]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/dsl_pool.c
a28be34fb842a99bca8fc2b4e3e92d3d9efb351a
[mirror_zfs.git] / module / zfs / dsl_pool.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2017 by Delphix. All rights reserved.
24 * Copyright (c) 2013 Steven Hartland. All rights reserved.
25 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
26 * Copyright 2016 Nexenta Systems, Inc. All rights reserved.
27 */
28
29 #include <sys/dsl_pool.h>
30 #include <sys/dsl_dataset.h>
31 #include <sys/dsl_prop.h>
32 #include <sys/dsl_dir.h>
33 #include <sys/dsl_synctask.h>
34 #include <sys/dsl_scan.h>
35 #include <sys/dnode.h>
36 #include <sys/dmu_tx.h>
37 #include <sys/dmu_objset.h>
38 #include <sys/arc.h>
39 #include <sys/zap.h>
40 #include <sys/zio.h>
41 #include <sys/zfs_context.h>
42 #include <sys/fs/zfs.h>
43 #include <sys/zfs_znode.h>
44 #include <sys/spa_impl.h>
45 #include <sys/dsl_deadlist.h>
46 #include <sys/bptree.h>
47 #include <sys/zfeature.h>
48 #include <sys/zil_impl.h>
49 #include <sys/dsl_userhold.h>
50 #include <sys/trace_txg.h>
51 #include <sys/mmp.h>
52
53 /*
54 * ZFS Write Throttle
55 * ------------------
56 *
57 * ZFS must limit the rate of incoming writes to the rate at which it is able
58 * to sync data modifications to the backend storage. Throttling by too much
59 * creates an artificial limit; throttling by too little can only be sustained
60 * for short periods and would lead to highly lumpy performance. On a per-pool
61 * basis, ZFS tracks the amount of modified (dirty) data. As operations change
62 * data, the amount of dirty data increases; as ZFS syncs out data, the amount
63 * of dirty data decreases. When the amount of dirty data exceeds a
64 * predetermined threshold further modifications are blocked until the amount
65 * of dirty data decreases (as data is synced out).
66 *
67 * The limit on dirty data is tunable, and should be adjusted according to
68 * both the IO capacity and available memory of the system. The larger the
69 * window, the more ZFS is able to aggregate and amortize metadata (and data)
70 * changes. However, memory is a limited resource, and allowing for more dirty
71 * data comes at the cost of keeping other useful data in memory (for example
72 * ZFS data cached by the ARC).
73 *
74 * Implementation
75 *
76 * As buffers are modified dsl_pool_willuse_space() increments both the per-
77 * txg (dp_dirty_pertxg[]) and poolwide (dp_dirty_total) accounting of
78 * dirty space used; dsl_pool_dirty_space() decrements those values as data
79 * is synced out from dsl_pool_sync(). While only the poolwide value is
80 * relevant, the per-txg value is useful for debugging. The tunable
81 * zfs_dirty_data_max determines the dirty space limit. Once that value is
82 * exceeded, new writes are halted until space frees up.
83 *
84 * The zfs_dirty_data_sync tunable dictates the threshold at which we
85 * ensure that there is a txg syncing (see the comment in txg.c for a full
86 * description of transaction group stages).
87 *
88 * The IO scheduler uses both the dirty space limit and current amount of
89 * dirty data as inputs. Those values affect the number of concurrent IOs ZFS
90 * issues. See the comment in vdev_queue.c for details of the IO scheduler.
91 *
92 * The delay is also calculated based on the amount of dirty data. See the
93 * comment above dmu_tx_delay() for details.
94 */
95
96 /*
97 * zfs_dirty_data_max will be set to zfs_dirty_data_max_percent% of all memory,
98 * capped at zfs_dirty_data_max_max. It can also be overridden with a module
99 * parameter.
100 */
101 unsigned long zfs_dirty_data_max = 0;
102 unsigned long zfs_dirty_data_max_max = 0;
103 int zfs_dirty_data_max_percent = 10;
104 int zfs_dirty_data_max_max_percent = 25;
105
106 /*
107 * If there is at least this much dirty data, push out a txg.
108 */
109 unsigned long zfs_dirty_data_sync = 64 * 1024 * 1024;
110
111 /*
112 * Once there is this amount of dirty data, the dmu_tx_delay() will kick in
113 * and delay each transaction.
114 * This value should be >= zfs_vdev_async_write_active_max_dirty_percent.
115 */
116 int zfs_delay_min_dirty_percent = 60;
117
118 /*
119 * This controls how quickly the delay approaches infinity.
120 * Larger values cause it to delay more for a given amount of dirty data.
121 * Therefore larger values will cause there to be less dirty data for a
122 * given throughput.
123 *
124 * For the smoothest delay, this value should be about 1 billion divided
125 * by the maximum number of operations per second. This will smoothly
126 * handle between 10x and 1/10th this number.
127 *
128 * Note: zfs_delay_scale * zfs_dirty_data_max must be < 2^64, due to the
129 * multiply in dmu_tx_delay().
130 */
131 unsigned long zfs_delay_scale = 1000 * 1000 * 1000 / 2000;
132
133 /*
134 * This determines the number of threads used by the dp_sync_taskq.
