]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/spa.c
0573daa92f9d2f355a03e8adf13eb3c51620d2f6
[mirror_zfs.git] / module / zfs / spa.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2011, 2020 by Delphix. All rights reserved.
25 * Copyright (c) 2018, Nexenta Systems, Inc. All rights reserved.
26 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
27 * Copyright 2013 Saso Kiselkov. All rights reserved.
28 * Copyright (c) 2014 Integros [integros.com]
29 * Copyright 2016 Toomas Soome <tsoome@me.com>
30 * Copyright (c) 2016 Actifio, Inc. All rights reserved.
31 * Copyright 2018 Joyent, Inc.
32 * Copyright (c) 2017, 2019, Datto Inc. All rights reserved.
33 * Copyright 2017 Joyent, Inc.
34 * Copyright (c) 2017, Intel Corporation.
35 * Copyright (c) 2021, Colm Buckley <colm@tuatha.org>
36 */
37
38 /*
39 * SPA: Storage Pool Allocator
40 *
41 * This file contains all the routines used when modifying on-disk SPA state.
42 * This includes opening, importing, destroying, exporting a pool, and syncing a
43 * pool.
44 */
45
46 #include <sys/zfs_context.h>
47 #include <sys/fm/fs/zfs.h>
48 #include <sys/spa_impl.h>
49 #include <sys/zio.h>
50 #include <sys/zio_checksum.h>
51 #include <sys/dmu.h>
52 #include <sys/dmu_tx.h>
53 #include <sys/zap.h>
54 #include <sys/zil.h>
55 #include <sys/brt.h>
56 #include <sys/ddt.h>
57 #include <sys/vdev_impl.h>
58 #include <sys/vdev_removal.h>
59 #include <sys/vdev_indirect_mapping.h>
60 #include <sys/vdev_indirect_births.h>
61 #include <sys/vdev_initialize.h>
62 #include <sys/vdev_rebuild.h>
63 #include <sys/vdev_trim.h>
64 #include <sys/vdev_disk.h>
65 #include <sys/vdev_draid.h>
66 #include <sys/metaslab.h>
67 #include <sys/metaslab_impl.h>
68 #include <sys/mmp.h>
69 #include <sys/uberblock_impl.h>
70 #include <sys/txg.h>
71 #include <sys/avl.h>
72 #include <sys/bpobj.h>
73 #include <sys/dmu_traverse.h>
74 #include <sys/dmu_objset.h>
75 #include <sys/unique.h>
76 #include <sys/dsl_pool.h>
77 #include <sys/dsl_dataset.h>
78 #include <sys/dsl_dir.h>
79 #include <sys/dsl_prop.h>
80 #include <sys/dsl_synctask.h>
81 #include <sys/fs/zfs.h>
82 #include <sys/arc.h>
83 #include <sys/callb.h>
84 #include <sys/systeminfo.h>
85 #include <sys/zfs_ioctl.h>
86 #include <sys/dsl_scan.h>
87 #include <sys/zfeature.h>
88 #include <sys/dsl_destroy.h>
89 #include <sys/zvol.h>
90
91 #ifdef _KERNEL
92 #include <sys/fm/protocol.h>
93 #include <sys/fm/util.h>
94 #include <sys/callb.h>
95 #include <sys/zone.h>
96 #include <sys/vmsystm.h>
97 #endif /* _KERNEL */
98
99 #include "zfs_prop.h"
100 #include "zfs_comutil.h"
101
102 /*
103 * The interval, in seconds, at which failed configuration cache file writes
104 * should be retried.
105 */
106 int zfs_ccw_retry_interval = 300;
107
108 typedef enum zti_modes {
109 ZTI_MODE_FIXED, /* value is # of threads (min 1) */
110 ZTI_MODE_BATCH, /* cpu-intensive; value is ignored */
111 ZTI_MODE_SCALE, /* Taskqs scale with CPUs. */
112 ZTI_MODE_NULL, /* don't create a taskq */
113 ZTI_NMODES
114 } zti_modes_t;
115
116 #define ZTI_P(n, q) { ZTI_MODE_FIXED, (n), (q) }
117 #define ZTI_PCT(n) { ZTI_MODE_ONLINE_PERCENT, (n), 1 }
118 #define ZTI_BATCH { ZTI_MODE_BATCH, 0, 1 }
119 #define ZTI_SCALE { ZTI_MODE_SCALE, 0, 1 }
120 #define ZTI_NULL { ZTI_MODE_NULL, 0, 0 }
121
122 #define ZTI_N(n) ZTI_P(n, 1)
123 #define ZTI_ONE ZTI_N(1)
124
125 typedef struct zio_taskq_info {
126 zti_modes_t zti_mode;
127 uint_t zti_value;
128 uint_t zti_count;
129 } zio_taskq_info_t;
130
131 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = {
132 "iss", "iss_h", "int", "int_h"
133 };
134
135 /*
136 * This table defines the taskq settings for each ZFS I/O type. When
137 * initializing a pool, we use this table to create an appropriately sized
138 * taskq. Some operations are low volume and therefore have a small, static
139 * number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE
140 * macros. Other operations process a large amount of data; the ZTI_BATCH
141 * macro causes us to create a taskq oriented for throughput. Some operations
142 * are so high frequency and short-lived that the taskq itself can become a
143 * point of lock contention. The ZTI_P(#, #) macro indicates that we need an
144 * additional degree of parallelism specified by the number of threads per-
145 * taskq and the number of taskqs; when dispatching an event in this case, the
146 * particular taskq is chosen at random. ZTI_SCALE is similar to ZTI_BATCH,
147 * but with number of taskqs also scaling with number of CPUs.
148 *
149 * The different taskq priorities are to handle the different contexts (issue
150 * and interrupt) and then to reserve threads for ZIO_PRIORITY_NOW I/Os that
151 * need to be handled with minimum delay.
152 */
153 static const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = {
154 /* ISSUE ISSUE_HIGH INTR INTR_HIGH */
155 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* NULL */
156 { ZTI_N(8), ZTI_NULL, ZTI_SCALE, ZTI_NULL }, /* READ */
157 { ZTI_BATCH, ZTI_N(5), ZTI_SCALE, ZTI_N(5) }, /* WRITE */
158 { ZTI_SCALE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* FREE */
159 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* CLAIM */
160 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* IOCTL */
161 { ZTI_N(4), ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* TRIM */
162 };
163
164 static void spa_sync_version(void *arg, dmu_tx_t *tx);
165 static void spa_sync_props(void *arg, dmu_tx_t *tx);
166 static boolean_t spa_has_active_shared_spare(spa_t *spa);
167 static int spa_load_impl(spa_t *spa, spa_import_type_t type,
168 const char **ereport);
169 static void spa_vdev_resilver_done(spa_t *spa);
170
171 static uint_t zio_taskq_batch_pct = 80; /* 1 thread per cpu in pset */
172 static uint_t zio_taskq_batch_tpq; /* threads per taskq */
173 static const boolean_t zio_taskq_sysdc = B_TRUE; /* use SDC scheduling class */
174 static const uint_t zio_taskq_basedc = 80; /* base duty cycle */
175
176 static const boolean_t spa_create_process = B_TRUE; /* no process => no sysdc */
177
178 /*
179 * Report any spa_load_verify errors found, but do not fail spa_load.
180 * This is used by zdb to analyze non-idle pools.
181 */
182 boolean_t spa_load_verify_dryrun = B_FALSE;
183
184 /*
185 * Allow read spacemaps in case of readonly import (spa_mode == SPA_MODE_READ).
186 * This is used by zdb for spacemaps verification.
187 */
188 boolean_t spa_mode_readable_spacemaps = B_FALSE;
189
190 /*
191 * This (illegal) pool name is used when temporarily importing a spa_t in order
192 * to get the vdev stats associated with the imported devices.
193 */
194 #define TRYIMPORT_NAME "$import"
195
196 /*
197 * For debugging purposes: print out vdev tree during pool import.
198 */
199 static int spa_load_print_vdev_tree = B_FALSE;
200
201 /*
202 * A non-zero value for zfs_max_missing_tvds means that we allow importing
203 * pools with missing top-level vdevs. This is strictly intended for advanced
204 * pool recovery cases since missing data is almost inevitable. Pools with
205 * missing devices can only be imported read-only for safety reasons, and their
206 * fail-mode will be automatically set to "continue".
207 *
208 * With 1 missing vdev we should be able to import the pool and mount all
209 * datasets. User data that was not modified after the missing device has been
210 * added should be recoverable. This means that snapshots created prior to the
211 * addition of that device should be completely intact.
212 *
213 * With 2 missing vdevs, some datasets may fail to mount since there are
214 * dataset statistics that are stored as regular metadata. Some data might be
215 * recoverable if those vdevs were added recently.
216 *
217 * With 3 or more missing vdevs, the pool is severely damaged and MOS entries
218 * may be missing entirely. Chances of data recovery are very low. Note that
219 * there are also risks of performing an inadvertent rewind as we might be
220 * missing all the vdevs with the latest uberblocks.
221 */
222 uint64_t zfs_max_missing_tvds = 0;
223
224 /*
225 * The parameters below are similar to zfs_max_missing_tvds but are only
226 * intended for a preliminary open of the pool with an untrusted config which
227 * might be incomplete or out-dated.
228 *
229 * We are more tolerant for pools opened from a cachefile since we could have
230 * an out-dated cachefile where a device removal was not registered.
231 * We could have set the limit arbitrarily high but in the case where devices
232 * are really missing we would want to return the proper error codes; we chose
233 * SPA_DVAS_PER_BP - 1 so that some copies of the MOS would still be available
234 * and we get a chance to retrieve the trusted config.
235 */
236 uint64_t zfs_max_missing_tvds_cachefile = SPA_DVAS_PER_BP - 1;
237
238 /*
239 * In the case where config was assembled by scanning device paths (/dev/dsks
240 * by default) we are less tolerant since all the existing devices should have
241 * been detected and we want spa_load to return the right error codes.
242 */
243 uint64_t zfs_max_missing_tvds_scan = 0;
244
245 /*
246 * Debugging aid that pauses spa_sync() towards the end.
247 */
248 static const boolean_t zfs_pause_spa_sync = B_FALSE;
249
250 /*
251 * Variables to indicate the livelist condense zthr func should wait at certain
252 * points for the livelist to be removed - used to test condense/destroy races
253 */
254 static int zfs_livelist_condense_zthr_pause = 0;
255 static int zfs_livelist_condense_sync_pause = 0;
256
257 /*
258 * Variables to track whether or not condense cancellation has been
259 * triggered in testing.
260 */
261 static int zfs_livelist_condense_sync_cancel = 0;
262 static int zfs_livelist_condense_zthr_cancel = 0;
263
264 /*
265 * Variable to track whether or not extra ALLOC blkptrs were added to a
266 * livelist entry while it was being condensed (caused by the way we track
267 * remapped blkptrs in dbuf_remap_impl)
268 */
269 static int zfs_livelist_condense_new_alloc = 0;
270
271 /*
272 * ==========================================================================
273 * SPA properties routines
274 * ==========================================================================
275 */
276
277 /*
278 * Add a (source=src, propname=propval) list to an nvlist.
279 */
280 static void
281 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, const char *strval,
282 uint64_t intval, zprop_source_t src)
283 {
284 const char *propname = zpool_prop_to_name(prop);
285 nvlist_t *propval;
286
287 propval = fnvlist_alloc();
288 fnvlist_add_uint64(propval, ZPROP_SOURCE, src);
289
290 if (strval != NULL)
291 fnvlist_add_string(propval, ZPROP_VALUE, strval);
292 else
293 fnvlist_add_uint64(propval, ZPROP_VALUE, intval);
294
295 fnvlist_add_nvlist(nvl, propname, propval);
296 nvlist_free(propval);
297 }
298
299 /*
300 * Get property values from the spa configuration.
301 */
302 static void
303 spa_prop_get_config(spa_t *spa, nvlist_t **nvp)
304 {
305 vdev_t *rvd = spa->spa_root_vdev;
306 dsl_pool_t *pool = spa->spa_dsl_pool;
307 uint64_t size, alloc, cap, version;
308 const zprop_source_t src = ZPROP_SRC_NONE;
309 spa_config_dirent_t *dp;
310 metaslab_class_t *mc = spa_normal_class(spa);
311
312 ASSERT(MUTEX_HELD(&spa->spa_props_lock));
313
314 if (rvd != NULL) {
315 alloc = metaslab_class_get_alloc(mc);
316 alloc += metaslab_class_get_alloc(spa_special_class(spa));
317 alloc += metaslab_class_get_alloc(spa_dedup_class(spa));
318 alloc += metaslab_class_get_alloc(spa_embedded_log_class(spa));
319
320 size = metaslab_class_get_space(mc);
321 size += metaslab_class_get_space(spa_special_class(spa));
322 size += metaslab_class_get_space(spa_dedup_class(spa));
323 size += metaslab_class_get_space(spa_embedded_log_class(spa));
324
325 spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src);
326 spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src);
327 spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src);
328 spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL,
329 size - alloc, src);
330 spa_prop_add_list(*nvp, ZPOOL_PROP_CHECKPOINT, NULL,
331 spa->spa_checkpoint_info.sci_dspace, src);
332
333 spa_prop_add_list(*nvp, ZPOOL_PROP_FRAGMENTATION, NULL,
334 metaslab_class_fragmentation(mc), src);
335 spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL,
336 metaslab_class_expandable_space(mc), src);
337 spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL,
338 (spa_mode(spa) == SPA_MODE_READ), src);
339
340 cap = (size == 0) ? 0 : (alloc * 100 / size);
341 spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src);
342
343 spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL,
344 ddt_get_pool_dedup_ratio(spa), src);
345 spa_prop_add_list(*nvp, ZPOOL_PROP_BCLONEUSED, NULL,
346 brt_get_used(spa), src);
347 spa_prop_add_list(*nvp, ZPOOL_PROP_BCLONESAVED, NULL,
348 brt_get_saved(spa), src);
349 spa_prop_add_list(*nvp, ZPOOL_PROP_BCLONERATIO, NULL,
350 brt_get_ratio(spa), src);
351
352 spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL,
353 rvd->vdev_state, src);
354
355 version = spa_version(spa);
356 if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION)) {
357 spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL,
358 version, ZPROP_SRC_DEFAULT);
359 } else {
360 spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL,
361 version, ZPROP_SRC_LOCAL);
362 }
363 spa_prop_add_list(*nvp, ZPOOL_PROP_LOAD_GUID,
364 NULL, spa_load_guid(spa), src);
365 }
366
367 if (pool != NULL) {
368 /*
369 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS,
370 * when opening pools before this version freedir will be NULL.
371 */
372 if (pool->dp_free_dir != NULL) {
373 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL,
374 dsl_dir_phys(pool->dp_free_dir)->dd_used_bytes,
375 src);
376 } else {
377 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING,
378 NULL, 0, src);
379 }
380
381 if (pool->dp_leak_dir != NULL) {
382 spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED, NULL,
383 dsl_dir_phys(pool->dp_leak_dir)->dd_used_bytes,
384 src);
385 } else {
386 spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED,
387 NULL, 0, src);
388 }
389 }
390
391 spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
392
393 if (spa->spa_comment != NULL) {
394 spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment,
395 0, ZPROP_SRC_LOCAL);
396 }
397
398 if (spa->spa_compatibility != NULL) {
399 spa_prop_add_list(*nvp, ZPOOL_PROP_COMPATIBILITY,
400 spa->spa_compatibility, 0, ZPROP_SRC_LOCAL);
401 }
402
403 if (spa->spa_root != NULL)
404 spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root,
405 0, ZPROP_SRC_LOCAL);
406
407 if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) {
408 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
409 MIN(zfs_max_recordsize, SPA_MAXBLOCKSIZE), ZPROP_SRC_NONE);
410 } else {
411 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
412 SPA_OLD_MAXBLOCKSIZE, ZPROP_SRC_NONE);
413 }
414
415 if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_DNODE)) {
416 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXDNODESIZE, NULL,
417 DNODE_MAX_SIZE, ZPROP_SRC_NONE);
418 } else {
419 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXDNODESIZE, NULL,
420 DNODE_MIN_SIZE, ZPROP_SRC_NONE);
421 }
422
423 if ((dp = list_head(&spa->spa_config_list)) != NULL) {
424 if (dp->scd_path == NULL) {
425 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
426 "none", 0, ZPROP_SRC_LOCAL);
427 } else if (strcmp(dp->scd_path, spa_config_path) != 0) {
428 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
429 dp->scd_path, 0, ZPROP_SRC_LOCAL);
430 }
431 }
432 }
433
434 /*
435 * Get zpool property values.
436 */
437 int
438 spa_prop_get(spa_t *spa, nvlist_t **nvp)
439 {
440 objset_t *mos = spa->spa_meta_objset;
441 zap_cursor_t zc;
442 zap_attribute_t za;
443 dsl_pool_t *dp;
444 int err;
445
446 err = nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP);
447 if (err)
448 return (err);
449
450 dp = spa_get_dsl(spa);
451 dsl_pool_config_enter(dp, FTAG);
452 mutex_enter(&spa->spa_props_lock);
453
454 /*
455 * Get properties from the spa config.
456 */
457 spa_prop_get_config(spa, nvp);
458
459 /* If no pool property object, no more prop to get. */
460 if (mos == NULL || spa->spa_pool_props_object == 0)
461 goto out;
462
463 /*
464 * Get properties from the MOS pool property object.
465 */
466 for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
467 (err = zap_cursor_retrieve(&zc, &za)) == 0;
468 zap_cursor_advance(&zc)) {
469 uint64_t intval = 0;
470 char *strval = NULL;
471 zprop_source_t src = ZPROP_SRC_DEFAULT;
472 zpool_prop_t prop;
473
474 if ((prop = zpool_name_to_prop(za.za_name)) == ZPOOL_PROP_INVAL)
475 continue;
476
477 switch (za.za_integer_length) {
478 case 8:
479 /* integer property */
480 if (za.za_first_integer !=
481 zpool_prop_default_numeric(prop))
482 src = ZPROP_SRC_LOCAL;
483
484 if (prop == ZPOOL_PROP_BOOTFS) {
485 dsl_dataset_t *ds = NULL;
486
487 err = dsl_dataset_hold_obj(dp,
488 za.za_first_integer, FTAG, &ds);
489 if (err != 0)
490 break;
491
492 strval = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN,
493 KM_SLEEP);
494 dsl_dataset_name(ds, strval);
495 dsl_dataset_rele(ds, FTAG);
496 } else {
497 strval = NULL;
498 intval = za.za_first_integer;
499 }
500
501 spa_prop_add_list(*nvp, prop, strval, intval, src);
502
503 if (strval != NULL)
504 kmem_free(strval, ZFS_MAX_DATASET_NAME_LEN);
505
506 break;
507
508 case 1:
509 /* string property */
510 strval = kmem_alloc(za.za_num_integers, KM_SLEEP);
511 err = zap_lookup(mos, spa->spa_pool_props_object,
512 za.za_name, 1, za.za_num_integers, strval);
513 if (err) {
514 kmem_free(strval, za.za_num_integers);
515 break;
516 }
517 spa_prop_add_list(*nvp, prop, strval, 0, src);
518 kmem_free(strval, za.za_num_integers);
519 break;
520
521 default:
522 break;
523 }
524 }
525 zap_cursor_fini(&zc);
526 out:
527 mutex_exit(&spa->spa_props_lock);
528 dsl_pool_config_exit(dp, FTAG);
529 if (err && err != ENOENT) {
530 nvlist_free(*nvp);
531 *nvp = NULL;
532 return (err);
533 }
534
535 return (0);
536 }
537
538 /*
539 * Validate the given pool properties nvlist and modify the list
540 * for the property values to be set.
541 */
542 static int
543 spa_prop_validate(spa_t *spa, nvlist_t *props)
544 {
545 nvpair_t *elem;
546 int error = 0, reset_bootfs = 0;
547 uint64_t objnum = 0;
548 boolean_t has_feature = B_FALSE;
549
550 elem = NULL;
551 while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
552 uint64_t intval;
553 const char *strval, *slash, *check, *fname;
554 const char *propname = nvpair_name(elem);
555 zpool_prop_t prop = zpool_name_to_prop(propname);
556
557 switch (prop) {
558 case ZPOOL_PROP_INVAL:
559 if (!zpool_prop_feature(propname)) {
560 error = SET_ERROR(EINVAL);
561 break;
562 }
563
564 /*
565 * Sanitize the input.
566 */
567 if (nvpair_type(elem) != DATA_TYPE_UINT64) {
568 error = SET_ERROR(EINVAL);
569 break;
570 }
571
572 if (nvpair_value_uint64(elem, &intval) != 0) {
573 error = SET_ERROR(EINVAL);
574 break;
575 }
576
577 if (intval != 0) {
578 error = SET_ERROR(EINVAL);
579 break;
580 }
581
582 fname = strchr(propname, '@') + 1;
583 if (zfeature_lookup_name(fname, NULL) != 0) {
584 error = SET_ERROR(EINVAL);
585 break;
586 }
587
588 has_feature = B_TRUE;
589 break;
590
591 case ZPOOL_PROP_VERSION:
592 error = nvpair_value_uint64(elem, &intval);
593 if (!error &&
594 (intval < spa_version(spa) ||
595 intval > SPA_VERSION_BEFORE_FEATURES ||
596 has_feature))
597 error = SET_ERROR(EINVAL);
598 break;
599
600 case ZPOOL_PROP_DELEGATION:
601 case ZPOOL_PROP_AUTOREPLACE:
602 case ZPOOL_PROP_LISTSNAPS:
603 case ZPOOL_PROP_AUTOEXPAND:
604 case ZPOOL_PROP_AUTOTRIM:
605 error = nvpair_value_uint64(elem, &intval);
606 if (!error && intval > 1)
607 error = SET_ERROR(EINVAL);
608 break;
609
610 case ZPOOL_PROP_MULTIHOST:
611 error = nvpair_value_uint64(elem, &intval);
612 if (!error && intval > 1)
613 error = SET_ERROR(EINVAL);
614
615 if (!error) {
616 uint32_t hostid = zone_get_hostid(NULL);
617 if (hostid)
618 spa->spa_hostid = hostid;
619 else
620 error = SET_ERROR(ENOTSUP);
621 }
622
623 break;
624
625 case ZPOOL_PROP_BOOTFS:
626 /*
627 * If the pool version is less than SPA_VERSION_BOOTFS,
628 * or the pool is still being created (version == 0),
629 * the bootfs property cannot be set.
630 */
631 if (spa_version(spa) < SPA_VERSION_BOOTFS) {
632 error = SET_ERROR(ENOTSUP);
633 break;
634 }
635
636 /*
637 * Make sure the vdev config is bootable
638 */
639 if (!vdev_is_bootable(spa->spa_root_vdev)) {
640 error = SET_ERROR(ENOTSUP);
641 break;
642 }
643
644 reset_bootfs = 1;
645
646 error = nvpair_value_string(elem, &strval);
647
648 if (!error) {
649 objset_t *os;
650
651 if (strval == NULL || strval[0] == '\0') {
652 objnum = zpool_prop_default_numeric(
653 ZPOOL_PROP_BOOTFS);
654 break;
655 }
656
657 error = dmu_objset_hold(strval, FTAG, &os);
658 if (error != 0)
659 break;
660
661 /* Must be ZPL. */
662 if (dmu_objset_type(os) != DMU_OST_ZFS) {
663 error = SET_ERROR(ENOTSUP);
664 } else {
665 objnum = dmu_objset_id(os);
666 }
667 dmu_objset_rele(os, FTAG);
668 }
669 break;
670
671 case ZPOOL_PROP_FAILUREMODE:
672 error = nvpair_value_uint64(elem, &intval);
673 if (!error && intval > ZIO_FAILURE_MODE_PANIC)
674 error = SET_ERROR(EINVAL);
675
676 /*
677 * This is a special case which only occurs when
678 * the pool has completely failed. This allows
679 * the user to change the in-core failmode property
680 * without syncing it out to disk (I/Os might
681 * currently be blocked). We do this by returning
682 * EIO to the caller (spa_prop_set) to trick it
683 * into thinking we encountered a property validation
684 * error.
685 */
686 if (!error && spa_suspended(spa)) {
687 spa->spa_failmode = intval;
688 error = SET_ERROR(EIO);
689 }
690 break;
691
692 case ZPOOL_PROP_CACHEFILE:
693 if ((error = nvpair_value_string(elem, &strval)) != 0)
694 break;
695
696 if (strval[0] == '\0')
697 break;
698
699 if (strcmp(strval, "none") == 0)
700 break;
701
702 if (strval[0] != '/') {
703 error = SET_ERROR(EINVAL);
704 break;
705 }
706
707 slash = strrchr(strval, '/');
708 ASSERT(slash != NULL);
709
710 if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
711 strcmp(slash, "/..") == 0)
712 error = SET_ERROR(EINVAL);
713 break;
714
715 case ZPOOL_PROP_COMMENT:
716 if ((error = nvpair_value_string(elem, &strval)) != 0)
717 break;
718 for (check = strval; *check != '\0'; check++) {
719 if (!isprint(*check)) {
720 error = SET_ERROR(EINVAL);
721 break;
722 }
723 }
724 if (strlen(strval) > ZPROP_MAX_COMMENT)
725 error = SET_ERROR(E2BIG);
726 break;
727
728 default:
729 break;
730 }
731
732 if (error)
733 break;
734 }
735
736 (void) nvlist_remove_all(props,
737 zpool_prop_to_name(ZPOOL_PROP_DEDUPDITTO));
738
739 if (!error && reset_bootfs) {
740 error = nvlist_remove(props,
741 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
742
743 if (!error) {
744 error = nvlist_add_uint64(props,
745 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
746 }
747 }
748
749 return (error);
750 }
751
752 void
753 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync)
754 {
755 const char *cachefile;
756 spa_config_dirent_t *dp;
757
758 if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE),
759 &cachefile) != 0)
760 return;
761
762 dp = kmem_alloc(sizeof (spa_config_dirent_t),
763 KM_SLEEP);
764
765 if (cachefile[0] == '\0')
766 dp->scd_path = spa_strdup(spa_config_path);
767 else if (strcmp(cachefile, "none") == 0)
768 dp->scd_path = NULL;
769 else
770 dp->scd_path = spa_strdup(cachefile);
771
772 list_insert_head(&spa->spa_config_list, dp);
773 if (need_sync)
774 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
775 }
776
777 int
778 spa_prop_set(spa_t *spa, nvlist_t *nvp)
779 {
780 int error;
781 nvpair_t *elem = NULL;
782 boolean_t need_sync = B_FALSE;
783
784 if ((error = spa_prop_validate(spa, nvp)) != 0)
785 return (error);
786
787 while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) {
788 zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem));
789
790 if (prop == ZPOOL_PROP_CACHEFILE ||
791 prop == ZPOOL_PROP_ALTROOT ||
792 prop == ZPOOL_PROP_READONLY)
793 continue;
794
795 if (prop == ZPOOL_PROP_VERSION || prop == ZPOOL_PROP_INVAL) {
796 uint64_t ver = 0;
797
798 if (prop == ZPOOL_PROP_VERSION) {
799 VERIFY(nvpair_value_uint64(elem, &ver) == 0);
800 } else {
801 ASSERT(zpool_prop_feature(nvpair_name(elem)));
802 ver = SPA_VERSION_FEATURES;
803 need_sync = B_TRUE;
804 }
805
806 /* Save time if the version is already set. */
807 if (ver == spa_version(spa))
808 continue;
809
810 /*
811 * In addition to the pool directory object, we might
812 * create the pool properties object, the features for
813 * read object, the features for write object, or the
814 * feature descriptions object.
815 */
816 error = dsl_sync_task(spa->spa_name, NULL,
817 spa_sync_version, &ver,
818 6, ZFS_SPACE_CHECK_RESERVED);
819 if (error)
820 return (error);
821 continue;
822 }
823
824 need_sync = B_TRUE;
825 break;
826 }
827
828 if (need_sync) {
829 return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props,
830 nvp, 6, ZFS_SPACE_CHECK_RESERVED));
831 }
832
833 return (0);
834 }
835
836 /*
837 * If the bootfs property value is dsobj, clear it.
838 */
839 void
840 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
841 {
842 if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
843 VERIFY(zap_remove(spa->spa_meta_objset,
844 spa->spa_pool_props_object,
845 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
846 spa->spa_bootfs = 0;
847 }
848 }
849
850 static int
851 spa_change_guid_check(void *arg, dmu_tx_t *tx)
852 {
853 uint64_t *newguid __maybe_unused = arg;
854 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
855 vdev_t *rvd = spa->spa_root_vdev;
856 uint64_t vdev_state;
857
858 if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
859 int error = (spa_has_checkpoint(spa)) ?
860 ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
861 return (SET_ERROR(error));
862 }
863
864 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
865 vdev_state = rvd->vdev_state;
866 spa_config_exit(spa, SCL_STATE, FTAG);
867
868 if (vdev_state != VDEV_STATE_HEALTHY)
869 return (SET_ERROR(ENXIO));
870
871 ASSERT3U(spa_guid(spa), !=, *newguid);
872
873 return (0);
874 }
875
876 static void
877 spa_change_guid_sync(void *arg, dmu_tx_t *tx)
878 {
879 uint64_t *newguid = arg;
880 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
881 uint64_t oldguid;
882 vdev_t *rvd = spa->spa_root_vdev;
883
884 oldguid = spa_guid(spa);
885
886 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
887 rvd->vdev_guid = *newguid;
888 rvd->vdev_guid_sum += (*newguid - oldguid);
889 vdev_config_dirty(rvd);
890 spa_config_exit(spa, SCL_STATE, FTAG);
891
892 spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu",
893 (u_longlong_t)oldguid, (u_longlong_t)*newguid);
894 }
895
896 /*
897 * Change the GUID for the pool. This is done so that we can later
898 * re-import a pool built from a clone of our own vdevs. We will modify
899 * the root vdev's guid, our own pool guid, and then mark all of our
900 * vdevs dirty. Note that we must make sure that all our vdevs are
901 * online when we do this, or else any vdevs that weren't present
902 * would be orphaned from our pool. We are also going to issue a
903 * sysevent to update any watchers.
904 */
905 int
906 spa_change_guid(spa_t *spa)
907 {
908 int error;
909 uint64_t guid;
910
911 mutex_enter(&spa->spa_vdev_top_lock);
912 mutex_enter(&spa_namespace_lock);
913 guid = spa_generate_guid(NULL);
914
915 error = dsl_sync_task(spa->spa_name, spa_change_guid_check,
916 spa_change_guid_sync, &guid, 5, ZFS_SPACE_CHECK_RESERVED);
917
918 if (error == 0) {
919 /*
920 * Clear the kobj flag from all the vdevs to allow
921 * vdev_cache_process_kobj_evt() to post events to all the
922 * vdevs since GUID is updated.
923 */
924 vdev_clear_kobj_evt(spa->spa_root_vdev);
925 for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
926 vdev_clear_kobj_evt(spa->spa_l2cache.sav_vdevs[i]);
927
928 spa_write_cachefile(spa, B_FALSE, B_TRUE, B_TRUE);
929 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_REGUID);
930 }
931
932 mutex_exit(&spa_namespace_lock);
933 mutex_exit(&spa->spa_vdev_top_lock);
934
935 return (error);
936 }
937
938 /*
939 * ==========================================================================
940 * SPA state manipulation (open/create/destroy/import/export)
941 * ==========================================================================
942 */
943
944 static int
945 spa_error_entry_compare(const void *a, const void *b)
946 {
947 const spa_error_entry_t *sa = (const spa_error_entry_t *)a;
948 const spa_error_entry_t *sb = (const spa_error_entry_t *)b;
949 int ret;
950
951 ret = memcmp(&sa->se_bookmark, &sb->se_bookmark,
952 sizeof (zbookmark_phys_t));
953
954 return (TREE_ISIGN(ret));
955 }
956
957 /*
958 * Utility function which retrieves copies of the current logs and
959 * re-initializes them in the process.
960 */
961 void
962 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
963 {
964 ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
965
966 memcpy(last, &spa->spa_errlist_last, sizeof (avl_tree_t));
967 memcpy(scrub, &spa->spa_errlist_scrub, sizeof (avl_tree_t));
968
969 avl_create(&spa->spa_errlist_scrub,
970 spa_error_entry_compare, sizeof (spa_error_entry_t),
971 offsetof(spa_error_entry_t, se_avl));
972 avl_create(&spa->spa_errlist_last,
973 spa_error_entry_compare, sizeof (spa_error_entry_t),
974 offsetof(spa_error_entry_t, se_avl));
975 }
976
977 static void
978 spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
979 {
980 const zio_taskq_info_t *ztip = &zio_taskqs[t][q];
981 enum zti_modes mode = ztip->zti_mode;
982 uint_t value = ztip->zti_value;
983 uint_t count = ztip->zti_count;
984 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
985 uint_t cpus, flags = TASKQ_DYNAMIC;
986 boolean_t batch = B_FALSE;
987
988 switch (mode) {
989 case ZTI_MODE_FIXED:
990 ASSERT3U(value, >, 0);
991 break;
992
993 case ZTI_MODE_BATCH:
994 batch = B_TRUE;
995 flags |= TASKQ_THREADS_CPU_PCT;
996 value = MIN(zio_taskq_batch_pct, 100);
997 break;
998
999 case ZTI_MODE_SCALE:
1000 flags |= TASKQ_THREADS_CPU_PCT;
1001 /*
1002 * We want more taskqs to reduce lock contention, but we want
1003 * less for better request ordering and CPU utilization.
1004 */
1005 cpus = MAX(1, boot_ncpus * zio_taskq_batch_pct / 100);
1006 if (zio_taskq_batch_tpq > 0) {
1007 count = MAX(1, (cpus + zio_taskq_batch_tpq / 2) /
1008 zio_taskq_batch_tpq);
1009 } else {
1010 /*
1011 * Prefer 6 threads per taskq, but no more taskqs
1012 * than threads in them on large systems. For 80%:
1013 *
1014 * taskq taskq total
1015 * cpus taskqs percent threads threads
1016 * ------- ------- ------- ------- -------
1017 * 1 1 80% 1 1
1018 * 2 1 80% 1 1
1019 * 4 1 80% 3 3
1020 * 8 2 40% 3 6
1021 * 16 3 27% 4 12
1022 * 32 5 16% 5 25
1023 * 64 7 11% 7 49
1024 * 128 10 8% 10 100
1025 * 256 14 6% 15 210
1026 */
1027 count = 1 + cpus / 6;
1028 while (count * count > cpus)
1029 count--;
1030 }
1031 /* Limit each taskq within 100% to not trigger assertion. */
1032 count = MAX(count, (zio_taskq_batch_pct + 99) / 100);
1033 value = (zio_taskq_batch_pct + count / 2) / count;
1034 break;
1035
1036 case ZTI_MODE_NULL:
1037 tqs->stqs_count = 0;
1038 tqs->stqs_taskq = NULL;
1039 return;
1040
1041 default:
1042 panic("unrecognized mode for %s_%s taskq (%u:%u) in "
1043 "spa_activate()",
1044 zio_type_name[t], zio_taskq_types[q], mode, value);
1045 break;
1046 }
1047
1048 ASSERT3U(count, >, 0);
1049 tqs->stqs_count = count;
1050 tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP);
1051
1052 for (uint_t i = 0; i < count; i++) {
1053 taskq_t *tq;
1054 char name[32];
1055
1056 if (count > 1)
1057 (void) snprintf(name, sizeof (name), "%s_%s_%u",
1058 zio_type_name[t], zio_taskq_types[q], i);
1059 else
1060 (void) snprintf(name, sizeof (name), "%s_%s",
1061 zio_type_name[t], zio_taskq_types[q]);
1062
1063 if (zio_taskq_sysdc && spa->spa_proc != &p0) {
1064 if (batch)
1065 flags |= TASKQ_DC_BATCH;
1066
1067 (void) zio_taskq_basedc;
1068 tq = taskq_create_sysdc(name, value, 50, INT_MAX,
1069 spa->spa_proc, zio_taskq_basedc, flags);
1070 } else {
1071 pri_t pri = maxclsyspri;
1072 /*
1073 * The write issue taskq can be extremely CPU
1074 * intensive. Run it at slightly less important
1075 * priority than the other taskqs.
1076 *
1077 * Under Linux and FreeBSD this means incrementing
1078 * the priority value as opposed to platforms like
1079 * illumos where it should be decremented.
1080 *
1081 * On FreeBSD, if priorities divided by four (RQ_PPQ)
1082 * are equal then a difference between them is
1083 * insignificant.
1084 */
1085 if (t == ZIO_TYPE_WRITE && q == ZIO_TASKQ_ISSUE) {
1086 #if defined(__linux__)
1087 pri++;
1088 #elif defined(__FreeBSD__)
1089 pri += 4;
1090 #else
1091 #error "unknown OS"
1092 #endif
1093 }
1094 tq = taskq_create_proc(name, value, pri, 50,
1095 INT_MAX, spa->spa_proc, flags);
1096 }
1097
1098 tqs->stqs_taskq[i] = tq;
1099 }
1100 }
1101
1102 static void
1103 spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
1104 {
1105 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1106
1107 if (tqs->stqs_taskq == NULL) {
1108 ASSERT3U(tqs->stqs_count, ==, 0);
1109 return;
1110 }
1111
1112 for (uint_t i = 0; i < tqs->stqs_count; i++) {
1113 ASSERT3P(tqs->stqs_taskq[i], !=, NULL);
1114 taskq_destroy(tqs->stqs_taskq[i]);
1115 }
1116
1117 kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *));
1118 tqs->stqs_taskq = NULL;
1119 }
1120
1121 /*
1122 * Dispatch a task to the appropriate taskq for the ZFS I/O type and priority.
1123 * Note that a type may have multiple discrete taskqs to avoid lock contention
1124 * on the taskq itself. In that case we choose which taskq at random by using
1125 * the low bits of gethrtime().
1126 */
1127 void
1128 spa_taskq_dispatch_ent(spa_t *spa, zio_type_t t, zio_taskq_type_t q,
1129 task_func_t *func, void *arg, uint_t flags, taskq_ent_t *ent)
1130 {
1131 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1132 taskq_t *tq;
1133
1134 ASSERT3P(tqs->stqs_taskq, !=, NULL);
1135 ASSERT3U(tqs->stqs_count, !=, 0);
1136
1137 if (tqs->stqs_count == 1) {
1138 tq = tqs->stqs_taskq[0];
1139 } else {
1140 tq = tqs->stqs_taskq[((uint64_t)gethrtime()) % tqs->stqs_count];
1141 }
1142
1143 taskq_dispatch_ent(tq, func, arg, flags, ent);
1144 }
1145
1146 /*
1147 * Same as spa_taskq_dispatch_ent() but block on the task until completion.
1148 */
1149 void
1150 spa_taskq_dispatch_sync(spa_t *spa, zio_type_t t, zio_taskq_type_t q,
1151 task_func_t *func, void *arg, uint_t flags)
1152 {
1153 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1154 taskq_t *tq;
1155 taskqid_t id;
1156
1157 ASSERT3P(tqs->stqs_taskq, !=, NULL);
1158 ASSERT3U(tqs->stqs_count, !=, 0);
1159
1160 if (tqs->stqs_count == 1) {
1161 tq = tqs->stqs_taskq[0];
1162 } else {
1163 tq = tqs->stqs_taskq[((uint64_t)gethrtime()) % tqs->stqs_count];
1164 }
1165
1166 id = taskq_dispatch(tq, func, arg, flags);
1167 if (id)
1168 taskq_wait_id(tq, id);
1169 }
1170
1171 static void
1172 spa_create_zio_taskqs(spa_t *spa)
1173 {
1174 for (int t = 0; t < ZIO_TYPES; t++) {
1175 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1176 spa_taskqs_init(spa, t, q);
1177 }
1178 }
1179 }
1180
1181 /*
1182 * Disabled until spa_thread() can be adapted for Linux.
1183 */
1184 #undef HAVE_SPA_THREAD
1185
1186 #if defined(_KERNEL) && defined(HAVE_SPA_THREAD)
1187 static void
1188 spa_thread(void *arg)
1189 {
1190 psetid_t zio_taskq_psrset_bind = PS_NONE;
1191 callb_cpr_t cprinfo;
1192
1193 spa_t *spa = arg;
1194 user_t *pu = PTOU(curproc);
1195
1196 CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr,
1197 spa->spa_name);
1198
1199 ASSERT(curproc != &p0);
1200 (void) snprintf(pu->u_psargs, sizeof (pu->u_psargs),
1201 "zpool-%s", spa->spa_name);
1202 (void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm));
1203
1204 /* bind this thread to the requested psrset */
1205 if (zio_taskq_psrset_bind != PS_NONE) {
1206 pool_lock();
1207 mutex_enter(&cpu_lock);
1208 mutex_enter(&pidlock);
1209 mutex_enter(&curproc->p_lock);
1210
1211 if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind,
1212 0, NULL, NULL) == 0) {
1213 curthread->t_bind_pset = zio_taskq_psrset_bind;
1214 } else {
1215 cmn_err(CE_WARN,
1216 "Couldn't bind process for zfs pool \"%s\" to "
1217 "pset %d\n", spa->spa_name, zio_taskq_psrset_bind);
1218 }
1219
1220 mutex_exit(&curproc->p_lock);
1221 mutex_exit(&pidlock);
1222 mutex_exit(&cpu_lock);
1223 pool_unlock();
1224 }
1225
1226 if (zio_taskq_sysdc) {
1227 sysdc_thread_enter(curthread, 100, 0);
1228 }
1229
1230 spa->spa_proc = curproc;
1231 spa->spa_did = curthread->t_did;
1232
1233 spa_create_zio_taskqs(spa);
1234
1235 mutex_enter(&spa->spa_proc_lock);
1236 ASSERT(spa->spa_proc_state == SPA_PROC_CREATED);
1237
1238 spa->spa_proc_state = SPA_PROC_ACTIVE;
1239 cv_broadcast(&spa->spa_proc_cv);
1240
1241 CALLB_CPR_SAFE_BEGIN(&cprinfo);
1242 while (spa->spa_proc_state == SPA_PROC_ACTIVE)
1243 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1244 CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock);
1245
1246 ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE);
1247 spa->spa_proc_state = SPA_PROC_GONE;
1248 spa->spa_proc = &p0;
1249 cv_broadcast(&spa->spa_proc_cv);
1250 CALLB_CPR_EXIT(&cprinfo); /* drops spa_proc_lock */
1251
1252 mutex_enter(&curproc->p_lock);
1253 lwp_exit();
1254 }
1255 #endif
1256
1257 /*
1258 * Activate an uninitialized pool.
