]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/metaslab.c
24d52a74933f4ce566a9c11a53aefdcd9592b6c0
[mirror_zfs.git] / module / zfs / metaslab.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2019 by Delphix. All rights reserved.
24 * Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
25 * Copyright (c) 2015, Nexenta Systems, Inc. All rights reserved.
26 * Copyright (c) 2017, Intel Corporation.
27 */
28
29 #include <sys/zfs_context.h>
30 #include <sys/dmu.h>
31 #include <sys/dmu_tx.h>
32 #include <sys/space_map.h>
33 #include <sys/metaslab_impl.h>
34 #include <sys/vdev_impl.h>
35 #include <sys/vdev_draid.h>
36 #include <sys/zio.h>
37 #include <sys/spa_impl.h>
38 #include <sys/zfeature.h>
39 #include <sys/vdev_indirect_mapping.h>
40 #include <sys/zap.h>
41 #include <sys/btree.h>
42
43 #define WITH_DF_BLOCK_ALLOCATOR
44
45 #define GANG_ALLOCATION(flags) \
46 ((flags) & (METASLAB_GANG_CHILD | METASLAB_GANG_HEADER))
47
48 /*
49 * Metaslab granularity, in bytes. This is roughly similar to what would be
50 * referred to as the "stripe size" in traditional RAID arrays. In normal
51 * operation, we will try to write this amount of data to each disk before
52 * moving on to the next top-level vdev.
53 */
54 static uint64_t metaslab_aliquot = 1024 * 1024;
55
56 /*
57 * For testing, make some blocks above a certain size be gang blocks.
58 */
59 uint64_t metaslab_force_ganging = SPA_MAXBLOCKSIZE + 1;
60
61 /*
62 * In pools where the log space map feature is not enabled we touch
63 * multiple metaslabs (and their respective space maps) with each
64 * transaction group. Thus, we benefit from having a small space map
65 * block size since it allows us to issue more I/O operations scattered
66 * around the disk. So a sane default for the space map block size
67 * is 8~16K.
68 */
69 int zfs_metaslab_sm_blksz_no_log = (1 << 14);
70
71 /*
72 * When the log space map feature is enabled, we accumulate a lot of
73 * changes per metaslab that are flushed once in a while so we benefit
74 * from a bigger block size like 128K for the metaslab space maps.
75 */
76 int zfs_metaslab_sm_blksz_with_log = (1 << 17);
77
78 /*
79 * The in-core space map representation is more compact than its on-disk form.
80 * The zfs_condense_pct determines how much more compact the in-core
81 * space map representation must be before we compact it on-disk.
82 * Values should be greater than or equal to 100.
83 */
84 uint_t zfs_condense_pct = 200;
85
86 /*
87 * Condensing a metaslab is not guaranteed to actually reduce the amount of
88 * space used on disk. In particular, a space map uses data in increments of
89 * MAX(1 << ashift, space_map_blksz), so a metaslab might use the
90 * same number of blocks after condensing. Since the goal of condensing is to
91 * reduce the number of IOPs required to read the space map, we only want to
92 * condense when we can be sure we will reduce the number of blocks used by the
93 * space map. Unfortunately, we cannot precisely compute whether or not this is
94 * the case in metaslab_should_condense since we are holding ms_lock. Instead,
95 * we apply the following heuristic: do not condense a spacemap unless the
96 * uncondensed size consumes greater than zfs_metaslab_condense_block_threshold
97 * blocks.
98 */
99 static const int zfs_metaslab_condense_block_threshold = 4;
100
101 /*
102 * The zfs_mg_noalloc_threshold defines which metaslab groups should
103 * be eligible for allocation. The value is defined as a percentage of
104 * free space. Metaslab groups that have more free space than
105 * zfs_mg_noalloc_threshold are always eligible for allocations. Once
106 * a metaslab group's free space is less than or equal to the
107 * zfs_mg_noalloc_threshold the allocator will avoid allocating to that
108 * group unless all groups in the pool have reached zfs_mg_noalloc_threshold.
109 * Once all groups in the pool reach zfs_mg_noalloc_threshold then all
110 * groups are allowed to accept allocations. Gang blocks are always
111 * eligible to allocate on any metaslab group. The default value of 0 means
112 * no metaslab group will be excluded based on this criterion.
113 */
114 static uint_t zfs_mg_noalloc_threshold = 0;
115
116 /*
117 * Metaslab groups are considered eligible for allocations if their
118 * fragmentation metric (measured as a percentage) is less than or
119 * equal to zfs_mg_fragmentation_threshold. If a metaslab group
120 * exceeds this threshold then it will be skipped unless all metaslab
121 * groups within the metaslab class have also crossed this threshold.
122 *
123 * This tunable was introduced to avoid edge cases where we continue
124 * allocating from very fragmented disks in our pool while other, less
125 * fragmented disks, exists. On the other hand, if all disks in the
126 * pool are uniformly approaching the threshold, the threshold can
127 * be a speed bump in performance, where we keep switching the disks
128 * that we allocate from (e.g. we allocate some segments from disk A
129 * making it bypassing the threshold while freeing segments from disk
130 * B getting its fragmentation below the threshold).
131 *
132 * Empirically, we've seen that our vdev selection for allocations is
133 * good enough that fragmentation increases uniformly across all vdevs
134 * the majority of the time. Thus we set the threshold percentage high
135 * enough to avoid hitting the speed bump on pools that are being pushed
136 * to the edge.
137 */
138 static uint_t zfs_mg_fragmentation_threshold = 95;
139
140 /*
141 * Allow metaslabs to keep their active state as long as their fragmentation
142 * percentage is less than or equal to zfs_metaslab_fragmentation_threshold. An
143 * active metaslab that exceeds this threshold will no longer keep its active
144 * status allowing better metaslabs to be selected.
145 */
146 static uint_t zfs_metaslab_fragmentation_threshold = 70;
147
148 /*
149 * When set will load all metaslabs when pool is first opened.
150 */
151 int metaslab_debug_load = B_FALSE;
152
153 /*
154 * When set will prevent metaslabs from being unloaded.
155 */
156 static int metaslab_debug_unload = B_FALSE;
157
158 /*
159 * Minimum size which forces the dynamic allocator to change
160 * it's allocation strategy. Once the space map cannot satisfy
161 * an allocation of this size then it switches to using more
162 * aggressive strategy (i.e search by size rather than offset).
163 */
164 uint64_t metaslab_df_alloc_threshold = SPA_OLD_MAXBLOCKSIZE;
165
166 /*
167 * The minimum free space, in percent, which must be available
168 * in a space map to continue allocations in a first-fit fashion.
169 * Once the space map's free space drops below this level we dynamically
170 * switch to using best-fit allocations.
171 */
172 uint_t metaslab_df_free_pct = 4;
173
174 /*
175 * Maximum distance to search forward from the last offset. Without this
176 * limit, fragmented pools can see >100,000 iterations and
177 * metaslab_block_picker() becomes the performance limiting factor on
178 * high-performance storage.
179 *
180 * With the default setting of 16MB, we typically see less than 500
181 * iterations, even with very fragmented, ashift=9 pools. The maximum number
182 * of iterations possible is:
183 * metaslab_df_max_search / (2 * (1<<ashift))
184 * With the default setting of 16MB this is 16*1024 (with ashift=9) or
185 * 2048 (with ashift=12).
186 */
187 static uint_t metaslab_df_max_search = 16 * 1024 * 1024;
188
189 /*
190 * Forces the metaslab_block_picker function to search for at least this many
191 * segments forwards until giving up on finding a segment that the allocation
192 * will fit into.
193 */
194 static const uint32_t metaslab_min_search_count = 100;
195
196 /*
197 * If we are not searching forward (due to metaslab_df_max_search,
198 * metaslab_df_free_pct, or metaslab_df_alloc_threshold), this tunable
199 * controls what segment is used. If it is set, we will use the largest free
200 * segment. If it is not set, we will use a segment of exactly the requested
201 * size (or larger).
202 */
203 static int metaslab_df_use_largest_segment = B_FALSE;
204
205 /*
206 * Percentage of all cpus that can be used by the metaslab taskq.
207 */
208 int metaslab_load_pct = 50;
209
210 /*
211 * These tunables control how long a metaslab will remain loaded after the
212 * last allocation from it. A metaslab can't be unloaded until at least
213 * metaslab_unload_delay TXG's and metaslab_unload_delay_ms milliseconds
214 * have elapsed. However, zfs_metaslab_mem_limit may cause it to be
215 * unloaded sooner. These settings are intended to be generous -- to keep
216 * metaslabs loaded for a long time, reducing the rate of metaslab loading.
217 */
218 static uint_t metaslab_unload_delay = 32;
219 static uint_t metaslab_unload_delay_ms = 10 * 60 * 1000; /* ten minutes */
220
221 /*
222 * Max number of metaslabs per group to preload.
223 */
224 uint_t metaslab_preload_limit = 10;
225
226 /*
227 * Enable/disable preloading of metaslab.
228 */
229 static int metaslab_preload_enabled = B_TRUE;
230
231 /*
232 * Enable/disable fragmentation weighting on metaslabs.
233 */
234 static int metaslab_fragmentation_factor_enabled = B_TRUE;
235
236 /*
237 * Enable/disable lba weighting (i.e. outer tracks are given preference).
238 */
239 static int metaslab_lba_weighting_enabled = B_TRUE;
240
241 /*
242 * Enable/disable metaslab group biasing.
243 */
244 static int metaslab_bias_enabled = B_TRUE;
245
246 /*
247 * Enable/disable remapping of indirect DVAs to their concrete vdevs.
248 */
249 static const boolean_t zfs_remap_blkptr_enable = B_TRUE;
250
251 /*
252 * Enable/disable segment-based metaslab selection.
253 */
254 static int zfs_metaslab_segment_weight_enabled = B_TRUE;
255
256 /*
257 * When using segment-based metaslab selection, we will continue
258 * allocating from the active metaslab until we have exhausted
259 * zfs_metaslab_switch_threshold of its buckets.
260 */
261 static int zfs_metaslab_switch_threshold = 2;
262
263 /*
264 * Internal switch to enable/disable the metaslab allocation tracing
265 * facility.
266 */
267 static const boolean_t metaslab_trace_enabled = B_FALSE;
268
269 /*
270 * Maximum entries that the metaslab allocation tracing facility will keep
271 * in a given list when running in non-debug mode. We limit the number
272 * of entries in non-debug mode to prevent us from using up too much memory.
273 * The limit should be sufficiently large that we don't expect any allocation
274 * to every exceed this value. In debug mode, the system will panic if this
275 * limit is ever reached allowing for further investigation.
276 */
277 static const uint64_t metaslab_trace_max_entries = 5000;
278
279 /*
280 * Maximum number of metaslabs per group that can be disabled
281 * simultaneously.
282 */
283 static const int max_disabled_ms = 3;
284
285 /*
286 * Time (in seconds) to respect ms_max_size when the metaslab is not loaded.
287 * To avoid 64-bit overflow, don't set above UINT32_MAX.
288 */
289 static uint64_t zfs_metaslab_max_size_cache_sec = 1 * 60 * 60; /* 1 hour */
290
291 /*
292 * Maximum percentage of memory to use on storing loaded metaslabs. If loading
293 * a metaslab would take it over this percentage, the oldest selected metaslab
294 * is automatically unloaded.
295 */
296 static uint_t zfs_metaslab_mem_limit = 25;
297
298 /*
299 * Force the per-metaslab range trees to use 64-bit integers to store
300 * segments. Used for debugging purposes.
301 */
302 static const boolean_t zfs_metaslab_force_large_segs = B_FALSE;
303
304 /*
305 * By default we only store segments over a certain size in the size-sorted
306 * metaslab trees (ms_allocatable_by_size and
307 * ms_unflushed_frees_by_size). This dramatically reduces memory usage and
308 * improves load and unload times at the cost of causing us to use slightly
309 * larger segments than we would otherwise in some cases.
310 */
311 static const uint32_t metaslab_by_size_min_shift = 14;
312
313 /*
314 * If not set, we will first try normal allocation. If that fails then
315 * we will do a gang allocation. If that fails then we will do a "try hard"
316 * gang allocation. If that fails then we will have a multi-layer gang
317 * block.
318 *
319 * If set, we will first try normal allocation. If that fails then
320 * we will do a "try hard" allocation. If that fails we will do a gang
321 * allocation. If that fails we will do a "try hard" gang allocation. If
322 * that fails then we will have a multi-layer gang block.
323 */
324 static int zfs_metaslab_try_hard_before_gang = B_FALSE;
325
326 /*
327 * When not trying hard, we only consider the best zfs_metaslab_find_max_tries
328 * metaslabs. This improves performance, especially when there are many
329 * metaslabs per vdev and the allocation can't actually be satisfied (so we
330 * would otherwise iterate all the metaslabs). If there is a metaslab with a
331 * worse weight but it can actually satisfy the allocation, we won't find it
332 * until trying hard. This may happen if the worse metaslab is not loaded
333 * (and the true weight is better than we have calculated), or due to weight
334 * bucketization. E.g. we are looking for a 60K segment, and the best
335 * metaslabs all have free segments in the 32-63K bucket, but the best
336 * zfs_metaslab_find_max_tries metaslabs have ms_max_size <60KB, and a
337 * subsequent metaslab has ms_max_size >60KB (but fewer segments in this
338 * bucket, and therefore a lower weight).
339 */
340 static uint_t zfs_metaslab_find_max_tries = 100;
341
342 static uint64_t metaslab_weight(metaslab_t *, boolean_t);
343 static void metaslab_set_fragmentation(metaslab_t *, boolean_t);
344 static void metaslab_free_impl(vdev_t *, uint64_t, uint64_t, boolean_t);
345 static void metaslab_check_free_impl(vdev_t *, uint64_t, uint64_t);
346
347 static void metaslab_passivate(metaslab_t *msp, uint64_t weight);
348 static uint64_t metaslab_weight_from_range_tree(metaslab_t *msp);
349 static void metaslab_flush_update(metaslab_t *, dmu_tx_t *);
350 static unsigned int metaslab_idx_func(multilist_t *, void *);
351 static void metaslab_evict(metaslab_t *, uint64_t);
352 static void metaslab_rt_add(range_tree_t *rt, range_seg_t *rs, void *arg);
353 kmem_cache_t *metaslab_alloc_trace_cache;
354
355 typedef struct metaslab_stats {
356 kstat_named_t metaslabstat_trace_over_limit;
357 kstat_named_t metaslabstat_reload_tree;
358 kstat_named_t metaslabstat_too_many_tries;
359 kstat_named_t metaslabstat_try_hard;
360 } metaslab_stats_t;
361
362 static metaslab_stats_t metaslab_stats = {
363 { "trace_over_limit", KSTAT_DATA_UINT64 },
364 { "reload_tree", KSTAT_DATA_UINT64 },
365 { "too_many_tries", KSTAT_DATA_UINT64 },
366 { "try_hard", KSTAT_DATA_UINT64 },
367 };
368
369 #define METASLABSTAT_BUMP(stat) \
370 atomic_inc_64(&metaslab_stats.stat.value.ui64);
371
372
373 static kstat_t *metaslab_ksp;
374
375 void
376 metaslab_stat_init(void)
377 {
378 ASSERT(metaslab_alloc_trace_cache == NULL);
379 metaslab_alloc_trace_cache = kmem_cache_create(
380 "metaslab_alloc_trace_cache", sizeof (metaslab_alloc_trace_t),
381 0, NULL, NULL, NULL, NULL, NULL, 0);
382 metaslab_ksp = kstat_create("zfs", 0, "metaslab_stats",
383 "misc", KSTAT_TYPE_NAMED, sizeof (metaslab_stats) /
384 sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
385 if (metaslab_ksp != NULL) {
386 metaslab_ksp->ks_data = &metaslab_stats;
387 kstat_install(metaslab_ksp);
388 }
389 }
390
391 void
392 metaslab_stat_fini(void)
393 {
394 if (metaslab_ksp != NULL) {
395 kstat_delete(metaslab_ksp);
396 metaslab_ksp = NULL;
397 }
398
399 kmem_cache_destroy(metaslab_alloc_trace_cache);
400 metaslab_alloc_trace_cache = NULL;
401 }
402
403 /*
404 * ==========================================================================
405 * Metaslab classes
406 * ==========================================================================
407 */
408 metaslab_class_t *
409 metaslab_class_create(spa_t *spa, const metaslab_ops_t *ops)
410 {
411 metaslab_class_t *mc;
412
413 mc = kmem_zalloc(offsetof(metaslab_class_t,
414 mc_allocator[spa->spa_alloc_count]), KM_SLEEP);
415
416 mc->mc_spa = spa;
417 mc->mc_ops = ops;
418 mutex_init(&mc->mc_lock, NULL, MUTEX_DEFAULT, NULL);
419 multilist_create(&mc->mc_metaslab_txg_list, sizeof (metaslab_t),
420 offsetof(metaslab_t, ms_class_txg_node), metaslab_idx_func);
421 for (int i = 0; i < spa->spa_alloc_count; i++) {
422 metaslab_class_allocator_t *mca = &mc->mc_allocator[i];
423 mca->mca_rotor = NULL;
424 zfs_refcount_create_tracked(&mca->mca_alloc_slots);
425 }
426
427 return (mc);
428 }
429
430 void
431 metaslab_class_destroy(metaslab_class_t *mc)
432 {
433 spa_t *spa = mc->mc_spa;
434
435 ASSERT(mc->mc_alloc == 0);
436 ASSERT(mc->mc_deferred == 0);
437 ASSERT(mc->mc_space == 0);
438 ASSERT(mc->mc_dspace == 0);
439
440 for (int i = 0; i < spa->spa_alloc_count; i++) {
441 metaslab_class_allocator_t *mca = &mc->mc_allocator[i];
442 ASSERT(mca->mca_rotor == NULL);
443 zfs_refcount_destroy(&mca->mca_alloc_slots);
444 }
445 mutex_destroy(&mc->mc_lock);
446 multilist_destroy(&mc->mc_metaslab_txg_list);
447 kmem_free(mc, offsetof(metaslab_class_t,
448 mc_allocator[spa->spa_alloc_count]));
449 }
450
451 int
452 metaslab_class_validate(metaslab_class_t *mc)
453 {
454 metaslab_group_t *mg;
455 vdev_t *vd;
456
457 /*
458 * Must hold one of the spa_config locks.
459 */
460 ASSERT(spa_config_held(mc->mc_spa, SCL_ALL, RW_READER) ||
461 spa_config_held(mc->mc_spa, SCL_ALL, RW_WRITER));
462
463 if ((mg = mc->mc_allocator[0].mca_rotor) == NULL)
464 return (0);
465
466 do {
467 vd = mg->mg_vd;
468 ASSERT(vd->vdev_mg != NULL);
469 ASSERT3P(vd->vdev_top, ==, vd);
470 ASSERT3P(mg->mg_class, ==, mc);
471 ASSERT3P(vd->vdev_ops, !=, &vdev_hole_ops);
472 } while ((mg = mg->mg_next) != mc->mc_allocator[0].mca_rotor);
473
474 return (0);
475 }
476
477 static void
478 metaslab_class_space_update(metaslab_class_t *mc, int64_t alloc_delta,
479 int64_t defer_delta, int64_t space_delta, int64_t dspace_delta)
480 {
481 atomic_add_64(&mc->mc_alloc, alloc_delta);
482 atomic_add_64(&mc->mc_deferred, defer_delta);
483 atomic_add_64(&mc->mc_space, space_delta);
484 atomic_add_64(&mc->mc_dspace, dspace_delta);
485 }
486
487 uint64_t
488 metaslab_class_get_alloc(metaslab_class_t *mc)
489 {
490 return (mc->mc_alloc);
491 }
492
493 uint64_t
494 metaslab_class_get_deferred(metaslab_class_t *mc)
495 {
496 return (mc->mc_deferred);
497 }
498
499 uint64_t
500 metaslab_class_get_space(metaslab_class_t *mc)
501 {
502 return (mc->mc_space);
503 }
504
505 uint64_t
506 metaslab_class_get_dspace(metaslab_class_t *mc)
507 {
508 return (spa_deflate(mc->mc_spa) ? mc->mc_dspace : mc->mc_space);
509 }
510
511 void
512 metaslab_class_histogram_verify(metaslab_class_t *mc)
513 {
514 spa_t *spa = mc->mc_spa;
515 vdev_t *rvd = spa->spa_root_vdev;
516 uint64_t *mc_hist;
517 int i;
518
519 if ((zfs_flags & ZFS_DEBUG_HISTOGRAM_VERIFY) == 0)
520 return;
521
522 mc_hist = kmem_zalloc(sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE,
523 KM_SLEEP);
524
525 mutex_enter(&mc->mc_lock);
526 for (int c = 0; c < rvd->vdev_children; c++) {
527 vdev_t *tvd = rvd->vdev_child[c];
528 metaslab_group_t *mg = vdev_get_mg(tvd, mc);
529
530 /*
531 * Skip any holes, uninitialized top-levels, or
532 * vdevs that are not in this metalab class.
533 */
534 if (!vdev_is_concrete(tvd) || tvd->vdev_ms_shift == 0 ||
535 mg->mg_class != mc) {
536 continue;
537 }
538
539 IMPLY(mg == mg->mg_vd->vdev_log_mg,
540 mc == spa_embedded_log_class(mg->mg_vd->vdev_spa));
541
542 for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++)
543 mc_hist[i] += mg->mg_histogram[i];
544 }
545
546 for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++) {
547 VERIFY3U(mc_hist[i], ==, mc->mc_histogram[i]);
548 }
549
550 mutex_exit(&mc->mc_lock);
551 kmem_free(mc_hist, sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE);
552 }
553
554 /*
555 * Calculate the metaslab class's fragmentation metric. The metric
556 * is weighted based on the space contribution of each metaslab group.
557 * The return value will be a number between 0 and 100 (inclusive), or
558 * ZFS_FRAG_INVALID if the metric has not been set. See comment above the
559 * zfs_frag_table for more information about the metric.
560 */
561 uint64_t
562 metaslab_class_fragmentation(metaslab_class_t *mc)
563 {
564 vdev_t *rvd = mc->mc_spa->spa_root_vdev;
565 uint64_t fragmentation = 0;
566
567 spa_config_enter(mc->mc_spa, SCL_VDEV, FTAG, RW_READER);
568
569 for (int c = 0; c < rvd->vdev_children; c++) {
570 vdev_t *tvd = rvd->vdev_child[c];
571 metaslab_group_t *mg = tvd->vdev_mg;
572
573 /*
574 * Skip any holes, uninitialized top-levels,
575 * or vdevs that are not in this metalab class.
576 */
577 if (!vdev_is_concrete(tvd) || tvd->vdev_ms_shift == 0 ||
578 mg->mg_class != mc) {
579 continue;
580 }
581
582 /*
583 * If a metaslab group does not contain a fragmentation
584 * metric then just bail out.
585 */
586 if (mg->mg_fragmentation == ZFS_FRAG_INVALID) {
587 spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG);
588 return (ZFS_FRAG_INVALID);
589 }
590
591 /*
592 * Determine how much this metaslab_group is contributing
593 * to the overall pool fragmentation metric.
594 */
595 fragmentation += mg->mg_fragmentation *
596 metaslab_group_get_space(mg);
597 }
598 fragmentation /= metaslab_class_get_space(mc);
599
600 ASSERT3U(fragmentation, <=, 100);
601 spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG);
602 return (fragmentation);
603 }
604
605 /*
606 * Calculate the amount of expandable space that is available in
607 * this metaslab class. If a device is expanded then its expandable
608 * space will be the amount of allocatable space that is currently not
609 * part of this metaslab class.
610 */
611 uint64_t
612 metaslab_class_expandable_space(metaslab_class_t *mc)
613 {
614 vdev_t *rvd = mc->mc_spa->spa_root_vdev;
615 uint64_t space = 0;
616
617 spa_config_enter(mc->mc_spa, SCL_VDEV, FTAG, RW_READER);
618 for (int c = 0; c < rvd->vdev_children; c++) {
619 vdev_t *tvd = rvd->vdev_child[c];
620 metaslab_group_t *mg = tvd->vdev_mg;
621
622 if (!vdev_is_concrete(tvd) || tvd->vdev_ms_shift == 0 ||
623 mg->mg_class != mc) {
624 continue;
625 }
626
627 /*
628 * Calculate if we have enough space to add additional
629 * metaslabs. We report the expandable space in terms
630 * of the metaslab size since that's the unit of expansion.
631 */
632 space += P2ALIGN(tvd->vdev_max_asize - tvd->vdev_asize,
633 1ULL << tvd->vdev_ms_shift);
634 }
635 spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG);
636 return (space);
637 }
638
639 void
640 metaslab_class_evict_old(metaslab_class_t *mc, uint64_t txg)
641 {
642 multilist_t *ml = &mc->mc_metaslab_txg_list;
643 for (int i = 0; i < multilist_get_num_sublists(ml); i++) {
644 multilist_sublist_t *mls = multilist_sublist_lock(ml, i);
645 metaslab_t *msp = multilist_sublist_head(mls);
646 multilist_sublist_unlock(mls);
647 while (msp != NULL) {
648 mutex_enter(&msp->ms_lock);
649
650 /*
651 * If the metaslab has been removed from the list
652 * (which could happen if we were at the memory limit
653 * and it was evicted during this loop), then we can't
654 * proceed and we should restart the sublist.
655 */
656 if (!multilist_link_active(&msp->ms_class_txg_node)) {
657 mutex_exit(&msp->ms_lock);
658 i--;
659 break;
660 }
661 mls = multilist_sublist_lock(ml, i);
662 metaslab_t *next_msp = multilist_sublist_next(mls, msp);
663 multilist_sublist_unlock(mls);
664 if (txg >
665 msp->ms_selected_txg + metaslab_unload_delay &&
666 gethrtime() > msp->ms_selected_time +
667 (uint64_t)MSEC2NSEC(metaslab_unload_delay_ms)) {
668 metaslab_evict(msp, txg);
669 } else {
670 /*
671 * Once we've hit a metaslab selected too
672 * recently to evict, we're done evicting for
673 * now.
674 */
675 mutex_exit(&msp->ms_lock);
676 break;
677 }
678 mutex_exit(&msp->ms_lock);
679 msp = next_msp;
680 }
681 }
682 }
683
684 static int
685 metaslab_compare(const void *x1, const void *x2)
686 {
687 const metaslab_t *m1 = (const metaslab_t *)x1;
688 const metaslab_t *m2 = (const metaslab_t *)x2;
689
690 int sort1 = 0;
691 int sort2 = 0;
692 if (m1->ms_allocator != -1 && m1->ms_primary)
693 sort1 = 1;
694 else if (m1->ms_allocator != -1 && !m1->ms_primary)
695 sort1 = 2;
696 if (m2->ms_allocator != -1 && m2->ms_primary)
697 sort2 = 1;
698 else if (m2->ms_allocator != -1 && !m2->ms_primary)
699 sort2 = 2;
700
701 /*
702 * Sort inactive metaslabs first, then primaries, then secondaries. When
703 * selecting a metaslab to allocate from, an allocator first tries its
704 * primary, then secondary active metaslab. If it doesn't have active
705 * metaslabs, or can't allocate from them, it searches for an inactive
706 * metaslab to activate. If it can't find a suitable one, it will steal
707 * a primary or secondary metaslab from another allocator.
708 */
709 if (sort1 < sort2)
710 return (-1);
711 if (sort1 > sort2)
712 return (1);
713
714 int cmp = TREE_CMP(m2->ms_weight, m1->ms_weight);
715 if (likely(cmp))
716 return (cmp);
717
718 IMPLY(TREE_CMP(m1->ms_start, m2->ms_start) == 0, m1 == m2);
719
720 return (TREE_CMP(m1->ms_start, m2->ms_start));
721 }
722
723 /*
724 * ==========================================================================
725 * Metaslab groups
726 * ==========================================================================
727 */
728 /*
729 * Update the allocatable flag and the metaslab group's capacity.
730 * The allocatable flag is set to true if the capacity is below
731 * the zfs_mg_noalloc_threshold or has a fragmentation value that is
732 * greater than zfs_mg_fragmentation_threshold. If a metaslab group
733 * transitions from allocatable to non-allocatable or vice versa then the
734 * metaslab group's class is updated to reflect the transition.
735 */
736 static void
737 metaslab_group_alloc_update(metaslab_group_t *mg)
738 {
739 vdev_t *vd = mg->mg_vd;
740 metaslab_class_t *mc = mg->mg_class;
741 vdev_stat_t *vs = &vd->vdev_stat;
742 boolean_t was_allocatable;
743 boolean_t was_initialized;
744
745 ASSERT(vd == vd->vdev_top);
746 ASSERT3U(spa_config_held(mc->mc_spa, SCL_ALLOC, RW_READER), ==,
747 SCL_ALLOC);
748
749 mutex_enter(&mg->mg_lock);
750 was_allocatable = mg->mg_allocatable;
751 was_initialized = mg->mg_initialized;
752
753 mg->mg_free_capacity = ((vs->vs_space - vs->vs_alloc) * 100) /
754 (vs->vs_space + 1);
755
756 mutex_enter(&mc->mc_lock);
757
758 /*
759 * If the metaslab group was just added then it won't
760 * have any space until we finish syncing out this txg.
761 * At that point we will consider it initialized and available
762 * for allocations. We also don't consider non-activated
763 * metaslab groups (e.g. vdevs that are in the middle of being removed)
764 * to be initialized, because they can't be used for allocation.
765 */
766 mg->mg_initialized = metaslab_group_initialized(mg);
767 if (!was_initialized && mg->mg_initialized) {
768 mc->mc_groups++;
769 } else if (was_initialized && !mg->mg_initialized) {
770 ASSERT3U(mc->mc_groups, >, 0);
771 mc->mc_groups--;
772 }
773 if (mg->mg_initialized)
774 mg->mg_no_free_space = B_FALSE;
775
776 /*
777 * A metaslab group is considered allocatable if it has plenty
778 * of free space or is not heavily fragmented. We only take
779 * fragmentation into account if the metaslab group has a valid
780 * fragmentation metric (i.e. a value between 0 and 100).
781 */
782 mg->mg_allocatable = (mg->mg_activation_count > 0 &&
783 mg->mg_free_capacity > zfs_mg_noalloc_threshold &&
784 (mg->mg_fragmentation == ZFS_FRAG_INVALID ||
785 mg->mg_fragmentation <= zfs_mg_fragmentation_threshold));
786
787 /*
788 * The mc_alloc_groups maintains a count of the number of
789 * groups in this metaslab class that are still above the
790 * zfs_mg_noalloc_threshold. This is used by the allocating
791 * threads to determine if they should avoid allocations to
792 * a given group. The allocator will avoid allocations to a group
793 * if that group has reached or is below the zfs_mg_noalloc_threshold
794 * and there are still other groups that are above the threshold.
795 * When a group transitions from allocatable to non-allocatable or
796 * vice versa we update the metaslab class to reflect that change.
797 * When the mc_alloc_groups value drops to 0 that means that all
798 * groups have reached the zfs_mg_noalloc_threshold making all groups
799 * eligible for allocations. This effectively means that all devices
800 * are balanced again.
