 static void
881 dbuf_clear_data(dmu_buf_impl_t *db)
882 {
883 ASSERT(MUTEX_HELD(&db->db_mtx));
884 dbuf_evict_user(db);
885 ASSERT3P(db->db_buf, ==, NULL);
886 db->db.db_data = NULL;
887 if (db->db_state != DB_NOFILL)
888 db->db_state = DB_UNCACHED;
889 }
890
891 static void
892 dbuf_set_data(dmu_buf_impl_t *db, arc_buf_t *buf)
893 {
894 ASSERT(MUTEX_HELD(&db->db_mtx));
895 ASSERT(buf != NULL);
896
897 db->db_buf = buf;
898 ASSERT(buf->b_data != NULL);
899 db->db.db_data = buf->b_data;
900 }
901
902 /*
903 * Loan out an arc_buf for read. Return the loaned arc_buf.
904 */
905 arc_buf_t *
906 dbuf_loan_arcbuf(dmu_buf_impl_t *db)
907 {
908 arc_buf_t *abuf;
909
910 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
911 mutex_enter(&db->db_mtx);
912 if (arc_released(db->db_buf) || refcount_count(&db->db_holds) > 1) {
913 int blksz = db->db.db_size;
914 spa_t *spa = db->db_objset->os_spa;
915
916 mutex_exit(&db->db_mtx);
917 abuf = arc_loan_buf(spa, B_FALSE, blksz);
918 bcopy(db->db.db_data, abuf->b_data, blksz);
919 } else {
920 abuf = db->db_buf;
921 arc_loan_inuse_buf(abuf, db);
922 db->db_buf = NULL;
923 dbuf_clear_data(db);
924 mutex_exit(&db->db_mtx);
925 }
926 return (abuf);
927 }
928
929 /*
930 * Calculate which level n block references the data at the level 0 offset
931 * provided.
932 */
933 uint64_t
934 dbuf_whichblock(const dnode_t *dn, const int64_t level, const uint64_t offset)
935 {
936 if (dn->dn_datablkshift != 0 && dn->dn_indblkshift != 0) {
937 /*
938 * The level n blkid is equal to the level 0 blkid divided by
939 * the number of level 0s in a level n block.
940 *
941 * The level 0 blkid is offset >> datablkshift =
942 * offset / 2^datablkshift.
943 *
944 * The number of level 0s in a level n is the number of block
945 * pointers in an indirect block, raised to the power of level.
946 * This is 2^(indblkshift - SPA_BLKPTRSHIFT)^level =
947 * 2^(level*(indblkshift - SPA_BLKPTRSHIFT)).
948 *
949 * Thus, the level n blkid is: offset /
950 * ((2^datablkshift)*(2^(level*(indblkshift - SPA_BLKPTRSHIFT)))
951 * = offset / 2^(datablkshift + level *
952 * (indblkshift - SPA_BLKPTRSHIFT))
953 * = offset >> (datablkshift + level *
954 * (indblkshift - SPA_BLKPTRSHIFT))
955 */
956
957 const unsigned exp = dn->dn_datablkshift +
958 level * (dn->dn_indblkshift - SPA_BLKPTRSHIFT);
959
960 if (exp >= 8 * sizeof (offset)) {
961 /* This only happens on the highest indirection level */
962 ASSERT3U(level, ==, dn->dn_nlevels - 1);
963 return (0);
964 }
965
966 ASSERT3U(exp, <, 8 * sizeof (offset));
967
968 return (offset >> exp);
969 } else {
970 ASSERT3U(offset, <, dn->dn_datablksz);
971 return (0);
972 }
973 }
974
975 static void
976 dbuf_read_done(zio_t *zio, int err, arc_buf_t *buf, void *vdb)
977 {
978 dmu_buf_impl_t *db = vdb;
979
980 mutex_enter(&db->db_mtx);
981 ASSERT3U(db->db_state, ==, DB_READ);
982 /*
983 * All reads are synchronous, so we must have a hold on the dbuf
984 */
985 ASSERT(refcount_count(&db->db_holds) > 0);
986 ASSERT(db->db_buf == NULL);
987 ASSERT(db->db.db_data == NULL);
988 if (db->db_level == 0 && db->db_freed_in_flight) {
989 /* we were freed in flight; disregard any error */
990 arc_release(buf, db);
991 bzero(buf->b_data, db->db.db_size);
992 arc_buf_freeze(buf);
993 db->db_freed_in_flight = FALSE;
994 dbuf_set_data(db, buf);
995 db->db_state = DB_CACHED;
996 } else if (err == 0) {
997 dbuf_set_data(db, buf);
998 db->db_state = DB_CACHED;
999 } else {
1000 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1001 ASSERT3P(db->db_buf, ==, NULL);
1002 arc_buf_destroy(buf, db);
1003 db->db_state = DB_UNCACHED;
1004 }
1005 cv_broadcast(&db->db_changed);
1006 dbuf_rele_and_unlock(db, NULL);
1007 }
1008
1009 static int
1010 dbuf_read_impl(dmu_buf_impl_t *db, zio_t *zio, uint32_t flags)
1011 {
1012 dnode_t *dn;
1013 zbookmark_phys_t zb;
1014 uint32_t aflags = ARC_FLAG_NOWAIT;
1015 int err, zio_flags = 0;
1016
1017 DB_DNODE_ENTER(db);
1018 dn = DB_DNODE(db);
1019 ASSERT(!refcount_is_zero(&db->db_holds));
1020 /* We need the struct_rwlock to prevent db_blkptr from changing. */
1021 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
1022 ASSERT(MUTEX_HELD(&db->db_mtx));
1023 ASSERT(db->db_state == DB_UNCACHED);
1024 ASSERT(db->db_buf == NULL);
1025
1026 if (db->db_blkid == DMU_BONUS_BLKID) {
1027 /*
1028 * The bonus length stored in the dnode may be less than
1029 * the maximum available space in the bonus buffer.
1030 */
1031 int bonuslen = MIN(dn->dn_bonuslen, dn->dn_phys->dn_bonuslen);
1032 int max_bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots);
1033 arc_buf_t *dn_buf = (dn->dn_dbuf != NULL) ?
1034 dn->dn_dbuf->db_buf : NULL;
1035
1036 /* if the underlying dnode block is encrypted, decrypt it */
1037 if (dn_buf != NULL && dn->dn_objset->os_encrypted &&
1038 DMU_OT_IS_ENCRYPTED(dn->dn_bonustype) &&
1039 (flags & DB_RF_NO_DECRYPT) == 0 &&
1040 arc_is_encrypted(dn_buf)) {
1041 err = arc_untransform(dn_buf, dn->dn_objset->os_spa,
1042 dmu_objset_id(dn->dn_objset), B_TRUE);
1043 if (err != 0) {
1044 DB_DNODE_EXIT(db);
1045 mutex_exit(&db->db_mtx);
1046 return (err);
1047 }
1048 }
1049
1050 ASSERT3U(bonuslen, <=, db->db.db_size);
1051 db->db.db_data = kmem_alloc(max_bonuslen, KM_SLEEP);
1052 arc_space_consume(max_bonuslen, ARC_SPACE_BONUS);
1053 if (bonuslen < max_bonuslen)
1054 bzero(db->db.db_data, max_bonuslen);
1055 if (bonuslen)
1056 bcopy(DN_BONUS(dn->dn_phys), db->db.db_data, bonuslen);
1057 DB_DNODE_EXIT(db);
1058 db->db_state = DB_CACHED;
1059 mutex_exit(&db->db_mtx);
1060 return (0);
1061 }
1062
1063 /*
1064 * Recheck BP_IS_HOLE() after dnode_block_freed() in case dnode_sync()
1065 * processes the delete record and clears the bp while we are waiting
1066 * for the dn_mtx (resulting in a "no" from block_freed).
1067 */
1068 if (db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr) ||
1069 (db->db_level == 0 && (dnode_block_freed(dn, db->db_blkid) ||
1070 BP_IS_HOLE(db->db_blkptr)))) {
1071 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
1072
1073 dbuf_set_data(db, arc_alloc_buf(db->db_objset->os_spa, db, type,
1074 db->db.db_size));
1075 bzero(db->db.db_data, db->db.db_size);
1076
1077 if (db->db_blkptr != NULL && db->db_level > 0 &&
1078 BP_IS_HOLE(db->db_blkptr) &&
1079 db->db_blkptr->blk_birth != 0) {
1080 blkptr_t *bps = db->db.db_data;
1081 for (int i = 0; i < ((1 <<
1082 DB_DNODE(db)->dn_indblkshift) / sizeof (blkptr_t));
1083 i++) {
1084 blkptr_t *bp = &bps[i];
1085 ASSERT3U(BP_GET_LSIZE(db->db_blkptr), ==,
1086 1 << dn->dn_indblkshift);
1087 BP_SET_LSIZE(bp,
1088 BP_GET_LEVEL(db->db_blkptr) == 1 ?
1089 dn->dn_datablksz :
1090 BP_GET_LSIZE(db->db_blkptr));
1091 BP_SET_TYPE(bp, BP_GET_TYPE(db->db_blkptr));
1092 BP_SET_LEVEL(bp,
1093 BP_GET_LEVEL(db->db_blkptr) - 1);
1094 BP_SET_BIRTH(bp, db->db_blkptr->blk_birth, 0);
1095 }
1096 }
1097 DB_DNODE_EXIT(db);
1098 db->db_state = DB_CACHED;
1099 mutex_exit(&db->db_mtx);
1100 return (0);
1101 }
1102
1103 DB_DNODE_EXIT(db);
1104
1105 db->db_state = DB_READ;
1106 mutex_exit(&db->db_mtx);
1107
1108 if (DBUF_IS_L2CACHEABLE(db))
1109 aflags |= ARC_FLAG_L2CACHE;
1110
1111 SET_BOOKMARK(&zb, db->db_objset->os_dsl_dataset ?
1112 db->db_objset->os_dsl_dataset->ds_object : DMU_META_OBJSET,
1113 db->db.db_object, db->db_level, db->db_blkid);
1114
1115 /*
1116 * All bps of an encrypted os should have the encryption bit set.
1117 * If this is not true it indicates tampering and we report an error.
1118 */
1119 if (db->db_objset->os_encrypted && !BP_USES_CRYPT(db->db_blkptr)) {
1120 spa_log_error(db->db_objset->os_spa, &zb);
1121 zfs_panic_recover("unencrypted block in encrypted "
1122 "object set %llu", dmu_objset_id(db->db_objset));
1123 return (SET_ERROR(EIO));
1124 }
1125
1126 dbuf_add_ref(db, NULL);
1127
1128 zio_flags = (flags & DB_RF_CANFAIL) ?
1129 ZIO_FLAG_CANFAIL : ZIO_FLAG_MUSTSUCCEED;
1130
1131 if ((flags & DB_RF_NO_DECRYPT) && BP_IS_PROTECTED(db->db_blkptr))
1132 zio_flags |= ZIO_FLAG_RAW;
1133
1134 err = arc_read(zio, db->db_objset->os_spa, db->db_blkptr,
1135 dbuf_read_done, db, ZIO_PRIORITY_SYNC_READ, zio_flags,
1136 &aflags, &zb);
1137
1138 return (err);
1139 }
1140
1141 /*
1142 * This is our just-in-time copy function. It makes a copy of buffers that
1143 * have been modified in a previous transaction group before we access them in
1144 * the current active group.
1145 *
1146 * This function is used in three places: when we are dirtying a buffer for the
1147 * first time in a txg, when we are freeing a range in a dnode that includes
1148 * this buffer, and when we are accessing a buffer which was received compressed
1149 * and later referenced in a WRITE_BYREF record.
1150 *
1151 * Note that when we are called from dbuf_free_range() we do not put a hold on
1152 * the buffer, we just traverse the active dbuf list for the dnode.
1153 */
1154 static void
1155 dbuf_fix_old_data(dmu_buf_impl_t *db, uint64_t txg)
1156 {
1157 dbuf_dirty_record_t *dr = db->db_last_dirty;
1158
1159 ASSERT(MUTEX_HELD(&db->db_mtx));
1160 ASSERT(db->db.db_data != NULL);
1161 ASSERT(db->db_level == 0);
1162 ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT);
1163
1164 if (dr == NULL ||
1165 (dr->dt.dl.dr_data !=
1166 ((db->db_blkid == DMU_BONUS_BLKID) ? db->db.db_data : db->db_buf)))
1167 return;
1168
1169 /*
1170 * If the last dirty record for this dbuf has not yet synced
1171 * and its referencing the dbuf data, either:
1172 * reset the reference to point to a new copy,
1173 * or (if there a no active holders)
1174 * just null out the current db_data pointer.
1175 */
1176 ASSERT3U(dr->dr_txg, >=, txg - 2);
1177 if (db->db_blkid == DMU_BONUS_BLKID) {
1178 dnode_t *dn = DB_DNODE(db);
1179 int bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots);
1180 dr->dt.dl.dr_data = kmem_alloc(bonuslen, KM_SLEEP);
1181 arc_space_consume(bonuslen, ARC_SPACE_BONUS);
1182 bcopy(db->db.db_data, dr->dt.dl.dr_data, bonuslen);
1183 } else if (refcount_count(&db->db_holds) > db->db_dirtycnt) {
1184 dnode_t *dn = DB_DNODE(db);
1185 int size = arc_buf_size(db->db_buf);
1186 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
1187 spa_t *spa = db->db_objset->os_spa;
1188 enum zio_compress compress_type =
1189 arc_get_compression(db->db_buf);
1190
1191 if (arc_is_encrypted(db->db_buf)) {
1192 boolean_t byteorder;
1193 uint8_t salt[ZIO_DATA_SALT_LEN];
1194 uint8_t iv[ZIO_DATA_IV_LEN];
1195 uint8_t mac[ZIO_DATA_MAC_LEN];
1196
1197 arc_get_raw_params(db->db_buf, &byteorder, salt,
1198 iv, mac);
1199 dr->dt.dl.dr_data = arc_alloc_raw_buf(spa, db,
1200 dmu_objset_id(dn->dn_objset), byteorder, salt, iv,
1201 mac, dn->dn_type, size, arc_buf_lsize(db->db_buf),
1202 compress_type);
1203 } else if (compress_type != ZIO_COMPRESS_OFF) {
1204 ASSERT3U(type, ==, ARC_BUFC_DATA);
1205 dr->dt.dl.dr_data = arc_alloc_compressed_buf(spa, db,
1206 size, arc_buf_lsize(db->db_buf), compress_type);
1207 } else {
1208 dr->dt.dl.dr_data = arc_alloc_buf(spa, db, type, size);
1209 }
1210 bcopy(db->db.db_data, dr->dt.dl.dr_data->b_data, size);
1211 } else {
1212 db->db_buf = NULL;
1213 dbuf_clear_data(db);
1214 }
1215 }
1216
1217 int
1218 dbuf_read(dmu_buf_impl_t *db, zio_t *zio, uint32_t flags)
1219 {
1220 int err = 0;
1221 boolean_t prefetch;
1222 dnode_t *dn;
1223
1224 /*
1225 * We don't have to hold the mutex to check db_state because it
1226 * can't be freed while we have a hold on the buffer.
1227 */
1228 ASSERT(!refcount_is_zero(&db->db_holds));
1229
1230 if (db->db_state == DB_NOFILL)
1231 return (SET_ERROR(EIO));
1232
1233 DB_DNODE_ENTER(db);
1234 dn = DB_DNODE(db);
1235 if ((flags & DB_RF_HAVESTRUCT) == 0)
1236 rw_enter(&dn->dn_struct_rwlock, RW_READER);
1237
1238 prefetch = db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
1239 (flags & DB_RF_NOPREFETCH) == 0 && dn != NULL &&
1240 DBUF_IS_CACHEABLE(db);
1241
1242 mutex_enter(&db->db_mtx);
1243 if (db->db_state == DB_CACHED) {
1244 spa_t *spa = dn->dn_objset->os_spa;
1245
1246 /*
1247 * If the arc buf is compressed or encrypted, we need to
1248 * untransform it to read the data. This could happen during
1249 * the "zfs receive" of a stream which is deduplicated and
1250 * either raw or compressed. We do not need to do this if the
1251 * caller wants raw encrypted data.
