]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/dsl_pool.c
f1ab29c6214ce9cb192ec0953b8a465f9522660b
[mirror_zfs.git] / module / zfs / dsl_pool.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2013 by Delphix. All rights reserved.
24 * Copyright (c) 2013 Steven Hartland. All rights reserved.
25 */
26
27 #include <sys/dsl_pool.h>
28 #include <sys/dsl_dataset.h>
29 #include <sys/dsl_prop.h>
30 #include <sys/dsl_dir.h>
31 #include <sys/dsl_synctask.h>
32 #include <sys/dsl_scan.h>
33 #include <sys/dnode.h>
34 #include <sys/dmu_tx.h>
35 #include <sys/dmu_objset.h>
36 #include <sys/arc.h>
37 #include <sys/zap.h>
38 #include <sys/zio.h>
39 #include <sys/zfs_context.h>
40 #include <sys/fs/zfs.h>
41 #include <sys/zfs_znode.h>
42 #include <sys/spa_impl.h>
43 #include <sys/dsl_deadlist.h>
44 #include <sys/bptree.h>
45 #include <sys/zfeature.h>
46 #include <sys/zil_impl.h>
47 #include <sys/dsl_userhold.h>
48
49 /*
50 * ZFS Write Throttle
51 * ------------------
52 *
53 * ZFS must limit the rate of incoming writes to the rate at which it is able
54 * to sync data modifications to the backend storage. Throttling by too much
55 * creates an artificial limit; throttling by too little can only be sustained
56 * for short periods and would lead to highly lumpy performance. On a per-pool
57 * basis, ZFS tracks the amount of modified (dirty) data. As operations change
58 * data, the amount of dirty data increases; as ZFS syncs out data, the amount
59 * of dirty data decreases. When the amount of dirty data exceeds a
60 * predetermined threshold further modifications are blocked until the amount
61 * of dirty data decreases (as data is synced out).
62 *
63 * The limit on dirty data is tunable, and should be adjusted according to
64 * both the IO capacity and available memory of the system. The larger the
65 * window, the more ZFS is able to aggregate and amortize metadata (and data)
66 * changes. However, memory is a limited resource, and allowing for more dirty
67 * data comes at the cost of keeping other useful data in memory (for example
68 * ZFS data cached by the ARC).
69 *
70 * Implementation
71 *
72 * As buffers are modified dsl_pool_willuse_space() increments both the per-
73 * txg (dp_dirty_pertxg[]) and poolwide (dp_dirty_total) accounting of
74 * dirty space used; dsl_pool_dirty_space() decrements those values as data
75 * is synced out from dsl_pool_sync(). While only the poolwide value is
76 * relevant, the per-txg value is useful for debugging. The tunable
77 * zfs_dirty_data_max determines the dirty space limit. Once that value is
78 * exceeded, new writes are halted until space frees up.
79 *
80 * The zfs_dirty_data_sync tunable dictates the threshold at which we
81 * ensure that there is a txg syncing (see the comment in txg.c for a full
82 * description of transaction group stages).
83 *
84 * The IO scheduler uses both the dirty space limit and current amount of
85 * dirty data as inputs. Those values affect the number of concurrent IOs ZFS
86 * issues. See the comment in vdev_queue.c for details of the IO scheduler.
87 *
88 * The delay is also calculated based on the amount of dirty data. See the
89 * comment above dmu_tx_delay() for details.
90 */
91
92 /*
93 * zfs_dirty_data_max will be set to zfs_dirty_data_max_percent% of all memory,
94 * capped at zfs_dirty_data_max_max. It can also be overridden with a module
95 * parameter.
96 */
97 unsigned long zfs_dirty_data_max = 0;
98 unsigned long zfs_dirty_data_max_max = 0;
99 int zfs_dirty_data_max_percent = 10;
100 int zfs_dirty_data_max_max_percent = 25;
101
102 /*
103 * If there is at least this much dirty data, push out a txg.
104 */
105 unsigned long zfs_dirty_data_sync = 64 * 1024 * 1024;
106
107 /*
108 * Once there is this amount of dirty data, the dmu_tx_delay() will kick in
109 * and delay each transaction.
110 * This value should be >= zfs_vdev_async_write_active_max_dirty_percent.
111 */
112 int zfs_delay_min_dirty_percent = 60;
113
114 /*
115 * This controls how quickly the delay approaches infinity.
116 * Larger values cause it to delay more for a given amount of dirty data.
117 * Therefore larger values will cause there to be less dirty data for a
118 * given throughput.
119 *
120 * For the smoothest delay, this value should be about 1 billion divided
121 * by the maximum number of operations per second. This will smoothly
122 * handle between 10x and 1/10th this number.
123 *
124 * Note: zfs_delay_scale * zfs_dirty_data_max must be < 2^64, due to the
125 * multiply in dmu_tx_delay().