135 */
136 int zfs_sync_taskq_batch_pct = 75;
137
138 int
139 dsl_pool_open_special_dir(dsl_pool_t *dp, const char *name, dsl_dir_t **ddp)
140 {
141 uint64_t obj;
142 int err;
143
144 err = zap_lookup(dp->dp_meta_objset,
145 dsl_dir_phys(dp->dp_root_dir)->dd_child_dir_zapobj,
146 name, sizeof (obj), 1, &obj);
147 if (err)
148 return (err);
149
150 return (dsl_dir_hold_obj(dp, obj, name, dp, ddp));
151 }
152
153 static dsl_pool_t *
154 dsl_pool_open_impl(spa_t *spa, uint64_t txg)
155 {
156 dsl_pool_t *dp;
157 blkptr_t *bp = spa_get_rootblkptr(spa);
158
159 dp = kmem_zalloc(sizeof (dsl_pool_t), KM_SLEEP);
160 dp->dp_spa = spa;
161 dp->dp_meta_rootbp = *bp;
162 rrw_init(&dp->dp_config_rwlock, B_TRUE);
163 txg_init(dp, txg);
164 mmp_init(spa);
165
166 txg_list_create(&dp->dp_dirty_datasets, spa,
167 offsetof(dsl_dataset_t, ds_dirty_link));
168 txg_list_create(&dp->dp_dirty_zilogs, spa,
169 offsetof(zilog_t, zl_dirty_link));
170 txg_list_create(&dp->dp_dirty_dirs, spa,
171 offsetof(dsl_dir_t, dd_dirty_link));
172 txg_list_create(&dp->dp_sync_tasks, spa,
173 offsetof(dsl_sync_task_t, dst_node));
174
175 dp->dp_sync_taskq = taskq_create("dp_sync_taskq",
176 zfs_sync_taskq_batch_pct, minclsyspri, 1, INT_MAX,
177 TASKQ_THREADS_CPU_PCT);
178
179 mutex_init(&dp->dp_lock, NULL, MUTEX_DEFAULT, NULL);
180 cv_init(&dp->dp_spaceavail_cv, NULL, CV_DEFAULT, NULL);
181
182 dp->dp_iput_taskq = taskq_create("z_iput", max_ncpus, defclsyspri,
183 max_ncpus * 8, INT_MAX, TASKQ_PREPOPULATE | TASKQ_DYNAMIC);
184
185 return (dp);
186 }
187
188 int
189 dsl_pool_init(spa_t *spa, uint64_t txg, dsl_pool_t **dpp)
190 {
191 int err;
192 dsl_pool_t *dp = dsl_pool_open_impl(spa, txg);
193
194 /*
195 * Initialize the caller's dsl_pool_t structure before we actually open
196 * the meta objset. This is done because a self-healing write zio may
197 * be issued as part of dmu_objset_open_impl() and the spa needs its
198 * dsl_pool_t initialized in order to handle the write.
199 */
200 *dpp = dp;
201
202 err = dmu_objset_open_impl(spa, NULL, &dp->dp_meta_rootbp,
203 &dp->dp_meta_objset);
204 if (err != 0) {
205 dsl_pool_close(dp);
206 *dpp = NULL;
207 }
208
209 return (err);
210 }
211
212 int
213 dsl_pool_open(dsl_pool_t *dp)
214 {
215 int err;
216 dsl_dir_t *dd;
217 dsl_dataset_t *ds;
218 uint64_t obj;
219
220 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
221 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
222 DMU_POOL_ROOT_DATASET, sizeof (uint64_t), 1,
223 &dp->dp_root_dir_obj);
224 if (err)
225 goto out;
226
227 err = dsl_dir_hold_obj(dp, dp->dp_root_dir_obj,
228 NULL, dp, &dp->dp_root_dir);
229 if (err)
230 goto out;
231
232 err = dsl_pool_open_special_dir(dp, MOS_DIR_NAME, &dp->dp_mos_dir);
233 if (err)
234 goto out;
235
236 if (spa_version(dp->dp_spa) >= SPA_VERSION_ORIGIN) {
237 err = dsl_pool_open_special_dir(dp, ORIGIN_DIR_NAME, &dd);
238 if (err)
239 goto out;
240 err = dsl_dataset_hold_obj(dp,
241 dsl_dir_phys(dd)->dd_head_dataset_obj, FTAG, &ds);
242 if (err == 0) {
243 err = dsl_dataset_hold_obj(dp,
244 dsl_dataset_phys(ds)->ds_prev_snap_obj, dp,
245 &dp->dp_origin_snap);
246 dsl_dataset_rele(ds, FTAG);
247 }
248 dsl_dir_rele(dd, dp);
249 if (err)
250 goto out;
251 }
252
253 if (spa_version(dp->dp_spa) >= SPA_VERSION_DEADLISTS) {
254 err = dsl_pool_open_special_dir(dp, FREE_DIR_NAME,
255 &dp->dp_free_dir);
256 if (err)
257 goto out;
258
259 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
260 DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj);
261 if (err)
262 goto out;
263 VERIFY0(bpobj_open(&dp->dp_free_bpobj,
264 dp->dp_meta_objset, obj));
265 }
266
267 /*
268 * Note: errors ignored, because the leak dir will not exist if we
269 * have not encountered a leak yet.
270 */
271 (void) dsl_pool_open_special_dir(dp, LEAK_DIR_NAME,
272 &dp->dp_leak_dir);
273
274 if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_ASYNC_DESTROY)) {
275 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
276 DMU_POOL_BPTREE_OBJ, sizeof (uint64_t), 1,
277 &dp->dp_bptree_obj);
278 if (err != 0)
279 goto out;
280 }
281
282 if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_EMPTY_BPOBJ)) {
283 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
284 DMU_POOL_EMPTY_BPOBJ, sizeof (uint64_t), 1,
285 &dp->dp_empty_bpobj);
286 if (err != 0)
287 goto out;
288 }
289
290 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
291 DMU_POOL_TMP_USERREFS, sizeof (uint64_t), 1,
292 &dp->dp_tmp_userrefs_obj);
293 if (err == ENOENT)
294 err = 0;
295 if (err)
296 goto out;
297
298 err = dsl_scan_init(dp, dp->dp_tx.tx_open_txg);
299
300 out:
301 rrw_exit(&dp->dp_config_rwlock, FTAG);
302 return (err);
303 }
304
305 void
306 dsl_pool_close(dsl_pool_t *dp)
307 {
308 /*
309 * Drop our references from dsl_pool_open().
310 *
311 * Since we held the origin_snap from "syncing" context (which
312 * includes pool-opening context), it actually only got a "ref"
313 * and not a hold, so just drop that here.