1259 */
1260 static void
1261 spa_activate(spa_t *spa, spa_mode_t mode)
1262 {
1263 ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
1264
1265 spa->spa_state = POOL_STATE_ACTIVE;
1266 spa->spa_mode = mode;
1267 spa->spa_read_spacemaps = spa_mode_readable_spacemaps;
1268
1269 spa->spa_normal_class = metaslab_class_create(spa, &zfs_metaslab_ops);
1270 spa->spa_log_class = metaslab_class_create(spa, &zfs_metaslab_ops);
1271 spa->spa_embedded_log_class =
1272 metaslab_class_create(spa, &zfs_metaslab_ops);
1273 spa->spa_special_class = metaslab_class_create(spa, &zfs_metaslab_ops);
1274 spa->spa_dedup_class = metaslab_class_create(spa, &zfs_metaslab_ops);
1275
1276 /* Try to create a covering process */
1277 mutex_enter(&spa->spa_proc_lock);
1278 ASSERT(spa->spa_proc_state == SPA_PROC_NONE);
1279 ASSERT(spa->spa_proc == &p0);
1280 spa->spa_did = 0;
1281
1282 (void) spa_create_process;
1283 #ifdef HAVE_SPA_THREAD
1284 /* Only create a process if we're going to be around a while. */
1285 if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) {
1286 if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri,
1287 NULL, 0) == 0) {
1288 spa->spa_proc_state = SPA_PROC_CREATED;
1289 while (spa->spa_proc_state == SPA_PROC_CREATED) {
1290 cv_wait(&spa->spa_proc_cv,
1291 &spa->spa_proc_lock);
1292 }
1293 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1294 ASSERT(spa->spa_proc != &p0);
1295 ASSERT(spa->spa_did != 0);
1296 } else {
1297 #ifdef _KERNEL
1298 cmn_err(CE_WARN,
1299 "Couldn't create process for zfs pool \"%s\"\n",
1300 spa->spa_name);
1301 #endif
1302 }
1303 }
1304 #endif /* HAVE_SPA_THREAD */
1305 mutex_exit(&spa->spa_proc_lock);
1306
1307 /* If we didn't create a process, we need to create our taskqs. */
1308 if (spa->spa_proc == &p0) {
1309 spa_create_zio_taskqs(spa);
1310 }
1311
1312 for (size_t i = 0; i < TXG_SIZE; i++) {
1313 spa->spa_txg_zio[i] = zio_root(spa, NULL, NULL,
1314 ZIO_FLAG_CANFAIL);
1315 }
1316
1317 list_create(&spa->spa_config_dirty_list, sizeof (vdev_t),
1318 offsetof(vdev_t, vdev_config_dirty_node));
1319 list_create(&spa->spa_evicting_os_list, sizeof (objset_t),
1320 offsetof(objset_t, os_evicting_node));
1321 list_create(&spa->spa_state_dirty_list, sizeof (vdev_t),
1322 offsetof(vdev_t, vdev_state_dirty_node));
1323
1324 txg_list_create(&spa->spa_vdev_txg_list, spa,
1325 offsetof(struct vdev, vdev_txg_node));
1326
1327 avl_create(&spa->spa_errlist_scrub,
1328 spa_error_entry_compare, sizeof (spa_error_entry_t),
1329 offsetof(spa_error_entry_t, se_avl));
1330 avl_create(&spa->spa_errlist_last,
1331 spa_error_entry_compare, sizeof (spa_error_entry_t),
1332 offsetof(spa_error_entry_t, se_avl));
1333 avl_create(&spa->spa_errlist_healed,
1334 spa_error_entry_compare, sizeof (spa_error_entry_t),
1335 offsetof(spa_error_entry_t, se_avl));
1336
1337 spa_activate_os(spa);
1338
1339 spa_keystore_init(&spa->spa_keystore);
1340
1341 /*
1342 * This taskq is used to perform zvol-minor-related tasks
1343 * asynchronously. This has several advantages, including easy
1344 * resolution of various deadlocks.
1345 *
1346 * The taskq must be single threaded to ensure tasks are always
1347 * processed in the order in which they were dispatched.
1348 *
1349 * A taskq per pool allows one to keep the pools independent.
1350 * This way if one pool is suspended, it will not impact another.
1351 *
1352 * The preferred location to dispatch a zvol minor task is a sync
1353 * task. In this context, there is easy access to the spa_t and minimal
1354 * error handling is required because the sync task must succeed.
1355 */
1356 spa->spa_zvol_taskq = taskq_create("z_zvol", 1, defclsyspri,
1357 1, INT_MAX, 0);
1358
1359 /*
1360 * Taskq dedicated to prefetcher threads: this is used to prevent the
1361 * pool traverse code from monopolizing the global (and limited)
1362 * system_taskq by inappropriately scheduling long running tasks on it.
1363 */
1364 spa->spa_prefetch_taskq = taskq_create("z_prefetch", 100,
1365 defclsyspri, 1, INT_MAX, TASKQ_DYNAMIC | TASKQ_THREADS_CPU_PCT);
1366
1367 /*
1368 * The taskq to upgrade datasets in this pool. Currently used by
1369 * feature SPA_FEATURE_USEROBJ_ACCOUNTING/SPA_FEATURE_PROJECT_QUOTA.
1370 */
1371 spa->spa_upgrade_taskq = taskq_create("z_upgrade", 100,
1372 defclsyspri, 1, INT_MAX, TASKQ_DYNAMIC | TASKQ_THREADS_CPU_PCT);
1373 }
1374
1375 /*
1376 * Opposite of spa_activate().
1377 */
1378 static void
1379 spa_deactivate(spa_t *spa)
1380 {
1381 ASSERT(spa->spa_sync_on == B_FALSE);
1382 ASSERT(spa->spa_dsl_pool == NULL);
1383 ASSERT(spa->spa_root_vdev == NULL);
1384 ASSERT(spa->spa_async_zio_root == NULL);
1385 ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
1386
1387 spa_evicting_os_wait(spa);
1388
1389 if (spa->spa_zvol_taskq) {
1390 taskq_destroy(spa->spa_zvol_taskq);
1391 spa->spa_zvol_taskq = NULL;
1392 }
1393
1394 if (spa->spa_prefetch_taskq) {
1395 taskq_destroy(spa->spa_prefetch_taskq);
1396 spa->spa_prefetch_taskq = NULL;
1397 }
1398
1399 if (spa->spa_upgrade_taskq) {
1400 taskq_destroy(spa->spa_upgrade_taskq);
1401 spa->spa_upgrade_taskq = NULL;
1402 }
1403
1404 txg_list_destroy(&spa->spa_vdev_txg_list);
1405
1406 list_destroy(&spa->spa_config_dirty_list);
1407 list_destroy(&spa->spa_evicting_os_list);
1408 list_destroy(&spa->spa_state_dirty_list);
1409
1410 taskq_cancel_id(system_delay_taskq, spa->spa_deadman_tqid);
1411
1412 for (int t = 0; t < ZIO_TYPES; t++) {
1413 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1414 spa_taskqs_fini(spa, t, q);
1415 }
1416 }
1417
1418 for (size_t i = 0; i < TXG_SIZE; i++) {
1419 ASSERT3P(spa->spa_txg_zio[i], !=, NULL);
1420 VERIFY0(zio_wait(spa->spa_txg_zio[i]));
1421 spa->spa_txg_zio[i] = NULL;
1422 }
1423
1424 metaslab_class_destroy(spa->spa_normal_class);
1425 spa->spa_normal_class = NULL;
1426
1427 metaslab_class_destroy(spa->spa_log_class);
1428 spa->spa_log_class = NULL;
1429
1430 metaslab_class_destroy(spa->spa_embedded_log_class);
1431 spa->spa_embedded_log_class = NULL;
1432
1433 metaslab_class_destroy(spa->spa_special_class);
1434 spa->spa_special_class = NULL;
1435
1436 metaslab_class_destroy(spa->spa_dedup_class);
1437 spa->spa_dedup_class = NULL;
1438
1439 /*
1440 * If this was part of an import or the open otherwise failed, we may
1441 * still have errors left in the queues. Empty them just in case.
1442 */
1443 spa_errlog_drain(spa);
1444 avl_destroy(&spa->spa_errlist_scrub);
1445 avl_destroy(&spa->spa_errlist_last);
1446 avl_destroy(&spa->spa_errlist_healed);
1447
1448 spa_keystore_fini(&spa->spa_keystore);
1449
1450 spa->spa_state = POOL_STATE_UNINITIALIZED;
1451
1452 mutex_enter(&spa->spa_proc_lock);
1453 if (spa->spa_proc_state != SPA_PROC_NONE) {
1454 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1455 spa->spa_proc_state = SPA_PROC_DEACTIVATE;
1456 cv_broadcast(&spa->spa_proc_cv);
1457 while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) {
1458 ASSERT(spa->spa_proc != &p0);
1459 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1460 }
1461 ASSERT(spa->spa_proc_state == SPA_PROC_GONE);
1462 spa->spa_proc_state = SPA_PROC_NONE;
1463 }
1464 ASSERT(spa->spa_proc == &p0);
1465 mutex_exit(&spa->spa_proc_lock);
1466
1467 /*
1468 * We want to make sure spa_thread() has actually exited the ZFS
1469 * module, so that the module can't be unloaded out from underneath
1470 * it.
1471 */
1472 if (spa->spa_did != 0) {
1473 thread_join(spa->spa_did);
1474 spa->spa_did = 0;
1475 }
1476
1477 spa_deactivate_os(spa);
1478
1479 }
1480
1481 /*
1482 * Verify a pool configuration, and construct the vdev tree appropriately. This
1483 * will create all the necessary vdevs in the appropriate layout, with each vdev
1484 * in the CLOSED state. This will prep the pool before open/creation/import.
1485 * All vdev validation is done by the vdev_alloc() routine.
1486 */
1487 int
1488 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
1489 uint_t id, int atype)
1490 {
1491 nvlist_t **child;
1492 uint_t children;
1493 int error;
1494
1495 if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
1496 return (error);
1497
1498 if ((*vdp)->vdev_ops->vdev_op_leaf)
1499 return (0);
1500
1501 error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1502 &child, &children);
1503
1504 if (error == ENOENT)
1505 return (0);
1506
1507 if (error) {
1508 vdev_free(*vdp);
1509 *vdp = NULL;
1510 return (SET_ERROR(EINVAL));
1511 }
1512
1513 for (int c = 0; c < children; c++) {
1514 vdev_t *vd;
1515 if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
1516 atype)) != 0) {
1517 vdev_free(*vdp);
1518 *vdp = NULL;
1519 return (error);
1520 }
1521 }
1522
1523 ASSERT(*vdp != NULL);
1524
1525 return (0);
1526 }
1527
1528 static boolean_t
1529 spa_should_flush_logs_on_unload(spa_t *spa)
1530 {
1531 if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP))
1532 return (B_FALSE);
1533
1534 if (!spa_writeable(spa))
1535 return (B_FALSE);
1536
1537 if (!spa->spa_sync_on)
1538 return (B_FALSE);
1539
1540 if (spa_state(spa) != POOL_STATE_EXPORTED)
1541 return (B_FALSE);
1542
1543 if (zfs_keep_log_spacemaps_at_export)
1544 return (B_FALSE);
1545
1546 return (B_TRUE);
1547 }
1548
1549 /*
1550 * Opens a transaction that will set the flag that will instruct
1551 * spa_sync to attempt to flush all the metaslabs for that txg.
1552 */
1553 static void
1554 spa_unload_log_sm_flush_all(spa_t *spa)
1555 {
1556 dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
1557 VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
1558
1559 ASSERT3U(spa->spa_log_flushall_txg, ==, 0);
1560 spa->spa_log_flushall_txg = dmu_tx_get_txg(tx);
1561
1562 dmu_tx_commit(tx);
1563 txg_wait_synced(spa_get_dsl(spa), spa->spa_log_flushall_txg);
1564 }
1565
1566 static void
1567 spa_unload_log_sm_metadata(spa_t *spa)
1568 {
1569 void *cookie = NULL;
1570 spa_log_sm_t *sls;
1571 while ((sls = avl_destroy_nodes(&spa->spa_sm_logs_by_txg,
1572 &cookie)) != NULL) {
1573 VERIFY0(sls->sls_mscount);
1574 kmem_free(sls, sizeof (spa_log_sm_t));
1575 }
1576
1577 for (log_summary_entry_t *e = list_head(&spa->spa_log_summary);
1578 e != NULL; e = list_head(&spa->spa_log_summary)) {
1579 VERIFY0(e->lse_mscount);
1580 list_remove(&spa->spa_log_summary, e);
1581 kmem_free(e, sizeof (log_summary_entry_t));
1582 }
1583
1584 spa->spa_unflushed_stats.sus_nblocks = 0;
1585 spa->spa_unflushed_stats.sus_memused = 0;
1586 spa->spa_unflushed_stats.sus_blocklimit = 0;
1587 }
1588
1589 static void
1590 spa_destroy_aux_threads(spa_t *spa)
1591 {
1592 if (spa->spa_condense_zthr != NULL) {
1593 zthr_destroy(spa->spa_condense_zthr);
1594 spa->spa_condense_zthr = NULL;
1595 }
1596 if (spa->spa_checkpoint_discard_zthr != NULL) {
1597 zthr_destroy(spa->spa_checkpoint_discard_zthr);
1598 spa->spa_checkpoint_discard_zthr = NULL;
1599 }
1600 if (spa->spa_livelist_delete_zthr != NULL) {
1601 zthr_destroy(spa->spa_livelist_delete_zthr);
1602 spa->spa_livelist_delete_zthr = NULL;
1603 }
1604 if (spa->spa_livelist_condense_zthr != NULL) {
1605 zthr_destroy(spa->spa_livelist_condense_zthr);
1606 spa->spa_livelist_condense_zthr = NULL;
1607 }
1608 }
1609
1610 /*
1611 * Opposite of spa_load().
1612 */
1613 static void
1614 spa_unload(spa_t *spa)
1615 {
1616 ASSERT(MUTEX_HELD(&spa_namespace_lock));
1617 ASSERT(spa_state(spa) != POOL_STATE_UNINITIALIZED);
1618
1619 spa_import_progress_remove(spa_guid(spa));
1620 spa_load_note(spa, "UNLOADING");
1621
1622 spa_wake_waiters(spa);
1623
1624 /*
1625 * If we have set the spa_final_txg, we have already performed the
1626 * tasks below in spa_export_common(). We should not redo it here since
1627 * we delay the final TXGs beyond what spa_final_txg is set at.
1628 */
1629 if (spa->spa_final_txg == UINT64_MAX) {
1630 /*
1631 * If the log space map feature is enabled and the pool is
1632 * getting exported (but not destroyed), we want to spend some
1633 * time flushing as many metaslabs as we can in an attempt to
1634 * destroy log space maps and save import time.
1635 */
1636 if (spa_should_flush_logs_on_unload(spa))
1637 spa_unload_log_sm_flush_all(spa);
1638
1639 /*
1640 * Stop async tasks.
1641 */
1642 spa_async_suspend(spa);
1643
1644 if (spa->spa_root_vdev) {
1645 vdev_t *root_vdev = spa->spa_root_vdev;
1646 vdev_initialize_stop_all(root_vdev,
1647 VDEV_INITIALIZE_ACTIVE);
1648 vdev_trim_stop_all(root_vdev, VDEV_TRIM_ACTIVE);
1649 vdev_autotrim_stop_all(spa);
1650 vdev_rebuild_stop_all(spa);
1651 }
1652 }
1653
1654 /*
1655 * Stop syncing.
1656 */
1657 if (spa->spa_sync_on) {
1658 txg_sync_stop(spa->spa_dsl_pool);
1659 spa->spa_sync_on = B_FALSE;
1660 }
1661
1662 /*
1663 * This ensures that there is no async metaslab prefetching
1664 * while we attempt to unload the spa.
1665 */
1666 if (spa->spa_root_vdev != NULL) {
1667 for (int c = 0; c < spa->spa_root_vdev->vdev_children; c++) {
1668 vdev_t *vc = spa->spa_root_vdev->vdev_child[c];
1669 if (vc->vdev_mg != NULL)
1670 taskq_wait(vc->vdev_mg->mg_taskq);
1671 }
1672 }
1673
1674 if (spa->spa_mmp.mmp_thread)
1675 mmp_thread_stop(spa);
1676
1677 /*
1678 * Wait for any outstanding async I/O to complete.
1679 */
1680 if (spa->spa_async_zio_root != NULL) {
1681 for (int i = 0; i < max_ncpus; i++)
1682 (void) zio_wait(spa->spa_async_zio_root[i]);
1683 kmem_free(spa->spa_async_zio_root, max_ncpus * sizeof (void *));
1684 spa->spa_async_zio_root = NULL;
1685 }
1686
1687 if (spa->spa_vdev_removal != NULL) {
1688 spa_vdev_removal_destroy(spa->spa_vdev_removal);
1689 spa->spa_vdev_removal = NULL;
1690 }
1691
1692 spa_destroy_aux_threads(spa);
1693
1694 spa_condense_fini(spa);
1695
1696 bpobj_close(&spa->spa_deferred_bpobj);
1697
1698 spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
1699
1700 /*
1701 * Close all vdevs.
1702 */
1703 if (spa->spa_root_vdev)
1704 vdev_free(spa->spa_root_vdev);
1705 ASSERT(spa->spa_root_vdev == NULL);
1706
1707 /*
1708 * Close the dsl pool.
1709 */
1710 if (spa->spa_dsl_pool) {
1711 dsl_pool_close(spa->spa_dsl_pool);
1712 spa->spa_dsl_pool = NULL;
1713 spa->spa_meta_objset = NULL;
1714 }
1715
1716 ddt_unload(spa);
1717 brt_unload(spa);
1718 spa_unload_log_sm_metadata(spa);
1719
1720 /*
1721 * Drop and purge level 2 cache
1722 */
1723 spa_l2cache_drop(spa);
1724
1725 if (spa->spa_spares.sav_vdevs) {
1726 for (int i = 0; i < spa->spa_spares.sav_count; i++)
1727 vdev_free(spa->spa_spares.sav_vdevs[i]);
1728 kmem_free(spa->spa_spares.sav_vdevs,
1729 spa->spa_spares.sav_count * sizeof (void *));
1730 spa->spa_spares.sav_vdevs = NULL;
1731 }
1732 if (spa->spa_spares.sav_config) {
1733 nvlist_free(spa->spa_spares.sav_config);
1734 spa->spa_spares.sav_config = NULL;
1735 }
1736 spa->spa_spares.sav_count = 0;
1737
1738 if (spa->spa_l2cache.sav_vdevs) {
1739 for (int i = 0; i < spa->spa_l2cache.sav_count; i++) {
1740 vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]);
1741 vdev_free(spa->spa_l2cache.sav_vdevs[i]);
1742 }
1743 kmem_free(spa->spa_l2cache.sav_vdevs,
1744 spa->spa_l2cache.sav_count * sizeof (void *));
1745 spa->spa_l2cache.sav_vdevs = NULL;
1746 }
1747 if (spa->spa_l2cache.sav_config) {
1748 nvlist_free(spa->spa_l2cache.sav_config);
1749 spa->spa_l2cache.sav_config = NULL;
1750 }
1751 spa->spa_l2cache.sav_count = 0;
1752
1753 spa->spa_async_suspended = 0;
1754
1755 spa->spa_indirect_vdevs_loaded = B_FALSE;
1756
1757 if (spa->spa_comment != NULL) {
1758 spa_strfree(spa->spa_comment);
1759 spa->spa_comment = NULL;
1760 }
1761 if (spa->spa_compatibility != NULL) {
1762 spa_strfree(spa->spa_compatibility);
1763 spa->spa_compatibility = NULL;
1764 }
1765
1766 spa_config_exit(spa, SCL_ALL, spa);
1767 }
1768
1769 /*
1770 * Load (or re-load) the current list of vdevs describing the active spares for
1771 * this pool. When this is called, we have some form of basic information in
1772 * 'spa_spares.sav_config'. We parse this into vdevs, try to open them, and
1773 * then re-generate a more complete list including status information.
1774 */
1775 void
1776 spa_load_spares(spa_t *spa)
1777 {
1778 nvlist_t **spares;
1779 uint_t nspares;
1780 int i;
1781 vdev_t *vd, *tvd;
1782
1783 #ifndef _KERNEL
1784 /*
1785 * zdb opens both the current state of the pool and the
1786 * checkpointed state (if present), with a different spa_t.
1787 *
1788 * As spare vdevs are shared among open pools, we skip loading
1789 * them when we load the checkpointed state of the pool.
1790 */
1791 if (!spa_writeable(spa))
1792 return;
1793 #endif
1794
1795 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1796
1797 /*
1798 * First, close and free any existing spare vdevs.
1799 */
1800 if (spa->spa_spares.sav_vdevs) {
1801 for (i = 0; i < spa->spa_spares.sav_count; i++) {
1802 vd = spa->spa_spares.sav_vdevs[i];
1803
1804 /* Undo the call to spa_activate() below */
1805 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1806 B_FALSE)) != NULL && tvd->vdev_isspare)
1807 spa_spare_remove(tvd);
1808 vdev_close(vd);
1809 vdev_free(vd);
1810 }
1811
1812 kmem_free(spa->spa_spares.sav_vdevs,
1813 spa->spa_spares.sav_count * sizeof (void *));
1814 }
1815
1816 if (spa->spa_spares.sav_config == NULL)
1817 nspares = 0;
1818 else
1819 VERIFY0(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
1820 ZPOOL_CONFIG_SPARES, &spares, &nspares));
1821
1822 spa->spa_spares.sav_count = (int)nspares;
1823 spa->spa_spares.sav_vdevs = NULL;
1824
1825 if (nspares == 0)
1826 return;
1827
1828 /*
1829 * Construct the array of vdevs, opening them to get status in the
1830 * process. For each spare, there is potentially two different vdev_t
1831 * structures associated with it: one in the list of spares (used only
1832 * for basic validation purposes) and one in the active vdev
1833 * configuration (if it's spared in). During this phase we open and
1834 * validate each vdev on the spare list. If the vdev also exists in the
1835 * active configuration, then we also mark this vdev as an active spare.
1836 */
1837 spa->spa_spares.sav_vdevs = kmem_zalloc(nspares * sizeof (void *),
1838 KM_SLEEP);
1839 for (i = 0; i < spa->spa_spares.sav_count; i++) {
1840 VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
1841 VDEV_ALLOC_SPARE) == 0);
1842 ASSERT(vd != NULL);
1843
1844 spa->spa_spares.sav_vdevs[i] = vd;
1845
1846 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1847 B_FALSE)) != NULL) {
1848 if (!tvd->vdev_isspare)
1849 spa_spare_add(tvd);
1850
1851 /*
1852 * We only mark the spare active if we were successfully
1853 * able to load the vdev. Otherwise, importing a pool
1854 * with a bad active spare would result in strange
1855 * behavior, because multiple pool would think the spare
1856 * is actively in use.
1857 *
1858 * There is a vulnerability here to an equally bizarre
1859 * circumstance, where a dead active spare is later
1860 * brought back to life (onlined or otherwise). Given
1861 * the rarity of this scenario, and the extra complexity
1862 * it adds, we ignore the possibility.
1863 */
1864 if (!vdev_is_dead(tvd))
1865 spa_spare_activate(tvd);
1866 }
1867
1868 vd->vdev_top = vd;
1869 vd->vdev_aux = &spa->spa_spares;
1870
1871 if (vdev_open(vd) != 0)
1872 continue;
1873
1874 if (vdev_validate_aux(vd) == 0)
1875 spa_spare_add(vd);
1876 }
1877
1878 /*
1879 * Recompute the stashed list of spares, with status information
1880 * this time.
1881 */
1882 fnvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES);
1883
1884 spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
1885 KM_SLEEP);
1886 for (i = 0; i < spa->spa_spares.sav_count; i++)
1887 spares[i] = vdev_config_generate(spa,
1888 spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE);
1889 fnvlist_add_nvlist_array(spa->spa_spares.sav_config,
1890 ZPOOL_CONFIG_SPARES, (const nvlist_t * const *)spares,
1891 spa->spa_spares.sav_count);
1892 for (i = 0; i < spa->spa_spares.sav_count; i++)
1893 nvlist_free(spares[i]);
1894 kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
1895 }
1896
1897 /*
1898 * Load (or re-load) the current list of vdevs describing the active l2cache for
1899 * this pool. When this is called, we have some form of basic information in
1900 * 'spa_l2cache.sav_config'. We parse this into vdevs, try to open them, and
1901 * then re-generate a more complete list including status information.
1902 * Devices which are already active have their details maintained, and are
1903 * not re-opened.
1904 */
1905 void
1906 spa_load_l2cache(spa_t *spa)
1907 {
1908 nvlist_t **l2cache = NULL;
1909 uint_t nl2cache;
1910 int i, j, oldnvdevs;
1911 uint64_t guid;
1912 vdev_t *vd, **oldvdevs, **newvdevs;
1913 spa_aux_vdev_t *sav = &spa->spa_l2cache;
1914
1915 #ifndef _KERNEL
1916 /*
1917 * zdb opens both the current state of the pool and the
1918 * checkpointed state (if present), with a different spa_t.
1919 *
1920 * As L2 caches are part of the ARC which is shared among open
1921 * pools, we skip loading them when we load the checkpointed
1922 * state of the pool.
1923 */
1924 if (!spa_writeable(spa))
1925 return;
1926 #endif
1927
1928 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1929
1930 oldvdevs = sav->sav_vdevs;
1931 oldnvdevs = sav->sav_count;
1932 sav->sav_vdevs = NULL;
1933 sav->sav_count = 0;
1934
1935 if (sav->sav_config == NULL) {
1936 nl2cache = 0;
1937 newvdevs = NULL;
1938 goto out;
1939 }
1940
1941 VERIFY0(nvlist_lookup_nvlist_array(sav->sav_config,
1942 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache));
1943 newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP);
1944
1945 /*
1946 * Process new nvlist of vdevs.
1947 */
1948 for (i = 0; i < nl2cache; i++) {
1949 guid = fnvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID);
1950
1951 newvdevs[i] = NULL;
1952 for (j = 0; j < oldnvdevs; j++) {
1953 vd = oldvdevs[j];
1954 if (vd != NULL && guid == vd->vdev_guid) {
1955 /*
1956 * Retain previous vdev for add/remove ops.
1957 */
1958 newvdevs[i] = vd;
1959 oldvdevs[j] = NULL;
1960 break;
1961 }
1962 }
1963
1964 if (newvdevs[i] == NULL) {
1965 /*
1966 * Create new vdev
1967 */
1968 VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
1969 VDEV_ALLOC_L2CACHE) == 0);
1970 ASSERT(vd != NULL);
1971 newvdevs[i] = vd;
1972
1973 /*
1974 * Commit this vdev as an l2cache device,
1975 * even if it fails to open.
1976 */
1977 spa_l2cache_add(vd);
1978
1979 vd->vdev_top = vd;
1980 vd->vdev_aux = sav;
1981
1982 spa_l2cache_activate(vd);
1983
1984 if (vdev_open(vd) != 0)
1985 continue;
1986
1987 (void) vdev_validate_aux(vd);
1988
1989 if (!vdev_is_dead(vd))
1990 l2arc_add_vdev(spa, vd);
1991
1992 /*
1993 * Upon cache device addition to a pool or pool
1994 * creation with a cache device or if the header
1995 * of the device is invalid we issue an async
1996 * TRIM command for the whole device which will
1997 * execute if l2arc_trim_ahead > 0.
1998 */
1999 spa_async_request(spa, SPA_ASYNC_L2CACHE_TRIM);
2000 }
2001 }
2002
2003 sav->sav_vdevs = newvdevs;
2004 sav->sav_count = (int)nl2cache;
2005
2006 /*
2007 * Recompute the stashed list of l2cache devices, with status
2008 * information this time.
2009 */
2010 fnvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE);
2011
2012 if (sav->sav_count > 0)
2013 l2cache = kmem_alloc(sav->sav_count * sizeof (void *),
2014 KM_SLEEP);
2015 for (i = 0; i < sav->sav_count; i++)
2016 l2cache[i] = vdev_config_generate(spa,
2017 sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE);
2018 fnvlist_add_nvlist_array(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
2019 (const nvlist_t * const *)l2cache, sav->sav_count);
2020
2021 out:
2022 /*
2023 * Purge vdevs that were dropped
2024 */
2025 if (oldvdevs) {
2026 for (i = 0; i < oldnvdevs; i++) {
2027 uint64_t pool;
2028
2029 vd = oldvdevs[i];
2030 if (vd != NULL) {
2031 ASSERT(vd->vdev_isl2cache);
2032
2033 if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
2034 pool != 0ULL && l2arc_vdev_present(vd))
2035 l2arc_remove_vdev(vd);
2036 vdev_clear_stats(vd);
2037 vdev_free(vd);
2038 }
2039 }
2040
2041 kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
2042 }
2043
2044 for (i = 0; i < sav->sav_count; i++)
2045 nvlist_free(l2cache[i]);
2046 if (sav->sav_count)
2047 kmem_free(l2cache, sav->sav_count * sizeof (void *));
2048 }
2049
2050 static int
2051 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
2052 {
2053 dmu_buf_t *db;
2054 char *packed = NULL;
2055 size_t nvsize = 0;
2056 int error;
2057 *value = NULL;
2058
2059 error = dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db);
2060 if (error)
2061 return (error);
2062
2063 nvsize = *(uint64_t *)db->db_data;
2064 dmu_buf_rele(db, FTAG);
2065
2066 packed = vmem_alloc(nvsize, KM_SLEEP);
2067 error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed,
2068 DMU_READ_PREFETCH);
2069 if (error == 0)
2070 error = nvlist_unpack(packed, nvsize, value, 0);
2071 vmem_free(packed, nvsize);
2072
2073 return (error);
2074 }
2075
2076 /*
2077 * Concrete top-level vdevs that are not missing and are not logs. At every
2078 * spa_sync we write new uberblocks to at least SPA_SYNC_MIN_VDEVS core tvds.
2079 */
2080 static uint64_t
2081 spa_healthy_core_tvds(spa_t *spa)
2082 {
2083 vdev_t *rvd = spa->spa_root_vdev;
2084 uint64_t tvds = 0;
2085
2086 for (uint64_t i = 0; i < rvd->vdev_children; i++) {
2087 vdev_t *vd = rvd->vdev_child[i];
2088 if (vd->vdev_islog)
2089 continue;
2090 if (vdev_is_concrete(vd) && !vdev_is_dead(vd))
2091 tvds++;
2092 }
2093
2094 return (tvds);
2095 }
2096
2097 /*
2098 * Checks to see if the given vdev could not be opened, in which case we post a
2099 * sysevent to notify the autoreplace code that the device has been removed.
2100 */
2101 static void
2102 spa_check_removed(vdev_t *vd)
2103 {
2104 for (uint64_t c = 0; c < vd->vdev_children; c++)
2105 spa_check_removed(vd->vdev_child[c]);
2106
2107 if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) &&
2108 vdev_is_concrete(vd)) {
2109 zfs_post_autoreplace(vd->vdev_spa, vd);
2110 spa_event_notify(vd->vdev_spa, vd, NULL, ESC_ZFS_VDEV_CHECK);
2111 }
2112 }
2113
2114 static int
2115 spa_check_for_missing_logs(spa_t *spa)
2116 {
2117 vdev_t *rvd = spa->spa_root_vdev;
2118
2119 /*
2120 * If we're doing a normal import, then build up any additional
2121 * diagnostic information about missing log devices.
2122 * We'll pass this up to the user for further processing.
2123 */
2124 if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) {
2125 nvlist_t **child, *nv;
2126 uint64_t idx = 0;
2127
2128 child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t *),
2129 KM_SLEEP);
2130 nv = fnvlist_alloc();
2131
2132 for (uint64_t c = 0; c < rvd->vdev_children; c++) {
2133 vdev_t *tvd = rvd->vdev_child[c];
2134
2135 /*
2136 * We consider a device as missing only if it failed
2137 * to open (i.e. offline or faulted is not considered
2138 * as missing).
2139 */
2140 if (tvd->vdev_islog &&
2141 tvd->vdev_state == VDEV_STATE_CANT_OPEN) {
2142 child[idx++] = vdev_config_generate(spa, tvd,
2143 B_FALSE, VDEV_CONFIG_MISSING);
2144 }
2145 }
2146
2147 if (idx > 0) {
2148 fnvlist_add_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
2149 (const nvlist_t * const *)child, idx);
2150 fnvlist_add_nvlist(spa->spa_load_info,
2151 ZPOOL_CONFIG_MISSING_DEVICES, nv);
2152
2153 for (uint64_t i = 0; i < idx; i++)
2154 nvlist_free(child[i]);
2155 }
2156 nvlist_free(nv);
2157 kmem_free(child, rvd->vdev_children * sizeof (char **));
2158
2159 if (idx > 0) {
2160 spa_load_failed(spa, "some log devices are missing");
2161 vdev_dbgmsg_print_tree(rvd, 2);
2162 return (SET_ERROR(ENXIO));
2163 }
2164 } else {
2165 for (uint64_t c = 0; c < rvd->vdev_children; c++) {
2166 vdev_t *tvd = rvd->vdev_child[c];
2167
2168 if (tvd->vdev_islog &&
2169 tvd->vdev_state == VDEV_STATE_CANT_OPEN) {
2170 spa_set_log_state(spa, SPA_LOG_CLEAR);
2171 spa_load_note(spa, "some log devices are "
2172 "missing, ZIL is dropped.");
2173 vdev_dbgmsg_print_tree(rvd, 2);
2174 break;
2175 }
2176 }
2177 }
2178
2179 return (0);
2180 }
2181
2182 /*
2183 * Check for missing log devices
2184 */
2185 static boolean_t
2186 spa_check_logs(spa_t *spa)
2187 {
2188 boolean_t rv = B_FALSE;
2189 dsl_pool_t *dp = spa_get_dsl(spa);
2190
2191 switch (spa->spa_log_state) {
2192 default:
2193 break;
2194 case SPA_LOG_MISSING:
2195 /* need to recheck in case slog has been restored */
2196 case SPA_LOG_UNKNOWN:
2197 rv = (dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
2198 zil_check_log_chain, NULL, DS_FIND_CHILDREN) != 0);
2199 if (rv)
2200 spa_set_log_state(spa, SPA_LOG_MISSING);
2201 break;
2202 }
2203 return (rv);
2204 }
2205
2206 /*
2207 * Passivate any log vdevs (note, does not apply to embedded log metaslabs).
2208 */
2209 static boolean_t
2210 spa_passivate_log(spa_t *spa)
2211 {
2212 vdev_t *rvd = spa->spa_root_vdev;
2213 boolean_t slog_found = B_FALSE;
2214
2215 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
2216
2217 for (int c = 0; c < rvd->vdev_children; c++) {
2218 vdev_t *tvd = rvd->vdev_child[c];
2219
2220 if (tvd->vdev_islog) {
2221 ASSERT3P(tvd->vdev_log_mg, ==, NULL);
2222 metaslab_group_passivate(tvd->vdev_mg);
2223 slog_found = B_TRUE;
2224 }
2225 }
2226
2227 return (slog_found);
2228 }
2229
2230 /*
2231 * Activate any log vdevs (note, does not apply to embedded log metaslabs).
2232 */
2233 static void
2234 spa_activate_log(spa_t *spa)
2235 {
2236 vdev_t *rvd = spa->spa_root_vdev;
2237
2238 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
2239
2240 for (int c = 0; c < rvd->vdev_children; c++) {
2241 vdev_t *tvd = rvd->vdev_child[c];
2242
2243 if (tvd->vdev_islog) {
2244 ASSERT3P(tvd->vdev_log_mg, ==, NULL);
2245 metaslab_group_activate(tvd->vdev_mg);
2246 }
2247 }
2248 }
2249
2250 int
2251 spa_reset_logs(spa_t *spa)
2252 {
2253 int error;
2254
2255 error = dmu_objset_find(spa_name(spa), zil_reset,
2256 NULL, DS_FIND_CHILDREN);
2257 if (error == 0) {
2258 /*
2259 * We successfully offlined the log device, sync out the
2260 * current txg so that the "stubby" block can be removed
2261 * by zil_sync().
2262 */
2263 txg_wait_synced(spa->spa_dsl_pool, 0);
2264 }
2265 return (error);
2266 }
2267
2268 static void
2269 spa_aux_check_removed(spa_aux_vdev_t *sav)
2270 {
2271 for (int i = 0; i < sav->sav_count; i++)
2272 spa_check_removed(sav->sav_vdevs[i]);
2273 }
2274
2275 void
2276 spa_claim_notify(zio_t *zio)
2277 {
2278 spa_t *spa = zio->io_spa;
2279
2280 if (zio->io_error)
2281 return;
2282
2283 mutex_enter(&spa->spa_props_lock); /* any mutex will do */
2284 if (spa->spa_claim_max_txg < zio->io_bp->blk_birth)
2285 spa->spa_claim_max_txg = zio->io_bp->blk_birth;
2286 mutex_exit(&spa->spa_props_lock);
2287 }
2288
2289 typedef struct spa_load_error {
2290 boolean_t sle_verify_data;
2291 uint64_t sle_meta_count;
2292 uint64_t sle_data_count;
2293 } spa_load_error_t;
2294
2295 static void
2296 spa_load_verify_done(zio_t *zio)
2297 {
2298 blkptr_t *bp = zio->io_bp;
2299 spa_load_error_t *sle = zio->io_private;
2300 dmu_object_type_t type = BP_GET_TYPE(bp);
2301 int error = zio->io_error;
2302 spa_t *spa = zio->io_spa;
2303
2304 abd_free(zio->io_abd);
2305 if (error) {
2306 if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) &&
2307 type != DMU_OT_INTENT_LOG)
2308 atomic_inc_64(&sle->sle_meta_count);
2309 else
2310 atomic_inc_64(&sle->sle_data_count);
2311 }
2312
2313 mutex_enter(&spa->spa_scrub_lock);
2314 spa->spa_load_verify_bytes -= BP_GET_PSIZE(bp);
2315 cv_broadcast(&spa->spa_scrub_io_cv);
2316 mutex_exit(&spa->spa_scrub_lock);
2317 }
2318
2319 /*
2320 * Maximum number of inflight bytes is the log2 fraction of the arc size.
2321 * By default, we set it to 1/16th of the arc.
2322 */
2323 static uint_t spa_load_verify_shift = 4;
2324 static int spa_load_verify_metadata = B_TRUE;
2325 static int spa_load_verify_data = B_TRUE;
2326
2327 static int
2328 spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
2329 const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg)
2330 {
2331 zio_t *rio = arg;
2332 spa_load_error_t *sle = rio->io_private;
2333
2334 (void) zilog, (void) dnp;
2335
2336 /*
2337 * Note: normally this routine will not be called if
2338 * spa_load_verify_metadata is not set. However, it may be useful
2339 * to manually set the flag after the traversal has begun.
2340 */
2341 if (!spa_load_verify_metadata)
2342 return (0);
2343
2344 /*
2345 * Sanity check the block pointer in order to detect obvious damage
2346 * before using the contents in subsequent checks or in zio_read().
2347 * When damaged consider it to be a metadata error since we cannot
2348 * trust the BP_GET_TYPE and BP_GET_LEVEL values.
2349 */
2350 if (!zfs_blkptr_verify(spa, bp, B_FALSE, BLK_VERIFY_LOG)) {
2351 atomic_inc_64(&sle->sle_meta_count);
2352 return (0);
2353 }
2354
2355 if (zb->zb_level == ZB_DNODE_LEVEL || BP_IS_HOLE(bp) ||
2356 BP_IS_EMBEDDED(bp) || BP_IS_REDACTED(bp))
2357 return (0);
2358
2359 if (!BP_IS_METADATA(bp) &&
2360 (!spa_load_verify_data || !sle->sle_verify_data))
2361 return (0);
2362
2363 uint64_t maxinflight_bytes =
2364 arc_target_bytes() >> spa_load_verify_shift;
2365 size_t size = BP_GET_PSIZE(bp);
2366
2367 mutex_enter(&spa->spa_scrub_lock);
2368 while (spa->spa_load_verify_bytes >= maxinflight_bytes)
2369 cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
2370 spa->spa_load_verify_bytes += size;
2371 mutex_exit(&spa->spa_scrub_lock);
2372
2373 zio_nowait(zio_read(rio, spa, bp, abd_alloc_for_io(size, B_FALSE), size,
2374 spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB,
2375 ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL |
2376 ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb));
2377 return (0);
2378 }
2379
2380 static int
2381 verify_dataset_name_len(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
2382 {
2383 (void) dp, (void) arg;
2384
2385 if (dsl_dataset_namelen(ds) >= ZFS_MAX_DATASET_NAME_LEN)
2386 return (SET_ERROR(ENAMETOOLONG));
2387
2388 return (0);
2389 }
2390
2391 static int
2392 spa_load_verify(spa_t *spa)
2393 {
2394 zio_t *rio;
2395 spa_load_error_t sle = { 0 };
2396 zpool_load_policy_t policy;
2397 boolean_t verify_ok = B_FALSE;
2398 int error = 0;
2399
2400 zpool_get_load_policy(spa->spa_config, &policy);
2401
2402 if (policy.zlp_rewind & ZPOOL_NEVER_REWIND ||
2403 policy.zlp_maxmeta == UINT64_MAX)
2404 return (0);
2405
2406 dsl_pool_config_enter(spa->spa_dsl_pool, FTAG);
2407 error = dmu_objset_find_dp(spa->spa_dsl_pool,
2408 spa->spa_dsl_pool->dp_root_dir_obj, verify_dataset_name_len, NULL,
2409 DS_FIND_CHILDREN);
2410 dsl_pool_config_exit(spa->spa_dsl_pool, FTAG);
2411 if (error != 0)
2412 return (error);
2413
2414 /*
2415 * Verify data only if we are rewinding or error limit was set.
2416 * Otherwise nothing except dbgmsg care about it to waste time.
2417 */
2418 sle.sle_verify_data = (policy.zlp_rewind & ZPOOL_REWIND_MASK) ||
2419 (policy.zlp_maxdata < UINT64_MAX);
2420
2421 rio = zio_root(spa, NULL, &sle,
2422 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
2423
2424 if (spa_load_verify_metadata) {
2425 if (spa->spa_extreme_rewind) {
2426 spa_load_note(spa, "performing a complete scan of the "
2427 "pool since extreme rewind is on. This may take "
2428 "a very long time.\n (spa_load_verify_data=%u, "
2429 "spa_load_verify_metadata=%u)",
2430 spa_load_verify_data, spa_load_verify_metadata);
2431 }
2432
2433 error = traverse_pool(spa, spa->spa_verify_min_txg,
2434 TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA |
2435 TRAVERSE_NO_DECRYPT, spa_load_verify_cb, rio);
2436 }
2437
2438 (void) zio_wait(rio);
2439 ASSERT0(spa->spa_load_verify_bytes);
2440
2441 spa->spa_load_meta_errors = sle.sle_meta_count;
2442 spa->spa_load_data_errors = sle.sle_data_count;
2443
2444 if (sle.sle_meta_count != 0 || sle.sle_data_count != 0) {
2445 spa_load_note(spa, "spa_load_verify found %llu metadata errors "
2446 "and %llu data errors", (u_longlong_t)sle.sle_meta_count,
2447 (u_longlong_t)sle.sle_data_count);
2448 }
2449
2450 if (spa_load_verify_dryrun ||
2451 (!error && sle.sle_meta_count <= policy.zlp_maxmeta &&
2452 sle.sle_data_count <= policy.zlp_maxdata)) {
2453 int64_t loss = 0;
2454
2455 verify_ok = B_TRUE;
2456 spa->spa_load_txg = spa->spa_uberblock.ub_txg;
2457 spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp;
2458
2459 loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts;
2460 fnvlist_add_uint64(spa->spa_load_info, ZPOOL_CONFIG_LOAD_TIME,
2461 spa->spa_load_txg_ts);
2462 fnvlist_add_int64(spa->spa_load_info, ZPOOL_CONFIG_REWIND_TIME,
2463 loss);
2464 fnvlist_add_uint64(spa->spa_load_info,
2465 ZPOOL_CONFIG_LOAD_META_ERRORS, sle.sle_meta_count);
2466 fnvlist_add_uint64(spa->spa_load_info,
2467 ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count);
2468 } else {
2469 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg;
2470 }
2471
2472 if (spa_load_verify_dryrun)
2473 return (0);
2474
2475 if (error) {
2476 if (error != ENXIO && error != EIO)
2477 error = SET_ERROR(EIO);
2478 return (error);
2479 }
2480
2481 return (verify_ok ? 0 : EIO);
2482 }
2483
2484 /*
2485 * Find a value in the pool props object.
2486 */
2487 static void
2488 spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val)
2489 {
2490 (void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object,
2491 zpool_prop_to_name(prop), sizeof (uint64_t), 1, val);
2492 }
2493
2494 /*
2495 * Find a value in the pool directory object.