801 */
802 if (was_allocatable && !mg->mg_allocatable)
803 mc->mc_alloc_groups--;
804 else if (!was_allocatable && mg->mg_allocatable)
805 mc->mc_alloc_groups++;
806 mutex_exit(&mc->mc_lock);
807
808 mutex_exit(&mg->mg_lock);
809 }
810
811 int
812 metaslab_sort_by_flushed(const void *va, const void *vb)
813 {
814 const metaslab_t *a = va;
815 const metaslab_t *b = vb;
816
817 int cmp = TREE_CMP(a->ms_unflushed_txg, b->ms_unflushed_txg);
818 if (likely(cmp))
819 return (cmp);
820
821 uint64_t a_vdev_id = a->ms_group->mg_vd->vdev_id;
822 uint64_t b_vdev_id = b->ms_group->mg_vd->vdev_id;
823 cmp = TREE_CMP(a_vdev_id, b_vdev_id);
824 if (cmp)
825 return (cmp);
826
827 return (TREE_CMP(a->ms_id, b->ms_id));
828 }
829
830 metaslab_group_t *
831 metaslab_group_create(metaslab_class_t *mc, vdev_t *vd, int allocators)
832 {
833 metaslab_group_t *mg;
834
835 mg = kmem_zalloc(offsetof(metaslab_group_t,
836 mg_allocator[allocators]), KM_SLEEP);
837 mutex_init(&mg->mg_lock, NULL, MUTEX_DEFAULT, NULL);
838 mutex_init(&mg->mg_ms_disabled_lock, NULL, MUTEX_DEFAULT, NULL);
839 cv_init(&mg->mg_ms_disabled_cv, NULL, CV_DEFAULT, NULL);
840 avl_create(&mg->mg_metaslab_tree, metaslab_compare,
841 sizeof (metaslab_t), offsetof(metaslab_t, ms_group_node));
842 mg->mg_vd = vd;
843 mg->mg_class = mc;
844 mg->mg_activation_count = 0;
845 mg->mg_initialized = B_FALSE;
846 mg->mg_no_free_space = B_TRUE;
847 mg->mg_allocators = allocators;
848
849 for (int i = 0; i < allocators; i++) {
850 metaslab_group_allocator_t *mga = &mg->mg_allocator[i];
851 zfs_refcount_create_tracked(&mga->mga_alloc_queue_depth);
852 }
853
854 mg->mg_taskq = taskq_create("metaslab_group_taskq", metaslab_load_pct,
855 maxclsyspri, 10, INT_MAX, TASKQ_THREADS_CPU_PCT | TASKQ_DYNAMIC);
856
857 return (mg);
858 }
859
860 void
861 metaslab_group_destroy(metaslab_group_t *mg)
862 {
863 ASSERT(mg->mg_prev == NULL);
864 ASSERT(mg->mg_next == NULL);
865 /*
866 * We may have gone below zero with the activation count
867 * either because we never activated in the first place or
868 * because we're done, and possibly removing the vdev.
869 */
870 ASSERT(mg->mg_activation_count <= 0);
871
872 taskq_destroy(mg->mg_taskq);
873 avl_destroy(&mg->mg_metaslab_tree);
874 mutex_destroy(&mg->mg_lock);
875 mutex_destroy(&mg->mg_ms_disabled_lock);
876 cv_destroy(&mg->mg_ms_disabled_cv);
877
878 for (int i = 0; i < mg->mg_allocators; i++) {
879 metaslab_group_allocator_t *mga = &mg->mg_allocator[i];
880 zfs_refcount_destroy(&mga->mga_alloc_queue_depth);
881 }
882 kmem_free(mg, offsetof(metaslab_group_t,
883 mg_allocator[mg->mg_allocators]));
884 }
885
886 void
887 metaslab_group_activate(metaslab_group_t *mg)
888 {
889 metaslab_class_t *mc = mg->mg_class;
890 spa_t *spa = mc->mc_spa;
891 metaslab_group_t *mgprev, *mgnext;
892
893 ASSERT3U(spa_config_held(spa, SCL_ALLOC, RW_WRITER), !=, 0);
894
895 ASSERT(mg->mg_prev == NULL);
896 ASSERT(mg->mg_next == NULL);
897 ASSERT(mg->mg_activation_count <= 0);
898
899 if (++mg->mg_activation_count <= 0)
900 return;
901
902 mg->mg_aliquot = metaslab_aliquot * MAX(1,
903 vdev_get_ndisks(mg->mg_vd) - vdev_get_nparity(mg->mg_vd));
904 metaslab_group_alloc_update(mg);
905
906 if ((mgprev = mc->mc_allocator[0].mca_rotor) == NULL) {
907 mg->mg_prev = mg;
908 mg->mg_next = mg;
909 } else {
910 mgnext = mgprev->mg_next;
911 mg->mg_prev = mgprev;
912 mg->mg_next = mgnext;
913 mgprev->mg_next = mg;
914 mgnext->mg_prev = mg;
915 }
916 for (int i = 0; i < spa->spa_alloc_count; i++) {
917 mc->mc_allocator[i].mca_rotor = mg;
918 mg = mg->mg_next;
919 }
920 }
921
922 /*
923 * Passivate a metaslab group and remove it from the allocation rotor.
924 * Callers must hold both the SCL_ALLOC and SCL_ZIO lock prior to passivating
925 * a metaslab group. This function will momentarily drop spa_config_locks
926 * that are lower than the SCL_ALLOC lock (see comment below).
927 */
928 void
929 metaslab_group_passivate(metaslab_group_t *mg)
930 {
931 metaslab_class_t *mc = mg->mg_class;
932 spa_t *spa = mc->mc_spa;
933 metaslab_group_t *mgprev, *mgnext;
934 int locks = spa_config_held(spa, SCL_ALL, RW_WRITER);
935
936 ASSERT3U(spa_config_held(spa, SCL_ALLOC | SCL_ZIO, RW_WRITER), ==,
937 (SCL_ALLOC | SCL_ZIO));
938
939 if (--mg->mg_activation_count != 0) {
940 for (int i = 0; i < spa->spa_alloc_count; i++)
941 ASSERT(mc->mc_allocator[i].mca_rotor != mg);
942 ASSERT(mg->mg_prev == NULL);
943 ASSERT(mg->mg_next == NULL);
944 ASSERT(mg->mg_activation_count < 0);
945 return;
946 }
947
948 /*
949 * The spa_config_lock is an array of rwlocks, ordered as
950 * follows (from highest to lowest):
951 * SCL_CONFIG > SCL_STATE > SCL_L2ARC > SCL_ALLOC >
952 * SCL_ZIO > SCL_FREE > SCL_VDEV
953 * (For more information about the spa_config_lock see spa_misc.c)
954 * The higher the lock, the broader its coverage. When we passivate
955 * a metaslab group, we must hold both the SCL_ALLOC and the SCL_ZIO
956 * config locks. However, the metaslab group's taskq might be trying
957 * to preload metaslabs so we must drop the SCL_ZIO lock and any
958 * lower locks to allow the I/O to complete. At a minimum,
959 * we continue to hold the SCL_ALLOC lock, which prevents any future
960 * allocations from taking place and any changes to the vdev tree.
961 */
962 spa_config_exit(spa, locks & ~(SCL_ZIO - 1), spa);
963 taskq_wait_outstanding(mg->mg_taskq, 0);
964 spa_config_enter(spa, locks & ~(SCL_ZIO - 1), spa, RW_WRITER);
965 metaslab_group_alloc_update(mg);
966 for (int i = 0; i < mg->mg_allocators; i++) {
967 metaslab_group_allocator_t *mga = &mg->mg_allocator[i];
968 metaslab_t *msp = mga->mga_primary;
969 if (msp != NULL) {
970 mutex_enter(&msp->ms_lock);
971 metaslab_passivate(msp,
972 metaslab_weight_from_range_tree(msp));
973 mutex_exit(&msp->ms_lock);
974 }
975 msp = mga->mga_secondary;
976 if (msp != NULL) {
977 mutex_enter(&msp->ms_lock);
978 metaslab_passivate(msp,
979 metaslab_weight_from_range_tree(msp));
980 mutex_exit(&msp->ms_lock);
981 }
982 }
983
984 mgprev = mg->mg_prev;
985 mgnext = mg->mg_next;
986
987 if (mg == mgnext) {
988 mgnext = NULL;
989 } else {
990 mgprev->mg_next = mgnext;
991 mgnext->mg_prev = mgprev;
992 }
993 for (int i = 0; i < spa->spa_alloc_count; i++) {
994 if (mc->mc_allocator[i].mca_rotor == mg)
995 mc->mc_allocator[i].mca_rotor = mgnext;
996 }
997
998 mg->mg_prev = NULL;
999 mg->mg_next = NULL;
1000 }
1001
1002 boolean_t
1003 metaslab_group_initialized(metaslab_group_t *mg)
1004 {
1005 vdev_t *vd = mg->mg_vd;
1006 vdev_stat_t *vs = &vd->vdev_stat;
1007
1008 return (vs->vs_space != 0 && mg->mg_activation_count > 0);
1009 }
1010
1011 uint64_t
1012 metaslab_group_get_space(metaslab_group_t *mg)
1013 {
1014 /*
1015 * Note that the number of nodes in mg_metaslab_tree may be one less
1016 * than vdev_ms_count, due to the embedded log metaslab.
1017 */
1018 mutex_enter(&mg->mg_lock);
1019 uint64_t ms_count = avl_numnodes(&mg->mg_metaslab_tree);
1020 mutex_exit(&mg->mg_lock);
1021 return ((1ULL << mg->mg_vd->vdev_ms_shift) * ms_count);
1022 }
1023
1024 void
1025 metaslab_group_histogram_verify(metaslab_group_t *mg)
1026 {
1027 uint64_t *mg_hist;
1028 avl_tree_t *t = &mg->mg_metaslab_tree;
1029 uint64_t ashift = mg->mg_vd->vdev_ashift;
1030
1031 if ((zfs_flags & ZFS_DEBUG_HISTOGRAM_VERIFY) == 0)
1032 return;
1033
1034 mg_hist = kmem_zalloc(sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE,
1035 KM_SLEEP);
1036
1037 ASSERT3U(RANGE_TREE_HISTOGRAM_SIZE, >=,
1038 SPACE_MAP_HISTOGRAM_SIZE + ashift);
1039
1040 mutex_enter(&mg->mg_lock);
1041 for (metaslab_t *msp = avl_first(t);
1042 msp != NULL; msp = AVL_NEXT(t, msp)) {
1043 VERIFY3P(msp->ms_group, ==, mg);
1044 /* skip if not active */
1045 if (msp->ms_sm == NULL)
1046 continue;
1047
1048 for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
1049 mg_hist[i + ashift] +=
1050 msp->ms_sm->sm_phys->smp_histogram[i];
1051 }
1052 }
1053
1054 for (int i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i ++)
1055 VERIFY3U(mg_hist[i], ==, mg->mg_histogram[i]);
1056
1057 mutex_exit(&mg->mg_lock);
1058
1059 kmem_free(mg_hist, sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE);
1060 }
1061
1062 static void
1063 metaslab_group_histogram_add(metaslab_group_t *mg, metaslab_t *msp)
1064 {
1065 metaslab_class_t *mc = mg->mg_class;
1066 uint64_t ashift = mg->mg_vd->vdev_ashift;
1067
1068 ASSERT(MUTEX_HELD(&msp->ms_lock));
1069 if (msp->ms_sm == NULL)
1070 return;
1071
1072 mutex_enter(&mg->mg_lock);
1073 mutex_enter(&mc->mc_lock);
1074 for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
1075 IMPLY(mg == mg->mg_vd->vdev_log_mg,
1076 mc == spa_embedded_log_class(mg->mg_vd->vdev_spa));
1077 mg->mg_histogram[i + ashift] +=
1078 msp->ms_sm->sm_phys->smp_histogram[i];
1079 mc->mc_histogram[i + ashift] +=
1080 msp->ms_sm->sm_phys->smp_histogram[i];
1081 }
1082 mutex_exit(&mc->mc_lock);
1083 mutex_exit(&mg->mg_lock);
1084 }
1085
1086 void
1087 metaslab_group_histogram_remove(metaslab_group_t *mg, metaslab_t *msp)
1088 {
1089 metaslab_class_t *mc = mg->mg_class;
1090 uint64_t ashift = mg->mg_vd->vdev_ashift;
1091
1092 ASSERT(MUTEX_HELD(&msp->ms_lock));
1093 if (msp->ms_sm == NULL)
1094 return;
1095
1096 mutex_enter(&mg->mg_lock);
1097 mutex_enter(&mc->mc_lock);
1098 for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
1099 ASSERT3U(mg->mg_histogram[i + ashift], >=,
1100 msp->ms_sm->sm_phys->smp_histogram[i]);
1101 ASSERT3U(mc->mc_histogram[i + ashift], >=,
1102 msp->ms_sm->sm_phys->smp_histogram[i]);
1103 IMPLY(mg == mg->mg_vd->vdev_log_mg,
1104 mc == spa_embedded_log_class(mg->mg_vd->vdev_spa));
1105
1106 mg->mg_histogram[i + ashift] -=
1107 msp->ms_sm->sm_phys->smp_histogram[i];
1108 mc->mc_histogram[i + ashift] -=
1109 msp->ms_sm->sm_phys->smp_histogram[i];
1110 }
1111 mutex_exit(&mc->mc_lock);
1112 mutex_exit(&mg->mg_lock);
1113 }
1114
1115 static void
1116 metaslab_group_add(metaslab_group_t *mg, metaslab_t *msp)
1117 {
1118 ASSERT(msp->ms_group == NULL);
1119 mutex_enter(&mg->mg_lock);
1120 msp->ms_group = mg;
1121 msp->ms_weight = 0;
1122 avl_add(&mg->mg_metaslab_tree, msp);
1123 mutex_exit(&mg->mg_lock);
1124
1125 mutex_enter(&msp->ms_lock);
1126 metaslab_group_histogram_add(mg, msp);
1127 mutex_exit(&msp->ms_lock);
1128 }
1129
1130 static void
1131 metaslab_group_remove(metaslab_group_t *mg, metaslab_t *msp)
1132 {
1133 mutex_enter(&msp->ms_lock);
1134 metaslab_group_histogram_remove(mg, msp);
1135 mutex_exit(&msp->ms_lock);
1136
1137 mutex_enter(&mg->mg_lock);
1138 ASSERT(msp->ms_group == mg);
1139 avl_remove(&mg->mg_metaslab_tree, msp);
1140
1141 metaslab_class_t *mc = msp->ms_group->mg_class;
1142 multilist_sublist_t *mls =
1143 multilist_sublist_lock_obj(&mc->mc_metaslab_txg_list, msp);
1144 if (multilist_link_active(&msp->ms_class_txg_node))
1145 multilist_sublist_remove(mls, msp);
1146 multilist_sublist_unlock(mls);
1147
1148 msp->ms_group = NULL;
1149 mutex_exit(&mg->mg_lock);
1150 }
1151
1152 static void
1153 metaslab_group_sort_impl(metaslab_group_t *mg, metaslab_t *msp, uint64_t weight)
1154 {
1155 ASSERT(MUTEX_HELD(&msp->ms_lock));
1156 ASSERT(MUTEX_HELD(&mg->mg_lock));
1157 ASSERT(msp->ms_group == mg);
1158
1159 avl_remove(&mg->mg_metaslab_tree, msp);
1160 msp->ms_weight = weight;
1161 avl_add(&mg->mg_metaslab_tree, msp);
1162
1163 }
1164
1165 static void
1166 metaslab_group_sort(metaslab_group_t *mg, metaslab_t *msp, uint64_t weight)
1167 {
1168 /*
1169 * Although in principle the weight can be any value, in
1170 * practice we do not use values in the range [1, 511].
1171 */
1172 ASSERT(weight >= SPA_MINBLOCKSIZE || weight == 0);
1173 ASSERT(MUTEX_HELD(&msp->ms_lock));
1174
1175 mutex_enter(&mg->mg_lock);
1176 metaslab_group_sort_impl(mg, msp, weight);
1177 mutex_exit(&mg->mg_lock);
1178 }
1179
1180 /*
1181 * Calculate the fragmentation for a given metaslab group. We can use
1182 * a simple average here since all metaslabs within the group must have
1183 * the same size. The return value will be a value between 0 and 100
1184 * (inclusive), or ZFS_FRAG_INVALID if less than half of the metaslab in this
1185 * group have a fragmentation metric.
1186 */
1187 uint64_t
1188 metaslab_group_fragmentation(metaslab_group_t *mg)
1189 {
1190 vdev_t *vd = mg->mg_vd;
1191 uint64_t fragmentation = 0;
1192 uint64_t valid_ms = 0;
1193
1194 for (int m = 0; m < vd->vdev_ms_count; m++) {
1195 metaslab_t *msp = vd->vdev_ms[m];
1196
1197 if (msp->ms_fragmentation == ZFS_FRAG_INVALID)
1198 continue;
1199 if (msp->ms_group != mg)
1200 continue;
1201
1202 valid_ms++;
1203 fragmentation += msp->ms_fragmentation;
1204 }
1205
1206 if (valid_ms <= mg->mg_vd->vdev_ms_count / 2)
1207 return (ZFS_FRAG_INVALID);
1208
1209 fragmentation /= valid_ms;
1210 ASSERT3U(fragmentation, <=, 100);
1211 return (fragmentation);
1212 }
1213
1214 /*
1215 * Determine if a given metaslab group should skip allocations. A metaslab
1216 * group should avoid allocations if its free capacity is less than the
1217 * zfs_mg_noalloc_threshold or its fragmentation metric is greater than
1218 * zfs_mg_fragmentation_threshold and there is at least one metaslab group
1219 * that can still handle allocations. If the allocation throttle is enabled
1220 * then we skip allocations to devices that have reached their maximum
1221 * allocation queue depth unless the selected metaslab group is the only
1222 * eligible group remaining.
1223 */
1224 static boolean_t
1225 metaslab_group_allocatable(metaslab_group_t *mg, metaslab_group_t *rotor,
1226 int flags, uint64_t psize, int allocator, int d)
1227 {
1228 spa_t *spa = mg->mg_vd->vdev_spa;
1229 metaslab_class_t *mc = mg->mg_class;
1230
1231 /*
1232 * We can only consider skipping this metaslab group if it's
1233 * in the normal metaslab class and there are other metaslab
1234 * groups to select from. Otherwise, we always consider it eligible
1235 * for allocations.
1236 */
1237 if ((mc != spa_normal_class(spa) &&
1238 mc != spa_special_class(spa) &&
1239 mc != spa_dedup_class(spa)) ||
1240 mc->mc_groups <= 1)
1241 return (B_TRUE);
1242
1243 /*
1244 * If the metaslab group's mg_allocatable flag is set (see comments
1245 * in metaslab_group_alloc_update() for more information) and
1246 * the allocation throttle is disabled then allow allocations to this
1247 * device. However, if the allocation throttle is enabled then
1248 * check if we have reached our allocation limit (mga_alloc_queue_depth)
1249 * to determine if we should allow allocations to this metaslab group.
1250 * If all metaslab groups are no longer considered allocatable
1251 * (mc_alloc_groups == 0) or we're trying to allocate the smallest
1252 * gang block size then we allow allocations on this metaslab group
1253 * regardless of the mg_allocatable or throttle settings.
1254 */
1255 if (mg->mg_allocatable) {
1256 metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator];
1257 int64_t qdepth;
1258 uint64_t qmax = mga->mga_cur_max_alloc_queue_depth;
1259
1260 if (!mc->mc_alloc_throttle_enabled)
1261 return (B_TRUE);
1262
1263 /*
1264 * If this metaslab group does not have any free space, then
1265 * there is no point in looking further.
1266 */
1267 if (mg->mg_no_free_space)
1268 return (B_FALSE);
1269
1270 /*
1271 * Some allocations (e.g., those coming from device removal
1272 * where the * allocations are not even counted in the
1273 * metaslab * allocation queues) are allowed to bypass
1274 * the throttle.
1275 */
1276 if (flags & METASLAB_DONT_THROTTLE)
1277 return (B_TRUE);
1278
1279 /*
1280 * Relax allocation throttling for ditto blocks. Due to
1281 * random imbalances in allocation it tends to push copies
1282 * to one vdev, that looks a bit better at the moment.
1283 */
1284 qmax = qmax * (4 + d) / 4;
1285
1286 qdepth = zfs_refcount_count(&mga->mga_alloc_queue_depth);
1287
1288 /*
1289 * If this metaslab group is below its qmax or it's
1290 * the only allocatable metasable group, then attempt
1291 * to allocate from it.
1292 */
1293 if (qdepth < qmax || mc->mc_alloc_groups == 1)
1294 return (B_TRUE);
1295 ASSERT3U(mc->mc_alloc_groups, >, 1);
1296
1297 /*
1298 * Since this metaslab group is at or over its qmax, we
1299 * need to determine if there are metaslab groups after this
1300 * one that might be able to handle this allocation. This is
1301 * racy since we can't hold the locks for all metaslab
1302 * groups at the same time when we make this check.
1303 */
1304 for (metaslab_group_t *mgp = mg->mg_next;
1305 mgp != rotor; mgp = mgp->mg_next) {
1306 metaslab_group_allocator_t *mgap =
1307 &mgp->mg_allocator[allocator];
1308 qmax = mgap->mga_cur_max_alloc_queue_depth;
1309 qmax = qmax * (4 + d) / 4;
1310 qdepth =
1311 zfs_refcount_count(&mgap->mga_alloc_queue_depth);
1312
1313 /*
1314 * If there is another metaslab group that
1315 * might be able to handle the allocation, then
1316 * we return false so that we skip this group.
1317 */
1318 if (qdepth < qmax && !mgp->mg_no_free_space)
1319 return (B_FALSE);
1320 }
1321
1322 /*
1323 * We didn't find another group to handle the allocation
1324 * so we can't skip this metaslab group even though
1325 * we are at or over our qmax.
1326 */
1327 return (B_TRUE);
1328
1329 } else if (mc->mc_alloc_groups == 0 || psize == SPA_MINBLOCKSIZE) {
1330 return (B_TRUE);
1331 }
1332 return (B_FALSE);
1333 }
1334
1335 /*
1336 * ==========================================================================
1337 * Range tree callbacks
1338 * ==========================================================================
1339 */
1340
1341 /*
1342 * Comparison function for the private size-ordered tree using 32-bit
1343 * ranges. Tree is sorted by size, larger sizes at the end of the tree.
1344 */
1345 static int
1346 metaslab_rangesize32_compare(const void *x1, const void *x2)
1347 {
1348 const range_seg32_t *r1 = x1;
1349 const range_seg32_t *r2 = x2;
1350
1351 uint64_t rs_size1 = r1->rs_end - r1->rs_start;
1352 uint64_t rs_size2 = r2->rs_end - r2->rs_start;
1353
1354 int cmp = TREE_CMP(rs_size1, rs_size2);
1355 if (likely(cmp))
1356 return (cmp);
1357
1358 return (TREE_CMP(r1->rs_start, r2->rs_start));
1359 }
1360
1361 /*
1362 * Comparison function for the private size-ordered tree using 64-bit
1363 * ranges. Tree is sorted by size, larger sizes at the end of the tree.
1364 */
1365 static int
1366 metaslab_rangesize64_compare(const void *x1, const void *x2)
1367 {
1368 const range_seg64_t *r1 = x1;
1369 const range_seg64_t *r2 = x2;
1370
1371 uint64_t rs_size1 = r1->rs_end - r1->rs_start;
1372 uint64_t rs_size2 = r2->rs_end - r2->rs_start;
1373
1374 int cmp = TREE_CMP(rs_size1, rs_size2);
1375 if (likely(cmp))
1376 return (cmp);
1377
1378 return (TREE_CMP(r1->rs_start, r2->rs_start));
1379 }
1380 typedef struct metaslab_rt_arg {
1381 zfs_btree_t *mra_bt;
1382 uint32_t mra_floor_shift;
1383 } metaslab_rt_arg_t;
1384
1385 struct mssa_arg {
1386 range_tree_t *rt;
1387 metaslab_rt_arg_t *mra;
1388 };
1389
1390 static void
1391 metaslab_size_sorted_add(void *arg, uint64_t start, uint64_t size)
1392 {
1393 struct mssa_arg *mssap = arg;
1394 range_tree_t *rt = mssap->rt;
1395 metaslab_rt_arg_t *mrap = mssap->mra;
1396 range_seg_max_t seg = {0};
1397 rs_set_start(&seg, rt, start);
1398 rs_set_end(&seg, rt, start + size);
1399 metaslab_rt_add(rt, &seg, mrap);
1400 }
1401
1402 static void
1403 metaslab_size_tree_full_load(range_tree_t *rt)
1404 {
1405 metaslab_rt_arg_t *mrap = rt->rt_arg;
1406 METASLABSTAT_BUMP(metaslabstat_reload_tree);
1407 ASSERT0(zfs_btree_numnodes(mrap->mra_bt));
1408 mrap->mra_floor_shift = 0;
1409 struct mssa_arg arg = {0};
1410 arg.rt = rt;
1411 arg.mra = mrap;
1412 range_tree_walk(rt, metaslab_size_sorted_add, &arg);
1413 }
1414
1415 /*
1416 * Create any block allocator specific components. The current allocators
1417 * rely on using both a size-ordered range_tree_t and an array of uint64_t's.
1418 */
1419 static void
1420 metaslab_rt_create(range_tree_t *rt, void *arg)
1421 {
1422 metaslab_rt_arg_t *mrap = arg;
1423 zfs_btree_t *size_tree = mrap->mra_bt;
1424
1425 size_t size;
1426 int (*compare) (const void *, const void *);
1427 switch (rt->rt_type) {
1428 case RANGE_SEG32:
1429 size = sizeof (range_seg32_t);
1430 compare = metaslab_rangesize32_compare;
1431 break;
1432 case RANGE_SEG64:
1433 size = sizeof (range_seg64_t);
1434 compare = metaslab_rangesize64_compare;
1435 break;
1436 default:
1437 panic("Invalid range seg type %d", rt->rt_type);
1438 }
1439 zfs_btree_create(size_tree, compare, size);
1440 mrap->mra_floor_shift = metaslab_by_size_min_shift;
1441 }
1442
1443 static void
1444 metaslab_rt_destroy(range_tree_t *rt, void *arg)
1445 {
1446 (void) rt;
1447 metaslab_rt_arg_t *mrap = arg;
1448 zfs_btree_t *size_tree = mrap->mra_bt;
1449
1450 zfs_btree_destroy(size_tree);
1451 kmem_free(mrap, sizeof (*mrap));
1452 }
1453
1454 static void
1455 metaslab_rt_add(range_tree_t *rt, range_seg_t *rs, void *arg)
1456 {
1457 metaslab_rt_arg_t *mrap = arg;
1458 zfs_btree_t *size_tree = mrap->mra_bt;
1459
1460 if (rs_get_end(rs, rt) - rs_get_start(rs, rt) <
1461 (1ULL << mrap->mra_floor_shift))
1462 return;
1463
1464 zfs_btree_add(size_tree, rs);
1465 }
1466
1467 static void
1468 metaslab_rt_remove(range_tree_t *rt, range_seg_t *rs, void *arg)
1469 {
1470 metaslab_rt_arg_t *mrap = arg;
1471 zfs_btree_t *size_tree = mrap->mra_bt;
1472
1473 if (rs_get_end(rs, rt) - rs_get_start(rs, rt) < (1ULL <<
1474 mrap->mra_floor_shift))
1475 return;
1476
1477 zfs_btree_remove(size_tree, rs);
1478 }
1479
1480 static void
1481 metaslab_rt_vacate(range_tree_t *rt, void *arg)
1482 {
1483 metaslab_rt_arg_t *mrap = arg;
1484 zfs_btree_t *size_tree = mrap->mra_bt;
1485 zfs_btree_clear(size_tree);
1486 zfs_btree_destroy(size_tree);
1487
1488 metaslab_rt_create(rt, arg);
1489 }
1490
1491 static const range_tree_ops_t metaslab_rt_ops = {
1492 .rtop_create = metaslab_rt_create,
1493 .rtop_destroy = metaslab_rt_destroy,
1494 .rtop_add = metaslab_rt_add,
1495 .rtop_remove = metaslab_rt_remove,
1496 .rtop_vacate = metaslab_rt_vacate
1497 };
1498
1499 /*
1500 * ==========================================================================
1501 * Common allocator routines
1502 * ==========================================================================
1503 */
1504
1505 /*
1506 * Return the maximum contiguous segment within the metaslab.
1507 */
1508 uint64_t
1509 metaslab_largest_allocatable(metaslab_t *msp)
1510 {
1511 zfs_btree_t *t = &msp->ms_allocatable_by_size;
1512 range_seg_t *rs;
1513
1514 if (t == NULL)
1515 return (0);
1516 if (zfs_btree_numnodes(t) == 0)
1517 metaslab_size_tree_full_load(msp->ms_allocatable);
1518
1519 rs = zfs_btree_last(t, NULL);
1520 if (rs == NULL)
1521 return (0);
1522
1523 return (rs_get_end(rs, msp->ms_allocatable) - rs_get_start(rs,
1524 msp->ms_allocatable));
1525 }
1526
1527 /*
1528 * Return the maximum contiguous segment within the unflushed frees of this
1529 * metaslab.
1530 */
1531 static uint64_t
1532 metaslab_largest_unflushed_free(metaslab_t *msp)
1533 {
1534 ASSERT(MUTEX_HELD(&msp->ms_lock));
1535
1536 if (msp->ms_unflushed_frees == NULL)
1537 return (0);
1538
1539 if (zfs_btree_numnodes(&msp->ms_unflushed_frees_by_size) == 0)
1540 metaslab_size_tree_full_load(msp->ms_unflushed_frees);
1541 range_seg_t *rs = zfs_btree_last(&msp->ms_unflushed_frees_by_size,
1542 NULL);
1543 if (rs == NULL)
1544 return (0);
1545
1546 /*
1547 * When a range is freed from the metaslab, that range is added to
1548 * both the unflushed frees and the deferred frees. While the block
1549 * will eventually be usable, if the metaslab were loaded the range
1550 * would not be added to the ms_allocatable tree until TXG_DEFER_SIZE
1551 * txgs had passed. As a result, when attempting to estimate an upper
1552 * bound for the largest currently-usable free segment in the
1553 * metaslab, we need to not consider any ranges currently in the defer
1554 * trees. This algorithm approximates the largest available chunk in
1555 * the largest range in the unflushed_frees tree by taking the first
1556 * chunk. While this may be a poor estimate, it should only remain so
1557 * briefly and should eventually self-correct as frees are no longer
1558 * deferred. Similar logic applies to the ms_freed tree. See
1559 * metaslab_load() for more details.
1560 *
1561 * There are two primary sources of inaccuracy in this estimate. Both
1562 * are tolerated for performance reasons. The first source is that we
1563 * only check the largest segment for overlaps. Smaller segments may
1564 * have more favorable overlaps with the other trees, resulting in
1565 * larger usable chunks. Second, we only look at the first chunk in
1566 * the largest segment; there may be other usable chunks in the
1567 * largest segment, but we ignore them.
1568 */
1569 uint64_t rstart = rs_get_start(rs, msp->ms_unflushed_frees);
1570 uint64_t rsize = rs_get_end(rs, msp->ms_unflushed_frees) - rstart;
1571 for (int t = 0; t < TXG_DEFER_SIZE; t++) {
1572 uint64_t start = 0;
1573 uint64_t size = 0;
1574 boolean_t found = range_tree_find_in(msp->ms_defer[t], rstart,
1575 rsize, &start, &size);
1576 if (found) {
1577 if (rstart == start)
1578 return (0);
1579 rsize = start - rstart;
1580 }
1581 }
1582
1583 uint64_t start = 0;
1584 uint64_t size = 0;
1585 boolean_t found = range_tree_find_in(msp->ms_freed, rstart,
1586 rsize, &start, &size);
1587 if (found)
1588 rsize = start - rstart;
1589
1590 return (rsize);
1591 }
1592
1593 static range_seg_t *
1594 metaslab_block_find(zfs_btree_t *t, range_tree_t *rt, uint64_t start,
1595 uint64_t size, zfs_btree_index_t *where)
1596 {
1597 range_seg_t *rs;
1598 range_seg_max_t rsearch;
1599
1600 rs_set_start(&rsearch, rt, start);
1601 rs_set_end(&rsearch, rt, start + size);
1602
1603 rs = zfs_btree_find(t, &rsearch, where);
1604 if (rs == NULL) {
1605 rs = zfs_btree_next(t, where, where);
1606 }
1607
1608 return (rs);
1609 }
1610
1611 #if defined(WITH_DF_BLOCK_ALLOCATOR) || \
1612 defined(WITH_CF_BLOCK_ALLOCATOR)
1613
1614 /*
1615 * This is a helper function that can be used by the allocator to find a
1616 * suitable block to allocate. This will search the specified B-tree looking
1617 * for a block that matches the specified criteria.
1618 */
1619 static uint64_t
1620 metaslab_block_picker(range_tree_t *rt, uint64_t *cursor, uint64_t size,
1621 uint64_t max_search)
1622 {
1623 if (*cursor == 0)
1624 *cursor = rt->rt_start;
1625 zfs_btree_t *bt = &rt->rt_root;
1626 zfs_btree_index_t where;
1627 range_seg_t *rs = metaslab_block_find(bt, rt, *cursor, size, &where);
1628 uint64_t first_found;
1629 int count_searched = 0;
1630
1631 if (rs != NULL)
1632 first_found = rs_get_start(rs, rt);
1633
1634 while (rs != NULL && (rs_get_start(rs, rt) - first_found <=
1635 max_search || count_searched < metaslab_min_search_count)) {
1636 uint64_t offset = rs_get_start(rs, rt);
1637 if (offset + size <= rs_get_end(rs, rt)) {
1638 *cursor = offset + size;
1639 return (offset);
1640 }
1641 rs = zfs_btree_next(bt, &where, &where);
1642 count_searched++;
1643 }
1644
1645 *cursor = 0;
1646 return (-1ULL);
1647 }
1648 #endif /* WITH_DF/CF_BLOCK_ALLOCATOR */
1649
1650 #if defined(WITH_DF_BLOCK_ALLOCATOR)
1651 /*
1652 * ==========================================================================
1653 * Dynamic Fit (df) block allocator
1654 *
1655 * Search for a free chunk of at least this size, starting from the last
1656 * offset (for this alignment of block) looking for up to
1657 * metaslab_df_max_search bytes (16MB). If a large enough free chunk is not
1658 * found within 16MB, then return a free chunk of exactly the requested size (or
1659 * larger).