1252 */
1253 if (db->db_buf != NULL && (flags & DB_RF_NO_DECRYPT) == 0 &&
1254 (arc_is_encrypted(db->db_buf) ||
1255 arc_get_compression(db->db_buf) != ZIO_COMPRESS_OFF)) {
1256 dbuf_fix_old_data(db, spa_syncing_txg(spa));
1257 err = arc_untransform(db->db_buf, spa,
1258 dmu_objset_id(db->db_objset), B_FALSE);
1259 dbuf_set_data(db, db->db_buf);
1260 }
1261 mutex_exit(&db->db_mtx);
1262 if (prefetch)
1263 dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE);
1264 if ((flags & DB_RF_HAVESTRUCT) == 0)
1265 rw_exit(&dn->dn_struct_rwlock);
1266 DB_DNODE_EXIT(db);
1267 } else if (db->db_state == DB_UNCACHED) {
1268 spa_t *spa = dn->dn_objset->os_spa;
1269 boolean_t need_wait = B_FALSE;
1270
1271 if (zio == NULL &&
1272 db->db_blkptr != NULL && !BP_IS_HOLE(db->db_blkptr)) {
1273 zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL);
1274 need_wait = B_TRUE;
1275 }
1276 err = dbuf_read_impl(db, zio, flags);
1277
1278 /* dbuf_read_impl has dropped db_mtx for us */
1279
1280 if (!err && prefetch)
1281 dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE);
1282
1283 if ((flags & DB_RF_HAVESTRUCT) == 0)
1284 rw_exit(&dn->dn_struct_rwlock);
1285 DB_DNODE_EXIT(db);
1286
1287 if (!err && need_wait)
1288 err = zio_wait(zio);
1289 } else {
1290 /*
1291 * Another reader came in while the dbuf was in flight
1292 * between UNCACHED and CACHED. Either a writer will finish
1293 * writing the buffer (sending the dbuf to CACHED) or the
1294 * first reader's request will reach the read_done callback
1295 * and send the dbuf to CACHED. Otherwise, a failure
1296 * occurred and the dbuf went to UNCACHED.
1297 */
1298 mutex_exit(&db->db_mtx);
1299 if (prefetch)
1300 dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE);
1301 if ((flags & DB_RF_HAVESTRUCT) == 0)
1302 rw_exit(&dn->dn_struct_rwlock);
1303 DB_DNODE_EXIT(db);
1304
1305 /* Skip the wait per the caller's request. */
1306 mutex_enter(&db->db_mtx);
1307 if ((flags & DB_RF_NEVERWAIT) == 0) {
1308 while (db->db_state == DB_READ ||
1309 db->db_state == DB_FILL) {
1310 ASSERT(db->db_state == DB_READ ||
1311 (flags & DB_RF_HAVESTRUCT) == 0);
1312 DTRACE_PROBE2(blocked__read, dmu_buf_impl_t *,
1313 db, zio_t *, zio);
1314 cv_wait(&db->db_changed, &db->db_mtx);
1315 }
1316 if (db->db_state == DB_UNCACHED)
1317 err = SET_ERROR(EIO);
1318 }
1319 mutex_exit(&db->db_mtx);
1320 }
1321
1322 return (err);
1323 }
1324
1325 static void
1326 dbuf_noread(dmu_buf_impl_t *db)
1327 {
1328 ASSERT(!refcount_is_zero(&db->db_holds));
1329 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1330 mutex_enter(&db->db_mtx);
1331 while (db->db_state == DB_READ || db->db_state == DB_FILL)
1332 cv_wait(&db->db_changed, &db->db_mtx);
1333 if (db->db_state == DB_UNCACHED) {
1334 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
1335 spa_t *spa = db->db_objset->os_spa;
1336
1337 ASSERT(db->db_buf == NULL);
1338 ASSERT(db->db.db_data == NULL);
1339 dbuf_set_data(db, arc_alloc_buf(spa, db, type, db->db.db_size));
1340 db->db_state = DB_FILL;
1341 } else if (db->db_state == DB_NOFILL) {
1342 dbuf_clear_data(db);
1343 } else {
1344 ASSERT3U(db->db_state, ==, DB_CACHED);
1345 }
1346 mutex_exit(&db->db_mtx);
1347 }
1348
1349 void
1350 dbuf_unoverride(dbuf_dirty_record_t *dr)
1351 {
1352 dmu_buf_impl_t *db = dr->dr_dbuf;
1353 blkptr_t *bp = &dr->dt.dl.dr_overridden_by;
1354 uint64_t txg = dr->dr_txg;
1355
1356 ASSERT(MUTEX_HELD(&db->db_mtx));
1357 /*
1358 * This assert is valid because dmu_sync() expects to be called by
1359 * a zilog's get_data while holding a range lock. This call only
1360 * comes from dbuf_dirty() callers who must also hold a range lock.
1361 */
1362 ASSERT(dr->dt.dl.dr_override_state != DR_IN_DMU_SYNC);
1363 ASSERT(db->db_level == 0);
1364
1365 if (db->db_blkid == DMU_BONUS_BLKID ||
1366 dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN)
1367 return;
1368
1369 ASSERT(db->db_data_pending != dr);
1370
1371 /* free this block */
1372 if (!BP_IS_HOLE(bp) && !dr->dt.dl.dr_nopwrite)
1373 zio_free(db->db_objset->os_spa, txg, bp);
1374
1375 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
1376 dr->dt.dl.dr_nopwrite = B_FALSE;
1377 dr->dt.dl.dr_raw = B_FALSE;
1378
1379 /*
1380 * Release the already-written buffer, so we leave it in
1381 * a consistent dirty state. Note that all callers are
1382 * modifying the buffer, so they will immediately do
1383 * another (redundant) arc_release(). Therefore, leave
1384 * the buf thawed to save the effort of freezing &
1385 * immediately re-thawing it.
1386 */
1387 arc_release(dr->dt.dl.dr_data, db);
1388 }
1389
1390 /*
1391 * Evict (if its unreferenced) or clear (if its referenced) any level-0
1392 * data blocks in the free range, so that any future readers will find
1393 * empty blocks.
1394 */
1395 void
1396 dbuf_free_range(dnode_t *dn, uint64_t start_blkid, uint64_t end_blkid,
1397 dmu_tx_t *tx)
1398 {
1399 dmu_buf_impl_t *db_search;
1400 dmu_buf_impl_t *db, *db_next;
1401 uint64_t txg = tx->tx_txg;
1402 avl_index_t where;
1403
1404 if (end_blkid > dn->dn_maxblkid &&
1405 !(start_blkid == DMU_SPILL_BLKID || end_blkid == DMU_SPILL_BLKID))
1406 end_blkid = dn->dn_maxblkid;
1407 dprintf_dnode(dn, "start=%llu end=%llu\n", start_blkid, end_blkid);
1408
1409 db_search = kmem_alloc(sizeof (dmu_buf_impl_t), KM_SLEEP);
1410 db_search->db_level = 0;
1411 db_search->db_blkid = start_blkid;
1412 db_search->db_state = DB_SEARCH;
1413
1414 mutex_enter(&dn->dn_dbufs_mtx);
1415 db = avl_find(&dn->dn_dbufs, db_search, &where);
1416 ASSERT3P(db, ==, NULL);
1417
1418 db = avl_nearest(&dn->dn_dbufs, where, AVL_AFTER);
1419
1420 for (; db != NULL; db = db_next) {
1421 db_next = AVL_NEXT(&dn->dn_dbufs, db);
1422 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1423
1424 if (db->db_level != 0 || db->db_blkid > end_blkid) {
1425 break;
1426 }
1427 ASSERT3U(db->db_blkid, >=, start_blkid);
1428
1429 /* found a level 0 buffer in the range */
1430 mutex_enter(&db->db_mtx);
1431 if (dbuf_undirty(db, tx)) {
1432 /* mutex has been dropped and dbuf destroyed */
1433 continue;
1434 }
1435
1436 if (db->db_state == DB_UNCACHED ||
1437 db->db_state == DB_NOFILL ||
1438 db->db_state == DB_EVICTING) {
1439 ASSERT(db->db.db_data == NULL);
1440 mutex_exit(&db->db_mtx);
1441 continue;
1442 }
1443 if (db->db_state == DB_READ || db->db_state == DB_FILL) {
1444 /* will be handled in dbuf_read_done or dbuf_rele */
1445 db->db_freed_in_flight = TRUE;
1446 mutex_exit(&db->db_mtx);
1447 continue;
1448 }
1449 if (refcount_count(&db->db_holds) == 0) {
1450 ASSERT(db->db_buf);
1451 dbuf_destroy(db);
1452 continue;
1453 }
1454 /* The dbuf is referenced */
1455
1456 if (db->db_last_dirty != NULL) {
1457 dbuf_dirty_record_t *dr = db->db_last_dirty;
1458
1459 if (dr->dr_txg == txg) {
1460 /*
1461 * This buffer is "in-use", re-adjust the file
1462 * size to reflect that this buffer may
1463 * contain new data when we sync.
1464 */
1465 if (db->db_blkid != DMU_SPILL_BLKID &&
1466 db->db_blkid > dn->dn_maxblkid)
1467 dn->dn_maxblkid = db->db_blkid;
1468 dbuf_unoverride(dr);
1469 } else {
1470 /*
1471 * This dbuf is not dirty in the open context.
1472 * Either uncache it (if its not referenced in
1473 * the open context) or reset its contents to
1474 * empty.
1475 */
1476 dbuf_fix_old_data(db, txg);
1477 }
1478 }
1479 /* clear the contents if its cached */
1480 if (db->db_state == DB_CACHED) {
1481 ASSERT(db->db.db_data != NULL);
1482 arc_release(db->db_buf, db);
1483 bzero(db->db.db_data, db->db.db_size);
1484 arc_buf_freeze(db->db_buf);
1485 }
1486
1487 mutex_exit(&db->db_mtx);
1488 }
1489
1490 kmem_free(db_search, sizeof (dmu_buf_impl_t));
1491 mutex_exit(&dn->dn_dbufs_mtx);
1492 }
1493
1494 void
1495 dbuf_new_size(dmu_buf_impl_t *db, int size, dmu_tx_t *tx)
1496 {
1497 arc_buf_t *buf, *obuf;
1498 int osize = db->db.db_size;
1499 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
1500 dnode_t *dn;
1501
1502 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1503
1504 DB_DNODE_ENTER(db);
1505 dn = DB_DNODE(db);
1506
1507 /* XXX does *this* func really need the lock? */
1508 ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock));
1509
1510 /*
1511 * This call to dmu_buf_will_dirty() with the dn_struct_rwlock held
1512 * is OK, because there can be no other references to the db
1513 * when we are changing its size, so no concurrent DB_FILL can
1514 * be happening.
1515 */
1516 /*
1517 * XXX we should be doing a dbuf_read, checking the return
1518 * value and returning that up to our callers
1519 */
1520 dmu_buf_will_dirty(&db->db, tx);
1521
1522 /* create the data buffer for the new block */
1523 buf = arc_alloc_buf(dn->dn_objset->os_spa, db, type, size);
1524
1525 /* copy old block data to the new block */
1526 obuf = db->db_buf;
1527 bcopy(obuf->b_data, buf->b_data, MIN(osize, size));
1528 /* zero the remainder */
1529 if (size > osize)
1530 bzero((uint8_t *)buf->b_data + osize, size - osize);
1531
1532 mutex_enter(&db->db_mtx);
1533 dbuf_set_data(db, buf);
1534 arc_buf_destroy(obuf, db);
1535 db->db.db_size = size;
1536
1537 if (db->db_level == 0) {
1538 ASSERT3U(db->db_last_dirty->dr_txg, ==, tx->tx_txg);
1539 db->db_last_dirty->dt.dl.dr_data = buf;
1540 }
1541 mutex_exit(&db->db_mtx);
1542
1543 dmu_objset_willuse_space(dn->dn_objset, size - osize, tx);
1544 DB_DNODE_EXIT(db);
1545 }
1546
1547 void
1548 dbuf_release_bp(dmu_buf_impl_t *db)
1549 {
1550 ASSERTV(objset_t *os = db->db_objset);
1551
1552 ASSERT(dsl_pool_sync_context(dmu_objset_pool(os)));
1553 ASSERT(arc_released(os->os_phys_buf) ||
1554 list_link_active(&os->os_dsl_dataset->ds_synced_link));
1555 ASSERT(db->db_parent == NULL || arc_released(db->db_parent->db_buf));
1556
1557 (void) arc_release(db->db_buf, db);
1558 }
1559
1560 /*
1561 * We already have a dirty record for this TXG, and we are being
1562 * dirtied again.
1563 */
1564 static void
1565 dbuf_redirty(dbuf_dirty_record_t *dr)
1566 {
1567 dmu_buf_impl_t *db = dr->dr_dbuf;
1568
1569 ASSERT(MUTEX_HELD(&db->db_mtx));
1570
1571 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID) {
1572 /*
1573 * If this buffer has already been written out,
1574 * we now need to reset its state.
1575 */
1576 dbuf_unoverride(dr);
1577 if (db->db.db_object != DMU_META_DNODE_OBJECT &&
1578 db->db_state != DB_NOFILL) {
1579 /* Already released on initial dirty, so just thaw. */
1580 ASSERT(arc_released(db->db_buf));
1581 arc_buf_thaw(db->db_buf);
1582 }
1583 }
1584 }
1585
1586 dbuf_dirty_record_t *
1587 dbuf_dirty(dmu_buf_impl_t *db, dmu_tx_t *tx)
1588 {
1589 dnode_t *dn;
1590 objset_t *os;
1591 dbuf_dirty_record_t **drp, *dr;
1592 int drop_struct_lock = FALSE;
1593 int txgoff = tx->tx_txg & TXG_MASK;
1594
1595 ASSERT(tx->tx_txg != 0);
1596 ASSERT(!refcount_is_zero(&db->db_holds));
1597 DMU_TX_DIRTY_BUF(tx, db);
1598
1599 DB_DNODE_ENTER(db);
1600 dn = DB_DNODE(db);
1601 /*
1602 * Shouldn't dirty a regular buffer in syncing context. Private
1603 * objects may be dirtied in syncing context, but only if they
1604 * were already pre-dirtied in open context.
1605 */
1606 #ifdef DEBUG
1607 if (dn->dn_objset->os_dsl_dataset != NULL) {
1608 rrw_enter(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock,
1609 RW_READER, FTAG);
1610 }
1611 ASSERT(!dmu_tx_is_syncing(tx) ||
1612 BP_IS_HOLE(dn->dn_objset->os_rootbp) ||
1613 DMU_OBJECT_IS_SPECIAL(dn->dn_object) ||
1614 dn->dn_objset->os_dsl_dataset == NULL);
1615 if (dn->dn_objset->os_dsl_dataset != NULL)
1616 rrw_exit(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock, FTAG);
1617 #endif
1618 /*
1619 * We make this assert for private objects as well, but after we
1620 * check if we're already dirty. They are allowed to re-dirty
1621 * in syncing context.
1622 */
1623 ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT ||
1624 dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx ==
1625 (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN));
1626
1627 mutex_enter(&db->db_mtx);
1628 /*
1629 * XXX make this true for indirects too? The problem is that
1630 * transactions created with dmu_tx_create_assigned() from
1631 * syncing context don't bother holding ahead.
1632 */
1633 ASSERT(db->db_level != 0 ||
1634 db->db_state == DB_CACHED || db->db_state == DB_FILL ||
1635 db->db_state == DB_NOFILL);
1636
1637 mutex_enter(&dn->dn_mtx);
1638 /*
1639 * Don't set dirtyctx to SYNC if we're just modifying this as we
1640 * initialize the objset.
1641 */
1642 if (dn->dn_dirtyctx == DN_UNDIRTIED) {
1643 if (dn->dn_objset->os_dsl_dataset != NULL) {
1644 rrw_enter(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock,
1645 RW_READER, FTAG);
1646 }
1647 if (!BP_IS_HOLE(dn->dn_objset->os_rootbp)) {
1648 dn->dn_dirtyctx = (dmu_tx_is_syncing(tx) ?
1649 DN_DIRTY_SYNC : DN_DIRTY_OPEN);
1650 ASSERT(dn->dn_dirtyctx_firstset == NULL);
1651 dn->dn_dirtyctx_firstset = kmem_alloc(1, KM_SLEEP);
1652 }
1653 if (dn->dn_objset->os_dsl_dataset != NULL) {
1654 rrw_exit(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock,
1655 FTAG);
1656 }
1657 }
1658 mutex_exit(&dn->dn_mtx);
1659
1660 if (db->db_blkid == DMU_SPILL_BLKID)
1661 dn->dn_have_spill = B_TRUE;
1662
1663 /*
1664 * If this buffer is already dirty, we're done.
1665 */
1666 drp = &db->db_last_dirty;
1667 ASSERT(*drp == NULL || (*drp)->dr_txg <= tx->tx_txg ||
1668 db->db.db_object == DMU_META_DNODE_OBJECT);
1669 while ((dr = *drp) != NULL && dr->dr_txg > tx->tx_txg)
1670 drp = &dr->dr_next;
1671 if (dr && dr->dr_txg == tx->tx_txg) {
1672 DB_DNODE_EXIT(db);
1673
1674 dbuf_redirty(dr);
1675 mutex_exit(&db->db_mtx);
1676 return (dr);
1677 }
1678
1679 /*
1680 * Only valid if not already dirty.
1681 */
1682 ASSERT(dn->dn_object == 0 ||
1683 dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx ==
1684 (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN));
1685
1686 ASSERT3U(dn->dn_nlevels, >, db->db_level);
1687
1688 /*
1689 * We should only be dirtying in syncing context if it's the
1690 * mos or we're initializing the os or it's a special object.