2496 */
2497 static int
2498 spa_dir_prop(spa_t *spa, const char *name, uint64_t *val, boolean_t log_enoent)
2499 {
2500 int error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
2501 name, sizeof (uint64_t), 1, val);
2502
2503 if (error != 0 && (error != ENOENT || log_enoent)) {
2504 spa_load_failed(spa, "couldn't get '%s' value in MOS directory "
2505 "[error=%d]", name, error);
2506 }
2507
2508 return (error);
2509 }
2510
2511 static int
2512 spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err)
2513 {
2514 vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux);
2515 return (SET_ERROR(err));
2516 }
2517
2518 boolean_t
2519 spa_livelist_delete_check(spa_t *spa)
2520 {
2521 return (spa->spa_livelists_to_delete != 0);
2522 }
2523
2524 static boolean_t
2525 spa_livelist_delete_cb_check(void *arg, zthr_t *z)
2526 {
2527 (void) z;
2528 spa_t *spa = arg;
2529 return (spa_livelist_delete_check(spa));
2530 }
2531
2532 static int
2533 delete_blkptr_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
2534 {
2535 spa_t *spa = arg;
2536 zio_free(spa, tx->tx_txg, bp);
2537 dsl_dir_diduse_space(tx->tx_pool->dp_free_dir, DD_USED_HEAD,
2538 -bp_get_dsize_sync(spa, bp),
2539 -BP_GET_PSIZE(bp), -BP_GET_UCSIZE(bp), tx);
2540 return (0);
2541 }
2542
2543 static int
2544 dsl_get_next_livelist_obj(objset_t *os, uint64_t zap_obj, uint64_t *llp)
2545 {
2546 int err;
2547 zap_cursor_t zc;
2548 zap_attribute_t za;
2549 zap_cursor_init(&zc, os, zap_obj);
2550 err = zap_cursor_retrieve(&zc, &za);
2551 zap_cursor_fini(&zc);
2552 if (err == 0)
2553 *llp = za.za_first_integer;
2554 return (err);
2555 }
2556
2557 /*
2558 * Components of livelist deletion that must be performed in syncing
2559 * context: freeing block pointers and updating the pool-wide data
2560 * structures to indicate how much work is left to do
2561 */
2562 typedef struct sublist_delete_arg {
2563 spa_t *spa;
2564 dsl_deadlist_t *ll;
2565 uint64_t key;
2566 bplist_t *to_free;
2567 } sublist_delete_arg_t;
2568
2569 static void
2570 sublist_delete_sync(void *arg, dmu_tx_t *tx)
2571 {
2572 sublist_delete_arg_t *sda = arg;
2573 spa_t *spa = sda->spa;
2574 dsl_deadlist_t *ll = sda->ll;
2575 uint64_t key = sda->key;
2576 bplist_t *to_free = sda->to_free;
2577
2578 bplist_iterate(to_free, delete_blkptr_cb, spa, tx);
2579 dsl_deadlist_remove_entry(ll, key, tx);
2580 }
2581
2582 typedef struct livelist_delete_arg {
2583 spa_t *spa;
2584 uint64_t ll_obj;
2585 uint64_t zap_obj;
2586 } livelist_delete_arg_t;
2587
2588 static void
2589 livelist_delete_sync(void *arg, dmu_tx_t *tx)
2590 {
2591 livelist_delete_arg_t *lda = arg;
2592 spa_t *spa = lda->spa;
2593 uint64_t ll_obj = lda->ll_obj;
2594 uint64_t zap_obj = lda->zap_obj;
2595 objset_t *mos = spa->spa_meta_objset;
2596 uint64_t count;
2597
2598 /* free the livelist and decrement the feature count */
2599 VERIFY0(zap_remove_int(mos, zap_obj, ll_obj, tx));
2600 dsl_deadlist_free(mos, ll_obj, tx);
2601 spa_feature_decr(spa, SPA_FEATURE_LIVELIST, tx);
2602 VERIFY0(zap_count(mos, zap_obj, &count));
2603 if (count == 0) {
2604 /* no more livelists to delete */
2605 VERIFY0(zap_remove(mos, DMU_POOL_DIRECTORY_OBJECT,
2606 DMU_POOL_DELETED_CLONES, tx));
2607 VERIFY0(zap_destroy(mos, zap_obj, tx));
2608 spa->spa_livelists_to_delete = 0;
2609 spa_notify_waiters(spa);
2610 }
2611 }
2612
2613 /*
2614 * Load in the value for the livelist to be removed and open it. Then,
2615 * load its first sublist and determine which block pointers should actually
2616 * be freed. Then, call a synctask which performs the actual frees and updates
2617 * the pool-wide livelist data.
2618 */
2619 static void
2620 spa_livelist_delete_cb(void *arg, zthr_t *z)
2621 {
2622 spa_t *spa = arg;
2623 uint64_t ll_obj = 0, count;
2624 objset_t *mos = spa->spa_meta_objset;
2625 uint64_t zap_obj = spa->spa_livelists_to_delete;
2626 /*
2627 * Determine the next livelist to delete. This function should only
2628 * be called if there is at least one deleted clone.
2629 */
2630 VERIFY0(dsl_get_next_livelist_obj(mos, zap_obj, &ll_obj));
2631 VERIFY0(zap_count(mos, ll_obj, &count));
2632 if (count > 0) {
2633 dsl_deadlist_t *ll;
2634 dsl_deadlist_entry_t *dle;
2635 bplist_t to_free;
2636 ll = kmem_zalloc(sizeof (dsl_deadlist_t), KM_SLEEP);
2637 dsl_deadlist_open(ll, mos, ll_obj);
2638 dle = dsl_deadlist_first(ll);
2639 ASSERT3P(dle, !=, NULL);
2640 bplist_create(&to_free);
2641 int err = dsl_process_sub_livelist(&dle->dle_bpobj, &to_free,
2642 z, NULL);
2643 if (err == 0) {
2644 sublist_delete_arg_t sync_arg = {
2645 .spa = spa,
2646 .ll = ll,
2647 .key = dle->dle_mintxg,
2648 .to_free = &to_free
2649 };
2650 zfs_dbgmsg("deleting sublist (id %llu) from"
2651 " livelist %llu, %lld remaining",
2652 (u_longlong_t)dle->dle_bpobj.bpo_object,
2653 (u_longlong_t)ll_obj, (longlong_t)count - 1);
2654 VERIFY0(dsl_sync_task(spa_name(spa), NULL,
2655 sublist_delete_sync, &sync_arg, 0,
2656 ZFS_SPACE_CHECK_DESTROY));
2657 } else {
2658 VERIFY3U(err, ==, EINTR);
2659 }
2660 bplist_clear(&to_free);
2661 bplist_destroy(&to_free);
2662 dsl_deadlist_close(ll);
2663 kmem_free(ll, sizeof (dsl_deadlist_t));
2664 } else {
2665 livelist_delete_arg_t sync_arg = {
2666 .spa = spa,
2667 .ll_obj = ll_obj,
2668 .zap_obj = zap_obj
2669 };
2670 zfs_dbgmsg("deletion of livelist %llu completed",
2671 (u_longlong_t)ll_obj);
2672 VERIFY0(dsl_sync_task(spa_name(spa), NULL, livelist_delete_sync,
2673 &sync_arg, 0, ZFS_SPACE_CHECK_DESTROY));
2674 }
2675 }
2676
2677 static void
2678 spa_start_livelist_destroy_thread(spa_t *spa)
2679 {
2680 ASSERT3P(spa->spa_livelist_delete_zthr, ==, NULL);
2681 spa->spa_livelist_delete_zthr =
2682 zthr_create("z_livelist_destroy",
2683 spa_livelist_delete_cb_check, spa_livelist_delete_cb, spa,
2684 minclsyspri);
2685 }
2686
2687 typedef struct livelist_new_arg {
2688 bplist_t *allocs;
2689 bplist_t *frees;
2690 } livelist_new_arg_t;
2691
2692 static int
2693 livelist_track_new_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
2694 dmu_tx_t *tx)
2695 {
2696 ASSERT(tx == NULL);
2697 livelist_new_arg_t *lna = arg;
2698 if (bp_freed) {
2699 bplist_append(lna->frees, bp);
2700 } else {
2701 bplist_append(lna->allocs, bp);
2702 zfs_livelist_condense_new_alloc++;
2703 }
2704 return (0);
2705 }
2706
2707 typedef struct livelist_condense_arg {
2708 spa_t *spa;
2709 bplist_t to_keep;
2710 uint64_t first_size;
2711 uint64_t next_size;
2712 } livelist_condense_arg_t;
2713
2714 static void
2715 spa_livelist_condense_sync(void *arg, dmu_tx_t *tx)
2716 {
2717 livelist_condense_arg_t *lca = arg;
2718 spa_t *spa = lca->spa;
2719 bplist_t new_frees;
2720 dsl_dataset_t *ds = spa->spa_to_condense.ds;
2721
2722 /* Have we been cancelled? */
2723 if (spa->spa_to_condense.cancelled) {
2724 zfs_livelist_condense_sync_cancel++;
2725 goto out;
2726 }
2727
2728 dsl_deadlist_entry_t *first = spa->spa_to_condense.first;
2729 dsl_deadlist_entry_t *next = spa->spa_to_condense.next;
2730 dsl_deadlist_t *ll = &ds->ds_dir->dd_livelist;
2731
2732 /*
2733 * It's possible that the livelist was changed while the zthr was
2734 * running. Therefore, we need to check for new blkptrs in the two
2735 * entries being condensed and continue to track them in the livelist.
2736 * Because of the way we handle remapped blkptrs (see dbuf_remap_impl),
2737 * it's possible that the newly added blkptrs are FREEs or ALLOCs so
2738 * we need to sort them into two different bplists.
2739 */
2740 uint64_t first_obj = first->dle_bpobj.bpo_object;
2741 uint64_t next_obj = next->dle_bpobj.bpo_object;
2742 uint64_t cur_first_size = first->dle_bpobj.bpo_phys->bpo_num_blkptrs;
2743 uint64_t cur_next_size = next->dle_bpobj.bpo_phys->bpo_num_blkptrs;
2744
2745 bplist_create(&new_frees);
2746 livelist_new_arg_t new_bps = {
2747 .allocs = &lca->to_keep,
2748 .frees = &new_frees,
2749 };
2750
2751 if (cur_first_size > lca->first_size) {
2752 VERIFY0(livelist_bpobj_iterate_from_nofree(&first->dle_bpobj,
2753 livelist_track_new_cb, &new_bps, lca->first_size));
2754 }
2755 if (cur_next_size > lca->next_size) {
2756 VERIFY0(livelist_bpobj_iterate_from_nofree(&next->dle_bpobj,
2757 livelist_track_new_cb, &new_bps, lca->next_size));
2758 }
2759
2760 dsl_deadlist_clear_entry(first, ll, tx);
2761 ASSERT(bpobj_is_empty(&first->dle_bpobj));
2762 dsl_deadlist_remove_entry(ll, next->dle_mintxg, tx);
2763
2764 bplist_iterate(&lca->to_keep, dsl_deadlist_insert_alloc_cb, ll, tx);
2765 bplist_iterate(&new_frees, dsl_deadlist_insert_free_cb, ll, tx);
2766 bplist_destroy(&new_frees);
2767
2768 char dsname[ZFS_MAX_DATASET_NAME_LEN];
2769 dsl_dataset_name(ds, dsname);
2770 zfs_dbgmsg("txg %llu condensing livelist of %s (id %llu), bpobj %llu "
2771 "(%llu blkptrs) and bpobj %llu (%llu blkptrs) -> bpobj %llu "
2772 "(%llu blkptrs)", (u_longlong_t)tx->tx_txg, dsname,
2773 (u_longlong_t)ds->ds_object, (u_longlong_t)first_obj,
2774 (u_longlong_t)cur_first_size, (u_longlong_t)next_obj,
2775 (u_longlong_t)cur_next_size,
2776 (u_longlong_t)first->dle_bpobj.bpo_object,
2777 (u_longlong_t)first->dle_bpobj.bpo_phys->bpo_num_blkptrs);
2778 out:
2779 dmu_buf_rele(ds->ds_dbuf, spa);
2780 spa->spa_to_condense.ds = NULL;
2781 bplist_clear(&lca->to_keep);
2782 bplist_destroy(&lca->to_keep);
2783 kmem_free(lca, sizeof (livelist_condense_arg_t));
2784 spa->spa_to_condense.syncing = B_FALSE;
2785 }
2786
2787 static void
2788 spa_livelist_condense_cb(void *arg, zthr_t *t)
2789 {
2790 while (zfs_livelist_condense_zthr_pause &&
2791 !(zthr_has_waiters(t) || zthr_iscancelled(t)))
2792 delay(1);
2793
2794 spa_t *spa = arg;
2795 dsl_deadlist_entry_t *first = spa->spa_to_condense.first;
2796 dsl_deadlist_entry_t *next = spa->spa_to_condense.next;
2797 uint64_t first_size, next_size;
2798
2799 livelist_condense_arg_t *lca =
2800 kmem_alloc(sizeof (livelist_condense_arg_t), KM_SLEEP);
2801 bplist_create(&lca->to_keep);
2802
2803 /*
2804 * Process the livelists (matching FREEs and ALLOCs) in open context
2805 * so we have minimal work in syncing context to condense.
2806 *
2807 * We save bpobj sizes (first_size and next_size) to use later in
2808 * syncing context to determine if entries were added to these sublists
2809 * while in open context. This is possible because the clone is still
2810 * active and open for normal writes and we want to make sure the new,
2811 * unprocessed blockpointers are inserted into the livelist normally.
2812 *
2813 * Note that dsl_process_sub_livelist() both stores the size number of
2814 * blockpointers and iterates over them while the bpobj's lock held, so
2815 * the sizes returned to us are consistent which what was actually
2816 * processed.
2817 */
2818 int err = dsl_process_sub_livelist(&first->dle_bpobj, &lca->to_keep, t,
2819 &first_size);
2820 if (err == 0)
2821 err = dsl_process_sub_livelist(&next->dle_bpobj, &lca->to_keep,
2822 t, &next_size);
2823
2824 if (err == 0) {
2825 while (zfs_livelist_condense_sync_pause &&
2826 !(zthr_has_waiters(t) || zthr_iscancelled(t)))
2827 delay(1);
2828
2829 dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
2830 dmu_tx_mark_netfree(tx);
2831 dmu_tx_hold_space(tx, 1);
2832 err = dmu_tx_assign(tx, TXG_NOWAIT | TXG_NOTHROTTLE);
2833 if (err == 0) {
2834 /*
2835 * Prevent the condense zthr restarting before
2836 * the synctask completes.
2837 */
2838 spa->spa_to_condense.syncing = B_TRUE;
2839 lca->spa = spa;
2840 lca->first_size = first_size;
2841 lca->next_size = next_size;
2842 dsl_sync_task_nowait(spa_get_dsl(spa),
2843 spa_livelist_condense_sync, lca, tx);
2844 dmu_tx_commit(tx);
2845 return;
2846 }
2847 }
2848 /*
2849 * Condensing can not continue: either it was externally stopped or
2850 * we were unable to assign to a tx because the pool has run out of
2851 * space. In the second case, we'll just end up trying to condense
2852 * again in a later txg.
2853 */
2854 ASSERT(err != 0);
2855 bplist_clear(&lca->to_keep);
2856 bplist_destroy(&lca->to_keep);
2857 kmem_free(lca, sizeof (livelist_condense_arg_t));
2858 dmu_buf_rele(spa->spa_to_condense.ds->ds_dbuf, spa);
2859 spa->spa_to_condense.ds = NULL;
2860 if (err == EINTR)
2861 zfs_livelist_condense_zthr_cancel++;
2862 }
2863
2864 /*
2865 * Check that there is something to condense but that a condense is not
2866 * already in progress and that condensing has not been cancelled.
2867 */
2868 static boolean_t
2869 spa_livelist_condense_cb_check(void *arg, zthr_t *z)
2870 {
2871 (void) z;
2872 spa_t *spa = arg;
2873 if ((spa->spa_to_condense.ds != NULL) &&
2874 (spa->spa_to_condense.syncing == B_FALSE) &&
2875 (spa->spa_to_condense.cancelled == B_FALSE)) {
2876 return (B_TRUE);
2877 }
2878 return (B_FALSE);
2879 }
2880
2881 static void
2882 spa_start_livelist_condensing_thread(spa_t *spa)
2883 {
2884 spa->spa_to_condense.ds = NULL;
2885 spa->spa_to_condense.first = NULL;
2886 spa->spa_to_condense.next = NULL;
2887 spa->spa_to_condense.syncing = B_FALSE;
2888 spa->spa_to_condense.cancelled = B_FALSE;
2889
2890 ASSERT3P(spa->spa_livelist_condense_zthr, ==, NULL);
2891 spa->spa_livelist_condense_zthr =
2892 zthr_create("z_livelist_condense",
2893 spa_livelist_condense_cb_check,
2894 spa_livelist_condense_cb, spa, minclsyspri);
2895 }
2896
2897 static void
2898 spa_spawn_aux_threads(spa_t *spa)
2899 {
2900 ASSERT(spa_writeable(spa));
2901
2902 ASSERT(MUTEX_HELD(&spa_namespace_lock));
2903
2904 spa_start_indirect_condensing_thread(spa);
2905 spa_start_livelist_destroy_thread(spa);
2906 spa_start_livelist_condensing_thread(spa);
2907
2908 ASSERT3P(spa->spa_checkpoint_discard_zthr, ==, NULL);
2909 spa->spa_checkpoint_discard_zthr =
2910 zthr_create("z_checkpoint_discard",
2911 spa_checkpoint_discard_thread_check,
2912 spa_checkpoint_discard_thread, spa, minclsyspri);
2913 }
2914
2915 /*
2916 * Fix up config after a partly-completed split. This is done with the
2917 * ZPOOL_CONFIG_SPLIT nvlist. Both the splitting pool and the split-off
2918 * pool have that entry in their config, but only the splitting one contains
2919 * a list of all the guids of the vdevs that are being split off.
2920 *
2921 * This function determines what to do with that list: either rejoin
2922 * all the disks to the pool, or complete the splitting process. To attempt
2923 * the rejoin, each disk that is offlined is marked online again, and
2924 * we do a reopen() call. If the vdev label for every disk that was
2925 * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL)
2926 * then we call vdev_split() on each disk, and complete the split.
2927 *
2928 * Otherwise we leave the config alone, with all the vdevs in place in
2929 * the original pool.
2930 */
2931 static void
2932 spa_try_repair(spa_t *spa, nvlist_t *config)
2933 {
2934 uint_t extracted;
2935 uint64_t *glist;
2936 uint_t i, gcount;
2937 nvlist_t *nvl;
2938 vdev_t **vd;
2939 boolean_t attempt_reopen;
2940
2941 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0)
2942 return;
2943
2944 /* check that the config is complete */
2945 if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
2946 &glist, &gcount) != 0)
2947 return;
2948
2949 vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP);
2950
2951 /* attempt to online all the vdevs & validate */
2952 attempt_reopen = B_TRUE;
2953 for (i = 0; i < gcount; i++) {
2954 if (glist[i] == 0) /* vdev is hole */
2955 continue;
2956
2957 vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE);
2958 if (vd[i] == NULL) {
2959 /*
2960 * Don't bother attempting to reopen the disks;
2961 * just do the split.
2962 */
2963 attempt_reopen = B_FALSE;
2964 } else {
2965 /* attempt to re-online it */
2966 vd[i]->vdev_offline = B_FALSE;
2967 }
2968 }
2969
2970 if (attempt_reopen) {
2971 vdev_reopen(spa->spa_root_vdev);
2972
2973 /* check each device to see what state it's in */
2974 for (extracted = 0, i = 0; i < gcount; i++) {
2975 if (vd[i] != NULL &&
2976 vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL)
2977 break;
2978 ++extracted;
2979 }
2980 }
2981
2982 /*
2983 * If every disk has been moved to the new pool, or if we never
2984 * even attempted to look at them, then we split them off for
2985 * good.
2986 */
2987 if (!attempt_reopen || gcount == extracted) {
2988 for (i = 0; i < gcount; i++)
2989 if (vd[i] != NULL)
2990 vdev_split(vd[i]);
2991 vdev_reopen(spa->spa_root_vdev);
2992 }
2993
2994 kmem_free(vd, gcount * sizeof (vdev_t *));
2995 }
2996
2997 static int
2998 spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type)
2999 {
3000 const char *ereport = FM_EREPORT_ZFS_POOL;
3001 int error;
3002
3003 spa->spa_load_state = state;
3004 (void) spa_import_progress_set_state(spa_guid(spa),
3005 spa_load_state(spa));
3006
3007 gethrestime(&spa->spa_loaded_ts);
3008 error = spa_load_impl(spa, type, &ereport);
3009
3010 /*
3011 * Don't count references from objsets that are already closed
3012 * and are making their way through the eviction process.
3013 */
3014 spa_evicting_os_wait(spa);
3015 spa->spa_minref = zfs_refcount_count(&spa->spa_refcount);
3016 if (error) {
3017 if (error != EEXIST) {
3018 spa->spa_loaded_ts.tv_sec = 0;
3019 spa->spa_loaded_ts.tv_nsec = 0;
3020 }
3021 if (error != EBADF) {
3022 (void) zfs_ereport_post(ereport, spa,
3023 NULL, NULL, NULL, 0);
3024 }
3025 }
3026 spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE;
3027 spa->spa_ena = 0;
3028
3029 (void) spa_import_progress_set_state(spa_guid(spa),
3030 spa_load_state(spa));
3031
3032 return (error);
3033 }
3034
3035 #ifdef ZFS_DEBUG
3036 /*
3037 * Count the number of per-vdev ZAPs associated with all of the vdevs in the
3038 * vdev tree rooted in the given vd, and ensure that each ZAP is present in the
3039 * spa's per-vdev ZAP list.
3040 */
3041 static uint64_t
3042 vdev_count_verify_zaps(vdev_t *vd)
3043 {
3044 spa_t *spa = vd->vdev_spa;
3045 uint64_t total = 0;
3046
3047 if (vd->vdev_top_zap != 0) {
3048 total++;
3049 ASSERT0(zap_lookup_int(spa->spa_meta_objset,
3050 spa->spa_all_vdev_zaps, vd->vdev_top_zap));
3051 }
3052 if (vd->vdev_leaf_zap != 0) {
3053 total++;
3054 ASSERT0(zap_lookup_int(spa->spa_meta_objset,
3055 spa->spa_all_vdev_zaps, vd->vdev_leaf_zap));
3056 }
3057
3058 for (uint64_t i = 0; i < vd->vdev_children; i++) {
3059 total += vdev_count_verify_zaps(vd->vdev_child[i]);
3060 }
3061
3062 return (total);
3063 }
3064 #else
3065 #define vdev_count_verify_zaps(vd) ((void) sizeof (vd), 0)
3066 #endif
3067
3068 /*
3069 * Determine whether the activity check is required.
3070 */
3071 static boolean_t
3072 spa_activity_check_required(spa_t *spa, uberblock_t *ub, nvlist_t *label,
3073 nvlist_t *config)
3074 {
3075 uint64_t state = 0;
3076 uint64_t hostid = 0;
3077 uint64_t tryconfig_txg = 0;
3078 uint64_t tryconfig_timestamp = 0;
3079 uint16_t tryconfig_mmp_seq = 0;
3080 nvlist_t *nvinfo;
3081
3082 if (nvlist_exists(config, ZPOOL_CONFIG_LOAD_INFO)) {
3083 nvinfo = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_LOAD_INFO);
3084 (void) nvlist_lookup_uint64(nvinfo, ZPOOL_CONFIG_MMP_TXG,
3085 &tryconfig_txg);
3086 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
3087 &tryconfig_timestamp);
3088 (void) nvlist_lookup_uint16(nvinfo, ZPOOL_CONFIG_MMP_SEQ,
3089 &tryconfig_mmp_seq);
3090 }
3091
3092 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE, &state);
3093
3094 /*
3095 * Disable the MMP activity check - This is used by zdb which
3096 * is intended to be used on potentially active pools.
3097 */
3098 if (spa->spa_import_flags & ZFS_IMPORT_SKIP_MMP)
3099 return (B_FALSE);
3100
3101 /*
3102 * Skip the activity check when the MMP feature is disabled.
3103 */
3104 if (ub->ub_mmp_magic == MMP_MAGIC && ub->ub_mmp_delay == 0)
3105 return (B_FALSE);
3106
3107 /*
3108 * If the tryconfig_ values are nonzero, they are the results of an
3109 * earlier tryimport. If they all match the uberblock we just found,
3110 * then the pool has not changed and we return false so we do not test
3111 * a second time.
3112 */
3113 if (tryconfig_txg && tryconfig_txg == ub->ub_txg &&
3114 tryconfig_timestamp && tryconfig_timestamp == ub->ub_timestamp &&
3115 tryconfig_mmp_seq && tryconfig_mmp_seq ==
3116 (MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0))
3117 return (B_FALSE);
3118
3119 /*
3120 * Allow the activity check to be skipped when importing the pool
3121 * on the same host which last imported it. Since the hostid from
3122 * configuration may be stale use the one read from the label.
3123 */
3124 if (nvlist_exists(label, ZPOOL_CONFIG_HOSTID))
3125 hostid = fnvlist_lookup_uint64(label, ZPOOL_CONFIG_HOSTID);
3126
3127 if (hostid == spa_get_hostid(spa))
3128 return (B_FALSE);
3129
3130 /*
3131 * Skip the activity test when the pool was cleanly exported.
3132 */
3133 if (state != POOL_STATE_ACTIVE)
3134 return (B_FALSE);
3135
3136 return (B_TRUE);
3137 }
3138
3139 /*
3140 * Nanoseconds the activity check must watch for changes on-disk.
3141 */
3142 static uint64_t
3143 spa_activity_check_duration(spa_t *spa, uberblock_t *ub)
3144 {
3145 uint64_t import_intervals = MAX(zfs_multihost_import_intervals, 1);
3146 uint64_t multihost_interval = MSEC2NSEC(
3147 MMP_INTERVAL_OK(zfs_multihost_interval));
3148 uint64_t import_delay = MAX(NANOSEC, import_intervals *
3149 multihost_interval);
3150
3151 /*
3152 * Local tunables determine a minimum duration except for the case
3153 * where we know when the remote host will suspend the pool if MMP
3154 * writes do not land.
3155 *
3156 * See Big Theory comment at the top of mmp.c for the reasoning behind
3157 * these cases and times.
3158 */
3159
3160 ASSERT(MMP_IMPORT_SAFETY_FACTOR >= 100);
3161
3162 if (MMP_INTERVAL_VALID(ub) && MMP_FAIL_INT_VALID(ub) &&
3163 MMP_FAIL_INT(ub) > 0) {
3164
3165 /* MMP on remote host will suspend pool after failed writes */
3166 import_delay = MMP_FAIL_INT(ub) * MSEC2NSEC(MMP_INTERVAL(ub)) *
3167 MMP_IMPORT_SAFETY_FACTOR / 100;
3168
3169 zfs_dbgmsg("fail_intvals>0 import_delay=%llu ub_mmp "
3170 "mmp_fails=%llu ub_mmp mmp_interval=%llu "
3171 "import_intervals=%llu", (u_longlong_t)import_delay,
3172 (u_longlong_t)MMP_FAIL_INT(ub),
3173 (u_longlong_t)MMP_INTERVAL(ub),
3174 (u_longlong_t)import_intervals);
3175
3176 } else if (MMP_INTERVAL_VALID(ub) && MMP_FAIL_INT_VALID(ub) &&
3177 MMP_FAIL_INT(ub) == 0) {
3178
3179 /* MMP on remote host will never suspend pool */
3180 import_delay = MAX(import_delay, (MSEC2NSEC(MMP_INTERVAL(ub)) +
3181 ub->ub_mmp_delay) * import_intervals);
3182
3183 zfs_dbgmsg("fail_intvals=0 import_delay=%llu ub_mmp "
3184 "mmp_interval=%llu ub_mmp_delay=%llu "
3185 "import_intervals=%llu", (u_longlong_t)import_delay,
3186 (u_longlong_t)MMP_INTERVAL(ub),
3187 (u_longlong_t)ub->ub_mmp_delay,
3188 (u_longlong_t)import_intervals);
3189
3190 } else if (MMP_VALID(ub)) {
3191 /*
3192 * zfs-0.7 compatibility case
3193 */
3194
3195 import_delay = MAX(import_delay, (multihost_interval +
3196 ub->ub_mmp_delay) * import_intervals);
3197
3198 zfs_dbgmsg("import_delay=%llu ub_mmp_delay=%llu "
3199 "import_intervals=%llu leaves=%u",
3200 (u_longlong_t)import_delay,
3201 (u_longlong_t)ub->ub_mmp_delay,
3202 (u_longlong_t)import_intervals,
3203 vdev_count_leaves(spa));
3204 } else {
3205 /* Using local tunings is the only reasonable option */
3206 zfs_dbgmsg("pool last imported on non-MMP aware "
3207 "host using import_delay=%llu multihost_interval=%llu "
3208 "import_intervals=%llu", (u_longlong_t)import_delay,
3209 (u_longlong_t)multihost_interval,
3210 (u_longlong_t)import_intervals);
3211 }
3212
3213 return (import_delay);
3214 }
3215
3216 /*
3217 * Perform the import activity check. If the user canceled the import or
3218 * we detected activity then fail.
3219 */
3220 static int
3221 spa_activity_check(spa_t *spa, uberblock_t *ub, nvlist_t *config)
3222 {
3223 uint64_t txg = ub->ub_txg;
3224 uint64_t timestamp = ub->ub_timestamp;
3225 uint64_t mmp_config = ub->ub_mmp_config;
3226 uint16_t mmp_seq = MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0;
3227 uint64_t import_delay;
3228 hrtime_t import_expire;
3229 nvlist_t *mmp_label = NULL;
3230 vdev_t *rvd = spa->spa_root_vdev;
3231 kcondvar_t cv;
3232 kmutex_t mtx;
3233 int error = 0;
3234
3235 cv_init(&cv, NULL, CV_DEFAULT, NULL);
3236 mutex_init(&mtx, NULL, MUTEX_DEFAULT, NULL);
3237 mutex_enter(&mtx);
3238
3239 /*
3240 * If ZPOOL_CONFIG_MMP_TXG is present an activity check was performed
3241 * during the earlier tryimport. If the txg recorded there is 0 then
3242 * the pool is known to be active on another host.
3243 *
3244 * Otherwise, the pool might be in use on another host. Check for
3245 * changes in the uberblocks on disk if necessary.
3246 */
3247 if (nvlist_exists(config, ZPOOL_CONFIG_LOAD_INFO)) {
3248 nvlist_t *nvinfo = fnvlist_lookup_nvlist(config,
3249 ZPOOL_CONFIG_LOAD_INFO);
3250
3251 if (nvlist_exists(nvinfo, ZPOOL_CONFIG_MMP_TXG) &&
3252 fnvlist_lookup_uint64(nvinfo, ZPOOL_CONFIG_MMP_TXG) == 0) {
3253 vdev_uberblock_load(rvd, ub, &mmp_label);
3254 error = SET_ERROR(EREMOTEIO);
3255 goto out;
3256 }
3257 }
3258
3259 import_delay = spa_activity_check_duration(spa, ub);
3260
3261 /* Add a small random factor in case of simultaneous imports (0-25%) */
3262 import_delay += import_delay * random_in_range(250) / 1000;
3263
3264 import_expire = gethrtime() + import_delay;
3265
3266 while (gethrtime() < import_expire) {
3267 (void) spa_import_progress_set_mmp_check(spa_guid(spa),
3268 NSEC2SEC(import_expire - gethrtime()));
3269
3270 vdev_uberblock_load(rvd, ub, &mmp_label);
3271
3272 if (txg != ub->ub_txg || timestamp != ub->ub_timestamp ||
3273 mmp_seq != (MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0)) {
3274 zfs_dbgmsg("multihost activity detected "
3275 "txg %llu ub_txg %llu "
3276 "timestamp %llu ub_timestamp %llu "
3277 "mmp_config %#llx ub_mmp_config %#llx",
3278 (u_longlong_t)txg, (u_longlong_t)ub->ub_txg,
3279 (u_longlong_t)timestamp,
3280 (u_longlong_t)ub->ub_timestamp,
3281 (u_longlong_t)mmp_config,
3282 (u_longlong_t)ub->ub_mmp_config);
3283
3284 error = SET_ERROR(EREMOTEIO);
3285 break;
3286 }
3287
3288 if (mmp_label) {
3289 nvlist_free(mmp_label);
3290 mmp_label = NULL;
3291 }
3292
3293 error = cv_timedwait_sig(&cv, &mtx, ddi_get_lbolt() + hz);
3294 if (error != -1) {
3295 error = SET_ERROR(EINTR);
3296 break;
3297 }
3298 error = 0;
3299 }
3300
3301 out:
3302 mutex_exit(&mtx);
3303 mutex_destroy(&mtx);
3304 cv_destroy(&cv);
3305
3306 /*
3307 * If the pool is determined to be active store the status in the
3308 * spa->spa_load_info nvlist. If the remote hostname or hostid are
3309 * available from configuration read from disk store them as well.
3310 * This allows 'zpool import' to generate a more useful message.
3311 *
3312 * ZPOOL_CONFIG_MMP_STATE - observed pool status (mandatory)
3313 * ZPOOL_CONFIG_MMP_HOSTNAME - hostname from the active pool
3314 * ZPOOL_CONFIG_MMP_HOSTID - hostid from the active pool
3315 */
3316 if (error == EREMOTEIO) {
3317 const char *hostname = "<unknown>";
3318 uint64_t hostid = 0;
3319
3320 if (mmp_label) {
3321 if (nvlist_exists(mmp_label, ZPOOL_CONFIG_HOSTNAME)) {
3322 hostname = fnvlist_lookup_string(mmp_label,
3323 ZPOOL_CONFIG_HOSTNAME);
3324 fnvlist_add_string(spa->spa_load_info,
3325 ZPOOL_CONFIG_MMP_HOSTNAME, hostname);
3326 }
3327
3328 if (nvlist_exists(mmp_label, ZPOOL_CONFIG_HOSTID)) {
3329 hostid = fnvlist_lookup_uint64(mmp_label,
3330 ZPOOL_CONFIG_HOSTID);
3331 fnvlist_add_uint64(spa->spa_load_info,
3332 ZPOOL_CONFIG_MMP_HOSTID, hostid);
3333 }
3334 }
3335
3336 fnvlist_add_uint64(spa->spa_load_info,
3337 ZPOOL_CONFIG_MMP_STATE, MMP_STATE_ACTIVE);
3338 fnvlist_add_uint64(spa->spa_load_info,
3339 ZPOOL_CONFIG_MMP_TXG, 0);
3340
3341 error = spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO);
3342 }
3343
3344 if (mmp_label)
3345 nvlist_free(mmp_label);
3346
3347 return (error);
3348 }
3349
3350 static int
3351 spa_verify_host(spa_t *spa, nvlist_t *mos_config)
3352 {
3353 uint64_t hostid;
3354 const char *hostname;
3355 uint64_t myhostid = 0;
3356
3357 if (!spa_is_root(spa) && nvlist_lookup_uint64(mos_config,
3358 ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
3359 hostname = fnvlist_lookup_string(mos_config,
3360 ZPOOL_CONFIG_HOSTNAME);
3361
3362 myhostid = zone_get_hostid(NULL);
3363
3364 if (hostid != 0 && myhostid != 0 && hostid != myhostid) {
3365 cmn_err(CE_WARN, "pool '%s' could not be "
3366 "loaded as it was last accessed by "
3367 "another system (host: %s hostid: 0x%llx). "
3368 "See: https://openzfs.github.io/openzfs-docs/msg/"
3369 "ZFS-8000-EY",
3370 spa_name(spa), hostname, (u_longlong_t)hostid);
3371 spa_load_failed(spa, "hostid verification failed: pool "
3372 "last accessed by host: %s (hostid: 0x%llx)",
3373 hostname, (u_longlong_t)hostid);
3374 return (SET_ERROR(EBADF));
3375 }
3376 }
3377
3378 return (0);
3379 }
3380
3381 static int
3382 spa_ld_parse_config(spa_t *spa, spa_import_type_t type)
3383 {
3384 int error = 0;
3385 nvlist_t *nvtree, *nvl, *config = spa->spa_config;
3386 int parse;
3387 vdev_t *rvd;
3388 uint64_t pool_guid;
3389 const char *comment;
3390 const char *compatibility;
3391
3392 /*
3393 * Versioning wasn't explicitly added to the label until later, so if
3394 * it's not present treat it as the initial version.
3395 */
3396 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
3397 &spa->spa_ubsync.ub_version) != 0)
3398 spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
3399
3400 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid)) {
3401 spa_load_failed(spa, "invalid config provided: '%s' missing",
3402 ZPOOL_CONFIG_POOL_GUID);
3403 return (SET_ERROR(EINVAL));
3404 }
3405
3406 /*
3407 * If we are doing an import, ensure that the pool is not already
3408 * imported by checking if its pool guid already exists in the
3409 * spa namespace.
3410 *
3411 * The only case that we allow an already imported pool to be
3412 * imported again, is when the pool is checkpointed and we want to
3413 * look at its checkpointed state from userland tools like zdb.
3414 */
3415 #ifdef _KERNEL
3416 if ((spa->spa_load_state == SPA_LOAD_IMPORT ||
3417 spa->spa_load_state == SPA_LOAD_TRYIMPORT) &&
3418 spa_guid_exists(pool_guid, 0)) {
3419 #else
3420 if ((spa->spa_load_state == SPA_LOAD_IMPORT ||
3421 spa->spa_load_state == SPA_LOAD_TRYIMPORT) &&
3422 spa_guid_exists(pool_guid, 0) &&
3423 !spa_importing_readonly_checkpoint(spa)) {
3424 #endif
3425 spa_load_failed(spa, "a pool with guid %llu is already open",
3426 (u_longlong_t)pool_guid);
3427 return (SET_ERROR(EEXIST));
3428 }
3429
3430 spa->spa_config_guid = pool_guid;
3431
3432 nvlist_free(spa->spa_load_info);
3433 spa->spa_load_info = fnvlist_alloc();
3434
3435 ASSERT(spa->spa_comment == NULL);
3436 if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0)
3437 spa->spa_comment = spa_strdup(comment);
3438
3439 ASSERT(spa->spa_compatibility == NULL);
3440 if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMPATIBILITY,
3441 &compatibility) == 0)
3442 spa->spa_compatibility = spa_strdup(compatibility);
3443
3444 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
3445 &spa->spa_config_txg);
3446
3447 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) == 0)
3448 spa->spa_config_splitting = fnvlist_dup(nvl);
3449
3450 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvtree)) {
3451 spa_load_failed(spa, "invalid config provided: '%s' missing",
3452 ZPOOL_CONFIG_VDEV_TREE);
3453 return (SET_ERROR(EINVAL));
3454 }
3455
3456 /*
3457 * Create "The Godfather" zio to hold all async IOs
3458 */
3459 spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
3460 KM_SLEEP);
3461 for (int i = 0; i < max_ncpus; i++) {
3462 spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
3463 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
3464 ZIO_FLAG_GODFATHER);
3465 }
3466
3467 /*
3468 * Parse the configuration into a vdev tree. We explicitly set the
3469 * value that will be returned by spa_version() since parsing the
3470 * configuration requires knowing the version number.
3471 */
3472 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3473 parse = (type == SPA_IMPORT_EXISTING ?
3474 VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT);
3475 error = spa_config_parse(spa, &rvd, nvtree, NULL, 0, parse);
3476 spa_config_exit(spa, SCL_ALL, FTAG);
3477
3478 if (error != 0) {
3479 spa_load_failed(spa, "unable to parse config [error=%d]",
3480 error);
3481 return (error);
3482 }
3483
3484 ASSERT(spa->spa_root_vdev == rvd);
3485 ASSERT3U(spa->spa_min_ashift, >=, SPA_MINBLOCKSHIFT);
3486 ASSERT3U(spa->spa_max_ashift, <=, SPA_MAXBLOCKSHIFT);
3487
3488 if (type != SPA_IMPORT_ASSEMBLE) {
3489 ASSERT(spa_guid(spa) == pool_guid);
3490 }
3491
3492 return (0);
3493 }
3494
3495 /*
3496 * Recursively open all vdevs in the vdev tree. This function is called twice:
3497 * first with the untrusted config, then with the trusted config.
3498 */
3499 static int
3500 spa_ld_open_vdevs(spa_t *spa)
3501 {
3502 int error = 0;
3503
3504 /*
3505 * spa_missing_tvds_allowed defines how many top-level vdevs can be
3506 * missing/unopenable for the root vdev to be still considered openable.
3507 */
3508 if (spa->spa_trust_config) {
3509 spa->spa_missing_tvds_allowed = zfs_max_missing_tvds;
3510 } else if (spa->spa_config_source == SPA_CONFIG_SRC_CACHEFILE) {
3511 spa->spa_missing_tvds_allowed = zfs_max_missing_tvds_cachefile;
3512 } else if (spa->spa_config_source == SPA_CONFIG_SRC_SCAN) {
3513 spa->spa_missing_tvds_allowed = zfs_max_missing_tvds_scan;
3514 } else {
3515 spa->spa_missing_tvds_allowed = 0;
3516 }
3517
3518 spa->spa_missing_tvds_allowed =
3519 MAX(zfs_max_missing_tvds, spa->spa_missing_tvds_allowed);
3520
3521 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3522 error = vdev_open(spa->spa_root_vdev);
3523 spa_config_exit(spa, SCL_ALL, FTAG);
3524
3525 if (spa->spa_missing_tvds != 0) {
3526 spa_load_note(spa, "vdev tree has %lld missing top-level "
3527 "vdevs.", (u_longlong_t)spa->spa_missing_tvds);
3528 if (spa->spa_trust_config && (spa->spa_mode & SPA_MODE_WRITE)) {
3529 /*
3530 * Although theoretically we could allow users to open
3531 * incomplete pools in RW mode, we'd need to add a lot
3532 * of extra logic (e.g. adjust pool space to account
3533 * for missing vdevs).
3534 * This limitation also prevents users from accidentally
3535 * opening the pool in RW mode during data recovery and
3536 * damaging it further.
3537 */
3538 spa_load_note(spa, "pools with missing top-level "
3539 "vdevs can only be opened in read-only mode.");
3540 error = SET_ERROR(ENXIO);
3541 } else {
3542 spa_load_note(spa, "current settings allow for maximum "
3543 "%lld missing top-level vdevs at this stage.",
3544 (u_longlong_t)spa->spa_missing_tvds_allowed);
3545 }
3546 }
3547 if (error != 0) {
3548 spa_load_failed(spa, "unable to open vdev tree [error=%d]",
3549 error);
3550 }
3551 if (spa->spa_missing_tvds != 0 || error != 0)
3552 vdev_dbgmsg_print_tree(spa->spa_root_vdev, 2);
3553
3554 return (error);
3555 }
3556
3557 /*
3558 * We need to validate the vdev labels against the configuration that
3559 * we have in hand. This function is called twice: first with an untrusted
3560 * config, then with a trusted config. The validation is more strict when the
3561 * config is trusted.
3562 */
3563 static int
3564 spa_ld_validate_vdevs(spa_t *spa)
3565 {
3566 int error = 0;
3567 vdev_t *rvd = spa->spa_root_vdev;
3568
3569 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3570 error = vdev_validate(rvd);
3571 spa_config_exit(spa, SCL_ALL, FTAG);
3572
3573 if (error != 0) {
3574 spa_load_failed(spa, "vdev_validate failed [error=%d]", error);
3575 return (error);
3576 }
3577
3578 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) {
3579 spa_load_failed(spa, "cannot open vdev tree after invalidating "
3580 "some vdevs");
3581 vdev_dbgmsg_print_tree(rvd, 2);
3582 return (SET_ERROR(ENXIO));
3583 }
3584
3585 return (0);
3586 }
3587
3588 static void
3589 spa_ld_select_uberblock_done(spa_t *spa, uberblock_t *ub)
3590 {
3591 spa->spa_state = POOL_STATE_ACTIVE;
3592 spa->spa_ubsync = spa->spa_uberblock;
3593 spa->spa_verify_min_txg = spa->spa_extreme_rewind ?
3594 TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1;
3595 spa->spa_first_txg = spa->spa_last_ubsync_txg ?
3596 spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1;
3597 spa->spa_claim_max_txg = spa->spa_first_txg;
3598 spa->spa_prev_software_version = ub->ub_software_version;
3599 }
3600
3601 static int
3602 spa_ld_select_uberblock(spa_t *spa, spa_import_type_t type)
3603 {
3604 vdev_t *rvd = spa->spa_root_vdev;
3605 nvlist_t *label;
3606 uberblock_t *ub = &spa->spa_uberblock;
3607 boolean_t activity_check = B_FALSE;
3608
3609 /*
3610 * If we are opening the checkpointed state of the pool by
3611 * rewinding to it, at this point we will have written the
3612 * checkpointed uberblock to the vdev labels, so searching
3613 * the labels will find the right uberblock. However, if
3614 * we are opening the checkpointed state read-only, we have
3615 * not modified the labels. Therefore, we must ignore the
3616 * labels and continue using the spa_uberblock that was set
3617 * by spa_ld_checkpoint_rewind.