314 */
315 if (dp->dp_origin_snap)
316 dsl_dataset_rele(dp->dp_origin_snap, dp);
317 if (dp->dp_mos_dir)
318 dsl_dir_rele(dp->dp_mos_dir, dp);
319 if (dp->dp_free_dir)
320 dsl_dir_rele(dp->dp_free_dir, dp);
321 if (dp->dp_leak_dir)
322 dsl_dir_rele(dp->dp_leak_dir, dp);
323 if (dp->dp_root_dir)
324 dsl_dir_rele(dp->dp_root_dir, dp);
325
326 bpobj_close(&dp->dp_free_bpobj);
327
328 /* undo the dmu_objset_open_impl(mos) from dsl_pool_open() */
329 if (dp->dp_meta_objset)
330 dmu_objset_evict(dp->dp_meta_objset);
331
332 txg_list_destroy(&dp->dp_dirty_datasets);
333 txg_list_destroy(&dp->dp_dirty_zilogs);
334 txg_list_destroy(&dp->dp_sync_tasks);
335 txg_list_destroy(&dp->dp_dirty_dirs);
336
337 taskq_destroy(dp->dp_sync_taskq);
338
339 /*
340 * We can't set retry to TRUE since we're explicitly specifying
341 * a spa to flush. This is good enough; any missed buffers for
342 * this spa won't cause trouble, and they'll eventually fall
343 * out of the ARC just like any other unused buffer.
344 */
345 arc_flush(dp->dp_spa, FALSE);
346
347 mmp_fini(dp->dp_spa);
348 txg_fini(dp);
349 dsl_scan_fini(dp);
350 dmu_buf_user_evict_wait();
351
352 rrw_destroy(&dp->dp_config_rwlock);
353 mutex_destroy(&dp->dp_lock);
354 cv_destroy(&dp->dp_spaceavail_cv);
355 taskq_destroy(dp->dp_iput_taskq);
356 if (dp->dp_blkstats)
357 vmem_free(dp->dp_blkstats, sizeof (zfs_all_blkstats_t));
358 kmem_free(dp, sizeof (dsl_pool_t));
359 }
360
361 dsl_pool_t *
362 dsl_pool_create(spa_t *spa, nvlist_t *zplprops, dsl_crypto_params_t *dcp,
363 uint64_t txg)
364 {
365 int err;
366 dsl_pool_t *dp = dsl_pool_open_impl(spa, txg);
367 dmu_tx_t *tx = dmu_tx_create_assigned(dp, txg);
368 objset_t *os;
369 dsl_dataset_t *ds;
370 uint64_t obj;
371
372 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
373
374 /* create and open the MOS (meta-objset) */
375 dp->dp_meta_objset = dmu_objset_create_impl(spa,
376 NULL, &dp->dp_meta_rootbp, DMU_OST_META, tx);
377 spa->spa_meta_objset = dp->dp_meta_objset;
378
379 /* create the pool directory */
380 err = zap_create_claim(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
381 DMU_OT_OBJECT_DIRECTORY, DMU_OT_NONE, 0, tx);
382 ASSERT0(err);
383
384 /* Initialize scan structures */
385 VERIFY0(dsl_scan_init(dp, txg));
386
387 /* create and open the root dir */
388 dp->dp_root_dir_obj = dsl_dir_create_sync(dp, NULL, NULL, tx);
389 VERIFY0(dsl_dir_hold_obj(dp, dp->dp_root_dir_obj,
390 NULL, dp, &dp->dp_root_dir));
391
392 /* create and open the meta-objset dir */
393 (void) dsl_dir_create_sync(dp, dp->dp_root_dir, MOS_DIR_NAME, tx);
394 VERIFY0(dsl_pool_open_special_dir(dp,
395 MOS_DIR_NAME, &dp->dp_mos_dir));
396
397 if (spa_version(spa) >= SPA_VERSION_DEADLISTS) {
398 /* create and open the free dir */
399 (void) dsl_dir_create_sync(dp, dp->dp_root_dir,
400 FREE_DIR_NAME, tx);
401 VERIFY0(dsl_pool_open_special_dir(dp,
402 FREE_DIR_NAME, &dp->dp_free_dir));
403
404 /* create and open the free_bplist */
405 obj = bpobj_alloc(dp->dp_meta_objset, SPA_OLD_MAXBLOCKSIZE, tx);
406 VERIFY(zap_add(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
407 DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj, tx) == 0);
408 VERIFY0(bpobj_open(&dp->dp_free_bpobj,
409 dp->dp_meta_objset, obj));
410 }
411
412 if (spa_version(spa) >= SPA_VERSION_DSL_SCRUB)
413 dsl_pool_create_origin(dp, tx);
414
415 /*
416 * Some features may be needed when creating the root dataset, so we
417 * create the feature objects here.
418 */
419 if (spa_version(spa) >= SPA_VERSION_FEATURES)
420 spa_feature_create_zap_objects(spa, tx);
421
422 if (dcp != NULL && dcp->cp_crypt != ZIO_CRYPT_OFF &&
423 dcp->cp_crypt != ZIO_CRYPT_INHERIT)
424 spa_feature_enable(spa, SPA_FEATURE_ENCRYPTION, tx);
425
426 /* create the root dataset */
427 obj = dsl_dataset_create_sync_dd(dp->dp_root_dir, NULL, dcp, 0, tx);
428
429 /* create the root objset */
430 VERIFY0(dsl_dataset_hold_obj(dp, obj, FTAG, &ds));
431 rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG);
432 VERIFY(NULL != (os = dmu_objset_create_impl(dp->dp_spa, ds,
433 dsl_dataset_get_blkptr(ds), DMU_OST_ZFS, tx)));
434 rrw_exit(&ds->ds_bp_rwlock, FTAG);
435 #ifdef _KERNEL
436 zfs_create_fs(os, kcred, zplprops, tx);
437 #endif
438 dsl_dataset_rele(ds, FTAG);
439
440 dmu_tx_commit(tx);
441
442 rrw_exit(&dp->dp_config_rwlock, FTAG);
443
444 return (dp);
445 }
446
447 /*
448 * Account for the meta-objset space in its placeholder dsl_dir.
