]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/dbuf.c
718f63f747fc7aa6f9640cff248ec443eb75afcb
[mirror_zfs.git] / module / zfs / dbuf.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24 * Copyright (c) 2012, 2017 by Delphix. All rights reserved.
25 * Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
26 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
27 */
28
29 #include <sys/zfs_context.h>
30 #include <sys/arc.h>
31 #include <sys/dmu.h>
32 #include <sys/dmu_send.h>
33 #include <sys/dmu_impl.h>
34 #include <sys/dbuf.h>
35 #include <sys/dmu_objset.h>
36 #include <sys/dsl_dataset.h>
37 #include <sys/dsl_dir.h>
38 #include <sys/dmu_tx.h>
39 #include <sys/spa.h>
40 #include <sys/zio.h>
41 #include <sys/dmu_zfetch.h>
42 #include <sys/sa.h>
43 #include <sys/sa_impl.h>
44 #include <sys/zfeature.h>
45 #include <sys/blkptr.h>
46 #include <sys/range_tree.h>
47 #include <sys/trace_dbuf.h>
48 #include <sys/callb.h>
49 #include <sys/abd.h>
50
51 struct dbuf_hold_impl_data {
52 /* Function arguments */
53 dnode_t *dh_dn;
54 uint8_t dh_level;
55 uint64_t dh_blkid;
56 boolean_t dh_fail_sparse;
57 boolean_t dh_fail_uncached;
58 void *dh_tag;
59 dmu_buf_impl_t **dh_dbp;
60 /* Local variables */
61 dmu_buf_impl_t *dh_db;
62 dmu_buf_impl_t *dh_parent;
63 blkptr_t *dh_bp;
64 int dh_err;
65 dbuf_dirty_record_t *dh_dr;
66 arc_buf_contents_t dh_type;
67 int dh_depth;
68 };
69
70 static void __dbuf_hold_impl_init(struct dbuf_hold_impl_data *dh,
71 dnode_t *dn, uint8_t level, uint64_t blkid, boolean_t fail_sparse,
72 boolean_t fail_uncached,
73 void *tag, dmu_buf_impl_t **dbp, int depth);
74 static int __dbuf_hold_impl(struct dbuf_hold_impl_data *dh);
75
76 uint_t zfs_dbuf_evict_key;
77
78 static boolean_t dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx);
79 static void dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx);
80
81 extern inline void dmu_buf_init_user(dmu_buf_user_t *dbu,
82 dmu_buf_evict_func_t *evict_func_sync,
83 dmu_buf_evict_func_t *evict_func_async,
84 dmu_buf_t **clear_on_evict_dbufp);
85
86 /*
87 * Global data structures and functions for the dbuf cache.
88 */
89 static kmem_cache_t *dbuf_kmem_cache;
90 static taskq_t *dbu_evict_taskq;
91
92 static kthread_t *dbuf_cache_evict_thread;
93 static kmutex_t dbuf_evict_lock;
94 static kcondvar_t dbuf_evict_cv;
95 static boolean_t dbuf_evict_thread_exit;
96
97 /*
98 * LRU cache of dbufs. The dbuf cache maintains a list of dbufs that
99 * are not currently held but have been recently released. These dbufs
100 * are not eligible for arc eviction until they are aged out of the cache.
101 * Dbufs are added to the dbuf cache once the last hold is released. If a
102 * dbuf is later accessed and still exists in the dbuf cache, then it will
103 * be removed from the cache and later re-added to the head of the cache.
104 * Dbufs that are aged out of the cache will be immediately destroyed and
105 * become eligible for arc eviction.
106 */
107 static multilist_t *dbuf_cache;
108 static refcount_t dbuf_cache_size;
109 unsigned long dbuf_cache_max_bytes = 100 * 1024 * 1024;
110
111 /* Cap the size of the dbuf cache to log2 fraction of arc size. */
112 int dbuf_cache_max_shift = 5;
113
114 /*
115 * The dbuf cache uses a three-stage eviction policy:
116 * - A low water marker designates when the dbuf eviction thread
117 * should stop evicting from the dbuf cache.
118 * - When we reach the maximum size (aka mid water mark), we
119 * signal the eviction thread to run.
120 * - The high water mark indicates when the eviction thread
121 * is unable to keep up with the incoming load and eviction must
122 * happen in the context of the calling thread.
123 *
124 * The dbuf cache:
125 * (max size)
126 * low water mid water hi water
127 * +----------------------------------------+----------+----------+
128 * | | | |
129 * | | | |
130 * | | | |
131 * | | | |
132 * +----------------------------------------+----------+----------+
133 * stop signal evict
134 * evicting eviction directly
135 * thread
136 *
137 * The high and low water marks indicate the operating range for the eviction
138 * thread. The low water mark is, by default, 90% of the total size of the
139 * cache and the high water mark is at 110% (both of these percentages can be
140 * changed by setting dbuf_cache_lowater_pct and dbuf_cache_hiwater_pct,
141 * respectively). The eviction thread will try to ensure that the cache remains
142 * within this range by waking up every second and checking if the cache is
143 * above the low water mark. The thread can also be woken up by callers adding
144 * elements into the cache if the cache is larger than the mid water (i.e max
145 * cache size). Once the eviction thread is woken up and eviction is required,
146 * it will continue evicting buffers until it's able to reduce the cache size
147 * to the low water mark. If the cache size continues to grow and hits the high
148 * water mark, then callers adding elements to the cache will begin to evict
149 * directly from the cache until the cache is no longer above the high water
150 * mark.
151 */
152
153 /*
154 * The percentage above and below the maximum cache size.
155 */
156 uint_t dbuf_cache_hiwater_pct = 10;
157 uint_t dbuf_cache_lowater_pct = 10;
158
159 /* ARGSUSED */
160 static int
161 dbuf_cons(void *vdb, void *unused, int kmflag)
162 {
163 dmu_buf_impl_t *db = vdb;
164 bzero(db, sizeof (dmu_buf_impl_t));
165
166 mutex_init(&db->db_mtx, NULL, MUTEX_DEFAULT, NULL);
167 cv_init(&db->db_changed, NULL, CV_DEFAULT, NULL);
168 multilist_link_init(&db->db_cache_link);
169 refcount_create(&db->db_holds);
170
171 return (0);
172 }
173
174 /* ARGSUSED */
175 static void
176 dbuf_dest(void *vdb, void *unused)
177 {
178 dmu_buf_impl_t *db = vdb;
179 mutex_destroy(&db->db_mtx);
180 cv_destroy(&db->db_changed);
181 ASSERT(!multilist_link_active(&db->db_cache_link));
182 refcount_destroy(&db->db_holds);
183 }
184
185 /*
186 * dbuf hash table routines
187 */
188 static dbuf_hash_table_t dbuf_hash_table;
189
190 static uint64_t dbuf_hash_count;
191
192 static uint64_t
193 dbuf_hash(void *os, uint64_t obj, uint8_t lvl, uint64_t blkid)
194 {
195 uintptr_t osv = (uintptr_t)os;
196 uint64_t crc = -1ULL;
197
198 ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
199 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (lvl)) & 0xFF];
200 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (osv >> 6)) & 0xFF];
201 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (obj >> 0)) & 0xFF];
202 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (obj >> 8)) & 0xFF];
203 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (blkid >> 0)) & 0xFF];
204 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (blkid >> 8)) & 0xFF];
205
206 crc ^= (osv>>14) ^ (obj>>16) ^ (blkid>>16);
207
208 return (crc);
209 }
210
211 #define DBUF_EQUAL(dbuf, os, obj, level, blkid) \
212 ((dbuf)->db.db_object == (obj) && \
213 (dbuf)->db_objset == (os) && \
214 (dbuf)->db_level == (level) && \
215 (dbuf)->db_blkid == (blkid))
216
217 dmu_buf_impl_t *
218 dbuf_find(objset_t *os, uint64_t obj, uint8_t level, uint64_t blkid)
219 {
220 dbuf_hash_table_t *h = &dbuf_hash_table;
221 uint64_t hv;
222 uint64_t idx;
223 dmu_buf_impl_t *db;
224
225 hv = dbuf_hash(os, obj, level, blkid);
226 idx = hv & h->hash_table_mask;
227
228 mutex_enter(DBUF_HASH_MUTEX(h, idx));
229 for (db = h->hash_table[idx]; db != NULL; db = db->db_hash_next) {
230 if (DBUF_EQUAL(db, os, obj, level, blkid)) {
231 mutex_enter(&db->db_mtx);
232 if (db->db_state != DB_EVICTING) {
233 mutex_exit(DBUF_HASH_MUTEX(h, idx));
234 return (db);
235 }
236 mutex_exit(&db->db_mtx);
237 }
238 }
239 mutex_exit(DBUF_HASH_MUTEX(h, idx));
240 return (NULL);
241 }
242
243 static dmu_buf_impl_t *
244 dbuf_find_bonus(objset_t *os, uint64_t object)
245 {
246 dnode_t *dn;
247 dmu_buf_impl_t *db = NULL;
248
249 if (dnode_hold(os, object, FTAG, &dn) == 0) {
250 rw_enter(&dn->dn_struct_rwlock, RW_READER);
251 if (dn->dn_bonus != NULL) {
252 db = dn->dn_bonus;
253 mutex_enter(&db->db_mtx);
254 }
255 rw_exit(&dn->dn_struct_rwlock);
256 dnode_rele(dn, FTAG);
257 }
258 return (db);
259 }
260
261 /*
262 * Insert an entry into the hash table. If there is already an element
263 * equal to elem in the hash table, then the already existing element
264 * will be returned and the new element will not be inserted.
265 * Otherwise returns NULL.
266 */
267 static dmu_buf_impl_t *
268 dbuf_hash_insert(dmu_buf_impl_t *db)
269 {
270 dbuf_hash_table_t *h = &dbuf_hash_table;
271 objset_t *os = db->db_objset;
272 uint64_t obj = db->db.db_object;
273 int level = db->db_level;
274 uint64_t blkid, hv, idx;
275 dmu_buf_impl_t *dbf;
276
277 blkid = db->db_blkid;
278 hv = dbuf_hash(os, obj, level, blkid);
279 idx = hv & h->hash_table_mask;
280
281 mutex_enter(DBUF_HASH_MUTEX(h, idx));
282 for (dbf = h->hash_table[idx]; dbf != NULL; dbf = dbf->db_hash_next) {
283 if (DBUF_EQUAL(dbf, os, obj, level, blkid)) {
284 mutex_enter(&dbf->db_mtx);
285 if (dbf->db_state != DB_EVICTING) {
286 mutex_exit(DBUF_HASH_MUTEX(h, idx));
287 return (dbf);
288 }
289 mutex_exit(&dbf->db_mtx);
290 }
291 }
292
293 mutex_enter(&db->db_mtx);
294 db->db_hash_next = h->hash_table[idx];
295 h->hash_table[idx] = db;
296 mutex_exit(DBUF_HASH_MUTEX(h, idx));
297 atomic_inc_64(&dbuf_hash_count);
298
299 return (NULL);
300 }
301
302 /*
303 * Remove an entry from the hash table. It must be in the EVICTING state.
304 */
305 static void
306 dbuf_hash_remove(dmu_buf_impl_t *db)
307 {
308 dbuf_hash_table_t *h = &dbuf_hash_table;
309 uint64_t hv, idx;
310 dmu_buf_impl_t *dbf, **dbp;
311
312 hv = dbuf_hash(db->db_objset, db->db.db_object,
313 db->db_level, db->db_blkid);
314 idx = hv & h->hash_table_mask;
315
316 /*
317 * We mustn't hold db_mtx to maintain lock ordering:
318 * DBUF_HASH_MUTEX > db_mtx.
319 */
320 ASSERT(refcount_is_zero(&db->db_holds));
321 ASSERT(db->db_state == DB_EVICTING);
322 ASSERT(!MUTEX_HELD(&db->db_mtx));
323
324 mutex_enter(DBUF_HASH_MUTEX(h, idx));
325 dbp = &h->hash_table[idx];
326 while ((dbf = *dbp) != db) {
327 dbp = &dbf->db_hash_next;
328 ASSERT(dbf != NULL);
329 }
330 *dbp = db->db_hash_next;
331 db->db_hash_next = NULL;
332 mutex_exit(DBUF_HASH_MUTEX(h, idx));
333 atomic_dec_64(&dbuf_hash_count);
334 }
335
336 typedef enum {
337 DBVU_EVICTING,
338 DBVU_NOT_EVICTING
339 } dbvu_verify_type_t;
340
341 static void
342 dbuf_verify_user(dmu_buf_impl_t *db, dbvu_verify_type_t verify_type)
343 {
344 #ifdef ZFS_DEBUG
345 int64_t holds;
346
347 if (db->db_user == NULL)
348 return;
349
350 /* Only data blocks support the attachment of user data. */
351 ASSERT(db->db_level == 0);
352
353 /* Clients must resolve a dbuf before attaching user data. */
354 ASSERT(db->db.db_data != NULL);
355 ASSERT3U(db->db_state, ==, DB_CACHED);
356
357 holds = refcount_count(&db->db_holds);
358 if (verify_type == DBVU_EVICTING) {
359 /*
360 * Immediate eviction occurs when holds == dirtycnt.
361 * For normal eviction buffers, holds is zero on
362 * eviction, except when dbuf_fix_old_data() calls
363 * dbuf_clear_data(). However, the hold count can grow
364 * during eviction even though db_mtx is held (see
365 * dmu_bonus_hold() for an example), so we can only
366 * test the generic invariant that holds >= dirtycnt.
367 */
368 ASSERT3U(holds, >=, db->db_dirtycnt);
369 } else {
370 if (db->db_user_immediate_evict == TRUE)
371 ASSERT3U(holds, >=, db->db_dirtycnt);
372 else
373 ASSERT3U(holds, >, 0);
374 }
375 #endif
376 }
377
378 static void
379 dbuf_evict_user(dmu_buf_impl_t *db)
380 {
381 dmu_buf_user_t *dbu = db->db_user;
382
383 ASSERT(MUTEX_HELD(&db->db_mtx));
384
385 if (dbu == NULL)
386 return;
387
388 dbuf_verify_user(db, DBVU_EVICTING);
389 db->db_user = NULL;
390
391 #ifdef ZFS_DEBUG
392 if (dbu->dbu_clear_on_evict_dbufp != NULL)
393 *dbu->dbu_clear_on_evict_dbufp = NULL;
394 #endif
395
396 /*
397 * There are two eviction callbacks - one that we call synchronously
398 * and one that we invoke via a taskq. The async one is useful for
399 * avoiding lock order reversals and limiting stack depth.
400 *
401 * Note that if we have a sync callback but no async callback,
402 * it's likely that the sync callback will free the structure
403 * containing the dbu. In that case we need to take care to not
404 * dereference dbu after calling the sync evict func.
405 */
406 boolean_t has_async = (dbu->dbu_evict_func_async != NULL);
407
408 if (dbu->dbu_evict_func_sync != NULL)
409 dbu->dbu_evict_func_sync(dbu);
410
411 if (has_async) {
412 taskq_dispatch_ent(dbu_evict_taskq, dbu->dbu_evict_func_async,
413 dbu, 0, &dbu->dbu_tqent);
414 }
415 }
416
417 boolean_t
418 dbuf_is_metadata(dmu_buf_impl_t *db)
419 {
420 /*
421 * Consider indirect blocks and spill blocks to be meta data.
422 */
423 if (db->db_level > 0 || db->db_blkid == DMU_SPILL_BLKID) {
424 return (B_TRUE);
425 } else {
426 boolean_t is_metadata;
427
428 DB_DNODE_ENTER(db);
429 is_metadata = DMU_OT_IS_METADATA(DB_DNODE(db)->dn_type);
430 DB_DNODE_EXIT(db);
431
432 return (is_metadata);
433 }
434 }
435
436
437 /*
438 * This function *must* return indices evenly distributed between all
439 * sublists of the multilist. This is needed due to how the dbuf eviction
440 * code is laid out; dbuf_evict_thread() assumes dbufs are evenly
441 * distributed between all sublists and uses this assumption when
442 * deciding which sublist to evict from and how much to evict from it.
443 */
444 unsigned int
445 dbuf_cache_multilist_index_func(multilist_t *ml, void *obj)
446 {
447 dmu_buf_impl_t *db = obj;
448
449 /*
450 * The assumption here, is the hash value for a given
451 * dmu_buf_impl_t will remain constant throughout it's lifetime
452 * (i.e. it's objset, object, level and blkid fields don't change).
453 * Thus, we don't need to store the dbuf's sublist index
454 * on insertion, as this index can be recalculated on removal.
455 *
456 * Also, the low order bits of the hash value are thought to be
457 * distributed evenly. Otherwise, in the case that the multilist
458 * has a power of two number of sublists, each sublists' usage
459 * would not be evenly distributed.
460 */
461 return (dbuf_hash(db->db_objset, db->db.db_object,
462 db->db_level, db->db_blkid) %
463 multilist_get_num_sublists(ml));
464 }
465
466 static inline unsigned long
467 dbuf_cache_target_bytes(void)
468 {
469 return MIN(dbuf_cache_max_bytes,
470 arc_target_bytes() >> dbuf_cache_max_shift);
471 }
472
473 static inline boolean_t
474 dbuf_cache_above_hiwater(void)
475 {
476 uint64_t dbuf_cache_target = dbuf_cache_target_bytes();
477
478 uint64_t dbuf_cache_hiwater_bytes =
479 (dbuf_cache_target * dbuf_cache_hiwater_pct) / 100;
480
481 return (refcount_count(&dbuf_cache_size) >
482 dbuf_cache_target + dbuf_cache_hiwater_bytes);
483 }
484
485 static inline boolean_t
486 dbuf_cache_above_lowater(void)
487 {
488 uint64_t dbuf_cache_target = dbuf_cache_target_bytes();
489
490 uint64_t dbuf_cache_lowater_bytes =
491 (dbuf_cache_target * dbuf_cache_lowater_pct) / 100;
492
493 return (refcount_count(&dbuf_cache_size) >
494 dbuf_cache_target - dbuf_cache_lowater_bytes);
495 }
496
497 /*
498 * Evict the oldest eligible dbuf from the dbuf cache.
499 */
500 static void
501 dbuf_evict_one(void)
502 {
503 int idx = multilist_get_random_index(dbuf_cache);
504 multilist_sublist_t *mls = multilist_sublist_lock(dbuf_cache, idx);
505 dmu_buf_impl_t *db;
506 ASSERT(!MUTEX_HELD(&dbuf_evict_lock));
507
508 /*
509 * Set the thread's tsd to indicate that it's processing evictions.
510 * Once a thread stops evicting from the dbuf cache it will
511 * reset its tsd to NULL.
512 */
513 ASSERT3P(tsd_get(zfs_dbuf_evict_key), ==, NULL);
514 (void) tsd_set(zfs_dbuf_evict_key, (void *)B_TRUE);
515
516 db = multilist_sublist_tail(mls);
517 while (db != NULL && mutex_tryenter(&db->db_mtx) == 0) {
518 db = multilist_sublist_prev(mls, db);
519 }
520
521 DTRACE_PROBE2(dbuf__evict__one, dmu_buf_impl_t *, db,
522 multilist_sublist_t *, mls);
523
524 if (db != NULL) {
525 multilist_sublist_remove(mls, db);
526 multilist_sublist_unlock(mls);
527 (void) refcount_remove_many(&dbuf_cache_size,
528 db->db.db_size, db);
529 dbuf_destroy(db);
530 } else {
531 multilist_sublist_unlock(mls);
532 }
533 (void) tsd_set(zfs_dbuf_evict_key, NULL);
534 }
535
536 /*
537 * The dbuf evict thread is responsible for aging out dbufs from the
538 * cache. Once the cache has reached it's maximum size, dbufs are removed
539 * and destroyed. The eviction thread will continue running until the size
540 * of the dbuf cache is at or below the maximum size. Once the dbuf is aged
541 * out of the cache it is destroyed and becomes eligible for arc eviction.
542 */
543 /* ARGSUSED */
544 static void
545 dbuf_evict_thread(void *unused)
546 {
547 callb_cpr_t cpr;
548
549 CALLB_CPR_INIT(&cpr, &dbuf_evict_lock, callb_generic_cpr, FTAG);
550
551 mutex_enter(&dbuf_evict_lock);
552 while (!dbuf_evict_thread_exit) {
553 while (!dbuf_cache_above_lowater() && !dbuf_evict_thread_exit) {
554 CALLB_CPR_SAFE_BEGIN(&cpr);
555 (void) cv_timedwait_sig_hires(&dbuf_evict_cv,
556 &dbuf_evict_lock, SEC2NSEC(1), MSEC2NSEC(1), 0);
557 CALLB_CPR_SAFE_END(&cpr, &dbuf_evict_lock);
558 }
559 mutex_exit(&dbuf_evict_lock);
560
561 /*
562 * Keep evicting as long as we're above the low water mark
563 * for the cache. We do this without holding the locks to
564 * minimize lock contention.