3618 *
3619 * Note that it would be fine to ignore the labels when
3620 * rewinding (opening writeable) as well. However, if we
3621 * crash just after writing the labels, we will end up
3622 * searching the labels. Doing so in the common case means
3623 * that this code path gets exercised normally, rather than
3624 * just in the edge case.
3625 */
3626 if (ub->ub_checkpoint_txg != 0 &&
3627 spa_importing_readonly_checkpoint(spa)) {
3628 spa_ld_select_uberblock_done(spa, ub);
3629 return (0);
3630 }
3631
3632 /*
3633 * Find the best uberblock.
3634 */
3635 vdev_uberblock_load(rvd, ub, &label);
3636
3637 /*
3638 * If we weren't able to find a single valid uberblock, return failure.
3639 */
3640 if (ub->ub_txg == 0) {
3641 nvlist_free(label);
3642 spa_load_failed(spa, "no valid uberblock found");
3643 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO));
3644 }
3645
3646 if (spa->spa_load_max_txg != UINT64_MAX) {
3647 (void) spa_import_progress_set_max_txg(spa_guid(spa),
3648 (u_longlong_t)spa->spa_load_max_txg);
3649 }
3650 spa_load_note(spa, "using uberblock with txg=%llu",
3651 (u_longlong_t)ub->ub_txg);
3652
3653
3654 /*
3655 * For pools which have the multihost property on determine if the
3656 * pool is truly inactive and can be safely imported. Prevent
3657 * hosts which don't have a hostid set from importing the pool.
3658 */
3659 activity_check = spa_activity_check_required(spa, ub, label,
3660 spa->spa_config);
3661 if (activity_check) {
3662 if (ub->ub_mmp_magic == MMP_MAGIC && ub->ub_mmp_delay &&
3663 spa_get_hostid(spa) == 0) {
3664 nvlist_free(label);
3665 fnvlist_add_uint64(spa->spa_load_info,
3666 ZPOOL_CONFIG_MMP_STATE, MMP_STATE_NO_HOSTID);
3667 return (spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO));
3668 }
3669
3670 int error = spa_activity_check(spa, ub, spa->spa_config);
3671 if (error) {
3672 nvlist_free(label);
3673 return (error);
3674 }
3675
3676 fnvlist_add_uint64(spa->spa_load_info,
3677 ZPOOL_CONFIG_MMP_STATE, MMP_STATE_INACTIVE);
3678 fnvlist_add_uint64(spa->spa_load_info,
3679 ZPOOL_CONFIG_MMP_TXG, ub->ub_txg);
3680 fnvlist_add_uint16(spa->spa_load_info,
3681 ZPOOL_CONFIG_MMP_SEQ,
3682 (MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0));
3683 }
3684
3685 /*
3686 * If the pool has an unsupported version we can't open it.
3687 */
3688 if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) {
3689 nvlist_free(label);
3690 spa_load_failed(spa, "version %llu is not supported",
3691 (u_longlong_t)ub->ub_version);
3692 return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP));
3693 }
3694
3695 if (ub->ub_version >= SPA_VERSION_FEATURES) {
3696 nvlist_t *features;
3697
3698 /*
3699 * If we weren't able to find what's necessary for reading the
3700 * MOS in the label, return failure.
3701 */
3702 if (label == NULL) {
3703 spa_load_failed(spa, "label config unavailable");
3704 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
3705 ENXIO));
3706 }
3707
3708 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_FEATURES_FOR_READ,
3709 &features) != 0) {
3710 nvlist_free(label);
3711 spa_load_failed(spa, "invalid label: '%s' missing",
3712 ZPOOL_CONFIG_FEATURES_FOR_READ);
3713 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
3714 ENXIO));
3715 }
3716
3717 /*
3718 * Update our in-core representation with the definitive values
3719 * from the label.
3720 */
3721 nvlist_free(spa->spa_label_features);
3722 spa->spa_label_features = fnvlist_dup(features);
3723 }
3724
3725 nvlist_free(label);
3726
3727 /*
3728 * Look through entries in the label nvlist's features_for_read. If
3729 * there is a feature listed there which we don't understand then we
3730 * cannot open a pool.
3731 */
3732 if (ub->ub_version >= SPA_VERSION_FEATURES) {
3733 nvlist_t *unsup_feat;
3734
3735 unsup_feat = fnvlist_alloc();
3736
3737 for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features,
3738 NULL); nvp != NULL;
3739 nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) {
3740 if (!zfeature_is_supported(nvpair_name(nvp))) {
3741 fnvlist_add_string(unsup_feat,
3742 nvpair_name(nvp), "");
3743 }
3744 }
3745
3746 if (!nvlist_empty(unsup_feat)) {
3747 fnvlist_add_nvlist(spa->spa_load_info,
3748 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat);
3749 nvlist_free(unsup_feat);
3750 spa_load_failed(spa, "some features are unsupported");
3751 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
3752 ENOTSUP));
3753 }
3754
3755 nvlist_free(unsup_feat);
3756 }
3757
3758 if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) {
3759 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3760 spa_try_repair(spa, spa->spa_config);
3761 spa_config_exit(spa, SCL_ALL, FTAG);
3762 nvlist_free(spa->spa_config_splitting);
3763 spa->spa_config_splitting = NULL;
3764 }
3765
3766 /*
3767 * Initialize internal SPA structures.
3768 */
3769 spa_ld_select_uberblock_done(spa, ub);
3770
3771 return (0);
3772 }
3773
3774 static int
3775 spa_ld_open_rootbp(spa_t *spa)
3776 {
3777 int error = 0;
3778 vdev_t *rvd = spa->spa_root_vdev;
3779
3780 error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
3781 if (error != 0) {
3782 spa_load_failed(spa, "unable to open rootbp in dsl_pool_init "
3783 "[error=%d]", error);
3784 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3785 }
3786 spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
3787
3788 return (0);
3789 }
3790
3791 static int
3792 spa_ld_trusted_config(spa_t *spa, spa_import_type_t type,
3793 boolean_t reloading)
3794 {
3795 vdev_t *mrvd, *rvd = spa->spa_root_vdev;
3796 nvlist_t *nv, *mos_config, *policy;
3797 int error = 0, copy_error;
3798 uint64_t healthy_tvds, healthy_tvds_mos;
3799 uint64_t mos_config_txg;
3800
3801 if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object, B_TRUE)
3802 != 0)
3803 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3804
3805 /*
3806 * If we're assembling a pool from a split, the config provided is
3807 * already trusted so there is nothing to do.
3808 */
3809 if (type == SPA_IMPORT_ASSEMBLE)
3810 return (0);
3811
3812 healthy_tvds = spa_healthy_core_tvds(spa);
3813
3814 if (load_nvlist(spa, spa->spa_config_object, &mos_config)
3815 != 0) {
3816 spa_load_failed(spa, "unable to retrieve MOS config");
3817 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3818 }
3819
3820 /*
3821 * If we are doing an open, pool owner wasn't verified yet, thus do
3822 * the verification here.
3823 */
3824 if (spa->spa_load_state == SPA_LOAD_OPEN) {
3825 error = spa_verify_host(spa, mos_config);
3826 if (error != 0) {
3827 nvlist_free(mos_config);
3828 return (error);
3829 }
3830 }
3831
3832 nv = fnvlist_lookup_nvlist(mos_config, ZPOOL_CONFIG_VDEV_TREE);
3833
3834 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3835
3836 /*
3837 * Build a new vdev tree from the trusted config
3838 */
3839 error = spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD);
3840 if (error != 0) {
3841 nvlist_free(mos_config);
3842 spa_config_exit(spa, SCL_ALL, FTAG);
3843 spa_load_failed(spa, "spa_config_parse failed [error=%d]",
3844 error);
3845 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
3846 }
3847
3848 /*
3849 * Vdev paths in the MOS may be obsolete. If the untrusted config was
3850 * obtained by scanning /dev/dsk, then it will have the right vdev
3851 * paths. We update the trusted MOS config with this information.
3852 * We first try to copy the paths with vdev_copy_path_strict, which
3853 * succeeds only when both configs have exactly the same vdev tree.
3854 * If that fails, we fall back to a more flexible method that has a
3855 * best effort policy.
3856 */
3857 copy_error = vdev_copy_path_strict(rvd, mrvd);
3858 if (copy_error != 0 || spa_load_print_vdev_tree) {
3859 spa_load_note(spa, "provided vdev tree:");
3860 vdev_dbgmsg_print_tree(rvd, 2);
3861 spa_load_note(spa, "MOS vdev tree:");
3862 vdev_dbgmsg_print_tree(mrvd, 2);
3863 }
3864 if (copy_error != 0) {
3865 spa_load_note(spa, "vdev_copy_path_strict failed, falling "
3866 "back to vdev_copy_path_relaxed");
3867 vdev_copy_path_relaxed(rvd, mrvd);
3868 }
3869
3870 vdev_close(rvd);
3871 vdev_free(rvd);
3872 spa->spa_root_vdev = mrvd;
3873 rvd = mrvd;
3874 spa_config_exit(spa, SCL_ALL, FTAG);
3875
3876 /*
3877 * We will use spa_config if we decide to reload the spa or if spa_load
3878 * fails and we rewind. We must thus regenerate the config using the
3879 * MOS information with the updated paths. ZPOOL_LOAD_POLICY is used to
3880 * pass settings on how to load the pool and is not stored in the MOS.
3881 * We copy it over to our new, trusted config.
3882 */
3883 mos_config_txg = fnvlist_lookup_uint64(mos_config,
3884 ZPOOL_CONFIG_POOL_TXG);
3885 nvlist_free(mos_config);
3886 mos_config = spa_config_generate(spa, NULL, mos_config_txg, B_FALSE);
3887 if (nvlist_lookup_nvlist(spa->spa_config, ZPOOL_LOAD_POLICY,
3888 &policy) == 0)
3889 fnvlist_add_nvlist(mos_config, ZPOOL_LOAD_POLICY, policy);
3890 spa_config_set(spa, mos_config);
3891 spa->spa_config_source = SPA_CONFIG_SRC_MOS;
3892
3893 /*
3894 * Now that we got the config from the MOS, we should be more strict
3895 * in checking blkptrs and can make assumptions about the consistency
3896 * of the vdev tree. spa_trust_config must be set to true before opening
3897 * vdevs in order for them to be writeable.
3898 */
3899 spa->spa_trust_config = B_TRUE;
3900
3901 /*
3902 * Open and validate the new vdev tree
3903 */
3904 error = spa_ld_open_vdevs(spa);
3905 if (error != 0)
3906 return (error);
3907
3908 error = spa_ld_validate_vdevs(spa);
3909 if (error != 0)
3910 return (error);
3911
3912 if (copy_error != 0 || spa_load_print_vdev_tree) {
3913 spa_load_note(spa, "final vdev tree:");
3914 vdev_dbgmsg_print_tree(rvd, 2);
3915 }
3916
3917 if (spa->spa_load_state != SPA_LOAD_TRYIMPORT &&
3918 !spa->spa_extreme_rewind && zfs_max_missing_tvds == 0) {
3919 /*
3920 * Sanity check to make sure that we are indeed loading the
3921 * latest uberblock. If we missed SPA_SYNC_MIN_VDEVS tvds
3922 * in the config provided and they happened to be the only ones
3923 * to have the latest uberblock, we could involuntarily perform
3924 * an extreme rewind.
3925 */
3926 healthy_tvds_mos = spa_healthy_core_tvds(spa);
3927 if (healthy_tvds_mos - healthy_tvds >=
3928 SPA_SYNC_MIN_VDEVS) {
3929 spa_load_note(spa, "config provided misses too many "
3930 "top-level vdevs compared to MOS (%lld vs %lld). ",
3931 (u_longlong_t)healthy_tvds,
3932 (u_longlong_t)healthy_tvds_mos);
3933 spa_load_note(spa, "vdev tree:");
3934 vdev_dbgmsg_print_tree(rvd, 2);
3935 if (reloading) {
3936 spa_load_failed(spa, "config was already "
3937 "provided from MOS. Aborting.");
3938 return (spa_vdev_err(rvd,
3939 VDEV_AUX_CORRUPT_DATA, EIO));
3940 }
3941 spa_load_note(spa, "spa must be reloaded using MOS "
3942 "config");
3943 return (SET_ERROR(EAGAIN));
3944 }
3945 }
3946
3947 error = spa_check_for_missing_logs(spa);
3948 if (error != 0)
3949 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO));
3950
3951 if (rvd->vdev_guid_sum != spa->spa_uberblock.ub_guid_sum) {
3952 spa_load_failed(spa, "uberblock guid sum doesn't match MOS "
3953 "guid sum (%llu != %llu)",
3954 (u_longlong_t)spa->spa_uberblock.ub_guid_sum,
3955 (u_longlong_t)rvd->vdev_guid_sum);
3956 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM,
3957 ENXIO));
3958 }
3959
3960 return (0);
3961 }
3962
3963 static int
3964 spa_ld_open_indirect_vdev_metadata(spa_t *spa)
3965 {
3966 int error = 0;
3967 vdev_t *rvd = spa->spa_root_vdev;
3968
3969 /*
3970 * Everything that we read before spa_remove_init() must be stored
3971 * on concreted vdevs. Therefore we do this as early as possible.
3972 */
3973 error = spa_remove_init(spa);
3974 if (error != 0) {
3975 spa_load_failed(spa, "spa_remove_init failed [error=%d]",
3976 error);
3977 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3978 }
3979
3980 /*
3981 * Retrieve information needed to condense indirect vdev mappings.
3982 */
3983 error = spa_condense_init(spa);
3984 if (error != 0) {
3985 spa_load_failed(spa, "spa_condense_init failed [error=%d]",
3986 error);
3987 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
3988 }
3989
3990 return (0);
3991 }
3992
3993 static int
3994 spa_ld_check_features(spa_t *spa, boolean_t *missing_feat_writep)
3995 {
3996 int error = 0;
3997 vdev_t *rvd = spa->spa_root_vdev;
3998
3999 if (spa_version(spa) >= SPA_VERSION_FEATURES) {
4000 boolean_t missing_feat_read = B_FALSE;
4001 nvlist_t *unsup_feat, *enabled_feat;
4002
4003 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ,
4004 &spa->spa_feat_for_read_obj, B_TRUE) != 0) {
4005 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4006 }
4007
4008 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE,
4009 &spa->spa_feat_for_write_obj, B_TRUE) != 0) {
4010 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4011 }
4012
4013 if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS,
4014 &spa->spa_feat_desc_obj, B_TRUE) != 0) {
4015 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4016 }
4017
4018 enabled_feat = fnvlist_alloc();
4019 unsup_feat = fnvlist_alloc();
4020
4021 if (!spa_features_check(spa, B_FALSE,
4022 unsup_feat, enabled_feat))
4023 missing_feat_read = B_TRUE;
4024
4025 if (spa_writeable(spa) ||
4026 spa->spa_load_state == SPA_LOAD_TRYIMPORT) {
4027 if (!spa_features_check(spa, B_TRUE,
4028 unsup_feat, enabled_feat)) {
4029 *missing_feat_writep = B_TRUE;
4030 }
4031 }
4032
4033 fnvlist_add_nvlist(spa->spa_load_info,
4034 ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat);
4035
4036 if (!nvlist_empty(unsup_feat)) {
4037 fnvlist_add_nvlist(spa->spa_load_info,
4038 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat);
4039 }
4040
4041 fnvlist_free(enabled_feat);
4042 fnvlist_free(unsup_feat);
4043
4044 if (!missing_feat_read) {
4045 fnvlist_add_boolean(spa->spa_load_info,
4046 ZPOOL_CONFIG_CAN_RDONLY);
4047 }
4048
4049 /*
4050 * If the state is SPA_LOAD_TRYIMPORT, our objective is
4051 * twofold: to determine whether the pool is available for
4052 * import in read-write mode and (if it is not) whether the
4053 * pool is available for import in read-only mode. If the pool
4054 * is available for import in read-write mode, it is displayed
4055 * as available in userland; if it is not available for import
4056 * in read-only mode, it is displayed as unavailable in
4057 * userland. If the pool is available for import in read-only
4058 * mode but not read-write mode, it is displayed as unavailable
4059 * in userland with a special note that the pool is actually
4060 * available for open in read-only mode.
4061 *
4062 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are
4063 * missing a feature for write, we must first determine whether
4064 * the pool can be opened read-only before returning to
4065 * userland in order to know whether to display the
4066 * abovementioned note.
4067 */
4068 if (missing_feat_read || (*missing_feat_writep &&
4069 spa_writeable(spa))) {
4070 spa_load_failed(spa, "pool uses unsupported features");
4071 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
4072 ENOTSUP));
4073 }
4074
4075 /*
4076 * Load refcounts for ZFS features from disk into an in-memory
4077 * cache during SPA initialization.
4078 */
4079 for (spa_feature_t i = 0; i < SPA_FEATURES; i++) {
4080 uint64_t refcount;
4081
4082 error = feature_get_refcount_from_disk(spa,
4083 &spa_feature_table[i], &refcount);
4084 if (error == 0) {
4085 spa->spa_feat_refcount_cache[i] = refcount;
4086 } else if (error == ENOTSUP) {
4087 spa->spa_feat_refcount_cache[i] =
4088 SPA_FEATURE_DISABLED;
4089 } else {
4090 spa_load_failed(spa, "error getting refcount "
4091 "for feature %s [error=%d]",
4092 spa_feature_table[i].fi_guid, error);
4093 return (spa_vdev_err(rvd,
4094 VDEV_AUX_CORRUPT_DATA, EIO));
4095 }
4096 }
4097 }
4098
4099 if (spa_feature_is_active(spa, SPA_FEATURE_ENABLED_TXG)) {
4100 if (spa_dir_prop(spa, DMU_POOL_FEATURE_ENABLED_TXG,
4101 &spa->spa_feat_enabled_txg_obj, B_TRUE) != 0)
4102 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4103 }
4104
4105 /*
4106 * Encryption was added before bookmark_v2, even though bookmark_v2
4107 * is now a dependency. If this pool has encryption enabled without
4108 * bookmark_v2, trigger an errata message.
4109 */
4110 if (spa_feature_is_enabled(spa, SPA_FEATURE_ENCRYPTION) &&
4111 !spa_feature_is_enabled(spa, SPA_FEATURE_BOOKMARK_V2)) {
4112 spa->spa_errata = ZPOOL_ERRATA_ZOL_8308_ENCRYPTION;
4113 }
4114
4115 return (0);
4116 }
4117
4118 static int
4119 spa_ld_load_special_directories(spa_t *spa)
4120 {
4121 int error = 0;
4122 vdev_t *rvd = spa->spa_root_vdev;
4123
4124 spa->spa_is_initializing = B_TRUE;
4125 error = dsl_pool_open(spa->spa_dsl_pool);
4126 spa->spa_is_initializing = B_FALSE;
4127 if (error != 0) {
4128 spa_load_failed(spa, "dsl_pool_open failed [error=%d]", error);
4129 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4130 }
4131
4132 return (0);
4133 }
4134
4135 static int
4136 spa_ld_get_props(spa_t *spa)
4137 {
4138 int error = 0;
4139 uint64_t obj;
4140 vdev_t *rvd = spa->spa_root_vdev;
4141
4142 /* Grab the checksum salt from the MOS. */
4143 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
4144 DMU_POOL_CHECKSUM_SALT, 1,
4145 sizeof (spa->spa_cksum_salt.zcs_bytes),
4146 spa->spa_cksum_salt.zcs_bytes);
4147 if (error == ENOENT) {
4148 /* Generate a new salt for subsequent use */
4149 (void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes,
4150 sizeof (spa->spa_cksum_salt.zcs_bytes));
4151 } else if (error != 0) {
4152 spa_load_failed(spa, "unable to retrieve checksum salt from "
4153 "MOS [error=%d]", error);
4154 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4155 }
4156
4157 if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj, B_TRUE) != 0)
4158 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4159 error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj);
4160 if (error != 0) {
4161 spa_load_failed(spa, "error opening deferred-frees bpobj "
4162 "[error=%d]", error);
4163 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4164 }
4165
4166 /*
4167 * Load the bit that tells us to use the new accounting function
4168 * (raid-z deflation). If we have an older pool, this will not
4169 * be present.
4170 */
4171 error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate, B_FALSE);
4172 if (error != 0 && error != ENOENT)
4173 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4174
4175 error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION,
4176 &spa->spa_creation_version, B_FALSE);
4177 if (error != 0 && error != ENOENT)
4178 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4179
4180 /*
4181 * Load the persistent error log. If we have an older pool, this will
4182 * not be present.
4183 */
4184 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last,
4185 B_FALSE);
4186 if (error != 0 && error != ENOENT)
4187 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4188
4189 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB,
4190 &spa->spa_errlog_scrub, B_FALSE);
4191 if (error != 0 && error != ENOENT)
4192 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4193
4194 /*
4195 * Load the livelist deletion field. If a livelist is queued for
4196 * deletion, indicate that in the spa
4197 */
4198 error = spa_dir_prop(spa, DMU_POOL_DELETED_CLONES,
4199 &spa->spa_livelists_to_delete, B_FALSE);
4200 if (error != 0 && error != ENOENT)
4201 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4202
4203 /*
4204 * Load the history object. If we have an older pool, this
4205 * will not be present.
4206 */
4207 error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history, B_FALSE);
4208 if (error != 0 && error != ENOENT)
4209 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4210
4211 /*
4212 * Load the per-vdev ZAP map. If we have an older pool, this will not
4213 * be present; in this case, defer its creation to a later time to
4214 * avoid dirtying the MOS this early / out of sync context. See
4215 * spa_sync_config_object.
4216 */
4217
4218 /* The sentinel is only available in the MOS config. */
4219 nvlist_t *mos_config;
4220 if (load_nvlist(spa, spa->spa_config_object, &mos_config) != 0) {
4221 spa_load_failed(spa, "unable to retrieve MOS config");
4222 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4223 }
4224
4225 error = spa_dir_prop(spa, DMU_POOL_VDEV_ZAP_MAP,
4226 &spa->spa_all_vdev_zaps, B_FALSE);
4227
4228 if (error == ENOENT) {
4229 VERIFY(!nvlist_exists(mos_config,
4230 ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS));
4231 spa->spa_avz_action = AVZ_ACTION_INITIALIZE;
4232 ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev));
4233 } else if (error != 0) {
4234 nvlist_free(mos_config);
4235 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4236 } else if (!nvlist_exists(mos_config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS)) {
4237 /*
4238 * An older version of ZFS overwrote the sentinel value, so
4239 * we have orphaned per-vdev ZAPs in the MOS. Defer their
4240 * destruction to later; see spa_sync_config_object.
4241 */
4242 spa->spa_avz_action = AVZ_ACTION_DESTROY;
4243 /*
4244 * We're assuming that no vdevs have had their ZAPs created
4245 * before this. Better be sure of it.
4246 */
4247 ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev));
4248 }
4249 nvlist_free(mos_config);
4250
4251 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
4252
4253 error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object,
4254 B_FALSE);
4255 if (error && error != ENOENT)
4256 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4257
4258 if (error == 0) {
4259 uint64_t autoreplace = 0;
4260
4261 spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs);
4262 spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace);
4263 spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation);
4264 spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode);
4265 spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand);
4266 spa_prop_find(spa, ZPOOL_PROP_MULTIHOST, &spa->spa_multihost);
4267 spa_prop_find(spa, ZPOOL_PROP_AUTOTRIM, &spa->spa_autotrim);
4268 spa->spa_autoreplace = (autoreplace != 0);
4269 }
4270
4271 /*
4272 * If we are importing a pool with missing top-level vdevs,
4273 * we enforce that the pool doesn't panic or get suspended on
4274 * error since the likelihood of missing data is extremely high.
4275 */
4276 if (spa->spa_missing_tvds > 0 &&
4277 spa->spa_failmode != ZIO_FAILURE_MODE_CONTINUE &&
4278 spa->spa_load_state != SPA_LOAD_TRYIMPORT) {
4279 spa_load_note(spa, "forcing failmode to 'continue' "
4280 "as some top level vdevs are missing");
4281 spa->spa_failmode = ZIO_FAILURE_MODE_CONTINUE;
4282 }
4283
4284 return (0);
4285 }
4286
4287 static int
4288 spa_ld_open_aux_vdevs(spa_t *spa, spa_import_type_t type)
4289 {
4290 int error = 0;
4291 vdev_t *rvd = spa->spa_root_vdev;
4292
4293 /*
4294 * If we're assembling the pool from the split-off vdevs of
4295 * an existing pool, we don't want to attach the spares & cache
4296 * devices.
4297 */
4298
4299 /*
4300 * Load any hot spares for this pool.
4301 */
4302 error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object,
4303 B_FALSE);
4304 if (error != 0 && error != ENOENT)
4305 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4306 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
4307 ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
4308 if (load_nvlist(spa, spa->spa_spares.sav_object,
4309 &spa->spa_spares.sav_config) != 0) {
4310 spa_load_failed(spa, "error loading spares nvlist");
4311 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4312 }
4313
4314 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4315 spa_load_spares(spa);
4316 spa_config_exit(spa, SCL_ALL, FTAG);
4317 } else if (error == 0) {
4318 spa->spa_spares.sav_sync = B_TRUE;
4319 }
4320
4321 /*
4322 * Load any level 2 ARC devices for this pool.
4323 */
4324 error = spa_dir_prop(spa, DMU_POOL_L2CACHE,
4325 &spa->spa_l2cache.sav_object, B_FALSE);
4326 if (error != 0 && error != ENOENT)
4327 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4328 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
4329 ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
4330 if (load_nvlist(spa, spa->spa_l2cache.sav_object,
4331 &spa->spa_l2cache.sav_config) != 0) {
4332 spa_load_failed(spa, "error loading l2cache nvlist");
4333 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4334 }
4335
4336 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4337 spa_load_l2cache(spa);
4338 spa_config_exit(spa, SCL_ALL, FTAG);
4339 } else if (error == 0) {
4340 spa->spa_l2cache.sav_sync = B_TRUE;
4341 }
4342
4343 return (0);
4344 }
4345
4346 static int
4347 spa_ld_load_vdev_metadata(spa_t *spa)
4348 {
4349 int error = 0;
4350 vdev_t *rvd = spa->spa_root_vdev;
4351
4352 /*
4353 * If the 'multihost' property is set, then never allow a pool to
4354 * be imported when the system hostid is zero. The exception to
4355 * this rule is zdb which is always allowed to access pools.
4356 */
4357 if (spa_multihost(spa) && spa_get_hostid(spa) == 0 &&
4358 (spa->spa_import_flags & ZFS_IMPORT_SKIP_MMP) == 0) {
4359 fnvlist_add_uint64(spa->spa_load_info,
4360 ZPOOL_CONFIG_MMP_STATE, MMP_STATE_NO_HOSTID);
4361 return (spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO));
4362 }
4363
4364 /*
4365 * If the 'autoreplace' property is set, then post a resource notifying
4366 * the ZFS DE that it should not issue any faults for unopenable
4367 * devices. We also iterate over the vdevs, and post a sysevent for any
4368 * unopenable vdevs so that the normal autoreplace handler can take
4369 * over.
4370 */
4371 if (spa->spa_autoreplace && spa->spa_load_state != SPA_LOAD_TRYIMPORT) {
4372 spa_check_removed(spa->spa_root_vdev);
4373 /*
4374 * For the import case, this is done in spa_import(), because
4375 * at this point we're using the spare definitions from
4376 * the MOS config, not necessarily from the userland config.
4377 */
4378 if (spa->spa_load_state != SPA_LOAD_IMPORT) {
4379 spa_aux_check_removed(&spa->spa_spares);
4380 spa_aux_check_removed(&spa->spa_l2cache);
4381 }
4382 }
4383
4384 /*
4385 * Load the vdev metadata such as metaslabs, DTLs, spacemap object, etc.
4386 */
4387 error = vdev_load(rvd);
4388 if (error != 0) {
4389 spa_load_failed(spa, "vdev_load failed [error=%d]", error);
4390 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
4391 }
4392
4393 error = spa_ld_log_spacemaps(spa);
4394 if (error != 0) {
4395 spa_load_failed(spa, "spa_ld_log_spacemaps failed [error=%d]",
4396 error);
4397 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
4398 }
4399
4400 /*
4401 * Propagate the leaf DTLs we just loaded all the way up the vdev tree.
4402 */
4403 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4404 vdev_dtl_reassess(rvd, 0, 0, B_FALSE, B_FALSE);
4405 spa_config_exit(spa, SCL_ALL, FTAG);
4406
4407 return (0);
4408 }
4409
4410 static int
4411 spa_ld_load_dedup_tables(spa_t *spa)
4412 {
4413 int error = 0;
4414 vdev_t *rvd = spa->spa_root_vdev;
4415
4416 error = ddt_load(spa);
4417 if (error != 0) {
4418 spa_load_failed(spa, "ddt_load failed [error=%d]", error);
4419 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4420 }
4421
4422 return (0);
4423 }
4424
4425 static int
4426 spa_ld_load_brt(spa_t *spa)
4427 {
4428 int error = 0;
4429 vdev_t *rvd = spa->spa_root_vdev;
4430
4431 error = brt_load(spa);
4432 if (error != 0) {
4433 spa_load_failed(spa, "brt_load failed [error=%d]", error);
4434 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4435 }
4436
4437 return (0);
4438 }
4439
4440 static int
4441 spa_ld_verify_logs(spa_t *spa, spa_import_type_t type, const char **ereport)
4442 {
4443 vdev_t *rvd = spa->spa_root_vdev;
4444
4445 if (type != SPA_IMPORT_ASSEMBLE && spa_writeable(spa)) {
4446 boolean_t missing = spa_check_logs(spa);
4447 if (missing) {
4448 if (spa->spa_missing_tvds != 0) {
4449 spa_load_note(spa, "spa_check_logs failed "
4450 "so dropping the logs");
4451 } else {
4452 *ereport = FM_EREPORT_ZFS_LOG_REPLAY;
4453 spa_load_failed(spa, "spa_check_logs failed");
4454 return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG,
4455 ENXIO));
4456 }
4457 }
4458 }
4459
4460 return (0);
4461 }
4462
4463 static int
4464 spa_ld_verify_pool_data(spa_t *spa)
4465 {
4466 int error = 0;
4467 vdev_t *rvd = spa->spa_root_vdev;
4468
4469 /*
4470 * We've successfully opened the pool, verify that we're ready
4471 * to start pushing transactions.
4472 */
4473 if (spa->spa_load_state != SPA_LOAD_TRYIMPORT) {
4474 error = spa_load_verify(spa);
4475 if (error != 0) {
4476 spa_load_failed(spa, "spa_load_verify failed "
4477 "[error=%d]", error);
4478 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
4479 error));
4480 }
4481 }
4482
4483 return (0);
4484 }
4485
4486 static void
4487 spa_ld_claim_log_blocks(spa_t *spa)
4488 {
4489 dmu_tx_t *tx;
4490 dsl_pool_t *dp = spa_get_dsl(spa);
4491
4492 /*
4493 * Claim log blocks that haven't been committed yet.
4494 * This must all happen in a single txg.
4495 * Note: spa_claim_max_txg is updated by spa_claim_notify(),
4496 * invoked from zil_claim_log_block()'s i/o done callback.
4497 * Price of rollback is that we abandon the log.
4498 */
4499 spa->spa_claiming = B_TRUE;
4500
4501 tx = dmu_tx_create_assigned(dp, spa_first_txg(spa));
4502 (void) dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
4503 zil_claim, tx, DS_FIND_CHILDREN);
4504 dmu_tx_commit(tx);
4505
4506 spa->spa_claiming = B_FALSE;
4507
4508 spa_set_log_state(spa, SPA_LOG_GOOD);
4509 }
4510
4511 static void
4512 spa_ld_check_for_config_update(spa_t *spa, uint64_t config_cache_txg,
4513 boolean_t update_config_cache)
4514 {
4515 vdev_t *rvd = spa->spa_root_vdev;
4516 int need_update = B_FALSE;
4517
4518 /*
4519 * If the config cache is stale, or we have uninitialized
4520 * metaslabs (see spa_vdev_add()), then update the config.
4521 *
4522 * If this is a verbatim import, trust the current
4523 * in-core spa_config and update the disk labels.
4524 */
4525 if (update_config_cache || config_cache_txg != spa->spa_config_txg ||
4526 spa->spa_load_state == SPA_LOAD_IMPORT ||
4527 spa->spa_load_state == SPA_LOAD_RECOVER ||
4528 (spa->spa_import_flags & ZFS_IMPORT_VERBATIM))
4529 need_update = B_TRUE;
4530
4531 for (int c = 0; c < rvd->vdev_children; c++)
4532 if (rvd->vdev_child[c]->vdev_ms_array == 0)
4533 need_update = B_TRUE;
4534
4535 /*
4536 * Update the config cache asynchronously in case we're the
4537 * root pool, in which case the config cache isn't writable yet.
4538 */
4539 if (need_update)
4540 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
4541 }
4542
4543 static void
4544 spa_ld_prepare_for_reload(spa_t *spa)
4545 {
4546 spa_mode_t mode = spa->spa_mode;
4547 int async_suspended = spa->spa_async_suspended;
4548
4549 spa_unload(spa);
4550 spa_deactivate(spa);
4551 spa_activate(spa, mode);
4552
4553 /*
4554 * We save the value of spa_async_suspended as it gets reset to 0 by
4555 * spa_unload(). We want to restore it back to the original value before
4556 * returning as we might be calling spa_async_resume() later.
4557 */
4558 spa->spa_async_suspended = async_suspended;
4559 }
4560
4561 static int
4562 spa_ld_read_checkpoint_txg(spa_t *spa)
4563 {
4564 uberblock_t checkpoint;
4565 int error = 0;
4566
4567 ASSERT0(spa->spa_checkpoint_txg);
4568 ASSERT(MUTEX_HELD(&spa_namespace_lock));
4569
4570 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
4571 DMU_POOL_ZPOOL_CHECKPOINT, sizeof (uint64_t),
4572 sizeof (uberblock_t) / sizeof (uint64_t), &checkpoint);
4573
4574 if (error == ENOENT)
4575 return (0);
4576
4577 if (error != 0)
4578 return (error);
4579
4580 ASSERT3U(checkpoint.ub_txg, !=, 0);
4581 ASSERT3U(checkpoint.ub_checkpoint_txg, !=, 0);
4582 ASSERT3U(checkpoint.ub_timestamp, !=, 0);
4583 spa->spa_checkpoint_txg = checkpoint.ub_txg;
4584 spa->spa_checkpoint_info.sci_timestamp = checkpoint.ub_timestamp;
4585
4586 return (0);
4587 }
4588
4589 static int
4590 spa_ld_mos_init(spa_t *spa, spa_import_type_t type)
4591 {
4592 int error = 0;
4593
4594 ASSERT(MUTEX_HELD(&spa_namespace_lock));
4595 ASSERT(spa->spa_config_source != SPA_CONFIG_SRC_NONE);
4596
4597 /*
4598 * Never trust the config that is provided unless we are assembling
4599 * a pool following a split.
4600 * This means don't trust blkptrs and the vdev tree in general. This
4601 * also effectively puts the spa in read-only mode since
4602 * spa_writeable() checks for spa_trust_config to be true.
4603 * We will later load a trusted config from the MOS.
4604 */
4605 if (type != SPA_IMPORT_ASSEMBLE)
4606 spa->spa_trust_config = B_FALSE;
4607
4608 /*
4609 * Parse the config provided to create a vdev tree.
4610 */
4611 error = spa_ld_parse_config(spa, type);
4612 if (error != 0)
4613 return (error);
4614
4615 spa_import_progress_add(spa);
4616
4617 /*
4618 * Now that we have the vdev tree, try to open each vdev. This involves
4619 * opening the underlying physical device, retrieving its geometry and
4620 * probing the vdev with a dummy I/O. The state of each vdev will be set
4621 * based on the success of those operations. After this we'll be ready
4622 * to read from the vdevs.
4623 */
4624 error = spa_ld_open_vdevs(spa);
4625 if (error != 0)
4626 return (error);
4627
4628 /*
4629 * Read the label of each vdev and make sure that the GUIDs stored
4630 * there match the GUIDs in the config provided.
4631 * If we're assembling a new pool that's been split off from an
4632 * existing pool, the labels haven't yet been updated so we skip
4633 * validation for now.
4634 */
4635 if (type != SPA_IMPORT_ASSEMBLE) {
4636 error = spa_ld_validate_vdevs(spa);
4637 if (error != 0)
4638 return (error);
4639 }
4640
4641 /*
4642 * Read all vdev labels to find the best uberblock (i.e. latest,
4643 * unless spa_load_max_txg is set) and store it in spa_uberblock. We
4644 * get the list of features required to read blkptrs in the MOS from
4645 * the vdev label with the best uberblock and verify that our version
4646 * of zfs supports them all.
4647 */
4648 error = spa_ld_select_uberblock(spa, type);
4649 if (error != 0)
4650 return (error);
4651
4652 /*
4653 * Pass that uberblock to the dsl_pool layer which will open the root
4654 * blkptr. This blkptr points to the latest version of the MOS and will
4655 * allow us to read its contents.
4656 */
4657 error = spa_ld_open_rootbp(spa);
4658 if (error != 0)
4659 return (error);
4660
4661 return (0);
4662 }
4663
4664 static int
4665 spa_ld_checkpoint_rewind(spa_t *spa)
4666 {
4667 uberblock_t checkpoint;
4668 int error = 0;
4669
4670 ASSERT(MUTEX_HELD(&spa_namespace_lock));
4671 ASSERT(spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT);
4672
4673 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
4674 DMU_POOL_ZPOOL_CHECKPOINT, sizeof (uint64_t),
4675 sizeof (uberblock_t) / sizeof (uint64_t), &checkpoint);
4676
4677 if (error != 0) {
4678 spa_load_failed(spa, "unable to retrieve checkpointed "
4679 "uberblock from the MOS config [error=%d]", error);
4680
4681 if (error == ENOENT)
4682 error = ZFS_ERR_NO_CHECKPOINT;
4683
4684 return (error);
4685 }
4686
4687 ASSERT3U(checkpoint.ub_txg, <, spa->spa_uberblock.ub_txg);
4688 ASSERT3U(checkpoint.ub_txg, ==, checkpoint.ub_checkpoint_txg);
4689
4690 /*
4691 * We need to update the txg and timestamp of the checkpointed
4692 * uberblock to be higher than the latest one. This ensures that
4693 * the checkpointed uberblock is selected if we were to close and
4694 * reopen the pool right after we've written it in the vdev labels.
4695 * (also see block comment in vdev_uberblock_compare)
4696 */
4697 checkpoint.ub_txg = spa->spa_uberblock.ub_txg + 1;
4698 checkpoint.ub_timestamp = gethrestime_sec();
4699
4700 /*
4701 * Set current uberblock to be the checkpointed uberblock.
4702 */
4703 spa->spa_uberblock = checkpoint;
4704
4705 /*
4706 * If we are doing a normal rewind, then the pool is open for
4707 * writing and we sync the "updated" checkpointed uberblock to
4708 * disk. Once this is done, we've basically rewound the whole
4709 * pool and there is no way back.
4710 *
4711 * There are cases when we don't want to attempt and sync the
4712 * checkpointed uberblock to disk because we are opening a
4713 * pool as read-only. Specifically, verifying the checkpointed
4714 * state with zdb, and importing the checkpointed state to get
4715 * a "preview" of its content.
4716 */
4717 if (spa_writeable(spa)) {
4718 vdev_t *rvd = spa->spa_root_vdev;
4719
4720 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4721 vdev_t *svd[SPA_SYNC_MIN_VDEVS] = { NULL };
4722 int svdcount = 0;
4723 int children = rvd->vdev_children;
4724 int c0 = random_in_range(children);
4725
4726 for (int c = 0; c < children; c++) {
4727 vdev_t *vd = rvd->vdev_child[(c0 + c) % children];
4728
4729 /* Stop when revisiting the first vdev */
4730 if (c > 0 && svd[0] == vd)
4731 break;
4732
4733 if (vd->vdev_ms_array == 0 || vd->vdev_islog ||
4734 !vdev_is_concrete(vd))
4735 continue;
4736
4737 svd[svdcount++] = vd;
4738 if (svdcount == SPA_SYNC_MIN_VDEVS)
4739 break;
4740 }
4741 error = vdev_config_sync(svd, svdcount, spa->spa_first_txg);
4742 if (error == 0)
4743 spa->spa_last_synced_guid = rvd->vdev_guid;
4744 spa_config_exit(spa, SCL_ALL, FTAG);
4745
4746 if (error != 0) {
4747 spa_load_failed(spa, "failed to write checkpointed "
4748 "uberblock to the vdev labels [error=%d]", error);
4749 return (error);
4750 }
4751 }
4752
4753 return (0);
4754 }
4755
4756 static int
4757 spa_ld_mos_with_trusted_config(spa_t *spa, spa_import_type_t type,
4758 boolean_t *update_config_cache)
4759 {
4760 int error;
4761
4762 /*
4763 * Parse the config for pool, open and validate vdevs,
4764 * select an uberblock, and use that uberblock to open
4765 * the MOS.
4766 */
4767 error = spa_ld_mos_init(spa, type);
4768 if (error != 0)
4769 return (error);
4770
4771 /*
4772 * Retrieve the trusted config stored in the MOS and use it to create
4773 * a new, exact version of the vdev tree, then reopen all vdevs.
4774 */
4775 error = spa_ld_trusted_config(spa, type, B_FALSE);
4776 if (error == EAGAIN) {
4777 if (update_config_cache != NULL)
4778 *update_config_cache = B_TRUE;
4779
4780 /*
4781 * Redo the loading process with the trusted config if it is
4782 * too different from the untrusted config.
4783 */
4784 spa_ld_prepare_for_reload(spa);
4785 spa_load_note(spa, "RELOADING");
4786 error = spa_ld_mos_init(spa, type);
4787 if (error != 0)
4788 return (error);
4789
4790 error = spa_ld_trusted_config(spa, type, B_TRUE);
4791 if (error != 0)
4792 return (error);
4793
4794 } else if (error != 0) {
4795 return (error);
4796 }
4797
4798 return (0);
4799 }
4800
4801 /*
4802 * Load an existing storage pool, using the config provided. This config
4803 * describes which vdevs are part of the pool and is later validated against
4804 * partial configs present in each vdev's label and an entire copy of the
4805 * config stored in the MOS.
4806 */
4807 static int
4808 spa_load_impl(spa_t *spa, spa_import_type_t type, const char **ereport)
4809 {
4810 int error = 0;
4811 boolean_t missing_feat_write = B_FALSE;
4812 boolean_t checkpoint_rewind =
4813 (spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT);
4814 boolean_t update_config_cache = B_FALSE;
4815
4816 ASSERT(MUTEX_HELD(&spa_namespace_lock));
4817 ASSERT(spa->spa_config_source != SPA_CONFIG_SRC_NONE);
4818
4819 spa_load_note(spa, "LOADING");
4820
4821 error = spa_ld_mos_with_trusted_config(spa, type, &update_config_cache);
4822 if (error != 0)
4823 return (error);
4824
4825 /*
4826 * If we are rewinding to the checkpoint then we need to repeat
4827 * everything we've done so far in this function but this time
4828 * selecting the checkpointed uberblock and using that to open
4829 * the MOS.
4830 */
4831 if (checkpoint_rewind) {
4832 /*
4833 * If we are rewinding to the checkpoint update config cache
4834 * anyway.
4835 */
4836 update_config_cache = B_TRUE;
4837
4838 /*
4839 * Extract the checkpointed uberblock from the current MOS
4840 * and use this as the pool's uberblock from now on. If the
4841 * pool is imported as writeable we also write the checkpoint
4842 * uberblock to the labels, making the rewind permanent.