126 */
127 unsigned long zfs_delay_scale = 1000 * 1000 * 1000 / 2000;
128
129 hrtime_t zfs_throttle_delay = MSEC2NSEC(10);
130 hrtime_t zfs_throttle_resolution = MSEC2NSEC(10);
131
132 int
133 dsl_pool_open_special_dir(dsl_pool_t *dp, const char *name, dsl_dir_t **ddp)
134 {
135 uint64_t obj;
136 int err;
137
138 err = zap_lookup(dp->dp_meta_objset,
139 dp->dp_root_dir->dd_phys->dd_child_dir_zapobj,
140 name, sizeof (obj), 1, &obj);
141 if (err)
142 return (err);
143
144 return (dsl_dir_hold_obj(dp, obj, name, dp, ddp));
145 }
146
147 static dsl_pool_t *
148 dsl_pool_open_impl(spa_t *spa, uint64_t txg)
149 {
150 dsl_pool_t *dp;
151 blkptr_t *bp = spa_get_rootblkptr(spa);
152
153 dp = kmem_zalloc(sizeof (dsl_pool_t), KM_SLEEP);
154 dp->dp_spa = spa;
155 dp->dp_meta_rootbp = *bp;
156 rrw_init(&dp->dp_config_rwlock, B_TRUE);
157 txg_init(dp, txg);
158
159 txg_list_create(&dp->dp_dirty_datasets,
160 offsetof(dsl_dataset_t, ds_dirty_link));
161 txg_list_create(&dp->dp_dirty_zilogs,
162 offsetof(zilog_t, zl_dirty_link));
163 txg_list_create(&dp->dp_dirty_dirs,
164 offsetof(dsl_dir_t, dd_dirty_link));
165 txg_list_create(&dp->dp_sync_tasks,
166 offsetof(dsl_sync_task_t, dst_node));
167
168 mutex_init(&dp->dp_lock, NULL, MUTEX_DEFAULT, NULL);
169 cv_init(&dp->dp_spaceavail_cv, NULL, CV_DEFAULT, NULL);
170
171 dp->dp_iput_taskq = taskq_create("zfs_iput_taskq", 1, minclsyspri,
172 1, 4, 0);
173
174 return (dp);
175 }
176
177 int
178 dsl_pool_init(spa_t *spa, uint64_t txg, dsl_pool_t **dpp)
179 {
180 int err;
181 dsl_pool_t *dp = dsl_pool_open_impl(spa, txg);
182
183 err = dmu_objset_open_impl(spa, NULL, &dp->dp_meta_rootbp,
184 &dp->dp_meta_objset);
185 if (err != 0)
186 dsl_pool_close(dp);
187 else
188 *dpp = dp;
189
190 return (err);
191 }
192
193 int
194 dsl_pool_open(dsl_pool_t *dp)
195 {
196 int err;
197 dsl_dir_t *dd;
198 dsl_dataset_t *ds;
199 uint64_t obj;
200
201 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
202 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
203 DMU_POOL_ROOT_DATASET, sizeof (uint64_t), 1,
204 &dp->dp_root_dir_obj);
205 if (err)
206 goto out;
207
208 err = dsl_dir_hold_obj(dp, dp->dp_root_dir_obj,
209 NULL, dp, &dp->dp_root_dir);
210 if (err)
211 goto out;
212
213 err = dsl_pool_open_special_dir(dp, MOS_DIR_NAME, &dp->dp_mos_dir);
214 if (err)
215 goto out;
216
217 if (spa_version(dp->dp_spa) >= SPA_VERSION_ORIGIN) {
218 err = dsl_pool_open_special_dir(dp, ORIGIN_DIR_NAME, &dd);
219 if (err)
220 goto out;
221 err = dsl_dataset_hold_obj(dp, dd->dd_phys->dd_head_dataset_obj,
222 FTAG, &ds);
223 if (err == 0) {
224 err = dsl_dataset_hold_obj(dp,
225 ds->ds_phys->ds_prev_snap_obj, dp,
226 &dp->dp_origin_snap);
227 dsl_dataset_rele(ds, FTAG);
228 }
229 dsl_dir_rele(dd, dp);
230 if (err)
231 goto out;
232 }
233
234 if (spa_version(dp->dp_spa) >= SPA_VERSION_DEADLISTS) {
235 err = dsl_pool_open_special_dir(dp, FREE_DIR_NAME,
236 &dp->dp_free_dir);
237 if (err)
238 goto out;
239
240 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
241 DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj);
242 if (err)
243 goto out;
244 VERIFY0(bpobj_open(&dp->dp_free_bpobj,
245 dp->dp_meta_objset, obj));
246 }
247
248 /*
249 * Note: errors ignored, because the leak dir will not exist if we
250 * have not encountered a leak yet.
251 */
252 (void) dsl_pool_open_special_dir(dp, LEAK_DIR_NAME,
253 &dp->dp_leak_dir);
254
255 if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_ASYNC_DESTROY)) {
256 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
257 DMU_POOL_BPTREE_OBJ, sizeof (uint64_t), 1,
258 &dp->dp_bptree_obj);
259 if (err != 0)
260 goto out;
261 }
262
263 if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_EMPTY_BPOBJ)) {
264 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
265 DMU_POOL_EMPTY_BPOBJ, sizeof (uint64_t), 1,
266 &dp->dp_empty_bpobj);
267 if (err != 0)
268 goto out;
269 }
270
271 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
272 DMU_POOL_TMP_USERREFS, sizeof (uint64_t), 1,
273 &dp->dp_tmp_userrefs_obj);
274 if (err == ENOENT)
275 err = 0;
276 if (err)
277 goto out;
278
279 err = dsl_scan_init(dp, dp->dp_tx.tx_open_txg);
280
281 out:
282 rrw_exit(&dp->dp_config_rwlock, FTAG);
283 return (err);
284 }
285
286 void
287 dsl_pool_close(dsl_pool_t *dp)
288 {
289 /*
290 * Drop our references from dsl_pool_open().
291 *
292 * Since we held the origin_snap from "syncing" context (which
293 * includes pool-opening context), it actually only got a "ref"
294 * and not a hold, so just drop that here.