565 */
566 while (dbuf_cache_above_lowater() && !dbuf_evict_thread_exit) {
567 dbuf_evict_one();
568 }
569
570 mutex_enter(&dbuf_evict_lock);
571 }
572
573 dbuf_evict_thread_exit = B_FALSE;
574 cv_broadcast(&dbuf_evict_cv);
575 CALLB_CPR_EXIT(&cpr); /* drops dbuf_evict_lock */
576 thread_exit();
577 }
578
579 /*
580 * Wake up the dbuf eviction thread if the dbuf cache is at its max size.
581 * If the dbuf cache is at its high water mark, then evict a dbuf from the
582 * dbuf cache using the callers context.
583 */
584 static void
585 dbuf_evict_notify(void)
586 {
587
588 /*
589 * We use thread specific data to track when a thread has
590 * started processing evictions. This allows us to avoid deeply
591 * nested stacks that would have a call flow similar to this:
592 *
593 * dbuf_rele()-->dbuf_rele_and_unlock()-->dbuf_evict_notify()
594 * ^ |
595 * | |
596 * +-----dbuf_destroy()<--dbuf_evict_one()<--------+
597 *
598 * The dbuf_eviction_thread will always have its tsd set until
599 * that thread exits. All other threads will only set their tsd
600 * if they are participating in the eviction process. This only
601 * happens if the eviction thread is unable to process evictions
602 * fast enough. To keep the dbuf cache size in check, other threads
603 * can evict from the dbuf cache directly. Those threads will set
604 * their tsd values so that we ensure that they only evict one dbuf
605 * from the dbuf cache.
606 */
607 if (tsd_get(zfs_dbuf_evict_key) != NULL)
608 return;
609
610 /*
611 * We check if we should evict without holding the dbuf_evict_lock,
612 * because it's OK to occasionally make the wrong decision here,
613 * and grabbing the lock results in massive lock contention.
614 */
615 if (refcount_count(&dbuf_cache_size) > dbuf_cache_target_bytes()) {
616 if (dbuf_cache_above_hiwater())
617 dbuf_evict_one();
618 cv_signal(&dbuf_evict_cv);
619 }
620 }
621
622
623
624 void
625 dbuf_init(void)
626 {
627 uint64_t hsize = 1ULL << 16;
628 dbuf_hash_table_t *h = &dbuf_hash_table;
629 int i;
630
631 /*
632 * The hash table is big enough to fill all of physical memory
633 * with an average block size of zfs_arc_average_blocksize (default 8K).
634 * By default, the table will take up
635 * totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers).
636 */
637 while (hsize * zfs_arc_average_blocksize < physmem * PAGESIZE)
638 hsize <<= 1;
639
640 retry:
641 h->hash_table_mask = hsize - 1;
642 #if defined(_KERNEL) && defined(HAVE_SPL)
643 /*
644 * Large allocations which do not require contiguous pages
645 * should be using vmem_alloc() in the linux kernel
646 */
647 h->hash_table = vmem_zalloc(hsize * sizeof (void *), KM_SLEEP);
648 #else
649 h->hash_table = kmem_zalloc(hsize * sizeof (void *), KM_NOSLEEP);
650 #endif
651 if (h->hash_table == NULL) {
652 /* XXX - we should really return an error instead of assert */
653 ASSERT(hsize > (1ULL << 10));
654 hsize >>= 1;
655 goto retry;
656 }
657
658 dbuf_kmem_cache = kmem_cache_create("dmu_buf_impl_t",
659 sizeof (dmu_buf_impl_t),
660 0, dbuf_cons, dbuf_dest, NULL, NULL, NULL, 0);
661
662 for (i = 0; i < DBUF_MUTEXES; i++)
663 mutex_init(&h->hash_mutexes[i], NULL, MUTEX_DEFAULT, NULL);
664
665 dbuf_stats_init(h);
666
667 /*
668 * Setup the parameters for the dbuf cache. We cap the size of the
669 * dbuf cache to 1/32nd (default) of the size of the ARC.
670 */
671 dbuf_cache_max_bytes = MIN(dbuf_cache_max_bytes,
672 arc_target_bytes() >> dbuf_cache_max_shift);
673
674 /*
675 * All entries are queued via taskq_dispatch_ent(), so min/maxalloc
676 * configuration is not required.
677 */
678 dbu_evict_taskq = taskq_create("dbu_evict", 1, defclsyspri, 0, 0, 0);
679
680 dbuf_cache = multilist_create(sizeof (dmu_buf_impl_t),
681 offsetof(dmu_buf_impl_t, db_cache_link),
682 dbuf_cache_multilist_index_func);
683 refcount_create(&dbuf_cache_size);
684
685 tsd_create(&zfs_dbuf_evict_key, NULL);
686 dbuf_evict_thread_exit = B_FALSE;
687 mutex_init(&dbuf_evict_lock, NULL, MUTEX_DEFAULT, NULL);
688 cv_init(&dbuf_evict_cv, NULL, CV_DEFAULT, NULL);
689 dbuf_cache_evict_thread = thread_create(NULL, 0, dbuf_evict_thread,
690 NULL, 0, &p0, TS_RUN, minclsyspri);
691 }
692
693 void
694 dbuf_fini(void)
695 {
696 dbuf_hash_table_t *h = &dbuf_hash_table;
697 int i;
698
699 dbuf_stats_destroy();
700
701 for (i = 0; i < DBUF_MUTEXES; i++)
702 mutex_destroy(&h->hash_mutexes[i]);
703 #if defined(_KERNEL) && defined(HAVE_SPL)
704 /*
705 * Large allocations which do not require contiguous pages
706 * should be using vmem_free() in the linux kernel
707 */
708 vmem_free(h->hash_table, (h->hash_table_mask + 1) * sizeof (void *));
709 #else
710 kmem_free(h->hash_table, (h->hash_table_mask + 1) * sizeof (void *));
711 #endif
712 kmem_cache_destroy(dbuf_kmem_cache);
713 taskq_destroy(dbu_evict_taskq);
714
715 mutex_enter(&dbuf_evict_lock);
716 dbuf_evict_thread_exit = B_TRUE;
717 while (dbuf_evict_thread_exit) {
718 cv_signal(&dbuf_evict_cv);
719 cv_wait(&dbuf_evict_cv, &dbuf_evict_lock);
720 }
721 mutex_exit(&dbuf_evict_lock);
722 tsd_destroy(&zfs_dbuf_evict_key);
723
724 mutex_destroy(&dbuf_evict_lock);
725 cv_destroy(&dbuf_evict_cv);
726
727 refcount_destroy(&dbuf_cache_size);
728 multilist_destroy(dbuf_cache);
729 }
730
731 /*
732 * Other stuff.
733 */
734
735 #ifdef ZFS_DEBUG
736 static void
737 dbuf_verify(dmu_buf_impl_t *db)
738 {
739 dnode_t *dn;
740 dbuf_dirty_record_t *dr;
741
742 ASSERT(MUTEX_HELD(&db->db_mtx));
743
744 if (!(zfs_flags & ZFS_DEBUG_DBUF_VERIFY))
745 return;
746
747 ASSERT(db->db_objset != NULL);
748 DB_DNODE_ENTER(db);
749 dn = DB_DNODE(db);
750 if (dn == NULL) {
751 ASSERT(db->db_parent == NULL);
752 ASSERT(db->db_blkptr == NULL);
753 } else {
754 ASSERT3U(db->db.db_object, ==, dn->dn_object);
755 ASSERT3P(db->db_objset, ==, dn->dn_objset);
756 ASSERT3U(db->db_level, <, dn->dn_nlevels);
757 ASSERT(db->db_blkid == DMU_BONUS_BLKID ||
758 db->db_blkid == DMU_SPILL_BLKID ||
759 !avl_is_empty(&dn->dn_dbufs));
760 }
761 if (db->db_blkid == DMU_BONUS_BLKID) {
762 ASSERT(dn != NULL);
763 ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen);
764 ASSERT3U(db->db.db_offset, ==, DMU_BONUS_BLKID);
765 } else if (db->db_blkid == DMU_SPILL_BLKID) {
766 ASSERT(dn != NULL);
767 ASSERT0(db->db.db_offset);
768 } else {
769 ASSERT3U(db->db.db_offset, ==, db->db_blkid * db->db.db_size);
770 }
771
772 for (dr = db->db_data_pending; dr != NULL; dr = dr->dr_next)
773 ASSERT(dr->dr_dbuf == db);
774
775 for (dr = db->db_last_dirty; dr != NULL; dr = dr->dr_next)
776 ASSERT(dr->dr_dbuf == db);
777
778 /*
779 * We can't assert that db_size matches dn_datablksz because it
780 * can be momentarily different when another thread is doing
781 * dnode_set_blksz().
782 */
783 if (db->db_level == 0 && db->db.db_object == DMU_META_DNODE_OBJECT) {
784 dr = db->db_data_pending;
785 /*
786 * It should only be modified in syncing context, so
787 * make sure we only have one copy of the data.
788 */
789 ASSERT(dr == NULL || dr->dt.dl.dr_data == db->db_buf);
790 }
791
792 /* verify db->db_blkptr */
793 if (db->db_blkptr) {
794 if (db->db_parent == dn->dn_dbuf) {
795 /* db is pointed to by the dnode */
796 /* ASSERT3U(db->db_blkid, <, dn->dn_nblkptr); */
797 if (DMU_OBJECT_IS_SPECIAL(db->db.db_object))
798 ASSERT(db->db_parent == NULL);
799 else
800 ASSERT(db->db_parent != NULL);
801 if (db->db_blkid != DMU_SPILL_BLKID)
802 ASSERT3P(db->db_blkptr, ==,
803 &dn->dn_phys->dn_blkptr[db->db_blkid]);
804 } else {
805 /* db is pointed to by an indirect block */
806 ASSERTV(int epb = db->db_parent->db.db_size >>
807 SPA_BLKPTRSHIFT);
808 ASSERT3U(db->db_parent->db_level, ==, db->db_level+1);
809 ASSERT3U(db->db_parent->db.db_object, ==,
810 db->db.db_object);
811 /*
812 * dnode_grow_indblksz() can make this fail if we don't
813 * have the struct_rwlock. XXX indblksz no longer
814 * grows. safe to do this now?
815 */
816 if (RW_WRITE_HELD(&dn->dn_struct_rwlock)) {
817 ASSERT3P(db->db_blkptr, ==,
818 ((blkptr_t *)db->db_parent->db.db_data +
819 db->db_blkid % epb));
820 }
821 }
822 }
823 if ((db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr)) &&
824 (db->db_buf == NULL || db->db_buf->b_data) &&
825 db->db.db_data && db->db_blkid != DMU_BONUS_BLKID &&
826 db->db_state != DB_FILL && !dn->dn_free_txg) {
827 /*
828 * If the blkptr isn't set but they have nonzero data,
829 * it had better be dirty, otherwise we'll lose that
830 * data when we evict this buffer.
831 *
832 * There is an exception to this rule for indirect blocks; in
833 * this case, if the indirect block is a hole, we fill in a few
834 * fields on each of the child blocks (importantly, birth time)
835 * to prevent hole birth times from being lost when you
836 * partially fill in a hole.
837 */
838 if (db->db_dirtycnt == 0) {
839 if (db->db_level == 0) {
840 uint64_t *buf = db->db.db_data;
841 int i;
842
843 for (i = 0; i < db->db.db_size >> 3; i++) {
844 ASSERT(buf[i] == 0);
845 }
846 } else {
847 int i;
848 blkptr_t *bps = db->db.db_data;
849 ASSERT3U(1 << DB_DNODE(db)->dn_indblkshift, ==,
850 db->db.db_size);
851 /*
852 * We want to verify that all the blkptrs in the
853 * indirect block are holes, but we may have
854 * automatically set up a few fields for them.
855 * We iterate through each blkptr and verify
856 * they only have those fields set.
857 */
858 for (i = 0;
859 i < db->db.db_size / sizeof (blkptr_t);
860 i++) {
861 blkptr_t *bp = &bps[i];
862 ASSERT(ZIO_CHECKSUM_IS_ZERO(
863 &bp->blk_cksum));
864 ASSERT(
865 DVA_IS_EMPTY(&bp->blk_dva[0]) &&
866 DVA_IS_EMPTY(&bp->blk_dva[1]) &&
867 DVA_IS_EMPTY(&bp->blk_dva[2]));
868 ASSERT0(bp->blk_fill);
869 ASSERT0(bp->blk_pad[0]);
870 ASSERT0(bp->blk_pad[1]);
871 ASSERT(!BP_IS_EMBEDDED(bp));
872 ASSERT(BP_IS_HOLE(bp));
873 ASSERT0(bp->blk_phys_birth);
874 }
875 }
876 }
877 }
878 DB_DNODE_EXIT(db);
879 }
880 #endif
881
882 static void
883 dbuf_clear_data(dmu_buf_impl_t *db)
884 {
885 ASSERT(MUTEX_HELD(&db->db_mtx));
886 dbuf_evict_user(db);
887 ASSERT3P(db->db_buf, ==, NULL);
888 db->db.db_data = NULL;
889 if (db->db_state != DB_NOFILL)
890 db->db_state = DB_UNCACHED;
891 }
892
893 static void
894 dbuf_set_data(dmu_buf_impl_t *db, arc_buf_t *buf)
895 {
896 ASSERT(MUTEX_HELD(&db->db_mtx));
897 ASSERT(buf != NULL);
898
899 db->db_buf = buf;
900 ASSERT(buf->b_data != NULL);
901 db->db.db_data = buf->b_data;
902 }
903
904 /*
905 * Loan out an arc_buf for read. Return the loaned arc_buf.
906 */
907 arc_buf_t *
908 dbuf_loan_arcbuf(dmu_buf_impl_t *db)
909 {
910 arc_buf_t *abuf;
911
912 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
913 mutex_enter(&db->db_mtx);
914 if (arc_released(db->db_buf) || refcount_count(&db->db_holds) > 1) {
915 int blksz = db->db.db_size;
916 spa_t *spa = db->db_objset->os_spa;
917
918 mutex_exit(&db->db_mtx);
919 abuf = arc_loan_buf(spa, B_FALSE, blksz);
920 bcopy(db->db.db_data, abuf->b_data, blksz);
921 } else {
922 abuf = db->db_buf;
923 arc_loan_inuse_buf(abuf, db);
924 db->db_buf = NULL;
925 dbuf_clear_data(db);
926 mutex_exit(&db->db_mtx);
927 }
928 return (abuf);
929 }
930
931 /*
932 * Calculate which level n block references the data at the level 0 offset
933 * provided.
934 */
935 uint64_t
936 dbuf_whichblock(const dnode_t *dn, const int64_t level, const uint64_t offset)
937 {
938 if (dn->dn_datablkshift != 0 && dn->dn_indblkshift != 0) {
939 /*
940 * The level n blkid is equal to the level 0 blkid divided by
941 * the number of level 0s in a level n block.
942 *
943 * The level 0 blkid is offset >> datablkshift =
944 * offset / 2^datablkshift.
945 *
946 * The number of level 0s in a level n is the number of block
947 * pointers in an indirect block, raised to the power of level.
948 * This is 2^(indblkshift - SPA_BLKPTRSHIFT)^level =
949 * 2^(level*(indblkshift - SPA_BLKPTRSHIFT)).
950 *
951 * Thus, the level n blkid is: offset /
952 * ((2^datablkshift)*(2^(level*(indblkshift - SPA_BLKPTRSHIFT)))
953 * = offset / 2^(datablkshift + level *
954 * (indblkshift - SPA_BLKPTRSHIFT))
955 * = offset >> (datablkshift + level *
956 * (indblkshift - SPA_BLKPTRSHIFT))
957 */
958
959 const unsigned exp = dn->dn_datablkshift +
960 level * (dn->dn_indblkshift - SPA_BLKPTRSHIFT);
961
962 if (exp >= 8 * sizeof (offset)) {
963 /* This only happens on the highest indirection level */
964 ASSERT3U(level, ==, dn->dn_nlevels - 1);
965 return (0);
966 }
967
968 ASSERT3U(exp, <, 8 * sizeof (offset));
969
970 return (offset >> exp);
971 } else {
972 ASSERT3U(offset, <, dn->dn_datablksz);
973 return (0);
974 }
975 }
976
977 static void
978 dbuf_read_done(zio_t *zio, int err, arc_buf_t *buf, void *vdb)
979 {
980 dmu_buf_impl_t *db = vdb;
981
982 mutex_enter(&db->db_mtx);
983 ASSERT3U(db->db_state, ==, DB_READ);
984 /*
985 * All reads are synchronous, so we must have a hold on the dbuf
986 */
987 ASSERT(refcount_count(&db->db_holds) > 0);
988 ASSERT(db->db_buf == NULL);
989 ASSERT(db->db.db_data == NULL);
990 if (db->db_level == 0 && db->db_freed_in_flight) {
991 /* we were freed in flight; disregard any error */
992 arc_release(buf, db);
993 bzero(buf->b_data, db->db.db_size);
994 arc_buf_freeze(buf);
995 db->db_freed_in_flight = FALSE;
996 dbuf_set_data(db, buf);
997 db->db_state = DB_CACHED;
998 } else if (err == 0) {
999 dbuf_set_data(db, buf);
1000 db->db_state = DB_CACHED;
1001 } else {
1002 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1003 ASSERT3P(db->db_buf, ==, NULL);
1004 arc_buf_destroy(buf, db);
1005 db->db_state = DB_UNCACHED;
1006 }
1007 cv_broadcast(&db->db_changed);
1008 dbuf_rele_and_unlock(db, NULL);
1009 }
1010
1011 static int
1012 dbuf_read_impl(dmu_buf_impl_t *db, zio_t *zio, uint32_t flags)
1013 {
1014 dnode_t *dn;
1015 zbookmark_phys_t zb;
1016 uint32_t aflags = ARC_FLAG_NOWAIT;
1017 int err, zio_flags = 0;
1018
1019 DB_DNODE_ENTER(db);
1020 dn = DB_DNODE(db);
1021 ASSERT(!refcount_is_zero(&db->db_holds));
1022 /* We need the struct_rwlock to prevent db_blkptr from changing. */
1023 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
1024 ASSERT(MUTEX_HELD(&db->db_mtx));
1025 ASSERT(db->db_state == DB_UNCACHED);
1026 ASSERT(db->db_buf == NULL);
1027
1028 if (db->db_blkid == DMU_BONUS_BLKID) {
1029 /*
1030 * The bonus length stored in the dnode may be less than
1031 * the maximum available space in the bonus buffer.
1032 */
1033 int bonuslen = MIN(dn->dn_bonuslen, dn->dn_phys->dn_bonuslen);
1034 int max_bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots);
1035 arc_buf_t *dn_buf = (dn->dn_dbuf != NULL) ?
1036 dn->dn_dbuf->db_buf : NULL;
1037
1038 /* if the underlying dnode block is encrypted, decrypt it */
1039 if (dn_buf != NULL && dn->dn_objset->os_encrypted &&
1040 DMU_OT_IS_ENCRYPTED(dn->dn_bonustype) &&
1041 (flags & DB_RF_NO_DECRYPT) == 0 &&
1042 arc_is_encrypted(dn_buf)) {
1043 err = arc_untransform(dn_buf, dn->dn_objset->os_spa,
1044 dmu_objset_id(dn->dn_objset), B_TRUE);
1045 if (err != 0) {
1046 DB_DNODE_EXIT(db);
1047 mutex_exit(&db->db_mtx);
1048 return (err);
1049 }
1050 }
1051
1052 ASSERT3U(bonuslen, <=, db->db.db_size);
1053 db->db.db_data = kmem_alloc(max_bonuslen, KM_SLEEP);
1054 arc_space_consume(max_bonuslen, ARC_SPACE_BONUS);
1055 if (bonuslen < max_bonuslen)
1056 bzero(db->db.db_data, max_bonuslen);
1057 if (bonuslen)
1058 bcopy(DN_BONUS(dn->dn_phys), db->db.db_data, bonuslen);
1059 DB_DNODE_EXIT(db);
1060 db->db_state = DB_CACHED;
1061 mutex_exit(&db->db_mtx);
1062 return (0);
1063 }
1064
1065 /*
1066 * Recheck BP_IS_HOLE() after dnode_block_freed() in case dnode_sync()
1067 * processes the delete record and clears the bp while we are waiting
1068 * for the dn_mtx (resulting in a "no" from block_freed).