4843 */
4844 error = spa_ld_checkpoint_rewind(spa);
4845 if (error != 0)
4846 return (error);
4847
4848 /*
4849 * Redo the loading process again with the
4850 * checkpointed uberblock.
4851 */
4852 spa_ld_prepare_for_reload(spa);
4853 spa_load_note(spa, "LOADING checkpointed uberblock");
4854 error = spa_ld_mos_with_trusted_config(spa, type, NULL);
4855 if (error != 0)
4856 return (error);
4857 }
4858
4859 /*
4860 * Retrieve the checkpoint txg if the pool has a checkpoint.
4861 */
4862 error = spa_ld_read_checkpoint_txg(spa);
4863 if (error != 0)
4864 return (error);
4865
4866 /*
4867 * Retrieve the mapping of indirect vdevs. Those vdevs were removed
4868 * from the pool and their contents were re-mapped to other vdevs. Note
4869 * that everything that we read before this step must have been
4870 * rewritten on concrete vdevs after the last device removal was
4871 * initiated. Otherwise we could be reading from indirect vdevs before
4872 * we have loaded their mappings.
4873 */
4874 error = spa_ld_open_indirect_vdev_metadata(spa);
4875 if (error != 0)
4876 return (error);
4877
4878 /*
4879 * Retrieve the full list of active features from the MOS and check if
4880 * they are all supported.
4881 */
4882 error = spa_ld_check_features(spa, &missing_feat_write);
4883 if (error != 0)
4884 return (error);
4885
4886 /*
4887 * Load several special directories from the MOS needed by the dsl_pool
4888 * layer.
4889 */
4890 error = spa_ld_load_special_directories(spa);
4891 if (error != 0)
4892 return (error);
4893
4894 /*
4895 * Retrieve pool properties from the MOS.
4896 */
4897 error = spa_ld_get_props(spa);
4898 if (error != 0)
4899 return (error);
4900
4901 /*
4902 * Retrieve the list of auxiliary devices - cache devices and spares -
4903 * and open them.
4904 */
4905 error = spa_ld_open_aux_vdevs(spa, type);
4906 if (error != 0)
4907 return (error);
4908
4909 /*
4910 * Load the metadata for all vdevs. Also check if unopenable devices
4911 * should be autoreplaced.
4912 */
4913 error = spa_ld_load_vdev_metadata(spa);
4914 if (error != 0)
4915 return (error);
4916
4917 error = spa_ld_load_dedup_tables(spa);
4918 if (error != 0)
4919 return (error);
4920
4921 error = spa_ld_load_brt(spa);
4922 if (error != 0)
4923 return (error);
4924
4925 /*
4926 * Verify the logs now to make sure we don't have any unexpected errors
4927 * when we claim log blocks later.
4928 */
4929 error = spa_ld_verify_logs(spa, type, ereport);
4930 if (error != 0)
4931 return (error);
4932
4933 if (missing_feat_write) {
4934 ASSERT(spa->spa_load_state == SPA_LOAD_TRYIMPORT);
4935
4936 /*
4937 * At this point, we know that we can open the pool in
4938 * read-only mode but not read-write mode. We now have enough
4939 * information and can return to userland.
4940 */
4941 return (spa_vdev_err(spa->spa_root_vdev, VDEV_AUX_UNSUP_FEAT,
4942 ENOTSUP));
4943 }
4944
4945 /*
4946 * Traverse the last txgs to make sure the pool was left off in a safe
4947 * state. When performing an extreme rewind, we verify the whole pool,
4948 * which can take a very long time.
4949 */
4950 error = spa_ld_verify_pool_data(spa);
4951 if (error != 0)
4952 return (error);
4953
4954 /*
4955 * Calculate the deflated space for the pool. This must be done before
4956 * we write anything to the pool because we'd need to update the space
4957 * accounting using the deflated sizes.
4958 */
4959 spa_update_dspace(spa);
4960
4961 /*
4962 * We have now retrieved all the information we needed to open the
4963 * pool. If we are importing the pool in read-write mode, a few
4964 * additional steps must be performed to finish the import.
4965 */
4966 if (spa_writeable(spa) && (spa->spa_load_state == SPA_LOAD_RECOVER ||
4967 spa->spa_load_max_txg == UINT64_MAX)) {
4968 uint64_t config_cache_txg = spa->spa_config_txg;
4969
4970 ASSERT(spa->spa_load_state != SPA_LOAD_TRYIMPORT);
4971
4972 /*
4973 * In case of a checkpoint rewind, log the original txg
4974 * of the checkpointed uberblock.
4975 */
4976 if (checkpoint_rewind) {
4977 spa_history_log_internal(spa, "checkpoint rewind",
4978 NULL, "rewound state to txg=%llu",
4979 (u_longlong_t)spa->spa_uberblock.ub_checkpoint_txg);
4980 }
4981
4982 /*
4983 * Traverse the ZIL and claim all blocks.
4984 */
4985 spa_ld_claim_log_blocks(spa);
4986
4987 /*
4988 * Kick-off the syncing thread.
4989 */
4990 spa->spa_sync_on = B_TRUE;
4991 txg_sync_start(spa->spa_dsl_pool);
4992 mmp_thread_start(spa);
4993
4994 /*
4995 * Wait for all claims to sync. We sync up to the highest
4996 * claimed log block birth time so that claimed log blocks
4997 * don't appear to be from the future. spa_claim_max_txg
4998 * will have been set for us by ZIL traversal operations
4999 * performed above.
5000 */
5001 txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg);
5002
5003 /*
5004 * Check if we need to request an update of the config. On the
5005 * next sync, we would update the config stored in vdev labels
5006 * and the cachefile (by default /etc/zfs/zpool.cache).
5007 */
5008 spa_ld_check_for_config_update(spa, config_cache_txg,
5009 update_config_cache);
5010
5011 /*
5012 * Check if a rebuild was in progress and if so resume it.
5013 * Then check all DTLs to see if anything needs resilvering.
5014 * The resilver will be deferred if a rebuild was started.
5015 */
5016 if (vdev_rebuild_active(spa->spa_root_vdev)) {
5017 vdev_rebuild_restart(spa);
5018 } else if (!dsl_scan_resilvering(spa->spa_dsl_pool) &&
5019 vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
5020 spa_async_request(spa, SPA_ASYNC_RESILVER);
5021 }
5022
5023 /*
5024 * Log the fact that we booted up (so that we can detect if
5025 * we rebooted in the middle of an operation).
5026 */
5027 spa_history_log_version(spa, "open", NULL);
5028
5029 spa_restart_removal(spa);
5030 spa_spawn_aux_threads(spa);
5031
5032 /*
5033 * Delete any inconsistent datasets.
5034 *
5035 * Note:
5036 * Since we may be issuing deletes for clones here,
5037 * we make sure to do so after we've spawned all the
5038 * auxiliary threads above (from which the livelist
5039 * deletion zthr is part of).
5040 */
5041 (void) dmu_objset_find(spa_name(spa),
5042 dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN);
5043
5044 /*
5045 * Clean up any stale temporary dataset userrefs.
5046 */
5047 dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool);
5048
5049 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
5050 vdev_initialize_restart(spa->spa_root_vdev);
5051 vdev_trim_restart(spa->spa_root_vdev);
5052 vdev_autotrim_restart(spa);
5053 spa_config_exit(spa, SCL_CONFIG, FTAG);
5054 }
5055
5056 spa_import_progress_remove(spa_guid(spa));
5057 spa_async_request(spa, SPA_ASYNC_L2CACHE_REBUILD);
5058
5059 spa_load_note(spa, "LOADED");
5060
5061 return (0);
5062 }
5063
5064 static int
5065 spa_load_retry(spa_t *spa, spa_load_state_t state)
5066 {
5067 spa_mode_t mode = spa->spa_mode;
5068
5069 spa_unload(spa);
5070 spa_deactivate(spa);
5071
5072 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg - 1;
5073
5074 spa_activate(spa, mode);
5075 spa_async_suspend(spa);
5076
5077 spa_load_note(spa, "spa_load_retry: rewind, max txg: %llu",
5078 (u_longlong_t)spa->spa_load_max_txg);
5079
5080 return (spa_load(spa, state, SPA_IMPORT_EXISTING));
5081 }
5082
5083 /*
5084 * If spa_load() fails this function will try loading prior txg's. If
5085 * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool
5086 * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this
5087 * function will not rewind the pool and will return the same error as
5088 * spa_load().
5089 */
5090 static int
5091 spa_load_best(spa_t *spa, spa_load_state_t state, uint64_t max_request,
5092 int rewind_flags)
5093 {
5094 nvlist_t *loadinfo = NULL;
5095 nvlist_t *config = NULL;
5096 int load_error, rewind_error;
5097 uint64_t safe_rewind_txg;
5098 uint64_t min_txg;
5099
5100 if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) {
5101 spa->spa_load_max_txg = spa->spa_load_txg;
5102 spa_set_log_state(spa, SPA_LOG_CLEAR);
5103 } else {
5104 spa->spa_load_max_txg = max_request;
5105 if (max_request != UINT64_MAX)
5106 spa->spa_extreme_rewind = B_TRUE;
5107 }
5108
5109 load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING);
5110 if (load_error == 0)
5111 return (0);
5112 if (load_error == ZFS_ERR_NO_CHECKPOINT) {
5113 /*
5114 * When attempting checkpoint-rewind on a pool with no
5115 * checkpoint, we should not attempt to load uberblocks
5116 * from previous txgs when spa_load fails.
5117 */
5118 ASSERT(spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT);
5119 spa_import_progress_remove(spa_guid(spa));
5120 return (load_error);
5121 }
5122
5123 if (spa->spa_root_vdev != NULL)
5124 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
5125
5126 spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg;
5127 spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp;
5128
5129 if (rewind_flags & ZPOOL_NEVER_REWIND) {
5130 nvlist_free(config);
5131 spa_import_progress_remove(spa_guid(spa));
5132 return (load_error);
5133 }
5134
5135 if (state == SPA_LOAD_RECOVER) {
5136 /* Price of rolling back is discarding txgs, including log */
5137 spa_set_log_state(spa, SPA_LOG_CLEAR);
5138 } else {
5139 /*
5140 * If we aren't rolling back save the load info from our first
5141 * import attempt so that we can restore it after attempting
5142 * to rewind.
5143 */
5144 loadinfo = spa->spa_load_info;
5145 spa->spa_load_info = fnvlist_alloc();
5146 }
5147
5148 spa->spa_load_max_txg = spa->spa_last_ubsync_txg;
5149 safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE;
5150 min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ?
5151 TXG_INITIAL : safe_rewind_txg;
5152
5153 /*
5154 * Continue as long as we're finding errors, we're still within
5155 * the acceptable rewind range, and we're still finding uberblocks
5156 */
5157 while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg &&
5158 spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) {
5159 if (spa->spa_load_max_txg < safe_rewind_txg)
5160 spa->spa_extreme_rewind = B_TRUE;
5161 rewind_error = spa_load_retry(spa, state);
5162 }
5163
5164 spa->spa_extreme_rewind = B_FALSE;
5165 spa->spa_load_max_txg = UINT64_MAX;
5166
5167 if (config && (rewind_error || state != SPA_LOAD_RECOVER))
5168 spa_config_set(spa, config);
5169 else
5170 nvlist_free(config);
5171
5172 if (state == SPA_LOAD_RECOVER) {
5173 ASSERT3P(loadinfo, ==, NULL);
5174 spa_import_progress_remove(spa_guid(spa));
5175 return (rewind_error);
5176 } else {
5177 /* Store the rewind info as part of the initial load info */
5178 fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO,
5179 spa->spa_load_info);
5180
5181 /* Restore the initial load info */
5182 fnvlist_free(spa->spa_load_info);
5183 spa->spa_load_info = loadinfo;
5184
5185 spa_import_progress_remove(spa_guid(spa));
5186 return (load_error);
5187 }
5188 }
5189
5190 /*
5191 * Pool Open/Import
5192 *
5193 * The import case is identical to an open except that the configuration is sent
5194 * down from userland, instead of grabbed from the configuration cache. For the
5195 * case of an open, the pool configuration will exist in the
5196 * POOL_STATE_UNINITIALIZED state.
5197 *
5198 * The stats information (gen/count/ustats) is used to gather vdev statistics at
5199 * the same time open the pool, without having to keep around the spa_t in some
5200 * ambiguous state.
5201 */
5202 static int
5203 spa_open_common(const char *pool, spa_t **spapp, const void *tag,
5204 nvlist_t *nvpolicy, nvlist_t **config)
5205 {
5206 spa_t *spa;
5207 spa_load_state_t state = SPA_LOAD_OPEN;
5208 int error;
5209 int locked = B_FALSE;
5210 int firstopen = B_FALSE;
5211
5212 *spapp = NULL;
5213
5214 /*
5215 * As disgusting as this is, we need to support recursive calls to this
5216 * function because dsl_dir_open() is called during spa_load(), and ends
5217 * up calling spa_open() again. The real fix is to figure out how to
5218 * avoid dsl_dir_open() calling this in the first place.
5219 */
5220 if (MUTEX_NOT_HELD(&spa_namespace_lock)) {
5221 mutex_enter(&spa_namespace_lock);
5222 locked = B_TRUE;
5223 }
5224
5225 if ((spa = spa_lookup(pool)) == NULL) {
5226 if (locked)
5227 mutex_exit(&spa_namespace_lock);
5228 return (SET_ERROR(ENOENT));
5229 }
5230
5231 if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
5232 zpool_load_policy_t policy;
5233
5234 firstopen = B_TRUE;
5235
5236 zpool_get_load_policy(nvpolicy ? nvpolicy : spa->spa_config,
5237 &policy);
5238 if (policy.zlp_rewind & ZPOOL_DO_REWIND)
5239 state = SPA_LOAD_RECOVER;
5240
5241 spa_activate(spa, spa_mode_global);
5242
5243 if (state != SPA_LOAD_RECOVER)
5244 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
5245 spa->spa_config_source = SPA_CONFIG_SRC_CACHEFILE;
5246
5247 zfs_dbgmsg("spa_open_common: opening %s", pool);
5248 error = spa_load_best(spa, state, policy.zlp_txg,
5249 policy.zlp_rewind);
5250
5251 if (error == EBADF) {
5252 /*
5253 * If vdev_validate() returns failure (indicated by
5254 * EBADF), it indicates that one of the vdevs indicates
5255 * that the pool has been exported or destroyed. If
5256 * this is the case, the config cache is out of sync and
5257 * we should remove the pool from the namespace.
5258 */
5259 spa_unload(spa);
5260 spa_deactivate(spa);
5261 spa_write_cachefile(spa, B_TRUE, B_TRUE, B_FALSE);
5262 spa_remove(spa);
5263 if (locked)
5264 mutex_exit(&spa_namespace_lock);
5265 return (SET_ERROR(ENOENT));
5266 }
5267
5268 if (error) {
5269 /*
5270 * We can't open the pool, but we still have useful
5271 * information: the state of each vdev after the
5272 * attempted vdev_open(). Return this to the user.
5273 */
5274 if (config != NULL && spa->spa_config) {
5275 *config = fnvlist_dup(spa->spa_config);
5276 fnvlist_add_nvlist(*config,
5277 ZPOOL_CONFIG_LOAD_INFO,
5278 spa->spa_load_info);
5279 }
5280 spa_unload(spa);
5281 spa_deactivate(spa);
5282 spa->spa_last_open_failed = error;
5283 if (locked)
5284 mutex_exit(&spa_namespace_lock);
5285 *spapp = NULL;
5286 return (error);
5287 }
5288 }
5289
5290 spa_open_ref(spa, tag);
5291
5292 if (config != NULL)
5293 *config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
5294
5295 /*
5296 * If we've recovered the pool, pass back any information we
5297 * gathered while doing the load.
5298 */
5299 if (state == SPA_LOAD_RECOVER && config != NULL) {
5300 fnvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO,
5301 spa->spa_load_info);
5302 }
5303
5304 if (locked) {
5305 spa->spa_last_open_failed = 0;
5306 spa->spa_last_ubsync_txg = 0;
5307 spa->spa_load_txg = 0;
5308 mutex_exit(&spa_namespace_lock);
5309 }
5310
5311 if (firstopen)
5312 zvol_create_minors_recursive(spa_name(spa));
5313
5314 *spapp = spa;
5315
5316 return (0);
5317 }
5318
5319 int
5320 spa_open_rewind(const char *name, spa_t **spapp, const void *tag,
5321 nvlist_t *policy, nvlist_t **config)
5322 {
5323 return (spa_open_common(name, spapp, tag, policy, config));
5324 }
5325
5326 int
5327 spa_open(const char *name, spa_t **spapp, const void *tag)
5328 {
5329 return (spa_open_common(name, spapp, tag, NULL, NULL));
5330 }
5331
5332 /*
5333 * Lookup the given spa_t, incrementing the inject count in the process,
5334 * preventing it from being exported or destroyed.
5335 */
5336 spa_t *
5337 spa_inject_addref(char *name)
5338 {
5339 spa_t *spa;
5340
5341 mutex_enter(&spa_namespace_lock);
5342 if ((spa = spa_lookup(name)) == NULL) {
5343 mutex_exit(&spa_namespace_lock);
5344 return (NULL);
5345 }
5346 spa->spa_inject_ref++;
5347 mutex_exit(&spa_namespace_lock);
5348
5349 return (spa);
5350 }
5351
5352 void
5353 spa_inject_delref(spa_t *spa)
5354 {
5355 mutex_enter(&spa_namespace_lock);
5356 spa->spa_inject_ref--;
5357 mutex_exit(&spa_namespace_lock);
5358 }
5359
5360 /*
5361 * Add spares device information to the nvlist.
5362 */
5363 static void
5364 spa_add_spares(spa_t *spa, nvlist_t *config)
5365 {
5366 nvlist_t **spares;
5367 uint_t i, nspares;
5368 nvlist_t *nvroot;
5369 uint64_t guid;
5370 vdev_stat_t *vs;
5371 uint_t vsc;
5372 uint64_t pool;
5373
5374 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
5375
5376 if (spa->spa_spares.sav_count == 0)
5377 return;
5378
5379 nvroot = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE);
5380 VERIFY0(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
5381 ZPOOL_CONFIG_SPARES, &spares, &nspares));
5382 if (nspares != 0) {
5383 fnvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
5384 (const nvlist_t * const *)spares, nspares);
5385 VERIFY0(nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
5386 &spares, &nspares));
5387
5388 /*
5389 * Go through and find any spares which have since been
5390 * repurposed as an active spare. If this is the case, update
5391 * their status appropriately.
5392 */
5393 for (i = 0; i < nspares; i++) {
5394 guid = fnvlist_lookup_uint64(spares[i],
5395 ZPOOL_CONFIG_GUID);
5396 VERIFY0(nvlist_lookup_uint64_array(spares[i],
5397 ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc));
5398 if (spa_spare_exists(guid, &pool, NULL) &&
5399 pool != 0ULL) {
5400 vs->vs_state = VDEV_STATE_CANT_OPEN;
5401 vs->vs_aux = VDEV_AUX_SPARED;
5402 } else {
5403 vs->vs_state =
5404 spa->spa_spares.sav_vdevs[i]->vdev_state;
5405 }
5406 }
5407 }
5408 }
5409
5410 /*
5411 * Add l2cache device information to the nvlist, including vdev stats.
5412 */
5413 static void
5414 spa_add_l2cache(spa_t *spa, nvlist_t *config)
5415 {
5416 nvlist_t **l2cache;
5417 uint_t i, j, nl2cache;
5418 nvlist_t *nvroot;
5419 uint64_t guid;
5420 vdev_t *vd;
5421 vdev_stat_t *vs;
5422 uint_t vsc;
5423
5424 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
5425
5426 if (spa->spa_l2cache.sav_count == 0)
5427 return;
5428
5429 nvroot = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE);
5430 VERIFY0(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
5431 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache));
5432 if (nl2cache != 0) {
5433 fnvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
5434 (const nvlist_t * const *)l2cache, nl2cache);
5435 VERIFY0(nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
5436 &l2cache, &nl2cache));
5437
5438 /*
5439 * Update level 2 cache device stats.
5440 */
5441
5442 for (i = 0; i < nl2cache; i++) {
5443 guid = fnvlist_lookup_uint64(l2cache[i],
5444 ZPOOL_CONFIG_GUID);
5445
5446 vd = NULL;
5447 for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
5448 if (guid ==
5449 spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
5450 vd = spa->spa_l2cache.sav_vdevs[j];
5451 break;
5452 }
5453 }
5454 ASSERT(vd != NULL);
5455
5456 VERIFY0(nvlist_lookup_uint64_array(l2cache[i],
5457 ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc));
5458 vdev_get_stats(vd, vs);
5459 vdev_config_generate_stats(vd, l2cache[i]);
5460
5461 }
5462 }
5463 }
5464
5465 static void
5466 spa_feature_stats_from_disk(spa_t *spa, nvlist_t *features)
5467 {
5468 zap_cursor_t zc;
5469 zap_attribute_t za;
5470
5471 if (spa->spa_feat_for_read_obj != 0) {
5472 for (zap_cursor_init(&zc, spa->spa_meta_objset,
5473 spa->spa_feat_for_read_obj);
5474 zap_cursor_retrieve(&zc, &za) == 0;
5475 zap_cursor_advance(&zc)) {
5476 ASSERT(za.za_integer_length == sizeof (uint64_t) &&
5477 za.za_num_integers == 1);
5478 VERIFY0(nvlist_add_uint64(features, za.za_name,
5479 za.za_first_integer));
5480 }
5481 zap_cursor_fini(&zc);
5482 }
5483
5484 if (spa->spa_feat_for_write_obj != 0) {
5485 for (zap_cursor_init(&zc, spa->spa_meta_objset,
5486 spa->spa_feat_for_write_obj);
5487 zap_cursor_retrieve(&zc, &za) == 0;
5488 zap_cursor_advance(&zc)) {
5489 ASSERT(za.za_integer_length == sizeof (uint64_t) &&
5490 za.za_num_integers == 1);
5491 VERIFY0(nvlist_add_uint64(features, za.za_name,
5492 za.za_first_integer));
5493 }
5494 zap_cursor_fini(&zc);
5495 }
5496 }
5497
5498 static void
5499 spa_feature_stats_from_cache(spa_t *spa, nvlist_t *features)
5500 {
5501 int i;
5502
5503 for (i = 0; i < SPA_FEATURES; i++) {
5504 zfeature_info_t feature = spa_feature_table[i];
5505 uint64_t refcount;
5506
5507 if (feature_get_refcount(spa, &feature, &refcount) != 0)
5508 continue;
5509
5510 VERIFY0(nvlist_add_uint64(features, feature.fi_guid, refcount));
5511 }
5512 }
5513
5514 /*
5515 * Store a list of pool features and their reference counts in the
5516 * config.
5517 *
5518 * The first time this is called on a spa, allocate a new nvlist, fetch
5519 * the pool features and reference counts from disk, then save the list
5520 * in the spa. In subsequent calls on the same spa use the saved nvlist
5521 * and refresh its values from the cached reference counts. This
5522 * ensures we don't block here on I/O on a suspended pool so 'zpool
5523 * clear' can resume the pool.
5524 */
5525 static void
5526 spa_add_feature_stats(spa_t *spa, nvlist_t *config)
5527 {
5528 nvlist_t *features;
5529
5530 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
5531
5532 mutex_enter(&spa->spa_feat_stats_lock);
5533 features = spa->spa_feat_stats;
5534
5535 if (features != NULL) {
5536 spa_feature_stats_from_cache(spa, features);
5537 } else {
5538 VERIFY0(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP));
5539 spa->spa_feat_stats = features;
5540 spa_feature_stats_from_disk(spa, features);
5541 }
5542
5543 VERIFY0(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS,
5544 features));
5545
5546 mutex_exit(&spa->spa_feat_stats_lock);
5547 }
5548
5549 int
5550 spa_get_stats(const char *name, nvlist_t **config,
5551 char *altroot, size_t buflen)
5552 {
5553 int error;
5554 spa_t *spa;
5555
5556 *config = NULL;
5557 error = spa_open_common(name, &spa, FTAG, NULL, config);
5558
5559 if (spa != NULL) {
5560 /*
5561 * This still leaves a window of inconsistency where the spares
5562 * or l2cache devices could change and the config would be
5563 * self-inconsistent.
5564 */
5565 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
5566
5567 if (*config != NULL) {
5568 uint64_t loadtimes[2];
5569
5570 loadtimes[0] = spa->spa_loaded_ts.tv_sec;
5571 loadtimes[1] = spa->spa_loaded_ts.tv_nsec;
5572 fnvlist_add_uint64_array(*config,
5573 ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2);
5574
5575 fnvlist_add_uint64(*config,
5576 ZPOOL_CONFIG_ERRCOUNT,
5577 spa_approx_errlog_size(spa));
5578
5579 if (spa_suspended(spa)) {
5580 fnvlist_add_uint64(*config,
5581 ZPOOL_CONFIG_SUSPENDED,
5582 spa->spa_failmode);
5583 fnvlist_add_uint64(*config,
5584 ZPOOL_CONFIG_SUSPENDED_REASON,
5585 spa->spa_suspended);
5586 }
5587
5588 spa_add_spares(spa, *config);
5589 spa_add_l2cache(spa, *config);
5590 spa_add_feature_stats(spa, *config);
5591 }
5592 }
5593
5594 /*
5595 * We want to get the alternate root even for faulted pools, so we cheat
5596 * and call spa_lookup() directly.
5597 */
5598 if (altroot) {
5599 if (spa == NULL) {
5600 mutex_enter(&spa_namespace_lock);
5601 spa = spa_lookup(name);
5602 if (spa)
5603 spa_altroot(spa, altroot, buflen);
5604 else
5605 altroot[0] = '\0';
5606 spa = NULL;
5607 mutex_exit(&spa_namespace_lock);
5608 } else {
5609 spa_altroot(spa, altroot, buflen);
5610 }
5611 }
5612
5613 if (spa != NULL) {
5614 spa_config_exit(spa, SCL_CONFIG, FTAG);
5615 spa_close(spa, FTAG);
5616 }
5617
5618 return (error);
5619 }
5620
5621 /*
5622 * Validate that the auxiliary device array is well formed. We must have an
5623 * array of nvlists, each which describes a valid leaf vdev. If this is an
5624 * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
5625 * specified, as long as they are well-formed.
5626 */
5627 static int
5628 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
5629 spa_aux_vdev_t *sav, const char *config, uint64_t version,
5630 vdev_labeltype_t label)
5631 {
5632 nvlist_t **dev;
5633 uint_t i, ndev;
5634 vdev_t *vd;
5635 int error;
5636
5637 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
5638
5639 /*
5640 * It's acceptable to have no devs specified.
5641 */
5642 if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
5643 return (0);
5644
5645 if (ndev == 0)
5646 return (SET_ERROR(EINVAL));
5647
5648 /*
5649 * Make sure the pool is formatted with a version that supports this
5650 * device type.
5651 */
5652 if (spa_version(spa) < version)
5653 return (SET_ERROR(ENOTSUP));
5654
5655 /*
5656 * Set the pending device list so we correctly handle device in-use
5657 * checking.
5658 */
5659 sav->sav_pending = dev;
5660 sav->sav_npending = ndev;
5661
5662 for (i = 0; i < ndev; i++) {
5663 if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
5664 mode)) != 0)
5665 goto out;
5666
5667 if (!vd->vdev_ops->vdev_op_leaf) {
5668 vdev_free(vd);
5669 error = SET_ERROR(EINVAL);
5670 goto out;
5671 }
5672
5673 vd->vdev_top = vd;
5674
5675 if ((error = vdev_open(vd)) == 0 &&
5676 (error = vdev_label_init(vd, crtxg, label)) == 0) {
5677 fnvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
5678 vd->vdev_guid);
5679 }
5680
5681 vdev_free(vd);
5682
5683 if (error &&
5684 (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
5685 goto out;
5686 else
5687 error = 0;
5688 }
5689
5690 out:
5691 sav->sav_pending = NULL;
5692 sav->sav_npending = 0;
5693 return (error);
5694 }
5695
5696 static int
5697 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
5698 {
5699 int error;
5700
5701 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
5702
5703 if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
5704 &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
5705 VDEV_LABEL_SPARE)) != 0) {
5706 return (error);
5707 }
5708
5709 return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
5710 &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
5711 VDEV_LABEL_L2CACHE));
5712 }
5713
5714 static void
5715 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
5716 const char *config)
5717 {
5718 int i;
5719
5720 if (sav->sav_config != NULL) {
5721 nvlist_t **olddevs;
5722 uint_t oldndevs;
5723 nvlist_t **newdevs;
5724
5725 /*
5726 * Generate new dev list by concatenating with the
5727 * current dev list.
5728 */
5729 VERIFY0(nvlist_lookup_nvlist_array(sav->sav_config, config,
5730 &olddevs, &oldndevs));
5731
5732 newdevs = kmem_alloc(sizeof (void *) *
5733 (ndevs + oldndevs), KM_SLEEP);
5734 for (i = 0; i < oldndevs; i++)
5735 newdevs[i] = fnvlist_dup(olddevs[i]);
5736 for (i = 0; i < ndevs; i++)
5737 newdevs[i + oldndevs] = fnvlist_dup(devs[i]);
5738
5739 fnvlist_remove(sav->sav_config, config);
5740
5741 fnvlist_add_nvlist_array(sav->sav_config, config,
5742 (const nvlist_t * const *)newdevs, ndevs + oldndevs);
5743 for (i = 0; i < oldndevs + ndevs; i++)
5744 nvlist_free(newdevs[i]);
5745 kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
5746 } else {
5747 /*
5748 * Generate a new dev list.
5749 */
5750 sav->sav_config = fnvlist_alloc();
5751 fnvlist_add_nvlist_array(sav->sav_config, config,
5752 (const nvlist_t * const *)devs, ndevs);
5753 }
5754 }
5755
5756 /*
5757 * Stop and drop level 2 ARC devices
5758 */
5759 void
5760 spa_l2cache_drop(spa_t *spa)
5761 {
5762 vdev_t *vd;
5763 int i;
5764 spa_aux_vdev_t *sav = &spa->spa_l2cache;
5765
5766 for (i = 0; i < sav->sav_count; i++) {
5767 uint64_t pool;
5768
5769 vd = sav->sav_vdevs[i];
5770 ASSERT(vd != NULL);
5771
5772 if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
5773 pool != 0ULL && l2arc_vdev_present(vd))
5774 l2arc_remove_vdev(vd);
5775 }
5776 }
5777
5778 /*
5779 * Verify encryption parameters for spa creation. If we are encrypting, we must
5780 * have the encryption feature flag enabled.
5781 */
5782 static int
5783 spa_create_check_encryption_params(dsl_crypto_params_t *dcp,
5784 boolean_t has_encryption)
5785 {
5786 if (dcp->cp_crypt != ZIO_CRYPT_OFF &&
5787 dcp->cp_crypt != ZIO_CRYPT_INHERIT &&
5788 !has_encryption)
5789 return (SET_ERROR(ENOTSUP));
5790
5791 return (dmu_objset_create_crypt_check(NULL, dcp, NULL));
5792 }
5793
5794 /*
5795 * Pool Creation
5796 */
5797 int
5798 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
5799 nvlist_t *zplprops, dsl_crypto_params_t *dcp)
5800 {
5801 spa_t *spa;
5802 const char *altroot = NULL;
5803 vdev_t *rvd;
5804 dsl_pool_t *dp;
5805 dmu_tx_t *tx;
5806 int error = 0;
5807 uint64_t txg = TXG_INITIAL;
5808 nvlist_t **spares, **l2cache;
5809 uint_t nspares, nl2cache;
5810 uint64_t version, obj, ndraid = 0;
5811 boolean_t has_features;
5812 boolean_t has_encryption;
5813 boolean_t has_allocclass;
5814 spa_feature_t feat;
5815 const char *feat_name;
5816 const char *poolname;
5817 nvlist_t *nvl;
5818
5819 if (props == NULL ||
5820 nvlist_lookup_string(props, "tname", &poolname) != 0)
5821 poolname = (char *)pool;
5822
5823 /*
5824 * If this pool already exists, return failure.
5825 */
5826 mutex_enter(&spa_namespace_lock);
5827 if (spa_lookup(poolname) != NULL) {
5828 mutex_exit(&spa_namespace_lock);
5829 return (SET_ERROR(EEXIST));
5830 }
5831
5832 /*
5833 * Allocate a new spa_t structure.
5834 */
5835 nvl = fnvlist_alloc();
5836 fnvlist_add_string(nvl, ZPOOL_CONFIG_POOL_NAME, pool);
5837 (void) nvlist_lookup_string(props,
5838 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
5839 spa = spa_add(poolname, nvl, altroot);
5840 fnvlist_free(nvl);
5841 spa_activate(spa, spa_mode_global);
5842
5843 if (props && (error = spa_prop_validate(spa, props))) {
5844 spa_deactivate(spa);
5845 spa_remove(spa);
5846 mutex_exit(&spa_namespace_lock);
5847 return (error);
5848 }
5849
5850 /*
5851 * Temporary pool names should never be written to disk.
5852 */
5853 if (poolname != pool)
5854 spa->spa_import_flags |= ZFS_IMPORT_TEMP_NAME;
5855
5856 has_features = B_FALSE;
5857 has_encryption = B_FALSE;
5858 has_allocclass = B_FALSE;
5859 for (nvpair_t *elem = nvlist_next_nvpair(props, NULL);
5860 elem != NULL; elem = nvlist_next_nvpair(props, elem)) {
5861 if (zpool_prop_feature(nvpair_name(elem))) {
5862 has_features = B_TRUE;
5863
5864 feat_name = strchr(nvpair_name(elem), '@') + 1;
5865 VERIFY0(zfeature_lookup_name(feat_name, &feat));
5866 if (feat == SPA_FEATURE_ENCRYPTION)
5867 has_encryption = B_TRUE;
5868 if (feat == SPA_FEATURE_ALLOCATION_CLASSES)
5869 has_allocclass = B_TRUE;
5870 }
5871 }
5872
5873 /* verify encryption params, if they were provided */
5874 if (dcp != NULL) {
5875 error = spa_create_check_encryption_params(dcp, has_encryption);
5876 if (error != 0) {
5877 spa_deactivate(spa);
5878 spa_remove(spa);
5879 mutex_exit(&spa_namespace_lock);
5880 return (error);
5881 }
5882 }
5883 if (!has_allocclass && zfs_special_devs(nvroot, NULL)) {
5884 spa_deactivate(spa);
5885 spa_remove(spa);
5886 mutex_exit(&spa_namespace_lock);
5887 return (ENOTSUP);
5888 }
5889
5890 if (has_features || nvlist_lookup_uint64(props,
5891 zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) {
5892 version = SPA_VERSION;
5893 }
5894 ASSERT(SPA_VERSION_IS_SUPPORTED(version));
5895
5896 spa->spa_first_txg = txg;
5897 spa->spa_uberblock.ub_txg = txg - 1;
5898 spa->spa_uberblock.ub_version = version;
5899 spa->spa_ubsync = spa->spa_uberblock;
5900 spa->spa_load_state = SPA_LOAD_CREATE;
5901 spa->spa_removing_phys.sr_state = DSS_NONE;
5902 spa->spa_removing_phys.sr_removing_vdev = -1;
5903 spa->spa_removing_phys.sr_prev_indirect_vdev = -1;
5904 spa->spa_indirect_vdevs_loaded = B_TRUE;
5905
5906 /*
5907 * Create "The Godfather" zio to hold all async IOs
5908 */
5909 spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
5910 KM_SLEEP);
5911 for (int i = 0; i < max_ncpus; i++) {
5912 spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
5913 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
5914 ZIO_FLAG_GODFATHER);
5915 }
5916
5917 /*
5918 * Create the root vdev.
5919 */
5920 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5921
5922 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
5923
5924 ASSERT(error != 0 || rvd != NULL);
5925 ASSERT(error != 0 || spa->spa_root_vdev == rvd);
5926
5927 if (error == 0 && !zfs_allocatable_devs(nvroot))
5928 error = SET_ERROR(EINVAL);
5929
5930 if (error == 0 &&
5931 (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
5932 (error = vdev_draid_spare_create(nvroot, rvd, &ndraid, 0)) == 0 &&
5933 (error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) == 0) {
5934 /*
5935 * instantiate the metaslab groups (this will dirty the vdevs)
5936 * we can no longer error exit past this point
5937 */
5938 for (int c = 0; error == 0 && c < rvd->vdev_children; c++) {
5939 vdev_t *vd = rvd->vdev_child[c];
5940
5941 vdev_metaslab_set_size(vd);
5942 vdev_expand(vd, txg);
5943 }
5944 }
5945
5946 spa_config_exit(spa, SCL_ALL, FTAG);
5947
5948 if (error != 0) {
5949 spa_unload(spa);
5950 spa_deactivate(spa);
5951 spa_remove(spa);
5952 mutex_exit(&spa_namespace_lock);
5953 return (error);
5954 }
5955
5956 /*
5957 * Get the list of spares, if specified.
5958 */
5959 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
5960 &spares, &nspares) == 0) {
5961 spa->spa_spares.sav_config = fnvlist_alloc();
5962 fnvlist_add_nvlist_array(spa->spa_spares.sav_config,
5963 ZPOOL_CONFIG_SPARES, (const nvlist_t * const *)spares,
5964 nspares);
5965 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5966 spa_load_spares(spa);
5967 spa_config_exit(spa, SCL_ALL, FTAG);
5968 spa->spa_spares.sav_sync = B_TRUE;
5969 }
5970
5971 /*
5972 * Get the list of level 2 cache devices, if specified.
5973 */
5974 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
5975 &l2cache, &nl2cache) == 0) {
5976 VERIFY0(nvlist_alloc(&spa->spa_l2cache.sav_config,
5977 NV_UNIQUE_NAME, KM_SLEEP));
5978 fnvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
5979 ZPOOL_CONFIG_L2CACHE, (const nvlist_t * const *)l2cache,
5980 nl2cache);
5981 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5982 spa_load_l2cache(spa);
5983 spa_config_exit(spa, SCL_ALL, FTAG);
5984 spa->spa_l2cache.sav_sync = B_TRUE;
5985 }
5986
5987 spa->spa_is_initializing = B_TRUE;
5988 spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, dcp, txg);
5989 spa->spa_is_initializing = B_FALSE;
5990
5991 /*
5992 * Create DDTs (dedup tables).
5993 */
5994 ddt_create(spa);
5995 /*
5996 * Create BRT table and BRT table object.
5997 */
5998 brt_create(spa);
5999
6000 spa_update_dspace(spa);
6001
6002 tx = dmu_tx_create_assigned(dp, txg);
6003
6004 /*
6005 * Create the pool's history object.
6006 */
6007 if (version >= SPA_VERSION_ZPOOL_HISTORY && !spa->spa_history)
6008 spa_history_create_obj(spa, tx);
6009
6010 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_CREATE);
6011 spa_history_log_version(spa, "create", tx);
6012
6013 /*
6014 * Create the pool config object.
6015 */
6016 spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
6017 DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE,
6018 DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
6019
6020 if (zap_add(spa->spa_meta_objset,
6021 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
6022 sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
6023 cmn_err(CE_PANIC, "failed to add pool config");
6024 }
6025
6026 if (zap_add(spa->spa_meta_objset,
6027 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION,
6028 sizeof (uint64_t), 1, &version, tx) != 0) {
6029 cmn_err(CE_PANIC, "failed to add pool version");
6030 }
6031
6032 /* Newly created pools with the right version are always deflated. */
6033 if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
6034 spa->spa_deflate = TRUE;
6035 if (zap_add(spa->spa_meta_objset,
6036 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
6037 sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
6038 cmn_err(CE_PANIC, "failed to add deflate");
6039 }
6040 }
6041
6042 /*
6043 * Create the deferred-free bpobj. Turn off compression
6044 * because sync-to-convergence takes longer if the blocksize
6045 * keeps changing.
6046 */
6047 obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx);
6048 dmu_object_set_compress(spa->spa_meta_objset, obj,
6049 ZIO_COMPRESS_OFF, tx);
6050 if (zap_add(spa->spa_meta_objset,
6051 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ,
6052 sizeof (uint64_t), 1, &obj, tx) != 0) {
6053 cmn_err(CE_PANIC, "failed to add bpobj");
6054 }
6055 VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj,
6056 spa->spa_meta_objset, obj));
6057
6058 /*
6059 * Generate some random noise for salted checksums to operate on.
6060 */
6061 (void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes,
6062 sizeof (spa->spa_cksum_salt.zcs_bytes));
6063
6064 /*
6065 * Set pool properties.
6066 */
6067 spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
6068 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
6069 spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
6070 spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND);
6071 spa->spa_multihost = zpool_prop_default_numeric(ZPOOL_PROP_MULTIHOST);
6072 spa->spa_autotrim = zpool_prop_default_numeric(ZPOOL_PROP_AUTOTRIM);
6073
6074 if (props != NULL) {
6075 spa_configfile_set(spa, props, B_FALSE);
6076 spa_sync_props(props, tx);
6077 }
6078
6079 for (int i = 0; i < ndraid; i++)
6080 spa_feature_incr(spa, SPA_FEATURE_DRAID, tx);
6081
6082 dmu_tx_commit(tx);
6083
6084 spa->spa_sync_on = B_TRUE;
6085 txg_sync_start(dp);
6086 mmp_thread_start(spa);
6087 txg_wait_synced(dp, txg);
6088
6089 spa_spawn_aux_threads(spa);
6090
6091 spa_write_cachefile(spa, B_FALSE, B_TRUE, B_TRUE);
6092
6093 /*
6094 * Don't count references from objsets that are already closed
6095 * and are making their way through the eviction process.
6096 */
6097 spa_evicting_os_wait(spa);
6098 spa->spa_minref = zfs_refcount_count(&spa->spa_refcount);
6099 spa->spa_load_state = SPA_LOAD_NONE;
6100
6101 spa_import_os(spa);
6102
6103 mutex_exit(&spa_namespace_lock);
6104
6105 return (0);
6106 }
6107
6108 /*
6109 * Import a non-root pool into the system.
6110 */
6111 int
6112 spa_import(char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags)
6113 {
6114 spa_t *spa;
6115 const char *altroot = NULL;
6116 spa_load_state_t state = SPA_LOAD_IMPORT;
6117 zpool_load_policy_t policy;
6118 spa_mode_t mode = spa_mode_global;
6119 uint64_t readonly = B_FALSE;
6120 int error;
6121 nvlist_t *nvroot;
6122 nvlist_t **spares, **l2cache;
6123 uint_t nspares, nl2cache;
6124
6125 /*
6126 * If a pool with this name exists, return failure.
6127 */
6128 mutex_enter(&spa_namespace_lock);
6129 if (spa_lookup(pool) != NULL) {
6130 mutex_exit(&spa_namespace_lock);
6131 return (SET_ERROR(EEXIST));
6132 }
6133
6134 /*
6135 * Create and initialize the spa structure.
6136 */
6137 (void) nvlist_lookup_string(props,
6138 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
6139 (void) nvlist_lookup_uint64(props,
6140 zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly);
6141 if (readonly)
6142 mode = SPA_MODE_READ;
6143 spa = spa_add(pool, config, altroot);
6144 spa->spa_import_flags = flags;
6145
6146 /*
6147 * Verbatim import - Take a pool and insert it into the namespace
6148 * as if it had been loaded at boot.
6149 */
6150 if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) {
6151 if (props != NULL)
6152 spa_configfile_set(spa, props, B_FALSE);
6153
6154 spa_write_cachefile(spa, B_FALSE, B_TRUE, B_FALSE);
6155 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_IMPORT);
6156 zfs_dbgmsg("spa_import: verbatim import of %s", pool);
6157 mutex_exit(&spa_namespace_lock);
6158 return (0);
6159 }
6160
6161 spa_activate(spa, mode);
6162
6163 /*
6164 * Don't start async tasks until we know everything is healthy.