449 */
450 void
451 dsl_pool_mos_diduse_space(dsl_pool_t *dp,
452 int64_t used, int64_t comp, int64_t uncomp)
453 {
454 ASSERT3U(comp, ==, uncomp); /* it's all metadata */
455 mutex_enter(&dp->dp_lock);
456 dp->dp_mos_used_delta += used;
457 dp->dp_mos_compressed_delta += comp;
458 dp->dp_mos_uncompressed_delta += uncomp;
459 mutex_exit(&dp->dp_lock);
460 }
461
462 static void
463 dsl_pool_sync_mos(dsl_pool_t *dp, dmu_tx_t *tx)
464 {
465 zio_t *zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED);
466 dmu_objset_sync(dp->dp_meta_objset, zio, tx);
467 VERIFY0(zio_wait(zio));
468 dprintf_bp(&dp->dp_meta_rootbp, "meta objset rootbp is %s", "");
469 spa_set_rootblkptr(dp->dp_spa, &dp->dp_meta_rootbp);
470 }
471
472 static void
473 dsl_pool_dirty_delta(dsl_pool_t *dp, int64_t delta)
474 {
475 ASSERT(MUTEX_HELD(&dp->dp_lock));
476
477 if (delta < 0)
478 ASSERT3U(-delta, <=, dp->dp_dirty_total);
479
480 dp->dp_dirty_total += delta;
481
482 /*
483 * Note: we signal even when increasing dp_dirty_total.
484 * This ensures forward progress -- each thread wakes the next waiter.
485 */
486 if (dp->dp_dirty_total < zfs_dirty_data_max)
487 cv_signal(&dp->dp_spaceavail_cv);
488 }
489
490 void
491 dsl_pool_sync(dsl_pool_t *dp, uint64_t txg)
492 {
493 zio_t *zio;
494 dmu_tx_t *tx;
495 dsl_dir_t *dd;
496 dsl_dataset_t *ds;
497 objset_t *mos = dp->dp_meta_objset;
498 list_t synced_datasets;
499
500 list_create(&synced_datasets, sizeof (dsl_dataset_t),
501 offsetof(dsl_dataset_t, ds_synced_link));
502
503 tx = dmu_tx_create_assigned(dp, txg);
504
505 /*
506 * Write out all dirty blocks of dirty datasets.
507 */
508 zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED);
509 while ((ds = txg_list_remove(&dp->dp_dirty_datasets, txg)) != NULL) {
510 /*
511 * We must not sync any non-MOS datasets twice, because
512 * we may have taken a snapshot of them. However, we
513 * may sync newly-created datasets on pass 2.
514 */
515 ASSERT(!list_link_active(&ds->ds_synced_link));
516 list_insert_tail(&synced_datasets, ds);
517 dsl_dataset_sync(ds, zio, tx);
518 }
519 VERIFY0(zio_wait(zio));
520
521 /*
522 * We have written all of the accounted dirty data, so our
523 * dp_space_towrite should now be zero. However, some seldom-used
524 * code paths do not adhere to this (e.g. dbuf_undirty(), also
525 * rounding error in dbuf_write_physdone).
526 * Shore up the accounting of any dirtied space now.
527 */
528 dsl_pool_undirty_space(dp, dp->dp_dirty_pertxg[txg & TXG_MASK], txg);
529
530 /*
531 * Update the long range free counter after
532 * we're done syncing user data
533 */
534 mutex_enter(&dp->dp_lock);
535 ASSERT(spa_sync_pass(dp->dp_spa) == 1 ||
536 dp->dp_long_free_dirty_pertxg[txg & TXG_MASK] == 0);
537 dp->dp_long_free_dirty_pertxg[txg & TXG_MASK] = 0;
538 mutex_exit(&dp->dp_lock);
539
540 /*
541 * After the data blocks have been written (ensured by the zio_wait()
542 * above), update the user/group space accounting. This happens
543 * in tasks dispatched to dp_sync_taskq, so wait for them before
544 * continuing.
545 */
546 for (ds = list_head(&synced_datasets); ds != NULL;
547 ds = list_next(&synced_datasets, ds)) {
548 dmu_objset_do_userquota_updates(ds->ds_objset, tx);
549 }
550 taskq_wait(dp->dp_sync_taskq);
551
552 /*
553 * Sync the datasets again to push out the changes due to
554 * userspace updates. This must be done before we process the
555 * sync tasks, so that any snapshots will have the correct
556 * user accounting information (and we won't get confused
557 * about which blocks are part of the snapshot).
558 */
559 zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED);
560 while ((ds = txg_list_remove(&dp->dp_dirty_datasets, txg)) != NULL) {
561 ASSERT(list_link_active(&ds->ds_synced_link));
562 dmu_buf_rele(ds->ds_dbuf, ds);
563 dsl_dataset_sync(ds, zio, tx);
564 }
565 VERIFY0(zio_wait(zio));
566
567 /*
568 * Now that the datasets have been completely synced, we can
569 * clean up our in-memory structures accumulated while syncing:
570 *
571 * - move dead blocks from the pending deadlist to the on-disk deadlist
572 * - release hold from dsl_dataset_dirty()
573 */
574 while ((ds = list_remove_head(&synced_datasets)) != NULL) {
575 dsl_dataset_sync_done(ds, tx);
576 }
577
578 while ((dd = txg_list_remove(&dp->dp_dirty_dirs, txg)) != NULL) {
579 dsl_dir_sync(dd, tx);
580 }
581
582 /*
583 * The MOS's space is accounted for in the pool/$MOS
584 * (dp_mos_dir). We can't modify the mos while we're syncing
585 * it, so we remember the deltas and apply them here.
586 */
587 if (dp->dp_mos_used_delta != 0 || dp->dp_mos_compressed_delta != 0 ||
588 dp->dp_mos_uncompressed_delta != 0) {
589 dsl_dir_diduse_space(dp->dp_mos_dir, DD_USED_HEAD,
590 dp->dp_mos_used_delta,
591 dp->dp_mos_compressed_delta,
592 dp->dp_mos_uncompressed_delta, tx);
593 dp->dp_mos_used_delta = 0;
594 dp->dp_mos_compressed_delta = 0;
595 dp->dp_mos_uncompressed_delta = 0;
596 }
597
598 if (!multilist_is_empty(mos->os_dirty_dnodes[txg & TXG_MASK])) {
599 dsl_pool_sync_mos(dp, tx);
600 }
601
602 /*
603 * If we modify a dataset in the same txg that we want to destroy it,
604 * its dsl_dir's dd_dbuf will be dirty, and thus have a hold on it.