1069 */
1070 if (db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr) ||
1071 (db->db_level == 0 && (dnode_block_freed(dn, db->db_blkid) ||
1072 BP_IS_HOLE(db->db_blkptr)))) {
1073 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
1074
1075 dbuf_set_data(db, arc_alloc_buf(db->db_objset->os_spa, db, type,
1076 db->db.db_size));
1077 bzero(db->db.db_data, db->db.db_size);
1078
1079 if (db->db_blkptr != NULL && db->db_level > 0 &&
1080 BP_IS_HOLE(db->db_blkptr) &&
1081 db->db_blkptr->blk_birth != 0) {
1082 blkptr_t *bps = db->db.db_data;
1083 int i;
1084 for (i = 0; i < ((1 <<
1085 DB_DNODE(db)->dn_indblkshift) / sizeof (blkptr_t));
1086 i++) {
1087 blkptr_t *bp = &bps[i];
1088 ASSERT3U(BP_GET_LSIZE(db->db_blkptr), ==,
1089 1 << dn->dn_indblkshift);
1090 BP_SET_LSIZE(bp,
1091 BP_GET_LEVEL(db->db_blkptr) == 1 ?
1092 dn->dn_datablksz :
1093 BP_GET_LSIZE(db->db_blkptr));
1094 BP_SET_TYPE(bp, BP_GET_TYPE(db->db_blkptr));
1095 BP_SET_LEVEL(bp,
1096 BP_GET_LEVEL(db->db_blkptr) - 1);
1097 BP_SET_BIRTH(bp, db->db_blkptr->blk_birth, 0);
1098 }
1099 }
1100 DB_DNODE_EXIT(db);
1101 db->db_state = DB_CACHED;
1102 mutex_exit(&db->db_mtx);
1103 return (0);
1104 }
1105
1106 DB_DNODE_EXIT(db);
1107
1108 db->db_state = DB_READ;
1109 mutex_exit(&db->db_mtx);
1110
1111 if (DBUF_IS_L2CACHEABLE(db))
1112 aflags |= ARC_FLAG_L2CACHE;
1113
1114 SET_BOOKMARK(&zb, db->db_objset->os_dsl_dataset ?
1115 db->db_objset->os_dsl_dataset->ds_object : DMU_META_OBJSET,
1116 db->db.db_object, db->db_level, db->db_blkid);
1117
1118 /*
1119 * All bps of an encrypted os should have the encryption bit set.
1120 * If this is not true it indicates tampering and we report an error.
1121 */
1122 if (db->db_objset->os_encrypted && !BP_USES_CRYPT(db->db_blkptr)) {
1123 spa_log_error(db->db_objset->os_spa, &zb);
1124 zfs_panic_recover("unencrypted block in encrypted "
1125 "object set %llu", dmu_objset_id(db->db_objset));
1126 return (SET_ERROR(EIO));
1127 }
1128
1129 dbuf_add_ref(db, NULL);
1130
1131 zio_flags = (flags & DB_RF_CANFAIL) ?
1132 ZIO_FLAG_CANFAIL : ZIO_FLAG_MUSTSUCCEED;
1133
1134 if ((flags & DB_RF_NO_DECRYPT) && BP_IS_PROTECTED(db->db_blkptr))
1135 zio_flags |= ZIO_FLAG_RAW;
1136
1137 err = arc_read(zio, db->db_objset->os_spa, db->db_blkptr,
1138 dbuf_read_done, db, ZIO_PRIORITY_SYNC_READ, zio_flags,
1139 &aflags, &zb);
1140
1141 return (err);
1142 }
1143
1144 /*
1145 * This is our just-in-time copy function. It makes a copy of buffers that
1146 * have been modified in a previous transaction group before we access them in
1147 * the current active group.
1148 *
1149 * This function is used in three places: when we are dirtying a buffer for the
1150 * first time in a txg, when we are freeing a range in a dnode that includes
1151 * this buffer, and when we are accessing a buffer which was received compressed
1152 * and later referenced in a WRITE_BYREF record.
1153 *
1154 * Note that when we are called from dbuf_free_range() we do not put a hold on
1155 * the buffer, we just traverse the active dbuf list for the dnode.
1156 */
1157 static void
1158 dbuf_fix_old_data(dmu_buf_impl_t *db, uint64_t txg)
1159 {
1160 dbuf_dirty_record_t *dr = db->db_last_dirty;
1161
1162 ASSERT(MUTEX_HELD(&db->db_mtx));
1163 ASSERT(db->db.db_data != NULL);
1164 ASSERT(db->db_level == 0);
1165 ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT);
1166
1167 if (dr == NULL ||
1168 (dr->dt.dl.dr_data !=
1169 ((db->db_blkid == DMU_BONUS_BLKID) ? db->db.db_data : db->db_buf)))
1170 return;
1171
1172 /*
1173 * If the last dirty record for this dbuf has not yet synced
1174 * and its referencing the dbuf data, either:
1175 * reset the reference to point to a new copy,
1176 * or (if there a no active holders)
1177 * just null out the current db_data pointer.
1178 */
1179 ASSERT3U(dr->dr_txg, >=, txg - 2);
1180 if (db->db_blkid == DMU_BONUS_BLKID) {
1181 dnode_t *dn = DB_DNODE(db);
1182 int bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots);
1183 dr->dt.dl.dr_data = kmem_alloc(bonuslen, KM_SLEEP);
1184 arc_space_consume(bonuslen, ARC_SPACE_BONUS);
1185 bcopy(db->db.db_data, dr->dt.dl.dr_data, bonuslen);
1186 } else if (refcount_count(&db->db_holds) > db->db_dirtycnt) {
1187 dnode_t *dn = DB_DNODE(db);
1188 int size = arc_buf_size(db->db_buf);
1189 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
1190 spa_t *spa = db->db_objset->os_spa;
1191 enum zio_compress compress_type =
1192 arc_get_compression(db->db_buf);
1193
1194 if (arc_is_encrypted(db->db_buf)) {
1195 boolean_t byteorder;
1196 uint8_t salt[ZIO_DATA_SALT_LEN];
1197 uint8_t iv[ZIO_DATA_IV_LEN];
1198 uint8_t mac[ZIO_DATA_MAC_LEN];
1199
1200 arc_get_raw_params(db->db_buf, &byteorder, salt,
1201 iv, mac);
1202 dr->dt.dl.dr_data = arc_alloc_raw_buf(spa, db,
1203 dmu_objset_id(dn->dn_objset), byteorder, salt, iv,
1204 mac, dn->dn_type, size, arc_buf_lsize(db->db_buf),
1205 compress_type);
1206 } else if (compress_type != ZIO_COMPRESS_OFF) {
1207 ASSERT3U(type, ==, ARC_BUFC_DATA);
1208 dr->dt.dl.dr_data = arc_alloc_compressed_buf(spa, db,
1209 size, arc_buf_lsize(db->db_buf), compress_type);
1210 } else {
1211 dr->dt.dl.dr_data = arc_alloc_buf(spa, db, type, size);
1212 }
1213 bcopy(db->db.db_data, dr->dt.dl.dr_data->b_data, size);
1214 } else {
1215 db->db_buf = NULL;
1216 dbuf_clear_data(db);
1217 }
1218 }
1219
1220 int
1221 dbuf_read(dmu_buf_impl_t *db, zio_t *zio, uint32_t flags)
1222 {
1223 int err = 0;
1224 boolean_t prefetch;
1225 dnode_t *dn;
1226
1227 /*
1228 * We don't have to hold the mutex to check db_state because it
1229 * can't be freed while we have a hold on the buffer.
1230 */
1231 ASSERT(!refcount_is_zero(&db->db_holds));
1232
1233 if (db->db_state == DB_NOFILL)
1234 return (SET_ERROR(EIO));
1235
1236 DB_DNODE_ENTER(db);
1237 dn = DB_DNODE(db);
1238 if ((flags & DB_RF_HAVESTRUCT) == 0)
1239 rw_enter(&dn->dn_struct_rwlock, RW_READER);
1240
1241 prefetch = db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
1242 (flags & DB_RF_NOPREFETCH) == 0 && dn != NULL &&
1243 DBUF_IS_CACHEABLE(db);
1244
1245 mutex_enter(&db->db_mtx);
1246 if (db->db_state == DB_CACHED) {
1247 spa_t *spa = dn->dn_objset->os_spa;
1248
1249 /*
1250 * If the arc buf is compressed or encrypted, we need to
1251 * untransform it to read the data. This could happen during
1252 * the "zfs receive" of a stream which is deduplicated and
1253 * either raw or compressed. We do not need to do this if the
1254 * caller wants raw encrypted data.
1255 */
1256 if (db->db_buf != NULL && (flags & DB_RF_NO_DECRYPT) == 0 &&
1257 (arc_is_encrypted(db->db_buf) ||
1258 arc_get_compression(db->db_buf) != ZIO_COMPRESS_OFF)) {
1259 dbuf_fix_old_data(db, spa_syncing_txg(spa));
1260 err = arc_untransform(db->db_buf, spa,
1261 dmu_objset_id(db->db_objset), B_FALSE);
1262 dbuf_set_data(db, db->db_buf);
1263 }
1264 mutex_exit(&db->db_mtx);
1265 if (prefetch)
1266 dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE);
1267 if ((flags & DB_RF_HAVESTRUCT) == 0)
1268 rw_exit(&dn->dn_struct_rwlock);
1269 DB_DNODE_EXIT(db);
1270 } else if (db->db_state == DB_UNCACHED) {
1271 spa_t *spa = dn->dn_objset->os_spa;
1272 boolean_t need_wait = B_FALSE;
1273
1274 if (zio == NULL &&
1275 db->db_blkptr != NULL && !BP_IS_HOLE(db->db_blkptr)) {
1276 zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL);
1277 need_wait = B_TRUE;
1278 }
1279 err = dbuf_read_impl(db, zio, flags);
1280
1281 /* dbuf_read_impl has dropped db_mtx for us */
1282
1283 if (!err && prefetch)
1284 dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE);
1285
1286 if ((flags & DB_RF_HAVESTRUCT) == 0)
1287 rw_exit(&dn->dn_struct_rwlock);
1288 DB_DNODE_EXIT(db);
1289
1290 if (!err && need_wait)
1291 err = zio_wait(zio);
1292 } else {
1293 /*
1294 * Another reader came in while the dbuf was in flight
1295 * between UNCACHED and CACHED. Either a writer will finish
1296 * writing the buffer (sending the dbuf to CACHED) or the
1297 * first reader's request will reach the read_done callback
1298 * and send the dbuf to CACHED. Otherwise, a failure
1299 * occurred and the dbuf went to UNCACHED.
1300 */
1301 mutex_exit(&db->db_mtx);
1302 if (prefetch)
1303 dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE);
1304 if ((flags & DB_RF_HAVESTRUCT) == 0)
1305 rw_exit(&dn->dn_struct_rwlock);
1306 DB_DNODE_EXIT(db);
1307
1308 /* Skip the wait per the caller's request. */
1309 mutex_enter(&db->db_mtx);
1310 if ((flags & DB_RF_NEVERWAIT) == 0) {
1311 while (db->db_state == DB_READ ||
1312 db->db_state == DB_FILL) {
1313 ASSERT(db->db_state == DB_READ ||
1314 (flags & DB_RF_HAVESTRUCT) == 0);
1315 DTRACE_PROBE2(blocked__read, dmu_buf_impl_t *,
1316 db, zio_t *, zio);
1317 cv_wait(&db->db_changed, &db->db_mtx);
1318 }
1319 if (db->db_state == DB_UNCACHED)
1320 err = SET_ERROR(EIO);
1321 }
1322 mutex_exit(&db->db_mtx);
1323 }
1324
1325 return (err);
1326 }
1327
1328 static void
1329 dbuf_noread(dmu_buf_impl_t *db)
1330 {
1331 ASSERT(!refcount_is_zero(&db->db_holds));
1332 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1333 mutex_enter(&db->db_mtx);
1334 while (db->db_state == DB_READ || db->db_state == DB_FILL)
1335 cv_wait(&db->db_changed, &db->db_mtx);
1336 if (db->db_state == DB_UNCACHED) {
1337 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
1338 spa_t *spa = db->db_objset->os_spa;
1339
1340 ASSERT(db->db_buf == NULL);
1341 ASSERT(db->db.db_data == NULL);
1342 dbuf_set_data(db, arc_alloc_buf(spa, db, type, db->db.db_size));
1343 db->db_state = DB_FILL;
1344 } else if (db->db_state == DB_NOFILL) {
1345 dbuf_clear_data(db);
1346 } else {
1347 ASSERT3U(db->db_state, ==, DB_CACHED);
1348 }
1349 mutex_exit(&db->db_mtx);
1350 }
1351
1352 void
1353 dbuf_unoverride(dbuf_dirty_record_t *dr)
1354 {
1355 dmu_buf_impl_t *db = dr->dr_dbuf;
1356 blkptr_t *bp = &dr->dt.dl.dr_overridden_by;
1357 uint64_t txg = dr->dr_txg;
1358
1359 ASSERT(MUTEX_HELD(&db->db_mtx));
1360 /*
1361 * This assert is valid because dmu_sync() expects to be called by
1362 * a zilog's get_data while holding a range lock. This call only
1363 * comes from dbuf_dirty() callers who must also hold a range lock.
1364 */
1365 ASSERT(dr->dt.dl.dr_override_state != DR_IN_DMU_SYNC);
1366 ASSERT(db->db_level == 0);
1367
1368 if (db->db_blkid == DMU_BONUS_BLKID ||
1369 dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN)
1370 return;
1371
1372 ASSERT(db->db_data_pending != dr);
1373
1374 /* free this block */
1375 if (!BP_IS_HOLE(bp) && !dr->dt.dl.dr_nopwrite)
1376 zio_free(db->db_objset->os_spa, txg, bp);
1377
1378 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
1379 dr->dt.dl.dr_nopwrite = B_FALSE;
1380 dr->dt.dl.dr_raw = B_FALSE;
1381
1382 /*
1383 * Release the already-written buffer, so we leave it in
1384 * a consistent dirty state. Note that all callers are
1385 * modifying the buffer, so they will immediately do
1386 * another (redundant) arc_release(). Therefore, leave
1387 * the buf thawed to save the effort of freezing &
1388 * immediately re-thawing it.
1389 */
1390 arc_release(dr->dt.dl.dr_data, db);
1391 }
1392
1393 /*
1394 * Evict (if its unreferenced) or clear (if its referenced) any level-0
1395 * data blocks in the free range, so that any future readers will find
1396 * empty blocks.
1397 */
1398 void
1399 dbuf_free_range(dnode_t *dn, uint64_t start_blkid, uint64_t end_blkid,
1400 dmu_tx_t *tx)
1401 {
1402 dmu_buf_impl_t *db_search;
1403 dmu_buf_impl_t *db, *db_next;
1404 uint64_t txg = tx->tx_txg;
1405 avl_index_t where;
1406
1407 if (end_blkid > dn->dn_maxblkid &&
1408 !(start_blkid == DMU_SPILL_BLKID || end_blkid == DMU_SPILL_BLKID))
1409 end_blkid = dn->dn_maxblkid;
1410 dprintf_dnode(dn, "start=%llu end=%llu\n", start_blkid, end_blkid);
1411
1412 db_search = kmem_alloc(sizeof (dmu_buf_impl_t), KM_SLEEP);
1413 db_search->db_level = 0;
1414 db_search->db_blkid = start_blkid;
1415 db_search->db_state = DB_SEARCH;
1416
1417 mutex_enter(&dn->dn_dbufs_mtx);
1418 db = avl_find(&dn->dn_dbufs, db_search, &where);
1419 ASSERT3P(db, ==, NULL);
1420
1421 db = avl_nearest(&dn->dn_dbufs, where, AVL_AFTER);
1422
1423 for (; db != NULL; db = db_next) {
1424 db_next = AVL_NEXT(&dn->dn_dbufs, db);
1425 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1426
1427 if (db->db_level != 0 || db->db_blkid > end_blkid) {
1428 break;
1429 }
1430 ASSERT3U(db->db_blkid, >=, start_blkid);
1431
1432 /* found a level 0 buffer in the range */
1433 mutex_enter(&db->db_mtx);
1434 if (dbuf_undirty(db, tx)) {
1435 /* mutex has been dropped and dbuf destroyed */
1436 continue;
1437 }
1438
1439 if (db->db_state == DB_UNCACHED ||
1440 db->db_state == DB_NOFILL ||
1441 db->db_state == DB_EVICTING) {
1442 ASSERT(db->db.db_data == NULL);
1443 mutex_exit(&db->db_mtx);
1444 continue;
1445 }
1446 if (db->db_state == DB_READ || db->db_state == DB_FILL) {
1447 /* will be handled in dbuf_read_done or dbuf_rele */
1448 db->db_freed_in_flight = TRUE;
1449 mutex_exit(&db->db_mtx);
1450 continue;
1451 }
1452 if (refcount_count(&db->db_holds) == 0) {
1453 ASSERT(db->db_buf);
1454 dbuf_destroy(db);
1455 continue;
1456 }
1457 /* The dbuf is referenced */
1458
1459 if (db->db_last_dirty != NULL) {
1460 dbuf_dirty_record_t *dr = db->db_last_dirty;
1461
1462 if (dr->dr_txg == txg) {
1463 /*
1464 * This buffer is "in-use", re-adjust the file
1465 * size to reflect that this buffer may
1466 * contain new data when we sync.
1467 */
1468 if (db->db_blkid != DMU_SPILL_BLKID &&
1469 db->db_blkid > dn->dn_maxblkid)
1470 dn->dn_maxblkid = db->db_blkid;
1471 dbuf_unoverride(dr);
1472 } else {
1473 /*
1474 * This dbuf is not dirty in the open context.
1475 * Either uncache it (if its not referenced in
1476 * the open context) or reset its contents to
1477 * empty.
1478 */
1479 dbuf_fix_old_data(db, txg);
1480 }
1481 }
1482 /* clear the contents if its cached */
1483 if (db->db_state == DB_CACHED) {
1484 ASSERT(db->db.db_data != NULL);
1485 arc_release(db->db_buf, db);
1486 bzero(db->db.db_data, db->db.db_size);
1487 arc_buf_freeze(db->db_buf);
1488 }
1489
1490 mutex_exit(&db->db_mtx);
1491 }
1492
1493 kmem_free(db_search, sizeof (dmu_buf_impl_t));
1494 mutex_exit(&dn->dn_dbufs_mtx);
1495 }
1496
1497 void
1498 dbuf_new_size(dmu_buf_impl_t *db, int size, dmu_tx_t *tx)
1499 {
1500 arc_buf_t *buf, *obuf;
1501 int osize = db->db.db_size;
1502 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
1503 dnode_t *dn;
1504
1505 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1506
1507 DB_DNODE_ENTER(db);
1508 dn = DB_DNODE(db);
1509
1510 /* XXX does *this* func really need the lock? */
1511 ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock));
1512
1513 /*
1514 * This call to dmu_buf_will_dirty() with the dn_struct_rwlock held
1515 * is OK, because there can be no other references to the db
1516 * when we are changing its size, so no concurrent DB_FILL can
1517 * be happening.
1518 */
1519 /*
1520 * XXX we should be doing a dbuf_read, checking the return
1521 * value and returning that up to our callers
1522 */
1523 dmu_buf_will_dirty(&db->db, tx);
1524
1525 /* create the data buffer for the new block */
1526 buf = arc_alloc_buf(dn->dn_objset->os_spa, db, type, size);
1527
1528 /* copy old block data to the new block */
1529 obuf = db->db_buf;
1530 bcopy(obuf->b_data, buf->b_data, MIN(osize, size));
1531 /* zero the remainder */
1532 if (size > osize)
1533 bzero((uint8_t *)buf->b_data + osize, size - osize);
1534
1535 mutex_enter(&db->db_mtx);
1536 dbuf_set_data(db, buf);
1537 arc_buf_destroy(obuf, db);
1538 db->db.db_size = size;
1539
1540 if (db->db_level == 0) {
1541 ASSERT3U(db->db_last_dirty->dr_txg, ==, tx->tx_txg);
1542 db->db_last_dirty->dt.dl.dr_data = buf;
1543 }
1544 mutex_exit(&db->db_mtx);
1545
1546 dmu_objset_willuse_space(dn->dn_objset, size - osize, tx);
1547 DB_DNODE_EXIT(db);
1548 }
1549
1550 void
1551 dbuf_release_bp(dmu_buf_impl_t *db)
1552 {
1553 ASSERTV(objset_t *os = db->db_objset);
1554
1555 ASSERT(dsl_pool_sync_context(dmu_objset_pool(os)));
1556 ASSERT(arc_released(os->os_phys_buf) ||
1557 list_link_active(&os->os_dsl_dataset->ds_synced_link));
1558 ASSERT(db->db_parent == NULL || arc_released(db->db_parent->db_buf));
1559
1560 (void) arc_release(db->db_buf, db);
1561 }
1562
1563 /*
1564 * We already have a dirty record for this TXG, and we are being
1565 * dirtied again.