6165 */
6166 spa_async_suspend(spa);
6167
6168 zpool_get_load_policy(config, &policy);
6169 if (policy.zlp_rewind & ZPOOL_DO_REWIND)
6170 state = SPA_LOAD_RECOVER;
6171
6172 spa->spa_config_source = SPA_CONFIG_SRC_TRYIMPORT;
6173
6174 if (state != SPA_LOAD_RECOVER) {
6175 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
6176 zfs_dbgmsg("spa_import: importing %s", pool);
6177 } else {
6178 zfs_dbgmsg("spa_import: importing %s, max_txg=%lld "
6179 "(RECOVERY MODE)", pool, (longlong_t)policy.zlp_txg);
6180 }
6181 error = spa_load_best(spa, state, policy.zlp_txg, policy.zlp_rewind);
6182
6183 /*
6184 * Propagate anything learned while loading the pool and pass it
6185 * back to caller (i.e. rewind info, missing devices, etc).
6186 */
6187 fnvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO, spa->spa_load_info);
6188
6189 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6190 /*
6191 * Toss any existing sparelist, as it doesn't have any validity
6192 * anymore, and conflicts with spa_has_spare().
6193 */
6194 if (spa->spa_spares.sav_config) {
6195 nvlist_free(spa->spa_spares.sav_config);
6196 spa->spa_spares.sav_config = NULL;
6197 spa_load_spares(spa);
6198 }
6199 if (spa->spa_l2cache.sav_config) {
6200 nvlist_free(spa->spa_l2cache.sav_config);
6201 spa->spa_l2cache.sav_config = NULL;
6202 spa_load_l2cache(spa);
6203 }
6204
6205 nvroot = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE);
6206 spa_config_exit(spa, SCL_ALL, FTAG);
6207
6208 if (props != NULL)
6209 spa_configfile_set(spa, props, B_FALSE);
6210
6211 if (error != 0 || (props && spa_writeable(spa) &&
6212 (error = spa_prop_set(spa, props)))) {
6213 spa_unload(spa);
6214 spa_deactivate(spa);
6215 spa_remove(spa);
6216 mutex_exit(&spa_namespace_lock);
6217 return (error);
6218 }
6219
6220 spa_async_resume(spa);
6221
6222 /*
6223 * Override any spares and level 2 cache devices as specified by
6224 * the user, as these may have correct device names/devids, etc.
6225 */
6226 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
6227 &spares, &nspares) == 0) {
6228 if (spa->spa_spares.sav_config)
6229 fnvlist_remove(spa->spa_spares.sav_config,
6230 ZPOOL_CONFIG_SPARES);
6231 else
6232 spa->spa_spares.sav_config = fnvlist_alloc();
6233 fnvlist_add_nvlist_array(spa->spa_spares.sav_config,
6234 ZPOOL_CONFIG_SPARES, (const nvlist_t * const *)spares,
6235 nspares);
6236 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6237 spa_load_spares(spa);
6238 spa_config_exit(spa, SCL_ALL, FTAG);
6239 spa->spa_spares.sav_sync = B_TRUE;
6240 }
6241 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
6242 &l2cache, &nl2cache) == 0) {
6243 if (spa->spa_l2cache.sav_config)
6244 fnvlist_remove(spa->spa_l2cache.sav_config,
6245 ZPOOL_CONFIG_L2CACHE);
6246 else
6247 spa->spa_l2cache.sav_config = fnvlist_alloc();
6248 fnvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
6249 ZPOOL_CONFIG_L2CACHE, (const nvlist_t * const *)l2cache,
6250 nl2cache);
6251 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6252 spa_load_l2cache(spa);
6253 spa_config_exit(spa, SCL_ALL, FTAG);
6254 spa->spa_l2cache.sav_sync = B_TRUE;
6255 }
6256
6257 /*
6258 * Check for any removed devices.
6259 */
6260 if (spa->spa_autoreplace) {
6261 spa_aux_check_removed(&spa->spa_spares);
6262 spa_aux_check_removed(&spa->spa_l2cache);
6263 }
6264
6265 if (spa_writeable(spa)) {
6266 /*
6267 * Update the config cache to include the newly-imported pool.
6268 */
6269 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
6270 }
6271
6272 /*
6273 * It's possible that the pool was expanded while it was exported.
6274 * We kick off an async task to handle this for us.
6275 */
6276 spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
6277
6278 spa_history_log_version(spa, "import", NULL);
6279
6280 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_IMPORT);
6281
6282 mutex_exit(&spa_namespace_lock);
6283
6284 zvol_create_minors_recursive(pool);
6285
6286 spa_import_os(spa);
6287
6288 return (0);
6289 }
6290
6291 nvlist_t *
6292 spa_tryimport(nvlist_t *tryconfig)
6293 {
6294 nvlist_t *config = NULL;
6295 const char *poolname, *cachefile;
6296 spa_t *spa;
6297 uint64_t state;
6298 int error;
6299 zpool_load_policy_t policy;
6300
6301 if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
6302 return (NULL);
6303
6304 if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
6305 return (NULL);
6306
6307 /*
6308 * Create and initialize the spa structure.
6309 */
6310 mutex_enter(&spa_namespace_lock);
6311 spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL);
6312 spa_activate(spa, SPA_MODE_READ);
6313
6314 /*
6315 * Rewind pool if a max txg was provided.
6316 */
6317 zpool_get_load_policy(spa->spa_config, &policy);
6318 if (policy.zlp_txg != UINT64_MAX) {
6319 spa->spa_load_max_txg = policy.zlp_txg;
6320 spa->spa_extreme_rewind = B_TRUE;
6321 zfs_dbgmsg("spa_tryimport: importing %s, max_txg=%lld",
6322 poolname, (longlong_t)policy.zlp_txg);
6323 } else {
6324 zfs_dbgmsg("spa_tryimport: importing %s", poolname);
6325 }
6326
6327 if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_CACHEFILE, &cachefile)
6328 == 0) {
6329 zfs_dbgmsg("spa_tryimport: using cachefile '%s'", cachefile);
6330 spa->spa_config_source = SPA_CONFIG_SRC_CACHEFILE;
6331 } else {
6332 spa->spa_config_source = SPA_CONFIG_SRC_SCAN;
6333 }
6334
6335 error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING);
6336
6337 /*
6338 * If 'tryconfig' was at least parsable, return the current config.
6339 */
6340 if (spa->spa_root_vdev != NULL) {
6341 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
6342 fnvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, poolname);
6343 fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE, state);
6344 fnvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
6345 spa->spa_uberblock.ub_timestamp);
6346 fnvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
6347 spa->spa_load_info);
6348 fnvlist_add_uint64(config, ZPOOL_CONFIG_ERRATA,
6349 spa->spa_errata);
6350
6351 /*
6352 * If the bootfs property exists on this pool then we
6353 * copy it out so that external consumers can tell which
6354 * pools are bootable.
6355 */
6356 if ((!error || error == EEXIST) && spa->spa_bootfs) {
6357 char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
6358
6359 /*
6360 * We have to play games with the name since the
6361 * pool was opened as TRYIMPORT_NAME.
6362 */
6363 if (dsl_dsobj_to_dsname(spa_name(spa),
6364 spa->spa_bootfs, tmpname) == 0) {
6365 char *cp;
6366 char *dsname;
6367
6368 dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
6369
6370 cp = strchr(tmpname, '/');
6371 if (cp == NULL) {
6372 (void) strlcpy(dsname, tmpname,
6373 MAXPATHLEN);
6374 } else {
6375 (void) snprintf(dsname, MAXPATHLEN,
6376 "%s/%s", poolname, ++cp);
6377 }
6378 fnvlist_add_string(config, ZPOOL_CONFIG_BOOTFS,
6379 dsname);
6380 kmem_free(dsname, MAXPATHLEN);
6381 }
6382 kmem_free(tmpname, MAXPATHLEN);
6383 }
6384
6385 /*
6386 * Add the list of hot spares and level 2 cache devices.
6387 */
6388 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
6389 spa_add_spares(spa, config);
6390 spa_add_l2cache(spa, config);
6391 spa_config_exit(spa, SCL_CONFIG, FTAG);
6392 }
6393
6394 spa_unload(spa);
6395 spa_deactivate(spa);
6396 spa_remove(spa);
6397 mutex_exit(&spa_namespace_lock);
6398
6399 return (config);
6400 }
6401
6402 /*
6403 * Pool export/destroy
6404 *
6405 * The act of destroying or exporting a pool is very simple. We make sure there
6406 * is no more pending I/O and any references to the pool are gone. Then, we
6407 * update the pool state and sync all the labels to disk, removing the
6408 * configuration from the cache afterwards. If the 'hardforce' flag is set, then
6409 * we don't sync the labels or remove the configuration cache.
6410 */
6411 static int
6412 spa_export_common(const char *pool, int new_state, nvlist_t **oldconfig,
6413 boolean_t force, boolean_t hardforce)
6414 {
6415 int error;
6416 spa_t *spa;
6417
6418 if (oldconfig)
6419 *oldconfig = NULL;
6420
6421 if (!(spa_mode_global & SPA_MODE_WRITE))
6422 return (SET_ERROR(EROFS));
6423
6424 mutex_enter(&spa_namespace_lock);
6425 if ((spa = spa_lookup(pool)) == NULL) {
6426 mutex_exit(&spa_namespace_lock);
6427 return (SET_ERROR(ENOENT));
6428 }
6429
6430 if (spa->spa_is_exporting) {
6431 /* the pool is being exported by another thread */
6432 mutex_exit(&spa_namespace_lock);
6433 return (SET_ERROR(ZFS_ERR_EXPORT_IN_PROGRESS));
6434 }
6435 spa->spa_is_exporting = B_TRUE;
6436
6437 /*
6438 * Put a hold on the pool, drop the namespace lock, stop async tasks,
6439 * reacquire the namespace lock, and see if we can export.
6440 */
6441 spa_open_ref(spa, FTAG);
6442 mutex_exit(&spa_namespace_lock);
6443 spa_async_suspend(spa);
6444 if (spa->spa_zvol_taskq) {
6445 zvol_remove_minors(spa, spa_name(spa), B_TRUE);
6446 taskq_wait(spa->spa_zvol_taskq);
6447 }
6448 mutex_enter(&spa_namespace_lock);
6449 spa_close(spa, FTAG);
6450
6451 if (spa->spa_state == POOL_STATE_UNINITIALIZED)
6452 goto export_spa;
6453 /*
6454 * The pool will be in core if it's openable, in which case we can
6455 * modify its state. Objsets may be open only because they're dirty,
6456 * so we have to force it to sync before checking spa_refcnt.
6457 */
6458 if (spa->spa_sync_on) {
6459 txg_wait_synced(spa->spa_dsl_pool, 0);
6460 spa_evicting_os_wait(spa);
6461 }
6462
6463 /*
6464 * A pool cannot be exported or destroyed if there are active
6465 * references. If we are resetting a pool, allow references by
6466 * fault injection handlers.
6467 */
6468 if (!spa_refcount_zero(spa) || (spa->spa_inject_ref != 0)) {
6469 error = SET_ERROR(EBUSY);
6470 goto fail;
6471 }
6472
6473 if (spa->spa_sync_on) {
6474 vdev_t *rvd = spa->spa_root_vdev;
6475 /*
6476 * A pool cannot be exported if it has an active shared spare.
6477 * This is to prevent other pools stealing the active spare
6478 * from an exported pool. At user's own will, such pool can
6479 * be forcedly exported.
6480 */
6481 if (!force && new_state == POOL_STATE_EXPORTED &&
6482 spa_has_active_shared_spare(spa)) {
6483 error = SET_ERROR(EXDEV);
6484 goto fail;
6485 }
6486
6487 /*
6488 * We're about to export or destroy this pool. Make sure
6489 * we stop all initialization and trim activity here before
6490 * we set the spa_final_txg. This will ensure that all
6491 * dirty data resulting from the initialization is
6492 * committed to disk before we unload the pool.
6493 */
6494 vdev_initialize_stop_all(rvd, VDEV_INITIALIZE_ACTIVE);
6495 vdev_trim_stop_all(rvd, VDEV_TRIM_ACTIVE);
6496 vdev_autotrim_stop_all(spa);
6497 vdev_rebuild_stop_all(spa);
6498
6499 /*
6500 * We want this to be reflected on every label,
6501 * so mark them all dirty. spa_unload() will do the
6502 * final sync that pushes these changes out.
6503 */
6504 if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
6505 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6506 spa->spa_state = new_state;
6507 vdev_config_dirty(rvd);
6508 spa_config_exit(spa, SCL_ALL, FTAG);
6509 }
6510
6511 /*
6512 * If the log space map feature is enabled and the pool is
6513 * getting exported (but not destroyed), we want to spend some
6514 * time flushing as many metaslabs as we can in an attempt to
6515 * destroy log space maps and save import time. This has to be
6516 * done before we set the spa_final_txg, otherwise
6517 * spa_sync() -> spa_flush_metaslabs() may dirty the final TXGs.
6518 * spa_should_flush_logs_on_unload() should be called after
6519 * spa_state has been set to the new_state.
6520 */
6521 if (spa_should_flush_logs_on_unload(spa))
6522 spa_unload_log_sm_flush_all(spa);
6523
6524 if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
6525 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6526 spa->spa_final_txg = spa_last_synced_txg(spa) +
6527 TXG_DEFER_SIZE + 1;
6528 spa_config_exit(spa, SCL_ALL, FTAG);
6529 }
6530 }
6531
6532 export_spa:
6533 spa_export_os(spa);
6534
6535 if (new_state == POOL_STATE_DESTROYED)
6536 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_DESTROY);
6537 else if (new_state == POOL_STATE_EXPORTED)
6538 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_EXPORT);
6539
6540 if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
6541 spa_unload(spa);
6542 spa_deactivate(spa);
6543 }
6544
6545 if (oldconfig && spa->spa_config)
6546 *oldconfig = fnvlist_dup(spa->spa_config);
6547
6548 if (new_state != POOL_STATE_UNINITIALIZED) {
6549 if (!hardforce)
6550 spa_write_cachefile(spa, B_TRUE, B_TRUE, B_FALSE);
6551 spa_remove(spa);
6552 } else {
6553 /*
6554 * If spa_remove() is not called for this spa_t and
6555 * there is any possibility that it can be reused,
6556 * we make sure to reset the exporting flag.
6557 */
6558 spa->spa_is_exporting = B_FALSE;
6559 }
6560
6561 mutex_exit(&spa_namespace_lock);
6562 return (0);
6563
6564 fail:
6565 spa->spa_is_exporting = B_FALSE;
6566 spa_async_resume(spa);
6567 mutex_exit(&spa_namespace_lock);
6568 return (error);
6569 }
6570
6571 /*
6572 * Destroy a storage pool.
6573 */
6574 int
6575 spa_destroy(const char *pool)
6576 {
6577 return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL,
6578 B_FALSE, B_FALSE));
6579 }
6580
6581 /*
6582 * Export a storage pool.
6583 */
6584 int
6585 spa_export(const char *pool, nvlist_t **oldconfig, boolean_t force,
6586 boolean_t hardforce)
6587 {
6588 return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig,
6589 force, hardforce));
6590 }
6591
6592 /*
6593 * Similar to spa_export(), this unloads the spa_t without actually removing it
6594 * from the namespace in any way.
6595 */
6596 int
6597 spa_reset(const char *pool)
6598 {
6599 return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
6600 B_FALSE, B_FALSE));
6601 }
6602
6603 /*
6604 * ==========================================================================
6605 * Device manipulation
6606 * ==========================================================================
6607 */
6608
6609 /*
6610 * This is called as a synctask to increment the draid feature flag
6611 */
6612 static void
6613 spa_draid_feature_incr(void *arg, dmu_tx_t *tx)
6614 {
6615 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
6616 int draid = (int)(uintptr_t)arg;
6617
6618 for (int c = 0; c < draid; c++)
6619 spa_feature_incr(spa, SPA_FEATURE_DRAID, tx);
6620 }
6621
6622 /*
6623 * Add a device to a storage pool.
6624 */
6625 int
6626 spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
6627 {
6628 uint64_t txg, ndraid = 0;
6629 int error;
6630 vdev_t *rvd = spa->spa_root_vdev;
6631 vdev_t *vd, *tvd;
6632 nvlist_t **spares, **l2cache;
6633 uint_t nspares, nl2cache;
6634
6635 ASSERT(spa_writeable(spa));
6636
6637 txg = spa_vdev_enter(spa);
6638
6639 if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
6640 VDEV_ALLOC_ADD)) != 0)
6641 return (spa_vdev_exit(spa, NULL, txg, error));
6642
6643 spa->spa_pending_vdev = vd; /* spa_vdev_exit() will clear this */
6644
6645 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
6646 &nspares) != 0)
6647 nspares = 0;
6648
6649 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
6650 &nl2cache) != 0)
6651 nl2cache = 0;
6652
6653 if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0)
6654 return (spa_vdev_exit(spa, vd, txg, EINVAL));
6655
6656 if (vd->vdev_children != 0 &&
6657 (error = vdev_create(vd, txg, B_FALSE)) != 0) {
6658 return (spa_vdev_exit(spa, vd, txg, error));
6659 }
6660
6661 /*
6662 * The virtual dRAID spares must be added after vdev tree is created
6663 * and the vdev guids are generated. The guid of their associated
6664 * dRAID is stored in the config and used when opening the spare.
6665 */
6666 if ((error = vdev_draid_spare_create(nvroot, vd, &ndraid,
6667 rvd->vdev_children)) == 0) {
6668 if (ndraid > 0 && nvlist_lookup_nvlist_array(nvroot,
6669 ZPOOL_CONFIG_SPARES, &spares, &nspares) != 0)
6670 nspares = 0;
6671 } else {
6672 return (spa_vdev_exit(spa, vd, txg, error));
6673 }
6674
6675 /*
6676 * We must validate the spares and l2cache devices after checking the
6677 * children. Otherwise, vdev_inuse() will blindly overwrite the spare.
6678 */
6679 if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0)
6680 return (spa_vdev_exit(spa, vd, txg, error));
6681
6682 /*
6683 * If we are in the middle of a device removal, we can only add
6684 * devices which match the existing devices in the pool.
6685 * If we are in the middle of a removal, or have some indirect
6686 * vdevs, we can not add raidz or dRAID top levels.
6687 */
6688 if (spa->spa_vdev_removal != NULL ||
6689 spa->spa_removing_phys.sr_prev_indirect_vdev != -1) {
6690 for (int c = 0; c < vd->vdev_children; c++) {
6691 tvd = vd->vdev_child[c];
6692 if (spa->spa_vdev_removal != NULL &&
6693 tvd->vdev_ashift != spa->spa_max_ashift) {
6694 return (spa_vdev_exit(spa, vd, txg, EINVAL));
6695 }
6696 /* Fail if top level vdev is raidz or a dRAID */
6697 if (vdev_get_nparity(tvd) != 0)
6698 return (spa_vdev_exit(spa, vd, txg, EINVAL));
6699
6700 /*
6701 * Need the top level mirror to be
6702 * a mirror of leaf vdevs only
6703 */
6704 if (tvd->vdev_ops == &vdev_mirror_ops) {
6705 for (uint64_t cid = 0;
6706 cid < tvd->vdev_children; cid++) {
6707 vdev_t *cvd = tvd->vdev_child[cid];
6708 if (!cvd->vdev_ops->vdev_op_leaf) {
6709 return (spa_vdev_exit(spa, vd,
6710 txg, EINVAL));
6711 }
6712 }
6713 }
6714 }
6715 }
6716
6717 for (int c = 0; c < vd->vdev_children; c++) {
6718 tvd = vd->vdev_child[c];
6719 vdev_remove_child(vd, tvd);
6720 tvd->vdev_id = rvd->vdev_children;
6721 vdev_add_child(rvd, tvd);
6722 vdev_config_dirty(tvd);
6723 }
6724
6725 if (nspares != 0) {
6726 spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
6727 ZPOOL_CONFIG_SPARES);
6728 spa_load_spares(spa);
6729 spa->spa_spares.sav_sync = B_TRUE;
6730 }
6731
6732 if (nl2cache != 0) {
6733 spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
6734 ZPOOL_CONFIG_L2CACHE);
6735 spa_load_l2cache(spa);
6736 spa->spa_l2cache.sav_sync = B_TRUE;
6737 }
6738
6739 /*
6740 * We can't increment a feature while holding spa_vdev so we
6741 * have to do it in a synctask.
6742 */
6743 if (ndraid != 0) {
6744 dmu_tx_t *tx;
6745
6746 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
6747 dsl_sync_task_nowait(spa->spa_dsl_pool, spa_draid_feature_incr,
6748 (void *)(uintptr_t)ndraid, tx);
6749 dmu_tx_commit(tx);
6750 }
6751
6752 /*
6753 * We have to be careful when adding new vdevs to an existing pool.
6754 * If other threads start allocating from these vdevs before we
6755 * sync the config cache, and we lose power, then upon reboot we may
6756 * fail to open the pool because there are DVAs that the config cache
6757 * can't translate. Therefore, we first add the vdevs without
6758 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
6759 * and then let spa_config_update() initialize the new metaslabs.
6760 *
6761 * spa_load() checks for added-but-not-initialized vdevs, so that
6762 * if we lose power at any point in this sequence, the remaining
6763 * steps will be completed the next time we load the pool.
6764 */
6765 (void) spa_vdev_exit(spa, vd, txg, 0);
6766
6767 mutex_enter(&spa_namespace_lock);
6768 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
6769 spa_event_notify(spa, NULL, NULL, ESC_ZFS_VDEV_ADD);
6770 mutex_exit(&spa_namespace_lock);
6771
6772 return (0);
6773 }
6774
6775 /*
6776 * Attach a device to a mirror. The arguments are the path to any device
6777 * in the mirror, and the nvroot for the new device. If the path specifies
6778 * a device that is not mirrored, we automatically insert the mirror vdev.
6779 *
6780 * If 'replacing' is specified, the new device is intended to replace the
6781 * existing device; in this case the two devices are made into their own
6782 * mirror using the 'replacing' vdev, which is functionally identical to
6783 * the mirror vdev (it actually reuses all the same ops) but has a few
6784 * extra rules: you can't attach to it after it's been created, and upon
6785 * completion of resilvering, the first disk (the one being replaced)
6786 * is automatically detached.
6787 *
6788 * If 'rebuild' is specified, then sequential reconstruction (a.ka. rebuild)
6789 * should be performed instead of traditional healing reconstruction. From
6790 * an administrators perspective these are both resilver operations.
6791 */
6792 int
6793 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing,
6794 int rebuild)
6795 {
6796 uint64_t txg, dtl_max_txg;
6797 vdev_t *rvd = spa->spa_root_vdev;
6798 vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
6799 vdev_ops_t *pvops;
6800 char *oldvdpath, *newvdpath;
6801 int newvd_isspare;
6802 int error;
6803
6804 ASSERT(spa_writeable(spa));
6805
6806 txg = spa_vdev_enter(spa);
6807
6808 oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
6809
6810 ASSERT(MUTEX_HELD(&spa_namespace_lock));
6811 if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
6812 error = (spa_has_checkpoint(spa)) ?
6813 ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
6814 return (spa_vdev_exit(spa, NULL, txg, error));
6815 }
6816
6817 if (rebuild) {
6818 if (!spa_feature_is_enabled(spa, SPA_FEATURE_DEVICE_REBUILD))
6819 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
6820
6821 if (dsl_scan_resilvering(spa_get_dsl(spa)))
6822 return (spa_vdev_exit(spa, NULL, txg,
6823 ZFS_ERR_RESILVER_IN_PROGRESS));
6824 } else {
6825 if (vdev_rebuild_active(rvd))
6826 return (spa_vdev_exit(spa, NULL, txg,
6827 ZFS_ERR_REBUILD_IN_PROGRESS));
6828 }
6829
6830 if (spa->spa_vdev_removal != NULL)
6831 return (spa_vdev_exit(spa, NULL, txg, EBUSY));
6832
6833 if (oldvd == NULL)
6834 return (spa_vdev_exit(spa, NULL, txg, ENODEV));
6835
6836 if (!oldvd->vdev_ops->vdev_op_leaf)
6837 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
6838
6839 pvd = oldvd->vdev_parent;
6840
6841 if (spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
6842 VDEV_ALLOC_ATTACH) != 0)
6843 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
6844
6845 if (newrootvd->vdev_children != 1)
6846 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
6847
6848 newvd = newrootvd->vdev_child[0];
6849
6850 if (!newvd->vdev_ops->vdev_op_leaf)
6851 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
6852
6853 if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
6854 return (spa_vdev_exit(spa, newrootvd, txg, error));
6855
6856 /*
6857 * log, dedup and special vdevs should not be replaced by spares.
6858 */
6859 if ((oldvd->vdev_top->vdev_alloc_bias != VDEV_BIAS_NONE ||
6860 oldvd->vdev_top->vdev_islog) && newvd->vdev_isspare) {
6861 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6862 }
6863
6864 /*
6865 * A dRAID spare can only replace a child of its parent dRAID vdev.
6866 */
6867 if (newvd->vdev_ops == &vdev_draid_spare_ops &&
6868 oldvd->vdev_top != vdev_draid_spare_get_parent(newvd)) {
6869 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6870 }
6871
6872 if (rebuild) {
6873 /*
6874 * For rebuilds, the top vdev must support reconstruction
6875 * using only space maps. This means the only allowable
6876 * vdevs types are the root vdev, a mirror, or dRAID.
6877 */
6878 tvd = pvd;
6879 if (pvd->vdev_top != NULL)
6880 tvd = pvd->vdev_top;
6881
6882 if (tvd->vdev_ops != &vdev_mirror_ops &&
6883 tvd->vdev_ops != &vdev_root_ops &&
6884 tvd->vdev_ops != &vdev_draid_ops) {
6885 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6886 }
6887 }
6888
6889 if (!replacing) {
6890 /*
6891 * For attach, the only allowable parent is a mirror or the root
6892 * vdev.
6893 */
6894 if (pvd->vdev_ops != &vdev_mirror_ops &&
6895 pvd->vdev_ops != &vdev_root_ops)
6896 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6897
6898 pvops = &vdev_mirror_ops;
6899 } else {
6900 /*
6901 * Active hot spares can only be replaced by inactive hot
6902 * spares.
6903 */
6904 if (pvd->vdev_ops == &vdev_spare_ops &&
6905 oldvd->vdev_isspare &&
6906 !spa_has_spare(spa, newvd->vdev_guid))
6907 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6908
6909 /*
6910 * If the source is a hot spare, and the parent isn't already a
6911 * spare, then we want to create a new hot spare. Otherwise, we
6912 * want to create a replacing vdev. The user is not allowed to
6913 * attach to a spared vdev child unless the 'isspare' state is
6914 * the same (spare replaces spare, non-spare replaces
6915 * non-spare).
6916 */
6917 if (pvd->vdev_ops == &vdev_replacing_ops &&
6918 spa_version(spa) < SPA_VERSION_MULTI_REPLACE) {
6919 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6920 } else if (pvd->vdev_ops == &vdev_spare_ops &&
6921 newvd->vdev_isspare != oldvd->vdev_isspare) {
6922 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6923 }
6924
6925 if (newvd->vdev_isspare)
6926 pvops = &vdev_spare_ops;
6927 else
6928 pvops = &vdev_replacing_ops;
6929 }
6930
6931 /*
6932 * Make sure the new device is big enough.
6933 */
6934 if (newvd->vdev_asize < vdev_get_min_asize(oldvd))
6935 return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
6936
6937 /*
6938 * The new device cannot have a higher alignment requirement
6939 * than the top-level vdev.
6940 */
6941 if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
6942 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6943
6944 /*
6945 * If this is an in-place replacement, update oldvd's path and devid
6946 * to make it distinguishable from newvd, and unopenable from now on.
6947 */
6948 if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
6949 spa_strfree(oldvd->vdev_path);
6950 oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
6951 KM_SLEEP);
6952 (void) snprintf(oldvd->vdev_path, strlen(newvd->vdev_path) + 5,
6953 "%s/%s", newvd->vdev_path, "old");
6954 if (oldvd->vdev_devid != NULL) {
6955 spa_strfree(oldvd->vdev_devid);
6956 oldvd->vdev_devid = NULL;
6957 }
6958 }
6959
6960 /*
6961 * If the parent is not a mirror, or if we're replacing, insert the new
6962 * mirror/replacing/spare vdev above oldvd.
6963 */
6964 if (pvd->vdev_ops != pvops)
6965 pvd = vdev_add_parent(oldvd, pvops);
6966
6967 ASSERT(pvd->vdev_top->vdev_parent == rvd);
6968 ASSERT(pvd->vdev_ops == pvops);
6969 ASSERT(oldvd->vdev_parent == pvd);
6970
6971 /*
6972 * Extract the new device from its root and add it to pvd.
6973 */
6974 vdev_remove_child(newrootvd, newvd);
6975 newvd->vdev_id = pvd->vdev_children;
6976 newvd->vdev_crtxg = oldvd->vdev_crtxg;
6977 vdev_add_child(pvd, newvd);
6978
6979 /*
6980 * Reevaluate the parent vdev state.
6981 */
6982 vdev_propagate_state(pvd);
6983
6984 tvd = newvd->vdev_top;
6985 ASSERT(pvd->vdev_top == tvd);
6986 ASSERT(tvd->vdev_parent == rvd);
6987
6988 vdev_config_dirty(tvd);
6989
6990 /*
6991 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account
6992 * for any dmu_sync-ed blocks. It will propagate upward when
6993 * spa_vdev_exit() calls vdev_dtl_reassess().
6994 */
6995 dtl_max_txg = txg + TXG_CONCURRENT_STATES;
6996
6997 vdev_dtl_dirty(newvd, DTL_MISSING,
6998 TXG_INITIAL, dtl_max_txg - TXG_INITIAL);
6999
7000 if (newvd->vdev_isspare) {
7001 spa_spare_activate(newvd);
7002 spa_event_notify(spa, newvd, NULL, ESC_ZFS_VDEV_SPARE);
7003 }
7004
7005 oldvdpath = spa_strdup(oldvd->vdev_path);
7006 newvdpath = spa_strdup(newvd->vdev_path);
7007 newvd_isspare = newvd->vdev_isspare;
7008
7009 /*
7010 * Mark newvd's DTL dirty in this txg.
7011 */
7012 vdev_dirty(tvd, VDD_DTL, newvd, txg);
7013
7014 /*
7015 * Schedule the resilver or rebuild to restart in the future. We do
7016 * this to ensure that dmu_sync-ed blocks have been stitched into the
7017 * respective datasets.
7018 */
7019 if (rebuild) {
7020 newvd->vdev_rebuild_txg = txg;
7021
7022 vdev_rebuild(tvd);
7023 } else {
7024 newvd->vdev_resilver_txg = txg;
7025
7026 if (dsl_scan_resilvering(spa_get_dsl(spa)) &&
7027 spa_feature_is_enabled(spa, SPA_FEATURE_RESILVER_DEFER)) {
7028 vdev_defer_resilver(newvd);
7029 } else {
7030 dsl_scan_restart_resilver(spa->spa_dsl_pool,
7031 dtl_max_txg);
7032 }
7033 }
7034
7035 if (spa->spa_bootfs)
7036 spa_event_notify(spa, newvd, NULL, ESC_ZFS_BOOTFS_VDEV_ATTACH);
7037
7038 spa_event_notify(spa, newvd, NULL, ESC_ZFS_VDEV_ATTACH);
7039
7040 /*
7041 * Commit the config
7042 */
7043 (void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0);
7044
7045 spa_history_log_internal(spa, "vdev attach", NULL,
7046 "%s vdev=%s %s vdev=%s",
7047 replacing && newvd_isspare ? "spare in" :
7048 replacing ? "replace" : "attach", newvdpath,
7049 replacing ? "for" : "to", oldvdpath);
7050
7051 spa_strfree(oldvdpath);
7052 spa_strfree(newvdpath);
7053
7054 return (0);
7055 }
7056
7057 /*
7058 * Detach a device from a mirror or replacing vdev.
7059 *
7060 * If 'replace_done' is specified, only detach if the parent
7061 * is a replacing vdev.
7062 */
7063 int
7064 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done)
7065 {
7066 uint64_t txg;
7067 int error;
7068 vdev_t *rvd __maybe_unused = spa->spa_root_vdev;
7069 vdev_t *vd, *pvd, *cvd, *tvd;
7070 boolean_t unspare = B_FALSE;
7071 uint64_t unspare_guid = 0;
7072 char *vdpath;
7073
7074 ASSERT(spa_writeable(spa));
7075
7076 txg = spa_vdev_detach_enter(spa, guid);
7077
7078 vd = spa_lookup_by_guid(spa, guid, B_FALSE);
7079
7080 /*
7081 * Besides being called directly from the userland through the
7082 * ioctl interface, spa_vdev_detach() can be potentially called
7083 * at the end of spa_vdev_resilver_done().
7084 *
7085 * In the regular case, when we have a checkpoint this shouldn't
7086 * happen as we never empty the DTLs of a vdev during the scrub
7087 * [see comment in dsl_scan_done()]. Thus spa_vdev_resilvering_done()
7088 * should never get here when we have a checkpoint.
7089 *
7090 * That said, even in a case when we checkpoint the pool exactly
7091 * as spa_vdev_resilver_done() calls this function everything
7092 * should be fine as the resilver will return right away.
7093 */
7094 ASSERT(MUTEX_HELD(&spa_namespace_lock));
7095 if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
7096 error = (spa_has_checkpoint(spa)) ?
7097 ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
7098 return (spa_vdev_exit(spa, NULL, txg, error));
7099 }
7100
7101 if (vd == NULL)
7102 return (spa_vdev_exit(spa, NULL, txg, ENODEV));
7103
7104 if (!vd->vdev_ops->vdev_op_leaf)
7105 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
7106
7107 pvd = vd->vdev_parent;
7108
7109 /*
7110 * If the parent/child relationship is not as expected, don't do it.
7111 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing
7112 * vdev that's replacing B with C. The user's intent in replacing
7113 * is to go from M(A,B) to M(A,C). If the user decides to cancel
7114 * the replace by detaching C, the expected behavior is to end up
7115 * M(A,B). But suppose that right after deciding to detach C,
7116 * the replacement of B completes. We would have M(A,C), and then
7117 * ask to detach C, which would leave us with just A -- not what
7118 * the user wanted. To prevent this, we make sure that the
7119 * parent/child relationship hasn't changed -- in this example,
7120 * that C's parent is still the replacing vdev R.
7121 */
7122 if (pvd->vdev_guid != pguid && pguid != 0)
7123 return (spa_vdev_exit(spa, NULL, txg, EBUSY));
7124
7125 /*
7126 * Only 'replacing' or 'spare' vdevs can be replaced.
7127 */
7128 if (replace_done && pvd->vdev_ops != &vdev_replacing_ops &&
7129 pvd->vdev_ops != &vdev_spare_ops)
7130 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
7131
7132 ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
7133 spa_version(spa) >= SPA_VERSION_SPARES);
7134
7135 /*
7136 * Only mirror, replacing, and spare vdevs support detach.
7137 */
7138 if (pvd->vdev_ops != &vdev_replacing_ops &&
7139 pvd->vdev_ops != &vdev_mirror_ops &&
7140 pvd->vdev_ops != &vdev_spare_ops)
7141 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
7142
7143 /*
7144 * If this device has the only valid copy of some data,
7145 * we cannot safely detach it.
7146 */
7147 if (vdev_dtl_required(vd))
7148 return (spa_vdev_exit(spa, NULL, txg, EBUSY));
7149
7150 ASSERT(pvd->vdev_children >= 2);
7151
7152 /*
7153 * If we are detaching the second disk from a replacing vdev, then
7154 * check to see if we changed the original vdev's path to have "/old"
7155 * at the end in spa_vdev_attach(). If so, undo that change now.
7156 */
7157 if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 &&
7158 vd->vdev_path != NULL) {
7159 size_t len = strlen(vd->vdev_path);
7160
7161 for (int c = 0; c < pvd->vdev_children; c++) {
7162 cvd = pvd->vdev_child[c];
7163
7164 if (cvd == vd || cvd->vdev_path == NULL)
7165 continue;
7166
7167 if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
7168 strcmp(cvd->vdev_path + len, "/old") == 0) {
7169 spa_strfree(cvd->vdev_path);
7170 cvd->vdev_path = spa_strdup(vd->vdev_path);
7171 break;
7172 }
7173 }
7174 }
7175
7176 /*
7177 * If we are detaching the original disk from a normal spare, then it
7178 * implies that the spare should become a real disk, and be removed
7179 * from the active spare list for the pool. dRAID spares on the
7180 * other hand are coupled to the pool and thus should never be removed
7181 * from the spares list.
7182 */
7183 if (pvd->vdev_ops == &vdev_spare_ops && vd->vdev_id == 0) {
7184 vdev_t *last_cvd = pvd->vdev_child[pvd->vdev_children - 1];
7185
7186 if (last_cvd->vdev_isspare &&
7187 last_cvd->vdev_ops != &vdev_draid_spare_ops) {
7188 unspare = B_TRUE;
7189 }
7190 }
7191
7192 /*
7193 * Erase the disk labels so the disk can be used for other things.
7194 * This must be done after all other error cases are handled,
7195 * but before we disembowel vd (so we can still do I/O to it).
7196 * But if we can't do it, don't treat the error as fatal --
7197 * it may be that the unwritability of the disk is the reason
7198 * it's being detached!
7199 */
7200 (void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
7201
7202 /*
7203 * Remove vd from its parent and compact the parent's children.
7204 */
7205 vdev_remove_child(pvd, vd);
7206 vdev_compact_children(pvd);
7207
7208 /*
7209 * Remember one of the remaining children so we can get tvd below.
7210 */
7211 cvd = pvd->vdev_child[pvd->vdev_children - 1];
7212
7213 /*
7214 * If we need to remove the remaining child from the list of hot spares,
7215 * do it now, marking the vdev as no longer a spare in the process.
7216 * We must do this before vdev_remove_parent(), because that can
7217 * change the GUID if it creates a new toplevel GUID. For a similar
7218 * reason, we must remove the spare now, in the same txg as the detach;
7219 * otherwise someone could attach a new sibling, change the GUID, and
7220 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail.
7221 */
7222 if (unspare) {
7223 ASSERT(cvd->vdev_isspare);
7224 spa_spare_remove(cvd);
7225 unspare_guid = cvd->vdev_guid;
7226 (void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
7227 cvd->vdev_unspare = B_TRUE;
7228 }
7229
7230 /*
7231 * If the parent mirror/replacing vdev only has one child,
7232 * the parent is no longer needed. Remove it from the tree.
7233 */
7234 if (pvd->vdev_children == 1) {
7235 if (pvd->vdev_ops == &vdev_spare_ops)
7236 cvd->vdev_unspare = B_FALSE;
7237 vdev_remove_parent(cvd);
7238 }
7239
7240 /*
7241 * We don't set tvd until now because the parent we just removed
7242 * may have been the previous top-level vdev.
7243 */
7244 tvd = cvd->vdev_top;
7245 ASSERT(tvd->vdev_parent == rvd);
7246
7247 /*
7248 * Reevaluate the parent vdev state.
7249 */
7250 vdev_propagate_state(cvd);
7251
7252 /*
7253 * If the 'autoexpand' property is set on the pool then automatically
7254 * try to expand the size of the pool. For example if the device we
7255 * just detached was smaller than the others, it may be possible to
7256 * add metaslabs (i.e. grow the pool). We need to reopen the vdev
7257 * first so that we can obtain the updated sizes of the leaf vdevs.
7258 */
7259 if (spa->spa_autoexpand) {
7260 vdev_reopen(tvd);
7261 vdev_expand(tvd, txg);
7262 }
7263
7264 vdev_config_dirty(tvd);
7265
7266 /*
7267 * Mark vd's DTL as dirty in this txg. vdev_dtl_sync() will see that
7268 * vd->vdev_detached is set and free vd's DTL object in syncing context.
7269 * But first make sure we're not on any *other* txg's DTL list, to
7270 * prevent vd from being accessed after it's freed.
7271 */
7272 vdpath = spa_strdup(vd->vdev_path ? vd->vdev_path : "none");
7273 for (int t = 0; t < TXG_SIZE; t++)
7274 (void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
7275 vd->vdev_detached = B_TRUE;
7276 vdev_dirty(tvd, VDD_DTL, vd, txg);
7277
7278 spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_REMOVE);
7279 spa_notify_waiters(spa);
7280
7281 /* hang on to the spa before we release the lock */
7282 spa_open_ref(spa, FTAG);
7283
7284 error = spa_vdev_exit(spa, vd, txg, 0);
7285
7286 spa_history_log_internal(spa, "detach", NULL,
7287 "vdev=%s", vdpath);
7288 spa_strfree(vdpath);
7289
7290 /*
7291 * If this was the removal of the original device in a hot spare vdev,
7292 * then we want to go through and remove the device from the hot spare
7293 * list of every other pool.
7294 */
7295 if (unspare) {
7296 spa_t *altspa = NULL;
7297
7298 mutex_enter(&spa_namespace_lock);
7299 while ((altspa = spa_next(altspa)) != NULL) {
7300 if (altspa->spa_state != POOL_STATE_ACTIVE ||
7301 altspa == spa)
7302 continue;
7303
7304 spa_open_ref(altspa, FTAG);
7305 mutex_exit(&spa_namespace_lock);
7306 (void) spa_vdev_remove(altspa, unspare_guid, B_TRUE);
7307 mutex_enter(&spa_namespace_lock);
7308 spa_close(altspa, FTAG);
7309 }
7310 mutex_exit(&spa_namespace_lock);
7311
7312 /* search the rest of the vdevs for spares to remove */
7313 spa_vdev_resilver_done(spa);
7314 }
7315
7316 /* all done with the spa; OK to release */
7317 mutex_enter(&spa_namespace_lock);
7318 spa_close(spa, FTAG);
7319 mutex_exit(&spa_namespace_lock);
7320
7321 return (error);
7322 }
7323
7324 static int
7325 spa_vdev_initialize_impl(spa_t *spa, uint64_t guid, uint64_t cmd_type,
7326 list_t *vd_list)
7327 {
7328 ASSERT(MUTEX_HELD(&spa_namespace_lock));
7329
7330 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
7331
7332 /* Look up vdev and ensure it's a leaf. */
7333 vdev_t *vd = spa_lookup_by_guid(spa, guid, B_FALSE);
7334 if (vd == NULL || vd->vdev_detached) {
7335 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7336 return (SET_ERROR(ENODEV));
7337 } else if (!vd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(vd)) {
7338 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7339 return (SET_ERROR(EINVAL));
7340 } else if (!vdev_writeable(vd)) {
7341 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7342 return (SET_ERROR(EROFS));
7343 }
7344 mutex_enter(&vd->vdev_initialize_lock);
7345 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7346
7347 /*
7348 * When we activate an initialize action we check to see
7349 * if the vdev_initialize_thread is NULL. We do this instead
7350 * of using the vdev_initialize_state since there might be
7351 * a previous initialization process which has completed but
7352 * the thread is not exited.
7353 */
7354 if (cmd_type == POOL_INITIALIZE_START &&
7355 (vd->vdev_initialize_thread != NULL ||
7356 vd->vdev_top->vdev_removing)) {
7357 mutex_exit(&vd->vdev_initialize_lock);
7358 return (SET_ERROR(EBUSY));
7359 } else if (cmd_type == POOL_INITIALIZE_CANCEL &&
7360 (vd->vdev_initialize_state != VDEV_INITIALIZE_ACTIVE &&
7361 vd->vdev_initialize_state != VDEV_INITIALIZE_SUSPENDED)) {
7362 mutex_exit(&vd->vdev_initialize_lock);
7363 return (SET_ERROR(ESRCH));
7364 } else if (cmd_type == POOL_INITIALIZE_SUSPEND &&
7365 vd->vdev_initialize_state != VDEV_INITIALIZE_ACTIVE) {
7366 mutex_exit(&vd->vdev_initialize_lock);
7367 return (SET_ERROR(ESRCH));
7368 }
7369
7370 switch (cmd_type) {
7371 case POOL_INITIALIZE_START:
7372 vdev_initialize(vd);
7373 break;
7374 case POOL_INITIALIZE_CANCEL:
7375 vdev_initialize_stop(vd, VDEV_INITIALIZE_CANCELED, vd_list);
7376 break;
7377 case POOL_INITIALIZE_SUSPEND:
7378 vdev_initialize_stop(vd, VDEV_INITIALIZE_SUSPENDED, vd_list);
7379 break;
7380 default:
7381 panic("invalid cmd_type %llu", (unsigned long long)cmd_type);
7382 }
7383 mutex_exit(&vd->vdev_initialize_lock);
7384
7385 return (0);
7386 }
7387
7388 int
7389 spa_vdev_initialize(spa_t *spa, nvlist_t *nv, uint64_t cmd_type,
7390 nvlist_t *vdev_errlist)
7391 {
7392 int total_errors = 0;
7393 list_t vd_list;
7394
7395 list_create(&vd_list, sizeof (vdev_t),
7396 offsetof(vdev_t, vdev_initialize_node));
7397
7398 /*
7399 * We hold the namespace lock through the whole function
7400 * to prevent any changes to the pool while we're starting or
7401 * stopping initialization. The config and state locks are held so that
7402 * we can properly assess the vdev state before we commit to
7403 * the initializing operation.