1660 *
1661 * If it seems like searching from the last offset will be unproductive, skip
1662 * that and just return a free chunk of exactly the requested size (or larger).
1663 * This is based on metaslab_df_alloc_threshold and metaslab_df_free_pct. This
1664 * mechanism is probably not very useful and may be removed in the future.
1665 *
1666 * The behavior when not searching can be changed to return the largest free
1667 * chunk, instead of a free chunk of exactly the requested size, by setting
1668 * metaslab_df_use_largest_segment.
1669 * ==========================================================================
1670 */
1671 static uint64_t
1672 metaslab_df_alloc(metaslab_t *msp, uint64_t size)
1673 {
1674 /*
1675 * Find the largest power of 2 block size that evenly divides the
1676 * requested size. This is used to try to allocate blocks with similar
1677 * alignment from the same area of the metaslab (i.e. same cursor
1678 * bucket) but it does not guarantee that other allocations sizes
1679 * may exist in the same region.
1680 */
1681 uint64_t align = size & -size;
1682 uint64_t *cursor = &msp->ms_lbas[highbit64(align) - 1];
1683 range_tree_t *rt = msp->ms_allocatable;
1684 uint_t free_pct = range_tree_space(rt) * 100 / msp->ms_size;
1685 uint64_t offset;
1686
1687 ASSERT(MUTEX_HELD(&msp->ms_lock));
1688
1689 /*
1690 * If we're running low on space, find a segment based on size,
1691 * rather than iterating based on offset.
1692 */
1693 if (metaslab_largest_allocatable(msp) < metaslab_df_alloc_threshold ||
1694 free_pct < metaslab_df_free_pct) {
1695 offset = -1;
1696 } else {
1697 offset = metaslab_block_picker(rt,
1698 cursor, size, metaslab_df_max_search);
1699 }
1700
1701 if (offset == -1) {
1702 range_seg_t *rs;
1703 if (zfs_btree_numnodes(&msp->ms_allocatable_by_size) == 0)
1704 metaslab_size_tree_full_load(msp->ms_allocatable);
1705
1706 if (metaslab_df_use_largest_segment) {
1707 /* use largest free segment */
1708 rs = zfs_btree_last(&msp->ms_allocatable_by_size, NULL);
1709 } else {
1710 zfs_btree_index_t where;
1711 /* use segment of this size, or next largest */
1712 rs = metaslab_block_find(&msp->ms_allocatable_by_size,
1713 rt, msp->ms_start, size, &where);
1714 }
1715 if (rs != NULL && rs_get_start(rs, rt) + size <= rs_get_end(rs,
1716 rt)) {
1717 offset = rs_get_start(rs, rt);
1718 *cursor = offset + size;
1719 }
1720 }
1721
1722 return (offset);
1723 }
1724
1725 const metaslab_ops_t zfs_metaslab_ops = {
1726 metaslab_df_alloc
1727 };
1728 #endif /* WITH_DF_BLOCK_ALLOCATOR */
1729
1730 #if defined(WITH_CF_BLOCK_ALLOCATOR)
1731 /*
1732 * ==========================================================================
1733 * Cursor fit block allocator -
1734 * Select the largest region in the metaslab, set the cursor to the beginning
1735 * of the range and the cursor_end to the end of the range. As allocations
1736 * are made advance the cursor. Continue allocating from the cursor until
1737 * the range is exhausted and then find a new range.
1738 * ==========================================================================
1739 */
1740 static uint64_t
1741 metaslab_cf_alloc(metaslab_t *msp, uint64_t size)
1742 {
1743 range_tree_t *rt = msp->ms_allocatable;
1744 zfs_btree_t *t = &msp->ms_allocatable_by_size;
1745 uint64_t *cursor = &msp->ms_lbas[0];
1746 uint64_t *cursor_end = &msp->ms_lbas[1];
1747 uint64_t offset = 0;
1748
1749 ASSERT(MUTEX_HELD(&msp->ms_lock));
1750
1751 ASSERT3U(*cursor_end, >=, *cursor);
1752
1753 if ((*cursor + size) > *cursor_end) {
1754 range_seg_t *rs;
1755
1756 if (zfs_btree_numnodes(t) == 0)
1757 metaslab_size_tree_full_load(msp->ms_allocatable);
1758 rs = zfs_btree_last(t, NULL);
1759 if (rs == NULL || (rs_get_end(rs, rt) - rs_get_start(rs, rt)) <
1760 size)
1761 return (-1ULL);
1762
1763 *cursor = rs_get_start(rs, rt);
1764 *cursor_end = rs_get_end(rs, rt);
1765 }
1766
1767 offset = *cursor;
1768 *cursor += size;
1769
1770 return (offset);
1771 }
1772
1773 const metaslab_ops_t zfs_metaslab_ops = {
1774 metaslab_cf_alloc
1775 };
1776 #endif /* WITH_CF_BLOCK_ALLOCATOR */
1777
1778 #if defined(WITH_NDF_BLOCK_ALLOCATOR)
1779 /*
1780 * ==========================================================================
1781 * New dynamic fit allocator -
1782 * Select a region that is large enough to allocate 2^metaslab_ndf_clump_shift
1783 * contiguous blocks. If no region is found then just use the largest segment
1784 * that remains.
1785 * ==========================================================================
1786 */
1787
1788 /*
1789 * Determines desired number of contiguous blocks (2^metaslab_ndf_clump_shift)
1790 * to request from the allocator.
1791 */
1792 uint64_t metaslab_ndf_clump_shift = 4;
1793
1794 static uint64_t
1795 metaslab_ndf_alloc(metaslab_t *msp, uint64_t size)
1796 {
1797 zfs_btree_t *t = &msp->ms_allocatable->rt_root;
1798 range_tree_t *rt = msp->ms_allocatable;
1799 zfs_btree_index_t where;
1800 range_seg_t *rs;
1801 range_seg_max_t rsearch;
1802 uint64_t hbit = highbit64(size);
1803 uint64_t *cursor = &msp->ms_lbas[hbit - 1];
1804 uint64_t max_size = metaslab_largest_allocatable(msp);
1805
1806 ASSERT(MUTEX_HELD(&msp->ms_lock));
1807
1808 if (max_size < size)
1809 return (-1ULL);
1810
1811 rs_set_start(&rsearch, rt, *cursor);
1812 rs_set_end(&rsearch, rt, *cursor + size);
1813
1814 rs = zfs_btree_find(t, &rsearch, &where);
1815 if (rs == NULL || (rs_get_end(rs, rt) - rs_get_start(rs, rt)) < size) {
1816 t = &msp->ms_allocatable_by_size;
1817
1818 rs_set_start(&rsearch, rt, 0);
1819 rs_set_end(&rsearch, rt, MIN(max_size, 1ULL << (hbit +
1820 metaslab_ndf_clump_shift)));
1821
1822 rs = zfs_btree_find(t, &rsearch, &where);
1823 if (rs == NULL)
1824 rs = zfs_btree_next(t, &where, &where);
1825 ASSERT(rs != NULL);
1826 }
1827
1828 if ((rs_get_end(rs, rt) - rs_get_start(rs, rt)) >= size) {
1829 *cursor = rs_get_start(rs, rt) + size;
1830 return (rs_get_start(rs, rt));
1831 }
1832 return (-1ULL);
1833 }
1834
1835 const metaslab_ops_t zfs_metaslab_ops = {
1836 metaslab_ndf_alloc
1837 };
1838 #endif /* WITH_NDF_BLOCK_ALLOCATOR */
1839
1840
1841 /*
1842 * ==========================================================================
1843 * Metaslabs
1844 * ==========================================================================
1845 */
1846
1847 /*
1848 * Wait for any in-progress metaslab loads to complete.
1849 */
1850 static void
1851 metaslab_load_wait(metaslab_t *msp)
1852 {
1853 ASSERT(MUTEX_HELD(&msp->ms_lock));
1854
1855 while (msp->ms_loading) {
1856 ASSERT(!msp->ms_loaded);
1857 cv_wait(&msp->ms_load_cv, &msp->ms_lock);
1858 }
1859 }
1860
1861 /*
1862 * Wait for any in-progress flushing to complete.
1863 */
1864 static void
1865 metaslab_flush_wait(metaslab_t *msp)
1866 {
1867 ASSERT(MUTEX_HELD(&msp->ms_lock));
1868
1869 while (msp->ms_flushing)
1870 cv_wait(&msp->ms_flush_cv, &msp->ms_lock);
1871 }
1872
1873 static unsigned int
1874 metaslab_idx_func(multilist_t *ml, void *arg)
1875 {
1876 metaslab_t *msp = arg;
1877
1878 /*
1879 * ms_id values are allocated sequentially, so full 64bit
1880 * division would be a waste of time, so limit it to 32 bits.
1881 */
1882 return ((unsigned int)msp->ms_id % multilist_get_num_sublists(ml));
1883 }
1884
1885 uint64_t
1886 metaslab_allocated_space(metaslab_t *msp)
1887 {
1888 return (msp->ms_allocated_space);
1889 }
1890
1891 /*
1892 * Verify that the space accounting on disk matches the in-core range_trees.
1893 */
1894 static void
1895 metaslab_verify_space(metaslab_t *msp, uint64_t txg)
1896 {
1897 spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
1898 uint64_t allocating = 0;
1899 uint64_t sm_free_space, msp_free_space;
1900
1901 ASSERT(MUTEX_HELD(&msp->ms_lock));
1902 ASSERT(!msp->ms_condensing);
1903
1904 if ((zfs_flags & ZFS_DEBUG_METASLAB_VERIFY) == 0)
1905 return;
1906
1907 /*
1908 * We can only verify the metaslab space when we're called
1909 * from syncing context with a loaded metaslab that has an
1910 * allocated space map. Calling this in non-syncing context
1911 * does not provide a consistent view of the metaslab since
1912 * we're performing allocations in the future.
1913 */
1914 if (txg != spa_syncing_txg(spa) || msp->ms_sm == NULL ||
1915 !msp->ms_loaded)
1916 return;
1917
1918 /*
1919 * Even though the smp_alloc field can get negative,
1920 * when it comes to a metaslab's space map, that should
1921 * never be the case.
1922 */
1923 ASSERT3S(space_map_allocated(msp->ms_sm), >=, 0);
1924
1925 ASSERT3U(space_map_allocated(msp->ms_sm), >=,
1926 range_tree_space(msp->ms_unflushed_frees));
1927
1928 ASSERT3U(metaslab_allocated_space(msp), ==,
1929 space_map_allocated(msp->ms_sm) +
1930 range_tree_space(msp->ms_unflushed_allocs) -
1931 range_tree_space(msp->ms_unflushed_frees));
1932
1933 sm_free_space = msp->ms_size - metaslab_allocated_space(msp);
1934
1935 /*
1936 * Account for future allocations since we would have
1937 * already deducted that space from the ms_allocatable.
1938 */
1939 for (int t = 0; t < TXG_CONCURRENT_STATES; t++) {
1940 allocating +=
1941 range_tree_space(msp->ms_allocating[(txg + t) & TXG_MASK]);
1942 }
1943 ASSERT3U(allocating + msp->ms_allocated_this_txg, ==,
1944 msp->ms_allocating_total);
1945
1946 ASSERT3U(msp->ms_deferspace, ==,
1947 range_tree_space(msp->ms_defer[0]) +
1948 range_tree_space(msp->ms_defer[1]));
1949
1950 msp_free_space = range_tree_space(msp->ms_allocatable) + allocating +
1951 msp->ms_deferspace + range_tree_space(msp->ms_freed);
1952
1953 VERIFY3U(sm_free_space, ==, msp_free_space);
1954 }
1955
1956 static void
1957 metaslab_aux_histograms_clear(metaslab_t *msp)
1958 {
1959 /*
1960 * Auxiliary histograms are only cleared when resetting them,
1961 * which can only happen while the metaslab is loaded.
1962 */
1963 ASSERT(msp->ms_loaded);
1964
1965 memset(msp->ms_synchist, 0, sizeof (msp->ms_synchist));
1966 for (int t = 0; t < TXG_DEFER_SIZE; t++)
1967 memset(msp->ms_deferhist[t], 0, sizeof (msp->ms_deferhist[t]));
1968 }
1969
1970 static void
1971 metaslab_aux_histogram_add(uint64_t *histogram, uint64_t shift,
1972 range_tree_t *rt)
1973 {
1974 /*
1975 * This is modeled after space_map_histogram_add(), so refer to that
1976 * function for implementation details. We want this to work like
1977 * the space map histogram, and not the range tree histogram, as we
1978 * are essentially constructing a delta that will be later subtracted
1979 * from the space map histogram.
1980 */
1981 int idx = 0;
1982 for (int i = shift; i < RANGE_TREE_HISTOGRAM_SIZE; i++) {
1983 ASSERT3U(i, >=, idx + shift);
1984 histogram[idx] += rt->rt_histogram[i] << (i - idx - shift);
1985
1986 if (idx < SPACE_MAP_HISTOGRAM_SIZE - 1) {
1987 ASSERT3U(idx + shift, ==, i);
1988 idx++;
1989 ASSERT3U(idx, <, SPACE_MAP_HISTOGRAM_SIZE);
1990 }
1991 }
1992 }
1993
1994 /*
1995 * Called at every sync pass that the metaslab gets synced.
1996 *
1997 * The reason is that we want our auxiliary histograms to be updated
1998 * wherever the metaslab's space map histogram is updated. This way
1999 * we stay consistent on which parts of the metaslab space map's
2000 * histogram are currently not available for allocations (e.g because
2001 * they are in the defer, freed, and freeing trees).
2002 */
2003 static void
2004 metaslab_aux_histograms_update(metaslab_t *msp)
2005 {
2006 space_map_t *sm = msp->ms_sm;
2007 ASSERT(sm != NULL);
2008
2009 /*
2010 * This is similar to the metaslab's space map histogram updates
2011 * that take place in metaslab_sync(). The only difference is that
2012 * we only care about segments that haven't made it into the
2013 * ms_allocatable tree yet.
2014 */
2015 if (msp->ms_loaded) {
2016 metaslab_aux_histograms_clear(msp);
2017
2018 metaslab_aux_histogram_add(msp->ms_synchist,
2019 sm->sm_shift, msp->ms_freed);
2020
2021 for (int t = 0; t < TXG_DEFER_SIZE; t++) {
2022 metaslab_aux_histogram_add(msp->ms_deferhist[t],
2023 sm->sm_shift, msp->ms_defer[t]);
2024 }
2025 }
2026
2027 metaslab_aux_histogram_add(msp->ms_synchist,
2028 sm->sm_shift, msp->ms_freeing);
2029 }
2030
2031 /*
2032 * Called every time we are done syncing (writing to) the metaslab,
2033 * i.e. at the end of each sync pass.
2034 * [see the comment in metaslab_impl.h for ms_synchist, ms_deferhist]
2035 */
2036 static void
2037 metaslab_aux_histograms_update_done(metaslab_t *msp, boolean_t defer_allowed)
2038 {
2039 spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
2040 space_map_t *sm = msp->ms_sm;
2041
2042 if (sm == NULL) {
2043 /*
2044 * We came here from metaslab_init() when creating/opening a
2045 * pool, looking at a metaslab that hasn't had any allocations
2046 * yet.
2047 */
2048 return;
2049 }
2050
2051 /*
2052 * This is similar to the actions that we take for the ms_freed
2053 * and ms_defer trees in metaslab_sync_done().
2054 */
2055 uint64_t hist_index = spa_syncing_txg(spa) % TXG_DEFER_SIZE;
2056 if (defer_allowed) {
2057 memcpy(msp->ms_deferhist[hist_index], msp->ms_synchist,
2058 sizeof (msp->ms_synchist));
2059 } else {
2060 memset(msp->ms_deferhist[hist_index], 0,
2061 sizeof (msp->ms_deferhist[hist_index]));
2062 }
2063 memset(msp->ms_synchist, 0, sizeof (msp->ms_synchist));
2064 }
2065
2066 /*
2067 * Ensure that the metaslab's weight and fragmentation are consistent
2068 * with the contents of the histogram (either the range tree's histogram
2069 * or the space map's depending whether the metaslab is loaded).
2070 */
2071 static void
2072 metaslab_verify_weight_and_frag(metaslab_t *msp)
2073 {
2074 ASSERT(MUTEX_HELD(&msp->ms_lock));
2075
2076 if ((zfs_flags & ZFS_DEBUG_METASLAB_VERIFY) == 0)
2077 return;
2078
2079 /*
2080 * We can end up here from vdev_remove_complete(), in which case we
2081 * cannot do these assertions because we hold spa config locks and
2082 * thus we are not allowed to read from the DMU.
2083 *
2084 * We check if the metaslab group has been removed and if that's
2085 * the case we return immediately as that would mean that we are
2086 * here from the aforementioned code path.
2087 */
2088 if (msp->ms_group == NULL)
2089 return;
2090
2091 /*
2092 * Devices being removed always return a weight of 0 and leave
2093 * fragmentation and ms_max_size as is - there is nothing for
2094 * us to verify here.
2095 */
2096 vdev_t *vd = msp->ms_group->mg_vd;
2097 if (vd->vdev_removing)
2098 return;
2099
2100 /*
2101 * If the metaslab is dirty it probably means that we've done
2102 * some allocations or frees that have changed our histograms
2103 * and thus the weight.
2104 */
2105 for (int t = 0; t < TXG_SIZE; t++) {
2106 if (txg_list_member(&vd->vdev_ms_list, msp, t))
2107 return;
2108 }
2109
2110 /*
2111 * This verification checks that our in-memory state is consistent
2112 * with what's on disk. If the pool is read-only then there aren't
2113 * any changes and we just have the initially-loaded state.
2114 */
2115 if (!spa_writeable(msp->ms_group->mg_vd->vdev_spa))
2116 return;
2117
2118 /* some extra verification for in-core tree if you can */
2119 if (msp->ms_loaded) {
2120 range_tree_stat_verify(msp->ms_allocatable);
2121 VERIFY(space_map_histogram_verify(msp->ms_sm,
2122 msp->ms_allocatable));
2123 }
2124
2125 uint64_t weight = msp->ms_weight;
2126 uint64_t was_active = msp->ms_weight & METASLAB_ACTIVE_MASK;
2127 boolean_t space_based = WEIGHT_IS_SPACEBASED(msp->ms_weight);
2128 uint64_t frag = msp->ms_fragmentation;
2129 uint64_t max_segsize = msp->ms_max_size;
2130
2131 msp->ms_weight = 0;
2132 msp->ms_fragmentation = 0;
2133
2134 /*
2135 * This function is used for verification purposes and thus should
2136 * not introduce any side-effects/mutations on the system's state.
2137 *
2138 * Regardless of whether metaslab_weight() thinks this metaslab
2139 * should be active or not, we want to ensure that the actual weight
2140 * (and therefore the value of ms_weight) would be the same if it
2141 * was to be recalculated at this point.
2142 *
2143 * In addition we set the nodirty flag so metaslab_weight() does
2144 * not dirty the metaslab for future TXGs (e.g. when trying to
2145 * force condensing to upgrade the metaslab spacemaps).
2146 */
2147 msp->ms_weight = metaslab_weight(msp, B_TRUE) | was_active;
2148
2149 VERIFY3U(max_segsize, ==, msp->ms_max_size);
2150
2151 /*
2152 * If the weight type changed then there is no point in doing
2153 * verification. Revert fields to their original values.
2154 */
2155 if ((space_based && !WEIGHT_IS_SPACEBASED(msp->ms_weight)) ||
2156 (!space_based && WEIGHT_IS_SPACEBASED(msp->ms_weight))) {
2157 msp->ms_fragmentation = frag;
2158 msp->ms_weight = weight;
2159 return;
2160 }
2161
2162 VERIFY3U(msp->ms_fragmentation, ==, frag);
2163 VERIFY3U(msp->ms_weight, ==, weight);
2164 }
2165
2166 /*
2167 * If we're over the zfs_metaslab_mem_limit, select the loaded metaslab from
2168 * this class that was used longest ago, and attempt to unload it. We don't
2169 * want to spend too much time in this loop to prevent performance
2170 * degradation, and we expect that most of the time this operation will
2171 * succeed. Between that and the normal unloading processing during txg sync,
2172 * we expect this to keep the metaslab memory usage under control.
2173 */
2174 static void
2175 metaslab_potentially_evict(metaslab_class_t *mc)
2176 {
2177 #ifdef _KERNEL
2178 uint64_t allmem = arc_all_memory();
2179 uint64_t inuse = spl_kmem_cache_inuse(zfs_btree_leaf_cache);
2180 uint64_t size = spl_kmem_cache_entry_size(zfs_btree_leaf_cache);
2181 uint_t tries = 0;
2182 for (; allmem * zfs_metaslab_mem_limit / 100 < inuse * size &&
2183 tries < multilist_get_num_sublists(&mc->mc_metaslab_txg_list) * 2;
2184 tries++) {
2185 unsigned int idx = multilist_get_random_index(
2186 &mc->mc_metaslab_txg_list);
2187 multilist_sublist_t *mls =
2188 multilist_sublist_lock(&mc->mc_metaslab_txg_list, idx);
2189 metaslab_t *msp = multilist_sublist_head(mls);
2190 multilist_sublist_unlock(mls);
2191 while (msp != NULL && allmem * zfs_metaslab_mem_limit / 100 <
2192 inuse * size) {
2193 VERIFY3P(mls, ==, multilist_sublist_lock(
2194 &mc->mc_metaslab_txg_list, idx));
2195 ASSERT3U(idx, ==,
2196 metaslab_idx_func(&mc->mc_metaslab_txg_list, msp));
2197
2198 if (!multilist_link_active(&msp->ms_class_txg_node)) {
2199 multilist_sublist_unlock(mls);
2200 break;
2201 }
2202 metaslab_t *next_msp = multilist_sublist_next(mls, msp);
2203 multilist_sublist_unlock(mls);
2204 /*
2205 * If the metaslab is currently loading there are two
2206 * cases. If it's the metaslab we're evicting, we
2207 * can't continue on or we'll panic when we attempt to
2208 * recursively lock the mutex. If it's another
2209 * metaslab that's loading, it can be safely skipped,
2210 * since we know it's very new and therefore not a
2211 * good eviction candidate. We check later once the
2212 * lock is held that the metaslab is fully loaded
2213 * before actually unloading it.
2214 */
2215 if (msp->ms_loading) {
2216 msp = next_msp;
2217 inuse =
2218 spl_kmem_cache_inuse(zfs_btree_leaf_cache);
2219 continue;
2220 }
2221 /*
2222 * We can't unload metaslabs with no spacemap because
2223 * they're not ready to be unloaded yet. We can't
2224 * unload metaslabs with outstanding allocations
2225 * because doing so could cause the metaslab's weight
2226 * to decrease while it's unloaded, which violates an
2227 * invariant that we use to prevent unnecessary
2228 * loading. We also don't unload metaslabs that are
2229 * currently active because they are high-weight
2230 * metaslabs that are likely to be used in the near
2231 * future.
2232 */
2233 mutex_enter(&msp->ms_lock);
2234 if (msp->ms_allocator == -1 && msp->ms_sm != NULL &&
2235 msp->ms_allocating_total == 0) {
2236 metaslab_unload(msp);
2237 }
2238 mutex_exit(&msp->ms_lock);
2239 msp = next_msp;
2240 inuse = spl_kmem_cache_inuse(zfs_btree_leaf_cache);
2241 }
2242 }
2243 #else
2244 (void) mc, (void) zfs_metaslab_mem_limit;
2245 #endif
2246 }
2247
2248 static int
2249 metaslab_load_impl(metaslab_t *msp)
2250 {
2251 int error = 0;
2252
2253 ASSERT(MUTEX_HELD(&msp->ms_lock));
2254 ASSERT(msp->ms_loading);
2255 ASSERT(!msp->ms_condensing);
2256
2257 /*
2258 * We temporarily drop the lock to unblock other operations while we
2259 * are reading the space map. Therefore, metaslab_sync() and
2260 * metaslab_sync_done() can run at the same time as we do.
2261 *
2262 * If we are using the log space maps, metaslab_sync() can't write to
2263 * the metaslab's space map while we are loading as we only write to
2264 * it when we are flushing the metaslab, and that can't happen while
2265 * we are loading it.
2266 *
2267 * If we are not using log space maps though, metaslab_sync() can
2268 * append to the space map while we are loading. Therefore we load
2269 * only entries that existed when we started the load. Additionally,
2270 * metaslab_sync_done() has to wait for the load to complete because
2271 * there are potential races like metaslab_load() loading parts of the
2272 * space map that are currently being appended by metaslab_sync(). If
2273 * we didn't, the ms_allocatable would have entries that
2274 * metaslab_sync_done() would try to re-add later.
2275 *
2276 * That's why before dropping the lock we remember the synced length
2277 * of the metaslab and read up to that point of the space map,
2278 * ignoring entries appended by metaslab_sync() that happen after we
2279 * drop the lock.
2280 */
2281 uint64_t length = msp->ms_synced_length;
2282 mutex_exit(&msp->ms_lock);
2283
2284 hrtime_t load_start = gethrtime();
2285 metaslab_rt_arg_t *mrap;
2286 if (msp->ms_allocatable->rt_arg == NULL) {
2287 mrap = kmem_zalloc(sizeof (*mrap), KM_SLEEP);
2288 } else {
2289 mrap = msp->ms_allocatable->rt_arg;
2290 msp->ms_allocatable->rt_ops = NULL;
2291 msp->ms_allocatable->rt_arg = NULL;
2292 }
2293 mrap->mra_bt = &msp->ms_allocatable_by_size;
2294 mrap->mra_floor_shift = metaslab_by_size_min_shift;
2295
2296 if (msp->ms_sm != NULL) {
2297 error = space_map_load_length(msp->ms_sm, msp->ms_allocatable,
2298 SM_FREE, length);
2299
2300 /* Now, populate the size-sorted tree. */
2301 metaslab_rt_create(msp->ms_allocatable, mrap);
2302 msp->ms_allocatable->rt_ops = &metaslab_rt_ops;
2303 msp->ms_allocatable->rt_arg = mrap;
2304
2305 struct mssa_arg arg = {0};
2306 arg.rt = msp->ms_allocatable;
2307 arg.mra = mrap;
2308 range_tree_walk(msp->ms_allocatable, metaslab_size_sorted_add,
2309 &arg);
2310 } else {
2311 /*
2312 * Add the size-sorted tree first, since we don't need to load
2313 * the metaslab from the spacemap.
2314 */
2315 metaslab_rt_create(msp->ms_allocatable, mrap);
2316 msp->ms_allocatable->rt_ops = &metaslab_rt_ops;
2317 msp->ms_allocatable->rt_arg = mrap;
2318 /*
2319 * The space map has not been allocated yet, so treat
2320 * all the space in the metaslab as free and add it to the
2321 * ms_allocatable tree.
2322 */
2323 range_tree_add(msp->ms_allocatable,
2324 msp->ms_start, msp->ms_size);
2325
2326 if (msp->ms_new) {
2327 /*
2328 * If the ms_sm doesn't exist, this means that this
2329 * metaslab hasn't gone through metaslab_sync() and
2330 * thus has never been dirtied. So we shouldn't
2331 * expect any unflushed allocs or frees from previous
2332 * TXGs.
2333 */
2334 ASSERT(range_tree_is_empty(msp->ms_unflushed_allocs));
2335 ASSERT(range_tree_is_empty(msp->ms_unflushed_frees));
2336 }
2337 }
2338
2339 /*
2340 * We need to grab the ms_sync_lock to prevent metaslab_sync() from
2341 * changing the ms_sm (or log_sm) and the metaslab's range trees
2342 * while we are about to use them and populate the ms_allocatable.
2343 * The ms_lock is insufficient for this because metaslab_sync() doesn't
2344 * hold the ms_lock while writing the ms_checkpointing tree to disk.
2345 */
2346 mutex_enter(&msp->ms_sync_lock);
2347 mutex_enter(&msp->ms_lock);
2348
2349 ASSERT(!msp->ms_condensing);
2350 ASSERT(!msp->ms_flushing);
2351
2352 if (error != 0) {
2353 mutex_exit(&msp->ms_sync_lock);
2354 return (error);
2355 }
2356
2357 ASSERT3P(msp->ms_group, !=, NULL);
2358 msp->ms_loaded = B_TRUE;
2359
2360 /*
2361 * Apply all the unflushed changes to ms_allocatable right
2362 * away so any manipulations we do below have a clear view
2363 * of what is allocated and what is free.
2364 */
2365 range_tree_walk(msp->ms_unflushed_allocs,
2366 range_tree_remove, msp->ms_allocatable);
2367 range_tree_walk(msp->ms_unflushed_frees,
2368 range_tree_add, msp->ms_allocatable);
2369
2370 ASSERT3P(msp->ms_group, !=, NULL);
2371 spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
2372 if (spa_syncing_log_sm(spa) != NULL) {
2373 ASSERT(spa_feature_is_enabled(spa,
2374 SPA_FEATURE_LOG_SPACEMAP));
2375
2376 /*
2377 * If we use a log space map we add all the segments
2378 * that are in ms_unflushed_frees so they are available
2379 * for allocation.
2380 *
2381 * ms_allocatable needs to contain all free segments
2382 * that are ready for allocations (thus not segments
2383 * from ms_freeing, ms_freed, and the ms_defer trees).
2384 * But if we grab the lock in this code path at a sync
2385 * pass later that 1, then it also contains the
2386 * segments of ms_freed (they were added to it earlier
2387 * in this path through ms_unflushed_frees). So we
2388 * need to remove all the segments that exist in
2389 * ms_freed from ms_allocatable as they will be added
2390 * later in metaslab_sync_done().
2391 *
2392 * When there's no log space map, the ms_allocatable
2393 * correctly doesn't contain any segments that exist
2394 * in ms_freed [see ms_synced_length].
2395 */
2396 range_tree_walk(msp->ms_freed,
2397 range_tree_remove, msp->ms_allocatable);
2398 }
2399
2400 /*
2401 * If we are not using the log space map, ms_allocatable
2402 * contains the segments that exist in the ms_defer trees
2403 * [see ms_synced_length]. Thus we need to remove them
2404 * from ms_allocatable as they will be added again in
2405 * metaslab_sync_done().
2406 *
2407 * If we are using the log space map, ms_allocatable still
2408 * contains the segments that exist in the ms_defer trees.
2409 * Not because it read them through the ms_sm though. But
2410 * because these segments are part of ms_unflushed_frees
2411 * whose segments we add to ms_allocatable earlier in this
2412 * code path.
2413 */
2414 for (int t = 0; t < TXG_DEFER_SIZE; t++) {
2415 range_tree_walk(msp->ms_defer[t],
2416 range_tree_remove, msp->ms_allocatable);
2417 }
2418
2419 /*
2420 * Call metaslab_recalculate_weight_and_sort() now that the
2421 * metaslab is loaded so we get the metaslab's real weight.