1566 */
1567 static void
1568 dbuf_redirty(dbuf_dirty_record_t *dr)
1569 {
1570 dmu_buf_impl_t *db = dr->dr_dbuf;
1571
1572 ASSERT(MUTEX_HELD(&db->db_mtx));
1573
1574 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID) {
1575 /*
1576 * If this buffer has already been written out,
1577 * we now need to reset its state.
1578 */
1579 dbuf_unoverride(dr);
1580 if (db->db.db_object != DMU_META_DNODE_OBJECT &&
1581 db->db_state != DB_NOFILL) {
1582 /* Already released on initial dirty, so just thaw. */
1583 ASSERT(arc_released(db->db_buf));
1584 arc_buf_thaw(db->db_buf);
1585 }
1586 }
1587 }
1588
1589 dbuf_dirty_record_t *
1590 dbuf_dirty(dmu_buf_impl_t *db, dmu_tx_t *tx)
1591 {
1592 dnode_t *dn;
1593 objset_t *os;
1594 dbuf_dirty_record_t **drp, *dr;
1595 int drop_struct_lock = FALSE;
1596 int txgoff = tx->tx_txg & TXG_MASK;
1597
1598 ASSERT(tx->tx_txg != 0);
1599 ASSERT(!refcount_is_zero(&db->db_holds));
1600 DMU_TX_DIRTY_BUF(tx, db);
1601
1602 DB_DNODE_ENTER(db);
1603 dn = DB_DNODE(db);
1604 /*
1605 * Shouldn't dirty a regular buffer in syncing context. Private
1606 * objects may be dirtied in syncing context, but only if they
1607 * were already pre-dirtied in open context.
1608 */
1609 #ifdef DEBUG
1610 if (dn->dn_objset->os_dsl_dataset != NULL) {
1611 rrw_enter(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock,
1612 RW_READER, FTAG);
1613 }
1614 ASSERT(!dmu_tx_is_syncing(tx) ||
1615 BP_IS_HOLE(dn->dn_objset->os_rootbp) ||
1616 DMU_OBJECT_IS_SPECIAL(dn->dn_object) ||
1617 dn->dn_objset->os_dsl_dataset == NULL);
1618 if (dn->dn_objset->os_dsl_dataset != NULL)
1619 rrw_exit(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock, FTAG);
1620 #endif
1621 /*
1622 * We make this assert for private objects as well, but after we
1623 * check if we're already dirty. They are allowed to re-dirty
1624 * in syncing context.
1625 */
1626 ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT ||
1627 dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx ==
1628 (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN));
1629
1630 mutex_enter(&db->db_mtx);
1631 /*
1632 * XXX make this true for indirects too? The problem is that
1633 * transactions created with dmu_tx_create_assigned() from
1634 * syncing context don't bother holding ahead.
1635 */
1636 ASSERT(db->db_level != 0 ||
1637 db->db_state == DB_CACHED || db->db_state == DB_FILL ||
1638 db->db_state == DB_NOFILL);
1639
1640 mutex_enter(&dn->dn_mtx);
1641 /*
1642 * Don't set dirtyctx to SYNC if we're just modifying this as we
1643 * initialize the objset.
1644 */
1645 if (dn->dn_dirtyctx == DN_UNDIRTIED) {
1646 if (dn->dn_objset->os_dsl_dataset != NULL) {
1647 rrw_enter(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock,
1648 RW_READER, FTAG);
1649 }
1650 if (!BP_IS_HOLE(dn->dn_objset->os_rootbp)) {
1651 dn->dn_dirtyctx = (dmu_tx_is_syncing(tx) ?
1652 DN_DIRTY_SYNC : DN_DIRTY_OPEN);
1653 ASSERT(dn->dn_dirtyctx_firstset == NULL);
1654 dn->dn_dirtyctx_firstset = kmem_alloc(1, KM_SLEEP);
1655 }
1656 if (dn->dn_objset->os_dsl_dataset != NULL) {
1657 rrw_exit(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock,
1658 FTAG);
1659 }
1660 }
1661 mutex_exit(&dn->dn_mtx);
1662
1663 if (db->db_blkid == DMU_SPILL_BLKID)
1664 dn->dn_have_spill = B_TRUE;
1665
1666 /*
1667 * If this buffer is already dirty, we're done.
1668 */
1669 drp = &db->db_last_dirty;
1670 ASSERT(*drp == NULL || (*drp)->dr_txg <= tx->tx_txg ||
1671 db->db.db_object == DMU_META_DNODE_OBJECT);
1672 while ((dr = *drp) != NULL && dr->dr_txg > tx->tx_txg)
1673 drp = &dr->dr_next;
1674 if (dr && dr->dr_txg == tx->tx_txg) {
1675 DB_DNODE_EXIT(db);
1676
1677 dbuf_redirty(dr);
1678 mutex_exit(&db->db_mtx);
1679 return (dr);
1680 }
1681
1682 /*
1683 * Only valid if not already dirty.
1684 */
1685 ASSERT(dn->dn_object == 0 ||
1686 dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx ==
1687 (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN));
1688
1689 ASSERT3U(dn->dn_nlevels, >, db->db_level);
1690
1691 /*
1692 * We should only be dirtying in syncing context if it's the
1693 * mos or we're initializing the os or it's a special object.
1694 * However, we are allowed to dirty in syncing context provided
1695 * we already dirtied it in open context. Hence we must make
1696 * this assertion only if we're not already dirty.
1697 */
1698 os = dn->dn_objset;
1699 VERIFY3U(tx->tx_txg, <=, spa_final_dirty_txg(os->os_spa));
1700 #ifdef DEBUG
1701 if (dn->dn_objset->os_dsl_dataset != NULL)
1702 rrw_enter(&os->os_dsl_dataset->ds_bp_rwlock, RW_READER, FTAG);
1703 ASSERT(!dmu_tx_is_syncing(tx) || DMU_OBJECT_IS_SPECIAL(dn->dn_object) ||
1704 os->os_dsl_dataset == NULL || BP_IS_HOLE(os->os_rootbp));
1705 if (dn->dn_objset->os_dsl_dataset != NULL)
1706 rrw_exit(&os->os_dsl_dataset->ds_bp_rwlock, FTAG);
1707 #endif
1708 ASSERT(db->db.db_size != 0);
1709
1710 dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size);
1711
1712 if (db->db_blkid != DMU_BONUS_BLKID) {
1713 dmu_objset_willuse_space(os, db->db.db_size, tx);
1714 }
1715
1716 /*
1717 * If this buffer is dirty in an old transaction group we need
1718 * to make a copy of it so that the changes we make in this
1719 * transaction group won't leak out when we sync the older txg.
1720 */
1721 dr = kmem_zalloc(sizeof (dbuf_dirty_record_t), KM_SLEEP);
1722 list_link_init(&dr->dr_dirty_node);
1723 if (db->db_level == 0) {
1724 void *data_old = db->db_buf;
1725
1726 if (db->db_state != DB_NOFILL) {
1727 if (db->db_blkid == DMU_BONUS_BLKID) {
1728 dbuf_fix_old_data(db, tx->tx_txg);
1729 data_old = db->db.db_data;
1730 } else if (db->db.db_object != DMU_META_DNODE_OBJECT) {
1731 /*
1732 * Release the data buffer from the cache so
1733 * that we can modify it without impacting
1734 * possible other users of this cached data
1735 * block. Note that indirect blocks and
1736 * private objects are not released until the
1737 * syncing state (since they are only modified
1738 * then).
1739 */
1740 arc_release(db->db_buf, db);
1741 dbuf_fix_old_data(db, tx->tx_txg);
1742 data_old = db->db_buf;
1743 }
1744 ASSERT(data_old != NULL);
1745 }
1746 dr->dt.dl.dr_data = data_old;
1747 } else {
1748 mutex_init(&dr->dt.di.dr_mtx, NULL, MUTEX_NOLOCKDEP, NULL);
1749 list_create(&dr->dt.di.dr_children,
1750 sizeof (dbuf_dirty_record_t),
1751 offsetof(dbuf_dirty_record_t, dr_dirty_node));
1752 }
1753 if (db->db_blkid != DMU_BONUS_BLKID && os->os_dsl_dataset != NULL)
1754 dr->dr_accounted = db->db.db_size;
1755 dr->dr_dbuf = db;
1756 dr->dr_txg = tx->tx_txg;
1757 dr->dr_next = *drp;
1758 *drp = dr;
1759
1760 /*
1761 * We could have been freed_in_flight between the dbuf_noread
1762 * and dbuf_dirty. We win, as though the dbuf_noread() had
1763 * happened after the free.
1764 */
1765 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
1766 db->db_blkid != DMU_SPILL_BLKID) {
1767 mutex_enter(&dn->dn_mtx);
1768 if (dn->dn_free_ranges[txgoff] != NULL) {
1769 range_tree_clear(dn->dn_free_ranges[txgoff],
1770 db->db_blkid, 1);
1771 }
1772 mutex_exit(&dn->dn_mtx);
1773 db->db_freed_in_flight = FALSE;
1774 }
1775
1776 /*
1777 * This buffer is now part of this txg
1778 */
1779 dbuf_add_ref(db, (void *)(uintptr_t)tx->tx_txg);
1780 db->db_dirtycnt += 1;
1781 ASSERT3U(db->db_dirtycnt, <=, 3);
1782
1783 mutex_exit(&db->db_mtx);
1784
1785 if (db->db_blkid == DMU_BONUS_BLKID ||
1786 db->db_blkid == DMU_SPILL_BLKID) {
1787 mutex_enter(&dn->dn_mtx);
1788 ASSERT(!list_link_active(&dr->dr_dirty_node));
1789 list_insert_tail(&dn->dn_dirty_records[txgoff], dr);
1790 mutex_exit(&dn->dn_mtx);
1791 dnode_setdirty(dn, tx);
1792 DB_DNODE_EXIT(db);
1793 return (dr);
1794 }
1795
1796 /*
1797 * The dn_struct_rwlock prevents db_blkptr from changing
1798 * due to a write from syncing context completing
1799 * while we are running, so we want to acquire it before
1800 * looking at db_blkptr.
1801 */
1802 if (!RW_WRITE_HELD(&dn->dn_struct_rwlock)) {
1803 rw_enter(&dn->dn_struct_rwlock, RW_READER);
1804 drop_struct_lock = TRUE;
1805 }
1806
1807 /*
1808 * We need to hold the dn_struct_rwlock to make this assertion,
1809 * because it protects dn_phys / dn_next_nlevels from changing.
1810 */
1811 ASSERT((dn->dn_phys->dn_nlevels == 0 && db->db_level == 0) ||
1812 dn->dn_phys->dn_nlevels > db->db_level ||
1813 dn->dn_next_nlevels[txgoff] > db->db_level ||
1814 dn->dn_next_nlevels[(tx->tx_txg-1) & TXG_MASK] > db->db_level ||
1815 dn->dn_next_nlevels[(tx->tx_txg-2) & TXG_MASK] > db->db_level);
1816
1817 /*
1818 * If we are overwriting a dedup BP, then unless it is snapshotted,
1819 * when we get to syncing context we will need to decrement its
1820 * refcount in the DDT. Prefetch the relevant DDT block so that
1821 * syncing context won't have to wait for the i/o.
1822 */
1823 ddt_prefetch(os->os_spa, db->db_blkptr);
1824
1825 if (db->db_level == 0) {
1826 dnode_new_blkid(dn, db->db_blkid, tx, drop_struct_lock);
1827 ASSERT(dn->dn_maxblkid >= db->db_blkid);
1828 }
1829
1830 if (db->db_level+1 < dn->dn_nlevels) {
1831 dmu_buf_impl_t *parent = db->db_parent;
1832 dbuf_dirty_record_t *di;
1833 int parent_held = FALSE;
1834
1835 if (db->db_parent == NULL || db->db_parent == dn->dn_dbuf) {
1836 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
1837
1838 parent = dbuf_hold_level(dn, db->db_level+1,
1839 db->db_blkid >> epbs, FTAG);
1840 ASSERT(parent != NULL);
1841 parent_held = TRUE;
1842 }
1843 if (drop_struct_lock)
1844 rw_exit(&dn->dn_struct_rwlock);
1845 ASSERT3U(db->db_level+1, ==, parent->db_level);
1846 di = dbuf_dirty(parent, tx);
1847 if (parent_held)
1848 dbuf_rele(parent, FTAG);
1849
1850 mutex_enter(&db->db_mtx);
1851 /*
1852 * Since we've dropped the mutex, it's possible that
1853 * dbuf_undirty() might have changed this out from under us.
1854 */
1855 if (db->db_last_dirty == dr ||
1856 dn->dn_object == DMU_META_DNODE_OBJECT) {
1857 mutex_enter(&di->dt.di.dr_mtx);
1858 ASSERT3U(di->dr_txg, ==, tx->tx_txg);
1859 ASSERT(!list_link_active(&dr->dr_dirty_node));
1860 list_insert_tail(&di->dt.di.dr_children, dr);
1861 mutex_exit(&di->dt.di.dr_mtx);
1862 dr->dr_parent = di;
1863 }
1864 mutex_exit(&db->db_mtx);
1865 } else {
1866 ASSERT(db->db_level+1 == dn->dn_nlevels);
1867 ASSERT(db->db_blkid < dn->dn_nblkptr);
1868 ASSERT(db->db_parent == NULL || db->db_parent == dn->dn_dbuf);
1869 mutex_enter(&dn->dn_mtx);
1870 ASSERT(!list_link_active(&dr->dr_dirty_node));
1871 list_insert_tail(&dn->dn_dirty_records[txgoff], dr);
1872 mutex_exit(&dn->dn_mtx);
1873 if (drop_struct_lock)
1874 rw_exit(&dn->dn_struct_rwlock);
1875 }
1876
1877 dnode_setdirty(dn, tx);
1878 DB_DNODE_EXIT(db);
1879 return (dr);
1880 }
1881
1882 /*
1883 * Undirty a buffer in the transaction group referenced by the given
1884 * transaction. Return whether this evicted the dbuf.
1885 */
1886 static boolean_t
1887 dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx)
1888 {
1889 dnode_t *dn;
1890 uint64_t txg = tx->tx_txg;
1891 dbuf_dirty_record_t *dr, **drp;
1892
1893 ASSERT(txg != 0);
1894
1895 /*
1896 * Due to our use of dn_nlevels below, this can only be called
1897 * in open context, unless we are operating on the MOS.
1898 * From syncing context, dn_nlevels may be different from the
1899 * dn_nlevels used when dbuf was dirtied.
1900 */
1901 ASSERT(db->db_objset ==
1902 dmu_objset_pool(db->db_objset)->dp_meta_objset ||
1903 txg != spa_syncing_txg(dmu_objset_spa(db->db_objset)));
1904 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1905 ASSERT0(db->db_level);
1906 ASSERT(MUTEX_HELD(&db->db_mtx));
1907
1908 /*
1909 * If this buffer is not dirty, we're done.
1910 */
1911 for (drp = &db->db_last_dirty; (dr = *drp) != NULL; drp = &dr->dr_next)
1912 if (dr->dr_txg <= txg)
1913 break;
1914 if (dr == NULL || dr->dr_txg < txg)
1915 return (B_FALSE);
1916 ASSERT(dr->dr_txg == txg);
1917 ASSERT(dr->dr_dbuf == db);
1918
1919 DB_DNODE_ENTER(db);
1920 dn = DB_DNODE(db);
1921
1922 dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size);
1923
1924 ASSERT(db->db.db_size != 0);
1925
1926 dsl_pool_undirty_space(dmu_objset_pool(dn->dn_objset),
1927 dr->dr_accounted, txg);
1928
1929 *drp = dr->dr_next;
1930
1931 /*
1932 * Note that there are three places in dbuf_dirty()
1933 * where this dirty record may be put on a list.
1934 * Make sure to do a list_remove corresponding to
1935 * every one of those list_insert calls.
1936 */
1937 if (dr->dr_parent) {
1938 mutex_enter(&dr->dr_parent->dt.di.dr_mtx);
1939 list_remove(&dr->dr_parent->dt.di.dr_children, dr);
1940 mutex_exit(&dr->dr_parent->dt.di.dr_mtx);
1941 } else if (db->db_blkid == DMU_SPILL_BLKID ||
1942 db->db_level + 1 == dn->dn_nlevels) {
1943 ASSERT(db->db_blkptr == NULL || db->db_parent == dn->dn_dbuf);
1944 mutex_enter(&dn->dn_mtx);
1945 list_remove(&dn->dn_dirty_records[txg & TXG_MASK], dr);
1946 mutex_exit(&dn->dn_mtx);
1947 }
1948 DB_DNODE_EXIT(db);
1949
1950 if (db->db_state != DB_NOFILL) {
1951 dbuf_unoverride(dr);
1952
1953 ASSERT(db->db_buf != NULL);
1954 ASSERT(dr->dt.dl.dr_data != NULL);
1955 if (dr->dt.dl.dr_data != db->db_buf)
1956 arc_buf_destroy(dr->dt.dl.dr_data, db);
1957 }
1958
1959 kmem_free(dr, sizeof (dbuf_dirty_record_t));
1960
1961 ASSERT(db->db_dirtycnt > 0);
1962 db->db_dirtycnt -= 1;
1963
1964 if (refcount_remove(&db->db_holds, (void *)(uintptr_t)txg) == 0) {
1965 ASSERT(db->db_state == DB_NOFILL || arc_released(db->db_buf));
1966 dbuf_destroy(db);
1967 return (B_TRUE);
1968 }
1969
1970 return (B_FALSE);
1971 }
1972
1973 static void
1974 dmu_buf_will_dirty_impl(dmu_buf_t *db_fake, int flags, dmu_tx_t *tx)
1975 {
1976 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
1977 dbuf_dirty_record_t *dr;
1978
1979 ASSERT(tx->tx_txg != 0);
1980 ASSERT(!refcount_is_zero(&db->db_holds));
1981
1982 /*
1983 * Quick check for dirtyness. For already dirty blocks, this
1984 * reduces runtime of this function by >90%, and overall performance
1985 * by 50% for some workloads (e.g. file deletion with indirect blocks
1986 * cached).
1987 */
1988 mutex_enter(&db->db_mtx);
1989
1990 for (dr = db->db_last_dirty;
1991 dr != NULL && dr->dr_txg >= tx->tx_txg; dr = dr->dr_next) {
1992 /*
1993 * It's possible that it is already dirty but not cached,
1994 * because there are some calls to dbuf_dirty() that don't
1995 * go through dmu_buf_will_dirty().
1996 */
1997 if (dr->dr_txg == tx->tx_txg && db->db_state == DB_CACHED) {
1998 /* This dbuf is already dirty and cached. */
1999 dbuf_redirty(dr);
2000 mutex_exit(&db->db_mtx);
2001 return;
2002 }
2003 }
2004 mutex_exit(&db->db_mtx);
2005
2006 DB_DNODE_ENTER(db);
2007 if (RW_WRITE_HELD(&DB_DNODE(db)->dn_struct_rwlock))
2008 flags |= DB_RF_HAVESTRUCT;
2009 DB_DNODE_EXIT(db);
2010 (void) dbuf_read(db, NULL, flags);
2011 (void) dbuf_dirty(db, tx);
2012 }
2013
2014 void
2015 dmu_buf_will_dirty(dmu_buf_t *db_fake, dmu_tx_t *tx)
2016 {
2017 dmu_buf_will_dirty_impl(db_fake,
2018 DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH, tx);
2019 }
2020
2021 void
2022 dmu_buf_will_not_fill(dmu_buf_t *db_fake, dmu_tx_t *tx)
2023 {
2024 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2025
2026 db->db_state = DB_NOFILL;
2027
2028 dmu_buf_will_fill(db_fake, tx);
2029 }
2030
2031 void
2032 dmu_buf_will_fill(dmu_buf_t *db_fake, dmu_tx_t *tx)
2033 {
2034 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2035
2036 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2037 ASSERT(tx->tx_txg != 0);
2038 ASSERT(db->db_level == 0);
2039 ASSERT(!refcount_is_zero(&db->db_holds));
2040
2041 ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT ||
2042 dmu_tx_private_ok(tx));
2043
2044 dbuf_noread(db);
2045 (void) dbuf_dirty(db, tx);
2046 }
2047
2048 /*
2049 * This function is effectively the same as dmu_buf_will_dirty(), but
2050 * indicates the caller expects raw encrypted data in the db. It will
2051 * also set the raw flag on the created dirty record.