7404 */
7405 mutex_enter(&spa_namespace_lock);
7406
7407 for (nvpair_t *pair = nvlist_next_nvpair(nv, NULL);
7408 pair != NULL; pair = nvlist_next_nvpair(nv, pair)) {
7409 uint64_t vdev_guid = fnvpair_value_uint64(pair);
7410
7411 int error = spa_vdev_initialize_impl(spa, vdev_guid, cmd_type,
7412 &vd_list);
7413 if (error != 0) {
7414 char guid_as_str[MAXNAMELEN];
7415
7416 (void) snprintf(guid_as_str, sizeof (guid_as_str),
7417 "%llu", (unsigned long long)vdev_guid);
7418 fnvlist_add_int64(vdev_errlist, guid_as_str, error);
7419 total_errors++;
7420 }
7421 }
7422
7423 /* Wait for all initialize threads to stop. */
7424 vdev_initialize_stop_wait(spa, &vd_list);
7425
7426 /* Sync out the initializing state */
7427 txg_wait_synced(spa->spa_dsl_pool, 0);
7428 mutex_exit(&spa_namespace_lock);
7429
7430 list_destroy(&vd_list);
7431
7432 return (total_errors);
7433 }
7434
7435 static int
7436 spa_vdev_trim_impl(spa_t *spa, uint64_t guid, uint64_t cmd_type,
7437 uint64_t rate, boolean_t partial, boolean_t secure, list_t *vd_list)
7438 {
7439 ASSERT(MUTEX_HELD(&spa_namespace_lock));
7440
7441 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
7442
7443 /* Look up vdev and ensure it's a leaf. */
7444 vdev_t *vd = spa_lookup_by_guid(spa, guid, B_FALSE);
7445 if (vd == NULL || vd->vdev_detached) {
7446 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7447 return (SET_ERROR(ENODEV));
7448 } else if (!vd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(vd)) {
7449 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7450 return (SET_ERROR(EINVAL));
7451 } else if (!vdev_writeable(vd)) {
7452 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7453 return (SET_ERROR(EROFS));
7454 } else if (!vd->vdev_has_trim) {
7455 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7456 return (SET_ERROR(EOPNOTSUPP));
7457 } else if (secure && !vd->vdev_has_securetrim) {
7458 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7459 return (SET_ERROR(EOPNOTSUPP));
7460 }
7461 mutex_enter(&vd->vdev_trim_lock);
7462 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7463
7464 /*
7465 * When we activate a TRIM action we check to see if the
7466 * vdev_trim_thread is NULL. We do this instead of using the
7467 * vdev_trim_state since there might be a previous TRIM process
7468 * which has completed but the thread is not exited.
7469 */
7470 if (cmd_type == POOL_TRIM_START &&
7471 (vd->vdev_trim_thread != NULL || vd->vdev_top->vdev_removing)) {
7472 mutex_exit(&vd->vdev_trim_lock);
7473 return (SET_ERROR(EBUSY));
7474 } else if (cmd_type == POOL_TRIM_CANCEL &&
7475 (vd->vdev_trim_state != VDEV_TRIM_ACTIVE &&
7476 vd->vdev_trim_state != VDEV_TRIM_SUSPENDED)) {
7477 mutex_exit(&vd->vdev_trim_lock);
7478 return (SET_ERROR(ESRCH));
7479 } else if (cmd_type == POOL_TRIM_SUSPEND &&
7480 vd->vdev_trim_state != VDEV_TRIM_ACTIVE) {
7481 mutex_exit(&vd->vdev_trim_lock);
7482 return (SET_ERROR(ESRCH));
7483 }
7484
7485 switch (cmd_type) {
7486 case POOL_TRIM_START:
7487 vdev_trim(vd, rate, partial, secure);
7488 break;
7489 case POOL_TRIM_CANCEL:
7490 vdev_trim_stop(vd, VDEV_TRIM_CANCELED, vd_list);
7491 break;
7492 case POOL_TRIM_SUSPEND:
7493 vdev_trim_stop(vd, VDEV_TRIM_SUSPENDED, vd_list);
7494 break;
7495 default:
7496 panic("invalid cmd_type %llu", (unsigned long long)cmd_type);
7497 }
7498 mutex_exit(&vd->vdev_trim_lock);
7499
7500 return (0);
7501 }
7502
7503 /*
7504 * Initiates a manual TRIM for the requested vdevs. This kicks off individual
7505 * TRIM threads for each child vdev. These threads pass over all of the free
7506 * space in the vdev's metaslabs and issues TRIM commands for that space.
7507 */
7508 int
7509 spa_vdev_trim(spa_t *spa, nvlist_t *nv, uint64_t cmd_type, uint64_t rate,
7510 boolean_t partial, boolean_t secure, nvlist_t *vdev_errlist)
7511 {
7512 int total_errors = 0;
7513 list_t vd_list;
7514
7515 list_create(&vd_list, sizeof (vdev_t),
7516 offsetof(vdev_t, vdev_trim_node));
7517
7518 /*
7519 * We hold the namespace lock through the whole function
7520 * to prevent any changes to the pool while we're starting or
7521 * stopping TRIM. The config and state locks are held so that
7522 * we can properly assess the vdev state before we commit to
7523 * the TRIM operation.
7524 */
7525 mutex_enter(&spa_namespace_lock);
7526
7527 for (nvpair_t *pair = nvlist_next_nvpair(nv, NULL);
7528 pair != NULL; pair = nvlist_next_nvpair(nv, pair)) {
7529 uint64_t vdev_guid = fnvpair_value_uint64(pair);
7530
7531 int error = spa_vdev_trim_impl(spa, vdev_guid, cmd_type,
7532 rate, partial, secure, &vd_list);
7533 if (error != 0) {
7534 char guid_as_str[MAXNAMELEN];
7535
7536 (void) snprintf(guid_as_str, sizeof (guid_as_str),
7537 "%llu", (unsigned long long)vdev_guid);
7538 fnvlist_add_int64(vdev_errlist, guid_as_str, error);
7539 total_errors++;
7540 }
7541 }
7542
7543 /* Wait for all TRIM threads to stop. */
7544 vdev_trim_stop_wait(spa, &vd_list);
7545
7546 /* Sync out the TRIM state */
7547 txg_wait_synced(spa->spa_dsl_pool, 0);
7548 mutex_exit(&spa_namespace_lock);
7549
7550 list_destroy(&vd_list);
7551
7552 return (total_errors);
7553 }
7554
7555 /*
7556 * Split a set of devices from their mirrors, and create a new pool from them.
7557 */
7558 int
7559 spa_vdev_split_mirror(spa_t *spa, const char *newname, nvlist_t *config,
7560 nvlist_t *props, boolean_t exp)
7561 {
7562 int error = 0;
7563 uint64_t txg, *glist;
7564 spa_t *newspa;
7565 uint_t c, children, lastlog;
7566 nvlist_t **child, *nvl, *tmp;
7567 dmu_tx_t *tx;
7568 const char *altroot = NULL;
7569 vdev_t *rvd, **vml = NULL; /* vdev modify list */
7570 boolean_t activate_slog;
7571
7572 ASSERT(spa_writeable(spa));
7573
7574 txg = spa_vdev_enter(spa);
7575
7576 ASSERT(MUTEX_HELD(&spa_namespace_lock));
7577 if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
7578 error = (spa_has_checkpoint(spa)) ?
7579 ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
7580 return (spa_vdev_exit(spa, NULL, txg, error));
7581 }
7582
7583 /* clear the log and flush everything up to now */
7584 activate_slog = spa_passivate_log(spa);
7585 (void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
7586 error = spa_reset_logs(spa);
7587 txg = spa_vdev_config_enter(spa);
7588
7589 if (activate_slog)
7590 spa_activate_log(spa);
7591
7592 if (error != 0)
7593 return (spa_vdev_exit(spa, NULL, txg, error));
7594
7595 /* check new spa name before going any further */
7596 if (spa_lookup(newname) != NULL)
7597 return (spa_vdev_exit(spa, NULL, txg, EEXIST));
7598
7599 /*
7600 * scan through all the children to ensure they're all mirrors
7601 */
7602 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 ||
7603 nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child,
7604 &children) != 0)
7605 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
7606
7607 /* first, check to ensure we've got the right child count */
7608 rvd = spa->spa_root_vdev;
7609 lastlog = 0;
7610 for (c = 0; c < rvd->vdev_children; c++) {
7611 vdev_t *vd = rvd->vdev_child[c];
7612
7613 /* don't count the holes & logs as children */
7614 if (vd->vdev_islog || (vd->vdev_ops != &vdev_indirect_ops &&
7615 !vdev_is_concrete(vd))) {
7616 if (lastlog == 0)
7617 lastlog = c;
7618 continue;
7619 }
7620
7621 lastlog = 0;
7622 }
7623 if (children != (lastlog != 0 ? lastlog : rvd->vdev_children))
7624 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
7625
7626 /* next, ensure no spare or cache devices are part of the split */
7627 if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 ||
7628 nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0)
7629 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
7630
7631 vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP);
7632 glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP);
7633
7634 /* then, loop over each vdev and validate it */
7635 for (c = 0; c < children; c++) {
7636 uint64_t is_hole = 0;
7637
7638 (void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE,
7639 &is_hole);
7640
7641 if (is_hole != 0) {
7642 if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole ||
7643 spa->spa_root_vdev->vdev_child[c]->vdev_islog) {
7644 continue;
7645 } else {
7646 error = SET_ERROR(EINVAL);
7647 break;
7648 }
7649 }
7650
7651 /* deal with indirect vdevs */
7652 if (spa->spa_root_vdev->vdev_child[c]->vdev_ops ==
7653 &vdev_indirect_ops)
7654 continue;
7655
7656 /* which disk is going to be split? */
7657 if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID,
7658 &glist[c]) != 0) {
7659 error = SET_ERROR(EINVAL);
7660 break;
7661 }
7662
7663 /* look it up in the spa */
7664 vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE);
7665 if (vml[c] == NULL) {
7666 error = SET_ERROR(ENODEV);
7667 break;
7668 }
7669
7670 /* make sure there's nothing stopping the split */
7671 if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops ||
7672 vml[c]->vdev_islog ||
7673 !vdev_is_concrete(vml[c]) ||
7674 vml[c]->vdev_isspare ||
7675 vml[c]->vdev_isl2cache ||
7676 !vdev_writeable(vml[c]) ||
7677 vml[c]->vdev_children != 0 ||
7678 vml[c]->vdev_state != VDEV_STATE_HEALTHY ||
7679 c != spa->spa_root_vdev->vdev_child[c]->vdev_id) {
7680 error = SET_ERROR(EINVAL);
7681 break;
7682 }
7683
7684 if (vdev_dtl_required(vml[c]) ||
7685 vdev_resilver_needed(vml[c], NULL, NULL)) {
7686 error = SET_ERROR(EBUSY);
7687 break;
7688 }
7689
7690 /* we need certain info from the top level */
7691 fnvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY,
7692 vml[c]->vdev_top->vdev_ms_array);
7693 fnvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT,
7694 vml[c]->vdev_top->vdev_ms_shift);
7695 fnvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE,
7696 vml[c]->vdev_top->vdev_asize);
7697 fnvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT,
7698 vml[c]->vdev_top->vdev_ashift);
7699
7700 /* transfer per-vdev ZAPs */
7701 ASSERT3U(vml[c]->vdev_leaf_zap, !=, 0);
7702 VERIFY0(nvlist_add_uint64(child[c],
7703 ZPOOL_CONFIG_VDEV_LEAF_ZAP, vml[c]->vdev_leaf_zap));
7704
7705 ASSERT3U(vml[c]->vdev_top->vdev_top_zap, !=, 0);
7706 VERIFY0(nvlist_add_uint64(child[c],
7707 ZPOOL_CONFIG_VDEV_TOP_ZAP,
7708 vml[c]->vdev_parent->vdev_top_zap));
7709 }
7710
7711 if (error != 0) {
7712 kmem_free(vml, children * sizeof (vdev_t *));
7713 kmem_free(glist, children * sizeof (uint64_t));
7714 return (spa_vdev_exit(spa, NULL, txg, error));
7715 }
7716
7717 /* stop writers from using the disks */
7718 for (c = 0; c < children; c++) {
7719 if (vml[c] != NULL)
7720 vml[c]->vdev_offline = B_TRUE;
7721 }
7722 vdev_reopen(spa->spa_root_vdev);
7723
7724 /*
7725 * Temporarily record the splitting vdevs in the spa config. This
7726 * will disappear once the config is regenerated.
7727 */
7728 nvl = fnvlist_alloc();
7729 fnvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST, glist, children);
7730 kmem_free(glist, children * sizeof (uint64_t));
7731
7732 mutex_enter(&spa->spa_props_lock);
7733 fnvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT, nvl);
7734 mutex_exit(&spa->spa_props_lock);
7735 spa->spa_config_splitting = nvl;
7736 vdev_config_dirty(spa->spa_root_vdev);
7737
7738 /* configure and create the new pool */
7739 fnvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname);
7740 fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
7741 exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE);
7742 fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION, spa_version(spa));
7743 fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG, spa->spa_config_txg);
7744 fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID,
7745 spa_generate_guid(NULL));
7746 VERIFY0(nvlist_add_boolean(config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS));
7747 (void) nvlist_lookup_string(props,
7748 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
7749
7750 /* add the new pool to the namespace */
7751 newspa = spa_add(newname, config, altroot);
7752 newspa->spa_avz_action = AVZ_ACTION_REBUILD;
7753 newspa->spa_config_txg = spa->spa_config_txg;
7754 spa_set_log_state(newspa, SPA_LOG_CLEAR);
7755
7756 /* release the spa config lock, retaining the namespace lock */
7757 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
7758
7759 if (zio_injection_enabled)
7760 zio_handle_panic_injection(spa, FTAG, 1);
7761
7762 spa_activate(newspa, spa_mode_global);
7763 spa_async_suspend(newspa);
7764
7765 /*
7766 * Temporarily stop the initializing and TRIM activity. We set the
7767 * state to ACTIVE so that we know to resume initializing or TRIM
7768 * once the split has completed.
7769 */
7770 list_t vd_initialize_list;
7771 list_create(&vd_initialize_list, sizeof (vdev_t),
7772 offsetof(vdev_t, vdev_initialize_node));
7773
7774 list_t vd_trim_list;
7775 list_create(&vd_trim_list, sizeof (vdev_t),
7776 offsetof(vdev_t, vdev_trim_node));
7777
7778 for (c = 0; c < children; c++) {
7779 if (vml[c] != NULL && vml[c]->vdev_ops != &vdev_indirect_ops) {
7780 mutex_enter(&vml[c]->vdev_initialize_lock);
7781 vdev_initialize_stop(vml[c],
7782 VDEV_INITIALIZE_ACTIVE, &vd_initialize_list);
7783 mutex_exit(&vml[c]->vdev_initialize_lock);
7784
7785 mutex_enter(&vml[c]->vdev_trim_lock);
7786 vdev_trim_stop(vml[c], VDEV_TRIM_ACTIVE, &vd_trim_list);
7787 mutex_exit(&vml[c]->vdev_trim_lock);
7788 }
7789 }
7790
7791 vdev_initialize_stop_wait(spa, &vd_initialize_list);
7792 vdev_trim_stop_wait(spa, &vd_trim_list);
7793
7794 list_destroy(&vd_initialize_list);
7795 list_destroy(&vd_trim_list);
7796
7797 newspa->spa_config_source = SPA_CONFIG_SRC_SPLIT;
7798 newspa->spa_is_splitting = B_TRUE;
7799
7800 /* create the new pool from the disks of the original pool */
7801 error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE);
7802 if (error)
7803 goto out;
7804
7805 /* if that worked, generate a real config for the new pool */
7806 if (newspa->spa_root_vdev != NULL) {
7807 newspa->spa_config_splitting = fnvlist_alloc();
7808 fnvlist_add_uint64(newspa->spa_config_splitting,
7809 ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa));
7810 spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL,
7811 B_TRUE));
7812 }
7813
7814 /* set the props */
7815 if (props != NULL) {
7816 spa_configfile_set(newspa, props, B_FALSE);
7817 error = spa_prop_set(newspa, props);
7818 if (error)
7819 goto out;
7820 }
7821
7822 /* flush everything */
7823 txg = spa_vdev_config_enter(newspa);
7824 vdev_config_dirty(newspa->spa_root_vdev);
7825 (void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG);
7826
7827 if (zio_injection_enabled)
7828 zio_handle_panic_injection(spa, FTAG, 2);
7829
7830 spa_async_resume(newspa);
7831
7832 /* finally, update the original pool's config */
7833 txg = spa_vdev_config_enter(spa);
7834 tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
7835 error = dmu_tx_assign(tx, TXG_WAIT);
7836 if (error != 0)
7837 dmu_tx_abort(tx);
7838 for (c = 0; c < children; c++) {
7839 if (vml[c] != NULL && vml[c]->vdev_ops != &vdev_indirect_ops) {
7840 vdev_t *tvd = vml[c]->vdev_top;
7841
7842 /*
7843 * Need to be sure the detachable VDEV is not
7844 * on any *other* txg's DTL list to prevent it
7845 * from being accessed after it's freed.
7846 */
7847 for (int t = 0; t < TXG_SIZE; t++) {
7848 (void) txg_list_remove_this(
7849 &tvd->vdev_dtl_list, vml[c], t);
7850 }
7851
7852 vdev_split(vml[c]);
7853 if (error == 0)
7854 spa_history_log_internal(spa, "detach", tx,
7855 "vdev=%s", vml[c]->vdev_path);
7856
7857 vdev_free(vml[c]);
7858 }
7859 }
7860 spa->spa_avz_action = AVZ_ACTION_REBUILD;
7861 vdev_config_dirty(spa->spa_root_vdev);
7862 spa->spa_config_splitting = NULL;
7863 nvlist_free(nvl);
7864 if (error == 0)
7865 dmu_tx_commit(tx);
7866 (void) spa_vdev_exit(spa, NULL, txg, 0);
7867
7868 if (zio_injection_enabled)
7869 zio_handle_panic_injection(spa, FTAG, 3);
7870
7871 /* split is complete; log a history record */
7872 spa_history_log_internal(newspa, "split", NULL,
7873 "from pool %s", spa_name(spa));
7874
7875 newspa->spa_is_splitting = B_FALSE;
7876 kmem_free(vml, children * sizeof (vdev_t *));
7877
7878 /* if we're not going to mount the filesystems in userland, export */
7879 if (exp)
7880 error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL,
7881 B_FALSE, B_FALSE);
7882
7883 return (error);
7884
7885 out:
7886 spa_unload(newspa);
7887 spa_deactivate(newspa);
7888 spa_remove(newspa);
7889
7890 txg = spa_vdev_config_enter(spa);
7891
7892 /* re-online all offlined disks */
7893 for (c = 0; c < children; c++) {
7894 if (vml[c] != NULL)
7895 vml[c]->vdev_offline = B_FALSE;
7896 }
7897
7898 /* restart initializing or trimming disks as necessary */
7899 spa_async_request(spa, SPA_ASYNC_INITIALIZE_RESTART);
7900 spa_async_request(spa, SPA_ASYNC_TRIM_RESTART);
7901 spa_async_request(spa, SPA_ASYNC_AUTOTRIM_RESTART);
7902
7903 vdev_reopen(spa->spa_root_vdev);
7904
7905 nvlist_free(spa->spa_config_splitting);
7906 spa->spa_config_splitting = NULL;
7907 (void) spa_vdev_exit(spa, NULL, txg, error);
7908
7909 kmem_free(vml, children * sizeof (vdev_t *));
7910 return (error);
7911 }
7912
7913 /*
7914 * Find any device that's done replacing, or a vdev marked 'unspare' that's
7915 * currently spared, so we can detach it.
7916 */
7917 static vdev_t *
7918 spa_vdev_resilver_done_hunt(vdev_t *vd)
7919 {
7920 vdev_t *newvd, *oldvd;
7921
7922 for (int c = 0; c < vd->vdev_children; c++) {
7923 oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
7924 if (oldvd != NULL)
7925 return (oldvd);
7926 }
7927
7928 /*
7929 * Check for a completed replacement. We always consider the first
7930 * vdev in the list to be the oldest vdev, and the last one to be
7931 * the newest (see spa_vdev_attach() for how that works). In
7932 * the case where the newest vdev is faulted, we will not automatically
7933 * remove it after a resilver completes. This is OK as it will require
7934 * user intervention to determine which disk the admin wishes to keep.
7935 */
7936 if (vd->vdev_ops == &vdev_replacing_ops) {
7937 ASSERT(vd->vdev_children > 1);
7938
7939 newvd = vd->vdev_child[vd->vdev_children - 1];
7940 oldvd = vd->vdev_child[0];
7941
7942 if (vdev_dtl_empty(newvd, DTL_MISSING) &&
7943 vdev_dtl_empty(newvd, DTL_OUTAGE) &&
7944 !vdev_dtl_required(oldvd))
7945 return (oldvd);
7946 }
7947
7948 /*
7949 * Check for a completed resilver with the 'unspare' flag set.
7950 * Also potentially update faulted state.
7951 */
7952 if (vd->vdev_ops == &vdev_spare_ops) {
7953 vdev_t *first = vd->vdev_child[0];
7954 vdev_t *last = vd->vdev_child[vd->vdev_children - 1];
7955
7956 if (last->vdev_unspare) {
7957 oldvd = first;
7958 newvd = last;
7959 } else if (first->vdev_unspare) {
7960 oldvd = last;
7961 newvd = first;
7962 } else {
7963 oldvd = NULL;
7964 }
7965
7966 if (oldvd != NULL &&
7967 vdev_dtl_empty(newvd, DTL_MISSING) &&
7968 vdev_dtl_empty(newvd, DTL_OUTAGE) &&
7969 !vdev_dtl_required(oldvd))
7970 return (oldvd);
7971
7972 vdev_propagate_state(vd);
7973
7974 /*
7975 * If there are more than two spares attached to a disk,
7976 * and those spares are not required, then we want to
7977 * attempt to free them up now so that they can be used
7978 * by other pools. Once we're back down to a single
7979 * disk+spare, we stop removing them.
7980 */
7981 if (vd->vdev_children > 2) {
7982 newvd = vd->vdev_child[1];
7983
7984 if (newvd->vdev_isspare && last->vdev_isspare &&
7985 vdev_dtl_empty(last, DTL_MISSING) &&
7986 vdev_dtl_empty(last, DTL_OUTAGE) &&
7987 !vdev_dtl_required(newvd))
7988 return (newvd);
7989 }
7990 }
7991
7992 return (NULL);
7993 }
7994
7995 static void
7996 spa_vdev_resilver_done(spa_t *spa)
7997 {
7998 vdev_t *vd, *pvd, *ppvd;
7999 uint64_t guid, sguid, pguid, ppguid;
8000
8001 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
8002
8003 while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
8004 pvd = vd->vdev_parent;
8005 ppvd = pvd->vdev_parent;
8006 guid = vd->vdev_guid;
8007 pguid = pvd->vdev_guid;
8008 ppguid = ppvd->vdev_guid;
8009 sguid = 0;
8010 /*
8011 * If we have just finished replacing a hot spared device, then
8012 * we need to detach the parent's first child (the original hot
8013 * spare) as well.
8014 */
8015 if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 &&
8016 ppvd->vdev_children == 2) {
8017 ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
8018 sguid = ppvd->vdev_child[1]->vdev_guid;
8019 }
8020 ASSERT(vd->vdev_resilver_txg == 0 || !vdev_dtl_required(vd));
8021
8022 spa_config_exit(spa, SCL_ALL, FTAG);
8023 if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0)
8024 return;
8025 if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0)
8026 return;
8027 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
8028 }
8029
8030 spa_config_exit(spa, SCL_ALL, FTAG);
8031
8032 /*
8033 * If a detach was not performed above replace waiters will not have
8034 * been notified. In which case we must do so now.
8035 */
8036 spa_notify_waiters(spa);
8037 }
8038
8039 /*
8040 * Update the stored path or FRU for this vdev.
8041 */
8042 static int
8043 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value,
8044 boolean_t ispath)
8045 {
8046 vdev_t *vd;
8047 boolean_t sync = B_FALSE;
8048
8049 ASSERT(spa_writeable(spa));
8050
8051 spa_vdev_state_enter(spa, SCL_ALL);
8052
8053 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
8054 return (spa_vdev_state_exit(spa, NULL, ENOENT));
8055
8056 if (!vd->vdev_ops->vdev_op_leaf)
8057 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
8058
8059 if (ispath) {
8060 if (strcmp(value, vd->vdev_path) != 0) {
8061 spa_strfree(vd->vdev_path);
8062 vd->vdev_path = spa_strdup(value);
8063 sync = B_TRUE;
8064 }
8065 } else {
8066 if (vd->vdev_fru == NULL) {
8067 vd->vdev_fru = spa_strdup(value);
8068 sync = B_TRUE;
8069 } else if (strcmp(value, vd->vdev_fru) != 0) {
8070 spa_strfree(vd->vdev_fru);
8071 vd->vdev_fru = spa_strdup(value);
8072 sync = B_TRUE;
8073 }
8074 }
8075
8076 return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0));
8077 }
8078
8079 int
8080 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
8081 {
8082 return (spa_vdev_set_common(spa, guid, newpath, B_TRUE));
8083 }
8084
8085 int
8086 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru)
8087 {
8088 return (spa_vdev_set_common(spa, guid, newfru, B_FALSE));
8089 }
8090
8091 /*
8092 * ==========================================================================
8093 * SPA Scanning
8094 * ==========================================================================
8095 */
8096 int
8097 spa_scrub_pause_resume(spa_t *spa, pool_scrub_cmd_t cmd)
8098 {
8099 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
8100
8101 if (dsl_scan_resilvering(spa->spa_dsl_pool))
8102 return (SET_ERROR(EBUSY));
8103
8104 return (dsl_scrub_set_pause_resume(spa->spa_dsl_pool, cmd));
8105 }
8106
8107 int
8108 spa_scan_stop(spa_t *spa)
8109 {
8110 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
8111 if (dsl_scan_resilvering(spa->spa_dsl_pool))
8112 return (SET_ERROR(EBUSY));
8113 return (dsl_scan_cancel(spa->spa_dsl_pool));
8114 }
8115
8116 int
8117 spa_scan(spa_t *spa, pool_scan_func_t func)
8118 {
8119 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
8120
8121 if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE)
8122 return (SET_ERROR(ENOTSUP));
8123
8124 if (func == POOL_SCAN_RESILVER &&
8125 !spa_feature_is_enabled(spa, SPA_FEATURE_RESILVER_DEFER))
8126 return (SET_ERROR(ENOTSUP));
8127
8128 /*
8129 * If a resilver was requested, but there is no DTL on a
8130 * writeable leaf device, we have nothing to do.
8131 */
8132 if (func == POOL_SCAN_RESILVER &&
8133 !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
8134 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
8135 return (0);
8136 }
8137
8138 return (dsl_scan(spa->spa_dsl_pool, func));
8139 }
8140
8141 /*
8142 * ==========================================================================
8143 * SPA async task processing
8144 * ==========================================================================
8145 */
8146
8147 static void
8148 spa_async_remove(spa_t *spa, vdev_t *vd)
8149 {
8150 if (vd->vdev_remove_wanted) {
8151 vd->vdev_remove_wanted = B_FALSE;
8152 vd->vdev_delayed_close = B_FALSE;
8153 vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE);
8154
8155 /*
8156 * We want to clear the stats, but we don't want to do a full
8157 * vdev_clear() as that will cause us to throw away
8158 * degraded/faulted state as well as attempt to reopen the
8159 * device, all of which is a waste.
8160 */
8161 vd->vdev_stat.vs_read_errors = 0;
8162 vd->vdev_stat.vs_write_errors = 0;
8163 vd->vdev_stat.vs_checksum_errors = 0;
8164
8165 vdev_state_dirty(vd->vdev_top);
8166
8167 /* Tell userspace that the vdev is gone. */
8168 zfs_post_remove(spa, vd);
8169 }
8170
8171 for (int c = 0; c < vd->vdev_children; c++)
8172 spa_async_remove(spa, vd->vdev_child[c]);
8173 }
8174
8175 static void
8176 spa_async_probe(spa_t *spa, vdev_t *vd)
8177 {
8178 if (vd->vdev_probe_wanted) {
8179 vd->vdev_probe_wanted = B_FALSE;
8180 vdev_reopen(vd); /* vdev_open() does the actual probe */
8181 }
8182
8183 for (int c = 0; c < vd->vdev_children; c++)
8184 spa_async_probe(spa, vd->vdev_child[c]);
8185 }
8186
8187 static void
8188 spa_async_autoexpand(spa_t *spa, vdev_t *vd)
8189 {
8190 if (!spa->spa_autoexpand)
8191 return;
8192
8193 for (int c = 0; c < vd->vdev_children; c++) {
8194 vdev_t *cvd = vd->vdev_child[c];
8195 spa_async_autoexpand(spa, cvd);
8196 }
8197
8198 if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL)
8199 return;
8200
8201 spa_event_notify(vd->vdev_spa, vd, NULL, ESC_ZFS_VDEV_AUTOEXPAND);
8202 }
8203
8204 static __attribute__((noreturn)) void
8205 spa_async_thread(void *arg)
8206 {
8207 spa_t *spa = (spa_t *)arg;
8208 dsl_pool_t *dp = spa->spa_dsl_pool;
8209 int tasks;
8210
8211 ASSERT(spa->spa_sync_on);
8212
8213 mutex_enter(&spa->spa_async_lock);
8214 tasks = spa->spa_async_tasks;
8215 spa->spa_async_tasks = 0;
8216 mutex_exit(&spa->spa_async_lock);
8217
8218 /*
8219 * See if the config needs to be updated.
8220 */
8221 if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
8222 uint64_t old_space, new_space;
8223
8224 mutex_enter(&spa_namespace_lock);
8225 old_space = metaslab_class_get_space(spa_normal_class(spa));
8226 old_space += metaslab_class_get_space(spa_special_class(spa));
8227 old_space += metaslab_class_get_space(spa_dedup_class(spa));
8228 old_space += metaslab_class_get_space(
8229 spa_embedded_log_class(spa));
8230
8231 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
8232
8233 new_space = metaslab_class_get_space(spa_normal_class(spa));
8234 new_space += metaslab_class_get_space(spa_special_class(spa));
8235 new_space += metaslab_class_get_space(spa_dedup_class(spa));
8236 new_space += metaslab_class_get_space(
8237 spa_embedded_log_class(spa));
8238 mutex_exit(&spa_namespace_lock);
8239
8240 /*
8241 * If the pool grew as a result of the config update,
8242 * then log an internal history event.
8243 */
8244 if (new_space != old_space) {
8245 spa_history_log_internal(spa, "vdev online", NULL,
8246 "pool '%s' size: %llu(+%llu)",
8247 spa_name(spa), (u_longlong_t)new_space,
8248 (u_longlong_t)(new_space - old_space));
8249 }
8250 }
8251
8252 /*
8253 * See if any devices need to be marked REMOVED.
8254 */
8255 if (tasks & SPA_ASYNC_REMOVE) {
8256 spa_vdev_state_enter(spa, SCL_NONE);
8257 spa_async_remove(spa, spa->spa_root_vdev);
8258 for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
8259 spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]);
8260 for (int i = 0; i < spa->spa_spares.sav_count; i++)
8261 spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]);
8262 (void) spa_vdev_state_exit(spa, NULL, 0);
8263 }
8264
8265 if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) {
8266 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
8267 spa_async_autoexpand(spa, spa->spa_root_vdev);
8268 spa_config_exit(spa, SCL_CONFIG, FTAG);
8269 }
8270
8271 /*
8272 * See if any devices need to be probed.
8273 */
8274 if (tasks & SPA_ASYNC_PROBE) {
8275 spa_vdev_state_enter(spa, SCL_NONE);
8276 spa_async_probe(spa, spa->spa_root_vdev);
8277 (void) spa_vdev_state_exit(spa, NULL, 0);
8278 }
8279
8280 /*
8281 * If any devices are done replacing, detach them.
8282 */
8283 if (tasks & SPA_ASYNC_RESILVER_DONE ||
8284 tasks & SPA_ASYNC_REBUILD_DONE) {
8285 spa_vdev_resilver_done(spa);
8286 }
8287
8288 /*
8289 * Kick off a resilver.
8290 */
8291 if (tasks & SPA_ASYNC_RESILVER &&
8292 !vdev_rebuild_active(spa->spa_root_vdev) &&
8293 (!dsl_scan_resilvering(dp) ||
8294 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_RESILVER_DEFER)))
8295 dsl_scan_restart_resilver(dp, 0);
8296
8297 if (tasks & SPA_ASYNC_INITIALIZE_RESTART) {
8298 mutex_enter(&spa_namespace_lock);
8299 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
8300 vdev_initialize_restart(spa->spa_root_vdev);
8301 spa_config_exit(spa, SCL_CONFIG, FTAG);
8302 mutex_exit(&spa_namespace_lock);
8303 }
8304
8305 if (tasks & SPA_ASYNC_TRIM_RESTART) {
8306 mutex_enter(&spa_namespace_lock);
8307 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
8308 vdev_trim_restart(spa->spa_root_vdev);
8309 spa_config_exit(spa, SCL_CONFIG, FTAG);
8310 mutex_exit(&spa_namespace_lock);
8311 }
8312
8313 if (tasks & SPA_ASYNC_AUTOTRIM_RESTART) {
8314 mutex_enter(&spa_namespace_lock);
8315 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
8316 vdev_autotrim_restart(spa);
8317 spa_config_exit(spa, SCL_CONFIG, FTAG);
8318 mutex_exit(&spa_namespace_lock);
8319 }
8320
8321 /*
8322 * Kick off L2 cache whole device TRIM.
8323 */
8324 if (tasks & SPA_ASYNC_L2CACHE_TRIM) {
8325 mutex_enter(&spa_namespace_lock);
8326 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
8327 vdev_trim_l2arc(spa);
8328 spa_config_exit(spa, SCL_CONFIG, FTAG);
8329 mutex_exit(&spa_namespace_lock);
8330 }
8331
8332 /*
8333 * Kick off L2 cache rebuilding.
8334 */
8335 if (tasks & SPA_ASYNC_L2CACHE_REBUILD) {
8336 mutex_enter(&spa_namespace_lock);
8337 spa_config_enter(spa, SCL_L2ARC, FTAG, RW_READER);
8338 l2arc_spa_rebuild_start(spa);
8339 spa_config_exit(spa, SCL_L2ARC, FTAG);
8340 mutex_exit(&spa_namespace_lock);
8341 }
8342
8343 /*
8344 * Let the world know that we're done.
8345 */
8346 mutex_enter(&spa->spa_async_lock);
8347 spa->spa_async_thread = NULL;
8348 cv_broadcast(&spa->spa_async_cv);
8349 mutex_exit(&spa->spa_async_lock);
8350 thread_exit();
8351 }
8352
8353 void
8354 spa_async_suspend(spa_t *spa)
8355 {
8356 mutex_enter(&spa->spa_async_lock);
8357 spa->spa_async_suspended++;
8358 while (spa->spa_async_thread != NULL)
8359 cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
8360 mutex_exit(&spa->spa_async_lock);
8361
8362 spa_vdev_remove_suspend(spa);
8363
8364 zthr_t *condense_thread = spa->spa_condense_zthr;
8365 if (condense_thread != NULL)
8366 zthr_cancel(condense_thread);
8367
8368 zthr_t *discard_thread = spa->spa_checkpoint_discard_zthr;
8369 if (discard_thread != NULL)
8370 zthr_cancel(discard_thread);
8371
8372 zthr_t *ll_delete_thread = spa->spa_livelist_delete_zthr;
8373 if (ll_delete_thread != NULL)
8374 zthr_cancel(ll_delete_thread);
8375
8376 zthr_t *ll_condense_thread = spa->spa_livelist_condense_zthr;
8377 if (ll_condense_thread != NULL)
8378 zthr_cancel(ll_condense_thread);
8379 }
8380
8381 void
8382 spa_async_resume(spa_t *spa)
8383 {
8384 mutex_enter(&spa->spa_async_lock);
8385 ASSERT(spa->spa_async_suspended != 0);
8386 spa->spa_async_suspended--;
8387 mutex_exit(&spa->spa_async_lock);
8388 spa_restart_removal(spa);
8389
8390 zthr_t *condense_thread = spa->spa_condense_zthr;
8391 if (condense_thread != NULL)
8392 zthr_resume(condense_thread);
8393
8394 zthr_t *discard_thread = spa->spa_checkpoint_discard_zthr;
8395 if (discard_thread != NULL)
8396 zthr_resume(discard_thread);
8397
8398 zthr_t *ll_delete_thread = spa->spa_livelist_delete_zthr;
8399 if (ll_delete_thread != NULL)
8400 zthr_resume(ll_delete_thread);
8401
8402 zthr_t *ll_condense_thread = spa->spa_livelist_condense_zthr;
8403 if (ll_condense_thread != NULL)
8404 zthr_resume(ll_condense_thread);
8405 }
8406
8407 static boolean_t
8408 spa_async_tasks_pending(spa_t *spa)
8409 {
8410 uint_t non_config_tasks;
8411 uint_t config_task;
8412 boolean_t config_task_suspended;
8413
8414 non_config_tasks = spa->spa_async_tasks & ~SPA_ASYNC_CONFIG_UPDATE;
8415 config_task = spa->spa_async_tasks & SPA_ASYNC_CONFIG_UPDATE;
8416 if (spa->spa_ccw_fail_time == 0) {
8417 config_task_suspended = B_FALSE;
8418 } else {
8419 config_task_suspended =
8420 (gethrtime() - spa->spa_ccw_fail_time) <
8421 ((hrtime_t)zfs_ccw_retry_interval * NANOSEC);
8422 }
8423
8424 return (non_config_tasks || (config_task && !config_task_suspended));
8425 }
8426
8427 static void
8428 spa_async_dispatch(spa_t *spa)
8429 {
8430 mutex_enter(&spa->spa_async_lock);
8431 if (spa_async_tasks_pending(spa) &&
8432 !spa->spa_async_suspended &&
8433 spa->spa_async_thread == NULL)
8434 spa->spa_async_thread = thread_create(NULL, 0,
8435 spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
8436 mutex_exit(&spa->spa_async_lock);
8437 }
8438
8439 void
8440 spa_async_request(spa_t *spa, int task)
8441 {
8442 zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task);
8443 mutex_enter(&spa->spa_async_lock);
8444 spa->spa_async_tasks |= task;
8445 mutex_exit(&spa->spa_async_lock);
8446 }
8447
8448 int
8449 spa_async_tasks(spa_t *spa)
8450 {
8451 return (spa->spa_async_tasks);
8452 }
8453
8454 /*
8455 * ==========================================================================
8456 * SPA syncing routines
8457 * ==========================================================================
8458 */
8459
8460
8461 static int
8462 bpobj_enqueue_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
8463 dmu_tx_t *tx)
8464 {
8465 bpobj_t *bpo = arg;
8466 bpobj_enqueue(bpo, bp, bp_freed, tx);
8467 return (0);
8468 }
8469
8470 int
8471 bpobj_enqueue_alloc_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
8472 {
8473 return (bpobj_enqueue_cb(arg, bp, B_FALSE, tx));
8474 }
8475
8476 int
8477 bpobj_enqueue_free_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
8478 {
8479 return (bpobj_enqueue_cb(arg, bp, B_TRUE, tx));
8480 }
8481
8482 static int
8483 spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
8484 {
8485 zio_t *pio = arg;
8486
8487 zio_nowait(zio_free_sync(pio, pio->io_spa, dmu_tx_get_txg(tx), bp,
8488 pio->io_flags));
8489 return (0);
8490 }
8491
8492 static int
8493 bpobj_spa_free_sync_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
8494 dmu_tx_t *tx)
8495 {
8496 ASSERT(!bp_freed);
8497 return (spa_free_sync_cb(arg, bp, tx));
8498 }
8499
8500 /*
8501 * Note: this simple function is not inlined to make it easier to dtrace the
8502 * amount of time spent syncing frees.
8503 */
8504 static void
8505 spa_sync_frees(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx)
8506 {
8507 zio_t *zio = zio_root(spa, NULL, NULL, 0);
8508 bplist_iterate(bpl, spa_free_sync_cb, zio, tx);
8509 VERIFY(zio_wait(zio) == 0);
8510 }
8511
8512 /*
8513 * Note: this simple function is not inlined to make it easier to dtrace the
8514 * amount of time spent syncing deferred frees.
8515 */
8516 static void
8517 spa_sync_deferred_frees(spa_t *spa, dmu_tx_t *tx)
8518 {
8519 if (spa_sync_pass(spa) != 1)
8520 return;
8521
8522 /*
8523 * Note:
8524 * If the log space map feature is active, we stop deferring
8525 * frees to the next TXG and therefore running this function
8526 * would be considered a no-op as spa_deferred_bpobj should
8527 * not have any entries.
8528 *
8529 * That said we run this function anyway (instead of returning
8530 * immediately) for the edge-case scenario where we just
8531 * activated the log space map feature in this TXG but we have
8532 * deferred frees from the previous TXG.
8533 */
8534 zio_t *zio = zio_root(spa, NULL, NULL, 0);
8535 VERIFY3U(bpobj_iterate(&spa->spa_deferred_bpobj,
8536 bpobj_spa_free_sync_cb, zio, tx), ==, 0);
8537 VERIFY0(zio_wait(zio));
8538 }
8539
8540 static void
8541 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
8542 {
8543 char *packed = NULL;
8544 size_t bufsize;
8545 size_t nvsize = 0;
8546 dmu_buf_t *db;
8547
8548 VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
8549
8550 /*
8551 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration
8552 * information. This avoids the dmu_buf_will_dirty() path and
8553 * saves us a pre-read to get data we don't actually care about.
8554 */
8555 bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE);
8556 packed = vmem_alloc(bufsize, KM_SLEEP);
8557
8558 VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
8559 KM_SLEEP) == 0);
8560 memset(packed + nvsize, 0, bufsize - nvsize);
8561
8562 dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx);
8563
8564 vmem_free(packed, bufsize);
8565
8566 VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
8567 dmu_buf_will_dirty(db, tx);
8568 *(uint64_t *)db->db_data = nvsize;
8569 dmu_buf_rele(db, FTAG);
8570 }
8571
8572 static void
8573 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
8574 const char *config, const char *entry)
8575 {
8576 nvlist_t *nvroot;
8577 nvlist_t **list;
8578 int i;
8579
8580 if (!sav->sav_sync)
8581 return;
8582
8583 /*
8584 * Update the MOS nvlist describing the list of available devices.
8585 * spa_validate_aux() will have already made sure this nvlist is
8586 * valid and the vdevs are labeled appropriately.