605 * dsl_dir_destroy_check() will fail if there are unexpected holds.
606 * Therefore, we want to sync the MOS (thus syncing the dd_dbuf
607 * and clearing the hold on it) before we process the sync_tasks.
608 * The MOS data dirtied by the sync_tasks will be synced on the next
609 * pass.
610 */
611 if (!txg_list_empty(&dp->dp_sync_tasks, txg)) {
612 dsl_sync_task_t *dst;
613 /*
614 * No more sync tasks should have been added while we
615 * were syncing.
616 */
617 ASSERT3U(spa_sync_pass(dp->dp_spa), ==, 1);
618 while ((dst = txg_list_remove(&dp->dp_sync_tasks, txg)) != NULL)
619 dsl_sync_task_sync(dst, tx);
620 }
621
622 dmu_tx_commit(tx);
623
624 DTRACE_PROBE2(dsl_pool_sync__done, dsl_pool_t *dp, dp, uint64_t, txg);
625 }
626
627 void
628 dsl_pool_sync_done(dsl_pool_t *dp, uint64_t txg)
629 {
630 zilog_t *zilog;
631
632 while ((zilog = txg_list_head(&dp->dp_dirty_zilogs, txg))) {
633 dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
634 /*
635 * We don't remove the zilog from the dp_dirty_zilogs
636 * list until after we've cleaned it. This ensures that
637 * callers of zilog_is_dirty() receive an accurate
638 * answer when they are racing with the spa sync thread.
639 */
640 zil_clean(zilog, txg);
641 (void) txg_list_remove_this(&dp->dp_dirty_zilogs, zilog, txg);
642 ASSERT(!dmu_objset_is_dirty(zilog->zl_os, txg));
643 dmu_buf_rele(ds->ds_dbuf, zilog);
644 }
645 ASSERT(!dmu_objset_is_dirty(dp->dp_meta_objset, txg));
646 }
647
648 /*
649 * TRUE if the current thread is the tx_sync_thread or if we
650 * are being called from SPA context during pool initialization.
651 */
652 int
653 dsl_pool_sync_context(dsl_pool_t *dp)
654 {
655 return (curthread == dp->dp_tx.tx_sync_thread ||
656 spa_is_initializing(dp->dp_spa) ||
657 taskq_member(dp->dp_sync_taskq, curthread));
658 }
659
660 uint64_t
661 dsl_pool_adjustedsize(dsl_pool_t *dp, boolean_t netfree)
662 {
663 uint64_t space, resv;
664
665 /*
666 * If we're trying to assess whether it's OK to do a free,
667 * cut the reservation in half to allow forward progress
668 * (e.g. make it possible to rm(1) files from a full pool).
669 */
670 space = spa_get_dspace(dp->dp_spa);
671 resv = spa_get_slop_space(dp->dp_spa);
672 if (netfree)
673 resv >>= 1;
674
675 return (space - resv);
676 }
677
678 boolean_t
679 dsl_pool_need_dirty_delay(dsl_pool_t *dp)
680 {
681 uint64_t delay_min_bytes =
682 zfs_dirty_data_max * zfs_delay_min_dirty_percent / 100;
683 boolean_t rv;
684
685 mutex_enter(&dp->dp_lock);
686 if (dp->dp_dirty_total > zfs_dirty_data_sync)
687 txg_kick(dp);
688 rv = (dp->dp_dirty_total > delay_min_bytes);
689 mutex_exit(&dp->dp_lock);
690 return (rv);
691 }
692
693 void
694 dsl_pool_dirty_space(dsl_pool_t *dp, int64_t space, dmu_tx_t *tx)
695 {
696 if (space > 0) {
697 mutex_enter(&dp->dp_lock);
698 dp->dp_dirty_pertxg[tx->tx_txg & TXG_MASK] += space;
699 dsl_pool_dirty_delta(dp, space);
700 mutex_exit(&dp->dp_lock);
701 }
702 }
703
704 void
705 dsl_pool_undirty_space(dsl_pool_t *dp, int64_t space, uint64_t txg)
706 {
707 ASSERT3S(space, >=, 0);
708 if (space == 0)
709 return;
710
711 mutex_enter(&dp->dp_lock);
712 if (dp->dp_dirty_pertxg[txg & TXG_MASK] < space) {
713 /* XXX writing something we didn't dirty? */
714 space = dp->dp_dirty_pertxg[txg & TXG_MASK];
715 }
716 ASSERT3U(dp->dp_dirty_pertxg[txg & TXG_MASK], >=, space);
717 dp->dp_dirty_pertxg[txg & TXG_MASK] -= space;
718 ASSERT3U(dp->dp_dirty_total, >=, space);
719 dsl_pool_dirty_delta(dp, -space);
720 mutex_exit(&dp->dp_lock);
721 }
722
723 /* ARGSUSED */
724 static int
725 upgrade_clones_cb(dsl_pool_t *dp, dsl_dataset_t *hds, void *arg)
726 {
727 dmu_tx_t *tx = arg;
728 dsl_dataset_t *ds, *prev = NULL;
729 int err;
730
731 err = dsl_dataset_hold_obj(dp, hds->ds_object, FTAG, &ds);
732 if (err)
733 return (err);
734
735 while (dsl_dataset_phys(ds)->ds_prev_snap_obj != 0) {
736 err = dsl_dataset_hold_obj(dp,
737 dsl_dataset_phys(ds)->ds_prev_snap_obj, FTAG, &prev);
738 if (err) {
739 dsl_dataset_rele(ds, FTAG);
740 return (err);
741 }
742
743 if (dsl_dataset_phys(prev)->ds_next_snap_obj != ds->ds_object)
744 break;
745 dsl_dataset_rele(ds, FTAG);
746 ds = prev;
747 prev = NULL;
748 }
749
750 if (prev == NULL) {
751 prev = dp->dp_origin_snap;
752
753 /*
754 * The $ORIGIN can't have any data, or the accounting
755 * will be wrong.