2052 */
2053 void
2054 dmu_buf_will_change_crypt_params(dmu_buf_t *db_fake, dmu_tx_t *tx)
2055 {
2056 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2057 dbuf_dirty_record_t *dr;
2058
2059 dmu_buf_will_dirty_impl(db_fake,
2060 DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH | DB_RF_NO_DECRYPT, tx);
2061
2062 dr = db->db_last_dirty;
2063 while (dr != NULL && dr->dr_txg > tx->tx_txg)
2064 dr = dr->dr_next;
2065
2066 ASSERT3P(dr, !=, NULL);
2067 ASSERT3U(dr->dr_txg, ==, tx->tx_txg);
2068 dr->dt.dl.dr_raw = B_TRUE;
2069 }
2070
2071 #pragma weak dmu_buf_fill_done = dbuf_fill_done
2072 /* ARGSUSED */
2073 void
2074 dbuf_fill_done(dmu_buf_impl_t *db, dmu_tx_t *tx)
2075 {
2076 mutex_enter(&db->db_mtx);
2077 DBUF_VERIFY(db);
2078
2079 if (db->db_state == DB_FILL) {
2080 if (db->db_level == 0 && db->db_freed_in_flight) {
2081 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2082 /* we were freed while filling */
2083 /* XXX dbuf_undirty? */
2084 bzero(db->db.db_data, db->db.db_size);
2085 db->db_freed_in_flight = FALSE;
2086 }
2087 db->db_state = DB_CACHED;
2088 cv_broadcast(&db->db_changed);
2089 }
2090 mutex_exit(&db->db_mtx);
2091 }
2092
2093 void
2094 dmu_buf_write_embedded(dmu_buf_t *dbuf, void *data,
2095 bp_embedded_type_t etype, enum zio_compress comp,
2096 int uncompressed_size, int compressed_size, int byteorder,
2097 dmu_tx_t *tx)
2098 {
2099 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf;
2100 struct dirty_leaf *dl;
2101 dmu_object_type_t type;
2102
2103 if (etype == BP_EMBEDDED_TYPE_DATA) {
2104 ASSERT(spa_feature_is_active(dmu_objset_spa(db->db_objset),
2105 SPA_FEATURE_EMBEDDED_DATA));
2106 }
2107
2108 DB_DNODE_ENTER(db);
2109 type = DB_DNODE(db)->dn_type;
2110 DB_DNODE_EXIT(db);
2111
2112 ASSERT0(db->db_level);
2113 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2114
2115 dmu_buf_will_not_fill(dbuf, tx);
2116
2117 ASSERT3U(db->db_last_dirty->dr_txg, ==, tx->tx_txg);
2118 dl = &db->db_last_dirty->dt.dl;
2119 encode_embedded_bp_compressed(&dl->dr_overridden_by,
2120 data, comp, uncompressed_size, compressed_size);
2121 BPE_SET_ETYPE(&dl->dr_overridden_by, etype);
2122 BP_SET_TYPE(&dl->dr_overridden_by, type);
2123 BP_SET_LEVEL(&dl->dr_overridden_by, 0);
2124 BP_SET_BYTEORDER(&dl->dr_overridden_by, byteorder);
2125
2126 dl->dr_override_state = DR_OVERRIDDEN;
2127 dl->dr_overridden_by.blk_birth = db->db_last_dirty->dr_txg;
2128 }
2129
2130 /*
2131 * Directly assign a provided arc buf to a given dbuf if it's not referenced
2132 * by anybody except our caller. Otherwise copy arcbuf's contents to dbuf.
2133 */
2134 void
2135 dbuf_assign_arcbuf(dmu_buf_impl_t *db, arc_buf_t *buf, dmu_tx_t *tx)
2136 {
2137 ASSERT(!refcount_is_zero(&db->db_holds));
2138 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2139 ASSERT(db->db_level == 0);
2140 ASSERT3U(dbuf_is_metadata(db), ==, arc_is_metadata(buf));
2141 ASSERT(buf != NULL);
2142 ASSERT(arc_buf_lsize(buf) == db->db.db_size);
2143 ASSERT(tx->tx_txg != 0);
2144
2145 arc_return_buf(buf, db);
2146 ASSERT(arc_released(buf));
2147
2148 mutex_enter(&db->db_mtx);
2149
2150 while (db->db_state == DB_READ || db->db_state == DB_FILL)
2151 cv_wait(&db->db_changed, &db->db_mtx);
2152
2153 ASSERT(db->db_state == DB_CACHED || db->db_state == DB_UNCACHED);
2154
2155 if (db->db_state == DB_CACHED &&
2156 refcount_count(&db->db_holds) - 1 > db->db_dirtycnt) {
2157 /*
2158 * In practice, we will never have a case where we have an
2159 * encrypted arc buffer while additional holds exist on the
2160 * dbuf. We don't handle this here so we simply assert that
2161 * fact instead.
2162 */
2163 ASSERT(!arc_is_encrypted(buf));
2164 mutex_exit(&db->db_mtx);
2165 (void) dbuf_dirty(db, tx);
2166 bcopy(buf->b_data, db->db.db_data, db->db.db_size);
2167 arc_buf_destroy(buf, db);
2168 xuio_stat_wbuf_copied();
2169 return;
2170 }
2171
2172 xuio_stat_wbuf_nocopy();
2173 if (db->db_state == DB_CACHED) {
2174 dbuf_dirty_record_t *dr = db->db_last_dirty;
2175
2176 ASSERT(db->db_buf != NULL);
2177 if (dr != NULL && dr->dr_txg == tx->tx_txg) {
2178 ASSERT(dr->dt.dl.dr_data == db->db_buf);
2179 IMPLY(arc_is_encrypted(buf), dr->dt.dl.dr_raw);
2180
2181 if (!arc_released(db->db_buf)) {
2182 ASSERT(dr->dt.dl.dr_override_state ==
2183 DR_OVERRIDDEN);
2184 arc_release(db->db_buf, db);
2185 }
2186 dr->dt.dl.dr_data = buf;
2187 arc_buf_destroy(db->db_buf, db);
2188 } else if (dr == NULL || dr->dt.dl.dr_data != db->db_buf) {
2189 arc_release(db->db_buf, db);
2190 arc_buf_destroy(db->db_buf, db);
2191 }
2192 db->db_buf = NULL;
2193 }
2194 ASSERT(db->db_buf == NULL);
2195 dbuf_set_data(db, buf);
2196 db->db_state = DB_FILL;
2197 mutex_exit(&db->db_mtx);
2198 (void) dbuf_dirty(db, tx);
2199 dmu_buf_fill_done(&db->db, tx);
2200 }
2201
2202 void
2203 dbuf_destroy(dmu_buf_impl_t *db)
2204 {
2205 dnode_t *dn;
2206 dmu_buf_impl_t *parent = db->db_parent;
2207 dmu_buf_impl_t *dndb;
2208
2209 ASSERT(MUTEX_HELD(&db->db_mtx));
2210 ASSERT(refcount_is_zero(&db->db_holds));
2211
2212 if (db->db_buf != NULL) {
2213 arc_buf_destroy(db->db_buf, db);
2214 db->db_buf = NULL;
2215 }
2216
2217 if (db->db_blkid == DMU_BONUS_BLKID) {
2218 int slots = DB_DNODE(db)->dn_num_slots;
2219 int bonuslen = DN_SLOTS_TO_BONUSLEN(slots);
2220 if (db->db.db_data != NULL) {
2221 kmem_free(db->db.db_data, bonuslen);
2222 arc_space_return(bonuslen, ARC_SPACE_BONUS);
2223 db->db_state = DB_UNCACHED;
2224 }
2225 }
2226
2227 dbuf_clear_data(db);
2228
2229 if (multilist_link_active(&db->db_cache_link)) {
2230 multilist_remove(dbuf_cache, db);
2231 (void) refcount_remove_many(&dbuf_cache_size,
2232 db->db.db_size, db);
2233 }
2234
2235 ASSERT(db->db_state == DB_UNCACHED || db->db_state == DB_NOFILL);
2236 ASSERT(db->db_data_pending == NULL);
2237
2238 db->db_state = DB_EVICTING;
2239 db->db_blkptr = NULL;
2240
2241 /*
2242 * Now that db_state is DB_EVICTING, nobody else can find this via
2243 * the hash table. We can now drop db_mtx, which allows us to
2244 * acquire the dn_dbufs_mtx.
2245 */
2246 mutex_exit(&db->db_mtx);
2247
2248 DB_DNODE_ENTER(db);
2249 dn = DB_DNODE(db);
2250 dndb = dn->dn_dbuf;
2251 if (db->db_blkid != DMU_BONUS_BLKID) {
2252 boolean_t needlock = !MUTEX_HELD(&dn->dn_dbufs_mtx);
2253 if (needlock)
2254 mutex_enter(&dn->dn_dbufs_mtx);
2255 avl_remove(&dn->dn_dbufs, db);
2256 atomic_dec_32(&dn->dn_dbufs_count);
2257 membar_producer();
2258 DB_DNODE_EXIT(db);
2259 if (needlock)
2260 mutex_exit(&dn->dn_dbufs_mtx);
2261 /*
2262 * Decrementing the dbuf count means that the hold corresponding
2263 * to the removed dbuf is no longer discounted in dnode_move(),
2264 * so the dnode cannot be moved until after we release the hold.
2265 * The membar_producer() ensures visibility of the decremented
2266 * value in dnode_move(), since DB_DNODE_EXIT doesn't actually
2267 * release any lock.
2268 */
2269 dnode_rele(dn, db);
2270 db->db_dnode_handle = NULL;
2271
2272 dbuf_hash_remove(db);
2273 } else {
2274 DB_DNODE_EXIT(db);
2275 }
2276
2277 ASSERT(refcount_is_zero(&db->db_holds));
2278
2279 db->db_parent = NULL;
2280
2281 ASSERT(db->db_buf == NULL);
2282 ASSERT(db->db.db_data == NULL);
2283 ASSERT(db->db_hash_next == NULL);
2284 ASSERT(db->db_blkptr == NULL);
2285 ASSERT(db->db_data_pending == NULL);
2286 ASSERT(!multilist_link_active(&db->db_cache_link));
2287
2288 kmem_cache_free(dbuf_kmem_cache, db);
2289 arc_space_return(sizeof (dmu_buf_impl_t), ARC_SPACE_DBUF);
2290
2291 /*
2292 * If this dbuf is referenced from an indirect dbuf,
2293 * decrement the ref count on the indirect dbuf.
2294 */
2295 if (parent && parent != dndb)
2296 dbuf_rele(parent, db);
2297 }
2298
2299 /*
2300 * Note: While bpp will always be updated if the function returns success,
2301 * parentp will not be updated if the dnode does not have dn_dbuf filled in;
2302 * this happens when the dnode is the meta-dnode, or a userused or groupused
2303 * object.
2304 */
2305 __attribute__((always_inline))
2306 static inline int
2307 dbuf_findbp(dnode_t *dn, int level, uint64_t blkid, int fail_sparse,
2308 dmu_buf_impl_t **parentp, blkptr_t **bpp, struct dbuf_hold_impl_data *dh)
2309 {
2310 int nlevels, epbs;
2311
2312 *parentp = NULL;
2313 *bpp = NULL;
2314
2315 ASSERT(blkid != DMU_BONUS_BLKID);
2316
2317 if (blkid == DMU_SPILL_BLKID) {
2318 mutex_enter(&dn->dn_mtx);
2319 if (dn->dn_have_spill &&
2320 (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR))
2321 *bpp = DN_SPILL_BLKPTR(dn->dn_phys);
2322 else
2323 *bpp = NULL;
2324 dbuf_add_ref(dn->dn_dbuf, NULL);
2325 *parentp = dn->dn_dbuf;
2326 mutex_exit(&dn->dn_mtx);
2327 return (0);
2328 }
2329
2330 nlevels =
2331 (dn->dn_phys->dn_nlevels == 0) ? 1 : dn->dn_phys->dn_nlevels;
2332 epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
2333
2334 ASSERT3U(level * epbs, <, 64);
2335 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
2336 /*
2337 * This assertion shouldn't trip as long as the max indirect block size
2338 * is less than 1M. The reason for this is that up to that point,
2339 * the number of levels required to address an entire object with blocks
2340 * of size SPA_MINBLOCKSIZE satisfies nlevels * epbs + 1 <= 64. In
2341 * other words, if N * epbs + 1 > 64, then if (N-1) * epbs + 1 > 55
2342 * (i.e. we can address the entire object), objects will all use at most
2343 * N-1 levels and the assertion won't overflow. However, once epbs is
2344 * 13, 4 * 13 + 1 = 53, but 5 * 13 + 1 = 66. Then, 4 levels will not be
2345 * enough to address an entire object, so objects will have 5 levels,
2346 * but then this assertion will overflow.
2347 *
2348 * All this is to say that if we ever increase DN_MAX_INDBLKSHIFT, we
2349 * need to redo this logic to handle overflows.
2350 */
2351 ASSERT(level >= nlevels ||
2352 ((nlevels - level - 1) * epbs) +
2353 highbit64(dn->dn_phys->dn_nblkptr) <= 64);
2354 if (level >= nlevels ||
2355 blkid >= ((uint64_t)dn->dn_phys->dn_nblkptr <<
2356 ((nlevels - level - 1) * epbs)) ||
2357 (fail_sparse &&
2358 blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs)))) {
2359 /* the buffer has no parent yet */
2360 return (SET_ERROR(ENOENT));
2361 } else if (level < nlevels-1) {
2362 /* this block is referenced from an indirect block */
2363 int err;
2364 if (dh == NULL) {
2365 err = dbuf_hold_impl(dn, level+1,
2366 blkid >> epbs, fail_sparse, FALSE, NULL, parentp);
2367 } else {
2368 __dbuf_hold_impl_init(dh + 1, dn, dh->dh_level + 1,
2369 blkid >> epbs, fail_sparse, FALSE, NULL,
2370 parentp, dh->dh_depth + 1);
2371 err = __dbuf_hold_impl(dh + 1);
2372 }
2373 if (err)
2374 return (err);
2375 err = dbuf_read(*parentp, NULL,
2376 (DB_RF_HAVESTRUCT | DB_RF_NOPREFETCH | DB_RF_CANFAIL));
2377 if (err) {
2378 dbuf_rele(*parentp, NULL);
2379 *parentp = NULL;
2380 return (err);
2381 }
2382 *bpp = ((blkptr_t *)(*parentp)->db.db_data) +
2383 (blkid & ((1ULL << epbs) - 1));
2384 if (blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs)))
2385 ASSERT(BP_IS_HOLE(*bpp));
2386 return (0);
2387 } else {
2388 /* the block is referenced from the dnode */
2389 ASSERT3U(level, ==, nlevels-1);
2390 ASSERT(dn->dn_phys->dn_nblkptr == 0 ||
2391 blkid < dn->dn_phys->dn_nblkptr);
2392 if (dn->dn_dbuf) {
2393 dbuf_add_ref(dn->dn_dbuf, NULL);
2394 *parentp = dn->dn_dbuf;
2395 }
2396 *bpp = &dn->dn_phys->dn_blkptr[blkid];
2397 return (0);
2398 }
2399 }
2400
2401 static dmu_buf_impl_t *
2402 dbuf_create(dnode_t *dn, uint8_t level, uint64_t blkid,
2403 dmu_buf_impl_t *parent, blkptr_t *blkptr)
2404 {
2405 objset_t *os = dn->dn_objset;
2406 dmu_buf_impl_t *db, *odb;
2407
2408 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
2409 ASSERT(dn->dn_type != DMU_OT_NONE);
2410
2411 db = kmem_cache_alloc(dbuf_kmem_cache, KM_SLEEP);
2412
2413 db->db_objset = os;
2414 db->db.db_object = dn->dn_object;
2415 db->db_level = level;
2416 db->db_blkid = blkid;
2417 db->db_last_dirty = NULL;
2418 db->db_dirtycnt = 0;
2419 db->db_dnode_handle = dn->dn_handle;
2420 db->db_parent = parent;
2421 db->db_blkptr = blkptr;
2422
2423 db->db_user = NULL;
2424 db->db_user_immediate_evict = FALSE;
2425 db->db_freed_in_flight = FALSE;
2426 db->db_pending_evict = FALSE;
2427
2428 if (blkid == DMU_BONUS_BLKID) {
2429 ASSERT3P(parent, ==, dn->dn_dbuf);
2430 db->db.db_size = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots) -
2431 (dn->dn_nblkptr-1) * sizeof (blkptr_t);
2432 ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen);
2433 db->db.db_offset = DMU_BONUS_BLKID;
2434 db->db_state = DB_UNCACHED;
2435 /* the bonus dbuf is not placed in the hash table */
2436 arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_DBUF);
2437 return (db);
2438 } else if (blkid == DMU_SPILL_BLKID) {
2439 db->db.db_size = (blkptr != NULL) ?
2440 BP_GET_LSIZE(blkptr) : SPA_MINBLOCKSIZE;
2441 db->db.db_offset = 0;
2442 } else {
2443 int blocksize =
2444 db->db_level ? 1 << dn->dn_indblkshift : dn->dn_datablksz;
2445 db->db.db_size = blocksize;
2446 db->db.db_offset = db->db_blkid * blocksize;
2447 }
2448
2449 /*
2450 * Hold the dn_dbufs_mtx while we get the new dbuf
2451 * in the hash table *and* added to the dbufs list.
2452 * This prevents a possible deadlock with someone
2453 * trying to look up this dbuf before its added to the
2454 * dn_dbufs list.
2455 */
2456 mutex_enter(&dn->dn_dbufs_mtx);
2457 db->db_state = DB_EVICTING;
2458 if ((odb = dbuf_hash_insert(db)) != NULL) {
2459 /* someone else inserted it first */
2460 kmem_cache_free(dbuf_kmem_cache, db);
2461 mutex_exit(&dn->dn_dbufs_mtx);
2462 return (odb);
2463 }
2464 avl_add(&dn->dn_dbufs, db);
2465
2466 db->db_state = DB_UNCACHED;
2467 mutex_exit(&dn->dn_dbufs_mtx);
2468 arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_DBUF);
2469
2470 if (parent && parent != dn->dn_dbuf)
2471 dbuf_add_ref(parent, db);
2472
2473 ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT ||
2474 refcount_count(&dn->dn_holds) > 0);
2475 (void) refcount_add(&dn->dn_holds, db);
2476 atomic_inc_32(&dn->dn_dbufs_count);
2477
2478 dprintf_dbuf(db, "db=%p\n", db);
2479
2480 return (db);
2481 }
2482
2483 typedef struct dbuf_prefetch_arg {
2484 spa_t *dpa_spa; /* The spa to issue the prefetch in. */
2485 zbookmark_phys_t dpa_zb; /* The target block to prefetch. */
2486 int dpa_epbs; /* Entries (blkptr_t's) Per Block Shift. */
2487 int dpa_curlevel; /* The current level that we're reading */
2488 dnode_t *dpa_dnode; /* The dnode associated with the prefetch */
2489 zio_priority_t dpa_prio; /* The priority I/Os should be issued at. */
2490 zio_t *dpa_zio; /* The parent zio_t for all prefetches. */
2491 arc_flags_t dpa_aflags; /* Flags to pass to the final prefetch. */
2492 } dbuf_prefetch_arg_t;
2493
2494 /*
2495 * Actually issue the prefetch read for the block given.
2496 */
2497 static void
2498 dbuf_issue_final_prefetch(dbuf_prefetch_arg_t *dpa, blkptr_t *bp)
2499 {
2500 arc_flags_t aflags;
2501 if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp))
2502 return;
2503
2504 aflags = dpa->dpa_aflags | ARC_FLAG_NOWAIT | ARC_FLAG_PREFETCH;
2505
2506 ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp));
2507 ASSERT3U(dpa->dpa_curlevel, ==, dpa->dpa_zb.zb_level);
2508 ASSERT(dpa->dpa_zio != NULL);
2509 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa, bp, NULL, NULL,
2510 dpa->dpa_prio, ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
2511 &aflags, &dpa->dpa_zb);
2512 }
2513
2514 /*
2515 * Called when an indirect block above our prefetch target is read in. This
2516 * will either read in the next indirect block down the tree or issue the actual
2517 * prefetch if the next block down is our target.
2518 */
2519 static void
2520 dbuf_prefetch_indirect_done(zio_t *zio, int err, arc_buf_t *abuf, void *private)
2521 {
2522 dbuf_prefetch_arg_t *dpa = private;
2523 uint64_t nextblkid;
2524 blkptr_t *bp;
2525
2526 ASSERT3S(dpa->dpa_zb.zb_level, <, dpa->dpa_curlevel);
2527 ASSERT3S(dpa->dpa_curlevel, >, 0);
2528
2529 /*
2530 * The dpa_dnode is only valid if we are called with a NULL
2531 * zio. This indicates that the arc_read() returned without
2532 * first calling zio_read() to issue a physical read. Once
2533 * a physical read is made the dpa_dnode must be invalidated
2534 * as the locks guarding it may have been dropped. If the
2535 * dpa_dnode is still valid, then we want to add it to the dbuf
2536 * cache. To do so, we must hold the dbuf associated with the block
2537 * we just prefetched, read its contents so that we associate it
2538 * with an arc_buf_t, and then release it.