2422 *
2423 * Unless this metaslab was created with older software and
2424 * has not yet been converted to use segment-based weight, we
2425 * expect the new weight to be better or equal to the weight
2426 * that the metaslab had while it was not loaded. This is
2427 * because the old weight does not take into account the
2428 * consolidation of adjacent segments between TXGs. [see
2429 * comment for ms_synchist and ms_deferhist[] for more info]
2430 */
2431 uint64_t weight = msp->ms_weight;
2432 uint64_t max_size = msp->ms_max_size;
2433 metaslab_recalculate_weight_and_sort(msp);
2434 if (!WEIGHT_IS_SPACEBASED(weight))
2435 ASSERT3U(weight, <=, msp->ms_weight);
2436 msp->ms_max_size = metaslab_largest_allocatable(msp);
2437 ASSERT3U(max_size, <=, msp->ms_max_size);
2438 hrtime_t load_end = gethrtime();
2439 msp->ms_load_time = load_end;
2440 zfs_dbgmsg("metaslab_load: txg %llu, spa %s, vdev_id %llu, "
2441 "ms_id %llu, smp_length %llu, "
2442 "unflushed_allocs %llu, unflushed_frees %llu, "
2443 "freed %llu, defer %llu + %llu, unloaded time %llu ms, "
2444 "loading_time %lld ms, ms_max_size %llu, "
2445 "max size error %lld, "
2446 "old_weight %llx, new_weight %llx",
2447 (u_longlong_t)spa_syncing_txg(spa), spa_name(spa),
2448 (u_longlong_t)msp->ms_group->mg_vd->vdev_id,
2449 (u_longlong_t)msp->ms_id,
2450 (u_longlong_t)space_map_length(msp->ms_sm),
2451 (u_longlong_t)range_tree_space(msp->ms_unflushed_allocs),
2452 (u_longlong_t)range_tree_space(msp->ms_unflushed_frees),
2453 (u_longlong_t)range_tree_space(msp->ms_freed),
2454 (u_longlong_t)range_tree_space(msp->ms_defer[0]),
2455 (u_longlong_t)range_tree_space(msp->ms_defer[1]),
2456 (longlong_t)((load_start - msp->ms_unload_time) / 1000000),
2457 (longlong_t)((load_end - load_start) / 1000000),
2458 (u_longlong_t)msp->ms_max_size,
2459 (u_longlong_t)msp->ms_max_size - max_size,
2460 (u_longlong_t)weight, (u_longlong_t)msp->ms_weight);
2461
2462 metaslab_verify_space(msp, spa_syncing_txg(spa));
2463 mutex_exit(&msp->ms_sync_lock);
2464 return (0);
2465 }
2466
2467 int
2468 metaslab_load(metaslab_t *msp)
2469 {
2470 ASSERT(MUTEX_HELD(&msp->ms_lock));
2471
2472 /*
2473 * There may be another thread loading the same metaslab, if that's
2474 * the case just wait until the other thread is done and return.
2475 */
2476 metaslab_load_wait(msp);
2477 if (msp->ms_loaded)
2478 return (0);
2479 VERIFY(!msp->ms_loading);
2480 ASSERT(!msp->ms_condensing);
2481
2482 /*
2483 * We set the loading flag BEFORE potentially dropping the lock to
2484 * wait for an ongoing flush (see ms_flushing below). This way other
2485 * threads know that there is already a thread that is loading this
2486 * metaslab.
2487 */
2488 msp->ms_loading = B_TRUE;
2489
2490 /*
2491 * Wait for any in-progress flushing to finish as we drop the ms_lock
2492 * both here (during space_map_load()) and in metaslab_flush() (when
2493 * we flush our changes to the ms_sm).
2494 */
2495 if (msp->ms_flushing)
2496 metaslab_flush_wait(msp);
2497
2498 /*
2499 * In the possibility that we were waiting for the metaslab to be
2500 * flushed (where we temporarily dropped the ms_lock), ensure that
2501 * no one else loaded the metaslab somehow.
2502 */
2503 ASSERT(!msp->ms_loaded);
2504
2505 /*
2506 * If we're loading a metaslab in the normal class, consider evicting
2507 * another one to keep our memory usage under the limit defined by the
2508 * zfs_metaslab_mem_limit tunable.
2509 */
2510 if (spa_normal_class(msp->ms_group->mg_class->mc_spa) ==
2511 msp->ms_group->mg_class) {
2512 metaslab_potentially_evict(msp->ms_group->mg_class);
2513 }
2514
2515 int error = metaslab_load_impl(msp);
2516
2517 ASSERT(MUTEX_HELD(&msp->ms_lock));
2518 msp->ms_loading = B_FALSE;
2519 cv_broadcast(&msp->ms_load_cv);
2520
2521 return (error);
2522 }
2523
2524 void
2525 metaslab_unload(metaslab_t *msp)
2526 {
2527 ASSERT(MUTEX_HELD(&msp->ms_lock));
2528
2529 /*
2530 * This can happen if a metaslab is selected for eviction (in
2531 * metaslab_potentially_evict) and then unloaded during spa_sync (via
2532 * metaslab_class_evict_old).
2533 */
2534 if (!msp->ms_loaded)
2535 return;
2536
2537 range_tree_vacate(msp->ms_allocatable, NULL, NULL);
2538 msp->ms_loaded = B_FALSE;
2539 msp->ms_unload_time = gethrtime();
2540
2541 msp->ms_activation_weight = 0;
2542 msp->ms_weight &= ~METASLAB_ACTIVE_MASK;
2543
2544 if (msp->ms_group != NULL) {
2545 metaslab_class_t *mc = msp->ms_group->mg_class;
2546 multilist_sublist_t *mls =
2547 multilist_sublist_lock_obj(&mc->mc_metaslab_txg_list, msp);
2548 if (multilist_link_active(&msp->ms_class_txg_node))
2549 multilist_sublist_remove(mls, msp);
2550 multilist_sublist_unlock(mls);
2551
2552 spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
2553 zfs_dbgmsg("metaslab_unload: txg %llu, spa %s, vdev_id %llu, "
2554 "ms_id %llu, weight %llx, "
2555 "selected txg %llu (%llu ms ago), alloc_txg %llu, "
2556 "loaded %llu ms ago, max_size %llu",
2557 (u_longlong_t)spa_syncing_txg(spa), spa_name(spa),
2558 (u_longlong_t)msp->ms_group->mg_vd->vdev_id,
2559 (u_longlong_t)msp->ms_id,
2560 (u_longlong_t)msp->ms_weight,
2561 (u_longlong_t)msp->ms_selected_txg,
2562 (u_longlong_t)(msp->ms_unload_time -
2563 msp->ms_selected_time) / 1000 / 1000,
2564 (u_longlong_t)msp->ms_alloc_txg,
2565 (u_longlong_t)(msp->ms_unload_time -
2566 msp->ms_load_time) / 1000 / 1000,
2567 (u_longlong_t)msp->ms_max_size);
2568 }
2569
2570 /*
2571 * We explicitly recalculate the metaslab's weight based on its space
2572 * map (as it is now not loaded). We want unload metaslabs to always
2573 * have their weights calculated from the space map histograms, while
2574 * loaded ones have it calculated from their in-core range tree
2575 * [see metaslab_load()]. This way, the weight reflects the information
2576 * available in-core, whether it is loaded or not.
2577 *
2578 * If ms_group == NULL means that we came here from metaslab_fini(),
2579 * at which point it doesn't make sense for us to do the recalculation
2580 * and the sorting.
2581 */
2582 if (msp->ms_group != NULL)
2583 metaslab_recalculate_weight_and_sort(msp);
2584 }
2585
2586 /*
2587 * We want to optimize the memory use of the per-metaslab range
2588 * trees. To do this, we store the segments in the range trees in
2589 * units of sectors, zero-indexing from the start of the metaslab. If
2590 * the vdev_ms_shift - the vdev_ashift is less than 32, we can store
2591 * the ranges using two uint32_ts, rather than two uint64_ts.
2592 */
2593 range_seg_type_t
2594 metaslab_calculate_range_tree_type(vdev_t *vdev, metaslab_t *msp,
2595 uint64_t *start, uint64_t *shift)
2596 {
2597 if (vdev->vdev_ms_shift - vdev->vdev_ashift < 32 &&
2598 !zfs_metaslab_force_large_segs) {
2599 *shift = vdev->vdev_ashift;
2600 *start = msp->ms_start;
2601 return (RANGE_SEG32);
2602 } else {
2603 *shift = 0;
2604 *start = 0;
2605 return (RANGE_SEG64);
2606 }
2607 }
2608
2609 void
2610 metaslab_set_selected_txg(metaslab_t *msp, uint64_t txg)
2611 {
2612 ASSERT(MUTEX_HELD(&msp->ms_lock));
2613 metaslab_class_t *mc = msp->ms_group->mg_class;
2614 multilist_sublist_t *mls =
2615 multilist_sublist_lock_obj(&mc->mc_metaslab_txg_list, msp);
2616 if (multilist_link_active(&msp->ms_class_txg_node))
2617 multilist_sublist_remove(mls, msp);
2618 msp->ms_selected_txg = txg;
2619 msp->ms_selected_time = gethrtime();
2620 multilist_sublist_insert_tail(mls, msp);
2621 multilist_sublist_unlock(mls);
2622 }
2623
2624 void
2625 metaslab_space_update(vdev_t *vd, metaslab_class_t *mc, int64_t alloc_delta,
2626 int64_t defer_delta, int64_t space_delta)
2627 {
2628 vdev_space_update(vd, alloc_delta, defer_delta, space_delta);
2629
2630 ASSERT3P(vd->vdev_spa->spa_root_vdev, ==, vd->vdev_parent);
2631 ASSERT(vd->vdev_ms_count != 0);
2632
2633 metaslab_class_space_update(mc, alloc_delta, defer_delta, space_delta,
2634 vdev_deflated_space(vd, space_delta));
2635 }
2636
2637 int
2638 metaslab_init(metaslab_group_t *mg, uint64_t id, uint64_t object,
2639 uint64_t txg, metaslab_t **msp)
2640 {
2641 vdev_t *vd = mg->mg_vd;
2642 spa_t *spa = vd->vdev_spa;
2643 objset_t *mos = spa->spa_meta_objset;
2644 metaslab_t *ms;
2645 int error;
2646
2647 ms = kmem_zalloc(sizeof (metaslab_t), KM_SLEEP);
2648 mutex_init(&ms->ms_lock, NULL, MUTEX_DEFAULT, NULL);
2649 mutex_init(&ms->ms_sync_lock, NULL, MUTEX_DEFAULT, NULL);
2650 cv_init(&ms->ms_load_cv, NULL, CV_DEFAULT, NULL);
2651 cv_init(&ms->ms_flush_cv, NULL, CV_DEFAULT, NULL);
2652 multilist_link_init(&ms->ms_class_txg_node);
2653
2654 ms->ms_id = id;
2655 ms->ms_start = id << vd->vdev_ms_shift;
2656 ms->ms_size = 1ULL << vd->vdev_ms_shift;
2657 ms->ms_allocator = -1;
2658 ms->ms_new = B_TRUE;
2659
2660 vdev_ops_t *ops = vd->vdev_ops;
2661 if (ops->vdev_op_metaslab_init != NULL)
2662 ops->vdev_op_metaslab_init(vd, &ms->ms_start, &ms->ms_size);
2663
2664 /*
2665 * We only open space map objects that already exist. All others
2666 * will be opened when we finally allocate an object for it. For
2667 * readonly pools there is no need to open the space map object.
2668 *
2669 * Note:
2670 * When called from vdev_expand(), we can't call into the DMU as
2671 * we are holding the spa_config_lock as a writer and we would
2672 * deadlock [see relevant comment in vdev_metaslab_init()]. in
2673 * that case, the object parameter is zero though, so we won't
2674 * call into the DMU.
2675 */
2676 if (object != 0 && !(spa->spa_mode == SPA_MODE_READ &&
2677 !spa->spa_read_spacemaps)) {
2678 error = space_map_open(&ms->ms_sm, mos, object, ms->ms_start,
2679 ms->ms_size, vd->vdev_ashift);
2680
2681 if (error != 0) {
2682 kmem_free(ms, sizeof (metaslab_t));
2683 return (error);
2684 }
2685
2686 ASSERT(ms->ms_sm != NULL);
2687 ms->ms_allocated_space = space_map_allocated(ms->ms_sm);
2688 }
2689
2690 uint64_t shift, start;
2691 range_seg_type_t type =
2692 metaslab_calculate_range_tree_type(vd, ms, &start, &shift);
2693
2694 ms->ms_allocatable = range_tree_create(NULL, type, NULL, start, shift);
2695 for (int t = 0; t < TXG_SIZE; t++) {
2696 ms->ms_allocating[t] = range_tree_create(NULL, type,
2697 NULL, start, shift);
2698 }
2699 ms->ms_freeing = range_tree_create(NULL, type, NULL, start, shift);
2700 ms->ms_freed = range_tree_create(NULL, type, NULL, start, shift);
2701 for (int t = 0; t < TXG_DEFER_SIZE; t++) {
2702 ms->ms_defer[t] = range_tree_create(NULL, type, NULL,
2703 start, shift);
2704 }
2705 ms->ms_checkpointing =
2706 range_tree_create(NULL, type, NULL, start, shift);
2707 ms->ms_unflushed_allocs =
2708 range_tree_create(NULL, type, NULL, start, shift);
2709
2710 metaslab_rt_arg_t *mrap = kmem_zalloc(sizeof (*mrap), KM_SLEEP);
2711 mrap->mra_bt = &ms->ms_unflushed_frees_by_size;
2712 mrap->mra_floor_shift = metaslab_by_size_min_shift;
2713 ms->ms_unflushed_frees = range_tree_create(&metaslab_rt_ops,
2714 type, mrap, start, shift);
2715
2716 ms->ms_trim = range_tree_create(NULL, type, NULL, start, shift);
2717
2718 metaslab_group_add(mg, ms);
2719 metaslab_set_fragmentation(ms, B_FALSE);
2720
2721 /*
2722 * If we're opening an existing pool (txg == 0) or creating
2723 * a new one (txg == TXG_INITIAL), all space is available now.
2724 * If we're adding space to an existing pool, the new space
2725 * does not become available until after this txg has synced.
2726 * The metaslab's weight will also be initialized when we sync
2727 * out this txg. This ensures that we don't attempt to allocate
2728 * from it before we have initialized it completely.
2729 */
2730 if (txg <= TXG_INITIAL) {
2731 metaslab_sync_done(ms, 0);
2732 metaslab_space_update(vd, mg->mg_class,
2733 metaslab_allocated_space(ms), 0, 0);
2734 }
2735
2736 if (txg != 0) {
2737 vdev_dirty(vd, 0, NULL, txg);
2738 vdev_dirty(vd, VDD_METASLAB, ms, txg);
2739 }
2740
2741 *msp = ms;
2742
2743 return (0);
2744 }
2745
2746 static void
2747 metaslab_fini_flush_data(metaslab_t *msp)
2748 {
2749 spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
2750
2751 if (metaslab_unflushed_txg(msp) == 0) {
2752 ASSERT3P(avl_find(&spa->spa_metaslabs_by_flushed, msp, NULL),
2753 ==, NULL);
2754 return;
2755 }
2756 ASSERT(spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP));
2757
2758 mutex_enter(&spa->spa_flushed_ms_lock);
2759 avl_remove(&spa->spa_metaslabs_by_flushed, msp);
2760 mutex_exit(&spa->spa_flushed_ms_lock);
2761
2762 spa_log_sm_decrement_mscount(spa, metaslab_unflushed_txg(msp));
2763 spa_log_summary_decrement_mscount(spa, metaslab_unflushed_txg(msp),
2764 metaslab_unflushed_dirty(msp));
2765 }
2766
2767 uint64_t
2768 metaslab_unflushed_changes_memused(metaslab_t *ms)
2769 {
2770 return ((range_tree_numsegs(ms->ms_unflushed_allocs) +
2771 range_tree_numsegs(ms->ms_unflushed_frees)) *
2772 ms->ms_unflushed_allocs->rt_root.bt_elem_size);
2773 }
2774
2775 void
2776 metaslab_fini(metaslab_t *msp)
2777 {
2778 metaslab_group_t *mg = msp->ms_group;
2779 vdev_t *vd = mg->mg_vd;
2780 spa_t *spa = vd->vdev_spa;
2781
2782 metaslab_fini_flush_data(msp);
2783
2784 metaslab_group_remove(mg, msp);
2785
2786 mutex_enter(&msp->ms_lock);
2787 VERIFY(msp->ms_group == NULL);
2788
2789 /*
2790 * If this metaslab hasn't been through metaslab_sync_done() yet its
2791 * space hasn't been accounted for in its vdev and doesn't need to be
2792 * subtracted.
2793 */
2794 if (!msp->ms_new) {
2795 metaslab_space_update(vd, mg->mg_class,
2796 -metaslab_allocated_space(msp), 0, -msp->ms_size);
2797
2798 }
2799 space_map_close(msp->ms_sm);
2800 msp->ms_sm = NULL;
2801
2802 metaslab_unload(msp);
2803
2804 range_tree_destroy(msp->ms_allocatable);
2805 range_tree_destroy(msp->ms_freeing);
2806 range_tree_destroy(msp->ms_freed);
2807
2808 ASSERT3U(spa->spa_unflushed_stats.sus_memused, >=,
2809 metaslab_unflushed_changes_memused(msp));
2810 spa->spa_unflushed_stats.sus_memused -=
2811 metaslab_unflushed_changes_memused(msp);
2812 range_tree_vacate(msp->ms_unflushed_allocs, NULL, NULL);
2813 range_tree_destroy(msp->ms_unflushed_allocs);
2814 range_tree_destroy(msp->ms_checkpointing);
2815 range_tree_vacate(msp->ms_unflushed_frees, NULL, NULL);
2816 range_tree_destroy(msp->ms_unflushed_frees);
2817
2818 for (int t = 0; t < TXG_SIZE; t++) {
2819 range_tree_destroy(msp->ms_allocating[t]);
2820 }
2821 for (int t = 0; t < TXG_DEFER_SIZE; t++) {
2822 range_tree_destroy(msp->ms_defer[t]);
2823 }
2824 ASSERT0(msp->ms_deferspace);
2825
2826 for (int t = 0; t < TXG_SIZE; t++)
2827 ASSERT(!txg_list_member(&vd->vdev_ms_list, msp, t));
2828
2829 range_tree_vacate(msp->ms_trim, NULL, NULL);
2830 range_tree_destroy(msp->ms_trim);
2831
2832 mutex_exit(&msp->ms_lock);
2833 cv_destroy(&msp->ms_load_cv);
2834 cv_destroy(&msp->ms_flush_cv);
2835 mutex_destroy(&msp->ms_lock);
2836 mutex_destroy(&msp->ms_sync_lock);
2837 ASSERT3U(msp->ms_allocator, ==, -1);
2838
2839 kmem_free(msp, sizeof (metaslab_t));
2840 }
2841
2842 #define FRAGMENTATION_TABLE_SIZE 17
2843
2844 /*
2845 * This table defines a segment size based fragmentation metric that will
2846 * allow each metaslab to derive its own fragmentation value. This is done
2847 * by calculating the space in each bucket of the spacemap histogram and
2848 * multiplying that by the fragmentation metric in this table. Doing
2849 * this for all buckets and dividing it by the total amount of free
2850 * space in this metaslab (i.e. the total free space in all buckets) gives
2851 * us the fragmentation metric. This means that a high fragmentation metric
2852 * equates to most of the free space being comprised of small segments.
2853 * Conversely, if the metric is low, then most of the free space is in
2854 * large segments. A 10% change in fragmentation equates to approximately
2855 * double the number of segments.
2856 *
2857 * This table defines 0% fragmented space using 16MB segments. Testing has
2858 * shown that segments that are greater than or equal to 16MB do not suffer
2859 * from drastic performance problems. Using this value, we derive the rest
2860 * of the table. Since the fragmentation value is never stored on disk, it
2861 * is possible to change these calculations in the future.
2862 */
2863 static const int zfs_frag_table[FRAGMENTATION_TABLE_SIZE] = {
2864 100, /* 512B */
2865 100, /* 1K */
2866 98, /* 2K */
2867 95, /* 4K */
2868 90, /* 8K */
2869 80, /* 16K */
2870 70, /* 32K */
2871 60, /* 64K */
2872 50, /* 128K */
2873 40, /* 256K */
2874 30, /* 512K */
2875 20, /* 1M */
2876 15, /* 2M */
2877 10, /* 4M */
2878 5, /* 8M */
2879 0 /* 16M */
2880 };
2881
2882 /*
2883 * Calculate the metaslab's fragmentation metric and set ms_fragmentation.
2884 * Setting this value to ZFS_FRAG_INVALID means that the metaslab has not
2885 * been upgraded and does not support this metric. Otherwise, the return
2886 * value should be in the range [0, 100].
2887 */
2888 static void
2889 metaslab_set_fragmentation(metaslab_t *msp, boolean_t nodirty)
2890 {
2891 spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
2892 uint64_t fragmentation = 0;
2893 uint64_t total = 0;
2894 boolean_t feature_enabled = spa_feature_is_enabled(spa,
2895 SPA_FEATURE_SPACEMAP_HISTOGRAM);
2896
2897 if (!feature_enabled) {
2898 msp->ms_fragmentation = ZFS_FRAG_INVALID;
2899 return;
2900 }
2901
2902 /*
2903 * A null space map means that the entire metaslab is free
2904 * and thus is not fragmented.
2905 */
2906 if (msp->ms_sm == NULL) {
2907 msp->ms_fragmentation = 0;
2908 return;
2909 }
2910
2911 /*
2912 * If this metaslab's space map has not been upgraded, flag it
2913 * so that we upgrade next time we encounter it.
2914 */
2915 if (msp->ms_sm->sm_dbuf->db_size != sizeof (space_map_phys_t)) {
2916 uint64_t txg = spa_syncing_txg(spa);
2917 vdev_t *vd = msp->ms_group->mg_vd;
2918
2919 /*
2920 * If we've reached the final dirty txg, then we must
2921 * be shutting down the pool. We don't want to dirty
2922 * any data past this point so skip setting the condense
2923 * flag. We can retry this action the next time the pool
2924 * is imported. We also skip marking this metaslab for
2925 * condensing if the caller has explicitly set nodirty.
2926 */
2927 if (!nodirty &&
2928 spa_writeable(spa) && txg < spa_final_dirty_txg(spa)) {
2929 msp->ms_condense_wanted = B_TRUE;
2930 vdev_dirty(vd, VDD_METASLAB, msp, txg + 1);
2931 zfs_dbgmsg("txg %llu, requesting force condense: "
2932 "ms_id %llu, vdev_id %llu", (u_longlong_t)txg,
2933 (u_longlong_t)msp->ms_id,
2934 (u_longlong_t)vd->vdev_id);
2935 }
2936 msp->ms_fragmentation = ZFS_FRAG_INVALID;
2937 return;
2938 }
2939
2940 for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
2941 uint64_t space = 0;
2942 uint8_t shift = msp->ms_sm->sm_shift;
2943
2944 int idx = MIN(shift - SPA_MINBLOCKSHIFT + i,
2945 FRAGMENTATION_TABLE_SIZE - 1);
2946
2947 if (msp->ms_sm->sm_phys->smp_histogram[i] == 0)
2948 continue;
2949
2950 space = msp->ms_sm->sm_phys->smp_histogram[i] << (i + shift);
2951 total += space;
2952
2953 ASSERT3U(idx, <, FRAGMENTATION_TABLE_SIZE);
2954 fragmentation += space * zfs_frag_table[idx];
2955 }
2956
2957 if (total > 0)
2958 fragmentation /= total;
2959 ASSERT3U(fragmentation, <=, 100);
2960
2961 msp->ms_fragmentation = fragmentation;
2962 }
2963
2964 /*
2965 * Compute a weight -- a selection preference value -- for the given metaslab.
2966 * This is based on the amount of free space, the level of fragmentation,
2967 * the LBA range, and whether the metaslab is loaded.
2968 */
2969 static uint64_t
2970 metaslab_space_weight(metaslab_t *msp)
2971 {
2972 metaslab_group_t *mg = msp->ms_group;
2973 vdev_t *vd = mg->mg_vd;
2974 uint64_t weight, space;
2975
2976 ASSERT(MUTEX_HELD(&msp->ms_lock));
2977
2978 /*
2979 * The baseline weight is the metaslab's free space.
2980 */
2981 space = msp->ms_size - metaslab_allocated_space(msp);
2982
2983 if (metaslab_fragmentation_factor_enabled &&
2984 msp->ms_fragmentation != ZFS_FRAG_INVALID) {
2985 /*
2986 * Use the fragmentation information to inversely scale
2987 * down the baseline weight. We need to ensure that we
2988 * don't exclude this metaslab completely when it's 100%
2989 * fragmented. To avoid this we reduce the fragmented value
2990 * by 1.
2991 */
2992 space = (space * (100 - (msp->ms_fragmentation - 1))) / 100;
2993
2994 /*
2995 * If space < SPA_MINBLOCKSIZE, then we will not allocate from
2996 * this metaslab again. The fragmentation metric may have
2997 * decreased the space to something smaller than
2998 * SPA_MINBLOCKSIZE, so reset the space to SPA_MINBLOCKSIZE
2999 * so that we can consume any remaining space.
3000 */
3001 if (space > 0 && space < SPA_MINBLOCKSIZE)
3002 space = SPA_MINBLOCKSIZE;
3003 }
3004 weight = space;
3005
3006 /*
3007 * Modern disks have uniform bit density and constant angular velocity.
3008 * Therefore, the outer recording zones are faster (higher bandwidth)
3009 * than the inner zones by the ratio of outer to inner track diameter,
3010 * which is typically around 2:1. We account for this by assigning
3011 * higher weight to lower metaslabs (multiplier ranging from 2x to 1x).
3012 * In effect, this means that we'll select the metaslab with the most
3013 * free bandwidth rather than simply the one with the most free space.
3014 */
3015 if (!vd->vdev_nonrot && metaslab_lba_weighting_enabled) {
3016 weight = 2 * weight - (msp->ms_id * weight) / vd->vdev_ms_count;
3017 ASSERT(weight >= space && weight <= 2 * space);
3018 }
3019
3020 /*
3021 * If this metaslab is one we're actively using, adjust its
3022 * weight to make it preferable to any inactive metaslab so
3023 * we'll polish it off. If the fragmentation on this metaslab
3024 * has exceed our threshold, then don't mark it active.
3025 */
3026 if (msp->ms_loaded && msp->ms_fragmentation != ZFS_FRAG_INVALID &&
3027 msp->ms_fragmentation <= zfs_metaslab_fragmentation_threshold) {
3028 weight |= (msp->ms_weight & METASLAB_ACTIVE_MASK);
3029 }
3030
3031 WEIGHT_SET_SPACEBASED(weight);
3032 return (weight);
3033 }
3034
3035 /*
3036 * Return the weight of the specified metaslab, according to the segment-based
3037 * weighting algorithm. The metaslab must be loaded. This function can
3038 * be called within a sync pass since it relies only on the metaslab's
3039 * range tree which is always accurate when the metaslab is loaded.
3040 */
3041 static uint64_t
3042 metaslab_weight_from_range_tree(metaslab_t *msp)
3043 {
3044 uint64_t weight = 0;
3045 uint32_t segments = 0;
3046
3047 ASSERT(msp->ms_loaded);
3048
3049 for (int i = RANGE_TREE_HISTOGRAM_SIZE - 1; i >= SPA_MINBLOCKSHIFT;
3050 i--) {
3051 uint8_t shift = msp->ms_group->mg_vd->vdev_ashift;
3052 int max_idx = SPACE_MAP_HISTOGRAM_SIZE + shift - 1;
3053
3054 segments <<= 1;
3055 segments += msp->ms_allocatable->rt_histogram[i];
3056
3057 /*
3058 * The range tree provides more precision than the space map
3059 * and must be downgraded so that all values fit within the
3060 * space map's histogram. This allows us to compare loaded
3061 * vs. unloaded metaslabs to determine which metaslab is
3062 * considered "best".
3063 */
3064 if (i > max_idx)
3065 continue;
3066
3067 if (segments != 0) {
3068 WEIGHT_SET_COUNT(weight, segments);
3069 WEIGHT_SET_INDEX(weight, i);
3070 WEIGHT_SET_ACTIVE(weight, 0);
3071 break;
3072 }
3073 }
3074 return (weight);
3075 }
3076
3077 /*
3078 * Calculate the weight based on the on-disk histogram. Should be applied
3079 * only to unloaded metaslabs (i.e no incoming allocations) in-order to
3080 * give results consistent with the on-disk state
3081 */
3082 static uint64_t
3083 metaslab_weight_from_spacemap(metaslab_t *msp)
3084 {
3085 space_map_t *sm = msp->ms_sm;
3086 ASSERT(!msp->ms_loaded);
3087 ASSERT(sm != NULL);
3088 ASSERT3U(space_map_object(sm), !=, 0);
3089 ASSERT3U(sm->sm_dbuf->db_size, ==, sizeof (space_map_phys_t));
3090
3091 /*
3092 * Create a joint histogram from all the segments that have made
3093 * it to the metaslab's space map histogram, that are not yet
3094 * available for allocation because they are still in the freeing
3095 * pipeline (e.g. freeing, freed, and defer trees). Then subtract
3096 * these segments from the space map's histogram to get a more
3097 * accurate weight.
3098 */
3099 uint64_t deferspace_histogram[SPACE_MAP_HISTOGRAM_SIZE] = {0};
3100 for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++)
3101 deferspace_histogram[i] += msp->ms_synchist[i];
3102 for (int t = 0; t < TXG_DEFER_SIZE; t++) {
3103 for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
3104 deferspace_histogram[i] += msp->ms_deferhist[t][i];
3105 }
3106 }
3107
3108 uint64_t weight = 0;
3109 for (int i = SPACE_MAP_HISTOGRAM_SIZE - 1; i >= 0; i--) {
3110 ASSERT3U(sm->sm_phys->smp_histogram[i], >=,
3111 deferspace_histogram[i]);
3112 uint64_t count =
3113 sm->sm_phys->smp_histogram[i] - deferspace_histogram[i];
3114 if (count != 0) {
3115 WEIGHT_SET_COUNT(weight, count);
3116 WEIGHT_SET_INDEX(weight, i + sm->sm_shift);
3117 WEIGHT_SET_ACTIVE(weight, 0);
3118 break;
3119 }
3120 }
3121 return (weight);
3122 }
3123
3124 /*
3125 * Compute a segment-based weight for the specified metaslab. The weight
3126 * is determined by highest bucket in the histogram. The information
3127 * for the highest bucket is encoded into the weight value.
3128 */
3129 static uint64_t
3130 metaslab_segment_weight(metaslab_t *msp)
3131 {
3132 metaslab_group_t *mg = msp->ms_group;
3133 uint64_t weight = 0;
3134 uint8_t shift = mg->mg_vd->vdev_ashift;
3135
3136 ASSERT(MUTEX_HELD(&msp->ms_lock));
3137
3138 /*
3139 * The metaslab is completely free.
3140 */
3141 if (metaslab_allocated_space(msp) == 0) {
3142 int idx = highbit64(msp->ms_size) - 1;
3143 int max_idx = SPACE_MAP_HISTOGRAM_SIZE + shift - 1;
3144
3145 if (idx < max_idx) {
3146 WEIGHT_SET_COUNT(weight, 1ULL);
3147 WEIGHT_SET_INDEX(weight, idx);
3148 } else {
3149 WEIGHT_SET_COUNT(weight, 1ULL << (idx - max_idx));
3150 WEIGHT_SET_INDEX(weight, max_idx);
3151 }
3152 WEIGHT_SET_ACTIVE(weight, 0);
3153 ASSERT(!WEIGHT_IS_SPACEBASED(weight));
3154 return (weight);
3155 }
3156
3157 ASSERT3U(msp->ms_sm->sm_dbuf->db_size, ==, sizeof (space_map_phys_t));
3158
3159 /*
3160 * If the metaslab is fully allocated then just make the weight 0.
3161 */
3162 if (metaslab_allocated_space(msp) == msp->ms_size)
3163 return (0);
3164 /*
3165 * If the metaslab is already loaded, then use the range tree to
3166 * determine the weight. Otherwise, we rely on the space map information
3167 * to generate the weight.
3168 */
3169 if (msp->ms_loaded) {
3170 weight = metaslab_weight_from_range_tree(msp);
3171 } else {
3172 weight = metaslab_weight_from_spacemap(msp);
3173 }
3174
3175 /*
3176 * If the metaslab was active the last time we calculated its weight
3177 * then keep it active. We want to consume the entire region that
3178 * is associated with this weight.
3179 */
3180 if (msp->ms_activation_weight != 0 && weight != 0)
3181 WEIGHT_SET_ACTIVE(weight, WEIGHT_GET_ACTIVE(msp->ms_weight));
3182 return (weight);
3183 }
3184
3185 /*
3186 * Determine if we should attempt to allocate from this metaslab. If the
3187 * metaslab is loaded, then we can determine if the desired allocation
3188 * can be satisfied by looking at the size of the maximum free segment
3189 * on that metaslab. Otherwise, we make our decision based on the metaslab's
3190 * weight. For segment-based weighting we can determine the maximum
3191 * allocation based on the index encoded in its value. For space-based
3192 * weights we rely on the entire weight (excluding the weight-type bit).