756 */
757 rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG);
758 ASSERT0(dsl_dataset_phys(prev)->ds_bp.blk_birth);
759 rrw_exit(&ds->ds_bp_rwlock, FTAG);
760
761 /* The origin doesn't get attached to itself */
762 if (ds->ds_object == prev->ds_object) {
763 dsl_dataset_rele(ds, FTAG);
764 return (0);
765 }
766
767 dmu_buf_will_dirty(ds->ds_dbuf, tx);
768 dsl_dataset_phys(ds)->ds_prev_snap_obj = prev->ds_object;
769 dsl_dataset_phys(ds)->ds_prev_snap_txg =
770 dsl_dataset_phys(prev)->ds_creation_txg;
771
772 dmu_buf_will_dirty(ds->ds_dir->dd_dbuf, tx);
773 dsl_dir_phys(ds->ds_dir)->dd_origin_obj = prev->ds_object;
774
775 dmu_buf_will_dirty(prev->ds_dbuf, tx);
776 dsl_dataset_phys(prev)->ds_num_children++;
777
778 if (dsl_dataset_phys(ds)->ds_next_snap_obj == 0) {
779 ASSERT(ds->ds_prev == NULL);
780 VERIFY0(dsl_dataset_hold_obj(dp,
781 dsl_dataset_phys(ds)->ds_prev_snap_obj,
782 ds, &ds->ds_prev));
783 }
784 }
785
786 ASSERT3U(dsl_dir_phys(ds->ds_dir)->dd_origin_obj, ==, prev->ds_object);
787 ASSERT3U(dsl_dataset_phys(ds)->ds_prev_snap_obj, ==, prev->ds_object);
788
789 if (dsl_dataset_phys(prev)->ds_next_clones_obj == 0) {
790 dmu_buf_will_dirty(prev->ds_dbuf, tx);
791 dsl_dataset_phys(prev)->ds_next_clones_obj =
792 zap_create(dp->dp_meta_objset,
793 DMU_OT_NEXT_CLONES, DMU_OT_NONE, 0, tx);
794 }
795 VERIFY0(zap_add_int(dp->dp_meta_objset,
796 dsl_dataset_phys(prev)->ds_next_clones_obj, ds->ds_object, tx));
797
798 dsl_dataset_rele(ds, FTAG);
799 if (prev != dp->dp_origin_snap)
800 dsl_dataset_rele(prev, FTAG);
801 return (0);
802 }
803
804 void
805 dsl_pool_upgrade_clones(dsl_pool_t *dp, dmu_tx_t *tx)
806 {
807 ASSERT(dmu_tx_is_syncing(tx));
808 ASSERT(dp->dp_origin_snap != NULL);
809
810 VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj, upgrade_clones_cb,
811 tx, DS_FIND_CHILDREN | DS_FIND_SERIALIZE));
812 }
813
814 /* ARGSUSED */
815 static int
816 upgrade_dir_clones_cb(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
817 {
818 dmu_tx_t *tx = arg;
819 objset_t *mos = dp->dp_meta_objset;
820
821 if (dsl_dir_phys(ds->ds_dir)->dd_origin_obj != 0) {
822 dsl_dataset_t *origin;
823
824 VERIFY0(dsl_dataset_hold_obj(dp,
825 dsl_dir_phys(ds->ds_dir)->dd_origin_obj, FTAG, &origin));
826
827 if (dsl_dir_phys(origin->ds_dir)->dd_clones == 0) {
828 dmu_buf_will_dirty(origin->ds_dir->dd_dbuf, tx);
829 dsl_dir_phys(origin->ds_dir)->dd_clones =
830 zap_create(mos, DMU_OT_DSL_CLONES, DMU_OT_NONE,
831 0, tx);
832 }
833
834 VERIFY0(zap_add_int(dp->dp_meta_objset,
835 dsl_dir_phys(origin->ds_dir)->dd_clones,
836 ds->ds_object, tx));
837
838 dsl_dataset_rele(origin, FTAG);
839 }
840 return (0);
841 }
842
843 void
844 dsl_pool_upgrade_dir_clones(dsl_pool_t *dp, dmu_tx_t *tx)
845 {
846 uint64_t obj;
847
848 ASSERT(dmu_tx_is_syncing(tx));
849
850 (void) dsl_dir_create_sync(dp, dp->dp_root_dir, FREE_DIR_NAME, tx);
851 VERIFY0(dsl_pool_open_special_dir(dp,
852 FREE_DIR_NAME, &dp->dp_free_dir));
853
854 /*
855 * We can't use bpobj_alloc(), because spa_version() still
856 * returns the old version, and we need a new-version bpobj with
857 * subobj support. So call dmu_object_alloc() directly.
858 */
859 obj = dmu_object_alloc(dp->dp_meta_objset, DMU_OT_BPOBJ,
860 SPA_OLD_MAXBLOCKSIZE, DMU_OT_BPOBJ_HDR, sizeof (bpobj_phys_t), tx);
861 VERIFY0(zap_add(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
862 DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj, tx));
863 VERIFY0(bpobj_open(&dp->dp_free_bpobj, dp->dp_meta_objset, obj));
864
865 VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
866 upgrade_dir_clones_cb, tx, DS_FIND_CHILDREN | DS_FIND_SERIALIZE));
867 }
868
869 void
870 dsl_pool_create_origin(dsl_pool_t *dp, dmu_tx_t *tx)
871 {
872 uint64_t dsobj;
873 dsl_dataset_t *ds;
874
875 ASSERT(dmu_tx_is_syncing(tx));
876 ASSERT(dp->dp_origin_snap == NULL);
877 ASSERT(rrw_held(&dp->dp_config_rwlock, RW_WRITER));
878
879 /* create the origin dir, ds, & snap-ds */
880 dsobj = dsl_dataset_create_sync(dp->dp_root_dir, ORIGIN_DIR_NAME,
881 NULL, 0, kcred, NULL, tx);
882 VERIFY0(dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds));
883 dsl_dataset_snapshot_sync_impl(ds, ORIGIN_DIR_NAME, tx);
884 VERIFY0(dsl_dataset_hold_obj(dp, dsl_dataset_phys(ds)->ds_prev_snap_obj,
885 dp, &dp->dp_origin_snap));
886 dsl_dataset_rele(ds, FTAG);
887 }
888
889 taskq_t *
890 dsl_pool_iput_taskq(dsl_pool_t *dp)
891 {
892 return (dp->dp_iput_taskq);
893 }
894
895 /*
896 * Walk through the pool-wide zap object of temporary snapshot user holds
897 * and release them.