2539 */
2540 if (zio != NULL) {
2541 ASSERT3S(BP_GET_LEVEL(zio->io_bp), ==, dpa->dpa_curlevel);
2542 if (zio->io_flags & ZIO_FLAG_RAW_COMPRESS) {
2543 ASSERT3U(BP_GET_PSIZE(zio->io_bp), ==, zio->io_size);
2544 } else {
2545 ASSERT3U(BP_GET_LSIZE(zio->io_bp), ==, zio->io_size);
2546 }
2547 ASSERT3P(zio->io_spa, ==, dpa->dpa_spa);
2548
2549 dpa->dpa_dnode = NULL;
2550 } else if (dpa->dpa_dnode != NULL) {
2551 uint64_t curblkid = dpa->dpa_zb.zb_blkid >>
2552 (dpa->dpa_epbs * (dpa->dpa_curlevel -
2553 dpa->dpa_zb.zb_level));
2554 dmu_buf_impl_t *db = dbuf_hold_level(dpa->dpa_dnode,
2555 dpa->dpa_curlevel, curblkid, FTAG);
2556 (void) dbuf_read(db, NULL,
2557 DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH | DB_RF_HAVESTRUCT);
2558 dbuf_rele(db, FTAG);
2559 }
2560
2561 dpa->dpa_curlevel--;
2562
2563 nextblkid = dpa->dpa_zb.zb_blkid >>
2564 (dpa->dpa_epbs * (dpa->dpa_curlevel - dpa->dpa_zb.zb_level));
2565 bp = ((blkptr_t *)abuf->b_data) +
2566 P2PHASE(nextblkid, 1ULL << dpa->dpa_epbs);
2567 if (BP_IS_HOLE(bp) || err != 0) {
2568 kmem_free(dpa, sizeof (*dpa));
2569 } else if (dpa->dpa_curlevel == dpa->dpa_zb.zb_level) {
2570 ASSERT3U(nextblkid, ==, dpa->dpa_zb.zb_blkid);
2571 dbuf_issue_final_prefetch(dpa, bp);
2572 kmem_free(dpa, sizeof (*dpa));
2573 } else {
2574 arc_flags_t iter_aflags = ARC_FLAG_NOWAIT;
2575 zbookmark_phys_t zb;
2576
2577 ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp));
2578
2579 SET_BOOKMARK(&zb, dpa->dpa_zb.zb_objset,
2580 dpa->dpa_zb.zb_object, dpa->dpa_curlevel, nextblkid);
2581
2582 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa,
2583 bp, dbuf_prefetch_indirect_done, dpa, dpa->dpa_prio,
2584 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
2585 &iter_aflags, &zb);
2586 }
2587
2588 arc_buf_destroy(abuf, private);
2589 }
2590
2591 /*
2592 * Issue prefetch reads for the given block on the given level. If the indirect
2593 * blocks above that block are not in memory, we will read them in
2594 * asynchronously. As a result, this call never blocks waiting for a read to
2595 * complete. Note that the prefetch might fail if the dataset is encrypted and
2596 * the encryption key is unmapped before the IO completes.
2597 */
2598 void
2599 dbuf_prefetch(dnode_t *dn, int64_t level, uint64_t blkid, zio_priority_t prio,
2600 arc_flags_t aflags)
2601 {
2602 blkptr_t bp;
2603 int epbs, nlevels, curlevel;
2604 uint64_t curblkid;
2605 dmu_buf_impl_t *db;
2606 zio_t *pio;
2607 dbuf_prefetch_arg_t *dpa;
2608 dsl_dataset_t *ds;
2609
2610 ASSERT(blkid != DMU_BONUS_BLKID);
2611 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
2612
2613 if (blkid > dn->dn_maxblkid)
2614 return;
2615
2616 if (dnode_block_freed(dn, blkid))
2617 return;
2618
2619 /*
2620 * This dnode hasn't been written to disk yet, so there's nothing to
2621 * prefetch.
2622 */
2623 nlevels = dn->dn_phys->dn_nlevels;
2624 if (level >= nlevels || dn->dn_phys->dn_nblkptr == 0)
2625 return;
2626
2627 epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
2628 if (dn->dn_phys->dn_maxblkid < blkid << (epbs * level))
2629 return;
2630
2631 db = dbuf_find(dn->dn_objset, dn->dn_object,
2632 level, blkid);
2633 if (db != NULL) {
2634 mutex_exit(&db->db_mtx);
2635 /*
2636 * This dbuf already exists. It is either CACHED, or
2637 * (we assume) about to be read or filled.
2638 */
2639 return;
2640 }
2641
2642 /*
2643 * Find the closest ancestor (indirect block) of the target block
2644 * that is present in the cache. In this indirect block, we will
2645 * find the bp that is at curlevel, curblkid.
2646 */
2647 curlevel = level;
2648 curblkid = blkid;
2649 while (curlevel < nlevels - 1) {
2650 int parent_level = curlevel + 1;
2651 uint64_t parent_blkid = curblkid >> epbs;
2652 dmu_buf_impl_t *db;
2653
2654 if (dbuf_hold_impl(dn, parent_level, parent_blkid,
2655 FALSE, TRUE, FTAG, &db) == 0) {
2656 blkptr_t *bpp = db->db_buf->b_data;
2657 bp = bpp[P2PHASE(curblkid, 1 << epbs)];
2658 dbuf_rele(db, FTAG);
2659 break;
2660 }
2661
2662 curlevel = parent_level;
2663 curblkid = parent_blkid;
2664 }
2665
2666 if (curlevel == nlevels - 1) {
2667 /* No cached indirect blocks found. */
2668 ASSERT3U(curblkid, <, dn->dn_phys->dn_nblkptr);
2669 bp = dn->dn_phys->dn_blkptr[curblkid];
2670 }
2671 if (BP_IS_HOLE(&bp))
2672 return;
2673
2674 ASSERT3U(curlevel, ==, BP_GET_LEVEL(&bp));
2675
2676 pio = zio_root(dmu_objset_spa(dn->dn_objset), NULL, NULL,
2677 ZIO_FLAG_CANFAIL);
2678
2679 dpa = kmem_zalloc(sizeof (*dpa), KM_SLEEP);
2680 ds = dn->dn_objset->os_dsl_dataset;
2681 SET_BOOKMARK(&dpa->dpa_zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET,
2682 dn->dn_object, level, blkid);
2683 dpa->dpa_curlevel = curlevel;
2684 dpa->dpa_prio = prio;
2685 dpa->dpa_aflags = aflags;
2686 dpa->dpa_spa = dn->dn_objset->os_spa;
2687 dpa->dpa_dnode = dn;
2688 dpa->dpa_epbs = epbs;
2689 dpa->dpa_zio = pio;
2690
2691 /*
2692 * If we have the indirect just above us, no need to do the asynchronous
2693 * prefetch chain; we'll just run the last step ourselves. If we're at
2694 * a higher level, though, we want to issue the prefetches for all the
2695 * indirect blocks asynchronously, so we can go on with whatever we were
2696 * doing.
2697 */
2698 if (curlevel == level) {
2699 ASSERT3U(curblkid, ==, blkid);
2700 dbuf_issue_final_prefetch(dpa, &bp);
2701 kmem_free(dpa, sizeof (*dpa));
2702 } else {
2703 arc_flags_t iter_aflags = ARC_FLAG_NOWAIT;
2704 zbookmark_phys_t zb;
2705
2706 SET_BOOKMARK(&zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET,
2707 dn->dn_object, curlevel, curblkid);
2708 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa,
2709 &bp, dbuf_prefetch_indirect_done, dpa, prio,
2710 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
2711 &iter_aflags, &zb);
2712 }
2713 /*
2714 * We use pio here instead of dpa_zio since it's possible that
2715 * dpa may have already been freed.
2716 */
2717 zio_nowait(pio);
2718 }
2719
2720 #define DBUF_HOLD_IMPL_MAX_DEPTH 20
2721
2722 /*
2723 * Returns with db_holds incremented, and db_mtx not held.
2724 * Note: dn_struct_rwlock must be held.
2725 */
2726 static int
2727 __dbuf_hold_impl(struct dbuf_hold_impl_data *dh)
2728 {
2729 ASSERT3S(dh->dh_depth, <, DBUF_HOLD_IMPL_MAX_DEPTH);
2730 dh->dh_parent = NULL;
2731
2732 ASSERT(dh->dh_blkid != DMU_BONUS_BLKID);
2733 ASSERT(RW_LOCK_HELD(&dh->dh_dn->dn_struct_rwlock));
2734 ASSERT3U(dh->dh_dn->dn_nlevels, >, dh->dh_level);
2735
2736 *(dh->dh_dbp) = NULL;
2737
2738 /* dbuf_find() returns with db_mtx held */
2739 dh->dh_db = dbuf_find(dh->dh_dn->dn_objset, dh->dh_dn->dn_object,
2740 dh->dh_level, dh->dh_blkid);
2741
2742 if (dh->dh_db == NULL) {
2743 dh->dh_bp = NULL;
2744
2745 if (dh->dh_fail_uncached)
2746 return (SET_ERROR(ENOENT));
2747
2748 ASSERT3P(dh->dh_parent, ==, NULL);
2749 dh->dh_err = dbuf_findbp(dh->dh_dn, dh->dh_level, dh->dh_blkid,
2750 dh->dh_fail_sparse, &dh->dh_parent, &dh->dh_bp, dh);
2751 if (dh->dh_fail_sparse) {
2752 if (dh->dh_err == 0 &&
2753 dh->dh_bp && BP_IS_HOLE(dh->dh_bp))
2754 dh->dh_err = SET_ERROR(ENOENT);
2755 if (dh->dh_err) {
2756 if (dh->dh_parent)
2757 dbuf_rele(dh->dh_parent, NULL);
2758 return (dh->dh_err);
2759 }
2760 }
2761 if (dh->dh_err && dh->dh_err != ENOENT)
2762 return (dh->dh_err);
2763 dh->dh_db = dbuf_create(dh->dh_dn, dh->dh_level, dh->dh_blkid,
2764 dh->dh_parent, dh->dh_bp);
2765 }
2766
2767 if (dh->dh_fail_uncached && dh->dh_db->db_state != DB_CACHED) {
2768 mutex_exit(&dh->dh_db->db_mtx);
2769 return (SET_ERROR(ENOENT));
2770 }
2771
2772 if (dh->dh_db->db_buf != NULL)
2773 ASSERT3P(dh->dh_db->db.db_data, ==, dh->dh_db->db_buf->b_data);
2774
2775 ASSERT(dh->dh_db->db_buf == NULL || arc_referenced(dh->dh_db->db_buf));
2776
2777 /*
2778 * If this buffer is currently syncing out, and we are are
2779 * still referencing it from db_data, we need to make a copy
2780 * of it in case we decide we want to dirty it again in this txg.
2781 */
2782 if (dh->dh_db->db_level == 0 &&
2783 dh->dh_db->db_blkid != DMU_BONUS_BLKID &&
2784 dh->dh_dn->dn_object != DMU_META_DNODE_OBJECT &&
2785 dh->dh_db->db_state == DB_CACHED && dh->dh_db->db_data_pending) {
2786 dh->dh_dr = dh->dh_db->db_data_pending;
2787
2788 if (dh->dh_dr->dt.dl.dr_data == dh->dh_db->db_buf) {
2789 dh->dh_type = DBUF_GET_BUFC_TYPE(dh->dh_db);
2790
2791 dbuf_set_data(dh->dh_db,
2792 arc_alloc_buf(dh->dh_dn->dn_objset->os_spa,
2793 dh->dh_db, dh->dh_type, dh->dh_db->db.db_size));
2794 bcopy(dh->dh_dr->dt.dl.dr_data->b_data,
2795 dh->dh_db->db.db_data, dh->dh_db->db.db_size);
2796 }
2797 }
2798
2799 if (multilist_link_active(&dh->dh_db->db_cache_link)) {
2800 ASSERT(refcount_is_zero(&dh->dh_db->db_holds));
2801 multilist_remove(dbuf_cache, dh->dh_db);
2802 (void) refcount_remove_many(&dbuf_cache_size,
2803 dh->dh_db->db.db_size, dh->dh_db);
2804 }
2805 (void) refcount_add(&dh->dh_db->db_holds, dh->dh_tag);
2806 DBUF_VERIFY(dh->dh_db);
2807 mutex_exit(&dh->dh_db->db_mtx);
2808
2809 /* NOTE: we can't rele the parent until after we drop the db_mtx */
2810 if (dh->dh_parent)
2811 dbuf_rele(dh->dh_parent, NULL);
2812
2813 ASSERT3P(DB_DNODE(dh->dh_db), ==, dh->dh_dn);
2814 ASSERT3U(dh->dh_db->db_blkid, ==, dh->dh_blkid);
2815 ASSERT3U(dh->dh_db->db_level, ==, dh->dh_level);
2816 *(dh->dh_dbp) = dh->dh_db;
2817
2818 return (0);
2819 }
2820
2821 /*
2822 * The following code preserves the recursive function dbuf_hold_impl()
2823 * but moves the local variables AND function arguments to the heap to
2824 * minimize the stack frame size. Enough space is initially allocated
2825 * on the stack for 20 levels of recursion.
2826 */
2827 int
2828 dbuf_hold_impl(dnode_t *dn, uint8_t level, uint64_t blkid,
2829 boolean_t fail_sparse, boolean_t fail_uncached,
2830 void *tag, dmu_buf_impl_t **dbp)
2831 {
2832 struct dbuf_hold_impl_data *dh;
2833 int error;
2834
2835 dh = kmem_alloc(sizeof (struct dbuf_hold_impl_data) *
2836 DBUF_HOLD_IMPL_MAX_DEPTH, KM_SLEEP);
2837 __dbuf_hold_impl_init(dh, dn, level, blkid, fail_sparse,
2838 fail_uncached, tag, dbp, 0);
2839
2840 error = __dbuf_hold_impl(dh);
2841
2842 kmem_free(dh, sizeof (struct dbuf_hold_impl_data) *
2843 DBUF_HOLD_IMPL_MAX_DEPTH);
2844
2845 return (error);
2846 }
2847
2848 static void
2849 __dbuf_hold_impl_init(struct dbuf_hold_impl_data *dh,
2850 dnode_t *dn, uint8_t level, uint64_t blkid,
2851 boolean_t fail_sparse, boolean_t fail_uncached,
2852 void *tag, dmu_buf_impl_t **dbp, int depth)
2853 {
2854 dh->dh_dn = dn;
2855 dh->dh_level = level;
2856 dh->dh_blkid = blkid;
2857
2858 dh->dh_fail_sparse = fail_sparse;
2859 dh->dh_fail_uncached = fail_uncached;
2860
2861 dh->dh_tag = tag;
2862 dh->dh_dbp = dbp;
2863
2864 dh->dh_db = NULL;
2865 dh->dh_parent = NULL;
2866 dh->dh_bp = NULL;
2867 dh->dh_err = 0;
2868 dh->dh_dr = NULL;
2869 dh->dh_type = 0;
2870
2871 dh->dh_depth = depth;
2872 }
2873
2874 dmu_buf_impl_t *
2875 dbuf_hold(dnode_t *dn, uint64_t blkid, void *tag)
2876 {
2877 return (dbuf_hold_level(dn, 0, blkid, tag));
2878 }
2879
2880 dmu_buf_impl_t *
2881 dbuf_hold_level(dnode_t *dn, int level, uint64_t blkid, void *tag)
2882 {
2883 dmu_buf_impl_t *db;
2884 int err = dbuf_hold_impl(dn, level, blkid, FALSE, FALSE, tag, &db);
2885 return (err ? NULL : db);
2886 }
2887
2888 void
2889 dbuf_create_bonus(dnode_t *dn)
2890 {
2891 ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock));
2892
2893 ASSERT(dn->dn_bonus == NULL);
2894 dn->dn_bonus = dbuf_create(dn, 0, DMU_BONUS_BLKID, dn->dn_dbuf, NULL);
2895 }
2896
2897 int
2898 dbuf_spill_set_blksz(dmu_buf_t *db_fake, uint64_t blksz, dmu_tx_t *tx)
2899 {
2900 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2901 dnode_t *dn;
2902
2903 if (db->db_blkid != DMU_SPILL_BLKID)
2904 return (SET_ERROR(ENOTSUP));
2905 if (blksz == 0)
2906 blksz = SPA_MINBLOCKSIZE;
2907 ASSERT3U(blksz, <=, spa_maxblocksize(dmu_objset_spa(db->db_objset)));
2908 blksz = P2ROUNDUP(blksz, SPA_MINBLOCKSIZE);
2909
2910 DB_DNODE_ENTER(db);
2911 dn = DB_DNODE(db);
2912 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
2913 dbuf_new_size(db, blksz, tx);
2914 rw_exit(&dn->dn_struct_rwlock);
2915 DB_DNODE_EXIT(db);
2916
2917 return (0);
2918 }
2919
2920 void
2921 dbuf_rm_spill(dnode_t *dn, dmu_tx_t *tx)
2922 {
2923 dbuf_free_range(dn, DMU_SPILL_BLKID, DMU_SPILL_BLKID, tx);
2924 }
2925
2926 #pragma weak dmu_buf_add_ref = dbuf_add_ref
2927 void
2928 dbuf_add_ref(dmu_buf_impl_t *db, void *tag)
2929 {
2930 int64_t holds = refcount_add(&db->db_holds, tag);
2931 VERIFY3S(holds, >, 1);
2932 }
2933
2934 #pragma weak dmu_buf_try_add_ref = dbuf_try_add_ref
2935 boolean_t
2936 dbuf_try_add_ref(dmu_buf_t *db_fake, objset_t *os, uint64_t obj, uint64_t blkid,
2937 void *tag)
2938 {
2939 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2940 dmu_buf_impl_t *found_db;
2941 boolean_t result = B_FALSE;
2942
2943 if (blkid == DMU_BONUS_BLKID)
2944 found_db = dbuf_find_bonus(os, obj);
2945 else
2946 found_db = dbuf_find(os, obj, 0, blkid);
2947
2948 if (found_db != NULL) {
2949 if (db == found_db && dbuf_refcount(db) > db->db_dirtycnt) {
2950 (void) refcount_add(&db->db_holds, tag);
2951 result = B_TRUE;
2952 }
2953 mutex_exit(&found_db->db_mtx);
2954 }
2955 return (result);
2956 }
2957
2958 /*
2959 * If you call dbuf_rele() you had better not be referencing the dnode handle
2960 * unless you have some other direct or indirect hold on the dnode. (An indirect
2961 * hold is a hold on one of the dnode's dbufs, including the bonus buffer.)
2962 * Without that, the dbuf_rele() could lead to a dnode_rele() followed by the
2963 * dnode's parent dbuf evicting its dnode handles.
2964 */
2965 void
2966 dbuf_rele(dmu_buf_impl_t *db, void *tag)
2967 {
2968 mutex_enter(&db->db_mtx);
2969 dbuf_rele_and_unlock(db, tag);
2970 }
2971
2972 void
2973 dmu_buf_rele(dmu_buf_t *db, void *tag)
2974 {
2975 dbuf_rele((dmu_buf_impl_t *)db, tag);
2976 }
2977
2978 /*
2979 * dbuf_rele() for an already-locked dbuf. This is necessary to allow
2980 * db_dirtycnt and db_holds to be updated atomically.
2981 */
2982 void
2983 dbuf_rele_and_unlock(dmu_buf_impl_t *db, void *tag)
2984 {
2985 int64_t holds;
2986
2987 ASSERT(MUTEX_HELD(&db->db_mtx));
2988 DBUF_VERIFY(db);
2989
2990 /*
2991 * Remove the reference to the dbuf before removing its hold on the
2992 * dnode so we can guarantee in dnode_move() that a referenced bonus
2993 * buffer has a corresponding dnode hold.
2994 */
2995 holds = refcount_remove(&db->db_holds, tag);
2996 ASSERT(holds >= 0);
2997
2998 /*
2999 * We can't freeze indirects if there is a possibility that they
3000 * may be modified in the current syncing context.
3001 */
3002 if (db->db_buf != NULL &&
3003 holds == (db->db_level == 0 ? db->db_dirtycnt : 0)) {
3004 arc_buf_freeze(db->db_buf);
3005 }
3006
3007 if (holds == db->db_dirtycnt &&
3008 db->db_level == 0 && db->db_user_immediate_evict)
3009 dbuf_evict_user(db);
3010
3011 if (holds == 0) {
3012 if (db->db_blkid == DMU_BONUS_BLKID) {
3013 dnode_t *dn;
3014 boolean_t evict_dbuf = db->db_pending_evict;
3015
3016 /*
3017 * If the dnode moves here, we cannot cross this
3018 * barrier until the move completes.