1691 * However, we are allowed to dirty in syncing context provided
1692 * we already dirtied it in open context. Hence we must make
1693 * this assertion only if we're not already dirty.
1694 */
1695 os = dn->dn_objset;
1696 VERIFY3U(tx->tx_txg, <=, spa_final_dirty_txg(os->os_spa));
1697 #ifdef DEBUG
1698 if (dn->dn_objset->os_dsl_dataset != NULL)
1699 rrw_enter(&os->os_dsl_dataset->ds_bp_rwlock, RW_READER, FTAG);
1700 ASSERT(!dmu_tx_is_syncing(tx) || DMU_OBJECT_IS_SPECIAL(dn->dn_object) ||
1701 os->os_dsl_dataset == NULL || BP_IS_HOLE(os->os_rootbp));
1702 if (dn->dn_objset->os_dsl_dataset != NULL)
1703 rrw_exit(&os->os_dsl_dataset->ds_bp_rwlock, FTAG);
1704 #endif
1705 ASSERT(db->db.db_size != 0);
1706
1707 dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size);
1708
1709 if (db->db_blkid != DMU_BONUS_BLKID) {
1710 dmu_objset_willuse_space(os, db->db.db_size, tx);
1711 }
1712
1713 /*
1714 * If this buffer is dirty in an old transaction group we need
1715 * to make a copy of it so that the changes we make in this
1716 * transaction group won't leak out when we sync the older txg.
1717 */
1718 dr = kmem_zalloc(sizeof (dbuf_dirty_record_t), KM_SLEEP);
1719 list_link_init(&dr->dr_dirty_node);
1720 if (db->db_level == 0) {
1721 void *data_old = db->db_buf;
1722
1723 if (db->db_state != DB_NOFILL) {
1724 if (db->db_blkid == DMU_BONUS_BLKID) {
1725 dbuf_fix_old_data(db, tx->tx_txg);
1726 data_old = db->db.db_data;
1727 } else if (db->db.db_object != DMU_META_DNODE_OBJECT) {
1728 /*
1729 * Release the data buffer from the cache so
1730 * that we can modify it without impacting
1731 * possible other users of this cached data
1732 * block. Note that indirect blocks and
1733 * private objects are not released until the
1734 * syncing state (since they are only modified
1735 * then).
1736 */
1737 arc_release(db->db_buf, db);
1738 dbuf_fix_old_data(db, tx->tx_txg);
1739 data_old = db->db_buf;
1740 }
1741 ASSERT(data_old != NULL);
1742 }
1743 dr->dt.dl.dr_data = data_old;
1744 } else {
1745 mutex_init(&dr->dt.di.dr_mtx, NULL, MUTEX_NOLOCKDEP, NULL);
1746 list_create(&dr->dt.di.dr_children,
1747 sizeof (dbuf_dirty_record_t),
1748 offsetof(dbuf_dirty_record_t, dr_dirty_node));
1749 }
1750 if (db->db_blkid != DMU_BONUS_BLKID && os->os_dsl_dataset != NULL)
1751 dr->dr_accounted = db->db.db_size;
1752 dr->dr_dbuf = db;
1753 dr->dr_txg = tx->tx_txg;
1754 dr->dr_next = *drp;
1755 *drp = dr;
1756
1757 /*
1758 * We could have been freed_in_flight between the dbuf_noread
1759 * and dbuf_dirty. We win, as though the dbuf_noread() had
1760 * happened after the free.
1761 */
1762 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
1763 db->db_blkid != DMU_SPILL_BLKID) {
1764 mutex_enter(&dn->dn_mtx);
1765 if (dn->dn_free_ranges[txgoff] != NULL) {
1766 range_tree_clear(dn->dn_free_ranges[txgoff],
1767 db->db_blkid, 1);
1768 }
1769 mutex_exit(&dn->dn_mtx);
1770 db->db_freed_in_flight = FALSE;
1771 }
1772
1773 /*
1774 * This buffer is now part of this txg
1775 */
1776 dbuf_add_ref(db, (void *)(uintptr_t)tx->tx_txg);
1777 db->db_dirtycnt += 1;
1778 ASSERT3U(db->db_dirtycnt, <=, 3);
1779
1780 mutex_exit(&db->db_mtx);
1781
1782 if (db->db_blkid == DMU_BONUS_BLKID ||
1783 db->db_blkid == DMU_SPILL_BLKID) {
1784 mutex_enter(&dn->dn_mtx);
1785 ASSERT(!list_link_active(&dr->dr_dirty_node));
1786 list_insert_tail(&dn->dn_dirty_records[txgoff], dr);
1787 mutex_exit(&dn->dn_mtx);
1788 dnode_setdirty(dn, tx);
1789 DB_DNODE_EXIT(db);
1790 return (dr);
1791 }
1792
1793 /*
1794 * The dn_struct_rwlock prevents db_blkptr from changing
1795 * due to a write from syncing context completing
1796 * while we are running, so we want to acquire it before
1797 * looking at db_blkptr.
1798 */
1799 if (!RW_WRITE_HELD(&dn->dn_struct_rwlock)) {
1800 rw_enter(&dn->dn_struct_rwlock, RW_READER);
1801 drop_struct_lock = TRUE;
1802 }
1803
1804 /*
1805 * We need to hold the dn_struct_rwlock to make this assertion,
1806 * because it protects dn_phys / dn_next_nlevels from changing.
1807 */
1808 ASSERT((dn->dn_phys->dn_nlevels == 0 && db->db_level == 0) ||
1809 dn->dn_phys->dn_nlevels > db->db_level ||
1810 dn->dn_next_nlevels[txgoff] > db->db_level ||
1811 dn->dn_next_nlevels[(tx->tx_txg-1) & TXG_MASK] > db->db_level ||
1812 dn->dn_next_nlevels[(tx->tx_txg-2) & TXG_MASK] > db->db_level);
1813
1814 /*
1815 * If we are overwriting a dedup BP, then unless it is snapshotted,
1816 * when we get to syncing context we will need to decrement its
1817 * refcount in the DDT. Prefetch the relevant DDT block so that
1818 * syncing context won't have to wait for the i/o.
1819 */
1820 ddt_prefetch(os->os_spa, db->db_blkptr);
1821
1822 if (db->db_level == 0) {
1823 dnode_new_blkid(dn, db->db_blkid, tx, drop_struct_lock);
1824 ASSERT(dn->dn_maxblkid >= db->db_blkid);
1825 }
1826
1827 if (db->db_level+1 < dn->dn_nlevels) {
1828 dmu_buf_impl_t *parent = db->db_parent;
1829 dbuf_dirty_record_t *di;
1830 int parent_held = FALSE;
1831
1832 if (db->db_parent == NULL || db->db_parent == dn->dn_dbuf) {
1833 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
1834
1835 parent = dbuf_hold_level(dn, db->db_level+1,
1836 db->db_blkid >> epbs, FTAG);
1837 ASSERT(parent != NULL);
1838 parent_held = TRUE;
1839 }
1840 if (drop_struct_lock)
1841 rw_exit(&dn->dn_struct_rwlock);
1842 ASSERT3U(db->db_level+1, ==, parent->db_level);
1843 di = dbuf_dirty(parent, tx);
1844 if (parent_held)
1845 dbuf_rele(parent, FTAG);
1846
1847 mutex_enter(&db->db_mtx);
1848 /*
1849 * Since we've dropped the mutex, it's possible that
1850 * dbuf_undirty() might have changed this out from under us.
1851 */
1852 if (db->db_last_dirty == dr ||
1853 dn->dn_object == DMU_META_DNODE_OBJECT) {
1854 mutex_enter(&di->dt.di.dr_mtx);
1855 ASSERT3U(di->dr_txg, ==, tx->tx_txg);
1856 ASSERT(!list_link_active(&dr->dr_dirty_node));
1857 list_insert_tail(&di->dt.di.dr_children, dr);
1858 mutex_exit(&di->dt.di.dr_mtx);
1859 dr->dr_parent = di;
1860 }
1861 mutex_exit(&db->db_mtx);
1862 } else {
1863 ASSERT(db->db_level+1 == dn->dn_nlevels);
1864 ASSERT(db->db_blkid < dn->dn_nblkptr);
1865 ASSERT(db->db_parent == NULL || db->db_parent == dn->dn_dbuf);
1866 mutex_enter(&dn->dn_mtx);
1867 ASSERT(!list_link_active(&dr->dr_dirty_node));
1868 list_insert_tail(&dn->dn_dirty_records[txgoff], dr);
1869 mutex_exit(&dn->dn_mtx);
1870 if (drop_struct_lock)
1871 rw_exit(&dn->dn_struct_rwlock);
1872 }
1873
1874 dnode_setdirty(dn, tx);
1875 DB_DNODE_EXIT(db);
1876 return (dr);
1877 }
1878
1879 /*
1880 * Undirty a buffer in the transaction group referenced by the given
1881 * transaction. Return whether this evicted the dbuf.
1882 */
1883 static boolean_t
1884 dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx)
1885 {
1886 dnode_t *dn;
1887 uint64_t txg = tx->tx_txg;
1888 dbuf_dirty_record_t *dr, **drp;
1889
1890 ASSERT(txg != 0);
1891
1892 /*
1893 * Due to our use of dn_nlevels below, this can only be called
1894 * in open context, unless we are operating on the MOS.
1895 * From syncing context, dn_nlevels may be different from the
1896 * dn_nlevels used when dbuf was dirtied.
1897 */
1898 ASSERT(db->db_objset ==
1899 dmu_objset_pool(db->db_objset)->dp_meta_objset ||
1900 txg != spa_syncing_txg(dmu_objset_spa(db->db_objset)));
1901 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1902 ASSERT0(db->db_level);
1903 ASSERT(MUTEX_HELD(&db->db_mtx));
1904
1905 /*
1906 * If this buffer is not dirty, we're done.
1907 */
1908 for (drp = &db->db_last_dirty; (dr = *drp) != NULL; drp = &dr->dr_next)
1909 if (dr->dr_txg <= txg)
1910 break;
1911 if (dr == NULL || dr->dr_txg < txg)
1912 return (B_FALSE);
1913 ASSERT(dr->dr_txg == txg);
1914 ASSERT(dr->dr_dbuf == db);
1915
1916 DB_DNODE_ENTER(db);
1917 dn = DB_DNODE(db);
1918
1919 dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size);
1920
1921 ASSERT(db->db.db_size != 0);
1922
1923 dsl_pool_undirty_space(dmu_objset_pool(dn->dn_objset),
1924 dr->dr_accounted, txg);
1925
1926 *drp = dr->dr_next;
1927
1928 /*
1929 * Note that there are three places in dbuf_dirty()
1930 * where this dirty record may be put on a list.
1931 * Make sure to do a list_remove corresponding to
1932 * every one of those list_insert calls.
1933 */
1934 if (dr->dr_parent) {
1935 mutex_enter(&dr->dr_parent->dt.di.dr_mtx);
1936 list_remove(&dr->dr_parent->dt.di.dr_children, dr);
1937 mutex_exit(&dr->dr_parent->dt.di.dr_mtx);
1938 } else if (db->db_blkid == DMU_SPILL_BLKID ||
1939 db->db_level + 1 == dn->dn_nlevels) {
1940 ASSERT(db->db_blkptr == NULL || db->db_parent == dn->dn_dbuf);
1941 mutex_enter(&dn->dn_mtx);
1942 list_remove(&dn->dn_dirty_records[txg & TXG_MASK], dr);
1943 mutex_exit(&dn->dn_mtx);
1944 }
1945 DB_DNODE_EXIT(db);
1946
1947 if (db->db_state != DB_NOFILL) {
1948 dbuf_unoverride(dr);
1949
1950 ASSERT(db->db_buf != NULL);
1951 ASSERT(dr->dt.dl.dr_data != NULL);
1952 if (dr->dt.dl.dr_data != db->db_buf)
1953 arc_buf_destroy(dr->dt.dl.dr_data, db);
1954 }
1955
1956 kmem_free(dr, sizeof (dbuf_dirty_record_t));
1957
1958 ASSERT(db->db_dirtycnt > 0);
1959 db->db_dirtycnt -= 1;
1960
1961 if (refcount_remove(&db->db_holds, (void *)(uintptr_t)txg) == 0) {
1962 ASSERT(db->db_state == DB_NOFILL || arc_released(db->db_buf));
1963 dbuf_destroy(db);
1964 return (B_TRUE);
1965 }
1966
1967 return (B_FALSE);
1968 }
1969
1970 static void
1971 dmu_buf_will_dirty_impl(dmu_buf_t *db_fake, int flags, dmu_tx_t *tx)
1972 {
1973 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
1974
1975 ASSERT(tx->tx_txg != 0);
1976 ASSERT(!refcount_is_zero(&db->db_holds));
1977
1978 /*
1979 * Quick check for dirtyness. For already dirty blocks, this
1980 * reduces runtime of this function by >90%, and overall performance
1981 * by 50% for some workloads (e.g. file deletion with indirect blocks
1982 * cached).
1983 */
1984 mutex_enter(&db->db_mtx);
1985
1986 dbuf_dirty_record_t *dr;
1987 for (dr = db->db_last_dirty;
1988 dr != NULL && dr->dr_txg >= tx->tx_txg; dr = dr->dr_next) {
1989 /*
1990 * It's possible that it is already dirty but not cached,
1991 * because there are some calls to dbuf_dirty() that don't
1992 * go through dmu_buf_will_dirty().
1993 */
1994 if (dr->dr_txg == tx->tx_txg && db->db_state == DB_CACHED) {
1995 /* This dbuf is already dirty and cached. */
1996 dbuf_redirty(dr);
1997 mutex_exit(&db->db_mtx);
1998 return;
1999 }
2000 }
2001 mutex_exit(&db->db_mtx);
2002
2003 DB_DNODE_ENTER(db);
2004 if (RW_WRITE_HELD(&DB_DNODE(db)->dn_struct_rwlock))
2005 flags |= DB_RF_HAVESTRUCT;
2006 DB_DNODE_EXIT(db);
2007 (void) dbuf_read(db, NULL, flags);
2008 (void) dbuf_dirty(db, tx);
2009 }
2010
2011 void
2012 dmu_buf_will_dirty(dmu_buf_t *db_fake, dmu_tx_t *tx)
2013 {
2014 dmu_buf_will_dirty_impl(db_fake,
2015 DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH, tx);
2016 }
2017
2018 void
2019 dmu_buf_will_not_fill(dmu_buf_t *db_fake, dmu_tx_t *tx)
2020 {
2021 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2022
2023 db->db_state = DB_NOFILL;
2024
2025 dmu_buf_will_fill(db_fake, tx);
2026 }
2027
2028 void
2029 dmu_buf_will_fill(dmu_buf_t *db_fake, dmu_tx_t *tx)
2030 {
2031 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2032
2033 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2034 ASSERT(tx->tx_txg != 0);
2035 ASSERT(db->db_level == 0);
2036 ASSERT(!refcount_is_zero(&db->db_holds));
2037
2038 ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT ||
2039 dmu_tx_private_ok(tx));
2040
2041 dbuf_noread(db);
2042 (void) dbuf_dirty(db, tx);
2043 }
2044
2045 /*
2046 * This function is effectively the same as dmu_buf_will_dirty(), but
2047 * indicates the caller expects raw encrypted data in the db. It will
2048 * also set the raw flag on the created dirty record.