295 */
296 if (dp->dp_origin_snap)
297 dsl_dataset_rele(dp->dp_origin_snap, dp);
298 if (dp->dp_mos_dir)
299 dsl_dir_rele(dp->dp_mos_dir, dp);
300 if (dp->dp_free_dir)
301 dsl_dir_rele(dp->dp_free_dir, dp);
302 if (dp->dp_leak_dir)
303 dsl_dir_rele(dp->dp_leak_dir, dp);
304 if (dp->dp_root_dir)
305 dsl_dir_rele(dp->dp_root_dir, dp);
306
307 bpobj_close(&dp->dp_free_bpobj);
308
309 /* undo the dmu_objset_open_impl(mos) from dsl_pool_open() */
310 if (dp->dp_meta_objset)
311 dmu_objset_evict(dp->dp_meta_objset);
312
313 txg_list_destroy(&dp->dp_dirty_datasets);
314 txg_list_destroy(&dp->dp_dirty_zilogs);
315 txg_list_destroy(&dp->dp_sync_tasks);
316 txg_list_destroy(&dp->dp_dirty_dirs);
317
318 arc_flush(dp->dp_spa);
319 txg_fini(dp);
320 dsl_scan_fini(dp);
321 rrw_destroy(&dp->dp_config_rwlock);
322 mutex_destroy(&dp->dp_lock);
323 taskq_destroy(dp->dp_iput_taskq);
324 if (dp->dp_blkstats)
325 kmem_free(dp->dp_blkstats, sizeof (zfs_all_blkstats_t));
326 kmem_free(dp, sizeof (dsl_pool_t));
327 }
328
329 dsl_pool_t *
330 dsl_pool_create(spa_t *spa, nvlist_t *zplprops, uint64_t txg)
331 {
332 int err;
333 dsl_pool_t *dp = dsl_pool_open_impl(spa, txg);
334 dmu_tx_t *tx = dmu_tx_create_assigned(dp, txg);
335 objset_t *os;
336 dsl_dataset_t *ds;
337 uint64_t obj;
338
339 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
340
341 /* create and open the MOS (meta-objset) */
342 dp->dp_meta_objset = dmu_objset_create_impl(spa,
343 NULL, &dp->dp_meta_rootbp, DMU_OST_META, tx);
344
345 /* create the pool directory */
346 err = zap_create_claim(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
347 DMU_OT_OBJECT_DIRECTORY, DMU_OT_NONE, 0, tx);
348 ASSERT0(err);
349
350 /* Initialize scan structures */
351 VERIFY0(dsl_scan_init(dp, txg));
352
353 /* create and open the root dir */
354 dp->dp_root_dir_obj = dsl_dir_create_sync(dp, NULL, NULL, tx);
355 VERIFY0(dsl_dir_hold_obj(dp, dp->dp_root_dir_obj,
356 NULL, dp, &dp->dp_root_dir));
357
358 /* create and open the meta-objset dir */
359 (void) dsl_dir_create_sync(dp, dp->dp_root_dir, MOS_DIR_NAME, tx);
360 VERIFY0(dsl_pool_open_special_dir(dp,
361 MOS_DIR_NAME, &dp->dp_mos_dir));
362
363 if (spa_version(spa) >= SPA_VERSION_DEADLISTS) {
364 /* create and open the free dir */
365 (void) dsl_dir_create_sync(dp, dp->dp_root_dir,
366 FREE_DIR_NAME, tx);
367 VERIFY0(dsl_pool_open_special_dir(dp,
368 FREE_DIR_NAME, &dp->dp_free_dir));
369
370 /* create and open the free_bplist */
371 obj = bpobj_alloc(dp->dp_meta_objset, SPA_MAXBLOCKSIZE, tx);
372 VERIFY(zap_add(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
373 DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj, tx) == 0);
374 VERIFY0(bpobj_open(&dp->dp_free_bpobj,
375 dp->dp_meta_objset, obj));
376 }
377
378 if (spa_version(spa) >= SPA_VERSION_DSL_SCRUB)
379 dsl_pool_create_origin(dp, tx);
380
381 /* create the root dataset */
382 obj = dsl_dataset_create_sync_dd(dp->dp_root_dir, NULL, 0, tx);
383
384 /* create the root objset */
385 VERIFY0(dsl_dataset_hold_obj(dp, obj, FTAG, &ds));
386 VERIFY(NULL != (os = dmu_objset_create_impl(dp->dp_spa, ds,
387 dsl_dataset_get_blkptr(ds), DMU_OST_ZFS, tx)));
388 #ifdef _KERNEL
389 zfs_create_fs(os, kcred, zplprops, tx);
390 #endif
391 dsl_dataset_rele(ds, FTAG);
392
393 dmu_tx_commit(tx);
394
395 rrw_exit(&dp->dp_config_rwlock, FTAG);
396
397 return (dp);
398 }
399
400 /*
401 * Account for the meta-objset space in its placeholder dsl_dir.
402 */
403 void
404 dsl_pool_mos_diduse_space(dsl_pool_t *dp,
405 int64_t used, int64_t comp, int64_t uncomp)
406 {
407 ASSERT3U(comp, ==, uncomp); /* it's all metadata */
408 mutex_enter(&dp->dp_lock);
409 dp->dp_mos_used_delta += used;
410 dp->dp_mos_compressed_delta += comp;
411 dp->dp_mos_uncompressed_delta += uncomp;
412 mutex_exit(&dp->dp_lock);
413 }
414
415 static int
416 deadlist_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
417 {
418 dsl_deadlist_t *dl = arg;
419 dsl_deadlist_insert(dl, bp, tx);
420 return (0);
421 }
422
423 static void
424 dsl_pool_sync_mos(dsl_pool_t *dp, dmu_tx_t *tx)
425 {
426 zio_t *zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED);
427 dmu_objset_sync(dp->dp_meta_objset, zio, tx);
428 VERIFY0(zio_wait(zio));
429 dprintf_bp(&dp->dp_meta_rootbp, "meta objset rootbp is %s", "");
430 spa_set_rootblkptr(dp->dp_spa, &dp->dp_meta_rootbp);
431 }
432
433 static void
434 dsl_pool_dirty_delta(dsl_pool_t *dp, int64_t delta)
435 {
436 ASSERT(MUTEX_HELD(&dp->dp_lock));
437
438 if (delta < 0)
439 ASSERT3U(-delta, <=, dp->dp_dirty_total);
440
441 dp->dp_dirty_total += delta;
442
443 /*
444 * Note: we signal even when increasing dp_dirty_total.