898 */
899 void
900 dsl_pool_clean_tmp_userrefs(dsl_pool_t *dp)
901 {
902 zap_attribute_t za;
903 zap_cursor_t zc;
904 objset_t *mos = dp->dp_meta_objset;
905 uint64_t zapobj = dp->dp_tmp_userrefs_obj;
906 nvlist_t *holds;
907
908 if (zapobj == 0)
909 return;
910 ASSERT(spa_version(dp->dp_spa) >= SPA_VERSION_USERREFS);
911
912 holds = fnvlist_alloc();
913
914 for (zap_cursor_init(&zc, mos, zapobj);
915 zap_cursor_retrieve(&zc, &za) == 0;
916 zap_cursor_advance(&zc)) {
917 char *htag;
918 nvlist_t *tags;
919
920 htag = strchr(za.za_name, '-');
921 *htag = '\0';
922 ++htag;
923 if (nvlist_lookup_nvlist(holds, za.za_name, &tags) != 0) {
924 tags = fnvlist_alloc();
925 fnvlist_add_boolean(tags, htag);
926 fnvlist_add_nvlist(holds, za.za_name, tags);
927 fnvlist_free(tags);
928 } else {
929 fnvlist_add_boolean(tags, htag);
930 }
931 }
932 dsl_dataset_user_release_tmp(dp, holds);
933 fnvlist_free(holds);
934 zap_cursor_fini(&zc);
935 }
936
937 /*
938 * Create the pool-wide zap object for storing temporary snapshot holds.
939 */
940 void
941 dsl_pool_user_hold_create_obj(dsl_pool_t *dp, dmu_tx_t *tx)
942 {
943 objset_t *mos = dp->dp_meta_objset;
944
945 ASSERT(dp->dp_tmp_userrefs_obj == 0);
946 ASSERT(dmu_tx_is_syncing(tx));
947
948 dp->dp_tmp_userrefs_obj = zap_create_link(mos, DMU_OT_USERREFS,
949 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_TMP_USERREFS, tx);
950 }
951
952 static int
953 dsl_pool_user_hold_rele_impl(dsl_pool_t *dp, uint64_t dsobj,
954 const char *tag, uint64_t now, dmu_tx_t *tx, boolean_t holding)
955 {
956 objset_t *mos = dp->dp_meta_objset;
957 uint64_t zapobj = dp->dp_tmp_userrefs_obj;
958 char *name;
959 int error;
960
961 ASSERT(spa_version(dp->dp_spa) >= SPA_VERSION_USERREFS);
962 ASSERT(dmu_tx_is_syncing(tx));
963
964 /*
965 * If the pool was created prior to SPA_VERSION_USERREFS, the
966 * zap object for temporary holds might not exist yet.
967 */
968 if (zapobj == 0) {
969 if (holding) {
970 dsl_pool_user_hold_create_obj(dp, tx);
971 zapobj = dp->dp_tmp_userrefs_obj;
972 } else {
973 return (SET_ERROR(ENOENT));
974 }
975 }
976
977 name = kmem_asprintf("%llx-%s", (u_longlong_t)dsobj, tag);
978 if (holding)
979 error = zap_add(mos, zapobj, name, 8, 1, &now, tx);
980 else
981 error = zap_remove(mos, zapobj, name, tx);
982 strfree(name);
983
984 return (error);
985 }
986
987 /*
988 * Add a temporary hold for the given dataset object and tag.
989 */
990 int
991 dsl_pool_user_hold(dsl_pool_t *dp, uint64_t dsobj, const char *tag,
992 uint64_t now, dmu_tx_t *tx)
993 {
994 return (dsl_pool_user_hold_rele_impl(dp, dsobj, tag, now, tx, B_TRUE));
995 }
996
997 /*
998 * Release a temporary hold for the given dataset object and tag.
999 */
1000 int
1001 dsl_pool_user_release(dsl_pool_t *dp, uint64_t dsobj, const char *tag,
1002 dmu_tx_t *tx)
1003 {
1004 return (dsl_pool_user_hold_rele_impl(dp, dsobj, tag, 0,
1005 tx, B_FALSE));
1006 }
1007
1008 /*
1009 * DSL Pool Configuration Lock
1010 *
1011 * The dp_config_rwlock protects against changes to DSL state (e.g. dataset
1012 * creation / destruction / rename / property setting). It must be held for
1013 * read to hold a dataset or dsl_dir. I.e. you must call
1014 * dsl_pool_config_enter() or dsl_pool_hold() before calling
1015 * dsl_{dataset,dir}_hold{_obj}. In most circumstances, the dp_config_rwlock
1016 * must be held continuously until all datasets and dsl_dirs are released.
1017 *
1018 * The only exception to this rule is that if a "long hold" is placed on
1019 * a dataset, then the dp_config_rwlock may be dropped while the dataset
1020 * is still held. The long hold will prevent the dataset from being
1021 * destroyed -- the destroy will fail with EBUSY. A long hold can be
1022 * obtained by calling dsl_dataset_long_hold(), or by "owning" a dataset
1023 * (by calling dsl_{dataset,objset}_{try}own{_obj}).