2049 */
2050 void
2051 dmu_buf_will_change_crypt_params(dmu_buf_t *db_fake, dmu_tx_t *tx)
2052 {
2053 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2054 dbuf_dirty_record_t *dr;
2055
2056 dmu_buf_will_dirty_impl(db_fake,
2057 DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH | DB_RF_NO_DECRYPT, tx);
2058
2059 dr = db->db_last_dirty;
2060 while (dr != NULL && dr->dr_txg > tx->tx_txg)
2061 dr = dr->dr_next;
2062
2063 ASSERT3P(dr, !=, NULL);
2064 ASSERT3U(dr->dr_txg, ==, tx->tx_txg);
2065 dr->dt.dl.dr_raw = B_TRUE;
2066 }
2067
2068 #pragma weak dmu_buf_fill_done = dbuf_fill_done
2069 /* ARGSUSED */
2070 void
2071 dbuf_fill_done(dmu_buf_impl_t *db, dmu_tx_t *tx)
2072 {
2073 mutex_enter(&db->db_mtx);
2074 DBUF_VERIFY(db);
2075
2076 if (db->db_state == DB_FILL) {
2077 if (db->db_level == 0 && db->db_freed_in_flight) {
2078 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2079 /* we were freed while filling */
2080 /* XXX dbuf_undirty? */
2081 bzero(db->db.db_data, db->db.db_size);
2082 db->db_freed_in_flight = FALSE;
2083 }
2084 db->db_state = DB_CACHED;
2085 cv_broadcast(&db->db_changed);
2086 }
2087 mutex_exit(&db->db_mtx);
2088 }
2089
2090 void
2091 dmu_buf_write_embedded(dmu_buf_t *dbuf, void *data,
2092 bp_embedded_type_t etype, enum zio_compress comp,
2093 int uncompressed_size, int compressed_size, int byteorder,
2094 dmu_tx_t *tx)
2095 {
2096 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf;
2097 struct dirty_leaf *dl;
2098 dmu_object_type_t type;
2099
2100 if (etype == BP_EMBEDDED_TYPE_DATA) {
2101 ASSERT(spa_feature_is_active(dmu_objset_spa(db->db_objset),
2102 SPA_FEATURE_EMBEDDED_DATA));
2103 }
2104
2105 DB_DNODE_ENTER(db);
2106 type = DB_DNODE(db)->dn_type;
2107 DB_DNODE_EXIT(db);
2108
2109 ASSERT0(db->db_level);
2110 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2111
2112 dmu_buf_will_not_fill(dbuf, tx);
2113
2114 ASSERT3U(db->db_last_dirty->dr_txg, ==, tx->tx_txg);
2115 dl = &db->db_last_dirty->dt.dl;
2116 encode_embedded_bp_compressed(&dl->dr_overridden_by,
2117 data, comp, uncompressed_size, compressed_size);
2118 BPE_SET_ETYPE(&dl->dr_overridden_by, etype);
2119 BP_SET_TYPE(&dl->dr_overridden_by, type);
2120 BP_SET_LEVEL(&dl->dr_overridden_by, 0);
2121 BP_SET_BYTEORDER(&dl->dr_overridden_by, byteorder);
2122
2123 dl->dr_override_state = DR_OVERRIDDEN;
2124 dl->dr_overridden_by.blk_birth = db->db_last_dirty->dr_txg;
2125 }
2126
2127 /*
2128 * Directly assign a provided arc buf to a given dbuf if it's not referenced
2129 * by anybody except our caller. Otherwise copy arcbuf's contents to dbuf.
2130 */
2131 void
2132 dbuf_assign_arcbuf(dmu_buf_impl_t *db, arc_buf_t *buf, dmu_tx_t *tx)
2133 {
2134 ASSERT(!refcount_is_zero(&db->db_holds));
2135 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2136 ASSERT(db->db_level == 0);
2137 ASSERT3U(dbuf_is_metadata(db), ==, arc_is_metadata(buf));
2138 ASSERT(buf != NULL);
2139 ASSERT(arc_buf_lsize(buf) == db->db.db_size);
2140 ASSERT(tx->tx_txg != 0);
2141
2142 arc_return_buf(buf, db);
2143 ASSERT(arc_released(buf));
2144
2145 mutex_enter(&db->db_mtx);
2146
2147 while (db->db_state == DB_READ || db->db_state == DB_FILL)
2148 cv_wait(&db->db_changed, &db->db_mtx);
2149
2150 ASSERT(db->db_state == DB_CACHED || db->db_state == DB_UNCACHED);
2151
2152 if (db->db_state == DB_CACHED &&
2153 refcount_count(&db->db_holds) - 1 > db->db_dirtycnt) {
2154 /*
2155 * In practice, we will never have a case where we have an
2156 * encrypted arc buffer while additional holds exist on the
2157 * dbuf. We don't handle this here so we simply assert that
2158 * fact instead.
2159 */
2160 ASSERT(!arc_is_encrypted(buf));
2161 mutex_exit(&db->db_mtx);
2162 (void) dbuf_dirty(db, tx);
2163 bcopy(buf->b_data, db->db.db_data, db->db.db_size);
2164 arc_buf_destroy(buf, db);
2165 xuio_stat_wbuf_copied();
2166 return;
2167 }
2168
2169 xuio_stat_wbuf_nocopy();
2170 if (db->db_state == DB_CACHED) {
2171 dbuf_dirty_record_t *dr = db->db_last_dirty;
2172
2173 ASSERT(db->db_buf != NULL);
2174 if (dr != NULL && dr->dr_txg == tx->tx_txg) {
2175 ASSERT(dr->dt.dl.dr_data == db->db_buf);
2176 IMPLY(arc_is_encrypted(buf), dr->dt.dl.dr_raw);
2177
2178 if (!arc_released(db->db_buf)) {
2179 ASSERT(dr->dt.dl.dr_override_state ==
2180 DR_OVERRIDDEN);
2181 arc_release(db->db_buf, db);
2182 }
2183 dr->dt.dl.dr_data = buf;
2184 arc_buf_destroy(db->db_buf, db);
2185 } else if (dr == NULL || dr->dt.dl.dr_data != db->db_buf) {
2186 arc_release(db->db_buf, db);
2187 arc_buf_destroy(db->db_buf, db);
2188 }
2189 db->db_buf = NULL;
2190 }
2191 ASSERT(db->db_buf == NULL);
2192 dbuf_set_data(db, buf);
2193 db->db_state = DB_FILL;
2194 mutex_exit(&db->db_mtx);
2195 (void) dbuf_dirty(db, tx);
2196 dmu_buf_fill_done(&db->db, tx);
2197 }
2198
2199 void
2200 dbuf_destroy(dmu_buf_impl_t *db)
2201 {
2202 dnode_t *dn;
2203 dmu_buf_impl_t *parent = db->db_parent;
2204 dmu_buf_impl_t *dndb;
2205
2206 ASSERT(MUTEX_HELD(&db->db_mtx));
2207 ASSERT(refcount_is_zero(&db->db_holds));
2208
2209 if (db->db_buf != NULL) {
2210 arc_buf_destroy(db->db_buf, db);
2211 db->db_buf = NULL;
2212 }
2213
2214 if (db->db_blkid == DMU_BONUS_BLKID) {
2215 int slots = DB_DNODE(db)->dn_num_slots;
2216 int bonuslen = DN_SLOTS_TO_BONUSLEN(slots);
2217 if (db->db.db_data != NULL) {
2218 kmem_free(db->db.db_data, bonuslen);
2219 arc_space_return(bonuslen, ARC_SPACE_BONUS);
2220 db->db_state = DB_UNCACHED;
2221 }
2222 }
2223
2224 dbuf_clear_data(db);
2225
2226 if (multilist_link_active(&db->db_cache_link)) {
2227 multilist_remove(dbuf_cache, db);
2228 (void) refcount_remove_many(&dbuf_cache_size,
2229 db->db.db_size, db);
2230 }
2231
2232 ASSERT(db->db_state == DB_UNCACHED || db->db_state == DB_NOFILL);
2233 ASSERT(db->db_data_pending == NULL);
2234
2235 db->db_state = DB_EVICTING;
2236 db->db_blkptr = NULL;
2237
2238 /*
2239 * Now that db_state is DB_EVICTING, nobody else can find this via
2240 * the hash table. We can now drop db_mtx, which allows us to
2241 * acquire the dn_dbufs_mtx.
2242 */
2243 mutex_exit(&db->db_mtx);
2244
2245 DB_DNODE_ENTER(db);
2246 dn = DB_DNODE(db);
2247 dndb = dn->dn_dbuf;
2248 if (db->db_blkid != DMU_BONUS_BLKID) {
2249 boolean_t needlock = !MUTEX_HELD(&dn->dn_dbufs_mtx);
2250 if (needlock)
2251 mutex_enter(&dn->dn_dbufs_mtx);
2252 avl_remove(&dn->dn_dbufs, db);
2253 atomic_dec_32(&dn->dn_dbufs_count);
2254 membar_producer();
2255 DB_DNODE_EXIT(db);
2256 if (needlock)
2257 mutex_exit(&dn->dn_dbufs_mtx);
2258 /*
2259 * Decrementing the dbuf count means that the hold corresponding
2260 * to the removed dbuf is no longer discounted in dnode_move(),
2261 * so the dnode cannot be moved until after we release the hold.
2262 * The membar_producer() ensures visibility of the decremented
2263 * value in dnode_move(), since DB_DNODE_EXIT doesn't actually
2264 * release any lock.
2265 */
2266 dnode_rele(dn, db);
2267 db->db_dnode_handle = NULL;
2268
2269 dbuf_hash_remove(db);
2270 } else {
2271 DB_DNODE_EXIT(db);
2272 }
2273
2274 ASSERT(refcount_is_zero(&db->db_holds));
2275
2276 db->db_parent = NULL;
2277
2278 ASSERT(db->db_buf == NULL);
2279 ASSERT(db->db.db_data == NULL);
2280 ASSERT(db->db_hash_next == NULL);
2281 ASSERT(db->db_blkptr == NULL);
2282 ASSERT(db->db_data_pending == NULL);
2283 ASSERT(!multilist_link_active(&db->db_cache_link));
2284
2285 kmem_cache_free(dbuf_kmem_cache, db);
2286 arc_space_return(sizeof (dmu_buf_impl_t), ARC_SPACE_DBUF);
2287
2288 /*
2289 * If this dbuf is referenced from an indirect dbuf,
2290 * decrement the ref count on the indirect dbuf.
2291 */
2292 if (parent && parent != dndb)
2293 dbuf_rele(parent, db);
2294 }
2295
2296 /*
2297 * Note: While bpp will always be updated if the function returns success,
2298 * parentp will not be updated if the dnode does not have dn_dbuf filled in;
2299 * this happens when the dnode is the meta-dnode, or a userused or groupused
2300 * object.
2301 */
2302 __attribute__((always_inline))
2303 static inline int
2304 dbuf_findbp(dnode_t *dn, int level, uint64_t blkid, int fail_sparse,
2305 dmu_buf_impl_t **parentp, blkptr_t **bpp, struct dbuf_hold_impl_data *dh)
2306 {
2307 *parentp = NULL;
2308 *bpp = NULL;
2309
2310 ASSERT(blkid != DMU_BONUS_BLKID);
2311
2312 if (blkid == DMU_SPILL_BLKID) {
2313 mutex_enter(&dn->dn_mtx);
2314 if (dn->dn_have_spill &&
2315 (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR))
2316 *bpp = DN_SPILL_BLKPTR(dn->dn_phys);
2317 else
2318 *bpp = NULL;
2319 dbuf_add_ref(dn->dn_dbuf, NULL);
2320 *parentp = dn->dn_dbuf;
2321 mutex_exit(&dn->dn_mtx);
2322 return (0);
2323 }
2324
2325 int nlevels =
2326 (dn->dn_phys->dn_nlevels == 0) ? 1 : dn->dn_phys->dn_nlevels;
2327 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
2328
2329 ASSERT3U(level * epbs, <, 64);
2330 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
2331 /*
2332 * This assertion shouldn't trip as long as the max indirect block size
2333 * is less than 1M. The reason for this is that up to that point,
2334 * the number of levels required to address an entire object with blocks
2335 * of size SPA_MINBLOCKSIZE satisfies nlevels * epbs + 1 <= 64. In
2336 * other words, if N * epbs + 1 > 64, then if (N-1) * epbs + 1 > 55
2337 * (i.e. we can address the entire object), objects will all use at most
2338 * N-1 levels and the assertion won't overflow. However, once epbs is
2339 * 13, 4 * 13 + 1 = 53, but 5 * 13 + 1 = 66. Then, 4 levels will not be
2340 * enough to address an entire object, so objects will have 5 levels,
2341 * but then this assertion will overflow.
2342 *
2343 * All this is to say that if we ever increase DN_MAX_INDBLKSHIFT, we
2344 * need to redo this logic to handle overflows.
2345 */
2346 ASSERT(level >= nlevels ||
2347 ((nlevels - level - 1) * epbs) +
2348 highbit64(dn->dn_phys->dn_nblkptr) <= 64);
2349 if (level >= nlevels ||
2350 blkid >= ((uint64_t)dn->dn_phys->dn_nblkptr <<
2351 ((nlevels - level - 1) * epbs)) ||
2352 (fail_sparse &&
2353 blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs)))) {
2354 /* the buffer has no parent yet */
2355 return (SET_ERROR(ENOENT));
2356 } else if (level < nlevels-1) {
2357 /* this block is referenced from an indirect block */
2358 int err;
2359 if (dh == NULL) {
2360 err = dbuf_hold_impl(dn, level+1,
2361 blkid >> epbs, fail_sparse, FALSE, NULL, parentp);
2362 } else {
2363 __dbuf_hold_impl_init(dh + 1, dn, dh->dh_level + 1,
2364 blkid >> epbs, fail_sparse, FALSE, NULL,
2365 parentp, dh->dh_depth + 1);
2366 err = __dbuf_hold_impl(dh + 1);
2367 }
2368 if (err)
2369 return (err);
2370 err = dbuf_read(*parentp, NULL,
2371 (DB_RF_HAVESTRUCT | DB_RF_NOPREFETCH | DB_RF_CANFAIL));
2372 if (err) {
2373 dbuf_rele(*parentp, NULL);
2374 *parentp = NULL;
2375 return (err);
2376 }
2377 *bpp = ((blkptr_t *)(*parentp)->db.db_data) +
2378 (blkid & ((1ULL << epbs) - 1));
2379 if (blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs)))
2380 ASSERT(BP_IS_HOLE(*bpp));
2381 return (0);
2382 } else {
2383 /* the block is referenced from the dnode */
2384 ASSERT3U(level, ==, nlevels-1);
2385 ASSERT(dn->dn_phys->dn_nblkptr == 0 ||
2386 blkid < dn->dn_phys->dn_nblkptr);
2387 if (dn->dn_dbuf) {
2388 dbuf_add_ref(dn->dn_dbuf, NULL);
2389 *parentp = dn->dn_dbuf;
2390 }
2391 *bpp = &dn->dn_phys->dn_blkptr[blkid];
2392 return (0);
2393 }
2394 }
2395
2396 static dmu_buf_impl_t *
2397 dbuf_create(dnode_t *dn, uint8_t level, uint64_t blkid,
2398 dmu_buf_impl_t *parent, blkptr_t *blkptr)
2399 {
2400 objset_t *os = dn->dn_objset;
2401 dmu_buf_impl_t *db, *odb;
2402
2403 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
2404 ASSERT(dn->dn_type != DMU_OT_NONE);
2405
2406 db = kmem_cache_alloc(dbuf_kmem_cache, KM_SLEEP);
2407
2408 db->db_objset = os;
2409 db->db.db_object = dn->dn_object;
2410 db->db_level = level;
2411 db->db_blkid = blkid;
2412 db->db_last_dirty = NULL;
2413 db->db_dirtycnt = 0;
2414 db->db_dnode_handle = dn->dn_handle;
2415 db->db_parent = parent;
2416 db->db_blkptr = blkptr;
2417
2418 db->db_user = NULL;
2419 db->db_user_immediate_evict = FALSE;
2420 db->db_freed_in_flight = FALSE;
2421 db->db_pending_evict = FALSE;
2422
2423 if (blkid == DMU_BONUS_BLKID) {
2424 ASSERT3P(parent, ==, dn->dn_dbuf);
2425 db->db.db_size = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots) -
2426 (dn->dn_nblkptr-1) * sizeof (blkptr_t);
2427 ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen);
2428 db->db.db_offset = DMU_BONUS_BLKID;
2429 db->db_state = DB_UNCACHED;
2430 /* the bonus dbuf is not placed in the hash table */
2431 arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_DBUF);
2432 return (db);
2433 } else if (blkid == DMU_SPILL_BLKID) {
2434 db->db.db_size = (blkptr != NULL) ?
2435 BP_GET_LSIZE(blkptr) : SPA_MINBLOCKSIZE;
2436 db->db.db_offset = 0;
2437 } else {
2438 int blocksize =
2439 db->db_level ? 1 << dn->dn_indblkshift : dn->dn_datablksz;
2440 db->db.db_size = blocksize;
2441 db->db.db_offset = db->db_blkid * blocksize;
2442 }
2443
2444 /*
2445 * Hold the dn_dbufs_mtx while we get the new dbuf
2446 * in the hash table *and* added to the dbufs list.
2447 * This prevents a possible deadlock with someone
2448 * trying to look up this dbuf before its added to the
2449 * dn_dbufs list.