445 * This ensures forward progress -- each thread wakes the next waiter.
446 */
447 if (dp->dp_dirty_total <= zfs_dirty_data_max)
448 cv_signal(&dp->dp_spaceavail_cv);
449 }
450
451 void
452 dsl_pool_sync(dsl_pool_t *dp, uint64_t txg)
453 {
454 zio_t *zio;
455 dmu_tx_t *tx;
456 dsl_dir_t *dd;
457 dsl_dataset_t *ds;
458 objset_t *mos = dp->dp_meta_objset;
459 list_t synced_datasets;
460
461 list_create(&synced_datasets, sizeof (dsl_dataset_t),
462 offsetof(dsl_dataset_t, ds_synced_link));
463
464 tx = dmu_tx_create_assigned(dp, txg);
465
466 /*
467 * Write out all dirty blocks of dirty datasets.
468 */
469 zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED);
470 while ((ds = txg_list_remove(&dp->dp_dirty_datasets, txg)) != NULL) {
471 /*
472 * We must not sync any non-MOS datasets twice, because
473 * we may have taken a snapshot of them. However, we
474 * may sync newly-created datasets on pass 2.
475 */
476 ASSERT(!list_link_active(&ds->ds_synced_link));
477 list_insert_tail(&synced_datasets, ds);
478 dsl_dataset_sync(ds, zio, tx);
479 }
480 VERIFY0(zio_wait(zio));
481
482 /*
483 * We have written all of the accounted dirty data, so our
484 * dp_space_towrite should now be zero. However, some seldom-used
485 * code paths do not adhere to this (e.g. dbuf_undirty(), also
486 * rounding error in dbuf_write_physdone).
487 * Shore up the accounting of any dirtied space now.
488 */
489 dsl_pool_undirty_space(dp, dp->dp_dirty_pertxg[txg & TXG_MASK], txg);
490
491 /*
492 * After the data blocks have been written (ensured by the zio_wait()
493 * above), update the user/group space accounting.
494 */
495 for (ds = list_head(&synced_datasets); ds != NULL;
496 ds = list_next(&synced_datasets, ds)) {
497 dmu_objset_do_userquota_updates(ds->ds_objset, tx);
498 }
499
500 /*
501 * Sync the datasets again to push out the changes due to
502 * userspace updates. This must be done before we process the
503 * sync tasks, so that any snapshots will have the correct
504 * user accounting information (and we won't get confused
505 * about which blocks are part of the snapshot).
506 */
507 zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED);
508 while ((ds = txg_list_remove(&dp->dp_dirty_datasets, txg)) != NULL) {
509 ASSERT(list_link_active(&ds->ds_synced_link));
510 dmu_buf_rele(ds->ds_dbuf, ds);
511 dsl_dataset_sync(ds, zio, tx);
512 }
513 VERIFY0(zio_wait(zio));
514
515 /*
516 * Now that the datasets have been completely synced, we can
517 * clean up our in-memory structures accumulated while syncing:
518 *
519 * - move dead blocks from the pending deadlist to the on-disk deadlist
520 * - release hold from dsl_dataset_dirty()
521 */
522 while ((ds = list_remove_head(&synced_datasets)) != NULL) {
523 ASSERTV(objset_t *os = ds->ds_objset);
524 bplist_iterate(&ds->ds_pending_deadlist,
525 deadlist_enqueue_cb, &ds->ds_deadlist, tx);
526 ASSERT(!dmu_objset_is_dirty(os, txg));
527 dmu_buf_rele(ds->ds_dbuf, ds);
528 }
529
530 while ((dd = txg_list_remove(&dp->dp_dirty_dirs, txg)) != NULL) {
531 dsl_dir_sync(dd, tx);
532 }
533
534 /*
535 * The MOS's space is accounted for in the pool/$MOS
536 * (dp_mos_dir). We can't modify the mos while we're syncing
537 * it, so we remember the deltas and apply them here.
538 */
539 if (dp->dp_mos_used_delta != 0 || dp->dp_mos_compressed_delta != 0 ||
540 dp->dp_mos_uncompressed_delta != 0) {
541 dsl_dir_diduse_space(dp->dp_mos_dir, DD_USED_HEAD,
542 dp->dp_mos_used_delta,
543 dp->dp_mos_compressed_delta,
544 dp->dp_mos_uncompressed_delta, tx);
545 dp->dp_mos_used_delta = 0;
546 dp->dp_mos_compressed_delta = 0;
547 dp->dp_mos_uncompressed_delta = 0;
548 }
549
550 if (list_head(&mos->os_dirty_dnodes[txg & TXG_MASK]) != NULL ||
551 list_head(&mos->os_free_dnodes[txg & TXG_MASK]) != NULL) {
552 dsl_pool_sync_mos(dp, tx);
553 }
554
555 /*
556 * If we modify a dataset in the same txg that we want to destroy it,
557 * its dsl_dir's dd_dbuf will be dirty, and thus have a hold on it.