3193 */
3194 static boolean_t
3195 metaslab_should_allocate(metaslab_t *msp, uint64_t asize, boolean_t try_hard)
3196 {
3197 /*
3198 * If the metaslab is loaded, ms_max_size is definitive and we can use
3199 * the fast check. If it's not, the ms_max_size is a lower bound (once
3200 * set), and we should use the fast check as long as we're not in
3201 * try_hard and it's been less than zfs_metaslab_max_size_cache_sec
3202 * seconds since the metaslab was unloaded.
3203 */
3204 if (msp->ms_loaded ||
3205 (msp->ms_max_size != 0 && !try_hard && gethrtime() <
3206 msp->ms_unload_time + SEC2NSEC(zfs_metaslab_max_size_cache_sec)))
3207 return (msp->ms_max_size >= asize);
3208
3209 boolean_t should_allocate;
3210 if (!WEIGHT_IS_SPACEBASED(msp->ms_weight)) {
3211 /*
3212 * The metaslab segment weight indicates segments in the
3213 * range [2^i, 2^(i+1)), where i is the index in the weight.
3214 * Since the asize might be in the middle of the range, we
3215 * should attempt the allocation if asize < 2^(i+1).
3216 */
3217 should_allocate = (asize <
3218 1ULL << (WEIGHT_GET_INDEX(msp->ms_weight) + 1));
3219 } else {
3220 should_allocate = (asize <=
3221 (msp->ms_weight & ~METASLAB_WEIGHT_TYPE));
3222 }
3223
3224 return (should_allocate);
3225 }
3226
3227 static uint64_t
3228 metaslab_weight(metaslab_t *msp, boolean_t nodirty)
3229 {
3230 vdev_t *vd = msp->ms_group->mg_vd;
3231 spa_t *spa = vd->vdev_spa;
3232 uint64_t weight;
3233
3234 ASSERT(MUTEX_HELD(&msp->ms_lock));
3235
3236 metaslab_set_fragmentation(msp, nodirty);
3237
3238 /*
3239 * Update the maximum size. If the metaslab is loaded, this will
3240 * ensure that we get an accurate maximum size if newly freed space
3241 * has been added back into the free tree. If the metaslab is
3242 * unloaded, we check if there's a larger free segment in the
3243 * unflushed frees. This is a lower bound on the largest allocatable
3244 * segment size. Coalescing of adjacent entries may reveal larger
3245 * allocatable segments, but we aren't aware of those until loading
3246 * the space map into a range tree.
3247 */
3248 if (msp->ms_loaded) {
3249 msp->ms_max_size = metaslab_largest_allocatable(msp);
3250 } else {
3251 msp->ms_max_size = MAX(msp->ms_max_size,
3252 metaslab_largest_unflushed_free(msp));
3253 }
3254
3255 /*
3256 * Segment-based weighting requires space map histogram support.
3257 */
3258 if (zfs_metaslab_segment_weight_enabled &&
3259 spa_feature_is_enabled(spa, SPA_FEATURE_SPACEMAP_HISTOGRAM) &&
3260 (msp->ms_sm == NULL || msp->ms_sm->sm_dbuf->db_size ==
3261 sizeof (space_map_phys_t))) {
3262 weight = metaslab_segment_weight(msp);
3263 } else {
3264 weight = metaslab_space_weight(msp);
3265 }
3266 return (weight);
3267 }
3268
3269 void
3270 metaslab_recalculate_weight_and_sort(metaslab_t *msp)
3271 {
3272 ASSERT(MUTEX_HELD(&msp->ms_lock));
3273
3274 /* note: we preserve the mask (e.g. indication of primary, etc..) */
3275 uint64_t was_active = msp->ms_weight & METASLAB_ACTIVE_MASK;
3276 metaslab_group_sort(msp->ms_group, msp,
3277 metaslab_weight(msp, B_FALSE) | was_active);
3278 }
3279
3280 static int
3281 metaslab_activate_allocator(metaslab_group_t *mg, metaslab_t *msp,
3282 int allocator, uint64_t activation_weight)
3283 {
3284 metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator];
3285 ASSERT(MUTEX_HELD(&msp->ms_lock));
3286
3287 /*
3288 * If we're activating for the claim code, we don't want to actually
3289 * set the metaslab up for a specific allocator.
3290 */
3291 if (activation_weight == METASLAB_WEIGHT_CLAIM) {
3292 ASSERT0(msp->ms_activation_weight);
3293 msp->ms_activation_weight = msp->ms_weight;
3294 metaslab_group_sort(mg, msp, msp->ms_weight |
3295 activation_weight);
3296 return (0);
3297 }
3298
3299 metaslab_t **mspp = (activation_weight == METASLAB_WEIGHT_PRIMARY ?
3300 &mga->mga_primary : &mga->mga_secondary);
3301
3302 mutex_enter(&mg->mg_lock);
3303 if (*mspp != NULL) {
3304 mutex_exit(&mg->mg_lock);
3305 return (EEXIST);
3306 }
3307
3308 *mspp = msp;
3309 ASSERT3S(msp->ms_allocator, ==, -1);
3310 msp->ms_allocator = allocator;
3311 msp->ms_primary = (activation_weight == METASLAB_WEIGHT_PRIMARY);
3312
3313 ASSERT0(msp->ms_activation_weight);
3314 msp->ms_activation_weight = msp->ms_weight;
3315 metaslab_group_sort_impl(mg, msp,
3316 msp->ms_weight | activation_weight);
3317 mutex_exit(&mg->mg_lock);
3318
3319 return (0);
3320 }
3321
3322 static int
3323 metaslab_activate(metaslab_t *msp, int allocator, uint64_t activation_weight)
3324 {
3325 ASSERT(MUTEX_HELD(&msp->ms_lock));
3326
3327 /*
3328 * The current metaslab is already activated for us so there
3329 * is nothing to do. Already activated though, doesn't mean
3330 * that this metaslab is activated for our allocator nor our
3331 * requested activation weight. The metaslab could have started
3332 * as an active one for our allocator but changed allocators
3333 * while we were waiting to grab its ms_lock or we stole it
3334 * [see find_valid_metaslab()]. This means that there is a
3335 * possibility of passivating a metaslab of another allocator
3336 * or from a different activation mask, from this thread.
3337 */
3338 if ((msp->ms_weight & METASLAB_ACTIVE_MASK) != 0) {
3339 ASSERT(msp->ms_loaded);
3340 return (0);
3341 }
3342
3343 int error = metaslab_load(msp);
3344 if (error != 0) {
3345 metaslab_group_sort(msp->ms_group, msp, 0);
3346 return (error);
3347 }
3348
3349 /*
3350 * When entering metaslab_load() we may have dropped the
3351 * ms_lock because we were loading this metaslab, or we
3352 * were waiting for another thread to load it for us. In
3353 * that scenario, we recheck the weight of the metaslab
3354 * to see if it was activated by another thread.
3355 *
3356 * If the metaslab was activated for another allocator or
3357 * it was activated with a different activation weight (e.g.
3358 * we wanted to make it a primary but it was activated as
3359 * secondary) we return error (EBUSY).
3360 *
3361 * If the metaslab was activated for the same allocator
3362 * and requested activation mask, skip activating it.
3363 */
3364 if ((msp->ms_weight & METASLAB_ACTIVE_MASK) != 0) {
3365 if (msp->ms_allocator != allocator)
3366 return (EBUSY);
3367
3368 if ((msp->ms_weight & activation_weight) == 0)
3369 return (SET_ERROR(EBUSY));
3370
3371 EQUIV((activation_weight == METASLAB_WEIGHT_PRIMARY),
3372 msp->ms_primary);
3373 return (0);
3374 }
3375
3376 /*
3377 * If the metaslab has literally 0 space, it will have weight 0. In
3378 * that case, don't bother activating it. This can happen if the
3379 * metaslab had space during find_valid_metaslab, but another thread
3380 * loaded it and used all that space while we were waiting to grab the
3381 * lock.
3382 */
3383 if (msp->ms_weight == 0) {
3384 ASSERT0(range_tree_space(msp->ms_allocatable));
3385 return (SET_ERROR(ENOSPC));
3386 }
3387
3388 if ((error = metaslab_activate_allocator(msp->ms_group, msp,
3389 allocator, activation_weight)) != 0) {
3390 return (error);
3391 }
3392
3393 ASSERT(msp->ms_loaded);
3394 ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK);
3395
3396 return (0);
3397 }
3398
3399 static void
3400 metaslab_passivate_allocator(metaslab_group_t *mg, metaslab_t *msp,
3401 uint64_t weight)
3402 {
3403 ASSERT(MUTEX_HELD(&msp->ms_lock));
3404 ASSERT(msp->ms_loaded);
3405
3406 if (msp->ms_weight & METASLAB_WEIGHT_CLAIM) {
3407 metaslab_group_sort(mg, msp, weight);
3408 return;
3409 }
3410
3411 mutex_enter(&mg->mg_lock);
3412 ASSERT3P(msp->ms_group, ==, mg);
3413 ASSERT3S(0, <=, msp->ms_allocator);
3414 ASSERT3U(msp->ms_allocator, <, mg->mg_allocators);
3415
3416 metaslab_group_allocator_t *mga = &mg->mg_allocator[msp->ms_allocator];
3417 if (msp->ms_primary) {
3418 ASSERT3P(mga->mga_primary, ==, msp);
3419 ASSERT(msp->ms_weight & METASLAB_WEIGHT_PRIMARY);
3420 mga->mga_primary = NULL;
3421 } else {
3422 ASSERT3P(mga->mga_secondary, ==, msp);
3423 ASSERT(msp->ms_weight & METASLAB_WEIGHT_SECONDARY);
3424 mga->mga_secondary = NULL;
3425 }
3426 msp->ms_allocator = -1;
3427 metaslab_group_sort_impl(mg, msp, weight);
3428 mutex_exit(&mg->mg_lock);
3429 }
3430
3431 static void
3432 metaslab_passivate(metaslab_t *msp, uint64_t weight)
3433 {
3434 uint64_t size __maybe_unused = weight & ~METASLAB_WEIGHT_TYPE;
3435
3436 /*
3437 * If size < SPA_MINBLOCKSIZE, then we will not allocate from
3438 * this metaslab again. In that case, it had better be empty,
3439 * or we would be leaving space on the table.
3440 */
3441 ASSERT(!WEIGHT_IS_SPACEBASED(msp->ms_weight) ||
3442 size >= SPA_MINBLOCKSIZE ||
3443 range_tree_space(msp->ms_allocatable) == 0);
3444 ASSERT0(weight & METASLAB_ACTIVE_MASK);
3445
3446 ASSERT(msp->ms_activation_weight != 0);
3447 msp->ms_activation_weight = 0;
3448 metaslab_passivate_allocator(msp->ms_group, msp, weight);
3449 ASSERT0(msp->ms_weight & METASLAB_ACTIVE_MASK);
3450 }
3451
3452 /*
3453 * Segment-based metaslabs are activated once and remain active until
3454 * we either fail an allocation attempt (similar to space-based metaslabs)
3455 * or have exhausted the free space in zfs_metaslab_switch_threshold
3456 * buckets since the metaslab was activated. This function checks to see
3457 * if we've exhausted the zfs_metaslab_switch_threshold buckets in the
3458 * metaslab and passivates it proactively. This will allow us to select a
3459 * metaslab with a larger contiguous region, if any, remaining within this
3460 * metaslab group. If we're in sync pass > 1, then we continue using this
3461 * metaslab so that we don't dirty more block and cause more sync passes.
3462 */
3463 static void
3464 metaslab_segment_may_passivate(metaslab_t *msp)
3465 {
3466 spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
3467
3468 if (WEIGHT_IS_SPACEBASED(msp->ms_weight) || spa_sync_pass(spa) > 1)
3469 return;
3470
3471 /*
3472 * Since we are in the middle of a sync pass, the most accurate
3473 * information that is accessible to us is the in-core range tree
3474 * histogram; calculate the new weight based on that information.
3475 */
3476 uint64_t weight = metaslab_weight_from_range_tree(msp);
3477 int activation_idx = WEIGHT_GET_INDEX(msp->ms_activation_weight);
3478 int current_idx = WEIGHT_GET_INDEX(weight);
3479
3480 if (current_idx <= activation_idx - zfs_metaslab_switch_threshold)
3481 metaslab_passivate(msp, weight);
3482 }
3483
3484 static void
3485 metaslab_preload(void *arg)
3486 {
3487 metaslab_t *msp = arg;
3488 metaslab_class_t *mc = msp->ms_group->mg_class;
3489 spa_t *spa = mc->mc_spa;
3490 fstrans_cookie_t cookie = spl_fstrans_mark();
3491
3492 ASSERT(!MUTEX_HELD(&msp->ms_group->mg_lock));
3493
3494 mutex_enter(&msp->ms_lock);
3495 (void) metaslab_load(msp);
3496 metaslab_set_selected_txg(msp, spa_syncing_txg(spa));
3497 mutex_exit(&msp->ms_lock);
3498 spl_fstrans_unmark(cookie);
3499 }
3500
3501 static void
3502 metaslab_group_preload(metaslab_group_t *mg)
3503 {
3504 spa_t *spa = mg->mg_vd->vdev_spa;
3505 metaslab_t *msp;
3506 avl_tree_t *t = &mg->mg_metaslab_tree;
3507 int m = 0;
3508
3509 if (spa_shutting_down(spa) || !metaslab_preload_enabled) {
3510 taskq_wait_outstanding(mg->mg_taskq, 0);
3511 return;
3512 }
3513
3514 mutex_enter(&mg->mg_lock);
3515
3516 /*
3517 * Load the next potential metaslabs
3518 */
3519 for (msp = avl_first(t); msp != NULL; msp = AVL_NEXT(t, msp)) {
3520 ASSERT3P(msp->ms_group, ==, mg);
3521
3522 /*
3523 * We preload only the maximum number of metaslabs specified
3524 * by metaslab_preload_limit. If a metaslab is being forced
3525 * to condense then we preload it too. This will ensure
3526 * that force condensing happens in the next txg.
3527 */
3528 if (++m > metaslab_preload_limit && !msp->ms_condense_wanted) {
3529 continue;
3530 }
3531
3532 VERIFY(taskq_dispatch(mg->mg_taskq, metaslab_preload,
3533 msp, TQ_SLEEP) != TASKQID_INVALID);
3534 }
3535 mutex_exit(&mg->mg_lock);
3536 }
3537
3538 /*
3539 * Determine if the space map's on-disk footprint is past our tolerance for
3540 * inefficiency. We would like to use the following criteria to make our
3541 * decision:
3542 *
3543 * 1. Do not condense if the size of the space map object would dramatically
3544 * increase as a result of writing out the free space range tree.
3545 *
3546 * 2. Condense if the on on-disk space map representation is at least
3547 * zfs_condense_pct/100 times the size of the optimal representation
3548 * (i.e. zfs_condense_pct = 110 and in-core = 1MB, optimal = 1.1MB).
3549 *
3550 * 3. Do not condense if the on-disk size of the space map does not actually
3551 * decrease.
3552 *
3553 * Unfortunately, we cannot compute the on-disk size of the space map in this
3554 * context because we cannot accurately compute the effects of compression, etc.
3555 * Instead, we apply the heuristic described in the block comment for
3556 * zfs_metaslab_condense_block_threshold - we only condense if the space used
3557 * is greater than a threshold number of blocks.
3558 */
3559 static boolean_t
3560 metaslab_should_condense(metaslab_t *msp)
3561 {
3562 space_map_t *sm = msp->ms_sm;
3563 vdev_t *vd = msp->ms_group->mg_vd;
3564 uint64_t vdev_blocksize = 1ULL << vd->vdev_ashift;
3565
3566 ASSERT(MUTEX_HELD(&msp->ms_lock));
3567 ASSERT(msp->ms_loaded);
3568 ASSERT(sm != NULL);
3569 ASSERT3U(spa_sync_pass(vd->vdev_spa), ==, 1);
3570
3571 /*
3572 * We always condense metaslabs that are empty and metaslabs for
3573 * which a condense request has been made.
3574 */
3575 if (range_tree_numsegs(msp->ms_allocatable) == 0 ||
3576 msp->ms_condense_wanted)
3577 return (B_TRUE);
3578
3579 uint64_t record_size = MAX(sm->sm_blksz, vdev_blocksize);
3580 uint64_t object_size = space_map_length(sm);
3581 uint64_t optimal_size = space_map_estimate_optimal_size(sm,
3582 msp->ms_allocatable, SM_NO_VDEVID);
3583
3584 return (object_size >= (optimal_size * zfs_condense_pct / 100) &&
3585 object_size > zfs_metaslab_condense_block_threshold * record_size);
3586 }
3587
3588 /*
3589 * Condense the on-disk space map representation to its minimized form.
3590 * The minimized form consists of a small number of allocations followed
3591 * by the entries of the free range tree (ms_allocatable). The condensed
3592 * spacemap contains all the entries of previous TXGs (including those in
3593 * the pool-wide log spacemaps; thus this is effectively a superset of
3594 * metaslab_flush()), but this TXG's entries still need to be written.
3595 */
3596 static void
3597 metaslab_condense(metaslab_t *msp, dmu_tx_t *tx)
3598 {
3599 range_tree_t *condense_tree;
3600 space_map_t *sm = msp->ms_sm;
3601 uint64_t txg = dmu_tx_get_txg(tx);
3602 spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
3603
3604 ASSERT(MUTEX_HELD(&msp->ms_lock));
3605 ASSERT(msp->ms_loaded);
3606 ASSERT(msp->ms_sm != NULL);
3607
3608 /*
3609 * In order to condense the space map, we need to change it so it
3610 * only describes which segments are currently allocated and free.
3611 *
3612 * All the current free space resides in the ms_allocatable, all
3613 * the ms_defer trees, and all the ms_allocating trees. We ignore
3614 * ms_freed because it is empty because we're in sync pass 1. We
3615 * ignore ms_freeing because these changes are not yet reflected
3616 * in the spacemap (they will be written later this txg).
3617 *
3618 * So to truncate the space map to represent all the entries of
3619 * previous TXGs we do the following:
3620 *
3621 * 1] We create a range tree (condense tree) that is 100% empty.
3622 * 2] We add to it all segments found in the ms_defer trees
3623 * as those segments are marked as free in the original space
3624 * map. We do the same with the ms_allocating trees for the same
3625 * reason. Adding these segments should be a relatively
3626 * inexpensive operation since we expect these trees to have a
3627 * small number of nodes.
3628 * 3] We vacate any unflushed allocs, since they are not frees we
3629 * need to add to the condense tree. Then we vacate any
3630 * unflushed frees as they should already be part of ms_allocatable.
3631 * 4] At this point, we would ideally like to add all segments
3632 * in the ms_allocatable tree from the condense tree. This way
3633 * we would write all the entries of the condense tree as the
3634 * condensed space map, which would only contain freed
3635 * segments with everything else assumed to be allocated.
3636 *
3637 * Doing so can be prohibitively expensive as ms_allocatable can
3638 * be large, and therefore computationally expensive to add to
3639 * the condense_tree. Instead we first sync out an entry marking
3640 * everything as allocated, then the condense_tree and then the
3641 * ms_allocatable, in the condensed space map. While this is not
3642 * optimal, it is typically close to optimal and more importantly
3643 * much cheaper to compute.
3644 *
3645 * 5] Finally, as both of the unflushed trees were written to our
3646 * new and condensed metaslab space map, we basically flushed
3647 * all the unflushed changes to disk, thus we call
3648 * metaslab_flush_update().
3649 */
3650 ASSERT3U(spa_sync_pass(spa), ==, 1);
3651 ASSERT(range_tree_is_empty(msp->ms_freed)); /* since it is pass 1 */
3652
3653 zfs_dbgmsg("condensing: txg %llu, msp[%llu] %px, vdev id %llu, "
3654 "spa %s, smp size %llu, segments %llu, forcing condense=%s",
3655 (u_longlong_t)txg, (u_longlong_t)msp->ms_id, msp,
3656 (u_longlong_t)msp->ms_group->mg_vd->vdev_id,
3657 spa->spa_name, (u_longlong_t)space_map_length(msp->ms_sm),
3658 (u_longlong_t)range_tree_numsegs(msp->ms_allocatable),
3659 msp->ms_condense_wanted ? "TRUE" : "FALSE");
3660
3661 msp->ms_condense_wanted = B_FALSE;
3662
3663 range_seg_type_t type;
3664 uint64_t shift, start;
3665 type = metaslab_calculate_range_tree_type(msp->ms_group->mg_vd, msp,
3666 &start, &shift);
3667
3668 condense_tree = range_tree_create(NULL, type, NULL, start, shift);
3669
3670 for (int t = 0; t < TXG_DEFER_SIZE; t++) {
3671 range_tree_walk(msp->ms_defer[t],
3672 range_tree_add, condense_tree);
3673 }
3674
3675 for (int t = 0; t < TXG_CONCURRENT_STATES; t++) {
3676 range_tree_walk(msp->ms_allocating[(txg + t) & TXG_MASK],
3677 range_tree_add, condense_tree);
3678 }
3679
3680 ASSERT3U(spa->spa_unflushed_stats.sus_memused, >=,
3681 metaslab_unflushed_changes_memused(msp));
3682 spa->spa_unflushed_stats.sus_memused -=
3683 metaslab_unflushed_changes_memused(msp);
3684 range_tree_vacate(msp->ms_unflushed_allocs, NULL, NULL);
3685 range_tree_vacate(msp->ms_unflushed_frees, NULL, NULL);
3686
3687 /*
3688 * We're about to drop the metaslab's lock thus allowing other
3689 * consumers to change it's content. Set the metaslab's ms_condensing
3690 * flag to ensure that allocations on this metaslab do not occur
3691 * while we're in the middle of committing it to disk. This is only
3692 * critical for ms_allocatable as all other range trees use per TXG
3693 * views of their content.
3694 */
3695 msp->ms_condensing = B_TRUE;
3696
3697 mutex_exit(&msp->ms_lock);
3698 uint64_t object = space_map_object(msp->ms_sm);
3699 space_map_truncate(sm,
3700 spa_feature_is_enabled(spa, SPA_FEATURE_LOG_SPACEMAP) ?
3701 zfs_metaslab_sm_blksz_with_log : zfs_metaslab_sm_blksz_no_log, tx);
3702
3703 /*
3704 * space_map_truncate() may have reallocated the spacemap object.
3705 * If so, update the vdev_ms_array.
3706 */
3707 if (space_map_object(msp->ms_sm) != object) {
3708 object = space_map_object(msp->ms_sm);
3709 dmu_write(spa->spa_meta_objset,
3710 msp->ms_group->mg_vd->vdev_ms_array, sizeof (uint64_t) *
3711 msp->ms_id, sizeof (uint64_t), &object, tx);
3712 }
3713
3714 /*
3715 * Note:
3716 * When the log space map feature is enabled, each space map will
3717 * always have ALLOCS followed by FREES for each sync pass. This is
3718 * typically true even when the log space map feature is disabled,
3719 * except from the case where a metaslab goes through metaslab_sync()
3720 * and gets condensed. In that case the metaslab's space map will have
3721 * ALLOCS followed by FREES (due to condensing) followed by ALLOCS
3722 * followed by FREES (due to space_map_write() in metaslab_sync()) for
3723 * sync pass 1.
3724 */
3725 range_tree_t *tmp_tree = range_tree_create(NULL, type, NULL, start,
3726 shift);
3727 range_tree_add(tmp_tree, msp->ms_start, msp->ms_size);
3728 space_map_write(sm, tmp_tree, SM_ALLOC, SM_NO_VDEVID, tx);
3729 space_map_write(sm, msp->ms_allocatable, SM_FREE, SM_NO_VDEVID, tx);
3730 space_map_write(sm, condense_tree, SM_FREE, SM_NO_VDEVID, tx);
3731
3732 range_tree_vacate(condense_tree, NULL, NULL);
3733 range_tree_destroy(condense_tree);
3734 range_tree_vacate(tmp_tree, NULL, NULL);
3735 range_tree_destroy(tmp_tree);
3736 mutex_enter(&msp->ms_lock);
3737
3738 msp->ms_condensing = B_FALSE;
3739 metaslab_flush_update(msp, tx);
3740 }
3741
3742 static void
3743 metaslab_unflushed_add(metaslab_t *msp, dmu_tx_t *tx)
3744 {
3745 spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
3746 ASSERT(spa_syncing_log_sm(spa) != NULL);
3747 ASSERT(msp->ms_sm != NULL);
3748 ASSERT(range_tree_is_empty(msp->ms_unflushed_allocs));
3749 ASSERT(range_tree_is_empty(msp->ms_unflushed_frees));
3750
3751 mutex_enter(&spa->spa_flushed_ms_lock);
3752 metaslab_set_unflushed_txg(msp, spa_syncing_txg(spa), tx);
3753 metaslab_set_unflushed_dirty(msp, B_TRUE);
3754 avl_add(&spa->spa_metaslabs_by_flushed, msp);
3755 mutex_exit(&spa->spa_flushed_ms_lock);
3756
3757 spa_log_sm_increment_current_mscount(spa);
3758 spa_log_summary_add_flushed_metaslab(spa, B_TRUE);
3759 }
3760
3761 void
3762 metaslab_unflushed_bump(metaslab_t *msp, dmu_tx_t *tx, boolean_t dirty)
3763 {
3764 spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
3765 ASSERT(spa_syncing_log_sm(spa) != NULL);
3766 ASSERT(msp->ms_sm != NULL);
3767 ASSERT(metaslab_unflushed_txg(msp) != 0);
3768 ASSERT3P(avl_find(&spa->spa_metaslabs_by_flushed, msp, NULL), ==, msp);
3769 ASSERT(range_tree_is_empty(msp->ms_unflushed_allocs));
3770 ASSERT(range_tree_is_empty(msp->ms_unflushed_frees));
3771
3772 VERIFY3U(tx->tx_txg, <=, spa_final_dirty_txg(spa));
3773
3774 /* update metaslab's position in our flushing tree */
3775 uint64_t ms_prev_flushed_txg = metaslab_unflushed_txg(msp);
3776 boolean_t ms_prev_flushed_dirty = metaslab_unflushed_dirty(msp);
3777 mutex_enter(&spa->spa_flushed_ms_lock);
3778 avl_remove(&spa->spa_metaslabs_by_flushed, msp);
3779 metaslab_set_unflushed_txg(msp, spa_syncing_txg(spa), tx);
3780 metaslab_set_unflushed_dirty(msp, dirty);
3781 avl_add(&spa->spa_metaslabs_by_flushed, msp);
3782 mutex_exit(&spa->spa_flushed_ms_lock);
3783
3784 /* update metaslab counts of spa_log_sm_t nodes */
3785 spa_log_sm_decrement_mscount(spa, ms_prev_flushed_txg);
3786 spa_log_sm_increment_current_mscount(spa);
3787
3788 /* update log space map summary */
3789 spa_log_summary_decrement_mscount(spa, ms_prev_flushed_txg,
3790 ms_prev_flushed_dirty);
3791 spa_log_summary_add_flushed_metaslab(spa, dirty);
3792
3793 /* cleanup obsolete logs if any */
3794 spa_cleanup_old_sm_logs(spa, tx);
3795 }
3796
3797 /*
3798 * Called when the metaslab has been flushed (its own spacemap now reflects
3799 * all the contents of the pool-wide spacemap log). Updates the metaslab's
3800 * metadata and any pool-wide related log space map data (e.g. summary,
3801 * obsolete logs, etc..) to reflect that.
3802 */
3803 static void
3804 metaslab_flush_update(metaslab_t *msp, dmu_tx_t *tx)
3805 {
3806 metaslab_group_t *mg = msp->ms_group;
3807 spa_t *spa = mg->mg_vd->vdev_spa;
3808
3809 ASSERT(MUTEX_HELD(&msp->ms_lock));
3810
3811 ASSERT3U(spa_sync_pass(spa), ==, 1);
3812
3813 /*
3814 * Just because a metaslab got flushed, that doesn't mean that
3815 * it will pass through metaslab_sync_done(). Thus, make sure to
3816 * update ms_synced_length here in case it doesn't.
3817 */
3818 msp->ms_synced_length = space_map_length(msp->ms_sm);
3819
3820 /*
3821 * We may end up here from metaslab_condense() without the
3822 * feature being active. In that case this is a no-op.
3823 */
3824 if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP) ||
3825 metaslab_unflushed_txg(msp) == 0)
3826 return;
3827
3828 metaslab_unflushed_bump(msp, tx, B_FALSE);
3829 }
3830
3831 boolean_t
3832 metaslab_flush(metaslab_t *msp, dmu_tx_t *tx)
3833 {
3834 spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
3835
3836 ASSERT(MUTEX_HELD(&msp->ms_lock));
3837 ASSERT3U(spa_sync_pass(spa), ==, 1);
3838 ASSERT(spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP));
3839
3840 ASSERT(msp->ms_sm != NULL);
3841 ASSERT(metaslab_unflushed_txg(msp) != 0);
3842 ASSERT(avl_find(&spa->spa_metaslabs_by_flushed, msp, NULL) != NULL);
3843
3844 /*
3845 * There is nothing wrong with flushing the same metaslab twice, as
3846 * this codepath should work on that case. However, the current
3847 * flushing scheme makes sure to avoid this situation as we would be
3848 * making all these calls without having anything meaningful to write
3849 * to disk. We assert this behavior here.
3850 */
3851 ASSERT3U(metaslab_unflushed_txg(msp), <, dmu_tx_get_txg(tx));
3852
3853 /*
3854 * We can not flush while loading, because then we would
3855 * not load the ms_unflushed_{allocs,frees}.
3856 */
3857 if (msp->ms_loading)
3858 return (B_FALSE);
3859
3860 metaslab_verify_space(msp, dmu_tx_get_txg(tx));
3861 metaslab_verify_weight_and_frag(msp);
3862
3863 /*
3864 * Metaslab condensing is effectively flushing. Therefore if the
3865 * metaslab can be condensed we can just condense it instead of
3866 * flushing it.
3867 *
3868 * Note that metaslab_condense() does call metaslab_flush_update()
3869 * so we can just return immediately after condensing. We also
3870 * don't need to care about setting ms_flushing or broadcasting
3871 * ms_flush_cv, even if we temporarily drop the ms_lock in
3872 * metaslab_condense(), as the metaslab is already loaded.
3873 */
3874 if (msp->ms_loaded && metaslab_should_condense(msp)) {
3875 metaslab_group_t *mg = msp->ms_group;
3876
3877 /*
3878 * For all histogram operations below refer to the
3879 * comments of metaslab_sync() where we follow a
3880 * similar procedure.
3881 */
3882 metaslab_group_histogram_verify(mg);
3883 metaslab_class_histogram_verify(mg->mg_class);
3884 metaslab_group_histogram_remove(mg, msp);
3885
3886 metaslab_condense(msp, tx);
3887
3888 space_map_histogram_clear(msp->ms_sm);
3889 space_map_histogram_add(msp->ms_sm, msp->ms_allocatable, tx);
3890 ASSERT(range_tree_is_empty(msp->ms_freed));
3891 for (int t = 0; t < TXG_DEFER_SIZE; t++) {
3892 space_map_histogram_add(msp->ms_sm,
3893 msp->ms_defer[t], tx);
3894 }
3895 metaslab_aux_histograms_update(msp);
3896
3897 metaslab_group_histogram_add(mg, msp);
3898 metaslab_group_histogram_verify(mg);
3899 metaslab_class_histogram_verify(mg->mg_class);
3900
3901 metaslab_verify_space(msp, dmu_tx_get_txg(tx));
3902
3903 /*
3904 * Since we recreated the histogram (and potentially
3905 * the ms_sm too while condensing) ensure that the
3906 * weight is updated too because we are not guaranteed
3907 * that this metaslab is dirty and will go through
3908 * metaslab_sync_done().