2450 */
2451 mutex_enter(&dn->dn_dbufs_mtx);
2452 db->db_state = DB_EVICTING;
2453 if ((odb = dbuf_hash_insert(db)) != NULL) {
2454 /* someone else inserted it first */
2455 kmem_cache_free(dbuf_kmem_cache, db);
2456 mutex_exit(&dn->dn_dbufs_mtx);
2457 return (odb);
2458 }
2459 avl_add(&dn->dn_dbufs, db);
2460
2461 db->db_state = DB_UNCACHED;
2462 mutex_exit(&dn->dn_dbufs_mtx);
2463 arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_DBUF);
2464
2465 if (parent && parent != dn->dn_dbuf)
2466 dbuf_add_ref(parent, db);
2467
2468 ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT ||
2469 refcount_count(&dn->dn_holds) > 0);
2470 (void) refcount_add(&dn->dn_holds, db);
2471 atomic_inc_32(&dn->dn_dbufs_count);
2472
2473 dprintf_dbuf(db, "db=%p\n", db);
2474
2475 return (db);
2476 }
2477
2478 typedef struct dbuf_prefetch_arg {
2479 spa_t *dpa_spa; /* The spa to issue the prefetch in. */
2480 zbookmark_phys_t dpa_zb; /* The target block to prefetch. */
2481 int dpa_epbs; /* Entries (blkptr_t's) Per Block Shift. */
2482 int dpa_curlevel; /* The current level that we're reading */
2483 dnode_t *dpa_dnode; /* The dnode associated with the prefetch */
2484 zio_priority_t dpa_prio; /* The priority I/Os should be issued at. */
2485 zio_t *dpa_zio; /* The parent zio_t for all prefetches. */
2486 arc_flags_t dpa_aflags; /* Flags to pass to the final prefetch. */
2487 } dbuf_prefetch_arg_t;
2488
2489 /*
2490 * Actually issue the prefetch read for the block given.
2491 */
2492 static void
2493 dbuf_issue_final_prefetch(dbuf_prefetch_arg_t *dpa, blkptr_t *bp)
2494 {
2495 if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp))
2496 return;
2497
2498 arc_flags_t aflags =
2499 dpa->dpa_aflags | ARC_FLAG_NOWAIT | ARC_FLAG_PREFETCH;
2500
2501 ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp));
2502 ASSERT3U(dpa->dpa_curlevel, ==, dpa->dpa_zb.zb_level);
2503 ASSERT(dpa->dpa_zio != NULL);
2504 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa, bp, NULL, NULL,
2505 dpa->dpa_prio, ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
2506 &aflags, &dpa->dpa_zb);
2507 }
2508
2509 /*
2510 * Called when an indirect block above our prefetch target is read in. This
2511 * will either read in the next indirect block down the tree or issue the actual
2512 * prefetch if the next block down is our target.
2513 */
2514 static void
2515 dbuf_prefetch_indirect_done(zio_t *zio, int err, arc_buf_t *abuf, void *private)
2516 {
2517 dbuf_prefetch_arg_t *dpa = private;
2518
2519 ASSERT3S(dpa->dpa_zb.zb_level, <, dpa->dpa_curlevel);
2520 ASSERT3S(dpa->dpa_curlevel, >, 0);
2521
2522 /*
2523 * The dpa_dnode is only valid if we are called with a NULL
2524 * zio. This indicates that the arc_read() returned without
2525 * first calling zio_read() to issue a physical read. Once
2526 * a physical read is made the dpa_dnode must be invalidated
2527 * as the locks guarding it may have been dropped. If the
2528 * dpa_dnode is still valid, then we want to add it to the dbuf
2529 * cache. To do so, we must hold the dbuf associated with the block
2530 * we just prefetched, read its contents so that we associate it
2531 * with an arc_buf_t, and then release it.
2532 */
2533 if (zio != NULL) {
2534 ASSERT3S(BP_GET_LEVEL(zio->io_bp), ==, dpa->dpa_curlevel);
2535 if (zio->io_flags & ZIO_FLAG_RAW_COMPRESS) {
2536 ASSERT3U(BP_GET_PSIZE(zio->io_bp), ==, zio->io_size);
2537 } else {
2538 ASSERT3U(BP_GET_LSIZE(zio->io_bp), ==, zio->io_size);
2539 }
2540 ASSERT3P(zio->io_spa, ==, dpa->dpa_spa);
2541
2542 dpa->dpa_dnode = NULL;
2543 } else if (dpa->dpa_dnode != NULL) {
2544 uint64_t curblkid = dpa->dpa_zb.zb_blkid >>
2545 (dpa->dpa_epbs * (dpa->dpa_curlevel -
2546 dpa->dpa_zb.zb_level));
2547 dmu_buf_impl_t *db = dbuf_hold_level(dpa->dpa_dnode,
2548 dpa->dpa_curlevel, curblkid, FTAG);
2549 (void) dbuf_read(db, NULL,
2550 DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH | DB_RF_HAVESTRUCT);
2551 dbuf_rele(db, FTAG);
2552 }
2553
2554 dpa->dpa_curlevel--;
2555
2556 uint64_t nextblkid = dpa->dpa_zb.zb_blkid >>
2557 (dpa->dpa_epbs * (dpa->dpa_curlevel - dpa->dpa_zb.zb_level));
2558 blkptr_t *bp = ((blkptr_t *)abuf->b_data) +
2559 P2PHASE(nextblkid, 1ULL << dpa->dpa_epbs);
2560 if (BP_IS_HOLE(bp) || err != 0) {
2561 kmem_free(dpa, sizeof (*dpa));
2562 } else if (dpa->dpa_curlevel == dpa->dpa_zb.zb_level) {
2563 ASSERT3U(nextblkid, ==, dpa->dpa_zb.zb_blkid);
2564 dbuf_issue_final_prefetch(dpa, bp);
2565 kmem_free(dpa, sizeof (*dpa));
2566 } else {
2567 arc_flags_t iter_aflags = ARC_FLAG_NOWAIT;
2568 zbookmark_phys_t zb;
2569
2570 /* flag if L2ARC eligible, l2arc_noprefetch then decides */
2571 if (dpa->dpa_aflags & ARC_FLAG_L2CACHE)
2572 iter_aflags |= ARC_FLAG_L2CACHE;
2573
2574 ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp));
2575
2576 SET_BOOKMARK(&zb, dpa->dpa_zb.zb_objset,
2577 dpa->dpa_zb.zb_object, dpa->dpa_curlevel, nextblkid);
2578
2579 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa,
2580 bp, dbuf_prefetch_indirect_done, dpa, dpa->dpa_prio,
2581 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
2582 &iter_aflags, &zb);
2583 }
2584
2585 arc_buf_destroy(abuf, private);
2586 }
2587
2588 /*
2589 * Issue prefetch reads for the given block on the given level. If the indirect
2590 * blocks above that block are not in memory, we will read them in
2591 * asynchronously. As a result, this call never blocks waiting for a read to
2592 * complete. Note that the prefetch might fail if the dataset is encrypted and
2593 * the encryption key is unmapped before the IO completes.
2594 */
2595 void
2596 dbuf_prefetch(dnode_t *dn, int64_t level, uint64_t blkid, zio_priority_t prio,
2597 arc_flags_t aflags)
2598 {
2599 blkptr_t bp;
2600 int epbs, nlevels, curlevel;
2601 uint64_t curblkid;
2602
2603 ASSERT(blkid != DMU_BONUS_BLKID);
2604 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
2605
2606 if (blkid > dn->dn_maxblkid)
2607 return;
2608
2609 if (dnode_block_freed(dn, blkid))
2610 return;
2611
2612 /*
2613 * This dnode hasn't been written to disk yet, so there's nothing to
2614 * prefetch.
2615 */
2616 nlevels = dn->dn_phys->dn_nlevels;
2617 if (level >= nlevels || dn->dn_phys->dn_nblkptr == 0)
2618 return;
2619
2620 epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
2621 if (dn->dn_phys->dn_maxblkid < blkid << (epbs * level))
2622 return;
2623
2624 dmu_buf_impl_t *db = dbuf_find(dn->dn_objset, dn->dn_object,
2625 level, blkid);
2626 if (db != NULL) {
2627 mutex_exit(&db->db_mtx);
2628 /*
2629 * This dbuf already exists. It is either CACHED, or
2630 * (we assume) about to be read or filled.
2631 */
2632 return;
2633 }
2634
2635 /*
2636 * Find the closest ancestor (indirect block) of the target block
2637 * that is present in the cache. In this indirect block, we will
2638 * find the bp that is at curlevel, curblkid.
2639 */
2640 curlevel = level;
2641 curblkid = blkid;
2642 while (curlevel < nlevels - 1) {
2643 int parent_level = curlevel + 1;
2644 uint64_t parent_blkid = curblkid >> epbs;
2645 dmu_buf_impl_t *db;
2646
2647 if (dbuf_hold_impl(dn, parent_level, parent_blkid,
2648 FALSE, TRUE, FTAG, &db) == 0) {
2649 blkptr_t *bpp = db->db_buf->b_data;
2650 bp = bpp[P2PHASE(curblkid, 1 << epbs)];
2651 dbuf_rele(db, FTAG);
2652 break;
2653 }
2654
2655 curlevel = parent_level;
2656 curblkid = parent_blkid;
2657 }
2658
2659 if (curlevel == nlevels - 1) {
2660 /* No cached indirect blocks found. */
2661 ASSERT3U(curblkid, <, dn->dn_phys->dn_nblkptr);
2662 bp = dn->dn_phys->dn_blkptr[curblkid];
2663 }
2664 if (BP_IS_HOLE(&bp))
2665 return;
2666
2667 ASSERT3U(curlevel, ==, BP_GET_LEVEL(&bp));
2668
2669 zio_t *pio = zio_root(dmu_objset_spa(dn->dn_objset), NULL, NULL,
2670 ZIO_FLAG_CANFAIL);
2671
2672 dbuf_prefetch_arg_t *dpa = kmem_zalloc(sizeof (*dpa), KM_SLEEP);
2673 dsl_dataset_t *ds = dn->dn_objset->os_dsl_dataset;
2674 SET_BOOKMARK(&dpa->dpa_zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET,
2675 dn->dn_object, level, blkid);
2676 dpa->dpa_curlevel = curlevel;
2677 dpa->dpa_prio = prio;
2678 dpa->dpa_aflags = aflags;
2679 dpa->dpa_spa = dn->dn_objset->os_spa;
2680 dpa->dpa_dnode = dn;
2681 dpa->dpa_epbs = epbs;
2682 dpa->dpa_zio = pio;
2683
2684 /* flag if L2ARC eligible, l2arc_noprefetch then decides */
2685 if (DNODE_LEVEL_IS_L2CACHEABLE(dn, level))
2686 dpa->dpa_aflags |= ARC_FLAG_L2CACHE;
2687
2688 /*
2689 * If we have the indirect just above us, no need to do the asynchronous
2690 * prefetch chain; we'll just run the last step ourselves. If we're at
2691 * a higher level, though, we want to issue the prefetches for all the
2692 * indirect blocks asynchronously, so we can go on with whatever we were
2693 * doing.
2694 */
2695 if (curlevel == level) {
2696 ASSERT3U(curblkid, ==, blkid);
2697 dbuf_issue_final_prefetch(dpa, &bp);
2698 kmem_free(dpa, sizeof (*dpa));
2699 } else {
2700 arc_flags_t iter_aflags = ARC_FLAG_NOWAIT;
2701 zbookmark_phys_t zb;
2702
2703 /* flag if L2ARC eligible, l2arc_noprefetch then decides */
2704 if (DNODE_LEVEL_IS_L2CACHEABLE(dn, level))
2705 iter_aflags |= ARC_FLAG_L2CACHE;
2706
2707 SET_BOOKMARK(&zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET,
2708 dn->dn_object, curlevel, curblkid);
2709 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa,
2710 &bp, dbuf_prefetch_indirect_done, dpa, prio,
2711 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
2712 &iter_aflags, &zb);
2713 }
2714 /*
2715 * We use pio here instead of dpa_zio since it's possible that
2716 * dpa may have already been freed.
2717 */
2718 zio_nowait(pio);
2719 }
2720
2721 #define DBUF_HOLD_IMPL_MAX_DEPTH 20
2722
2723 /*
2724 * Helper function for __dbuf_hold_impl() to copy a buffer. Handles
2725 * the case of encrypted, compressed and uncompressed buffers by
2726 * allocating the new buffer, respectively, with arc_alloc_raw_buf(),
2727 * arc_alloc_compressed_buf() or arc_alloc_buf().*
2728 *
2729 * NOTE: Declared noinline to avoid stack bloat in __dbuf_hold_impl().
2730 */
2731 noinline static void
2732 dbuf_hold_copy(struct dbuf_hold_impl_data *dh)
2733 {
2734 dnode_t *dn = dh->dh_dn;
2735 dmu_buf_impl_t *db = dh->dh_db;
2736 dbuf_dirty_record_t *dr = dh->dh_dr;
2737 arc_buf_t *data = dr->dt.dl.dr_data;
2738
2739 enum zio_compress compress_type = arc_get_compression(data);
2740
2741 if (arc_is_encrypted(data)) {
2742 boolean_t byteorder;
2743 uint8_t salt[ZIO_DATA_SALT_LEN];
2744 uint8_t iv[ZIO_DATA_IV_LEN];
2745 uint8_t mac[ZIO_DATA_MAC_LEN];
2746
2747 arc_get_raw_params(data, &byteorder, salt, iv, mac);
2748 dbuf_set_data(db, arc_alloc_raw_buf(dn->dn_objset->os_spa, db,
2749 dmu_objset_id(dn->dn_objset), byteorder, salt, iv, mac,
2750 dn->dn_type, arc_buf_size(data), arc_buf_lsize(data),
2751 compress_type));
2752 } else if (compress_type != ZIO_COMPRESS_OFF) {
2753 dbuf_set_data(db, arc_alloc_compressed_buf(
2754 dn->dn_objset->os_spa, db, arc_buf_size(data),
2755 arc_buf_lsize(data), compress_type));
2756 } else {
2757 dbuf_set_data(db, arc_alloc_buf(dn->dn_objset->os_spa, db,
2758 DBUF_GET_BUFC_TYPE(db), db->db.db_size));
2759 }
2760
2761 bcopy(data->b_data, db->db.db_data, arc_buf_size(data));
2762 }
2763
2764 /*
2765 * Returns with db_holds incremented, and db_mtx not held.
2766 * Note: dn_struct_rwlock must be held.
2767 */
2768 static int
2769 __dbuf_hold_impl(struct dbuf_hold_impl_data *dh)
2770 {
2771 ASSERT3S(dh->dh_depth, <, DBUF_HOLD_IMPL_MAX_DEPTH);
2772 dh->dh_parent = NULL;
2773
2774 ASSERT(dh->dh_blkid != DMU_BONUS_BLKID);
2775 ASSERT(RW_LOCK_HELD(&dh->dh_dn->dn_struct_rwlock));
2776 ASSERT3U(dh->dh_dn->dn_nlevels, >, dh->dh_level);
2777
2778 *(dh->dh_dbp) = NULL;
2779
2780 /* dbuf_find() returns with db_mtx held */
2781 dh->dh_db = dbuf_find(dh->dh_dn->dn_objset, dh->dh_dn->dn_object,
2782 dh->dh_level, dh->dh_blkid);
2783
2784 if (dh->dh_db == NULL) {
2785 dh->dh_bp = NULL;
2786
2787 if (dh->dh_fail_uncached)
2788 return (SET_ERROR(ENOENT));
2789
2790 ASSERT3P(dh->dh_parent, ==, NULL);
2791 dh->dh_err = dbuf_findbp(dh->dh_dn, dh->dh_level, dh->dh_blkid,
2792 dh->dh_fail_sparse, &dh->dh_parent, &dh->dh_bp, dh);
2793 if (dh->dh_fail_sparse) {
2794 if (dh->dh_err == 0 &&
2795 dh->dh_bp && BP_IS_HOLE(dh->dh_bp))
2796 dh->dh_err = SET_ERROR(ENOENT);
2797 if (dh->dh_err) {
2798 if (dh->dh_parent)
2799 dbuf_rele(dh->dh_parent, NULL);
2800 return (dh->dh_err);
2801 }
2802 }
2803 if (dh->dh_err && dh->dh_err != ENOENT)
2804 return (dh->dh_err);
2805 dh->dh_db = dbuf_create(dh->dh_dn, dh->dh_level, dh->dh_blkid,
2806 dh->dh_parent, dh->dh_bp);
2807 }
2808
2809 if (dh->dh_fail_uncached && dh->dh_db->db_state != DB_CACHED) {
2810 mutex_exit(&dh->dh_db->db_mtx);
2811 return (SET_ERROR(ENOENT));
2812 }
2813
2814 if (dh->dh_db->db_buf != NULL)
2815 ASSERT3P(dh->dh_db->db.db_data, ==, dh->dh_db->db_buf->b_data);
2816
2817 ASSERT(dh->dh_db->db_buf == NULL || arc_referenced(dh->dh_db->db_buf));
2818
2819 /*
2820 * If this buffer is currently syncing out, and we are are
2821 * still referencing it from db_data, we need to make a copy
2822 * of it in case we decide we want to dirty it again in this txg.