558 * dsl_dir_destroy_check() will fail if there are unexpected holds.
559 * Therefore, we want to sync the MOS (thus syncing the dd_dbuf
560 * and clearing the hold on it) before we process the sync_tasks.
561 * The MOS data dirtied by the sync_tasks will be synced on the next
562 * pass.
563 */
564 if (!txg_list_empty(&dp->dp_sync_tasks, txg)) {
565 dsl_sync_task_t *dst;
566 /*
567 * No more sync tasks should have been added while we
568 * were syncing.
569 */
570 ASSERT3U(spa_sync_pass(dp->dp_spa), ==, 1);
571 while ((dst = txg_list_remove(&dp->dp_sync_tasks, txg)) != NULL)
572 dsl_sync_task_sync(dst, tx);
573 }
574
575 dmu_tx_commit(tx);
576
577 DTRACE_PROBE2(dsl_pool_sync__done, dsl_pool_t *dp, dp, uint64_t, txg);
578 }
579
580 void
581 dsl_pool_sync_done(dsl_pool_t *dp, uint64_t txg)
582 {
583 zilog_t *zilog;
584
585 while ((zilog = txg_list_remove(&dp->dp_dirty_zilogs, txg))) {
586 dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
587 zil_clean(zilog, txg);
588 ASSERT(!dmu_objset_is_dirty(zilog->zl_os, txg));
589 dmu_buf_rele(ds->ds_dbuf, zilog);
590 }
591 ASSERT(!dmu_objset_is_dirty(dp->dp_meta_objset, txg));
592 }
593
594 /*
595 * TRUE if the current thread is the tx_sync_thread or if we
596 * are being called from SPA context during pool initialization.
597 */
598 int
599 dsl_pool_sync_context(dsl_pool_t *dp)
600 {
601 return (curthread == dp->dp_tx.tx_sync_thread ||
602 spa_is_initializing(dp->dp_spa));
603 }
604
605 uint64_t
606 dsl_pool_adjustedsize(dsl_pool_t *dp, boolean_t netfree)
607 {
608 uint64_t space, resv;
609
610 /*
611 * Reserve about 1.6% (1/64), or at least 32MB, for allocation
612 * efficiency.
613 * XXX The intent log is not accounted for, so it must fit
614 * within this slop.
615 *
616 * If we're trying to assess whether it's OK to do a free,
617 * cut the reservation in half to allow forward progress
618 * (e.g. make it possible to rm(1) files from a full pool).
619 */
620 space = spa_get_dspace(dp->dp_spa);
621 resv = MAX(space >> 6, SPA_MINDEVSIZE >> 1);
622 if (netfree)
623 resv >>= 1;
624
625 return (space - resv);
626 }
627
628 boolean_t
629 dsl_pool_need_dirty_delay(dsl_pool_t *dp)
630 {
631 uint64_t delay_min_bytes =
632 zfs_dirty_data_max * zfs_delay_min_dirty_percent / 100;
633 boolean_t rv;
634
635 mutex_enter(&dp->dp_lock);
636 if (dp->dp_dirty_total > zfs_dirty_data_sync)
637 txg_kick(dp);
638 rv = (dp->dp_dirty_total > delay_min_bytes);
639 mutex_exit(&dp->dp_lock);
640 return (rv);
641 }
642
643 void
644 dsl_pool_dirty_space(dsl_pool_t *dp, int64_t space, dmu_tx_t *tx)
645 {
646 if (space > 0) {
647 mutex_enter(&dp->dp_lock);
648 dp->dp_dirty_pertxg[tx->tx_txg & TXG_MASK] += space;
649 dsl_pool_dirty_delta(dp, space);
650 mutex_exit(&dp->dp_lock);
651 }
652 }
653
654 void
655 dsl_pool_undirty_space(dsl_pool_t *dp, int64_t space, uint64_t txg)
656 {
657 ASSERT3S(space, >=, 0);
658 if (space == 0)
659 return;
660
661 mutex_enter(&dp->dp_lock);
662 if (dp->dp_dirty_pertxg[txg & TXG_MASK] < space) {
663 /* XXX writing something we didn't dirty? */
664 space = dp->dp_dirty_pertxg[txg & TXG_MASK];
665 }
666 ASSERT3U(dp->dp_dirty_pertxg[txg & TXG_MASK], >=, space);
667 dp->dp_dirty_pertxg[txg & TXG_MASK] -= space;
668 ASSERT3U(dp->dp_dirty_total, >=, space);
669 dsl_pool_dirty_delta(dp, -space);
670 mutex_exit(&dp->dp_lock);
671 }
672
673 /* ARGSUSED */
674 static int
675 upgrade_clones_cb(dsl_pool_t *dp, dsl_dataset_t *hds, void *arg)
676 {
677 dmu_tx_t *tx = arg;
678 dsl_dataset_t *ds, *prev = NULL;
679 int err;
680
681 err = dsl_dataset_hold_obj(dp, hds->ds_object, FTAG, &ds);
682 if (err)
683 return (err);
684
685 while (ds->ds_phys->ds_prev_snap_obj != 0) {
686 err = dsl_dataset_hold_obj(dp, ds->ds_phys->ds_prev_snap_obj,
687 FTAG, &prev);
688 if (err) {
689 dsl_dataset_rele(ds, FTAG);
690 return (err);
691 }
692
693 if (prev->ds_phys->ds_next_snap_obj != ds->ds_object)
694 break;
695 dsl_dataset_rele(ds, FTAG);
696 ds = prev;
697 prev = NULL;
698 }
699
700 if (prev == NULL) {
701 prev = dp->dp_origin_snap;
702
703 /*
704 * The $ORIGIN can't have any data, or the accounting
705 * will be wrong.