3019 */
3020 DB_DNODE_ENTER(db);
3021
3022 dn = DB_DNODE(db);
3023 atomic_dec_32(&dn->dn_dbufs_count);
3024
3025 /*
3026 * Decrementing the dbuf count means that the bonus
3027 * buffer's dnode hold is no longer discounted in
3028 * dnode_move(). The dnode cannot move until after
3029 * the dnode_rele() below.
3030 */
3031 DB_DNODE_EXIT(db);
3032
3033 /*
3034 * Do not reference db after its lock is dropped.
3035 * Another thread may evict it.
3036 */
3037 mutex_exit(&db->db_mtx);
3038
3039 if (evict_dbuf)
3040 dnode_evict_bonus(dn);
3041
3042 dnode_rele(dn, db);
3043 } else if (db->db_buf == NULL) {
3044 /*
3045 * This is a special case: we never associated this
3046 * dbuf with any data allocated from the ARC.
3047 */
3048 ASSERT(db->db_state == DB_UNCACHED ||
3049 db->db_state == DB_NOFILL);
3050 dbuf_destroy(db);
3051 } else if (arc_released(db->db_buf)) {
3052 /*
3053 * This dbuf has anonymous data associated with it.
3054 */
3055 dbuf_destroy(db);
3056 } else {
3057 boolean_t do_arc_evict = B_FALSE;
3058 blkptr_t bp;
3059 spa_t *spa = dmu_objset_spa(db->db_objset);
3060
3061 if (!DBUF_IS_CACHEABLE(db) &&
3062 db->db_blkptr != NULL &&
3063 !BP_IS_HOLE(db->db_blkptr) &&
3064 !BP_IS_EMBEDDED(db->db_blkptr)) {
3065 do_arc_evict = B_TRUE;
3066 bp = *db->db_blkptr;
3067 }
3068
3069 if (!DBUF_IS_CACHEABLE(db) ||
3070 db->db_pending_evict) {
3071 dbuf_destroy(db);
3072 } else if (!multilist_link_active(&db->db_cache_link)) {
3073 multilist_insert(dbuf_cache, db);
3074 (void) refcount_add_many(&dbuf_cache_size,
3075 db->db.db_size, db);
3076 mutex_exit(&db->db_mtx);
3077
3078 dbuf_evict_notify();
3079 }
3080
3081 if (do_arc_evict)
3082 arc_freed(spa, &bp);
3083 }
3084 } else {
3085 mutex_exit(&db->db_mtx);
3086 }
3087
3088 }
3089
3090 #pragma weak dmu_buf_refcount = dbuf_refcount
3091 uint64_t
3092 dbuf_refcount(dmu_buf_impl_t *db)
3093 {
3094 return (refcount_count(&db->db_holds));
3095 }
3096
3097 void *
3098 dmu_buf_replace_user(dmu_buf_t *db_fake, dmu_buf_user_t *old_user,
3099 dmu_buf_user_t *new_user)
3100 {
3101 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
3102
3103 mutex_enter(&db->db_mtx);
3104 dbuf_verify_user(db, DBVU_NOT_EVICTING);
3105 if (db->db_user == old_user)
3106 db->db_user = new_user;
3107 else
3108 old_user = db->db_user;
3109 dbuf_verify_user(db, DBVU_NOT_EVICTING);
3110 mutex_exit(&db->db_mtx);
3111
3112 return (old_user);
3113 }
3114
3115 void *
3116 dmu_buf_set_user(dmu_buf_t *db_fake, dmu_buf_user_t *user)
3117 {
3118 return (dmu_buf_replace_user(db_fake, NULL, user));
3119 }
3120
3121 void *
3122 dmu_buf_set_user_ie(dmu_buf_t *db_fake, dmu_buf_user_t *user)
3123 {
3124 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
3125
3126 db->db_user_immediate_evict = TRUE;
3127 return (dmu_buf_set_user(db_fake, user));
3128 }
3129
3130 void *
3131 dmu_buf_remove_user(dmu_buf_t *db_fake, dmu_buf_user_t *user)
3132 {
3133 return (dmu_buf_replace_user(db_fake, user, NULL));
3134 }
3135
3136 void *
3137 dmu_buf_get_user(dmu_buf_t *db_fake)
3138 {
3139 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
3140
3141 dbuf_verify_user(db, DBVU_NOT_EVICTING);
3142 return (db->db_user);
3143 }
3144
3145 void
3146 dmu_buf_user_evict_wait()
3147 {
3148 taskq_wait(dbu_evict_taskq);
3149 }
3150
3151 blkptr_t *
3152 dmu_buf_get_blkptr(dmu_buf_t *db)
3153 {
3154 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
3155 return (dbi->db_blkptr);
3156 }
3157
3158 objset_t *
3159 dmu_buf_get_objset(dmu_buf_t *db)
3160 {
3161 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
3162 return (dbi->db_objset);
3163 }
3164
3165 dnode_t *
3166 dmu_buf_dnode_enter(dmu_buf_t *db)
3167 {
3168 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
3169 DB_DNODE_ENTER(dbi);
3170 return (DB_DNODE(dbi));
3171 }
3172
3173 void
3174 dmu_buf_dnode_exit(dmu_buf_t *db)
3175 {
3176 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
3177 DB_DNODE_EXIT(dbi);
3178 }
3179
3180 static void
3181 dbuf_check_blkptr(dnode_t *dn, dmu_buf_impl_t *db)
3182 {
3183 /* ASSERT(dmu_tx_is_syncing(tx) */
3184 ASSERT(MUTEX_HELD(&db->db_mtx));
3185
3186 if (db->db_blkptr != NULL)
3187 return;
3188
3189 if (db->db_blkid == DMU_SPILL_BLKID) {
3190 db->db_blkptr = DN_SPILL_BLKPTR(dn->dn_phys);
3191 BP_ZERO(db->db_blkptr);
3192 return;
3193 }
3194 if (db->db_level == dn->dn_phys->dn_nlevels-1) {
3195 /*
3196 * This buffer was allocated at a time when there was
3197 * no available blkptrs from the dnode, or it was
3198 * inappropriate to hook it in (i.e., nlevels mis-match).
3199 */
3200 ASSERT(db->db_blkid < dn->dn_phys->dn_nblkptr);
3201 ASSERT(db->db_parent == NULL);
3202 db->db_parent = dn->dn_dbuf;
3203 db->db_blkptr = &dn->dn_phys->dn_blkptr[db->db_blkid];
3204 DBUF_VERIFY(db);
3205 } else {
3206 dmu_buf_impl_t *parent = db->db_parent;
3207 int epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
3208
3209 ASSERT(dn->dn_phys->dn_nlevels > 1);
3210 if (parent == NULL) {
3211 mutex_exit(&db->db_mtx);
3212 rw_enter(&dn->dn_struct_rwlock, RW_READER);
3213 parent = dbuf_hold_level(dn, db->db_level + 1,
3214 db->db_blkid >> epbs, db);
3215 rw_exit(&dn->dn_struct_rwlock);
3216 mutex_enter(&db->db_mtx);
3217 db->db_parent = parent;
3218 }
3219 db->db_blkptr = (blkptr_t *)parent->db.db_data +
3220 (db->db_blkid & ((1ULL << epbs) - 1));
3221 DBUF_VERIFY(db);
3222 }
3223 }
3224
3225 /*
3226 * Ensure the dbuf's data is untransformed if the associated dirty
3227 * record requires it. This is used by dbuf_sync_leaf() to ensure
3228 * that a dnode block is decrypted before we write new data to it.
3229 * For raw writes we assert that the buffer is already encrypted.
3230 */
3231 static void
3232 dbuf_check_crypt(dbuf_dirty_record_t *dr)
3233 {
3234 int err;
3235 dmu_buf_impl_t *db = dr->dr_dbuf;
3236
3237 ASSERT(MUTEX_HELD(&db->db_mtx));
3238
3239 if (!dr->dt.dl.dr_raw && arc_is_encrypted(db->db_buf)) {
3240 /*
3241 * Unfortunately, there is currently no mechanism for
3242 * syncing context to handle decryption errors. An error
3243 * here is only possible if an attacker maliciously
3244 * changed a dnode block and updated the associated
3245 * checksums going up the block tree.
3246 */
3247 err = arc_untransform(db->db_buf, db->db_objset->os_spa,
3248 dmu_objset_id(db->db_objset), B_TRUE);
3249 if (err)
3250 panic("Invalid dnode block MAC");
3251 } else if (dr->dt.dl.dr_raw) {
3252 /*
3253 * Writing raw encrypted data requires the db's arc buffer
3254 * to be converted to raw by the caller.
3255 */
3256 ASSERT(arc_is_encrypted(db->db_buf));
3257 }
3258 }
3259
3260 /*
3261 * dbuf_sync_indirect() is called recursively from dbuf_sync_list() so it
3262 * is critical the we not allow the compiler to inline this function in to
3263 * dbuf_sync_list() thereby drastically bloating the stack usage.
3264 */
3265 noinline static void
3266 dbuf_sync_indirect(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
3267 {
3268 dmu_buf_impl_t *db = dr->dr_dbuf;
3269 dnode_t *dn;
3270 zio_t *zio;
3271
3272 ASSERT(dmu_tx_is_syncing(tx));
3273
3274 dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr);
3275
3276 mutex_enter(&db->db_mtx);
3277
3278 ASSERT(db->db_level > 0);
3279 DBUF_VERIFY(db);
3280
3281 /* Read the block if it hasn't been read yet. */
3282 if (db->db_buf == NULL) {
3283 mutex_exit(&db->db_mtx);
3284 (void) dbuf_read(db, NULL, DB_RF_MUST_SUCCEED);
3285 mutex_enter(&db->db_mtx);
3286 }
3287 ASSERT3U(db->db_state, ==, DB_CACHED);
3288 ASSERT(db->db_buf != NULL);
3289
3290 DB_DNODE_ENTER(db);
3291 dn = DB_DNODE(db);
3292 /* Indirect block size must match what the dnode thinks it is. */
3293 ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift);
3294 dbuf_check_blkptr(dn, db);
3295 DB_DNODE_EXIT(db);
3296
3297 /* Provide the pending dirty record to child dbufs */
3298 db->db_data_pending = dr;
3299
3300 mutex_exit(&db->db_mtx);
3301 dbuf_write(dr, db->db_buf, tx);
3302
3303 zio = dr->dr_zio;
3304 mutex_enter(&dr->dt.di.dr_mtx);
3305 dbuf_sync_list(&dr->dt.di.dr_children, db->db_level - 1, tx);
3306 ASSERT(list_head(&dr->dt.di.dr_children) == NULL);
3307 mutex_exit(&dr->dt.di.dr_mtx);
3308 zio_nowait(zio);
3309 }
3310
3311 /*
3312 * dbuf_sync_leaf() is called recursively from dbuf_sync_list() so it is
3313 * critical the we not allow the compiler to inline this function in to
3314 * dbuf_sync_list() thereby drastically bloating the stack usage.
3315 */
3316 noinline static void
3317 dbuf_sync_leaf(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
3318 {
3319 arc_buf_t **datap = &dr->dt.dl.dr_data;
3320 dmu_buf_impl_t *db = dr->dr_dbuf;
3321 dnode_t *dn;
3322 objset_t *os;
3323 uint64_t txg = tx->tx_txg;
3324
3325 ASSERT(dmu_tx_is_syncing(tx));
3326
3327 dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr);
3328
3329 mutex_enter(&db->db_mtx);
3330 /*
3331 * To be synced, we must be dirtied. But we
3332 * might have been freed after the dirty.
3333 */
3334 if (db->db_state == DB_UNCACHED) {
3335 /* This buffer has been freed since it was dirtied */
3336 ASSERT(db->db.db_data == NULL);
3337 } else if (db->db_state == DB_FILL) {
3338 /* This buffer was freed and is now being re-filled */
3339 ASSERT(db->db.db_data != dr->dt.dl.dr_data);
3340 } else {
3341 ASSERT(db->db_state == DB_CACHED || db->db_state == DB_NOFILL);
3342 }
3343 DBUF_VERIFY(db);
3344
3345 DB_DNODE_ENTER(db);
3346 dn = DB_DNODE(db);
3347
3348 if (db->db_blkid == DMU_SPILL_BLKID) {
3349 mutex_enter(&dn->dn_mtx);
3350 if (!(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR)) {
3351 /*
3352 * In the previous transaction group, the bonus buffer
3353 * was entirely used to store the attributes for the
3354 * dnode which overrode the dn_spill field. However,
3355 * when adding more attributes to the file a spill
3356 * block was required to hold the extra attributes.
3357 *
3358 * Make sure to clear the garbage left in the dn_spill
3359 * field from the previous attributes in the bonus
3360 * buffer. Otherwise, after writing out the spill
3361 * block to the new allocated dva, it will free
3362 * the old block pointed to by the invalid dn_spill.
3363 */
3364 db->db_blkptr = NULL;
3365 }
3366 dn->dn_phys->dn_flags |= DNODE_FLAG_SPILL_BLKPTR;
3367 mutex_exit(&dn->dn_mtx);
3368 }
3369
3370 /*
3371 * If this is a bonus buffer, simply copy the bonus data into the
3372 * dnode. It will be written out when the dnode is synced (and it
3373 * will be synced, since it must have been dirty for dbuf_sync to
3374 * be called).
3375 */
3376 if (db->db_blkid == DMU_BONUS_BLKID) {
3377 dbuf_dirty_record_t **drp;
3378
3379 ASSERT(*datap != NULL);
3380 ASSERT0(db->db_level);
3381 ASSERT3U(DN_MAX_BONUS_LEN(dn->dn_phys), <=,
3382 DN_SLOTS_TO_BONUSLEN(dn->dn_phys->dn_extra_slots + 1));
3383 bcopy(*datap, DN_BONUS(dn->dn_phys),
3384 DN_MAX_BONUS_LEN(dn->dn_phys));
3385 DB_DNODE_EXIT(db);
3386
3387 if (*datap != db->db.db_data) {
3388 int slots = DB_DNODE(db)->dn_num_slots;
3389 int bonuslen = DN_SLOTS_TO_BONUSLEN(slots);
3390 kmem_free(*datap, bonuslen);
3391 arc_space_return(bonuslen, ARC_SPACE_BONUS);
3392 }
3393 db->db_data_pending = NULL;
3394 drp = &db->db_last_dirty;
3395 while (*drp != dr)
3396 drp = &(*drp)->dr_next;
3397 ASSERT(dr->dr_next == NULL);
3398 ASSERT(dr->dr_dbuf == db);
3399 *drp = dr->dr_next;
3400 if (dr->dr_dbuf->db_level != 0) {
3401 mutex_destroy(&dr->dt.di.dr_mtx);
3402 list_destroy(&dr->dt.di.dr_children);
3403 }
3404 kmem_free(dr, sizeof (dbuf_dirty_record_t));
3405 ASSERT(db->db_dirtycnt > 0);
3406 db->db_dirtycnt -= 1;
3407 dbuf_rele_and_unlock(db, (void *)(uintptr_t)txg);
3408 return;
3409 }
3410
3411 os = dn->dn_objset;
3412
3413 /*
3414 * This function may have dropped the db_mtx lock allowing a dmu_sync
3415 * operation to sneak in. As a result, we need to ensure that we
3416 * don't check the dr_override_state until we have returned from
3417 * dbuf_check_blkptr.
3418 */
3419 dbuf_check_blkptr(dn, db);
3420
3421 /*
3422 * If this buffer is in the middle of an immediate write,
3423 * wait for the synchronous IO to complete.
3424 */
3425 while (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC) {
3426 ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT);
3427 cv_wait(&db->db_changed, &db->db_mtx);
3428 ASSERT(dr->dt.dl.dr_override_state != DR_NOT_OVERRIDDEN);
3429 }
3430
3431 /*
3432 * If this is a dnode block, ensure it is appropriately encrypted
3433 * or decrypted, depending on what we are writing to it this txg.
3434 */
3435 if (os->os_encrypted && dn->dn_object == DMU_META_DNODE_OBJECT)
3436 dbuf_check_crypt(dr);
3437
3438 if (db->db_state != DB_NOFILL &&
3439 dn->dn_object != DMU_META_DNODE_OBJECT &&
3440 refcount_count(&db->db_holds) > 1 &&
3441 dr->dt.dl.dr_override_state != DR_OVERRIDDEN &&
3442 *datap == db->db_buf) {
3443 /*
3444 * If this buffer is currently "in use" (i.e., there
3445 * are active holds and db_data still references it),
3446 * then make a copy before we start the write so that
3447 * any modifications from the open txg will not leak
3448 * into this write.
3449 *
3450 * NOTE: this copy does not need to be made for
3451 * objects only modified in the syncing context (e.g.
3452 * DNONE_DNODE blocks).
3453 */
3454 int psize = arc_buf_size(*datap);
3455 int lsize = arc_buf_lsize(*datap);
3456 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
3457 enum zio_compress compress_type = arc_get_compression(*datap);
3458
3459 if (arc_is_encrypted(*datap)) {
3460 boolean_t byteorder;
3461 uint8_t salt[ZIO_DATA_SALT_LEN];
3462 uint8_t iv[ZIO_DATA_IV_LEN];
3463 uint8_t mac[ZIO_DATA_MAC_LEN];
3464
3465 arc_get_raw_params(*datap, &byteorder, salt, iv, mac);
3466 *datap = arc_alloc_raw_buf(os->os_spa, db,
3467 dmu_objset_id(os), byteorder, salt, iv, mac,
3468 dn->dn_type, psize, lsize, compress_type);
3469 } else if (compress_type != ZIO_COMPRESS_OFF) {
3470 ASSERT3U(type, ==, ARC_BUFC_DATA);
3471 *datap = arc_alloc_compressed_buf(os->os_spa, db,
3472 psize, lsize, compress_type);
3473 } else {
3474 *datap = arc_alloc_buf(os->os_spa, db, type, psize);
3475 }
3476 bcopy(db->db.db_data, (*datap)->b_data, psize);
3477 }
3478 db->db_data_pending = dr;
3479
3480 mutex_exit(&db->db_mtx);
3481
3482 dbuf_write(dr, *datap, tx);
3483
3484 ASSERT(!list_link_active(&dr->dr_dirty_node));
3485 if (dn->dn_object == DMU_META_DNODE_OBJECT) {
3486 list_insert_tail(&dn->dn_dirty_records[txg&TXG_MASK], dr);
3487 DB_DNODE_EXIT(db);
3488 } else {
3489 /*
3490 * Although zio_nowait() does not "wait for an IO", it does
3491 * initiate the IO. If this is an empty write it seems plausible
3492 * that the IO could actually be completed before the nowait
3493 * returns. We need to DB_DNODE_EXIT() first in case
3494 * zio_nowait() invalidates the dbuf.
3495 */
3496 DB_DNODE_EXIT(db);
3497 zio_nowait(dr->dr_zio);
3498 }
3499 }
3500
3501 void
3502 dbuf_sync_list(list_t *list, int level, dmu_tx_t *tx)
3503 {
3504 dbuf_dirty_record_t *dr;
3505
3506 while ((dr = list_head(list))) {
3507 if (dr->dr_zio != NULL) {
3508 /*
3509 * If we find an already initialized zio then we
3510 * are processing the meta-dnode, and we have finished.
3511 * The dbufs for all dnodes are put back on the list
3512 * during processing, so that we can zio_wait()
3513 * these IOs after initiating all child IOs.