3909 */
3910 metaslab_recalculate_weight_and_sort(msp);
3911 return (B_TRUE);
3912 }
3913
3914 msp->ms_flushing = B_TRUE;
3915 uint64_t sm_len_before = space_map_length(msp->ms_sm);
3916
3917 mutex_exit(&msp->ms_lock);
3918 space_map_write(msp->ms_sm, msp->ms_unflushed_allocs, SM_ALLOC,
3919 SM_NO_VDEVID, tx);
3920 space_map_write(msp->ms_sm, msp->ms_unflushed_frees, SM_FREE,
3921 SM_NO_VDEVID, tx);
3922 mutex_enter(&msp->ms_lock);
3923
3924 uint64_t sm_len_after = space_map_length(msp->ms_sm);
3925 if (zfs_flags & ZFS_DEBUG_LOG_SPACEMAP) {
3926 zfs_dbgmsg("flushing: txg %llu, spa %s, vdev_id %llu, "
3927 "ms_id %llu, unflushed_allocs %llu, unflushed_frees %llu, "
3928 "appended %llu bytes", (u_longlong_t)dmu_tx_get_txg(tx),
3929 spa_name(spa),
3930 (u_longlong_t)msp->ms_group->mg_vd->vdev_id,
3931 (u_longlong_t)msp->ms_id,
3932 (u_longlong_t)range_tree_space(msp->ms_unflushed_allocs),
3933 (u_longlong_t)range_tree_space(msp->ms_unflushed_frees),
3934 (u_longlong_t)(sm_len_after - sm_len_before));
3935 }
3936
3937 ASSERT3U(spa->spa_unflushed_stats.sus_memused, >=,
3938 metaslab_unflushed_changes_memused(msp));
3939 spa->spa_unflushed_stats.sus_memused -=
3940 metaslab_unflushed_changes_memused(msp);
3941 range_tree_vacate(msp->ms_unflushed_allocs, NULL, NULL);
3942 range_tree_vacate(msp->ms_unflushed_frees, NULL, NULL);
3943
3944 metaslab_verify_space(msp, dmu_tx_get_txg(tx));
3945 metaslab_verify_weight_and_frag(msp);
3946
3947 metaslab_flush_update(msp, tx);
3948
3949 metaslab_verify_space(msp, dmu_tx_get_txg(tx));
3950 metaslab_verify_weight_and_frag(msp);
3951
3952 msp->ms_flushing = B_FALSE;
3953 cv_broadcast(&msp->ms_flush_cv);
3954 return (B_TRUE);
3955 }
3956
3957 /*
3958 * Write a metaslab to disk in the context of the specified transaction group.
3959 */
3960 void
3961 metaslab_sync(metaslab_t *msp, uint64_t txg)
3962 {
3963 metaslab_group_t *mg = msp->ms_group;
3964 vdev_t *vd = mg->mg_vd;
3965 spa_t *spa = vd->vdev_spa;
3966 objset_t *mos = spa_meta_objset(spa);
3967 range_tree_t *alloctree = msp->ms_allocating[txg & TXG_MASK];
3968 dmu_tx_t *tx;
3969
3970 ASSERT(!vd->vdev_ishole);
3971
3972 /*
3973 * This metaslab has just been added so there's no work to do now.
3974 */
3975 if (msp->ms_new) {
3976 ASSERT0(range_tree_space(alloctree));
3977 ASSERT0(range_tree_space(msp->ms_freeing));
3978 ASSERT0(range_tree_space(msp->ms_freed));
3979 ASSERT0(range_tree_space(msp->ms_checkpointing));
3980 ASSERT0(range_tree_space(msp->ms_trim));
3981 return;
3982 }
3983
3984 /*
3985 * Normally, we don't want to process a metaslab if there are no
3986 * allocations or frees to perform. However, if the metaslab is being
3987 * forced to condense, it's loaded and we're not beyond the final
3988 * dirty txg, we need to let it through. Not condensing beyond the
3989 * final dirty txg prevents an issue where metaslabs that need to be
3990 * condensed but were loaded for other reasons could cause a panic
3991 * here. By only checking the txg in that branch of the conditional,
3992 * we preserve the utility of the VERIFY statements in all other
3993 * cases.
3994 */
3995 if (range_tree_is_empty(alloctree) &&
3996 range_tree_is_empty(msp->ms_freeing) &&
3997 range_tree_is_empty(msp->ms_checkpointing) &&
3998 !(msp->ms_loaded && msp->ms_condense_wanted &&
3999 txg <= spa_final_dirty_txg(spa)))
4000 return;
4001
4002
4003 VERIFY3U(txg, <=, spa_final_dirty_txg(spa));
4004
4005 /*
4006 * The only state that can actually be changing concurrently
4007 * with metaslab_sync() is the metaslab's ms_allocatable. No
4008 * other thread can be modifying this txg's alloc, freeing,
4009 * freed, or space_map_phys_t. We drop ms_lock whenever we
4010 * could call into the DMU, because the DMU can call down to
4011 * us (e.g. via zio_free()) at any time.
4012 *
4013 * The spa_vdev_remove_thread() can be reading metaslab state
4014 * concurrently, and it is locked out by the ms_sync_lock.
4015 * Note that the ms_lock is insufficient for this, because it
4016 * is dropped by space_map_write().
4017 */
4018 tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
4019
4020 /*
4021 * Generate a log space map if one doesn't exist already.
4022 */
4023 spa_generate_syncing_log_sm(spa, tx);
4024
4025 if (msp->ms_sm == NULL) {
4026 uint64_t new_object = space_map_alloc(mos,
4027 spa_feature_is_enabled(spa, SPA_FEATURE_LOG_SPACEMAP) ?
4028 zfs_metaslab_sm_blksz_with_log :
4029 zfs_metaslab_sm_blksz_no_log, tx);
4030 VERIFY3U(new_object, !=, 0);
4031
4032 dmu_write(mos, vd->vdev_ms_array, sizeof (uint64_t) *
4033 msp->ms_id, sizeof (uint64_t), &new_object, tx);
4034
4035 VERIFY0(space_map_open(&msp->ms_sm, mos, new_object,
4036 msp->ms_start, msp->ms_size, vd->vdev_ashift));
4037 ASSERT(msp->ms_sm != NULL);
4038
4039 ASSERT(range_tree_is_empty(msp->ms_unflushed_allocs));
4040 ASSERT(range_tree_is_empty(msp->ms_unflushed_frees));
4041 ASSERT0(metaslab_allocated_space(msp));
4042 }
4043
4044 if (!range_tree_is_empty(msp->ms_checkpointing) &&
4045 vd->vdev_checkpoint_sm == NULL) {
4046 ASSERT(spa_has_checkpoint(spa));
4047
4048 uint64_t new_object = space_map_alloc(mos,
4049 zfs_vdev_standard_sm_blksz, tx);
4050 VERIFY3U(new_object, !=, 0);
4051
4052 VERIFY0(space_map_open(&vd->vdev_checkpoint_sm,
4053 mos, new_object, 0, vd->vdev_asize, vd->vdev_ashift));
4054 ASSERT3P(vd->vdev_checkpoint_sm, !=, NULL);
4055
4056 /*
4057 * We save the space map object as an entry in vdev_top_zap
4058 * so it can be retrieved when the pool is reopened after an
4059 * export or through zdb.
4060 */
4061 VERIFY0(zap_add(vd->vdev_spa->spa_meta_objset,
4062 vd->vdev_top_zap, VDEV_TOP_ZAP_POOL_CHECKPOINT_SM,
4063 sizeof (new_object), 1, &new_object, tx));
4064 }
4065
4066 mutex_enter(&msp->ms_sync_lock);
4067 mutex_enter(&msp->ms_lock);
4068
4069 /*
4070 * Note: metaslab_condense() clears the space map's histogram.
4071 * Therefore we must verify and remove this histogram before
4072 * condensing.
4073 */
4074 metaslab_group_histogram_verify(mg);
4075 metaslab_class_histogram_verify(mg->mg_class);
4076 metaslab_group_histogram_remove(mg, msp);
4077
4078 if (spa->spa_sync_pass == 1 && msp->ms_loaded &&
4079 metaslab_should_condense(msp))
4080 metaslab_condense(msp, tx);
4081
4082 /*
4083 * We'll be going to disk to sync our space accounting, thus we
4084 * drop the ms_lock during that time so allocations coming from
4085 * open-context (ZIL) for future TXGs do not block.
4086 */
4087 mutex_exit(&msp->ms_lock);
4088 space_map_t *log_sm = spa_syncing_log_sm(spa);
4089 if (log_sm != NULL) {
4090 ASSERT(spa_feature_is_enabled(spa, SPA_FEATURE_LOG_SPACEMAP));
4091 if (metaslab_unflushed_txg(msp) == 0)
4092 metaslab_unflushed_add(msp, tx);
4093 else if (!metaslab_unflushed_dirty(msp))
4094 metaslab_unflushed_bump(msp, tx, B_TRUE);
4095
4096 space_map_write(log_sm, alloctree, SM_ALLOC,
4097 vd->vdev_id, tx);
4098 space_map_write(log_sm, msp->ms_freeing, SM_FREE,
4099 vd->vdev_id, tx);
4100 mutex_enter(&msp->ms_lock);
4101
4102 ASSERT3U(spa->spa_unflushed_stats.sus_memused, >=,
4103 metaslab_unflushed_changes_memused(msp));
4104 spa->spa_unflushed_stats.sus_memused -=
4105 metaslab_unflushed_changes_memused(msp);
4106 range_tree_remove_xor_add(alloctree,
4107 msp->ms_unflushed_frees, msp->ms_unflushed_allocs);
4108 range_tree_remove_xor_add(msp->ms_freeing,
4109 msp->ms_unflushed_allocs, msp->ms_unflushed_frees);
4110 spa->spa_unflushed_stats.sus_memused +=
4111 metaslab_unflushed_changes_memused(msp);
4112 } else {
4113 ASSERT(!spa_feature_is_enabled(spa, SPA_FEATURE_LOG_SPACEMAP));
4114
4115 space_map_write(msp->ms_sm, alloctree, SM_ALLOC,
4116 SM_NO_VDEVID, tx);
4117 space_map_write(msp->ms_sm, msp->ms_freeing, SM_FREE,
4118 SM_NO_VDEVID, tx);
4119 mutex_enter(&msp->ms_lock);
4120 }
4121
4122 msp->ms_allocated_space += range_tree_space(alloctree);
4123 ASSERT3U(msp->ms_allocated_space, >=,
4124 range_tree_space(msp->ms_freeing));
4125 msp->ms_allocated_space -= range_tree_space(msp->ms_freeing);
4126
4127 if (!range_tree_is_empty(msp->ms_checkpointing)) {
4128 ASSERT(spa_has_checkpoint(spa));
4129 ASSERT3P(vd->vdev_checkpoint_sm, !=, NULL);
4130
4131 /*
4132 * Since we are doing writes to disk and the ms_checkpointing
4133 * tree won't be changing during that time, we drop the
4134 * ms_lock while writing to the checkpoint space map, for the
4135 * same reason mentioned above.
4136 */
4137 mutex_exit(&msp->ms_lock);
4138 space_map_write(vd->vdev_checkpoint_sm,
4139 msp->ms_checkpointing, SM_FREE, SM_NO_VDEVID, tx);
4140 mutex_enter(&msp->ms_lock);
4141
4142 spa->spa_checkpoint_info.sci_dspace +=
4143 range_tree_space(msp->ms_checkpointing);
4144 vd->vdev_stat.vs_checkpoint_space +=
4145 range_tree_space(msp->ms_checkpointing);
4146 ASSERT3U(vd->vdev_stat.vs_checkpoint_space, ==,
4147 -space_map_allocated(vd->vdev_checkpoint_sm));
4148
4149 range_tree_vacate(msp->ms_checkpointing, NULL, NULL);
4150 }
4151
4152 if (msp->ms_loaded) {
4153 /*
4154 * When the space map is loaded, we have an accurate
4155 * histogram in the range tree. This gives us an opportunity
4156 * to bring the space map's histogram up-to-date so we clear
4157 * it first before updating it.
4158 */
4159 space_map_histogram_clear(msp->ms_sm);
4160 space_map_histogram_add(msp->ms_sm, msp->ms_allocatable, tx);
4161
4162 /*
4163 * Since we've cleared the histogram we need to add back
4164 * any free space that has already been processed, plus
4165 * any deferred space. This allows the on-disk histogram
4166 * to accurately reflect all free space even if some space
4167 * is not yet available for allocation (i.e. deferred).
4168 */
4169 space_map_histogram_add(msp->ms_sm, msp->ms_freed, tx);
4170
4171 /*
4172 * Add back any deferred free space that has not been
4173 * added back into the in-core free tree yet. This will
4174 * ensure that we don't end up with a space map histogram
4175 * that is completely empty unless the metaslab is fully
4176 * allocated.
4177 */
4178 for (int t = 0; t < TXG_DEFER_SIZE; t++) {
4179 space_map_histogram_add(msp->ms_sm,
4180 msp->ms_defer[t], tx);
4181 }
4182 }
4183
4184 /*
4185 * Always add the free space from this sync pass to the space
4186 * map histogram. We want to make sure that the on-disk histogram
4187 * accounts for all free space. If the space map is not loaded,
4188 * then we will lose some accuracy but will correct it the next
4189 * time we load the space map.
4190 */
4191 space_map_histogram_add(msp->ms_sm, msp->ms_freeing, tx);
4192 metaslab_aux_histograms_update(msp);
4193
4194 metaslab_group_histogram_add(mg, msp);
4195 metaslab_group_histogram_verify(mg);
4196 metaslab_class_histogram_verify(mg->mg_class);
4197
4198 /*
4199 * For sync pass 1, we avoid traversing this txg's free range tree
4200 * and instead will just swap the pointers for freeing and freed.
4201 * We can safely do this since the freed_tree is guaranteed to be
4202 * empty on the initial pass.
4203 *
4204 * Keep in mind that even if we are currently using a log spacemap
4205 * we want current frees to end up in the ms_allocatable (but not
4206 * get appended to the ms_sm) so their ranges can be reused as usual.
4207 */
4208 if (spa_sync_pass(spa) == 1) {
4209 range_tree_swap(&msp->ms_freeing, &msp->ms_freed);
4210 ASSERT0(msp->ms_allocated_this_txg);
4211 } else {
4212 range_tree_vacate(msp->ms_freeing,
4213 range_tree_add, msp->ms_freed);
4214 }
4215 msp->ms_allocated_this_txg += range_tree_space(alloctree);
4216 range_tree_vacate(alloctree, NULL, NULL);
4217
4218 ASSERT0(range_tree_space(msp->ms_allocating[txg & TXG_MASK]));
4219 ASSERT0(range_tree_space(msp->ms_allocating[TXG_CLEAN(txg)
4220 & TXG_MASK]));
4221 ASSERT0(range_tree_space(msp->ms_freeing));
4222 ASSERT0(range_tree_space(msp->ms_checkpointing));
4223
4224 mutex_exit(&msp->ms_lock);
4225
4226 /*
4227 * Verify that the space map object ID has been recorded in the
4228 * vdev_ms_array.
4229 */
4230 uint64_t object;
4231 VERIFY0(dmu_read(mos, vd->vdev_ms_array,
4232 msp->ms_id * sizeof (uint64_t), sizeof (uint64_t), &object, 0));
4233 VERIFY3U(object, ==, space_map_object(msp->ms_sm));
4234
4235 mutex_exit(&msp->ms_sync_lock);
4236 dmu_tx_commit(tx);
4237 }
4238
4239 static void
4240 metaslab_evict(metaslab_t *msp, uint64_t txg)
4241 {
4242 if (!msp->ms_loaded || msp->ms_disabled != 0)
4243 return;
4244
4245 for (int t = 1; t < TXG_CONCURRENT_STATES; t++) {
4246 VERIFY0(range_tree_space(
4247 msp->ms_allocating[(txg + t) & TXG_MASK]));
4248 }
4249 if (msp->ms_allocator != -1)
4250 metaslab_passivate(msp, msp->ms_weight & ~METASLAB_ACTIVE_MASK);
4251
4252 if (!metaslab_debug_unload)
4253 metaslab_unload(msp);
4254 }
4255
4256 /*
4257 * Called after a transaction group has completely synced to mark
4258 * all of the metaslab's free space as usable.
4259 */
4260 void
4261 metaslab_sync_done(metaslab_t *msp, uint64_t txg)
4262 {
4263 metaslab_group_t *mg = msp->ms_group;
4264 vdev_t *vd = mg->mg_vd;
4265 spa_t *spa = vd->vdev_spa;
4266 range_tree_t **defer_tree;
4267 int64_t alloc_delta, defer_delta;
4268 boolean_t defer_allowed = B_TRUE;
4269
4270 ASSERT(!vd->vdev_ishole);
4271
4272 mutex_enter(&msp->ms_lock);
4273
4274 if (msp->ms_new) {
4275 /* this is a new metaslab, add its capacity to the vdev */
4276 metaslab_space_update(vd, mg->mg_class, 0, 0, msp->ms_size);
4277
4278 /* there should be no allocations nor frees at this point */
4279 VERIFY0(msp->ms_allocated_this_txg);
4280 VERIFY0(range_tree_space(msp->ms_freed));
4281 }
4282
4283 ASSERT0(range_tree_space(msp->ms_freeing));
4284 ASSERT0(range_tree_space(msp->ms_checkpointing));
4285
4286 defer_tree = &msp->ms_defer[txg % TXG_DEFER_SIZE];
4287
4288 uint64_t free_space = metaslab_class_get_space(spa_normal_class(spa)) -
4289 metaslab_class_get_alloc(spa_normal_class(spa));
4290 if (free_space <= spa_get_slop_space(spa) || vd->vdev_removing) {
4291 defer_allowed = B_FALSE;
4292 }
4293
4294 defer_delta = 0;
4295 alloc_delta = msp->ms_allocated_this_txg -
4296 range_tree_space(msp->ms_freed);
4297
4298 if (defer_allowed) {
4299 defer_delta = range_tree_space(msp->ms_freed) -
4300 range_tree_space(*defer_tree);
4301 } else {
4302 defer_delta -= range_tree_space(*defer_tree);
4303 }
4304 metaslab_space_update(vd, mg->mg_class, alloc_delta + defer_delta,
4305 defer_delta, 0);
4306
4307 if (spa_syncing_log_sm(spa) == NULL) {
4308 /*
4309 * If there's a metaslab_load() in progress and we don't have
4310 * a log space map, it means that we probably wrote to the
4311 * metaslab's space map. If this is the case, we need to
4312 * make sure that we wait for the load to complete so that we
4313 * have a consistent view at the in-core side of the metaslab.
4314 */
4315 metaslab_load_wait(msp);
4316 } else {
4317 ASSERT(spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP));
4318 }
4319
4320 /*
4321 * When auto-trimming is enabled, free ranges which are added to
4322 * ms_allocatable are also be added to ms_trim. The ms_trim tree is
4323 * periodically consumed by the vdev_autotrim_thread() which issues
4324 * trims for all ranges and then vacates the tree. The ms_trim tree
4325 * can be discarded at any time with the sole consequence of recent
4326 * frees not being trimmed.
4327 */
4328 if (spa_get_autotrim(spa) == SPA_AUTOTRIM_ON) {
4329 range_tree_walk(*defer_tree, range_tree_add, msp->ms_trim);
4330 if (!defer_allowed) {
4331 range_tree_walk(msp->ms_freed, range_tree_add,
4332 msp->ms_trim);
4333 }
4334 } else {
4335 range_tree_vacate(msp->ms_trim, NULL, NULL);
4336 }
4337
4338 /*
4339 * Move the frees from the defer_tree back to the free
4340 * range tree (if it's loaded). Swap the freed_tree and
4341 * the defer_tree -- this is safe to do because we've
4342 * just emptied out the defer_tree.
4343 */
4344 range_tree_vacate(*defer_tree,
4345 msp->ms_loaded ? range_tree_add : NULL, msp->ms_allocatable);
4346 if (defer_allowed) {
4347 range_tree_swap(&msp->ms_freed, defer_tree);
4348 } else {
4349 range_tree_vacate(msp->ms_freed,
4350 msp->ms_loaded ? range_tree_add : NULL,
4351 msp->ms_allocatable);
4352 }
4353
4354 msp->ms_synced_length = space_map_length(msp->ms_sm);
4355
4356 msp->ms_deferspace += defer_delta;
4357 ASSERT3S(msp->ms_deferspace, >=, 0);
4358 ASSERT3S(msp->ms_deferspace, <=, msp->ms_size);
4359 if (msp->ms_deferspace != 0) {
4360 /*
4361 * Keep syncing this metaslab until all deferred frees
4362 * are back in circulation.
4363 */
4364 vdev_dirty(vd, VDD_METASLAB, msp, txg + 1);
4365 }
4366 metaslab_aux_histograms_update_done(msp, defer_allowed);
4367
4368 if (msp->ms_new) {
4369 msp->ms_new = B_FALSE;
4370 mutex_enter(&mg->mg_lock);
4371 mg->mg_ms_ready++;
4372 mutex_exit(&mg->mg_lock);
4373 }
4374
4375 /*
4376 * Re-sort metaslab within its group now that we've adjusted
4377 * its allocatable space.
4378 */
4379 metaslab_recalculate_weight_and_sort(msp);
4380
4381 ASSERT0(range_tree_space(msp->ms_allocating[txg & TXG_MASK]));
4382 ASSERT0(range_tree_space(msp->ms_freeing));
4383 ASSERT0(range_tree_space(msp->ms_freed));
4384 ASSERT0(range_tree_space(msp->ms_checkpointing));
4385 msp->ms_allocating_total -= msp->ms_allocated_this_txg;
4386 msp->ms_allocated_this_txg = 0;
4387 mutex_exit(&msp->ms_lock);
4388 }
4389
4390 void
4391 metaslab_sync_reassess(metaslab_group_t *mg)
4392 {
4393 spa_t *spa = mg->mg_class->mc_spa;
4394
4395 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER);
4396 metaslab_group_alloc_update(mg);
4397 mg->mg_fragmentation = metaslab_group_fragmentation(mg);
4398
4399 /*
4400 * Preload the next potential metaslabs but only on active
4401 * metaslab groups. We can get into a state where the metaslab
4402 * is no longer active since we dirty metaslabs as we remove a
4403 * a device, thus potentially making the metaslab group eligible
4404 * for preloading.
4405 */
4406 if (mg->mg_activation_count > 0) {
4407 metaslab_group_preload(mg);
4408 }
4409 spa_config_exit(spa, SCL_ALLOC, FTAG);
4410 }
4411
4412 /*
4413 * When writing a ditto block (i.e. more than one DVA for a given BP) on
4414 * the same vdev as an existing DVA of this BP, then try to allocate it
4415 * on a different metaslab than existing DVAs (i.e. a unique metaslab).
4416 */
4417 static boolean_t
4418 metaslab_is_unique(metaslab_t *msp, dva_t *dva)
4419 {
4420 uint64_t dva_ms_id;
4421
4422 if (DVA_GET_ASIZE(dva) == 0)
4423 return (B_TRUE);
4424
4425 if (msp->ms_group->mg_vd->vdev_id != DVA_GET_VDEV(dva))
4426 return (B_TRUE);
4427
4428 dva_ms_id = DVA_GET_OFFSET(dva) >> msp->ms_group->mg_vd->vdev_ms_shift;
4429
4430 return (msp->ms_id != dva_ms_id);
4431 }
4432
4433 /*
4434 * ==========================================================================
4435 * Metaslab allocation tracing facility
4436 * ==========================================================================
4437 */
4438
4439 /*
4440 * Add an allocation trace element to the allocation tracing list.
4441 */
4442 static void
4443 metaslab_trace_add(zio_alloc_list_t *zal, metaslab_group_t *mg,
4444 metaslab_t *msp, uint64_t psize, uint32_t dva_id, uint64_t offset,
4445 int allocator)
4446 {
4447 metaslab_alloc_trace_t *mat;
4448
4449 if (!metaslab_trace_enabled)
4450 return;
4451
4452 /*
4453 * When the tracing list reaches its maximum we remove
4454 * the second element in the list before adding a new one.
4455 * By removing the second element we preserve the original
4456 * entry as a clue to what allocations steps have already been
4457 * performed.
4458 */
4459 if (zal->zal_size == metaslab_trace_max_entries) {
4460 metaslab_alloc_trace_t *mat_next;
4461 #ifdef ZFS_DEBUG
4462 panic("too many entries in allocation list");
4463 #endif
4464 METASLABSTAT_BUMP(metaslabstat_trace_over_limit);
4465 zal->zal_size--;
4466 mat_next = list_next(&zal->zal_list, list_head(&zal->zal_list));
4467 list_remove(&zal->zal_list, mat_next);
4468 kmem_cache_free(metaslab_alloc_trace_cache, mat_next);
4469 }
4470
4471 mat = kmem_cache_alloc(metaslab_alloc_trace_cache, KM_SLEEP);
4472 list_link_init(&mat->mat_list_node);
4473 mat->mat_mg = mg;
4474 mat->mat_msp = msp;
4475 mat->mat_size = psize;
4476 mat->mat_dva_id = dva_id;
4477 mat->mat_offset = offset;
4478 mat->mat_weight = 0;
4479 mat->mat_allocator = allocator;
4480
4481 if (msp != NULL)
4482 mat->mat_weight = msp->ms_weight;
4483
4484 /*
4485 * The list is part of the zio so locking is not required. Only
4486 * a single thread will perform allocations for a given zio.
4487 */
4488 list_insert_tail(&zal->zal_list, mat);
4489 zal->zal_size++;
4490
4491 ASSERT3U(zal->zal_size, <=, metaslab_trace_max_entries);
4492 }
4493
4494 void
4495 metaslab_trace_init(zio_alloc_list_t *zal)
4496 {
4497 list_create(&zal->zal_list, sizeof (metaslab_alloc_trace_t),
4498 offsetof(metaslab_alloc_trace_t, mat_list_node));
4499 zal->zal_size = 0;
4500 }
4501
4502 void
4503 metaslab_trace_fini(zio_alloc_list_t *zal)
4504 {
4505 metaslab_alloc_trace_t *mat;
4506
4507 while ((mat = list_remove_head(&zal->zal_list)) != NULL)
4508 kmem_cache_free(metaslab_alloc_trace_cache, mat);
4509 list_destroy(&zal->zal_list);
4510 zal->zal_size = 0;
4511 }
4512
4513 /*
4514 * ==========================================================================
4515 * Metaslab block operations
4516 * ==========================================================================
4517 */
4518
4519 static void
4520 metaslab_group_alloc_increment(spa_t *spa, uint64_t vdev, const void *tag,
4521 int flags, int allocator)
4522 {
4523 if (!(flags & METASLAB_ASYNC_ALLOC) ||
4524 (flags & METASLAB_DONT_THROTTLE))
4525 return;
4526
4527 metaslab_group_t *mg = vdev_lookup_top(spa, vdev)->vdev_mg;
4528 if (!mg->mg_class->mc_alloc_throttle_enabled)
4529 return;
4530
4531 metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator];
4532 (void) zfs_refcount_add(&mga->mga_alloc_queue_depth, tag);
4533 }
4534
4535 static void
4536 metaslab_group_increment_qdepth(metaslab_group_t *mg, int allocator)
4537 {
4538 metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator];
4539 metaslab_class_allocator_t *mca =
4540 &mg->mg_class->mc_allocator[allocator];
4541 uint64_t max = mg->mg_max_alloc_queue_depth;
4542 uint64_t cur = mga->mga_cur_max_alloc_queue_depth;
4543 while (cur < max) {
4544 if (atomic_cas_64(&mga->mga_cur_max_alloc_queue_depth,
4545 cur, cur + 1) == cur) {
4546 atomic_inc_64(&mca->mca_alloc_max_slots);
4547 return;
4548 }
4549 cur = mga->mga_cur_max_alloc_queue_depth;
4550 }
4551 }
4552
4553 void
4554 metaslab_group_alloc_decrement(spa_t *spa, uint64_t vdev, const void *tag,
4555 int flags, int allocator, boolean_t io_complete)
4556 {
4557 if (!(flags & METASLAB_ASYNC_ALLOC) ||
4558 (flags & METASLAB_DONT_THROTTLE))
4559 return;
4560
4561 metaslab_group_t *mg = vdev_lookup_top(spa, vdev)->vdev_mg;
4562 if (!mg->mg_class->mc_alloc_throttle_enabled)
4563 return;
4564
4565 metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator];
4566 (void) zfs_refcount_remove(&mga->mga_alloc_queue_depth, tag);
4567 if (io_complete)
4568 metaslab_group_increment_qdepth(mg, allocator);
4569 }
4570
4571 void
4572 metaslab_group_alloc_verify(spa_t *spa, const blkptr_t *bp, const void *tag,
4573 int allocator)
4574 {
4575 #ifdef ZFS_DEBUG
4576 const dva_t *dva = bp->blk_dva;
4577 int ndvas = BP_GET_NDVAS(bp);
4578
4579 for (int d = 0; d < ndvas; d++) {
4580 uint64_t vdev = DVA_GET_VDEV(&dva[d]);
4581 metaslab_group_t *mg = vdev_lookup_top(spa, vdev)->vdev_mg;
4582 metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator];
4583 VERIFY(zfs_refcount_not_held(&mga->mga_alloc_queue_depth, tag));
4584 }
4585 #endif
4586 }
4587
4588 static uint64_t
4589 metaslab_block_alloc(metaslab_t *msp, uint64_t size, uint64_t txg)
4590 {
4591 uint64_t start;
4592 range_tree_t *rt = msp->ms_allocatable;
4593 metaslab_class_t *mc = msp->ms_group->mg_class;
4594
4595 ASSERT(MUTEX_HELD(&msp->ms_lock));
4596 VERIFY(!msp->ms_condensing);
4597 VERIFY0(msp->ms_disabled);
4598
4599 start = mc->mc_ops->msop_alloc(msp, size);
4600 if (start != -1ULL) {
4601 metaslab_group_t *mg = msp->ms_group;
4602 vdev_t *vd = mg->mg_vd;
4603
4604 VERIFY0(P2PHASE(start, 1ULL << vd->vdev_ashift));
4605 VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift));
4606 VERIFY3U(range_tree_space(rt) - size, <=, msp->ms_size);
4607 range_tree_remove(rt, start, size);
4608 range_tree_clear(msp->ms_trim, start, size);
4609
4610 if (range_tree_is_empty(msp->ms_allocating[txg & TXG_MASK]))
4611 vdev_dirty(mg->mg_vd, VDD_METASLAB, msp, txg);
4612
4613 range_tree_add(msp->ms_allocating[txg & TXG_MASK], start, size);
4614 msp->ms_allocating_total += size;
4615
4616 /* Track the last successful allocation */
4617 msp->ms_alloc_txg = txg;
4618 metaslab_verify_space(msp, txg);
4619 }
4620
4621 /*
4622 * Now that we've attempted the allocation we need to update the
4623 * metaslab's maximum block size since it may have changed.
4624 */
4625 msp->ms_max_size = metaslab_largest_allocatable(msp);
4626 return (start);
4627 }
4628
4629 /*
4630 * Find the metaslab with the highest weight that is less than what we've
4631 * already tried. In the common case, this means that we will examine each
4632 * metaslab at most once. Note that concurrent callers could reorder metaslabs
4633 * by activation/passivation once we have dropped the mg_lock. If a metaslab is
4634 * activated by another thread, and we fail to allocate from the metaslab we
4635 * have selected, we may not try the newly-activated metaslab, and instead
4636 * activate another metaslab. This is not optimal, but generally does not cause
4637 * any problems (a possible exception being if every metaslab is completely full
4638 * except for the newly-activated metaslab which we fail to examine).
4639 */
4640 static metaslab_t *
4641 find_valid_metaslab(metaslab_group_t *mg, uint64_t activation_weight,
4642 dva_t *dva, int d, boolean_t want_unique, uint64_t asize, int allocator,
4643 boolean_t try_hard, zio_alloc_list_t *zal, metaslab_t *search,
4644 boolean_t *was_active)
4645 {
4646 avl_index_t idx;
4647 avl_tree_t *t = &mg->mg_metaslab_tree;
4648 metaslab_t *msp = avl_find(t, search, &idx);
4649 if (msp == NULL)
4650 msp = avl_nearest(t, idx, AVL_AFTER);
4651
4652 uint_t tries = 0;
4653 for (; msp != NULL; msp = AVL_NEXT(t, msp)) {
4654 int i;
4655
4656 if (!try_hard && tries > zfs_metaslab_find_max_tries) {
4657 METASLABSTAT_BUMP(metaslabstat_too_many_tries);
4658 return (NULL);
4659 }
4660 tries++;
4661
4662 if (!metaslab_should_allocate(msp, asize, try_hard)) {
4663 metaslab_trace_add(zal, mg, msp, asize, d,
4664 TRACE_TOO_SMALL, allocator);
4665 continue;
4666 }
4667
4668 /*
4669 * If the selected metaslab is condensing or disabled,
4670 * skip it.
4671 */
4672 if (msp->ms_condensing || msp->ms_disabled > 0)
4673 continue;
4674
4675 *was_active = msp->ms_allocator != -1;
4676 /*
4677 * If we're activating as primary, this is our first allocation
4678 * from this disk, so we don't need to check how close we are.