706 */
707 ASSERT0(prev->ds_phys->ds_bp.blk_birth);
708
709 /* The origin doesn't get attached to itself */
710 if (ds->ds_object == prev->ds_object) {
711 dsl_dataset_rele(ds, FTAG);
712 return (0);
713 }
714
715 dmu_buf_will_dirty(ds->ds_dbuf, tx);
716 ds->ds_phys->ds_prev_snap_obj = prev->ds_object;
717 ds->ds_phys->ds_prev_snap_txg = prev->ds_phys->ds_creation_txg;
718
719 dmu_buf_will_dirty(ds->ds_dir->dd_dbuf, tx);
720 ds->ds_dir->dd_phys->dd_origin_obj = prev->ds_object;
721
722 dmu_buf_will_dirty(prev->ds_dbuf, tx);
723 prev->ds_phys->ds_num_children++;
724
725 if (ds->ds_phys->ds_next_snap_obj == 0) {
726 ASSERT(ds->ds_prev == NULL);
727 VERIFY0(dsl_dataset_hold_obj(dp,
728 ds->ds_phys->ds_prev_snap_obj, ds, &ds->ds_prev));
729 }
730 }
731
732 ASSERT3U(ds->ds_dir->dd_phys->dd_origin_obj, ==, prev->ds_object);
733 ASSERT3U(ds->ds_phys->ds_prev_snap_obj, ==, prev->ds_object);
734
735 if (prev->ds_phys->ds_next_clones_obj == 0) {
736 dmu_buf_will_dirty(prev->ds_dbuf, tx);
737 prev->ds_phys->ds_next_clones_obj =
738 zap_create(dp->dp_meta_objset,
739 DMU_OT_NEXT_CLONES, DMU_OT_NONE, 0, tx);
740 }
741 VERIFY0(zap_add_int(dp->dp_meta_objset,
742 prev->ds_phys->ds_next_clones_obj, ds->ds_object, tx));
743
744 dsl_dataset_rele(ds, FTAG);
745 if (prev != dp->dp_origin_snap)
746 dsl_dataset_rele(prev, FTAG);
747 return (0);
748 }
749
750 void
751 dsl_pool_upgrade_clones(dsl_pool_t *dp, dmu_tx_t *tx)
752 {
753 ASSERT(dmu_tx_is_syncing(tx));
754 ASSERT(dp->dp_origin_snap != NULL);
755
756 VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj, upgrade_clones_cb,
757 tx, DS_FIND_CHILDREN));
758 }
759
760 /* ARGSUSED */
761 static int
762 upgrade_dir_clones_cb(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
763 {
764 dmu_tx_t *tx = arg;
765 objset_t *mos = dp->dp_meta_objset;
766
767 if (ds->ds_dir->dd_phys->dd_origin_obj != 0) {
768 dsl_dataset_t *origin;
769
770 VERIFY0(dsl_dataset_hold_obj(dp,
771 ds->ds_dir->dd_phys->dd_origin_obj, FTAG, &origin));
772
773 if (origin->ds_dir->dd_phys->dd_clones == 0) {
774 dmu_buf_will_dirty(origin->ds_dir->dd_dbuf, tx);
775 origin->ds_dir->dd_phys->dd_clones = zap_create(mos,
776 DMU_OT_DSL_CLONES, DMU_OT_NONE, 0, tx);
777 }
778
779 VERIFY0(zap_add_int(dp->dp_meta_objset,
780 origin->ds_dir->dd_phys->dd_clones, ds->ds_object, tx));
781
782 dsl_dataset_rele(origin, FTAG);
783 }
784 return (0);
785 }
786
787 void
788 dsl_pool_upgrade_dir_clones(dsl_pool_t *dp, dmu_tx_t *tx)
789 {
790 uint64_t obj;
791
792 ASSERT(dmu_tx_is_syncing(tx));
793
794 (void) dsl_dir_create_sync(dp, dp->dp_root_dir, FREE_DIR_NAME, tx);
795 VERIFY0(dsl_pool_open_special_dir(dp,
796 FREE_DIR_NAME, &dp->dp_free_dir));
797
798 /*
799 * We can't use bpobj_alloc(), because spa_version() still
800 * returns the old version, and we need a new-version bpobj with
801 * subobj support. So call dmu_object_alloc() directly.
802 */
803 obj = dmu_object_alloc(dp->dp_meta_objset, DMU_OT_BPOBJ,
804 SPA_MAXBLOCKSIZE, DMU_OT_BPOBJ_HDR, sizeof (bpobj_phys_t), tx);
805 VERIFY0(zap_add(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
806 DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj, tx));
807 VERIFY0(bpobj_open(&dp->dp_free_bpobj, dp->dp_meta_objset, obj));
808
809 VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
810 upgrade_dir_clones_cb, tx, DS_FIND_CHILDREN));
811 }
812
813 void
814 dsl_pool_create_origin(dsl_pool_t *dp, dmu_tx_t *tx)
815 {
816 uint64_t dsobj;
817 dsl_dataset_t *ds;
818
819 ASSERT(dmu_tx_is_syncing(tx));
820 ASSERT(dp->dp_origin_snap == NULL);
821 ASSERT(rrw_held(&dp->dp_config_rwlock, RW_WRITER));
822
823 /* create the origin dir, ds, & snap-ds */
824 dsobj = dsl_dataset_create_sync(dp->dp_root_dir, ORIGIN_DIR_NAME,
825 NULL, 0, kcred, tx);
826 VERIFY0(dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds));
827 dsl_dataset_snapshot_sync_impl(ds, ORIGIN_DIR_NAME, tx);
828 VERIFY0(dsl_dataset_hold_obj(dp, ds->ds_phys->ds_prev_snap_obj,
829 dp, &dp->dp_origin_snap));
830 dsl_dataset_rele(ds, FTAG);
831 }
832
833 taskq_t *
834 dsl_pool_iput_taskq(dsl_pool_t *dp)
835 {
836 return (dp->dp_iput_taskq);
837 }
838
839 /*
840 * Walk through the pool-wide zap object of temporary snapshot user holds
841 * and release them.