1024 *
1025 * Legitimate long-holders (including owners) should be long-running, cancelable
1026 * tasks that should cause "zfs destroy" to fail. This includes DMU
1027 * consumers (i.e. a ZPL filesystem being mounted or ZVOL being open),
1028 * "zfs send", and "zfs diff". There are several other long-holders whose
1029 * uses are suboptimal (e.g. "zfs promote", and zil_suspend()).
1030 *
1031 * The usual formula for long-holding would be:
1032 * dsl_pool_hold()
1033 * dsl_dataset_hold()
1034 * ... perform checks ...
1035 * dsl_dataset_long_hold()
1036 * dsl_pool_rele()
1037 * ... perform long-running task ...
1038 * dsl_dataset_long_rele()
1039 * dsl_dataset_rele()
1040 *
1041 * Note that when the long hold is released, the dataset is still held but
1042 * the pool is not held. The dataset may change arbitrarily during this time
1043 * (e.g. it could be destroyed). Therefore you shouldn't do anything to the
1044 * dataset except release it.
1045 *
1046 * User-initiated operations (e.g. ioctls, zfs_ioc_*()) are either read-only
1047 * or modifying operations.
1048 *
1049 * Modifying operations should generally use dsl_sync_task(). The synctask
1050 * infrastructure enforces proper locking strategy with respect to the
1051 * dp_config_rwlock. See the comment above dsl_sync_task() for details.
1052 *
1053 * Read-only operations will manually hold the pool, then the dataset, obtain
1054 * information from the dataset, then release the pool and dataset.
1055 * dmu_objset_{hold,rele}() are convenience routines that also do the pool
1056 * hold/rele.
1057 */
1058
1059 int
1060 dsl_pool_hold(const char *name, void *tag, dsl_pool_t **dp)
1061 {
1062 spa_t *spa;
1063 int error;
1064
1065 error = spa_open(name, &spa, tag);
1066 if (error == 0) {
1067 *dp = spa_get_dsl(spa);
1068 dsl_pool_config_enter(*dp, tag);
1069 }
1070 return (error);
1071 }
1072
1073 void
1074 dsl_pool_rele(dsl_pool_t *dp, void *tag)
1075 {
1076 dsl_pool_config_exit(dp, tag);
1077 spa_close(dp->dp_spa, tag);
1078 }
1079
1080 void
1081 dsl_pool_config_enter(dsl_pool_t *dp, void *tag)
1082 {
1083 /*
1084 * We use a "reentrant" reader-writer lock, but not reentrantly.
1085 *
1086 * The rrwlock can (with the track_all flag) track all reading threads,
1087 * which is very useful for debugging which code path failed to release
1088 * the lock, and for verifying that the *current* thread does hold
1089 * the lock.
1090 *
1091 * (Unlike a rwlock, which knows that N threads hold it for
1092 * read, but not *which* threads, so rw_held(RW_READER) returns TRUE
1093 * if any thread holds it for read, even if this thread doesn't).
1094 */
1095 ASSERT(!rrw_held(&dp->dp_config_rwlock, RW_READER));
1096 rrw_enter(&dp->dp_config_rwlock, RW_READER, tag);
1097 }
1098
1099 void
1100 dsl_pool_config_enter_prio(dsl_pool_t *dp, void *tag)
1101 {
1102 ASSERT(!rrw_held(&dp->dp_config_rwlock, RW_READER));
1103 rrw_enter_read_prio(&dp->dp_config_rwlock, tag);
1104 }
1105
1106 void
1107 dsl_pool_config_exit(dsl_pool_t *dp, void *tag)
1108 {
1109 rrw_exit(&dp->dp_config_rwlock, tag);
1110 }
1111
1112 boolean_t
1113 dsl_pool_config_held(dsl_pool_t *dp)
1114 {
1115 return (RRW_LOCK_HELD(&dp->dp_config_rwlock));
1116 }
1117
1118 boolean_t
1119 dsl_pool_config_held_writer(dsl_pool_t *dp)
1120 {
1121 return (RRW_WRITE_HELD(&dp->dp_config_rwlock));
1122 }
1123
1124 #if defined(_KERNEL) && defined(HAVE_SPL)
1125 EXPORT_SYMBOL(dsl_pool_config_enter);
1126 EXPORT_SYMBOL(dsl_pool_config_exit);
1127
1128 /* BEGIN CSTYLED */
1129 /* zfs_dirty_data_max_percent only applied at module load in arc_init(). */
1130 module_param(zfs_dirty_data_max_percent, int, 0444);
1131 MODULE_PARM_DESC(zfs_dirty_data_max_percent, "percent of ram can be dirty");
1132
1133 /* zfs_dirty_data_max_max_percent only applied at module load in arc_init(). */
1134 module_param(zfs_dirty_data_max_max_percent, int, 0444);
1135 MODULE_PARM_DESC(zfs_dirty_data_max_max_percent,
1136 "zfs_dirty_data_max upper bound as % of RAM");
1137
1138 module_param(zfs_delay_min_dirty_percent, int, 0644);
1139 MODULE_PARM_DESC(zfs_delay_min_dirty_percent, "transaction delay threshold");
1140
1141 module_param(zfs_dirty_data_max, ulong, 0644);
1142 MODULE_PARM_DESC(zfs_dirty_data_max, "determines the dirty space limit");
1143
1144 /* zfs_dirty_data_max_max only applied at module load in arc_init(). */
1145 module_param(zfs_dirty_data_max_max, ulong, 0444);
1146 MODULE_PARM_DESC(zfs_dirty_data_max_max,
1147 "zfs_dirty_data_max upper bound in bytes");
1148
1149 module_param(zfs_dirty_data_sync, ulong, 0644);
1150 MODULE_PARM_DESC(zfs_dirty_data_sync, "sync txg when this much dirty data");
1151
1152 module_param(zfs_delay_scale, ulong, 0644);
1153 MODULE_PARM_DESC(zfs_delay_scale, "how quickly delay approaches infinity");
1154
1155 module_param(zfs_sync_taskq_batch_pct, int, 0644);
1156 MODULE_PARM_DESC(zfs_sync_taskq_batch_pct,
1157 "max percent of CPUs that are used to sync dirty data");
1158 /* END CSTYLED */
1159 #endif