2823 */
2824 if (dh->dh_db->db_level == 0 &&
2825 dh->dh_db->db_blkid != DMU_BONUS_BLKID &&
2826 dh->dh_dn->dn_object != DMU_META_DNODE_OBJECT &&
2827 dh->dh_db->db_state == DB_CACHED && dh->dh_db->db_data_pending) {
2828 dh->dh_dr = dh->dh_db->db_data_pending;
2829 if (dh->dh_dr->dt.dl.dr_data == dh->dh_db->db_buf)
2830 dbuf_hold_copy(dh);
2831 }
2832
2833 if (multilist_link_active(&dh->dh_db->db_cache_link)) {
2834 ASSERT(refcount_is_zero(&dh->dh_db->db_holds));
2835 multilist_remove(dbuf_cache, dh->dh_db);
2836 (void) refcount_remove_many(&dbuf_cache_size,
2837 dh->dh_db->db.db_size, dh->dh_db);
2838 }
2839 (void) refcount_add(&dh->dh_db->db_holds, dh->dh_tag);
2840 DBUF_VERIFY(dh->dh_db);
2841 mutex_exit(&dh->dh_db->db_mtx);
2842
2843 /* NOTE: we can't rele the parent until after we drop the db_mtx */
2844 if (dh->dh_parent)
2845 dbuf_rele(dh->dh_parent, NULL);
2846
2847 ASSERT3P(DB_DNODE(dh->dh_db), ==, dh->dh_dn);
2848 ASSERT3U(dh->dh_db->db_blkid, ==, dh->dh_blkid);
2849 ASSERT3U(dh->dh_db->db_level, ==, dh->dh_level);
2850 *(dh->dh_dbp) = dh->dh_db;
2851
2852 return (0);
2853 }
2854
2855 /*
2856 * The following code preserves the recursive function dbuf_hold_impl()
2857 * but moves the local variables AND function arguments to the heap to
2858 * minimize the stack frame size. Enough space is initially allocated
2859 * on the stack for 20 levels of recursion.
2860 */
2861 int
2862 dbuf_hold_impl(dnode_t *dn, uint8_t level, uint64_t blkid,
2863 boolean_t fail_sparse, boolean_t fail_uncached,
2864 void *tag, dmu_buf_impl_t **dbp)
2865 {
2866 struct dbuf_hold_impl_data *dh;
2867 int error;
2868
2869 dh = kmem_alloc(sizeof (struct dbuf_hold_impl_data) *
2870 DBUF_HOLD_IMPL_MAX_DEPTH, KM_SLEEP);
2871 __dbuf_hold_impl_init(dh, dn, level, blkid, fail_sparse,
2872 fail_uncached, tag, dbp, 0);
2873
2874 error = __dbuf_hold_impl(dh);
2875
2876 kmem_free(dh, sizeof (struct dbuf_hold_impl_data) *
2877 DBUF_HOLD_IMPL_MAX_DEPTH);
2878
2879 return (error);
2880 }
2881
2882 static void
2883 __dbuf_hold_impl_init(struct dbuf_hold_impl_data *dh,
2884 dnode_t *dn, uint8_t level, uint64_t blkid,
2885 boolean_t fail_sparse, boolean_t fail_uncached,
2886 void *tag, dmu_buf_impl_t **dbp, int depth)
2887 {
2888 dh->dh_dn = dn;
2889 dh->dh_level = level;
2890 dh->dh_blkid = blkid;
2891
2892 dh->dh_fail_sparse = fail_sparse;
2893 dh->dh_fail_uncached = fail_uncached;
2894
2895 dh->dh_tag = tag;
2896 dh->dh_dbp = dbp;
2897
2898 dh->dh_db = NULL;
2899 dh->dh_parent = NULL;
2900 dh->dh_bp = NULL;
2901 dh->dh_err = 0;
2902 dh->dh_dr = NULL;
2903
2904 dh->dh_depth = depth;
2905 }
2906
2907 dmu_buf_impl_t *
2908 dbuf_hold(dnode_t *dn, uint64_t blkid, void *tag)
2909 {
2910 return (dbuf_hold_level(dn, 0, blkid, tag));
2911 }
2912
2913 dmu_buf_impl_t *
2914 dbuf_hold_level(dnode_t *dn, int level, uint64_t blkid, void *tag)
2915 {
2916 dmu_buf_impl_t *db;
2917 int err = dbuf_hold_impl(dn, level, blkid, FALSE, FALSE, tag, &db);
2918 return (err ? NULL : db);
2919 }
2920
2921 void
2922 dbuf_create_bonus(dnode_t *dn)
2923 {
2924 ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock));
2925
2926 ASSERT(dn->dn_bonus == NULL);
2927 dn->dn_bonus = dbuf_create(dn, 0, DMU_BONUS_BLKID, dn->dn_dbuf, NULL);
2928 }
2929
2930 int
2931 dbuf_spill_set_blksz(dmu_buf_t *db_fake, uint64_t blksz, dmu_tx_t *tx)
2932 {
2933 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2934 dnode_t *dn;
2935
2936 if (db->db_blkid != DMU_SPILL_BLKID)
2937 return (SET_ERROR(ENOTSUP));
2938 if (blksz == 0)
2939 blksz = SPA_MINBLOCKSIZE;
2940 ASSERT3U(blksz, <=, spa_maxblocksize(dmu_objset_spa(db->db_objset)));
2941 blksz = P2ROUNDUP(blksz, SPA_MINBLOCKSIZE);
2942
2943 DB_DNODE_ENTER(db);
2944 dn = DB_DNODE(db);
2945 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
2946 dbuf_new_size(db, blksz, tx);
2947 rw_exit(&dn->dn_struct_rwlock);
2948 DB_DNODE_EXIT(db);
2949
2950 return (0);
2951 }
2952
2953 void
2954 dbuf_rm_spill(dnode_t *dn, dmu_tx_t *tx)
2955 {
2956 dbuf_free_range(dn, DMU_SPILL_BLKID, DMU_SPILL_BLKID, tx);
2957 }
2958
2959 #pragma weak dmu_buf_add_ref = dbuf_add_ref
2960 void
2961 dbuf_add_ref(dmu_buf_impl_t *db, void *tag)
2962 {
2963 int64_t holds = refcount_add(&db->db_holds, tag);
2964 VERIFY3S(holds, >, 1);
2965 }
2966
2967 #pragma weak dmu_buf_try_add_ref = dbuf_try_add_ref
2968 boolean_t
2969 dbuf_try_add_ref(dmu_buf_t *db_fake, objset_t *os, uint64_t obj, uint64_t blkid,
2970 void *tag)
2971 {
2972 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2973 dmu_buf_impl_t *found_db;
2974 boolean_t result = B_FALSE;
2975
2976 if (blkid == DMU_BONUS_BLKID)
2977 found_db = dbuf_find_bonus(os, obj);
2978 else
2979 found_db = dbuf_find(os, obj, 0, blkid);
2980
2981 if (found_db != NULL) {
2982 if (db == found_db && dbuf_refcount(db) > db->db_dirtycnt) {
2983 (void) refcount_add(&db->db_holds, tag);
2984 result = B_TRUE;
2985 }
2986 mutex_exit(&found_db->db_mtx);
2987 }
2988 return (result);
2989 }
2990
2991 /*
2992 * If you call dbuf_rele() you had better not be referencing the dnode handle
2993 * unless you have some other direct or indirect hold on the dnode. (An indirect
2994 * hold is a hold on one of the dnode's dbufs, including the bonus buffer.)
2995 * Without that, the dbuf_rele() could lead to a dnode_rele() followed by the
2996 * dnode's parent dbuf evicting its dnode handles.
2997 */
2998 void
2999 dbuf_rele(dmu_buf_impl_t *db, void *tag)
3000 {
3001 mutex_enter(&db->db_mtx);
3002 dbuf_rele_and_unlock(db, tag);
3003 }
3004
3005 void
3006 dmu_buf_rele(dmu_buf_t *db, void *tag)
3007 {
3008 dbuf_rele((dmu_buf_impl_t *)db, tag);
3009 }
3010
3011 /*
3012 * dbuf_rele() for an already-locked dbuf. This is necessary to allow
3013 * db_dirtycnt and db_holds to be updated atomically.
3014 */
3015 void
3016 dbuf_rele_and_unlock(dmu_buf_impl_t *db, void *tag)
3017 {
3018 int64_t holds;
3019
3020 ASSERT(MUTEX_HELD(&db->db_mtx));
3021 DBUF_VERIFY(db);
3022
3023 /*
3024 * Remove the reference to the dbuf before removing its hold on the
3025 * dnode so we can guarantee in dnode_move() that a referenced bonus
3026 * buffer has a corresponding dnode hold.
3027 */
3028 holds = refcount_remove(&db->db_holds, tag);
3029 ASSERT(holds >= 0);
3030
3031 /*
3032 * We can't freeze indirects if there is a possibility that they
3033 * may be modified in the current syncing context.
3034 */
3035 if (db->db_buf != NULL &&
3036 holds == (db->db_level == 0 ? db->db_dirtycnt : 0)) {
3037 arc_buf_freeze(db->db_buf);
3038 }
3039
3040 if (holds == db->db_dirtycnt &&
3041 db->db_level == 0 && db->db_user_immediate_evict)
3042 dbuf_evict_user(db);
3043
3044 if (holds == 0) {
3045 if (db->db_blkid == DMU_BONUS_BLKID) {
3046 dnode_t *dn;
3047 boolean_t evict_dbuf = db->db_pending_evict;
3048
3049 /*
3050 * If the dnode moves here, we cannot cross this
3051 * barrier until the move completes.
3052 */
3053 DB_DNODE_ENTER(db);
3054
3055 dn = DB_DNODE(db);
3056 atomic_dec_32(&dn->dn_dbufs_count);
3057
3058 /*
3059 * Decrementing the dbuf count means that the bonus
3060 * buffer's dnode hold is no longer discounted in
3061 * dnode_move(). The dnode cannot move until after
3062 * the dnode_rele() below.
3063 */
3064 DB_DNODE_EXIT(db);
3065
3066 /*
3067 * Do not reference db after its lock is dropped.
3068 * Another thread may evict it.
3069 */
3070 mutex_exit(&db->db_mtx);
3071
3072 if (evict_dbuf)
3073 dnode_evict_bonus(dn);
3074
3075 dnode_rele(dn, db);
3076 } else if (db->db_buf == NULL) {
3077 /*
3078 * This is a special case: we never associated this
3079 * dbuf with any data allocated from the ARC.
3080 */
3081 ASSERT(db->db_state == DB_UNCACHED ||
3082 db->db_state == DB_NOFILL);
3083 dbuf_destroy(db);
3084 } else if (arc_released(db->db_buf)) {
3085 /*
3086 * This dbuf has anonymous data associated with it.
3087 */
3088 dbuf_destroy(db);
3089 } else {
3090 boolean_t do_arc_evict = B_FALSE;
3091 blkptr_t bp;
3092 spa_t *spa = dmu_objset_spa(db->db_objset);
3093
3094 if (!DBUF_IS_CACHEABLE(db) &&
3095 db->db_blkptr != NULL &&
3096 !BP_IS_HOLE(db->db_blkptr) &&
3097 !BP_IS_EMBEDDED(db->db_blkptr)) {
3098 do_arc_evict = B_TRUE;
3099 bp = *db->db_blkptr;
3100 }
3101
3102 if (!DBUF_IS_CACHEABLE(db) ||
3103 db->db_pending_evict) {
3104 dbuf_destroy(db);
3105 } else if (!multilist_link_active(&db->db_cache_link)) {
3106 multilist_insert(dbuf_cache, db);
3107 (void) refcount_add_many(&dbuf_cache_size,
3108 db->db.db_size, db);
3109 mutex_exit(&db->db_mtx);
3110
3111 dbuf_evict_notify();
3112 }
3113
3114 if (do_arc_evict)
3115 arc_freed(spa, &bp);
3116 }
3117 } else {
3118 mutex_exit(&db->db_mtx);
3119 }
3120
3121 }
3122
3123 #pragma weak dmu_buf_refcount = dbuf_refcount
3124 uint64_t
3125 dbuf_refcount(dmu_buf_impl_t *db)
3126 {
3127 return (refcount_count(&db->db_holds));
3128 }
3129
3130 void *
3131 dmu_buf_replace_user(dmu_buf_t *db_fake, dmu_buf_user_t *old_user,
3132 dmu_buf_user_t *new_user)
3133 {
3134 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
3135
3136 mutex_enter(&db->db_mtx);
3137 dbuf_verify_user(db, DBVU_NOT_EVICTING);
3138 if (db->db_user == old_user)
3139 db->db_user = new_user;
3140 else
3141 old_user = db->db_user;
3142 dbuf_verify_user(db, DBVU_NOT_EVICTING);
3143 mutex_exit(&db->db_mtx);
3144
3145 return (old_user);
3146 }
3147
3148 void *
3149 dmu_buf_set_user(dmu_buf_t *db_fake, dmu_buf_user_t *user)
3150 {
3151 return (dmu_buf_replace_user(db_fake, NULL, user));
3152 }
3153
3154 void *
3155 dmu_buf_set_user_ie(dmu_buf_t *db_fake, dmu_buf_user_t *user)
3156 {
3157 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
3158
3159 db->db_user_immediate_evict = TRUE;
3160 return (dmu_buf_set_user(db_fake, user));
3161 }
3162
3163 void *
3164 dmu_buf_remove_user(dmu_buf_t *db_fake, dmu_buf_user_t *user)
3165 {
3166 return (dmu_buf_replace_user(db_fake, user, NULL));
3167 }
3168
3169 void *
3170 dmu_buf_get_user(dmu_buf_t *db_fake)
3171 {
3172 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
3173
3174 dbuf_verify_user(db, DBVU_NOT_EVICTING);
3175 return (db->db_user);
3176 }
3177
3178 void
3179 dmu_buf_user_evict_wait()
3180 {
3181 taskq_wait(dbu_evict_taskq);
3182 }
3183
3184 blkptr_t *
3185 dmu_buf_get_blkptr(dmu_buf_t *db)
3186 {
3187 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
3188 return (dbi->db_blkptr);
3189 }
3190
3191 objset_t *
3192 dmu_buf_get_objset(dmu_buf_t *db)
3193 {
3194 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
3195 return (dbi->db_objset);
3196 }
3197
3198 dnode_t *
3199 dmu_buf_dnode_enter(dmu_buf_t *db)
3200 {
3201 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
3202 DB_DNODE_ENTER(dbi);
3203 return (DB_DNODE(dbi));
3204 }
3205
3206 void
3207 dmu_buf_dnode_exit(dmu_buf_t *db)
3208 {
3209 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
3210 DB_DNODE_EXIT(dbi);
3211 }
3212
3213 static void
3214 dbuf_check_blkptr(dnode_t *dn, dmu_buf_impl_t *db)
3215 {
3216 /* ASSERT(dmu_tx_is_syncing(tx) */
3217 ASSERT(MUTEX_HELD(&db->db_mtx));
3218
3219 if (db->db_blkptr != NULL)
3220 return;
3221
3222 if (db->db_blkid == DMU_SPILL_BLKID) {
3223 db->db_blkptr = DN_SPILL_BLKPTR(dn->dn_phys);
3224 BP_ZERO(db->db_blkptr);
3225 return;
3226 }
3227 if (db->db_level == dn->dn_phys->dn_nlevels-1) {
3228 /*
3229 * This buffer was allocated at a time when there was
3230 * no available blkptrs from the dnode, or it was
3231 * inappropriate to hook it in (i.e., nlevels mis-match).
3232 */
3233 ASSERT(db->db_blkid < dn->dn_phys->dn_nblkptr);
3234 ASSERT(db->db_parent == NULL);
3235 db->db_parent = dn->dn_dbuf;
3236 db->db_blkptr = &dn->dn_phys->dn_blkptr[db->db_blkid];
3237 DBUF_VERIFY(db);
3238 } else {
3239 dmu_buf_impl_t *parent = db->db_parent;
3240 int epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
3241
3242 ASSERT(dn->dn_phys->dn_nlevels > 1);
3243 if (parent == NULL) {
3244 mutex_exit(&db->db_mtx);
3245 rw_enter(&dn->dn_struct_rwlock, RW_READER);
3246 parent = dbuf_hold_level(dn, db->db_level + 1,
3247 db->db_blkid >> epbs, db);
3248 rw_exit(&dn->dn_struct_rwlock);
3249 mutex_enter(&db->db_mtx);
3250 db->db_parent = parent;
3251 }
3252 db->db_blkptr = (blkptr_t *)parent->db.db_data +
3253 (db->db_blkid & ((1ULL << epbs) - 1));
3254 DBUF_VERIFY(db);
3255 }
3256 }
3257
3258 /*
3259 * Ensure the dbuf's data is untransformed if the associated dirty
3260 * record requires it. This is used by dbuf_sync_leaf() to ensure
3261 * that a dnode block is decrypted before we write new data to it.
3262 * For raw writes we assert that the buffer is already encrypted.
3263 */
3264 static void
3265 dbuf_check_crypt(dbuf_dirty_record_t *dr)
3266 {
3267 int err;
3268 dmu_buf_impl_t *db = dr->dr_dbuf;
3269
3270 ASSERT(MUTEX_HELD(&db->db_mtx));
3271
3272 if (!dr->dt.dl.dr_raw && arc_is_encrypted(db->db_buf)) {
3273 /*
3274 * Unfortunately, there is currently no mechanism for
3275 * syncing context to handle decryption errors. An error
3276 * here is only possible if an attacker maliciously
3277 * changed a dnode block and updated the associated
3278 * checksums going up the block tree.