842 */
843 void
844 dsl_pool_clean_tmp_userrefs(dsl_pool_t *dp)
845 {
846 zap_attribute_t za;
847 zap_cursor_t zc;
848 objset_t *mos = dp->dp_meta_objset;
849 uint64_t zapobj = dp->dp_tmp_userrefs_obj;
850 nvlist_t *holds;
851
852 if (zapobj == 0)
853 return;
854 ASSERT(spa_version(dp->dp_spa) >= SPA_VERSION_USERREFS);
855
856 holds = fnvlist_alloc();
857
858 for (zap_cursor_init(&zc, mos, zapobj);
859 zap_cursor_retrieve(&zc, &za) == 0;
860 zap_cursor_advance(&zc)) {
861 char *htag;
862 nvlist_t *tags;
863
864 htag = strchr(za.za_name, '-');
865 *htag = '\0';
866 ++htag;
867 if (nvlist_lookup_nvlist(holds, za.za_name, &tags) != 0) {
868 tags = fnvlist_alloc();
869 fnvlist_add_boolean(tags, htag);
870 fnvlist_add_nvlist(holds, za.za_name, tags);
871 fnvlist_free(tags);
872 } else {
873 fnvlist_add_boolean(tags, htag);
874 }
875 }
876 dsl_dataset_user_release_tmp(dp, holds);
877 fnvlist_free(holds);
878 zap_cursor_fini(&zc);
879 }
880
881 /*
882 * Create the pool-wide zap object for storing temporary snapshot holds.
883 */
884 void
885 dsl_pool_user_hold_create_obj(dsl_pool_t *dp, dmu_tx_t *tx)
886 {
887 objset_t *mos = dp->dp_meta_objset;
888
889 ASSERT(dp->dp_tmp_userrefs_obj == 0);
890 ASSERT(dmu_tx_is_syncing(tx));
891
892 dp->dp_tmp_userrefs_obj = zap_create_link(mos, DMU_OT_USERREFS,
893 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_TMP_USERREFS, tx);
894 }
895
896 static int
897 dsl_pool_user_hold_rele_impl(dsl_pool_t *dp, uint64_t dsobj,
898 const char *tag, uint64_t now, dmu_tx_t *tx, boolean_t holding)
899 {
900 objset_t *mos = dp->dp_meta_objset;
901 uint64_t zapobj = dp->dp_tmp_userrefs_obj;
902 char *name;
903 int error;
904
905 ASSERT(spa_version(dp->dp_spa) >= SPA_VERSION_USERREFS);
906 ASSERT(dmu_tx_is_syncing(tx));
907
908 /*
909 * If the pool was created prior to SPA_VERSION_USERREFS, the
910 * zap object for temporary holds might not exist yet.
911 */
912 if (zapobj == 0) {
913 if (holding) {
914 dsl_pool_user_hold_create_obj(dp, tx);
915 zapobj = dp->dp_tmp_userrefs_obj;
916 } else {
917 return (SET_ERROR(ENOENT));
918 }
919 }
920
921 name = kmem_asprintf("%llx-%s", (u_longlong_t)dsobj, tag);
922 if (holding)
923 error = zap_add(mos, zapobj, name, 8, 1, &now, tx);
924 else
925 error = zap_remove(mos, zapobj, name, tx);
926 strfree(name);
927
928 return (error);
929 }
930
931 /*
932 * Add a temporary hold for the given dataset object and tag.
933 */
934 int
935 dsl_pool_user_hold(dsl_pool_t *dp, uint64_t dsobj, const char *tag,
936 uint64_t now, dmu_tx_t *tx)
937 {
938 return (dsl_pool_user_hold_rele_impl(dp, dsobj, tag, now, tx, B_TRUE));
939 }
940
941 /*
942 * Release a temporary hold for the given dataset object and tag.
943 */
944 int
945 dsl_pool_user_release(dsl_pool_t *dp, uint64_t dsobj, const char *tag,
946 dmu_tx_t *tx)
947 {
948 return (dsl_pool_user_hold_rele_impl(dp, dsobj, tag, 0,
949 tx, B_FALSE));
950 }
951
952 /*
953 * DSL Pool Configuration Lock
954 *
955 * The dp_config_rwlock protects against changes to DSL state (e.g. dataset
956 * creation / destruction / rename / property setting). It must be held for
957 * read to hold a dataset or dsl_dir. I.e. you must call
958 * dsl_pool_config_enter() or dsl_pool_hold() before calling
959 * dsl_{dataset,dir}_hold{_obj}. In most circumstances, the dp_config_rwlock
960 * must be held continuously until all datasets and dsl_dirs are released.