4679 * If the metaslab under consideration was already active,
4680 * we're getting desperate enough to steal another allocator's
4681 * metaslab, so we still don't care about distances.
4682 */
4683 if (activation_weight == METASLAB_WEIGHT_PRIMARY || *was_active)
4684 break;
4685
4686 for (i = 0; i < d; i++) {
4687 if (want_unique &&
4688 !metaslab_is_unique(msp, &dva[i]))
4689 break; /* try another metaslab */
4690 }
4691 if (i == d)
4692 break;
4693 }
4694
4695 if (msp != NULL) {
4696 search->ms_weight = msp->ms_weight;
4697 search->ms_start = msp->ms_start + 1;
4698 search->ms_allocator = msp->ms_allocator;
4699 search->ms_primary = msp->ms_primary;
4700 }
4701 return (msp);
4702 }
4703
4704 static void
4705 metaslab_active_mask_verify(metaslab_t *msp)
4706 {
4707 ASSERT(MUTEX_HELD(&msp->ms_lock));
4708
4709 if ((zfs_flags & ZFS_DEBUG_METASLAB_VERIFY) == 0)
4710 return;
4711
4712 if ((msp->ms_weight & METASLAB_ACTIVE_MASK) == 0)
4713 return;
4714
4715 if (msp->ms_weight & METASLAB_WEIGHT_PRIMARY) {
4716 VERIFY0(msp->ms_weight & METASLAB_WEIGHT_SECONDARY);
4717 VERIFY0(msp->ms_weight & METASLAB_WEIGHT_CLAIM);
4718 VERIFY3S(msp->ms_allocator, !=, -1);
4719 VERIFY(msp->ms_primary);
4720 return;
4721 }
4722
4723 if (msp->ms_weight & METASLAB_WEIGHT_SECONDARY) {
4724 VERIFY0(msp->ms_weight & METASLAB_WEIGHT_PRIMARY);
4725 VERIFY0(msp->ms_weight & METASLAB_WEIGHT_CLAIM);
4726 VERIFY3S(msp->ms_allocator, !=, -1);
4727 VERIFY(!msp->ms_primary);
4728 return;
4729 }
4730
4731 if (msp->ms_weight & METASLAB_WEIGHT_CLAIM) {
4732 VERIFY0(msp->ms_weight & METASLAB_WEIGHT_PRIMARY);
4733 VERIFY0(msp->ms_weight & METASLAB_WEIGHT_SECONDARY);
4734 VERIFY3S(msp->ms_allocator, ==, -1);
4735 return;
4736 }
4737 }
4738
4739 static uint64_t
4740 metaslab_group_alloc_normal(metaslab_group_t *mg, zio_alloc_list_t *zal,
4741 uint64_t asize, uint64_t txg, boolean_t want_unique, dva_t *dva, int d,
4742 int allocator, boolean_t try_hard)
4743 {
4744 metaslab_t *msp = NULL;
4745 uint64_t offset = -1ULL;
4746
4747 uint64_t activation_weight = METASLAB_WEIGHT_PRIMARY;
4748 for (int i = 0; i < d; i++) {
4749 if (activation_weight == METASLAB_WEIGHT_PRIMARY &&
4750 DVA_GET_VDEV(&dva[i]) == mg->mg_vd->vdev_id) {
4751 activation_weight = METASLAB_WEIGHT_SECONDARY;
4752 } else if (activation_weight == METASLAB_WEIGHT_SECONDARY &&
4753 DVA_GET_VDEV(&dva[i]) == mg->mg_vd->vdev_id) {
4754 activation_weight = METASLAB_WEIGHT_CLAIM;
4755 break;
4756 }
4757 }
4758
4759 /*
4760 * If we don't have enough metaslabs active to fill the entire array, we
4761 * just use the 0th slot.
4762 */
4763 if (mg->mg_ms_ready < mg->mg_allocators * 3)
4764 allocator = 0;
4765 metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator];
4766
4767 ASSERT3U(mg->mg_vd->vdev_ms_count, >=, 2);
4768
4769 metaslab_t *search = kmem_alloc(sizeof (*search), KM_SLEEP);
4770 search->ms_weight = UINT64_MAX;
4771 search->ms_start = 0;
4772 /*
4773 * At the end of the metaslab tree are the already-active metaslabs,
4774 * first the primaries, then the secondaries. When we resume searching
4775 * through the tree, we need to consider ms_allocator and ms_primary so
4776 * we start in the location right after where we left off, and don't
4777 * accidentally loop forever considering the same metaslabs.
4778 */
4779 search->ms_allocator = -1;
4780 search->ms_primary = B_TRUE;
4781 for (;;) {
4782 boolean_t was_active = B_FALSE;
4783
4784 mutex_enter(&mg->mg_lock);
4785
4786 if (activation_weight == METASLAB_WEIGHT_PRIMARY &&
4787 mga->mga_primary != NULL) {
4788 msp = mga->mga_primary;
4789
4790 /*
4791 * Even though we don't hold the ms_lock for the
4792 * primary metaslab, those fields should not
4793 * change while we hold the mg_lock. Thus it is
4794 * safe to make assertions on them.
4795 */
4796 ASSERT(msp->ms_primary);
4797 ASSERT3S(msp->ms_allocator, ==, allocator);
4798 ASSERT(msp->ms_loaded);
4799
4800 was_active = B_TRUE;
4801 ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK);
4802 } else if (activation_weight == METASLAB_WEIGHT_SECONDARY &&
4803 mga->mga_secondary != NULL) {
4804 msp = mga->mga_secondary;
4805
4806 /*
4807 * See comment above about the similar assertions
4808 * for the primary metaslab.
4809 */
4810 ASSERT(!msp->ms_primary);
4811 ASSERT3S(msp->ms_allocator, ==, allocator);
4812 ASSERT(msp->ms_loaded);
4813
4814 was_active = B_TRUE;
4815 ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK);
4816 } else {
4817 msp = find_valid_metaslab(mg, activation_weight, dva, d,
4818 want_unique, asize, allocator, try_hard, zal,
4819 search, &was_active);
4820 }
4821
4822 mutex_exit(&mg->mg_lock);
4823 if (msp == NULL) {
4824 kmem_free(search, sizeof (*search));
4825 return (-1ULL);
4826 }
4827 mutex_enter(&msp->ms_lock);
4828
4829 metaslab_active_mask_verify(msp);
4830
4831 /*
4832 * This code is disabled out because of issues with
4833 * tracepoints in non-gpl kernel modules.
4834 */
4835 #if 0
4836 DTRACE_PROBE3(ms__activation__attempt,
4837 metaslab_t *, msp, uint64_t, activation_weight,
4838 boolean_t, was_active);
4839 #endif
4840
4841 /*
4842 * Ensure that the metaslab we have selected is still
4843 * capable of handling our request. It's possible that
4844 * another thread may have changed the weight while we
4845 * were blocked on the metaslab lock. We check the
4846 * active status first to see if we need to set_selected_txg
4847 * a new metaslab.
4848 */
4849 if (was_active && !(msp->ms_weight & METASLAB_ACTIVE_MASK)) {
4850 ASSERT3S(msp->ms_allocator, ==, -1);
4851 mutex_exit(&msp->ms_lock);
4852 continue;
4853 }
4854
4855 /*
4856 * If the metaslab was activated for another allocator
4857 * while we were waiting in the ms_lock above, or it's
4858 * a primary and we're seeking a secondary (or vice versa),
4859 * we go back and select a new metaslab.
4860 */
4861 if (!was_active && (msp->ms_weight & METASLAB_ACTIVE_MASK) &&
4862 (msp->ms_allocator != -1) &&
4863 (msp->ms_allocator != allocator || ((activation_weight ==
4864 METASLAB_WEIGHT_PRIMARY) != msp->ms_primary))) {
4865 ASSERT(msp->ms_loaded);
4866 ASSERT((msp->ms_weight & METASLAB_WEIGHT_CLAIM) ||
4867 msp->ms_allocator != -1);
4868 mutex_exit(&msp->ms_lock);
4869 continue;
4870 }
4871
4872 /*
4873 * This metaslab was used for claiming regions allocated
4874 * by the ZIL during pool import. Once these regions are
4875 * claimed we don't need to keep the CLAIM bit set
4876 * anymore. Passivate this metaslab to zero its activation
4877 * mask.
4878 */
4879 if (msp->ms_weight & METASLAB_WEIGHT_CLAIM &&
4880 activation_weight != METASLAB_WEIGHT_CLAIM) {
4881 ASSERT(msp->ms_loaded);
4882 ASSERT3S(msp->ms_allocator, ==, -1);
4883 metaslab_passivate(msp, msp->ms_weight &
4884 ~METASLAB_WEIGHT_CLAIM);
4885 mutex_exit(&msp->ms_lock);
4886 continue;
4887 }
4888
4889 metaslab_set_selected_txg(msp, txg);
4890
4891 int activation_error =
4892 metaslab_activate(msp, allocator, activation_weight);
4893 metaslab_active_mask_verify(msp);
4894
4895 /*
4896 * If the metaslab was activated by another thread for
4897 * another allocator or activation_weight (EBUSY), or it
4898 * failed because another metaslab was assigned as primary
4899 * for this allocator (EEXIST) we continue using this
4900 * metaslab for our allocation, rather than going on to a
4901 * worse metaslab (we waited for that metaslab to be loaded
4902 * after all).
4903 *
4904 * If the activation failed due to an I/O error or ENOSPC we
4905 * skip to the next metaslab.
4906 */
4907 boolean_t activated;
4908 if (activation_error == 0) {
4909 activated = B_TRUE;
4910 } else if (activation_error == EBUSY ||
4911 activation_error == EEXIST) {
4912 activated = B_FALSE;
4913 } else {
4914 mutex_exit(&msp->ms_lock);
4915 continue;
4916 }
4917 ASSERT(msp->ms_loaded);
4918
4919 /*
4920 * Now that we have the lock, recheck to see if we should
4921 * continue to use this metaslab for this allocation. The
4922 * the metaslab is now loaded so metaslab_should_allocate()
4923 * can accurately determine if the allocation attempt should
4924 * proceed.
4925 */
4926 if (!metaslab_should_allocate(msp, asize, try_hard)) {
4927 /* Passivate this metaslab and select a new one. */
4928 metaslab_trace_add(zal, mg, msp, asize, d,
4929 TRACE_TOO_SMALL, allocator);
4930 goto next;
4931 }
4932
4933 /*
4934 * If this metaslab is currently condensing then pick again
4935 * as we can't manipulate this metaslab until it's committed
4936 * to disk. If this metaslab is being initialized, we shouldn't
4937 * allocate from it since the allocated region might be
4938 * overwritten after allocation.
4939 */
4940 if (msp->ms_condensing) {
4941 metaslab_trace_add(zal, mg, msp, asize, d,
4942 TRACE_CONDENSING, allocator);
4943 if (activated) {
4944 metaslab_passivate(msp, msp->ms_weight &
4945 ~METASLAB_ACTIVE_MASK);
4946 }
4947 mutex_exit(&msp->ms_lock);
4948 continue;
4949 } else if (msp->ms_disabled > 0) {
4950 metaslab_trace_add(zal, mg, msp, asize, d,
4951 TRACE_DISABLED, allocator);
4952 if (activated) {
4953 metaslab_passivate(msp, msp->ms_weight &
4954 ~METASLAB_ACTIVE_MASK);
4955 }
4956 mutex_exit(&msp->ms_lock);
4957 continue;
4958 }
4959
4960 offset = metaslab_block_alloc(msp, asize, txg);
4961 metaslab_trace_add(zal, mg, msp, asize, d, offset, allocator);
4962
4963 if (offset != -1ULL) {
4964 /* Proactively passivate the metaslab, if needed */
4965 if (activated)
4966 metaslab_segment_may_passivate(msp);
4967 break;
4968 }
4969 next:
4970 ASSERT(msp->ms_loaded);
4971
4972 /*
4973 * This code is disabled out because of issues with
4974 * tracepoints in non-gpl kernel modules.
4975 */
4976 #if 0
4977 DTRACE_PROBE2(ms__alloc__failure, metaslab_t *, msp,
4978 uint64_t, asize);
4979 #endif
4980
4981 /*
4982 * We were unable to allocate from this metaslab so determine
4983 * a new weight for this metaslab. Now that we have loaded
4984 * the metaslab we can provide a better hint to the metaslab
4985 * selector.
4986 *
4987 * For space-based metaslabs, we use the maximum block size.
4988 * This information is only available when the metaslab
4989 * is loaded and is more accurate than the generic free
4990 * space weight that was calculated by metaslab_weight().
4991 * This information allows us to quickly compare the maximum
4992 * available allocation in the metaslab to the allocation
4993 * size being requested.
4994 *
4995 * For segment-based metaslabs, determine the new weight
4996 * based on the highest bucket in the range tree. We
4997 * explicitly use the loaded segment weight (i.e. the range
4998 * tree histogram) since it contains the space that is
4999 * currently available for allocation and is accurate
5000 * even within a sync pass.
5001 */
5002 uint64_t weight;
5003 if (WEIGHT_IS_SPACEBASED(msp->ms_weight)) {
5004 weight = metaslab_largest_allocatable(msp);
5005 WEIGHT_SET_SPACEBASED(weight);
5006 } else {
5007 weight = metaslab_weight_from_range_tree(msp);
5008 }
5009
5010 if (activated) {
5011 metaslab_passivate(msp, weight);
5012 } else {
5013 /*
5014 * For the case where we use the metaslab that is
5015 * active for another allocator we want to make
5016 * sure that we retain the activation mask.
5017 *
5018 * Note that we could attempt to use something like
5019 * metaslab_recalculate_weight_and_sort() that
5020 * retains the activation mask here. That function
5021 * uses metaslab_weight() to set the weight though
5022 * which is not as accurate as the calculations
5023 * above.
5024 */
5025 weight |= msp->ms_weight & METASLAB_ACTIVE_MASK;
5026 metaslab_group_sort(mg, msp, weight);
5027 }
5028 metaslab_active_mask_verify(msp);
5029
5030 /*
5031 * We have just failed an allocation attempt, check
5032 * that metaslab_should_allocate() agrees. Otherwise,
5033 * we may end up in an infinite loop retrying the same
5034 * metaslab.
5035 */
5036 ASSERT(!metaslab_should_allocate(msp, asize, try_hard));
5037
5038 mutex_exit(&msp->ms_lock);
5039 }
5040 mutex_exit(&msp->ms_lock);
5041 kmem_free(search, sizeof (*search));
5042 return (offset);
5043 }
5044
5045 static uint64_t
5046 metaslab_group_alloc(metaslab_group_t *mg, zio_alloc_list_t *zal,
5047 uint64_t asize, uint64_t txg, boolean_t want_unique, dva_t *dva, int d,
5048 int allocator, boolean_t try_hard)
5049 {
5050 uint64_t offset;
5051 ASSERT(mg->mg_initialized);
5052
5053 offset = metaslab_group_alloc_normal(mg, zal, asize, txg, want_unique,
5054 dva, d, allocator, try_hard);
5055
5056 mutex_enter(&mg->mg_lock);
5057 if (offset == -1ULL) {
5058 mg->mg_failed_allocations++;
5059 metaslab_trace_add(zal, mg, NULL, asize, d,
5060 TRACE_GROUP_FAILURE, allocator);
5061 if (asize == SPA_GANGBLOCKSIZE) {
5062 /*
5063 * This metaslab group was unable to allocate
5064 * the minimum gang block size so it must be out of
5065 * space. We must notify the allocation throttle
5066 * to start skipping allocation attempts to this
5067 * metaslab group until more space becomes available.
5068 * Note: this failure cannot be caused by the
5069 * allocation throttle since the allocation throttle
5070 * is only responsible for skipping devices and
5071 * not failing block allocations.
5072 */
5073 mg->mg_no_free_space = B_TRUE;
5074 }
5075 }
5076 mg->mg_allocations++;
5077 mutex_exit(&mg->mg_lock);
5078 return (offset);
5079 }
5080
5081 /*
5082 * Allocate a block for the specified i/o.
5083 */
5084 int
5085 metaslab_alloc_dva(spa_t *spa, metaslab_class_t *mc, uint64_t psize,
5086 dva_t *dva, int d, dva_t *hintdva, uint64_t txg, int flags,
5087 zio_alloc_list_t *zal, int allocator)
5088 {
5089 metaslab_class_allocator_t *mca = &mc->mc_allocator[allocator];
5090 metaslab_group_t *mg, *fast_mg, *rotor;
5091 vdev_t *vd;
5092 boolean_t try_hard = B_FALSE;
5093
5094 ASSERT(!DVA_IS_VALID(&dva[d]));
5095
5096 /*
5097 * For testing, make some blocks above a certain size be gang blocks.
5098 * This will result in more split blocks when using device removal,
5099 * and a large number of split blocks coupled with ztest-induced
5100 * damage can result in extremely long reconstruction times. This
5101 * will also test spilling from special to normal.
5102 */
5103 if (psize >= metaslab_force_ganging && (random_in_range(100) < 3)) {
5104 metaslab_trace_add(zal, NULL, NULL, psize, d, TRACE_FORCE_GANG,
5105 allocator);
5106 return (SET_ERROR(ENOSPC));
5107 }
5108
5109 /*
5110 * Start at the rotor and loop through all mgs until we find something.
5111 * Note that there's no locking on mca_rotor or mca_aliquot because
5112 * nothing actually breaks if we miss a few updates -- we just won't
5113 * allocate quite as evenly. It all balances out over time.
5114 *
5115 * If we are doing ditto or log blocks, try to spread them across
5116 * consecutive vdevs. If we're forced to reuse a vdev before we've
5117 * allocated all of our ditto blocks, then try and spread them out on
5118 * that vdev as much as possible. If it turns out to not be possible,
5119 * gradually lower our standards until anything becomes acceptable.
5120 * Also, allocating on consecutive vdevs (as opposed to random vdevs)
5121 * gives us hope of containing our fault domains to something we're
5122 * able to reason about. Otherwise, any two top-level vdev failures
5123 * will guarantee the loss of data. With consecutive allocation,
5124 * only two adjacent top-level vdev failures will result in data loss.
5125 *
5126 * If we are doing gang blocks (hintdva is non-NULL), try to keep
5127 * ourselves on the same vdev as our gang block header. That
5128 * way, we can hope for locality in vdev_cache, plus it makes our
5129 * fault domains something tractable.
5130 */
5131 if (hintdva) {
5132 vd = vdev_lookup_top(spa, DVA_GET_VDEV(&hintdva[d]));
5133
5134 /*
5135 * It's possible the vdev we're using as the hint no
5136 * longer exists or its mg has been closed (e.g. by
5137 * device removal). Consult the rotor when
5138 * all else fails.
5139 */
5140 if (vd != NULL && vd->vdev_mg != NULL) {
5141 mg = vdev_get_mg(vd, mc);
5142
5143 if (flags & METASLAB_HINTBP_AVOID)
5144 mg = mg->mg_next;
5145 } else {
5146 mg = mca->mca_rotor;
5147 }
5148 } else if (d != 0) {
5149 vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d - 1]));
5150 mg = vd->vdev_mg->mg_next;
5151 } else if (flags & METASLAB_FASTWRITE) {
5152 mg = fast_mg = mca->mca_rotor;
5153
5154 do {
5155 if (fast_mg->mg_vd->vdev_pending_fastwrite <
5156 mg->mg_vd->vdev_pending_fastwrite)
5157 mg = fast_mg;
5158 } while ((fast_mg = fast_mg->mg_next) != mca->mca_rotor);
5159
5160 } else {
5161 ASSERT(mca->mca_rotor != NULL);
5162 mg = mca->mca_rotor;
5163 }
5164
5165 /*
5166 * If the hint put us into the wrong metaslab class, or into a
5167 * metaslab group that has been passivated, just follow the rotor.
5168 */
5169 if (mg->mg_class != mc || mg->mg_activation_count <= 0)
5170 mg = mca->mca_rotor;
5171
5172 rotor = mg;
5173 top:
5174 do {
5175 boolean_t allocatable;
5176
5177 ASSERT(mg->mg_activation_count == 1);
5178 vd = mg->mg_vd;
5179
5180 /*
5181 * Don't allocate from faulted devices.
5182 */
5183 if (try_hard) {
5184 spa_config_enter(spa, SCL_ZIO, FTAG, RW_READER);
5185 allocatable = vdev_allocatable(vd);
5186 spa_config_exit(spa, SCL_ZIO, FTAG);
5187 } else {
5188 allocatable = vdev_allocatable(vd);
5189 }
5190
5191 /*
5192 * Determine if the selected metaslab group is eligible
5193 * for allocations. If we're ganging then don't allow
5194 * this metaslab group to skip allocations since that would
5195 * inadvertently return ENOSPC and suspend the pool
5196 * even though space is still available.
5197 */
5198 if (allocatable && !GANG_ALLOCATION(flags) && !try_hard) {
5199 allocatable = metaslab_group_allocatable(mg, rotor,
5200 flags, psize, allocator, d);
5201 }
5202
5203 if (!allocatable) {
5204 metaslab_trace_add(zal, mg, NULL, psize, d,
5205 TRACE_NOT_ALLOCATABLE, allocator);
5206 goto next;
5207 }
5208
5209 ASSERT(mg->mg_initialized);
5210
5211 /*
5212 * Avoid writing single-copy data to an unhealthy,
5213 * non-redundant vdev, unless we've already tried all
5214 * other vdevs.
5215 */
5216 if (vd->vdev_state < VDEV_STATE_HEALTHY &&
5217 d == 0 && !try_hard && vd->vdev_children == 0) {
5218 metaslab_trace_add(zal, mg, NULL, psize, d,
5219 TRACE_VDEV_ERROR, allocator);
5220 goto next;
5221 }
5222
5223 ASSERT(mg->mg_class == mc);
5224
5225 uint64_t asize = vdev_psize_to_asize(vd, psize);
5226 ASSERT(P2PHASE(asize, 1ULL << vd->vdev_ashift) == 0);
5227
5228 /*
5229 * If we don't need to try hard, then require that the
5230 * block be on a different metaslab from any other DVAs
5231 * in this BP (unique=true). If we are trying hard, then
5232 * allow any metaslab to be used (unique=false).
5233 */
5234 uint64_t offset = metaslab_group_alloc(mg, zal, asize, txg,
5235 !try_hard, dva, d, allocator, try_hard);
5236
5237 if (offset != -1ULL) {
5238 /*
5239 * If we've just selected this metaslab group,
5240 * figure out whether the corresponding vdev is
5241 * over- or under-used relative to the pool,
5242 * and set an allocation bias to even it out.
5243 *
5244 * Bias is also used to compensate for unequally
5245 * sized vdevs so that space is allocated fairly.
5246 */
5247 if (mca->mca_aliquot == 0 && metaslab_bias_enabled) {
5248 vdev_stat_t *vs = &vd->vdev_stat;
5249 int64_t vs_free = vs->vs_space - vs->vs_alloc;
5250 int64_t mc_free = mc->mc_space - mc->mc_alloc;
5251 int64_t ratio;
5252
5253 /*
5254 * Calculate how much more or less we should
5255 * try to allocate from this device during
5256 * this iteration around the rotor.
5257 *
5258 * This basically introduces a zero-centered
5259 * bias towards the devices with the most
5260 * free space, while compensating for vdev
5261 * size differences.
5262 *
5263 * Examples:
5264 * vdev V1 = 16M/128M
5265 * vdev V2 = 16M/128M
5266 * ratio(V1) = 100% ratio(V2) = 100%
5267 *
5268 * vdev V1 = 16M/128M
5269 * vdev V2 = 64M/128M
5270 * ratio(V1) = 127% ratio(V2) = 72%
5271 *
5272 * vdev V1 = 16M/128M
5273 * vdev V2 = 64M/512M
5274 * ratio(V1) = 40% ratio(V2) = 160%
5275 */
5276 ratio = (vs_free * mc->mc_alloc_groups * 100) /
5277 (mc_free + 1);
5278 mg->mg_bias = ((ratio - 100) *
5279 (int64_t)mg->mg_aliquot) / 100;
5280 } else if (!metaslab_bias_enabled) {
5281 mg->mg_bias = 0;
5282 }
5283
5284 if ((flags & METASLAB_FASTWRITE) ||
5285 atomic_add_64_nv(&mca->mca_aliquot, asize) >=
5286 mg->mg_aliquot + mg->mg_bias) {
5287 mca->mca_rotor = mg->mg_next;
5288 mca->mca_aliquot = 0;
5289 }
5290
5291 DVA_SET_VDEV(&dva[d], vd->vdev_id);
5292 DVA_SET_OFFSET(&dva[d], offset);
5293 DVA_SET_GANG(&dva[d],
5294 ((flags & METASLAB_GANG_HEADER) ? 1 : 0));
5295 DVA_SET_ASIZE(&dva[d], asize);
5296
5297 if (flags & METASLAB_FASTWRITE) {
5298 atomic_add_64(&vd->vdev_pending_fastwrite,
5299 psize);
5300 }
5301
5302 return (0);
5303 }
5304 next:
5305 mca->mca_rotor = mg->mg_next;
5306 mca->mca_aliquot = 0;
5307 } while ((mg = mg->mg_next) != rotor);
5308
5309 /*
5310 * If we haven't tried hard, perhaps do so now.
5311 */
5312 if (!try_hard && (zfs_metaslab_try_hard_before_gang ||
5313 GANG_ALLOCATION(flags) || (flags & METASLAB_ZIL) != 0 ||
5314 psize <= 1 << spa->spa_min_ashift)) {
5315 METASLABSTAT_BUMP(metaslabstat_try_hard);
5316 try_hard = B_TRUE;
5317 goto top;
5318 }
5319
5320 memset(&dva[d], 0, sizeof (dva_t));
5321
5322 metaslab_trace_add(zal, rotor, NULL, psize, d, TRACE_ENOSPC, allocator);
5323 return (SET_ERROR(ENOSPC));
5324 }
5325
5326 void
5327 metaslab_free_concrete(vdev_t *vd, uint64_t offset, uint64_t asize,
5328 boolean_t checkpoint)
5329 {
5330 metaslab_t *msp;
5331 spa_t *spa = vd->vdev_spa;
5332
5333 ASSERT(vdev_is_concrete(vd));
5334 ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
5335 ASSERT3U(offset >> vd->vdev_ms_shift, <, vd->vdev_ms_count);
5336
5337 msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
5338
5339 VERIFY(!msp->ms_condensing);
5340 VERIFY3U(offset, >=, msp->ms_start);
5341 VERIFY3U(offset + asize, <=, msp->ms_start + msp->ms_size);
5342 VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift));
5343 VERIFY0(P2PHASE(asize, 1ULL << vd->vdev_ashift));
5344
5345 metaslab_check_free_impl(vd, offset, asize);
5346
5347 mutex_enter(&msp->ms_lock);
5348 if (range_tree_is_empty(msp->ms_freeing) &&
5349 range_tree_is_empty(msp->ms_checkpointing)) {
5350 vdev_dirty(vd, VDD_METASLAB, msp, spa_syncing_txg(spa));
5351 }
5352
5353 if (checkpoint) {
5354 ASSERT(spa_has_checkpoint(spa));
5355 range_tree_add(msp->ms_checkpointing, offset, asize);
5356 } else {
5357 range_tree_add(msp->ms_freeing, offset, asize);
5358 }
5359 mutex_exit(&msp->ms_lock);
5360 }
5361
5362 void
5363 metaslab_free_impl_cb(uint64_t inner_offset, vdev_t *vd, uint64_t offset,
5364 uint64_t size, void *arg)
5365 {
5366 (void) inner_offset;
5367 boolean_t *checkpoint = arg;
5368
5369 ASSERT3P(checkpoint, !=, NULL);
5370
5371 if (vd->vdev_ops->vdev_op_remap != NULL)
5372 vdev_indirect_mark_obsolete(vd, offset, size);
5373 else
5374 metaslab_free_impl(vd, offset, size, *checkpoint);
5375 }
5376
5377 static void
5378 metaslab_free_impl(vdev_t *vd, uint64_t offset, uint64_t size,
5379 boolean_t checkpoint)
5380 {
5381 spa_t *spa = vd->vdev_spa;
5382
5383 ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
5384
5385 if (spa_syncing_txg(spa) > spa_freeze_txg(spa))
5386 return;
5387
5388 if (spa->spa_vdev_removal != NULL &&
5389 spa->spa_vdev_removal->svr_vdev_id == vd->vdev_id &&
5390 vdev_is_concrete(vd)) {
5391 /*
5392 * Note: we check if the vdev is concrete because when
5393 * we complete the removal, we first change the vdev to be
5394 * an indirect vdev (in open context), and then (in syncing
5395 * context) clear spa_vdev_removal.
5396 */
5397 free_from_removing_vdev(vd, offset, size);
5398 } else if (vd->vdev_ops->vdev_op_remap != NULL) {
5399 vdev_indirect_mark_obsolete(vd, offset, size);
5400 vd->vdev_ops->vdev_op_remap(vd, offset, size,
5401 metaslab_free_impl_cb, &checkpoint);
5402 } else {
5403 metaslab_free_concrete(vd, offset, size, checkpoint);
5404 }
5405 }
5406
5407 typedef struct remap_blkptr_cb_arg {
5408 blkptr_t *rbca_bp;
5409 spa_remap_cb_t rbca_cb;
5410 vdev_t *rbca_remap_vd;
5411 uint64_t rbca_remap_offset;
5412 void *rbca_cb_arg;
5413 } remap_blkptr_cb_arg_t;
5414
5415 static void
5416 remap_blkptr_cb(uint64_t inner_offset, vdev_t *vd, uint64_t offset,
5417 uint64_t size, void *arg)
5418 {
5419 remap_blkptr_cb_arg_t *rbca = arg;
5420 blkptr_t *bp = rbca->rbca_bp;
5421
5422 /* We can not remap split blocks. */
5423 if (size != DVA_GET_ASIZE(&bp->blk_dva[0]))
5424 return;
5425 ASSERT0(inner_offset);
5426
5427 if (rbca->rbca_cb != NULL) {
5428 /*
5429 * At this point we know that we are not handling split
5430 * blocks and we invoke the callback on the previous
5431 * vdev which must be indirect.
5432 */
5433 ASSERT3P(rbca->rbca_remap_vd->vdev_ops, ==, &vdev_indirect_ops);
5434
5435 rbca->rbca_cb(rbca->rbca_remap_vd->vdev_id,
5436 rbca->rbca_remap_offset, size, rbca->rbca_cb_arg);
5437
5438 /* set up remap_blkptr_cb_arg for the next call */
5439 rbca->rbca_remap_vd = vd;
5440 rbca->rbca_remap_offset = offset;
5441 }
5442
5443 /*
5444 * The phys birth time is that of dva[0]. This ensures that we know
5445 * when each dva was written, so that resilver can determine which
5446 * blocks need to be scrubbed (i.e. those written during the time
5447 * the vdev was offline). It also ensures that the key used in
5448 * the ARC hash table is unique (i.e. dva[0] + phys_birth). If
5449 * we didn't change the phys_birth, a lookup in the ARC for a
5450 * remapped BP could find the data that was previously stored at
5451 * this vdev + offset.
5452 */
5453 vdev_t *oldvd = vdev_lookup_top(vd->vdev_spa,
5454 DVA_GET_VDEV(&bp->blk_dva[0]));
5455 vdev_indirect_births_t *vib = oldvd->vdev_indirect_births;
5456 bp->blk_phys_birth = vdev_indirect_births_physbirth(vib,
5457 DVA_GET_OFFSET(&bp->blk_dva[0]), DVA_GET_ASIZE(&bp->blk_dva[0]));
5458
5459 DVA_SET_VDEV(&bp->blk_dva[0], vd->vdev_id);
5460 DVA_SET_OFFSET(&bp->blk_dva[0], offset);
5461 }
5462
5463 /*
5464 * If the block pointer contains any indirect DVAs, modify them to refer to
5465 * concrete DVAs. Note that this will sometimes not be possible, leaving
5466 * the indirect DVA in place. This happens if the indirect DVA spans multiple
5467 * segments in the mapping (i.e. it is a "split block").
5468 *
5469 * If the BP was remapped, calls the callback on the original dva (note the
5470 * callback can be called multiple times if the original indirect DVA refers
5471 * to another indirect DVA, etc).
5472 *
5473 * Returns TRUE if the BP was remapped.