3279 */
3280 err = arc_untransform(db->db_buf, db->db_objset->os_spa,
3281 dmu_objset_id(db->db_objset), B_TRUE);
3282 if (err)
3283 panic("Invalid dnode block MAC");
3284 } else if (dr->dt.dl.dr_raw) {
3285 /*
3286 * Writing raw encrypted data requires the db's arc buffer
3287 * to be converted to raw by the caller.
3288 */
3289 ASSERT(arc_is_encrypted(db->db_buf));
3290 }
3291 }
3292
3293 /*
3294 * dbuf_sync_indirect() is called recursively from dbuf_sync_list() so it
3295 * is critical the we not allow the compiler to inline this function in to
3296 * dbuf_sync_list() thereby drastically bloating the stack usage.
3297 */
3298 noinline static void
3299 dbuf_sync_indirect(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
3300 {
3301 dmu_buf_impl_t *db = dr->dr_dbuf;
3302 dnode_t *dn;
3303 zio_t *zio;
3304
3305 ASSERT(dmu_tx_is_syncing(tx));
3306
3307 dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr);
3308
3309 mutex_enter(&db->db_mtx);
3310
3311 ASSERT(db->db_level > 0);
3312 DBUF_VERIFY(db);
3313
3314 /* Read the block if it hasn't been read yet. */
3315 if (db->db_buf == NULL) {
3316 mutex_exit(&db->db_mtx);
3317 (void) dbuf_read(db, NULL, DB_RF_MUST_SUCCEED);
3318 mutex_enter(&db->db_mtx);
3319 }
3320 ASSERT3U(db->db_state, ==, DB_CACHED);
3321 ASSERT(db->db_buf != NULL);
3322
3323 DB_DNODE_ENTER(db);
3324 dn = DB_DNODE(db);
3325 /* Indirect block size must match what the dnode thinks it is. */
3326 ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift);
3327 dbuf_check_blkptr(dn, db);
3328 DB_DNODE_EXIT(db);
3329
3330 /* Provide the pending dirty record to child dbufs */
3331 db->db_data_pending = dr;
3332
3333 mutex_exit(&db->db_mtx);
3334 dbuf_write(dr, db->db_buf, tx);
3335
3336 zio = dr->dr_zio;
3337 mutex_enter(&dr->dt.di.dr_mtx);
3338 dbuf_sync_list(&dr->dt.di.dr_children, db->db_level - 1, tx);
3339 ASSERT(list_head(&dr->dt.di.dr_children) == NULL);
3340 mutex_exit(&dr->dt.di.dr_mtx);
3341 zio_nowait(zio);
3342 }
3343
3344 /*
3345 * dbuf_sync_leaf() is called recursively from dbuf_sync_list() so it is
3346 * critical the we not allow the compiler to inline this function in to
3347 * dbuf_sync_list() thereby drastically bloating the stack usage.
3348 */
3349 noinline static void
3350 dbuf_sync_leaf(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
3351 {
3352 arc_buf_t **datap = &dr->dt.dl.dr_data;
3353 dmu_buf_impl_t *db = dr->dr_dbuf;
3354 dnode_t *dn;
3355 objset_t *os;
3356 uint64_t txg = tx->tx_txg;
3357
3358 ASSERT(dmu_tx_is_syncing(tx));
3359
3360 dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr);
3361
3362 mutex_enter(&db->db_mtx);
3363 /*
3364 * To be synced, we must be dirtied. But we
3365 * might have been freed after the dirty.
3366 */
3367 if (db->db_state == DB_UNCACHED) {
3368 /* This buffer has been freed since it was dirtied */
3369 ASSERT(db->db.db_data == NULL);
3370 } else if (db->db_state == DB_FILL) {
3371 /* This buffer was freed and is now being re-filled */
3372 ASSERT(db->db.db_data != dr->dt.dl.dr_data);
3373 } else {
3374 ASSERT(db->db_state == DB_CACHED || db->db_state == DB_NOFILL);
3375 }
3376 DBUF_VERIFY(db);
3377
3378 DB_DNODE_ENTER(db);
3379 dn = DB_DNODE(db);
3380
3381 if (db->db_blkid == DMU_SPILL_BLKID) {
3382 mutex_enter(&dn->dn_mtx);
3383 if (!(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR)) {
3384 /*
3385 * In the previous transaction group, the bonus buffer
3386 * was entirely used to store the attributes for the
3387 * dnode which overrode the dn_spill field. However,
3388 * when adding more attributes to the file a spill
3389 * block was required to hold the extra attributes.
3390 *
3391 * Make sure to clear the garbage left in the dn_spill
3392 * field from the previous attributes in the bonus
3393 * buffer. Otherwise, after writing out the spill
3394 * block to the new allocated dva, it will free
3395 * the old block pointed to by the invalid dn_spill.
3396 */
3397 db->db_blkptr = NULL;
3398 }
3399 dn->dn_phys->dn_flags |= DNODE_FLAG_SPILL_BLKPTR;
3400 mutex_exit(&dn->dn_mtx);
3401 }
3402
3403 /*
3404 * If this is a bonus buffer, simply copy the bonus data into the
3405 * dnode. It will be written out when the dnode is synced (and it
3406 * will be synced, since it must have been dirty for dbuf_sync to
3407 * be called).
3408 */
3409 if (db->db_blkid == DMU_BONUS_BLKID) {
3410 dbuf_dirty_record_t **drp;
3411
3412 ASSERT(*datap != NULL);
3413 ASSERT0(db->db_level);
3414 ASSERT3U(DN_MAX_BONUS_LEN(dn->dn_phys), <=,
3415 DN_SLOTS_TO_BONUSLEN(dn->dn_phys->dn_extra_slots + 1));
3416 bcopy(*datap, DN_BONUS(dn->dn_phys),
3417 DN_MAX_BONUS_LEN(dn->dn_phys));
3418 DB_DNODE_EXIT(db);
3419
3420 if (*datap != db->db.db_data) {
3421 int slots = DB_DNODE(db)->dn_num_slots;
3422 int bonuslen = DN_SLOTS_TO_BONUSLEN(slots);
3423 kmem_free(*datap, bonuslen);
3424 arc_space_return(bonuslen, ARC_SPACE_BONUS);
3425 }
3426 db->db_data_pending = NULL;
3427 drp = &db->db_last_dirty;
3428 while (*drp != dr)
3429 drp = &(*drp)->dr_next;
3430 ASSERT(dr->dr_next == NULL);
3431 ASSERT(dr->dr_dbuf == db);
3432 *drp = dr->dr_next;
3433 if (dr->dr_dbuf->db_level != 0) {
3434 mutex_destroy(&dr->dt.di.dr_mtx);
3435 list_destroy(&dr->dt.di.dr_children);
3436 }
3437 kmem_free(dr, sizeof (dbuf_dirty_record_t));
3438 ASSERT(db->db_dirtycnt > 0);
3439 db->db_dirtycnt -= 1;
3440 dbuf_rele_and_unlock(db, (void *)(uintptr_t)txg);
3441 return;
3442 }
3443
3444 os = dn->dn_objset;
3445
3446 /*
3447 * This function may have dropped the db_mtx lock allowing a dmu_sync
3448 * operation to sneak in. As a result, we need to ensure that we
3449 * don't check the dr_override_state until we have returned from
3450 * dbuf_check_blkptr.
3451 */
3452 dbuf_check_blkptr(dn, db);
3453
3454 /*
3455 * If this buffer is in the middle of an immediate write,
3456 * wait for the synchronous IO to complete.
3457 */
3458 while (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC) {
3459 ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT);
3460 cv_wait(&db->db_changed, &db->db_mtx);
3461 ASSERT(dr->dt.dl.dr_override_state != DR_NOT_OVERRIDDEN);
3462 }
3463
3464 /*
3465 * If this is a dnode block, ensure it is appropriately encrypted
3466 * or decrypted, depending on what we are writing to it this txg.
3467 */
3468 if (os->os_encrypted && dn->dn_object == DMU_META_DNODE_OBJECT)
3469 dbuf_check_crypt(dr);
3470
3471 if (db->db_state != DB_NOFILL &&
3472 dn->dn_object != DMU_META_DNODE_OBJECT &&
3473 refcount_count(&db->db_holds) > 1 &&
3474 dr->dt.dl.dr_override_state != DR_OVERRIDDEN &&
3475 *datap == db->db_buf) {
3476 /*
3477 * If this buffer is currently "in use" (i.e., there
3478 * are active holds and db_data still references it),
3479 * then make a copy before we start the write so that
3480 * any modifications from the open txg will not leak
3481 * into this write.
3482 *
3483 * NOTE: this copy does not need to be made for
3484 * objects only modified in the syncing context (e.g.
3485 * DNONE_DNODE blocks).
3486 */
3487 int psize = arc_buf_size(*datap);
3488 int lsize = arc_buf_lsize(*datap);
3489 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
3490 enum zio_compress compress_type = arc_get_compression(*datap);
3491
3492 if (arc_is_encrypted(*datap)) {
3493 boolean_t byteorder;
3494 uint8_t salt[ZIO_DATA_SALT_LEN];
3495 uint8_t iv[ZIO_DATA_IV_LEN];
3496 uint8_t mac[ZIO_DATA_MAC_LEN];
3497
3498 arc_get_raw_params(*datap, &byteorder, salt, iv, mac);
3499 *datap = arc_alloc_raw_buf(os->os_spa, db,
3500 dmu_objset_id(os), byteorder, salt, iv, mac,
3501 dn->dn_type, psize, lsize, compress_type);
3502 } else if (compress_type != ZIO_COMPRESS_OFF) {
3503 ASSERT3U(type, ==, ARC_BUFC_DATA);
3504 *datap = arc_alloc_compressed_buf(os->os_spa, db,
3505 psize, lsize, compress_type);
3506 } else {
3507 *datap = arc_alloc_buf(os->os_spa, db, type, psize);
3508 }
3509 bcopy(db->db.db_data, (*datap)->b_data, psize);
3510 }
3511 db->db_data_pending = dr;
3512
3513 mutex_exit(&db->db_mtx);
3514
3515 dbuf_write(dr, *datap, tx);
3516
3517 ASSERT(!list_link_active(&dr->dr_dirty_node));
3518 if (dn->dn_object == DMU_META_DNODE_OBJECT) {
3519 list_insert_tail(&dn->dn_dirty_records[txg&TXG_MASK], dr);
3520 DB_DNODE_EXIT(db);
3521 } else {
3522 /*
3523 * Although zio_nowait() does not "wait for an IO", it does
3524 * initiate the IO. If this is an empty write it seems plausible
3525 * that the IO could actually be completed before the nowait
3526 * returns. We need to DB_DNODE_EXIT() first in case
3527 * zio_nowait() invalidates the dbuf.
3528 */
3529 DB_DNODE_EXIT(db);
3530 zio_nowait(dr->dr_zio);
3531 }
3532 }
3533
3534 void
3535 dbuf_sync_list(list_t *list, int level, dmu_tx_t *tx)
3536 {
3537 dbuf_dirty_record_t *dr;
3538
3539 while ((dr = list_head(list))) {
3540 if (dr->dr_zio != NULL) {
3541 /*
3542 * If we find an already initialized zio then we
3543 * are processing the meta-dnode, and we have finished.
3544 * The dbufs for all dnodes are put back on the list
3545 * during processing, so that we can zio_wait()
3546 * these IOs after initiating all child IOs.
3547 */
3548 ASSERT3U(dr->dr_dbuf->db.db_object, ==,
3549 DMU_META_DNODE_OBJECT);
3550 break;
3551 }
3552 if (dr->dr_dbuf->db_blkid != DMU_BONUS_BLKID &&
3553 dr->dr_dbuf->db_blkid != DMU_SPILL_BLKID) {
3554 VERIFY3U(dr->dr_dbuf->db_level, ==, level);
3555 }
3556 list_remove(list, dr);
3557 if (dr->dr_dbuf->db_level > 0)
3558 dbuf_sync_indirect(dr, tx);
3559 else
3560 dbuf_sync_leaf(dr, tx);
3561 }
3562 }
3563
3564 /* ARGSUSED */
3565 static void
3566 dbuf_write_ready(zio_t *zio, arc_buf_t *buf, void *vdb)
3567 {
3568 dmu_buf_impl_t *db = vdb;
3569 dnode_t *dn;
3570 blkptr_t *bp = zio->io_bp;
3571 blkptr_t *bp_orig = &zio->io_bp_orig;
3572 spa_t *spa = zio->io_spa;
3573 int64_t delta;
3574 uint64_t fill = 0;
3575 int i;
3576
3577 ASSERT3P(db->db_blkptr, !=, NULL);
3578 ASSERT3P(&db->db_data_pending->dr_bp_copy, ==, bp);
3579
3580 DB_DNODE_ENTER(db);
3581 dn = DB_DNODE(db);
3582 delta = bp_get_dsize_sync(spa, bp) - bp_get_dsize_sync(spa, bp_orig);
3583 dnode_diduse_space(dn, delta - zio->io_prev_space_delta);
3584 zio->io_prev_space_delta = delta;
3585
3586 if (bp->blk_birth != 0) {
3587 ASSERT((db->db_blkid != DMU_SPILL_BLKID &&
3588 BP_GET_TYPE(bp) == dn->dn_type) ||
3589 (db->db_blkid == DMU_SPILL_BLKID &&
3590 BP_GET_TYPE(bp) == dn->dn_bonustype) ||
3591 BP_IS_EMBEDDED(bp));
3592 ASSERT(BP_GET_LEVEL(bp) == db->db_level);
3593 }
3594
3595 mutex_enter(&db->db_mtx);
3596
3597 #ifdef ZFS_DEBUG
3598 if (db->db_blkid == DMU_SPILL_BLKID) {
3599 ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR);
3600 ASSERT(!(BP_IS_HOLE(bp)) &&
3601 db->db_blkptr == DN_SPILL_BLKPTR(dn->dn_phys));
3602 }
3603 #endif
3604
3605 if (db->db_level == 0) {
3606 mutex_enter(&dn->dn_mtx);
3607 if (db->db_blkid > dn->dn_phys->dn_maxblkid &&
3608 db->db_blkid != DMU_SPILL_BLKID)
3609 dn->dn_phys->dn_maxblkid = db->db_blkid;
3610 mutex_exit(&dn->dn_mtx);
3611
3612 if (dn->dn_type == DMU_OT_DNODE) {
3613 i = 0;
3614 while (i < db->db.db_size) {
3615 dnode_phys_t *dnp =
3616 (void *)(((char *)db->db.db_data) + i);
3617
3618 i += DNODE_MIN_SIZE;
3619 if (dnp->dn_type != DMU_OT_NONE) {
3620 fill++;
3621 i += dnp->dn_extra_slots *
3622 DNODE_MIN_SIZE;
3623 }
3624 }
3625 } else {
3626 if (BP_IS_HOLE(bp)) {
3627 fill = 0;
3628 } else {
3629 fill = 1;
3630 }
3631 }
3632 } else {
3633 blkptr_t *ibp = db->db.db_data;
3634 ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift);
3635 for (i = db->db.db_size >> SPA_BLKPTRSHIFT; i > 0; i--, ibp++) {
3636 if (BP_IS_HOLE(ibp))
3637 continue;
3638 fill += BP_GET_FILL(ibp);
3639 }
3640 }
3641 DB_DNODE_EXIT(db);
3642
3643 if (!BP_IS_EMBEDDED(bp))
3644 BP_SET_FILL(bp, fill);
3645
3646 mutex_exit(&db->db_mtx);
3647
3648 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
3649 *db->db_blkptr = *bp;
3650 rw_exit(&dn->dn_struct_rwlock);
3651 }
3652
3653 /* ARGSUSED */
3654 /*
3655 * This function gets called just prior to running through the compression
3656 * stage of the zio pipeline. If we're an indirect block comprised of only
3657 * holes, then we want this indirect to be compressed away to a hole. In
3658 * order to do that we must zero out any information about the holes that
3659 * this indirect points to prior to before we try to compress it.
3660 */
3661 static void
3662 dbuf_write_children_ready(zio_t *zio, arc_buf_t *buf, void *vdb)
3663 {
3664 dmu_buf_impl_t *db = vdb;
3665 dnode_t *dn;
3666 blkptr_t *bp;
3667 unsigned int epbs, i;
3668
3669 ASSERT3U(db->db_level, >, 0);
3670 DB_DNODE_ENTER(db);
3671 dn = DB_DNODE(db);
3672 epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
3673 ASSERT3U(epbs, <, 31);
3674
3675 /* Determine if all our children are holes */
3676 for (i = 0, bp = db->db.db_data; i < 1ULL << epbs; i++, bp++) {
3677 if (!BP_IS_HOLE(bp))
3678 break;
3679 }
3680
3681 /*
3682 * If all the children are holes, then zero them all out so that
3683 * we may get compressed away.