961 *
962 * The only exception to this rule is that if a "long hold" is placed on
963 * a dataset, then the dp_config_rwlock may be dropped while the dataset
964 * is still held. The long hold will prevent the dataset from being
965 * destroyed -- the destroy will fail with EBUSY. A long hold can be
966 * obtained by calling dsl_dataset_long_hold(), or by "owning" a dataset
967 * (by calling dsl_{dataset,objset}_{try}own{_obj}).
968 *
969 * Legitimate long-holders (including owners) should be long-running, cancelable
970 * tasks that should cause "zfs destroy" to fail. This includes DMU
971 * consumers (i.e. a ZPL filesystem being mounted or ZVOL being open),
972 * "zfs send", and "zfs diff". There are several other long-holders whose
973 * uses are suboptimal (e.g. "zfs promote", and zil_suspend()).
974 *
975 * The usual formula for long-holding would be:
976 * dsl_pool_hold()
977 * dsl_dataset_hold()
978 * ... perform checks ...
979 * dsl_dataset_long_hold()
980 * dsl_pool_rele()
981 * ... perform long-running task ...
982 * dsl_dataset_long_rele()
983 * dsl_dataset_rele()
984 *
985 * Note that when the long hold is released, the dataset is still held but
986 * the pool is not held. The dataset may change arbitrarily during this time
987 * (e.g. it could be destroyed). Therefore you shouldn't do anything to the
988 * dataset except release it.
989 *
990 * User-initiated operations (e.g. ioctls, zfs_ioc_*()) are either read-only
991 * or modifying operations.
992 *
993 * Modifying operations should generally use dsl_sync_task(). The synctask
994 * infrastructure enforces proper locking strategy with respect to the
995 * dp_config_rwlock. See the comment above dsl_sync_task() for details.
996 *
997 * Read-only operations will manually hold the pool, then the dataset, obtain
998 * information from the dataset, then release the pool and dataset.
999 * dmu_objset_{hold,rele}() are convenience routines that also do the pool
1000 * hold/rele.
1001 */
1002
1003 int
1004 dsl_pool_hold(const char *name, void *tag, dsl_pool_t **dp)
1005 {
1006 spa_t *spa;
1007 int error;
1008
1009 error = spa_open(name, &spa, tag);
1010 if (error == 0) {
1011 *dp = spa_get_dsl(spa);
1012 dsl_pool_config_enter(*dp, tag);
1013 }
1014 return (error);
1015 }
1016
1017 void
1018 dsl_pool_rele(dsl_pool_t *dp, void *tag)
1019 {
1020 dsl_pool_config_exit(dp, tag);
1021 spa_close(dp->dp_spa, tag);
1022 }
1023
1024 void
1025 dsl_pool_config_enter(dsl_pool_t *dp, void *tag)
1026 {
1027 /*
1028 * We use a "reentrant" reader-writer lock, but not reentrantly.
1029 *
1030 * The rrwlock can (with the track_all flag) track all reading threads,
1031 * which is very useful for debugging which code path failed to release
1032 * the lock, and for verifying that the *current* thread does hold
1033 * the lock.
1034 *
1035 * (Unlike a rwlock, which knows that N threads hold it for
1036 * read, but not *which* threads, so rw_held(RW_READER) returns TRUE
1037 * if any thread holds it for read, even if this thread doesn't).
1038 */
1039 ASSERT(!rrw_held(&dp->dp_config_rwlock, RW_READER));
1040 rrw_enter(&dp->dp_config_rwlock, RW_READER, tag);
1041 }
1042
1043 void
1044 dsl_pool_config_exit(dsl_pool_t *dp, void *tag)
1045 {
1046 rrw_exit(&dp->dp_config_rwlock, tag);
1047 }
1048
1049 boolean_t
1050 dsl_pool_config_held(dsl_pool_t *dp)
1051 {
1052 return (RRW_LOCK_HELD(&dp->dp_config_rwlock));
1053 }
1054
1055 #if defined(_KERNEL) && defined(HAVE_SPL)
1056 EXPORT_SYMBOL(dsl_pool_config_enter);
1057 EXPORT_SYMBOL(dsl_pool_config_exit);
1058
1059 /* zfs_dirty_data_max_percent only applied at module load in arc_init(). */
1060 module_param(zfs_dirty_data_max_percent, int, 0444);
1061 MODULE_PARM_DESC(zfs_dirty_data_max_percent, "percent of ram can be dirty");
1062
1063 /* zfs_dirty_data_max_max_percent only applied at module load in arc_init(). */
1064 module_param(zfs_dirty_data_max_max_percent, int, 0444);
1065 MODULE_PARM_DESC(zfs_dirty_data_max_max_percent,
1066 "zfs_dirty_data_max upper bound as % of RAM");
1067
1068 module_param(zfs_delay_min_dirty_percent, int, 0644);
1069 MODULE_PARM_DESC(zfs_delay_min_dirty_percent, "transaction delay threshold");
1070
1071 module_param(zfs_dirty_data_max, ulong, 0644);
1072 MODULE_PARM_DESC(zfs_dirty_data_max, "determines the dirty space limit");
1073
1074 /* zfs_dirty_data_max_max only applied at module load in arc_init(). */
1075 module_param(zfs_dirty_data_max_max, ulong, 0444);
1076 MODULE_PARM_DESC(zfs_dirty_data_max_max,
1077 "zfs_dirty_data_max upper bound in bytes");
1078
1079 module_param(zfs_dirty_data_sync, ulong, 0644);
1080 MODULE_PARM_DESC(zfs_dirty_data_sync, "sync txg when this much dirty data");
1081
1082 module_param(zfs_delay_scale, ulong, 0644);
1083 MODULE_PARM_DESC(zfs_delay_scale, "how quickly delay approaches infinity");
1084 #endif