3514 */
3515 ASSERT3U(dr->dr_dbuf->db.db_object, ==,
3516 DMU_META_DNODE_OBJECT);
3517 break;
3518 }
3519 if (dr->dr_dbuf->db_blkid != DMU_BONUS_BLKID &&
3520 dr->dr_dbuf->db_blkid != DMU_SPILL_BLKID) {
3521 VERIFY3U(dr->dr_dbuf->db_level, ==, level);
3522 }
3523 list_remove(list, dr);
3524 if (dr->dr_dbuf->db_level > 0)
3525 dbuf_sync_indirect(dr, tx);
3526 else
3527 dbuf_sync_leaf(dr, tx);
3528 }
3529 }
3530
3531 /* ARGSUSED */
3532 static void
3533 dbuf_write_ready(zio_t *zio, arc_buf_t *buf, void *vdb)
3534 {
3535 dmu_buf_impl_t *db = vdb;
3536 dnode_t *dn;
3537 blkptr_t *bp = zio->io_bp;
3538 blkptr_t *bp_orig = &zio->io_bp_orig;
3539 spa_t *spa = zio->io_spa;
3540 int64_t delta;
3541 uint64_t fill = 0;
3542 int i;
3543
3544 ASSERT3P(db->db_blkptr, !=, NULL);
3545 ASSERT3P(&db->db_data_pending->dr_bp_copy, ==, bp);
3546
3547 DB_DNODE_ENTER(db);
3548 dn = DB_DNODE(db);
3549 delta = bp_get_dsize_sync(spa, bp) - bp_get_dsize_sync(spa, bp_orig);
3550 dnode_diduse_space(dn, delta - zio->io_prev_space_delta);
3551 zio->io_prev_space_delta = delta;
3552
3553 if (bp->blk_birth != 0) {
3554 ASSERT((db->db_blkid != DMU_SPILL_BLKID &&
3555 BP_GET_TYPE(bp) == dn->dn_type) ||
3556 (db->db_blkid == DMU_SPILL_BLKID &&
3557 BP_GET_TYPE(bp) == dn->dn_bonustype) ||
3558 BP_IS_EMBEDDED(bp));
3559 ASSERT(BP_GET_LEVEL(bp) == db->db_level);
3560 }
3561
3562 mutex_enter(&db->db_mtx);
3563
3564 #ifdef ZFS_DEBUG
3565 if (db->db_blkid == DMU_SPILL_BLKID) {
3566 ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR);
3567 ASSERT(!(BP_IS_HOLE(bp)) &&
3568 db->db_blkptr == DN_SPILL_BLKPTR(dn->dn_phys));
3569 }
3570 #endif
3571
3572 if (db->db_level == 0) {
3573 mutex_enter(&dn->dn_mtx);
3574 if (db->db_blkid > dn->dn_phys->dn_maxblkid &&
3575 db->db_blkid != DMU_SPILL_BLKID)
3576 dn->dn_phys->dn_maxblkid = db->db_blkid;
3577 mutex_exit(&dn->dn_mtx);
3578
3579 if (dn->dn_type == DMU_OT_DNODE) {
3580 i = 0;
3581 while (i < db->db.db_size) {
3582 dnode_phys_t *dnp =
3583 (void *)(((char *)db->db.db_data) + i);
3584
3585 i += DNODE_MIN_SIZE;
3586 if (dnp->dn_type != DMU_OT_NONE) {
3587 fill++;
3588 i += dnp->dn_extra_slots *
3589 DNODE_MIN_SIZE;
3590 }
3591 }
3592 } else {
3593 if (BP_IS_HOLE(bp)) {
3594 fill = 0;
3595 } else {
3596 fill = 1;
3597 }
3598 }
3599 } else {
3600 blkptr_t *ibp = db->db.db_data;
3601 ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift);
3602 for (i = db->db.db_size >> SPA_BLKPTRSHIFT; i > 0; i--, ibp++) {
3603 if (BP_IS_HOLE(ibp))
3604 continue;
3605 fill += BP_GET_FILL(ibp);
3606 }
3607 }
3608 DB_DNODE_EXIT(db);
3609
3610 if (!BP_IS_EMBEDDED(bp))
3611 BP_SET_FILL(bp, fill);
3612
3613 mutex_exit(&db->db_mtx);
3614
3615 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
3616 *db->db_blkptr = *bp;
3617 rw_exit(&dn->dn_struct_rwlock);
3618 }
3619
3620 /* ARGSUSED */
3621 /*
3622 * This function gets called just prior to running through the compression
3623 * stage of the zio pipeline. If we're an indirect block comprised of only
3624 * holes, then we want this indirect to be compressed away to a hole. In
3625 * order to do that we must zero out any information about the holes that
3626 * this indirect points to prior to before we try to compress it.
3627 */
3628 static void
3629 dbuf_write_children_ready(zio_t *zio, arc_buf_t *buf, void *vdb)
3630 {
3631 dmu_buf_impl_t *db = vdb;
3632 dnode_t *dn;
3633 blkptr_t *bp;
3634 unsigned int epbs, i;
3635
3636 ASSERT3U(db->db_level, >, 0);
3637 DB_DNODE_ENTER(db);
3638 dn = DB_DNODE(db);
3639 epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
3640 ASSERT3U(epbs, <, 31);
3641
3642 /* Determine if all our children are holes */
3643 for (i = 0, bp = db->db.db_data; i < 1ULL << epbs; i++, bp++) {
3644 if (!BP_IS_HOLE(bp))
3645 break;
3646 }
3647
3648 /*
3649 * If all the children are holes, then zero them all out so that
3650 * we may get compressed away.
3651 */
3652 if (i == 1ULL << epbs) {
3653 /*
3654 * We only found holes. Grab the rwlock to prevent
3655 * anybody from reading the blocks we're about to
3656 * zero out.
3657 */
3658 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
3659 bzero(db->db.db_data, db->db.db_size);
3660 rw_exit(&dn->dn_struct_rwlock);
3661 }
3662 DB_DNODE_EXIT(db);
3663 }
3664
3665 /*
3666 * The SPA will call this callback several times for each zio - once
3667 * for every physical child i/o (zio->io_phys_children times). This
3668 * allows the DMU to monitor the progress of each logical i/o. For example,
3669 * there may be 2 copies of an indirect block, or many fragments of a RAID-Z
3670 * block. There may be a long delay before all copies/fragments are completed,
3671 * so this callback allows us to retire dirty space gradually, as the physical
3672 * i/os complete.
3673 */
3674 /* ARGSUSED */
3675 static void
3676 dbuf_write_physdone(zio_t *zio, arc_buf_t *buf, void *arg)
3677 {
3678 dmu_buf_impl_t *db = arg;
3679 objset_t *os = db->db_objset;
3680 dsl_pool_t *dp = dmu_objset_pool(os);
3681 dbuf_dirty_record_t *dr;
3682 int delta = 0;
3683
3684 dr = db->db_data_pending;
3685 ASSERT3U(dr->dr_txg, ==, zio->io_txg);
3686
3687 /*
3688 * The callback will be called io_phys_children times. Retire one
3689 * portion of our dirty space each time we are called. Any rounding
3690 * error will be cleaned up by dsl_pool_sync()'s call to
3691 * dsl_pool_undirty_space().
3692 */
3693 delta = dr->dr_accounted / zio->io_phys_children;
3694 dsl_pool_undirty_space(dp, delta, zio->io_txg);
3695 }
3696
3697 /* ARGSUSED */
3698 static void
3699 dbuf_write_done(zio_t *zio, arc_buf_t *buf, void *vdb)
3700 {
3701 dmu_buf_impl_t *db = vdb;
3702 blkptr_t *bp_orig = &zio->io_bp_orig;
3703 blkptr_t *bp = db->db_blkptr;
3704 objset_t *os = db->db_objset;
3705 dmu_tx_t *tx = os->os_synctx;
3706 dbuf_dirty_record_t **drp, *dr;
3707
3708 ASSERT0(zio->io_error);
3709 ASSERT(db->db_blkptr == bp);
3710
3711 /*
3712 * For nopwrites and rewrites we ensure that the bp matches our
3713 * original and bypass all the accounting.
3714 */
3715 if (zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)) {
3716 ASSERT(BP_EQUAL(bp, bp_orig));
3717 } else {
3718 dsl_dataset_t *ds = os->os_dsl_dataset;
3719 (void) dsl_dataset_block_kill(ds, bp_orig, tx, B_TRUE);
3720 dsl_dataset_block_born(ds, bp, tx);
3721 }
3722
3723 mutex_enter(&db->db_mtx);
3724
3725 DBUF_VERIFY(db);
3726
3727 drp = &db->db_last_dirty;
3728 while ((dr = *drp) != db->db_data_pending)
3729 drp = &dr->dr_next;
3730 ASSERT(!list_link_active(&dr->dr_dirty_node));
3731 ASSERT(dr->dr_dbuf == db);
3732 ASSERT(dr->dr_next == NULL);
3733 *drp = dr->dr_next;
3734
3735 #ifdef ZFS_DEBUG
3736 if (db->db_blkid == DMU_SPILL_BLKID) {
3737 dnode_t *dn;
3738
3739 DB_DNODE_ENTER(db);
3740 dn = DB_DNODE(db);
3741 ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR);
3742 ASSERT(!(BP_IS_HOLE(db->db_blkptr)) &&
3743 db->db_blkptr == DN_SPILL_BLKPTR(dn->dn_phys));
3744 DB_DNODE_EXIT(db);
3745 }
3746 #endif
3747
3748 if (db->db_level == 0) {
3749 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
3750 ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN);
3751 if (db->db_state != DB_NOFILL) {
3752 if (dr->dt.dl.dr_data != db->db_buf)
3753 arc_buf_destroy(dr->dt.dl.dr_data, db);
3754 }
3755 } else {
3756 dnode_t *dn;
3757
3758 DB_DNODE_ENTER(db);
3759 dn = DB_DNODE(db);
3760 ASSERT(list_head(&dr->dt.di.dr_children) == NULL);
3761 ASSERT3U(db->db.db_size, ==, 1 << dn->dn_phys->dn_indblkshift);
3762 if (!BP_IS_HOLE(db->db_blkptr)) {
3763 ASSERTV(int epbs = dn->dn_phys->dn_indblkshift -
3764 SPA_BLKPTRSHIFT);
3765 ASSERT3U(db->db_blkid, <=,
3766 dn->dn_phys->dn_maxblkid >> (db->db_level * epbs));
3767 ASSERT3U(BP_GET_LSIZE(db->db_blkptr), ==,
3768 db->db.db_size);
3769 }
3770 DB_DNODE_EXIT(db);
3771 mutex_destroy(&dr->dt.di.dr_mtx);
3772 list_destroy(&dr->dt.di.dr_children);
3773 }
3774 kmem_free(dr, sizeof (dbuf_dirty_record_t));
3775
3776 cv_broadcast(&db->db_changed);
3777 ASSERT(db->db_dirtycnt > 0);
3778 db->db_dirtycnt -= 1;
3779 db->db_data_pending = NULL;
3780 dbuf_rele_and_unlock(db, (void *)(uintptr_t)tx->tx_txg);
3781 }
3782
3783 static void
3784 dbuf_write_nofill_ready(zio_t *zio)
3785 {
3786 dbuf_write_ready(zio, NULL, zio->io_private);
3787 }
3788
3789 static void
3790 dbuf_write_nofill_done(zio_t *zio)
3791 {
3792 dbuf_write_done(zio, NULL, zio->io_private);
3793 }
3794
3795 static void
3796 dbuf_write_override_ready(zio_t *zio)
3797 {
3798 dbuf_dirty_record_t *dr = zio->io_private;
3799 dmu_buf_impl_t *db = dr->dr_dbuf;
3800
3801 dbuf_write_ready(zio, NULL, db);
3802 }
3803
3804 static void
3805 dbuf_write_override_done(zio_t *zio)
3806 {
3807 dbuf_dirty_record_t *dr = zio->io_private;
3808 dmu_buf_impl_t *db = dr->dr_dbuf;
3809 blkptr_t *obp = &dr->dt.dl.dr_overridden_by;
3810
3811 mutex_enter(&db->db_mtx);
3812 if (!BP_EQUAL(zio->io_bp, obp)) {
3813 if (!BP_IS_HOLE(obp))
3814 dsl_free(spa_get_dsl(zio->io_spa), zio->io_txg, obp);
3815 arc_release(dr->dt.dl.dr_data, db);
3816 }
3817 mutex_exit(&db->db_mtx);
3818
3819 dbuf_write_done(zio, NULL, db);
3820
3821 if (zio->io_abd != NULL)
3822 abd_put(zio->io_abd);
3823 }
3824
3825 /* Issue I/O to commit a dirty buffer to disk. */
3826 static void
3827 dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx)
3828 {
3829 dmu_buf_impl_t *db = dr->dr_dbuf;
3830 dnode_t *dn;
3831 objset_t *os;
3832 dmu_buf_impl_t *parent = db->db_parent;
3833 uint64_t txg = tx->tx_txg;
3834 zbookmark_phys_t zb;
3835 zio_prop_t zp;
3836 zio_t *zio;
3837 int wp_flag = 0;
3838
3839 ASSERT(dmu_tx_is_syncing(tx));
3840
3841 DB_DNODE_ENTER(db);
3842 dn = DB_DNODE(db);
3843 os = dn->dn_objset;
3844
3845 if (db->db_state != DB_NOFILL) {
3846 if (db->db_level > 0 || dn->dn_type == DMU_OT_DNODE) {
3847 /*
3848 * Private object buffers are released here rather
3849 * than in dbuf_dirty() since they are only modified
3850 * in the syncing context and we don't want the
3851 * overhead of making multiple copies of the data.
3852 */
3853 if (BP_IS_HOLE(db->db_blkptr)) {
3854 arc_buf_thaw(data);
3855 } else {
3856 dbuf_release_bp(db);
3857 }
3858 }
3859 }
3860
3861 if (parent != dn->dn_dbuf) {
3862 /* Our parent is an indirect block. */
3863 /* We have a dirty parent that has been scheduled for write. */
3864 ASSERT(parent && parent->db_data_pending);
3865 /* Our parent's buffer is one level closer to the dnode. */
3866 ASSERT(db->db_level == parent->db_level-1);
3867 /*
3868 * We're about to modify our parent's db_data by modifying
3869 * our block pointer, so the parent must be released.
3870 */
3871 ASSERT(arc_released(parent->db_buf));
3872 zio = parent->db_data_pending->dr_zio;
3873 } else {
3874 /* Our parent is the dnode itself. */
3875 ASSERT((db->db_level == dn->dn_phys->dn_nlevels-1 &&
3876 db->db_blkid != DMU_SPILL_BLKID) ||
3877 (db->db_blkid == DMU_SPILL_BLKID && db->db_level == 0));
3878 if (db->db_blkid != DMU_SPILL_BLKID)
3879 ASSERT3P(db->db_blkptr, ==,
3880 &dn->dn_phys->dn_blkptr[db->db_blkid]);
3881 zio = dn->dn_zio;
3882 }
3883
3884 ASSERT(db->db_level == 0 || data == db->db_buf);
3885 ASSERT3U(db->db_blkptr->blk_birth, <=, txg);
3886 ASSERT(zio);
3887
3888 SET_BOOKMARK(&zb, os->os_dsl_dataset ?
3889 os->os_dsl_dataset->ds_object : DMU_META_OBJSET,
3890 db->db.db_object, db->db_level, db->db_blkid);
3891
3892 if (db->db_blkid == DMU_SPILL_BLKID)
3893 wp_flag = WP_SPILL;
3894 wp_flag |= (db->db_state == DB_NOFILL) ? WP_NOFILL : 0;
3895
3896 dmu_write_policy(os, dn, db->db_level, wp_flag, &zp);
3897 DB_DNODE_EXIT(db);
3898
3899 /*
3900 * We copy the blkptr now (rather than when we instantiate the dirty
3901 * record), because its value can change between open context and
3902 * syncing context. We do not need to hold dn_struct_rwlock to read
3903 * db_blkptr because we are in syncing context.
3904 */
3905 dr->dr_bp_copy = *db->db_blkptr;
3906
3907 if (db->db_level == 0 &&
3908 dr->dt.dl.dr_override_state == DR_OVERRIDDEN) {
3909 /*
3910 * The BP for this block has been provided by open context
3911 * (by dmu_sync() or dmu_buf_write_embedded()).
3912 */
3913 abd_t *contents = (data != NULL) ?
3914 abd_get_from_buf(data->b_data, arc_buf_size(data)) : NULL;
3915
3916 dr->dr_zio = zio_write(zio, os->os_spa, txg,
3917 &dr->dr_bp_copy, contents, db->db.db_size, db->db.db_size,
3918 &zp, dbuf_write_override_ready, NULL, NULL,
3919 dbuf_write_override_done,
3920 dr, ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb);
3921 mutex_enter(&db->db_mtx);
3922 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
3923 zio_write_override(dr->dr_zio, &dr->dt.dl.dr_overridden_by,
3924 dr->dt.dl.dr_copies, dr->dt.dl.dr_nopwrite);
3925 mutex_exit(&db->db_mtx);
3926 } else if (db->db_state == DB_NOFILL) {
3927 ASSERT(zp.zp_checksum == ZIO_CHECKSUM_OFF ||
3928 zp.zp_checksum == ZIO_CHECKSUM_NOPARITY);
3929 dr->dr_zio = zio_write(zio, os->os_spa, txg,
3930 &dr->dr_bp_copy, NULL, db->db.db_size, db->db.db_size, &zp,
3931 dbuf_write_nofill_ready, NULL, NULL,
3932 dbuf_write_nofill_done, db,
3933 ZIO_PRIORITY_ASYNC_WRITE,
3934 ZIO_FLAG_MUSTSUCCEED | ZIO_FLAG_NODATA, &zb);
3935 } else {
3936 arc_write_done_func_t *children_ready_cb = NULL;
3937 ASSERT(arc_released(data));
3938
3939 /*
3940 * For indirect blocks, we want to setup the children
3941 * ready callback so that we can properly handle an indirect
3942 * block that only contains holes.
3943 */
3944 if (db->db_level != 0)
3945 children_ready_cb = dbuf_write_children_ready;
3946
3947 dr->dr_zio = arc_write(zio, os->os_spa, txg,
3948 &dr->dr_bp_copy, data, DBUF_IS_L2CACHEABLE(db),
3949 &zp, dbuf_write_ready,
3950 children_ready_cb, dbuf_write_physdone,
3951 dbuf_write_done, db, ZIO_PRIORITY_ASYNC_WRITE,
3952 ZIO_FLAG_MUSTSUCCEED, &zb);
3953 }
3954 }
3955
3956 #if defined(_KERNEL) && defined(HAVE_SPL)
3957 EXPORT_SYMBOL(dbuf_find);
3958 EXPORT_SYMBOL(dbuf_is_metadata);
3959 EXPORT_SYMBOL(dbuf_destroy);
3960 EXPORT_SYMBOL(dbuf_loan_arcbuf);
3961 EXPORT_SYMBOL(dbuf_whichblock);
3962 EXPORT_SYMBOL(dbuf_read);
3963 EXPORT_SYMBOL(dbuf_unoverride);
3964 EXPORT_SYMBOL(dbuf_free_range);
3965 EXPORT_SYMBOL(dbuf_new_size);
3966 EXPORT_SYMBOL(dbuf_release_bp);
3967 EXPORT_SYMBOL(dbuf_dirty);
3968 EXPORT_SYMBOL(dmu_buf_will_change_crypt_params);
3969 EXPORT_SYMBOL(dmu_buf_will_dirty);
3970 EXPORT_SYMBOL(dmu_buf_will_not_fill);
3971 EXPORT_SYMBOL(dmu_buf_will_fill);
3972 EXPORT_SYMBOL(dmu_buf_fill_done);
3973 EXPORT_SYMBOL(dmu_buf_rele);
3974 EXPORT_SYMBOL(dbuf_assign_arcbuf);
3975 EXPORT_SYMBOL(dbuf_prefetch);
3976 EXPORT_SYMBOL(dbuf_hold_impl);
3977 EXPORT_SYMBOL(dbuf_hold);
3978 EXPORT_SYMBOL(dbuf_hold_level);
3979 EXPORT_SYMBOL(dbuf_create_bonus);
3980 EXPORT_SYMBOL(dbuf_spill_set_blksz);
3981 EXPORT_SYMBOL(dbuf_rm_spill);
3982 EXPORT_SYMBOL(dbuf_add_ref);
3983 EXPORT_SYMBOL(dbuf_rele);
3984 EXPORT_SYMBOL(dbuf_rele_and_unlock);
3985 EXPORT_SYMBOL(dbuf_refcount);
3986 EXPORT_SYMBOL(dbuf_sync_list);
3987 EXPORT_SYMBOL(dmu_buf_set_user);
3988 EXPORT_SYMBOL(dmu_buf_set_user_ie);
3989 EXPORT_SYMBOL(dmu_buf_get_user);
3990 EXPORT_SYMBOL(dmu_buf_get_blkptr);
3991
3992 /* BEGIN CSTYLED */
3993 module_param(dbuf_cache_max_bytes, ulong, 0644);
3994 MODULE_PARM_DESC(dbuf_cache_max_bytes,
3995 "Maximum size in bytes of the dbuf cache.");
3996
3997 module_param(dbuf_cache_hiwater_pct, uint, 0644);
3998 MODULE_PARM_DESC(dbuf_cache_hiwater_pct,
3999 "Percentage over dbuf_cache_max_bytes when dbufs must be evicted "
4000 "directly.");
4001
4002 module_param(dbuf_cache_lowater_pct, uint, 0644);
4003 MODULE_PARM_DESC(dbuf_cache_lowater_pct,
4004 "Percentage below dbuf_cache_max_bytes when the evict thread stops "
4005 "evicting dbufs.");
4006
4007 module_param(dbuf_cache_max_shift, int, 0644);
4008 MODULE_PARM_DESC(dbuf_cache_max_shift,
4009 "Cap the size of the dbuf cache to a log2 fraction of arc size.");
4010 /* END CSTYLED */
4011 #endif