3684 */
3685 if (i == 1ULL << epbs) {
3686 /*
3687 * We only found holes. Grab the rwlock to prevent
3688 * anybody from reading the blocks we're about to
3689 * zero out.
3690 */
3691 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
3692 bzero(db->db.db_data, db->db.db_size);
3693 rw_exit(&dn->dn_struct_rwlock);
3694 }
3695 DB_DNODE_EXIT(db);
3696 }
3697
3698 /*
3699 * The SPA will call this callback several times for each zio - once
3700 * for every physical child i/o (zio->io_phys_children times). This
3701 * allows the DMU to monitor the progress of each logical i/o. For example,
3702 * there may be 2 copies of an indirect block, or many fragments of a RAID-Z
3703 * block. There may be a long delay before all copies/fragments are completed,
3704 * so this callback allows us to retire dirty space gradually, as the physical
3705 * i/os complete.
3706 */
3707 /* ARGSUSED */
3708 static void
3709 dbuf_write_physdone(zio_t *zio, arc_buf_t *buf, void *arg)
3710 {
3711 dmu_buf_impl_t *db = arg;
3712 objset_t *os = db->db_objset;
3713 dsl_pool_t *dp = dmu_objset_pool(os);
3714 dbuf_dirty_record_t *dr;
3715 int delta = 0;
3716
3717 dr = db->db_data_pending;
3718 ASSERT3U(dr->dr_txg, ==, zio->io_txg);
3719
3720 /*
3721 * The callback will be called io_phys_children times. Retire one
3722 * portion of our dirty space each time we are called. Any rounding
3723 * error will be cleaned up by dsl_pool_sync()'s call to
3724 * dsl_pool_undirty_space().
3725 */
3726 delta = dr->dr_accounted / zio->io_phys_children;
3727 dsl_pool_undirty_space(dp, delta, zio->io_txg);
3728 }
3729
3730 /* ARGSUSED */
3731 static void
3732 dbuf_write_done(zio_t *zio, arc_buf_t *buf, void *vdb)
3733 {
3734 dmu_buf_impl_t *db = vdb;
3735 blkptr_t *bp_orig = &zio->io_bp_orig;
3736 blkptr_t *bp = db->db_blkptr;
3737 objset_t *os = db->db_objset;
3738 dmu_tx_t *tx = os->os_synctx;
3739 dbuf_dirty_record_t **drp, *dr;
3740
3741 ASSERT0(zio->io_error);
3742 ASSERT(db->db_blkptr == bp);
3743
3744 /*
3745 * For nopwrites and rewrites we ensure that the bp matches our
3746 * original and bypass all the accounting.
3747 */
3748 if (zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)) {
3749 ASSERT(BP_EQUAL(bp, bp_orig));
3750 } else {
3751 dsl_dataset_t *ds = os->os_dsl_dataset;
3752 (void) dsl_dataset_block_kill(ds, bp_orig, tx, B_TRUE);
3753 dsl_dataset_block_born(ds, bp, tx);
3754 }
3755
3756 mutex_enter(&db->db_mtx);
3757
3758 DBUF_VERIFY(db);
3759
3760 drp = &db->db_last_dirty;
3761 while ((dr = *drp) != db->db_data_pending)
3762 drp = &dr->dr_next;
3763 ASSERT(!list_link_active(&dr->dr_dirty_node));
3764 ASSERT(dr->dr_dbuf == db);
3765 ASSERT(dr->dr_next == NULL);
3766 *drp = dr->dr_next;
3767
3768 #ifdef ZFS_DEBUG
3769 if (db->db_blkid == DMU_SPILL_BLKID) {
3770 dnode_t *dn;
3771
3772 DB_DNODE_ENTER(db);
3773 dn = DB_DNODE(db);
3774 ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR);
3775 ASSERT(!(BP_IS_HOLE(db->db_blkptr)) &&
3776 db->db_blkptr == DN_SPILL_BLKPTR(dn->dn_phys));
3777 DB_DNODE_EXIT(db);
3778 }
3779 #endif
3780
3781 if (db->db_level == 0) {
3782 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
3783 ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN);
3784 if (db->db_state != DB_NOFILL) {
3785 if (dr->dt.dl.dr_data != db->db_buf)
3786 arc_buf_destroy(dr->dt.dl.dr_data, db);
3787 }
3788 } else {
3789 dnode_t *dn;
3790
3791 DB_DNODE_ENTER(db);
3792 dn = DB_DNODE(db);
3793 ASSERT(list_head(&dr->dt.di.dr_children) == NULL);
3794 ASSERT3U(db->db.db_size, ==, 1 << dn->dn_phys->dn_indblkshift);
3795 if (!BP_IS_HOLE(db->db_blkptr)) {
3796 ASSERTV(int epbs = dn->dn_phys->dn_indblkshift -
3797 SPA_BLKPTRSHIFT);
3798 ASSERT3U(db->db_blkid, <=,
3799 dn->dn_phys->dn_maxblkid >> (db->db_level * epbs));
3800 ASSERT3U(BP_GET_LSIZE(db->db_blkptr), ==,
3801 db->db.db_size);
3802 }
3803 DB_DNODE_EXIT(db);
3804 mutex_destroy(&dr->dt.di.dr_mtx);
3805 list_destroy(&dr->dt.di.dr_children);
3806 }
3807 kmem_free(dr, sizeof (dbuf_dirty_record_t));
3808
3809 cv_broadcast(&db->db_changed);
3810 ASSERT(db->db_dirtycnt > 0);
3811 db->db_dirtycnt -= 1;
3812 db->db_data_pending = NULL;
3813 dbuf_rele_and_unlock(db, (void *)(uintptr_t)tx->tx_txg);
3814 }
3815
3816 static void
3817 dbuf_write_nofill_ready(zio_t *zio)
3818 {
3819 dbuf_write_ready(zio, NULL, zio->io_private);
3820 }
3821
3822 static void
3823 dbuf_write_nofill_done(zio_t *zio)
3824 {
3825 dbuf_write_done(zio, NULL, zio->io_private);
3826 }
3827
3828 static void
3829 dbuf_write_override_ready(zio_t *zio)
3830 {
3831 dbuf_dirty_record_t *dr = zio->io_private;
3832 dmu_buf_impl_t *db = dr->dr_dbuf;
3833
3834 dbuf_write_ready(zio, NULL, db);
3835 }
3836
3837 static void
3838 dbuf_write_override_done(zio_t *zio)
3839 {
3840 dbuf_dirty_record_t *dr = zio->io_private;
3841 dmu_buf_impl_t *db = dr->dr_dbuf;
3842 blkptr_t *obp = &dr->dt.dl.dr_overridden_by;
3843
3844 mutex_enter(&db->db_mtx);
3845 if (!BP_EQUAL(zio->io_bp, obp)) {
3846 if (!BP_IS_HOLE(obp))
3847 dsl_free(spa_get_dsl(zio->io_spa), zio->io_txg, obp);
3848 arc_release(dr->dt.dl.dr_data, db);
3849 }
3850 mutex_exit(&db->db_mtx);
3851
3852 dbuf_write_done(zio, NULL, db);
3853
3854 if (zio->io_abd != NULL)
3855 abd_put(zio->io_abd);
3856 }
3857
3858 /* Issue I/O to commit a dirty buffer to disk. */
3859 static void
3860 dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx)
3861 {
3862 dmu_buf_impl_t *db = dr->dr_dbuf;
3863 dnode_t *dn;
3864 objset_t *os;
3865 dmu_buf_impl_t *parent = db->db_parent;
3866 uint64_t txg = tx->tx_txg;
3867 zbookmark_phys_t zb;
3868 zio_prop_t zp;
3869 zio_t *zio;
3870 int wp_flag = 0;
3871
3872 ASSERT(dmu_tx_is_syncing(tx));
3873
3874 DB_DNODE_ENTER(db);
3875 dn = DB_DNODE(db);
3876 os = dn->dn_objset;
3877
3878 if (db->db_state != DB_NOFILL) {
3879 if (db->db_level > 0 || dn->dn_type == DMU_OT_DNODE) {
3880 /*
3881 * Private object buffers are released here rather
3882 * than in dbuf_dirty() since they are only modified
3883 * in the syncing context and we don't want the
3884 * overhead of making multiple copies of the data.
3885 */
3886 if (BP_IS_HOLE(db->db_blkptr)) {
3887 arc_buf_thaw(data);
3888 } else {
3889 dbuf_release_bp(db);
3890 }
3891 }
3892 }
3893
3894 if (parent != dn->dn_dbuf) {
3895 /* Our parent is an indirect block. */
3896 /* We have a dirty parent that has been scheduled for write. */
3897 ASSERT(parent && parent->db_data_pending);
3898 /* Our parent's buffer is one level closer to the dnode. */
3899 ASSERT(db->db_level == parent->db_level-1);
3900 /*
3901 * We're about to modify our parent's db_data by modifying
3902 * our block pointer, so the parent must be released.
3903 */
3904 ASSERT(arc_released(parent->db_buf));
3905 zio = parent->db_data_pending->dr_zio;
3906 } else {
3907 /* Our parent is the dnode itself. */
3908 ASSERT((db->db_level == dn->dn_phys->dn_nlevels-1 &&
3909 db->db_blkid != DMU_SPILL_BLKID) ||
3910 (db->db_blkid == DMU_SPILL_BLKID && db->db_level == 0));
3911 if (db->db_blkid != DMU_SPILL_BLKID)
3912 ASSERT3P(db->db_blkptr, ==,
3913 &dn->dn_phys->dn_blkptr[db->db_blkid]);
3914 zio = dn->dn_zio;
3915 }
3916
3917 ASSERT(db->db_level == 0 || data == db->db_buf);
3918 ASSERT3U(db->db_blkptr->blk_birth, <=, txg);
3919 ASSERT(zio);
3920
3921 SET_BOOKMARK(&zb, os->os_dsl_dataset ?
3922 os->os_dsl_dataset->ds_object : DMU_META_OBJSET,
3923 db->db.db_object, db->db_level, db->db_blkid);
3924
3925 if (db->db_blkid == DMU_SPILL_BLKID)
3926 wp_flag = WP_SPILL;
3927 wp_flag |= (db->db_state == DB_NOFILL) ? WP_NOFILL : 0;
3928
3929 dmu_write_policy(os, dn, db->db_level, wp_flag, &zp);
3930 DB_DNODE_EXIT(db);
3931
3932 /*
3933 * We copy the blkptr now (rather than when we instantiate the dirty
3934 * record), because its value can change between open context and
3935 * syncing context. We do not need to hold dn_struct_rwlock to read
3936 * db_blkptr because we are in syncing context.
3937 */
3938 dr->dr_bp_copy = *db->db_blkptr;
3939
3940 if (db->db_level == 0 &&
3941 dr->dt.dl.dr_override_state == DR_OVERRIDDEN) {
3942 /*
3943 * The BP for this block has been provided by open context
3944 * (by dmu_sync() or dmu_buf_write_embedded()).
3945 */
3946 abd_t *contents = (data != NULL) ?
3947 abd_get_from_buf(data->b_data, arc_buf_size(data)) : NULL;
3948
3949 dr->dr_zio = zio_write(zio, os->os_spa, txg,
3950 &dr->dr_bp_copy, contents, db->db.db_size, db->db.db_size,
3951 &zp, dbuf_write_override_ready, NULL, NULL,
3952 dbuf_write_override_done,
3953 dr, ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb);
3954 mutex_enter(&db->db_mtx);
3955 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
3956 zio_write_override(dr->dr_zio, &dr->dt.dl.dr_overridden_by,
3957 dr->dt.dl.dr_copies, dr->dt.dl.dr_nopwrite);
3958 mutex_exit(&db->db_mtx);
3959 } else if (db->db_state == DB_NOFILL) {
3960 ASSERT(zp.zp_checksum == ZIO_CHECKSUM_OFF ||
3961 zp.zp_checksum == ZIO_CHECKSUM_NOPARITY);
3962 dr->dr_zio = zio_write(zio, os->os_spa, txg,
3963 &dr->dr_bp_copy, NULL, db->db.db_size, db->db.db_size, &zp,
3964 dbuf_write_nofill_ready, NULL, NULL,
3965 dbuf_write_nofill_done, db,
3966 ZIO_PRIORITY_ASYNC_WRITE,
3967 ZIO_FLAG_MUSTSUCCEED | ZIO_FLAG_NODATA, &zb);
3968 } else {
3969 ASSERT(arc_released(data));
3970
3971 /*
3972 * For indirect blocks, we want to setup the children
3973 * ready callback so that we can properly handle an indirect
3974 * block that only contains holes.
3975 */
3976 arc_write_done_func_t *children_ready_cb = NULL;
3977 if (db->db_level != 0)
3978 children_ready_cb = dbuf_write_children_ready;
3979
3980 dr->dr_zio = arc_write(zio, os->os_spa, txg,
3981 &dr->dr_bp_copy, data, DBUF_IS_L2CACHEABLE(db),
3982 &zp, dbuf_write_ready,
3983 children_ready_cb, dbuf_write_physdone,
3984 dbuf_write_done, db, ZIO_PRIORITY_ASYNC_WRITE,
3985 ZIO_FLAG_MUSTSUCCEED, &zb);
3986 }
3987 }
3988
3989 #if defined(_KERNEL) && defined(HAVE_SPL)
3990 EXPORT_SYMBOL(dbuf_find);
3991 EXPORT_SYMBOL(dbuf_is_metadata);
3992 EXPORT_SYMBOL(dbuf_destroy);
3993 EXPORT_SYMBOL(dbuf_loan_arcbuf);
3994 EXPORT_SYMBOL(dbuf_whichblock);
3995 EXPORT_SYMBOL(dbuf_read);
3996 EXPORT_SYMBOL(dbuf_unoverride);
3997 EXPORT_SYMBOL(dbuf_free_range);
3998 EXPORT_SYMBOL(dbuf_new_size);
3999 EXPORT_SYMBOL(dbuf_release_bp);
4000 EXPORT_SYMBOL(dbuf_dirty);
4001 EXPORT_SYMBOL(dmu_buf_will_change_crypt_params);
4002 EXPORT_SYMBOL(dmu_buf_will_dirty);
4003 EXPORT_SYMBOL(dmu_buf_will_not_fill);
4004 EXPORT_SYMBOL(dmu_buf_will_fill);
4005 EXPORT_SYMBOL(dmu_buf_fill_done);
4006 EXPORT_SYMBOL(dmu_buf_rele);
4007 EXPORT_SYMBOL(dbuf_assign_arcbuf);
4008 EXPORT_SYMBOL(dbuf_prefetch);
4009 EXPORT_SYMBOL(dbuf_hold_impl);
4010 EXPORT_SYMBOL(dbuf_hold);
4011 EXPORT_SYMBOL(dbuf_hold_level);
4012 EXPORT_SYMBOL(dbuf_create_bonus);
4013 EXPORT_SYMBOL(dbuf_spill_set_blksz);
4014 EXPORT_SYMBOL(dbuf_rm_spill);
4015 EXPORT_SYMBOL(dbuf_add_ref);
4016 EXPORT_SYMBOL(dbuf_rele);
4017 EXPORT_SYMBOL(dbuf_rele_and_unlock);
4018 EXPORT_SYMBOL(dbuf_refcount);
4019 EXPORT_SYMBOL(dbuf_sync_list);
4020 EXPORT_SYMBOL(dmu_buf_set_user);
4021 EXPORT_SYMBOL(dmu_buf_set_user_ie);
4022 EXPORT_SYMBOL(dmu_buf_get_user);
4023 EXPORT_SYMBOL(dmu_buf_get_blkptr);
4024
4025 /* BEGIN CSTYLED */
4026 module_param(dbuf_cache_max_bytes, ulong, 0644);
4027 MODULE_PARM_DESC(dbuf_cache_max_bytes,
4028 "Maximum size in bytes of the dbuf cache.");
4029
4030 module_param(dbuf_cache_hiwater_pct, uint, 0644);
4031 MODULE_PARM_DESC(dbuf_cache_hiwater_pct,
4032 "Percentage over dbuf_cache_max_bytes when dbufs must be evicted "
4033 "directly.");
4034
4035 module_param(dbuf_cache_lowater_pct, uint, 0644);
4036 MODULE_PARM_DESC(dbuf_cache_lowater_pct,
4037 "Percentage below dbuf_cache_max_bytes when the evict thread stops "
4038 "evicting dbufs.");
4039
4040 module_param(dbuf_cache_max_shift, int, 0644);
4041 MODULE_PARM_DESC(dbuf_cache_max_shift,
4042 "Cap the size of the dbuf cache to a log2 fraction of arc size.");
4043 /* END CSTYLED */
4044 #endif