5474 */
5475 boolean_t
5476 spa_remap_blkptr(spa_t *spa, blkptr_t *bp, spa_remap_cb_t callback, void *arg)
5477 {
5478 remap_blkptr_cb_arg_t rbca;
5479
5480 if (!zfs_remap_blkptr_enable)
5481 return (B_FALSE);
5482
5483 if (!spa_feature_is_enabled(spa, SPA_FEATURE_OBSOLETE_COUNTS))
5484 return (B_FALSE);
5485
5486 /*
5487 * Dedup BP's can not be remapped, because ddt_phys_select() depends
5488 * on DVA[0] being the same in the BP as in the DDT (dedup table).
5489 */
5490 if (BP_GET_DEDUP(bp))
5491 return (B_FALSE);
5492
5493 /*
5494 * Gang blocks can not be remapped, because
5495 * zio_checksum_gang_verifier() depends on the DVA[0] that's in
5496 * the BP used to read the gang block header (GBH) being the same
5497 * as the DVA[0] that we allocated for the GBH.
5498 */
5499 if (BP_IS_GANG(bp))
5500 return (B_FALSE);
5501
5502 /*
5503 * Embedded BP's have no DVA to remap.
5504 */
5505 if (BP_GET_NDVAS(bp) < 1)
5506 return (B_FALSE);
5507
5508 /*
5509 * Note: we only remap dva[0]. If we remapped other dvas, we
5510 * would no longer know what their phys birth txg is.
5511 */
5512 dva_t *dva = &bp->blk_dva[0];
5513
5514 uint64_t offset = DVA_GET_OFFSET(dva);
5515 uint64_t size = DVA_GET_ASIZE(dva);
5516 vdev_t *vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva));
5517
5518 if (vd->vdev_ops->vdev_op_remap == NULL)
5519 return (B_FALSE);
5520
5521 rbca.rbca_bp = bp;
5522 rbca.rbca_cb = callback;
5523 rbca.rbca_remap_vd = vd;
5524 rbca.rbca_remap_offset = offset;
5525 rbca.rbca_cb_arg = arg;
5526
5527 /*
5528 * remap_blkptr_cb() will be called in order for each level of
5529 * indirection, until a concrete vdev is reached or a split block is
5530 * encountered. old_vd and old_offset are updated within the callback
5531 * as we go from the one indirect vdev to the next one (either concrete
5532 * or indirect again) in that order.
5533 */
5534 vd->vdev_ops->vdev_op_remap(vd, offset, size, remap_blkptr_cb, &rbca);
5535
5536 /* Check if the DVA wasn't remapped because it is a split block */
5537 if (DVA_GET_VDEV(&rbca.rbca_bp->blk_dva[0]) == vd->vdev_id)
5538 return (B_FALSE);
5539
5540 return (B_TRUE);
5541 }
5542
5543 /*
5544 * Undo the allocation of a DVA which happened in the given transaction group.
5545 */
5546 void
5547 metaslab_unalloc_dva(spa_t *spa, const dva_t *dva, uint64_t txg)
5548 {
5549 metaslab_t *msp;
5550 vdev_t *vd;
5551 uint64_t vdev = DVA_GET_VDEV(dva);
5552 uint64_t offset = DVA_GET_OFFSET(dva);
5553 uint64_t size = DVA_GET_ASIZE(dva);
5554
5555 ASSERT(DVA_IS_VALID(dva));
5556 ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
5557
5558 if (txg > spa_freeze_txg(spa))
5559 return;
5560
5561 if ((vd = vdev_lookup_top(spa, vdev)) == NULL || !DVA_IS_VALID(dva) ||
5562 (offset >> vd->vdev_ms_shift) >= vd->vdev_ms_count) {
5563 zfs_panic_recover("metaslab_free_dva(): bad DVA %llu:%llu:%llu",
5564 (u_longlong_t)vdev, (u_longlong_t)offset,
5565 (u_longlong_t)size);
5566 return;
5567 }
5568
5569 ASSERT(!vd->vdev_removing);
5570 ASSERT(vdev_is_concrete(vd));
5571 ASSERT0(vd->vdev_indirect_config.vic_mapping_object);
5572 ASSERT3P(vd->vdev_indirect_mapping, ==, NULL);
5573
5574 if (DVA_GET_GANG(dva))
5575 size = vdev_gang_header_asize(vd);
5576
5577 msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
5578
5579 mutex_enter(&msp->ms_lock);
5580 range_tree_remove(msp->ms_allocating[txg & TXG_MASK],
5581 offset, size);
5582 msp->ms_allocating_total -= size;
5583
5584 VERIFY(!msp->ms_condensing);
5585 VERIFY3U(offset, >=, msp->ms_start);
5586 VERIFY3U(offset + size, <=, msp->ms_start + msp->ms_size);
5587 VERIFY3U(range_tree_space(msp->ms_allocatable) + size, <=,
5588 msp->ms_size);
5589 VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift));
5590 VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift));
5591 range_tree_add(msp->ms_allocatable, offset, size);
5592 mutex_exit(&msp->ms_lock);
5593 }
5594
5595 /*
5596 * Free the block represented by the given DVA.
5597 */
5598 void
5599 metaslab_free_dva(spa_t *spa, const dva_t *dva, boolean_t checkpoint)
5600 {
5601 uint64_t vdev = DVA_GET_VDEV(dva);
5602 uint64_t offset = DVA_GET_OFFSET(dva);
5603 uint64_t size = DVA_GET_ASIZE(dva);
5604 vdev_t *vd = vdev_lookup_top(spa, vdev);
5605
5606 ASSERT(DVA_IS_VALID(dva));
5607 ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
5608
5609 if (DVA_GET_GANG(dva)) {
5610 size = vdev_gang_header_asize(vd);
5611 }
5612
5613 metaslab_free_impl(vd, offset, size, checkpoint);
5614 }
5615
5616 /*
5617 * Reserve some allocation slots. The reservation system must be called
5618 * before we call into the allocator. If there aren't any available slots
5619 * then the I/O will be throttled until an I/O completes and its slots are
5620 * freed up. The function returns true if it was successful in placing
5621 * the reservation.
5622 */
5623 boolean_t
5624 metaslab_class_throttle_reserve(metaslab_class_t *mc, int slots, int allocator,
5625 zio_t *zio, int flags)
5626 {
5627 metaslab_class_allocator_t *mca = &mc->mc_allocator[allocator];
5628 uint64_t max = mca->mca_alloc_max_slots;
5629
5630 ASSERT(mc->mc_alloc_throttle_enabled);
5631 if (GANG_ALLOCATION(flags) || (flags & METASLAB_MUST_RESERVE) ||
5632 zfs_refcount_count(&mca->mca_alloc_slots) + slots <= max) {
5633 /*
5634 * The potential race between _count() and _add() is covered
5635 * by the allocator lock in most cases, or irrelevant due to
5636 * GANG_ALLOCATION() or METASLAB_MUST_RESERVE set in others.
5637 * But even if we assume some other non-existing scenario, the
5638 * worst that can happen is few more I/Os get to allocation
5639 * earlier, that is not a problem.
5640 *
5641 * We reserve the slots individually so that we can unreserve
5642 * them individually when an I/O completes.
5643 */
5644 for (int d = 0; d < slots; d++)
5645 zfs_refcount_add(&mca->mca_alloc_slots, zio);
5646 zio->io_flags |= ZIO_FLAG_IO_ALLOCATING;
5647 return (B_TRUE);
5648 }
5649 return (B_FALSE);
5650 }
5651
5652 void
5653 metaslab_class_throttle_unreserve(metaslab_class_t *mc, int slots,
5654 int allocator, zio_t *zio)
5655 {
5656 metaslab_class_allocator_t *mca = &mc->mc_allocator[allocator];
5657
5658 ASSERT(mc->mc_alloc_throttle_enabled);
5659 for (int d = 0; d < slots; d++)
5660 zfs_refcount_remove(&mca->mca_alloc_slots, zio);
5661 }
5662
5663 static int
5664 metaslab_claim_concrete(vdev_t *vd, uint64_t offset, uint64_t size,
5665 uint64_t txg)
5666 {
5667 metaslab_t *msp;
5668 spa_t *spa = vd->vdev_spa;
5669 int error = 0;
5670
5671 if (offset >> vd->vdev_ms_shift >= vd->vdev_ms_count)
5672 return (SET_ERROR(ENXIO));
5673
5674 ASSERT3P(vd->vdev_ms, !=, NULL);
5675 msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
5676
5677 mutex_enter(&msp->ms_lock);
5678
5679 if ((txg != 0 && spa_writeable(spa)) || !msp->ms_loaded) {
5680 error = metaslab_activate(msp, 0, METASLAB_WEIGHT_CLAIM);
5681 if (error == EBUSY) {
5682 ASSERT(msp->ms_loaded);
5683 ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK);
5684 error = 0;
5685 }
5686 }
5687
5688 if (error == 0 &&
5689 !range_tree_contains(msp->ms_allocatable, offset, size))
5690 error = SET_ERROR(ENOENT);
5691
5692 if (error || txg == 0) { /* txg == 0 indicates dry run */
5693 mutex_exit(&msp->ms_lock);
5694 return (error);
5695 }
5696
5697 VERIFY(!msp->ms_condensing);
5698 VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift));
5699 VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift));
5700 VERIFY3U(range_tree_space(msp->ms_allocatable) - size, <=,
5701 msp->ms_size);
5702 range_tree_remove(msp->ms_allocatable, offset, size);
5703 range_tree_clear(msp->ms_trim, offset, size);
5704
5705 if (spa_writeable(spa)) { /* don't dirty if we're zdb(8) */
5706 metaslab_class_t *mc = msp->ms_group->mg_class;
5707 multilist_sublist_t *mls =
5708 multilist_sublist_lock_obj(&mc->mc_metaslab_txg_list, msp);
5709 if (!multilist_link_active(&msp->ms_class_txg_node)) {
5710 msp->ms_selected_txg = txg;
5711 multilist_sublist_insert_head(mls, msp);
5712 }
5713 multilist_sublist_unlock(mls);
5714
5715 if (range_tree_is_empty(msp->ms_allocating[txg & TXG_MASK]))
5716 vdev_dirty(vd, VDD_METASLAB, msp, txg);
5717 range_tree_add(msp->ms_allocating[txg & TXG_MASK],
5718 offset, size);
5719 msp->ms_allocating_total += size;
5720 }
5721
5722 mutex_exit(&msp->ms_lock);
5723
5724 return (0);
5725 }
5726
5727 typedef struct metaslab_claim_cb_arg_t {
5728 uint64_t mcca_txg;
5729 int mcca_error;
5730 } metaslab_claim_cb_arg_t;
5731
5732 static void
5733 metaslab_claim_impl_cb(uint64_t inner_offset, vdev_t *vd, uint64_t offset,
5734 uint64_t size, void *arg)
5735 {
5736 (void) inner_offset;
5737 metaslab_claim_cb_arg_t *mcca_arg = arg;
5738
5739 if (mcca_arg->mcca_error == 0) {
5740 mcca_arg->mcca_error = metaslab_claim_concrete(vd, offset,
5741 size, mcca_arg->mcca_txg);
5742 }
5743 }
5744
5745 int
5746 metaslab_claim_impl(vdev_t *vd, uint64_t offset, uint64_t size, uint64_t txg)
5747 {
5748 if (vd->vdev_ops->vdev_op_remap != NULL) {
5749 metaslab_claim_cb_arg_t arg;
5750
5751 /*
5752 * Only zdb(8) can claim on indirect vdevs. This is used
5753 * to detect leaks of mapped space (that are not accounted
5754 * for in the obsolete counts, spacemap, or bpobj).
5755 */
5756 ASSERT(!spa_writeable(vd->vdev_spa));
5757 arg.mcca_error = 0;
5758 arg.mcca_txg = txg;
5759
5760 vd->vdev_ops->vdev_op_remap(vd, offset, size,
5761 metaslab_claim_impl_cb, &arg);
5762
5763 if (arg.mcca_error == 0) {
5764 arg.mcca_error = metaslab_claim_concrete(vd,
5765 offset, size, txg);
5766 }
5767 return (arg.mcca_error);
5768 } else {
5769 return (metaslab_claim_concrete(vd, offset, size, txg));
5770 }
5771 }
5772
5773 /*
5774 * Intent log support: upon opening the pool after a crash, notify the SPA
5775 * of blocks that the intent log has allocated for immediate write, but
5776 * which are still considered free by the SPA because the last transaction
5777 * group didn't commit yet.
5778 */
5779 static int
5780 metaslab_claim_dva(spa_t *spa, const dva_t *dva, uint64_t txg)
5781 {
5782 uint64_t vdev = DVA_GET_VDEV(dva);
5783 uint64_t offset = DVA_GET_OFFSET(dva);
5784 uint64_t size = DVA_GET_ASIZE(dva);
5785 vdev_t *vd;
5786
5787 if ((vd = vdev_lookup_top(spa, vdev)) == NULL) {
5788 return (SET_ERROR(ENXIO));
5789 }
5790
5791 ASSERT(DVA_IS_VALID(dva));
5792
5793 if (DVA_GET_GANG(dva))
5794 size = vdev_gang_header_asize(vd);
5795
5796 return (metaslab_claim_impl(vd, offset, size, txg));
5797 }
5798
5799 int
5800 metaslab_alloc(spa_t *spa, metaslab_class_t *mc, uint64_t psize, blkptr_t *bp,
5801 int ndvas, uint64_t txg, blkptr_t *hintbp, int flags,
5802 zio_alloc_list_t *zal, zio_t *zio, int allocator)
5803 {
5804 dva_t *dva = bp->blk_dva;
5805 dva_t *hintdva = (hintbp != NULL) ? hintbp->blk_dva : NULL;
5806 int error = 0;
5807
5808 ASSERT(bp->blk_birth == 0);
5809 ASSERT(BP_PHYSICAL_BIRTH(bp) == 0);
5810
5811 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER);
5812
5813 if (mc->mc_allocator[allocator].mca_rotor == NULL) {
5814 /* no vdevs in this class */
5815 spa_config_exit(spa, SCL_ALLOC, FTAG);
5816 return (SET_ERROR(ENOSPC));
5817 }
5818
5819 ASSERT(ndvas > 0 && ndvas <= spa_max_replication(spa));
5820 ASSERT(BP_GET_NDVAS(bp) == 0);
5821 ASSERT(hintbp == NULL || ndvas <= BP_GET_NDVAS(hintbp));
5822 ASSERT3P(zal, !=, NULL);
5823
5824 for (int d = 0; d < ndvas; d++) {
5825 error = metaslab_alloc_dva(spa, mc, psize, dva, d, hintdva,
5826 txg, flags, zal, allocator);
5827 if (error != 0) {
5828 for (d--; d >= 0; d--) {
5829 metaslab_unalloc_dva(spa, &dva[d], txg);
5830 metaslab_group_alloc_decrement(spa,
5831 DVA_GET_VDEV(&dva[d]), zio, flags,
5832 allocator, B_FALSE);
5833 memset(&dva[d], 0, sizeof (dva_t));
5834 }
5835 spa_config_exit(spa, SCL_ALLOC, FTAG);
5836 return (error);
5837 } else {
5838 /*
5839 * Update the metaslab group's queue depth
5840 * based on the newly allocated dva.
5841 */
5842 metaslab_group_alloc_increment(spa,
5843 DVA_GET_VDEV(&dva[d]), zio, flags, allocator);
5844 }
5845 }
5846 ASSERT(error == 0);
5847 ASSERT(BP_GET_NDVAS(bp) == ndvas);
5848
5849 spa_config_exit(spa, SCL_ALLOC, FTAG);
5850
5851 BP_SET_BIRTH(bp, txg, 0);
5852
5853 return (0);
5854 }
5855
5856 void
5857 metaslab_free(spa_t *spa, const blkptr_t *bp, uint64_t txg, boolean_t now)
5858 {
5859 const dva_t *dva = bp->blk_dva;
5860 int ndvas = BP_GET_NDVAS(bp);
5861
5862 ASSERT(!BP_IS_HOLE(bp));
5863 ASSERT(!now || bp->blk_birth >= spa_syncing_txg(spa));
5864
5865 /*
5866 * If we have a checkpoint for the pool we need to make sure that
5867 * the blocks that we free that are part of the checkpoint won't be
5868 * reused until the checkpoint is discarded or we revert to it.
5869 *
5870 * The checkpoint flag is passed down the metaslab_free code path
5871 * and is set whenever we want to add a block to the checkpoint's
5872 * accounting. That is, we "checkpoint" blocks that existed at the
5873 * time the checkpoint was created and are therefore referenced by
5874 * the checkpointed uberblock.
5875 *
5876 * Note that, we don't checkpoint any blocks if the current
5877 * syncing txg <= spa_checkpoint_txg. We want these frees to sync
5878 * normally as they will be referenced by the checkpointed uberblock.
5879 */
5880 boolean_t checkpoint = B_FALSE;
5881 if (bp->blk_birth <= spa->spa_checkpoint_txg &&
5882 spa_syncing_txg(spa) > spa->spa_checkpoint_txg) {
5883 /*
5884 * At this point, if the block is part of the checkpoint
5885 * there is no way it was created in the current txg.
5886 */
5887 ASSERT(!now);
5888 ASSERT3U(spa_syncing_txg(spa), ==, txg);
5889 checkpoint = B_TRUE;
5890 }
5891
5892 spa_config_enter(spa, SCL_FREE, FTAG, RW_READER);
5893
5894 for (int d = 0; d < ndvas; d++) {
5895 if (now) {
5896 metaslab_unalloc_dva(spa, &dva[d], txg);
5897 } else {
5898 ASSERT3U(txg, ==, spa_syncing_txg(spa));
5899 metaslab_free_dva(spa, &dva[d], checkpoint);
5900 }
5901 }
5902
5903 spa_config_exit(spa, SCL_FREE, FTAG);
5904 }
5905
5906 int
5907 metaslab_claim(spa_t *spa, const blkptr_t *bp, uint64_t txg)
5908 {
5909 const dva_t *dva = bp->blk_dva;
5910 int ndvas = BP_GET_NDVAS(bp);
5911 int error = 0;
5912
5913 ASSERT(!BP_IS_HOLE(bp));
5914
5915 if (txg != 0) {
5916 /*
5917 * First do a dry run to make sure all DVAs are claimable,
5918 * so we don't have to unwind from partial failures below.
5919 */
5920 if ((error = metaslab_claim(spa, bp, 0)) != 0)
5921 return (error);
5922 }
5923
5924 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER);
5925
5926 for (int d = 0; d < ndvas; d++) {
5927 error = metaslab_claim_dva(spa, &dva[d], txg);
5928 if (error != 0)
5929 break;
5930 }
5931
5932 spa_config_exit(spa, SCL_ALLOC, FTAG);
5933
5934 ASSERT(error == 0 || txg == 0);
5935
5936 return (error);
5937 }
5938
5939 void
5940 metaslab_fastwrite_mark(spa_t *spa, const blkptr_t *bp)
5941 {
5942 const dva_t *dva = bp->blk_dva;
5943 int ndvas = BP_GET_NDVAS(bp);
5944 uint64_t psize = BP_GET_PSIZE(bp);
5945 int d;
5946 vdev_t *vd;
5947
5948 ASSERT(!BP_IS_HOLE(bp));
5949 ASSERT(!BP_IS_EMBEDDED(bp));
5950 ASSERT(psize > 0);
5951
5952 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
5953
5954 for (d = 0; d < ndvas; d++) {
5955 if ((vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d]))) == NULL)
5956 continue;
5957 atomic_add_64(&vd->vdev_pending_fastwrite, psize);
5958 }
5959
5960 spa_config_exit(spa, SCL_VDEV, FTAG);
5961 }
5962
5963 void
5964 metaslab_fastwrite_unmark(spa_t *spa, const blkptr_t *bp)
5965 {
5966 const dva_t *dva = bp->blk_dva;
5967 int ndvas = BP_GET_NDVAS(bp);
5968 uint64_t psize = BP_GET_PSIZE(bp);
5969 int d;
5970 vdev_t *vd;
5971
5972 ASSERT(!BP_IS_HOLE(bp));
5973 ASSERT(!BP_IS_EMBEDDED(bp));
5974 ASSERT(psize > 0);
5975
5976 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
5977
5978 for (d = 0; d < ndvas; d++) {
5979 if ((vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d]))) == NULL)
5980 continue;
5981 ASSERT3U(vd->vdev_pending_fastwrite, >=, psize);
5982 atomic_sub_64(&vd->vdev_pending_fastwrite, psize);
5983 }
5984
5985 spa_config_exit(spa, SCL_VDEV, FTAG);
5986 }
5987
5988 static void
5989 metaslab_check_free_impl_cb(uint64_t inner, vdev_t *vd, uint64_t offset,
5990 uint64_t size, void *arg)
5991 {
5992 (void) inner, (void) arg;
5993
5994 if (vd->vdev_ops == &vdev_indirect_ops)
5995 return;
5996
5997 metaslab_check_free_impl(vd, offset, size);
5998 }
5999
6000 static void
6001 metaslab_check_free_impl(vdev_t *vd, uint64_t offset, uint64_t size)
6002 {
6003 metaslab_t *msp;
6004 spa_t *spa __maybe_unused = vd->vdev_spa;
6005
6006 if ((zfs_flags & ZFS_DEBUG_ZIO_FREE) == 0)
6007 return;
6008
6009 if (vd->vdev_ops->vdev_op_remap != NULL) {
6010 vd->vdev_ops->vdev_op_remap(vd, offset, size,
6011 metaslab_check_free_impl_cb, NULL);
6012 return;
6013 }
6014
6015 ASSERT(vdev_is_concrete(vd));
6016 ASSERT3U(offset >> vd->vdev_ms_shift, <, vd->vdev_ms_count);
6017 ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
6018
6019 msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
6020
6021 mutex_enter(&msp->ms_lock);
6022 if (msp->ms_loaded) {
6023 range_tree_verify_not_present(msp->ms_allocatable,
6024 offset, size);
6025 }
6026
6027 /*
6028 * Check all segments that currently exist in the freeing pipeline.
6029 *
6030 * It would intuitively make sense to also check the current allocating
6031 * tree since metaslab_unalloc_dva() exists for extents that are
6032 * allocated and freed in the same sync pass within the same txg.
6033 * Unfortunately there are places (e.g. the ZIL) where we allocate a
6034 * segment but then we free part of it within the same txg
6035 * [see zil_sync()]. Thus, we don't call range_tree_verify() in the
6036 * current allocating tree.
6037 */
6038 range_tree_verify_not_present(msp->ms_freeing, offset, size);
6039 range_tree_verify_not_present(msp->ms_checkpointing, offset, size);
6040 range_tree_verify_not_present(msp->ms_freed, offset, size);
6041 for (int j = 0; j < TXG_DEFER_SIZE; j++)
6042 range_tree_verify_not_present(msp->ms_defer[j], offset, size);
6043 range_tree_verify_not_present(msp->ms_trim, offset, size);
6044 mutex_exit(&msp->ms_lock);
6045 }
6046
6047 void
6048 metaslab_check_free(spa_t *spa, const blkptr_t *bp)
6049 {
6050 if ((zfs_flags & ZFS_DEBUG_ZIO_FREE) == 0)
6051 return;
6052
6053 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
6054 for (int i = 0; i < BP_GET_NDVAS(bp); i++) {
6055 uint64_t vdev = DVA_GET_VDEV(&bp->blk_dva[i]);
6056 vdev_t *vd = vdev_lookup_top(spa, vdev);
6057 uint64_t offset = DVA_GET_OFFSET(&bp->blk_dva[i]);
6058 uint64_t size = DVA_GET_ASIZE(&bp->blk_dva[i]);
6059
6060 if (DVA_GET_GANG(&bp->blk_dva[i]))
6061 size = vdev_gang_header_asize(vd);
6062
6063 ASSERT3P(vd, !=, NULL);
6064
6065 metaslab_check_free_impl(vd, offset, size);
6066 }
6067 spa_config_exit(spa, SCL_VDEV, FTAG);
6068 }
6069
6070 static void
6071 metaslab_group_disable_wait(metaslab_group_t *mg)
6072 {
6073 ASSERT(MUTEX_HELD(&mg->mg_ms_disabled_lock));
6074 while (mg->mg_disabled_updating) {
6075 cv_wait(&mg->mg_ms_disabled_cv, &mg->mg_ms_disabled_lock);
6076 }
6077 }
6078
6079 static void
6080 metaslab_group_disabled_increment(metaslab_group_t *mg)
6081 {
6082 ASSERT(MUTEX_HELD(&mg->mg_ms_disabled_lock));
6083 ASSERT(mg->mg_disabled_updating);
6084
6085 while (mg->mg_ms_disabled >= max_disabled_ms) {
6086 cv_wait(&mg->mg_ms_disabled_cv, &mg->mg_ms_disabled_lock);
6087 }
6088 mg->mg_ms_disabled++;
6089 ASSERT3U(mg->mg_ms_disabled, <=, max_disabled_ms);
6090 }
6091
6092 /*
6093 * Mark the metaslab as disabled to prevent any allocations on this metaslab.
6094 * We must also track how many metaslabs are currently disabled within a
6095 * metaslab group and limit them to prevent allocation failures from
6096 * occurring because all metaslabs are disabled.
6097 */
6098 void
6099 metaslab_disable(metaslab_t *msp)
6100 {
6101 ASSERT(!MUTEX_HELD(&msp->ms_lock));
6102 metaslab_group_t *mg = msp->ms_group;
6103
6104 mutex_enter(&mg->mg_ms_disabled_lock);
6105
6106 /*
6107 * To keep an accurate count of how many threads have disabled
6108 * a specific metaslab group, we only allow one thread to mark
6109 * the metaslab group at a time. This ensures that the value of
6110 * ms_disabled will be accurate when we decide to mark a metaslab
6111 * group as disabled. To do this we force all other threads
6112 * to wait till the metaslab's mg_disabled_updating flag is no
6113 * longer set.
6114 */
6115 metaslab_group_disable_wait(mg);
6116 mg->mg_disabled_updating = B_TRUE;
6117 if (msp->ms_disabled == 0) {
6118 metaslab_group_disabled_increment(mg);
6119 }
6120 mutex_enter(&msp->ms_lock);
6121 msp->ms_disabled++;
6122 mutex_exit(&msp->ms_lock);
6123
6124 mg->mg_disabled_updating = B_FALSE;
6125 cv_broadcast(&mg->mg_ms_disabled_cv);
6126 mutex_exit(&mg->mg_ms_disabled_lock);
6127 }
6128
6129 void
6130 metaslab_enable(metaslab_t *msp, boolean_t sync, boolean_t unload)
6131 {
6132 metaslab_group_t *mg = msp->ms_group;
6133 spa_t *spa = mg->mg_vd->vdev_spa;
6134
6135 /*
6136 * Wait for the outstanding IO to be synced to prevent newly
6137 * allocated blocks from being overwritten. This used by
6138 * initialize and TRIM which are modifying unallocated space.
6139 */
6140 if (sync)
6141 txg_wait_synced(spa_get_dsl(spa), 0);
6142
6143 mutex_enter(&mg->mg_ms_disabled_lock);
6144 mutex_enter(&msp->ms_lock);
6145 if (--msp->ms_disabled == 0) {
6146 mg->mg_ms_disabled--;
6147 cv_broadcast(&mg->mg_ms_disabled_cv);
6148 if (unload)
6149 metaslab_unload(msp);
6150 }
6151 mutex_exit(&msp->ms_lock);
6152 mutex_exit(&mg->mg_ms_disabled_lock);
6153 }
6154
6155 void
6156 metaslab_set_unflushed_dirty(metaslab_t *ms, boolean_t dirty)
6157 {
6158 ms->ms_unflushed_dirty = dirty;
6159 }
6160
6161 static void
6162 metaslab_update_ondisk_flush_data(metaslab_t *ms, dmu_tx_t *tx)
6163 {
6164 vdev_t *vd = ms->ms_group->mg_vd;
6165 spa_t *spa = vd->vdev_spa;
6166 objset_t *mos = spa_meta_objset(spa);
6167
6168 ASSERT(spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP));
6169
6170 metaslab_unflushed_phys_t entry = {
6171 .msp_unflushed_txg = metaslab_unflushed_txg(ms),
6172 };
6173 uint64_t entry_size = sizeof (entry);
6174 uint64_t entry_offset = ms->ms_id * entry_size;
6175
6176 uint64_t object = 0;
6177 int err = zap_lookup(mos, vd->vdev_top_zap,
6178 VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, sizeof (uint64_t), 1,
6179 &object);
6180 if (err == ENOENT) {
6181 object = dmu_object_alloc(mos, DMU_OTN_UINT64_METADATA,
6182 SPA_OLD_MAXBLOCKSIZE, DMU_OT_NONE, 0, tx);
6183 VERIFY0(zap_add(mos, vd->vdev_top_zap,
6184 VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, sizeof (uint64_t), 1,
6185 &object, tx));
6186 } else {
6187 VERIFY0(err);
6188 }
6189
6190 dmu_write(spa_meta_objset(spa), object, entry_offset, entry_size,
6191 &entry, tx);
6192 }
6193
6194 void
6195 metaslab_set_unflushed_txg(metaslab_t *ms, uint64_t txg, dmu_tx_t *tx)
6196 {
6197 ms->ms_unflushed_txg = txg;
6198 metaslab_update_ondisk_flush_data(ms, tx);
6199 }
6200
6201 boolean_t
6202 metaslab_unflushed_dirty(metaslab_t *ms)
6203 {
6204 return (ms->ms_unflushed_dirty);
6205 }
6206
6207 uint64_t
6208 metaslab_unflushed_txg(metaslab_t *ms)
6209 {
6210 return (ms->ms_unflushed_txg);
6211 }
6212
6213 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, aliquot, U64, ZMOD_RW,
6214 "Allocation granularity (a.k.a. stripe size)");
6215
6216 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, debug_load, INT, ZMOD_RW,
6217 "Load all metaslabs when pool is first opened");
6218
6219 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, debug_unload, INT, ZMOD_RW,
6220 "Prevent metaslabs from being unloaded");
6221
6222 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, preload_enabled, INT, ZMOD_RW,
6223 "Preload potential metaslabs during reassessment");
6224
6225 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, unload_delay, UINT, ZMOD_RW,
6226 "Delay in txgs after metaslab was last used before unloading");
6227
6228 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, unload_delay_ms, UINT, ZMOD_RW,
6229 "Delay in milliseconds after metaslab was last used before unloading");
6230
6231 /* BEGIN CSTYLED */
6232 ZFS_MODULE_PARAM(zfs_mg, zfs_mg_, noalloc_threshold, UINT, ZMOD_RW,
6233 "Percentage of metaslab group size that should be free to make it "
6234 "eligible for allocation");
6235
6236 ZFS_MODULE_PARAM(zfs_mg, zfs_mg_, fragmentation_threshold, UINT, ZMOD_RW,
6237 "Percentage of metaslab group size that should be considered eligible "
6238 "for allocations unless all metaslab groups within the metaslab class "
6239 "have also crossed this threshold");
6240
6241 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, fragmentation_factor_enabled, INT,
6242 ZMOD_RW,
6243 "Use the fragmentation metric to prefer less fragmented metaslabs");
6244 /* END CSTYLED */
6245
6246 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, fragmentation_threshold, UINT,
6247 ZMOD_RW, "Fragmentation for metaslab to allow allocation");
6248
6249 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, lba_weighting_enabled, INT, ZMOD_RW,
6250 "Prefer metaslabs with lower LBAs");
6251
6252 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, bias_enabled, INT, ZMOD_RW,
6253 "Enable metaslab group biasing");
6254
6255 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, segment_weight_enabled, INT,
6256 ZMOD_RW, "Enable segment-based metaslab selection");
6257
6258 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, switch_threshold, INT, ZMOD_RW,
6259 "Segment-based metaslab selection maximum buckets before switching");
6260
6261 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, force_ganging, U64, ZMOD_RW,
6262 "Blocks larger than this size are forced to be gang blocks");
6263
6264 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, df_max_search, UINT, ZMOD_RW,
6265 "Max distance (bytes) to search forward before using size tree");
6266
6267 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, df_use_largest_segment, INT, ZMOD_RW,
6268 "When looking in size tree, use largest segment instead of exact fit");
6269
6270 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, max_size_cache_sec, U64,
6271 ZMOD_RW, "How long to trust the cached max chunk size of a metaslab");
6272
6273 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, mem_limit, UINT, ZMOD_RW,
6274 "Percentage of memory that can be used to store metaslab range trees");
6275
6276 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, try_hard_before_gang, INT,
6277 ZMOD_RW, "Try hard to allocate before ganging");
6278
6279 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, find_max_tries, UINT, ZMOD_RW,
6280 "Normally only consider this many of the best metaslabs in each vdev");