8587 */
8588 if (sav->sav_object == 0) {
8589 sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
8590 DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
8591 sizeof (uint64_t), tx);
8592 VERIFY(zap_update(spa->spa_meta_objset,
8593 DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
8594 &sav->sav_object, tx) == 0);
8595 }
8596
8597 nvroot = fnvlist_alloc();
8598 if (sav->sav_count == 0) {
8599 fnvlist_add_nvlist_array(nvroot, config,
8600 (const nvlist_t * const *)NULL, 0);
8601 } else {
8602 list = kmem_alloc(sav->sav_count*sizeof (void *), KM_SLEEP);
8603 for (i = 0; i < sav->sav_count; i++)
8604 list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
8605 B_FALSE, VDEV_CONFIG_L2CACHE);
8606 fnvlist_add_nvlist_array(nvroot, config,
8607 (const nvlist_t * const *)list, sav->sav_count);
8608 for (i = 0; i < sav->sav_count; i++)
8609 nvlist_free(list[i]);
8610 kmem_free(list, sav->sav_count * sizeof (void *));
8611 }
8612
8613 spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
8614 nvlist_free(nvroot);
8615
8616 sav->sav_sync = B_FALSE;
8617 }
8618
8619 /*
8620 * Rebuild spa's all-vdev ZAP from the vdev ZAPs indicated in each vdev_t.
8621 * The all-vdev ZAP must be empty.
8622 */
8623 static void
8624 spa_avz_build(vdev_t *vd, uint64_t avz, dmu_tx_t *tx)
8625 {
8626 spa_t *spa = vd->vdev_spa;
8627
8628 if (vd->vdev_top_zap != 0) {
8629 VERIFY0(zap_add_int(spa->spa_meta_objset, avz,
8630 vd->vdev_top_zap, tx));
8631 }
8632 if (vd->vdev_leaf_zap != 0) {
8633 VERIFY0(zap_add_int(spa->spa_meta_objset, avz,
8634 vd->vdev_leaf_zap, tx));
8635 }
8636 for (uint64_t i = 0; i < vd->vdev_children; i++) {
8637 spa_avz_build(vd->vdev_child[i], avz, tx);
8638 }
8639 }
8640
8641 static void
8642 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
8643 {
8644 nvlist_t *config;
8645
8646 /*
8647 * If the pool is being imported from a pre-per-vdev-ZAP version of ZFS,
8648 * its config may not be dirty but we still need to build per-vdev ZAPs.
8649 * Similarly, if the pool is being assembled (e.g. after a split), we
8650 * need to rebuild the AVZ although the config may not be dirty.
8651 */
8652 if (list_is_empty(&spa->spa_config_dirty_list) &&
8653 spa->spa_avz_action == AVZ_ACTION_NONE)
8654 return;
8655
8656 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
8657
8658 ASSERT(spa->spa_avz_action == AVZ_ACTION_NONE ||
8659 spa->spa_avz_action == AVZ_ACTION_INITIALIZE ||
8660 spa->spa_all_vdev_zaps != 0);
8661
8662 if (spa->spa_avz_action == AVZ_ACTION_REBUILD) {
8663 /* Make and build the new AVZ */
8664 uint64_t new_avz = zap_create(spa->spa_meta_objset,
8665 DMU_OTN_ZAP_METADATA, DMU_OT_NONE, 0, tx);
8666 spa_avz_build(spa->spa_root_vdev, new_avz, tx);
8667
8668 /* Diff old AVZ with new one */
8669 zap_cursor_t zc;
8670 zap_attribute_t za;
8671
8672 for (zap_cursor_init(&zc, spa->spa_meta_objset,
8673 spa->spa_all_vdev_zaps);
8674 zap_cursor_retrieve(&zc, &za) == 0;
8675 zap_cursor_advance(&zc)) {
8676 uint64_t vdzap = za.za_first_integer;
8677 if (zap_lookup_int(spa->spa_meta_objset, new_avz,
8678 vdzap) == ENOENT) {
8679 /*
8680 * ZAP is listed in old AVZ but not in new one;
8681 * destroy it
8682 */
8683 VERIFY0(zap_destroy(spa->spa_meta_objset, vdzap,
8684 tx));
8685 }
8686 }
8687
8688 zap_cursor_fini(&zc);
8689
8690 /* Destroy the old AVZ */
8691 VERIFY0(zap_destroy(spa->spa_meta_objset,
8692 spa->spa_all_vdev_zaps, tx));
8693
8694 /* Replace the old AVZ in the dir obj with the new one */
8695 VERIFY0(zap_update(spa->spa_meta_objset,
8696 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP,
8697 sizeof (new_avz), 1, &new_avz, tx));
8698
8699 spa->spa_all_vdev_zaps = new_avz;
8700 } else if (spa->spa_avz_action == AVZ_ACTION_DESTROY) {
8701 zap_cursor_t zc;
8702 zap_attribute_t za;
8703
8704 /* Walk through the AVZ and destroy all listed ZAPs */
8705 for (zap_cursor_init(&zc, spa->spa_meta_objset,
8706 spa->spa_all_vdev_zaps);
8707 zap_cursor_retrieve(&zc, &za) == 0;
8708 zap_cursor_advance(&zc)) {
8709 uint64_t zap = za.za_first_integer;
8710 VERIFY0(zap_destroy(spa->spa_meta_objset, zap, tx));
8711 }
8712
8713 zap_cursor_fini(&zc);
8714
8715 /* Destroy and unlink the AVZ itself */
8716 VERIFY0(zap_destroy(spa->spa_meta_objset,
8717 spa->spa_all_vdev_zaps, tx));
8718 VERIFY0(zap_remove(spa->spa_meta_objset,
8719 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP, tx));
8720 spa->spa_all_vdev_zaps = 0;
8721 }
8722
8723 if (spa->spa_all_vdev_zaps == 0) {
8724 spa->spa_all_vdev_zaps = zap_create_link(spa->spa_meta_objset,
8725 DMU_OTN_ZAP_METADATA, DMU_POOL_DIRECTORY_OBJECT,
8726 DMU_POOL_VDEV_ZAP_MAP, tx);
8727 }
8728 spa->spa_avz_action = AVZ_ACTION_NONE;
8729
8730 /* Create ZAPs for vdevs that don't have them. */
8731 vdev_construct_zaps(spa->spa_root_vdev, tx);
8732
8733 config = spa_config_generate(spa, spa->spa_root_vdev,
8734 dmu_tx_get_txg(tx), B_FALSE);
8735
8736 /*
8737 * If we're upgrading the spa version then make sure that
8738 * the config object gets updated with the correct version.
8739 */
8740 if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version)
8741 fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
8742 spa->spa_uberblock.ub_version);
8743
8744 spa_config_exit(spa, SCL_STATE, FTAG);
8745
8746 nvlist_free(spa->spa_config_syncing);
8747 spa->spa_config_syncing = config;
8748
8749 spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
8750 }
8751
8752 static void
8753 spa_sync_version(void *arg, dmu_tx_t *tx)
8754 {
8755 uint64_t *versionp = arg;
8756 uint64_t version = *versionp;
8757 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
8758
8759 /*
8760 * Setting the version is special cased when first creating the pool.
8761 */
8762 ASSERT(tx->tx_txg != TXG_INITIAL);
8763
8764 ASSERT(SPA_VERSION_IS_SUPPORTED(version));
8765 ASSERT(version >= spa_version(spa));
8766
8767 spa->spa_uberblock.ub_version = version;
8768 vdev_config_dirty(spa->spa_root_vdev);
8769 spa_history_log_internal(spa, "set", tx, "version=%lld",
8770 (longlong_t)version);
8771 }
8772
8773 /*
8774 * Set zpool properties.
8775 */
8776 static void
8777 spa_sync_props(void *arg, dmu_tx_t *tx)
8778 {
8779 nvlist_t *nvp = arg;
8780 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
8781 objset_t *mos = spa->spa_meta_objset;
8782 nvpair_t *elem = NULL;
8783
8784 mutex_enter(&spa->spa_props_lock);
8785
8786 while ((elem = nvlist_next_nvpair(nvp, elem))) {
8787 uint64_t intval;
8788 const char *strval, *fname;
8789 zpool_prop_t prop;
8790 const char *propname;
8791 zprop_type_t proptype;
8792 spa_feature_t fid;
8793
8794 switch (prop = zpool_name_to_prop(nvpair_name(elem))) {
8795 case ZPOOL_PROP_INVAL:
8796 /*
8797 * We checked this earlier in spa_prop_validate().
8798 */
8799 ASSERT(zpool_prop_feature(nvpair_name(elem)));
8800
8801 fname = strchr(nvpair_name(elem), '@') + 1;
8802 VERIFY0(zfeature_lookup_name(fname, &fid));
8803
8804 spa_feature_enable(spa, fid, tx);
8805 spa_history_log_internal(spa, "set", tx,
8806 "%s=enabled", nvpair_name(elem));
8807 break;
8808
8809 case ZPOOL_PROP_VERSION:
8810 intval = fnvpair_value_uint64(elem);
8811 /*
8812 * The version is synced separately before other
8813 * properties and should be correct by now.
8814 */
8815 ASSERT3U(spa_version(spa), >=, intval);
8816 break;
8817
8818 case ZPOOL_PROP_ALTROOT:
8819 /*
8820 * 'altroot' is a non-persistent property. It should
8821 * have been set temporarily at creation or import time.
8822 */
8823 ASSERT(spa->spa_root != NULL);
8824 break;
8825
8826 case ZPOOL_PROP_READONLY:
8827 case ZPOOL_PROP_CACHEFILE:
8828 /*
8829 * 'readonly' and 'cachefile' are also non-persistent
8830 * properties.
8831 */
8832 break;
8833 case ZPOOL_PROP_COMMENT:
8834 strval = fnvpair_value_string(elem);
8835 if (spa->spa_comment != NULL)
8836 spa_strfree(spa->spa_comment);
8837 spa->spa_comment = spa_strdup(strval);
8838 /*
8839 * We need to dirty the configuration on all the vdevs
8840 * so that their labels get updated. We also need to
8841 * update the cache file to keep it in sync with the
8842 * MOS version. It's unnecessary to do this for pool
8843 * creation since the vdev's configuration has already
8844 * been dirtied.
8845 */
8846 if (tx->tx_txg != TXG_INITIAL) {
8847 vdev_config_dirty(spa->spa_root_vdev);
8848 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
8849 }
8850 spa_history_log_internal(spa, "set", tx,
8851 "%s=%s", nvpair_name(elem), strval);
8852 break;
8853 case ZPOOL_PROP_COMPATIBILITY:
8854 strval = fnvpair_value_string(elem);
8855 if (spa->spa_compatibility != NULL)
8856 spa_strfree(spa->spa_compatibility);
8857 spa->spa_compatibility = spa_strdup(strval);
8858 /*
8859 * Dirty the configuration on vdevs as above.
8860 */
8861 if (tx->tx_txg != TXG_INITIAL) {
8862 vdev_config_dirty(spa->spa_root_vdev);
8863 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
8864 }
8865
8866 spa_history_log_internal(spa, "set", tx,
8867 "%s=%s", nvpair_name(elem), strval);
8868 break;
8869
8870 default:
8871 /*
8872 * Set pool property values in the poolprops mos object.
8873 */
8874 if (spa->spa_pool_props_object == 0) {
8875 spa->spa_pool_props_object =
8876 zap_create_link(mos, DMU_OT_POOL_PROPS,
8877 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
8878 tx);
8879 }
8880
8881 /* normalize the property name */
8882 propname = zpool_prop_to_name(prop);
8883 proptype = zpool_prop_get_type(prop);
8884
8885 if (nvpair_type(elem) == DATA_TYPE_STRING) {
8886 ASSERT(proptype == PROP_TYPE_STRING);
8887 strval = fnvpair_value_string(elem);
8888 VERIFY0(zap_update(mos,
8889 spa->spa_pool_props_object, propname,
8890 1, strlen(strval) + 1, strval, tx));
8891 spa_history_log_internal(spa, "set", tx,
8892 "%s=%s", nvpair_name(elem), strval);
8893 } else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
8894 intval = fnvpair_value_uint64(elem);
8895
8896 if (proptype == PROP_TYPE_INDEX) {
8897 const char *unused;
8898 VERIFY0(zpool_prop_index_to_string(
8899 prop, intval, &unused));
8900 }
8901 VERIFY0(zap_update(mos,
8902 spa->spa_pool_props_object, propname,
8903 8, 1, &intval, tx));
8904 spa_history_log_internal(spa, "set", tx,
8905 "%s=%lld", nvpair_name(elem),
8906 (longlong_t)intval);
8907
8908 switch (prop) {
8909 case ZPOOL_PROP_DELEGATION:
8910 spa->spa_delegation = intval;
8911 break;
8912 case ZPOOL_PROP_BOOTFS:
8913 spa->spa_bootfs = intval;
8914 break;
8915 case ZPOOL_PROP_FAILUREMODE:
8916 spa->spa_failmode = intval;
8917 break;
8918 case ZPOOL_PROP_AUTOTRIM:
8919 spa->spa_autotrim = intval;
8920 spa_async_request(spa,
8921 SPA_ASYNC_AUTOTRIM_RESTART);
8922 break;
8923 case ZPOOL_PROP_AUTOEXPAND:
8924 spa->spa_autoexpand = intval;
8925 if (tx->tx_txg != TXG_INITIAL)
8926 spa_async_request(spa,
8927 SPA_ASYNC_AUTOEXPAND);
8928 break;
8929 case ZPOOL_PROP_MULTIHOST:
8930 spa->spa_multihost = intval;
8931 break;
8932 default:
8933 break;
8934 }
8935 } else {
8936 ASSERT(0); /* not allowed */
8937 }
8938 }
8939
8940 }
8941
8942 mutex_exit(&spa->spa_props_lock);
8943 }
8944
8945 /*
8946 * Perform one-time upgrade on-disk changes. spa_version() does not
8947 * reflect the new version this txg, so there must be no changes this
8948 * txg to anything that the upgrade code depends on after it executes.
8949 * Therefore this must be called after dsl_pool_sync() does the sync
8950 * tasks.
8951 */
8952 static void
8953 spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx)
8954 {
8955 if (spa_sync_pass(spa) != 1)
8956 return;
8957
8958 dsl_pool_t *dp = spa->spa_dsl_pool;
8959 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
8960
8961 if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
8962 spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
8963 dsl_pool_create_origin(dp, tx);
8964
8965 /* Keeping the origin open increases spa_minref */
8966 spa->spa_minref += 3;
8967 }
8968
8969 if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
8970 spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
8971 dsl_pool_upgrade_clones(dp, tx);
8972 }
8973
8974 if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES &&
8975 spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) {
8976 dsl_pool_upgrade_dir_clones(dp, tx);
8977
8978 /* Keeping the freedir open increases spa_minref */
8979 spa->spa_minref += 3;
8980 }
8981
8982 if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES &&
8983 spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
8984 spa_feature_create_zap_objects(spa, tx);
8985 }
8986
8987 /*
8988 * LZ4_COMPRESS feature's behaviour was changed to activate_on_enable
8989 * when possibility to use lz4 compression for metadata was added
8990 * Old pools that have this feature enabled must be upgraded to have
8991 * this feature active
8992 */
8993 if (spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
8994 boolean_t lz4_en = spa_feature_is_enabled(spa,
8995 SPA_FEATURE_LZ4_COMPRESS);
8996 boolean_t lz4_ac = spa_feature_is_active(spa,
8997 SPA_FEATURE_LZ4_COMPRESS);
8998
8999 if (lz4_en && !lz4_ac)
9000 spa_feature_incr(spa, SPA_FEATURE_LZ4_COMPRESS, tx);
9001 }
9002
9003 /*
9004 * If we haven't written the salt, do so now. Note that the
9005 * feature may not be activated yet, but that's fine since
9006 * the presence of this ZAP entry is backwards compatible.
9007 */
9008 if (zap_contains(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
9009 DMU_POOL_CHECKSUM_SALT) == ENOENT) {
9010 VERIFY0(zap_add(spa->spa_meta_objset,
9011 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CHECKSUM_SALT, 1,
9012 sizeof (spa->spa_cksum_salt.zcs_bytes),
9013 spa->spa_cksum_salt.zcs_bytes, tx));
9014 }
9015
9016 rrw_exit(&dp->dp_config_rwlock, FTAG);
9017 }
9018
9019 static void
9020 vdev_indirect_state_sync_verify(vdev_t *vd)
9021 {
9022 vdev_indirect_mapping_t *vim __maybe_unused = vd->vdev_indirect_mapping;
9023 vdev_indirect_births_t *vib __maybe_unused = vd->vdev_indirect_births;
9024
9025 if (vd->vdev_ops == &vdev_indirect_ops) {
9026 ASSERT(vim != NULL);
9027 ASSERT(vib != NULL);
9028 }
9029
9030 uint64_t obsolete_sm_object = 0;
9031 ASSERT0(vdev_obsolete_sm_object(vd, &obsolete_sm_object));
9032 if (obsolete_sm_object != 0) {
9033 ASSERT(vd->vdev_obsolete_sm != NULL);
9034 ASSERT(vd->vdev_removing ||
9035 vd->vdev_ops == &vdev_indirect_ops);
9036 ASSERT(vdev_indirect_mapping_num_entries(vim) > 0);
9037 ASSERT(vdev_indirect_mapping_bytes_mapped(vim) > 0);
9038 ASSERT3U(obsolete_sm_object, ==,
9039 space_map_object(vd->vdev_obsolete_sm));
9040 ASSERT3U(vdev_indirect_mapping_bytes_mapped(vim), >=,
9041 space_map_allocated(vd->vdev_obsolete_sm));
9042 }
9043 ASSERT(vd->vdev_obsolete_segments != NULL);
9044
9045 /*
9046 * Since frees / remaps to an indirect vdev can only
9047 * happen in syncing context, the obsolete segments
9048 * tree must be empty when we start syncing.
9049 */
9050 ASSERT0(range_tree_space(vd->vdev_obsolete_segments));
9051 }
9052
9053 /*
9054 * Set the top-level vdev's max queue depth. Evaluate each top-level's
9055 * async write queue depth in case it changed. The max queue depth will
9056 * not change in the middle of syncing out this txg.
9057 */
9058 static void
9059 spa_sync_adjust_vdev_max_queue_depth(spa_t *spa)
9060 {
9061 ASSERT(spa_writeable(spa));
9062
9063 vdev_t *rvd = spa->spa_root_vdev;
9064 uint32_t max_queue_depth = zfs_vdev_async_write_max_active *
9065 zfs_vdev_queue_depth_pct / 100;
9066 metaslab_class_t *normal = spa_normal_class(spa);
9067 metaslab_class_t *special = spa_special_class(spa);
9068 metaslab_class_t *dedup = spa_dedup_class(spa);
9069
9070 uint64_t slots_per_allocator = 0;
9071 for (int c = 0; c < rvd->vdev_children; c++) {
9072 vdev_t *tvd = rvd->vdev_child[c];
9073
9074 metaslab_group_t *mg = tvd->vdev_mg;
9075 if (mg == NULL || !metaslab_group_initialized(mg))
9076 continue;
9077
9078 metaslab_class_t *mc = mg->mg_class;
9079 if (mc != normal && mc != special && mc != dedup)
9080 continue;
9081
9082 /*
9083 * It is safe to do a lock-free check here because only async
9084 * allocations look at mg_max_alloc_queue_depth, and async
9085 * allocations all happen from spa_sync().
9086 */
9087 for (int i = 0; i < mg->mg_allocators; i++) {
9088 ASSERT0(zfs_refcount_count(
9089 &(mg->mg_allocator[i].mga_alloc_queue_depth)));
9090 }
9091 mg->mg_max_alloc_queue_depth = max_queue_depth;
9092
9093 for (int i = 0; i < mg->mg_allocators; i++) {
9094 mg->mg_allocator[i].mga_cur_max_alloc_queue_depth =
9095 zfs_vdev_def_queue_depth;
9096 }
9097 slots_per_allocator += zfs_vdev_def_queue_depth;
9098 }
9099
9100 for (int i = 0; i < spa->spa_alloc_count; i++) {
9101 ASSERT0(zfs_refcount_count(&normal->mc_allocator[i].
9102 mca_alloc_slots));
9103 ASSERT0(zfs_refcount_count(&special->mc_allocator[i].
9104 mca_alloc_slots));
9105 ASSERT0(zfs_refcount_count(&dedup->mc_allocator[i].
9106 mca_alloc_slots));
9107 normal->mc_allocator[i].mca_alloc_max_slots =
9108 slots_per_allocator;
9109 special->mc_allocator[i].mca_alloc_max_slots =
9110 slots_per_allocator;
9111 dedup->mc_allocator[i].mca_alloc_max_slots =
9112 slots_per_allocator;
9113 }
9114 normal->mc_alloc_throttle_enabled = zio_dva_throttle_enabled;
9115 special->mc_alloc_throttle_enabled = zio_dva_throttle_enabled;
9116 dedup->mc_alloc_throttle_enabled = zio_dva_throttle_enabled;
9117 }
9118
9119 static void
9120 spa_sync_condense_indirect(spa_t *spa, dmu_tx_t *tx)
9121 {
9122 ASSERT(spa_writeable(spa));
9123
9124 vdev_t *rvd = spa->spa_root_vdev;
9125 for (int c = 0; c < rvd->vdev_children; c++) {
9126 vdev_t *vd = rvd->vdev_child[c];
9127 vdev_indirect_state_sync_verify(vd);
9128
9129 if (vdev_indirect_should_condense(vd)) {
9130 spa_condense_indirect_start_sync(vd, tx);
9131 break;
9132 }
9133 }
9134 }
9135
9136 static void
9137 spa_sync_iterate_to_convergence(spa_t *spa, dmu_tx_t *tx)
9138 {
9139 objset_t *mos = spa->spa_meta_objset;
9140 dsl_pool_t *dp = spa->spa_dsl_pool;
9141 uint64_t txg = tx->tx_txg;
9142 bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK];
9143
9144 do {
9145 int pass = ++spa->spa_sync_pass;
9146
9147 spa_sync_config_object(spa, tx);
9148 spa_sync_aux_dev(spa, &spa->spa_spares, tx,
9149 ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
9150 spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
9151 ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
9152 spa_errlog_sync(spa, txg);
9153 dsl_pool_sync(dp, txg);
9154
9155 if (pass < zfs_sync_pass_deferred_free ||
9156 spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) {
9157 /*
9158 * If the log space map feature is active we don't
9159 * care about deferred frees and the deferred bpobj
9160 * as the log space map should effectively have the
9161 * same results (i.e. appending only to one object).
9162 */
9163 spa_sync_frees(spa, free_bpl, tx);
9164 } else {
9165 /*
9166 * We can not defer frees in pass 1, because
9167 * we sync the deferred frees later in pass 1.
9168 */
9169 ASSERT3U(pass, >, 1);
9170 bplist_iterate(free_bpl, bpobj_enqueue_alloc_cb,
9171 &spa->spa_deferred_bpobj, tx);
9172 }
9173
9174 brt_sync(spa, txg);
9175 ddt_sync(spa, txg);
9176 dsl_scan_sync(dp, tx);
9177 svr_sync(spa, tx);
9178 spa_sync_upgrades(spa, tx);
9179
9180 spa_flush_metaslabs(spa, tx);
9181
9182 vdev_t *vd = NULL;
9183 while ((vd = txg_list_remove(&spa->spa_vdev_txg_list, txg))
9184 != NULL)
9185 vdev_sync(vd, txg);
9186
9187 /*
9188 * Note: We need to check if the MOS is dirty because we could
9189 * have marked the MOS dirty without updating the uberblock
9190 * (e.g. if we have sync tasks but no dirty user data). We need
9191 * to check the uberblock's rootbp because it is updated if we
9192 * have synced out dirty data (though in this case the MOS will
9193 * most likely also be dirty due to second order effects, we
9194 * don't want to rely on that here).
9195 */
9196 if (pass == 1 &&
9197 spa->spa_uberblock.ub_rootbp.blk_birth < txg &&
9198 !dmu_objset_is_dirty(mos, txg)) {
9199 /*
9200 * Nothing changed on the first pass, therefore this
9201 * TXG is a no-op. Avoid syncing deferred frees, so
9202 * that we can keep this TXG as a no-op.
9203 */
9204 ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
9205 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
9206 ASSERT(txg_list_empty(&dp->dp_sync_tasks, txg));
9207 ASSERT(txg_list_empty(&dp->dp_early_sync_tasks, txg));
9208 break;
9209 }
9210
9211 spa_sync_deferred_frees(spa, tx);
9212 } while (dmu_objset_is_dirty(mos, txg));
9213 }
9214
9215 /*
9216 * Rewrite the vdev configuration (which includes the uberblock) to
9217 * commit the transaction group.
9218 *
9219 * If there are no dirty vdevs, we sync the uberblock to a few random
9220 * top-level vdevs that are known to be visible in the config cache
9221 * (see spa_vdev_add() for a complete description). If there *are* dirty
9222 * vdevs, sync the uberblock to all vdevs.
9223 */
9224 static void
9225 spa_sync_rewrite_vdev_config(spa_t *spa, dmu_tx_t *tx)
9226 {
9227 vdev_t *rvd = spa->spa_root_vdev;
9228 uint64_t txg = tx->tx_txg;
9229
9230 for (;;) {
9231 int error = 0;
9232
9233 /*
9234 * We hold SCL_STATE to prevent vdev open/close/etc.
9235 * while we're attempting to write the vdev labels.
9236 */
9237 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
9238
9239 if (list_is_empty(&spa->spa_config_dirty_list)) {
9240 vdev_t *svd[SPA_SYNC_MIN_VDEVS] = { NULL };
9241 int svdcount = 0;
9242 int children = rvd->vdev_children;
9243 int c0 = random_in_range(children);
9244
9245 for (int c = 0; c < children; c++) {
9246 vdev_t *vd =
9247 rvd->vdev_child[(c0 + c) % children];
9248
9249 /* Stop when revisiting the first vdev */
9250 if (c > 0 && svd[0] == vd)
9251 break;
9252
9253 if (vd->vdev_ms_array == 0 ||
9254 vd->vdev_islog ||
9255 !vdev_is_concrete(vd))
9256 continue;
9257
9258 svd[svdcount++] = vd;
9259 if (svdcount == SPA_SYNC_MIN_VDEVS)
9260 break;
9261 }
9262 error = vdev_config_sync(svd, svdcount, txg);
9263 } else {
9264 error = vdev_config_sync(rvd->vdev_child,
9265 rvd->vdev_children, txg);
9266 }
9267
9268 if (error == 0)
9269 spa->spa_last_synced_guid = rvd->vdev_guid;
9270
9271 spa_config_exit(spa, SCL_STATE, FTAG);
9272
9273 if (error == 0)
9274 break;
9275 zio_suspend(spa, NULL, ZIO_SUSPEND_IOERR);
9276 zio_resume_wait(spa);
9277 }
9278 }
9279
9280 /*
9281 * Sync the specified transaction group. New blocks may be dirtied as
9282 * part of the process, so we iterate until it converges.
9283 */
9284 void
9285 spa_sync(spa_t *spa, uint64_t txg)
9286 {
9287 vdev_t *vd = NULL;
9288
9289 VERIFY(spa_writeable(spa));
9290
9291 /*
9292 * Wait for i/os issued in open context that need to complete
9293 * before this txg syncs.
9294 */
9295 (void) zio_wait(spa->spa_txg_zio[txg & TXG_MASK]);
9296 spa->spa_txg_zio[txg & TXG_MASK] = zio_root(spa, NULL, NULL,
9297 ZIO_FLAG_CANFAIL);
9298
9299 /*
9300 * Now that there can be no more cloning in this transaction group,
9301 * but we are still before issuing frees, we can process pending BRT
9302 * updates.
9303 */
9304 brt_pending_apply(spa, txg);
9305
9306 /*
9307 * Lock out configuration changes.
9308 */
9309 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
9310
9311 spa->spa_syncing_txg = txg;
9312 spa->spa_sync_pass = 0;
9313
9314 for (int i = 0; i < spa->spa_alloc_count; i++) {
9315 mutex_enter(&spa->spa_allocs[i].spaa_lock);
9316 VERIFY0(avl_numnodes(&spa->spa_allocs[i].spaa_tree));
9317 mutex_exit(&spa->spa_allocs[i].spaa_lock);
9318 }
9319
9320 /*
9321 * If there are any pending vdev state changes, convert them
9322 * into config changes that go out with this transaction group.
9323 */
9324 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
9325 while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
9326 /* Avoid holding the write lock unless actually necessary */
9327 if (vd->vdev_aux == NULL) {
9328 vdev_state_clean(vd);
9329 vdev_config_dirty(vd);
9330 continue;
9331 }
9332 /*
9333 * We need the write lock here because, for aux vdevs,
9334 * calling vdev_config_dirty() modifies sav_config.
9335 * This is ugly and will become unnecessary when we
9336 * eliminate the aux vdev wart by integrating all vdevs
9337 * into the root vdev tree.
9338 */
9339 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
9340 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER);
9341 while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
9342 vdev_state_clean(vd);
9343 vdev_config_dirty(vd);
9344 }
9345 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
9346 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
9347 }
9348 spa_config_exit(spa, SCL_STATE, FTAG);
9349
9350 dsl_pool_t *dp = spa->spa_dsl_pool;
9351 dmu_tx_t *tx = dmu_tx_create_assigned(dp, txg);
9352
9353 spa->spa_sync_starttime = gethrtime();
9354 taskq_cancel_id(system_delay_taskq, spa->spa_deadman_tqid);
9355 spa->spa_deadman_tqid = taskq_dispatch_delay(system_delay_taskq,
9356 spa_deadman, spa, TQ_SLEEP, ddi_get_lbolt() +
9357 NSEC_TO_TICK(spa->spa_deadman_synctime));
9358
9359 /*
9360 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
9361 * set spa_deflate if we have no raid-z vdevs.
9362 */
9363 if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
9364 spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
9365 vdev_t *rvd = spa->spa_root_vdev;
9366
9367 int i;
9368 for (i = 0; i < rvd->vdev_children; i++) {
9369 vd = rvd->vdev_child[i];
9370 if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
9371 break;
9372 }
9373 if (i == rvd->vdev_children) {
9374 spa->spa_deflate = TRUE;
9375 VERIFY0(zap_add(spa->spa_meta_objset,
9376 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
9377 sizeof (uint64_t), 1, &spa->spa_deflate, tx));
9378 }
9379 }
9380
9381 spa_sync_adjust_vdev_max_queue_depth(spa);
9382
9383 spa_sync_condense_indirect(spa, tx);
9384
9385 spa_sync_iterate_to_convergence(spa, tx);
9386
9387 #ifdef ZFS_DEBUG
9388 if (!list_is_empty(&spa->spa_config_dirty_list)) {
9389 /*
9390 * Make sure that the number of ZAPs for all the vdevs matches
9391 * the number of ZAPs in the per-vdev ZAP list. This only gets
9392 * called if the config is dirty; otherwise there may be
9393 * outstanding AVZ operations that weren't completed in
9394 * spa_sync_config_object.
9395 */
9396 uint64_t all_vdev_zap_entry_count;
9397 ASSERT0(zap_count(spa->spa_meta_objset,
9398 spa->spa_all_vdev_zaps, &all_vdev_zap_entry_count));
9399 ASSERT3U(vdev_count_verify_zaps(spa->spa_root_vdev), ==,
9400 all_vdev_zap_entry_count);
9401 }
9402 #endif
9403
9404 if (spa->spa_vdev_removal != NULL) {
9405 ASSERT0(spa->spa_vdev_removal->svr_bytes_done[txg & TXG_MASK]);
9406 }
9407
9408 spa_sync_rewrite_vdev_config(spa, tx);
9409 dmu_tx_commit(tx);
9410
9411 taskq_cancel_id(system_delay_taskq, spa->spa_deadman_tqid);
9412 spa->spa_deadman_tqid = 0;
9413
9414 /*
9415 * Clear the dirty config list.
9416 */
9417 while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL)
9418 vdev_config_clean(vd);
9419
9420 /*
9421 * Now that the new config has synced transactionally,
9422 * let it become visible to the config cache.
9423 */
9424 if (spa->spa_config_syncing != NULL) {
9425 spa_config_set(spa, spa->spa_config_syncing);
9426 spa->spa_config_txg = txg;
9427 spa->spa_config_syncing = NULL;
9428 }
9429
9430 dsl_pool_sync_done(dp, txg);
9431
9432 for (int i = 0; i < spa->spa_alloc_count; i++) {
9433 mutex_enter(&spa->spa_allocs[i].spaa_lock);
9434 VERIFY0(avl_numnodes(&spa->spa_allocs[i].spaa_tree));
9435 mutex_exit(&spa->spa_allocs[i].spaa_lock);
9436 }
9437
9438 /*
9439 * Update usable space statistics.
9440 */
9441 while ((vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
9442 != NULL)
9443 vdev_sync_done(vd, txg);
9444
9445 metaslab_class_evict_old(spa->spa_normal_class, txg);
9446 metaslab_class_evict_old(spa->spa_log_class, txg);
9447
9448 spa_sync_close_syncing_log_sm(spa);
9449
9450 spa_update_dspace(spa);
9451
9452 /*
9453 * It had better be the case that we didn't dirty anything
9454 * since vdev_config_sync().
9455 */
9456 ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
9457 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
9458 ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
9459
9460 while (zfs_pause_spa_sync)
9461 delay(1);
9462
9463 spa->spa_sync_pass = 0;
9464
9465 /*
9466 * Update the last synced uberblock here. We want to do this at
9467 * the end of spa_sync() so that consumers of spa_last_synced_txg()
9468 * will be guaranteed that all the processing associated with
9469 * that txg has been completed.
9470 */
9471 spa->spa_ubsync = spa->spa_uberblock;
9472 spa_config_exit(spa, SCL_CONFIG, FTAG);
9473
9474 spa_handle_ignored_writes(spa);
9475
9476 /*
9477 * If any async tasks have been requested, kick them off.
9478 */
9479 spa_async_dispatch(spa);
9480 }
9481
9482 /*
9483 * Sync all pools. We don't want to hold the namespace lock across these
9484 * operations, so we take a reference on the spa_t and drop the lock during the
9485 * sync.
9486 */
9487 void
9488 spa_sync_allpools(void)
9489 {
9490 spa_t *spa = NULL;
9491 mutex_enter(&spa_namespace_lock);
9492 while ((spa = spa_next(spa)) != NULL) {
9493 if (spa_state(spa) != POOL_STATE_ACTIVE ||
9494 !spa_writeable(spa) || spa_suspended(spa))
9495 continue;
9496 spa_open_ref(spa, FTAG);
9497 mutex_exit(&spa_namespace_lock);
9498 txg_wait_synced(spa_get_dsl(spa), 0);
9499 mutex_enter(&spa_namespace_lock);
9500 spa_close(spa, FTAG);
9501 }
9502 mutex_exit(&spa_namespace_lock);
9503 }
9504
9505 /*
9506 * ==========================================================================
9507 * Miscellaneous routines
9508 * ==========================================================================
9509 */
9510
9511 /*
9512 * Remove all pools in the system.
9513 */
9514 void
9515 spa_evict_all(void)
9516 {
9517 spa_t *spa;
9518
9519 /*
9520 * Remove all cached state. All pools should be closed now,
9521 * so every spa in the AVL tree should be unreferenced.
9522 */
9523 mutex_enter(&spa_namespace_lock);
9524 while ((spa = spa_next(NULL)) != NULL) {
9525 /*
9526 * Stop async tasks. The async thread may need to detach
9527 * a device that's been replaced, which requires grabbing
9528 * spa_namespace_lock, so we must drop it here.
9529 */
9530 spa_open_ref(spa, FTAG);
9531 mutex_exit(&spa_namespace_lock);
9532 spa_async_suspend(spa);
9533 mutex_enter(&spa_namespace_lock);
9534 spa_close(spa, FTAG);
9535
9536 if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
9537 spa_unload(spa);
9538 spa_deactivate(spa);
9539 }
9540 spa_remove(spa);
9541 }
9542 mutex_exit(&spa_namespace_lock);
9543 }
9544
9545 vdev_t *
9546 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux)
9547 {
9548 vdev_t *vd;
9549 int i;
9550
9551 if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
9552 return (vd);
9553
9554 if (aux) {
9555 for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
9556 vd = spa->spa_l2cache.sav_vdevs[i];
9557 if (vd->vdev_guid == guid)
9558 return (vd);
9559 }
9560
9561 for (i = 0; i < spa->spa_spares.sav_count; i++) {
9562 vd = spa->spa_spares.sav_vdevs[i];
9563 if (vd->vdev_guid == guid)
9564 return (vd);
9565 }
9566 }
9567
9568 return (NULL);
9569 }
9570
9571 void
9572 spa_upgrade(spa_t *spa, uint64_t version)
9573 {
9574 ASSERT(spa_writeable(spa));
9575
9576 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
9577
9578 /*
9579 * This should only be called for a non-faulted pool, and since a
9580 * future version would result in an unopenable pool, this shouldn't be
9581 * possible.
9582 */
9583 ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version));
9584 ASSERT3U(version, >=, spa->spa_uberblock.ub_version);
9585
9586 spa->spa_uberblock.ub_version = version;
9587 vdev_config_dirty(spa->spa_root_vdev);
9588
9589 spa_config_exit(spa, SCL_ALL, FTAG);
9590
9591 txg_wait_synced(spa_get_dsl(spa), 0);
9592 }
9593
9594 static boolean_t
9595 spa_has_aux_vdev(spa_t *spa, uint64_t guid, spa_aux_vdev_t *sav)
9596 {
9597 (void) spa;
9598 int i;
9599 uint64_t vdev_guid;
9600
9601 for (i = 0; i < sav->sav_count; i++)
9602 if (sav->sav_vdevs[i]->vdev_guid == guid)
9603 return (B_TRUE);
9604
9605 for (i = 0; i < sav->sav_npending; i++) {
9606 if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
9607 &vdev_guid) == 0 && vdev_guid == guid)
9608 return (B_TRUE);
9609 }
9610
9611 return (B_FALSE);
9612 }
9613
9614 boolean_t
9615 spa_has_l2cache(spa_t *spa, uint64_t guid)
9616 {
9617 return (spa_has_aux_vdev(spa, guid, &spa->spa_l2cache));
9618 }
9619
9620 boolean_t
9621 spa_has_spare(spa_t *spa, uint64_t guid)
9622 {
9623 return (spa_has_aux_vdev(spa, guid, &spa->spa_spares));
9624 }
9625
9626 /*
9627 * Check if a pool has an active shared spare device.
9628 * Note: reference count of an active spare is 2, as a spare and as a replace
9629 */
9630 static boolean_t
9631 spa_has_active_shared_spare(spa_t *spa)
9632 {
9633 int i, refcnt;
9634 uint64_t pool;
9635 spa_aux_vdev_t *sav = &spa->spa_spares;
9636
9637 for (i = 0; i < sav->sav_count; i++) {
9638 if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
9639 &refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
9640 refcnt > 2)
9641 return (B_TRUE);
9642 }
9643
9644 return (B_FALSE);
9645 }
9646
9647 uint64_t
9648 spa_total_metaslabs(spa_t *spa)
9649 {
9650 vdev_t *rvd = spa->spa_root_vdev;
9651
9652 uint64_t m = 0;
9653 for (uint64_t c = 0; c < rvd->vdev_children; c++) {
9654 vdev_t *vd = rvd->vdev_child[c];
9655 if (!vdev_is_concrete(vd))
9656 continue;
9657 m += vd->vdev_ms_count;
9658 }
9659 return (m);
9660 }
9661
9662 /*
9663 * Notify any waiting threads that some activity has switched from being in-
9664 * progress to not-in-progress so that the thread can wake up and determine
9665 * whether it is finished waiting.
9666 */
9667 void
9668 spa_notify_waiters(spa_t *spa)
9669 {
9670 /*
9671 * Acquiring spa_activities_lock here prevents the cv_broadcast from
9672 * happening between the waiting thread's check and cv_wait.
9673 */
9674 mutex_enter(&spa->spa_activities_lock);
9675 cv_broadcast(&spa->spa_activities_cv);
9676 mutex_exit(&spa->spa_activities_lock);
9677 }
9678
9679 /*
9680 * Notify any waiting threads that the pool is exporting, and then block until
9681 * they are finished using the spa_t.
9682 */
9683 void
9684 spa_wake_waiters(spa_t *spa)
9685 {
9686 mutex_enter(&spa->spa_activities_lock);
9687 spa->spa_waiters_cancel = B_TRUE;
9688 cv_broadcast(&spa->spa_activities_cv);
9689 while (spa->spa_waiters != 0)
9690 cv_wait(&spa->spa_waiters_cv, &spa->spa_activities_lock);
9691 spa->spa_waiters_cancel = B_FALSE;
9692 mutex_exit(&spa->spa_activities_lock);
9693 }
9694
9695 /* Whether the vdev or any of its descendants are being initialized/trimmed. */
9696 static boolean_t
9697 spa_vdev_activity_in_progress_impl(vdev_t *vd, zpool_wait_activity_t activity)
9698 {
9699 spa_t *spa = vd->vdev_spa;
9700
9701 ASSERT(spa_config_held(spa, SCL_CONFIG | SCL_STATE, RW_READER));
9702 ASSERT(MUTEX_HELD(&spa->spa_activities_lock));
9703 ASSERT(activity == ZPOOL_WAIT_INITIALIZE ||
9704 activity == ZPOOL_WAIT_TRIM);
9705
9706 kmutex_t *lock = activity == ZPOOL_WAIT_INITIALIZE ?
9707 &vd->vdev_initialize_lock : &vd->vdev_trim_lock;
9708
9709 mutex_exit(&spa->spa_activities_lock);
9710 mutex_enter(lock);
9711 mutex_enter(&spa->spa_activities_lock);
9712
9713 boolean_t in_progress = (activity == ZPOOL_WAIT_INITIALIZE) ?
9714 (vd->vdev_initialize_state == VDEV_INITIALIZE_ACTIVE) :
9715 (vd->vdev_trim_state == VDEV_TRIM_ACTIVE);
9716 mutex_exit(lock);
9717
9718 if (in_progress)
9719 return (B_TRUE);
9720
9721 for (int i = 0; i < vd->vdev_children; i++) {
9722 if (spa_vdev_activity_in_progress_impl(vd->vdev_child[i],
9723 activity))
9724 return (B_TRUE);
9725 }
9726
9727 return (B_FALSE);
9728 }
9729
9730 /*
9731 * If use_guid is true, this checks whether the vdev specified by guid is
9732 * being initialized/trimmed. Otherwise, it checks whether any vdev in the pool
9733 * is being initialized/trimmed. The caller must hold the config lock and
9734 * spa_activities_lock.
9735 */
9736 static int
9737 spa_vdev_activity_in_progress(spa_t *spa, boolean_t use_guid, uint64_t guid,
9738 zpool_wait_activity_t activity, boolean_t *in_progress)
9739 {
9740 mutex_exit(&spa->spa_activities_lock);
9741 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
9742 mutex_enter(&spa->spa_activities_lock);
9743
9744 vdev_t *vd;
9745 if (use_guid) {
9746 vd = spa_lookup_by_guid(spa, guid, B_FALSE);
9747 if (vd == NULL || !vd->vdev_ops->vdev_op_leaf) {
9748 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
9749 return (EINVAL);
9750 }
9751 } else {
9752 vd = spa->spa_root_vdev;
9753 }
9754
9755 *in_progress = spa_vdev_activity_in_progress_impl(vd, activity);
9756
9757 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
9758 return (0);
9759 }
9760
9761 /*
9762 * Locking for waiting threads
9763 * ---------------------------
9764 *
9765 * Waiting threads need a way to check whether a given activity is in progress,
9766 * and then, if it is, wait for it to complete. Each activity will have some
9767 * in-memory representation of the relevant on-disk state which can be used to
9768 * determine whether or not the activity is in progress. The in-memory state and
9769 * the locking used to protect it will be different for each activity, and may
9770 * not be suitable for use with a cvar (e.g., some state is protected by the
9771 * config lock). To allow waiting threads to wait without any races, another
9772 * lock, spa_activities_lock, is used.
9773 *
9774 * When the state is checked, both the activity-specific lock (if there is one)
9775 * and spa_activities_lock are held. In some cases, the activity-specific lock
9776 * is acquired explicitly (e.g. the config lock). In others, the locking is
9777 * internal to some check (e.g. bpobj_is_empty). After checking, the waiting
9778 * thread releases the activity-specific lock and, if the activity is in
9779 * progress, then cv_waits using spa_activities_lock.
9780 *
9781 * The waiting thread is woken when another thread, one completing some
9782 * activity, updates the state of the activity and then calls
9783 * spa_notify_waiters, which will cv_broadcast. This 'completing' thread only
9784 * needs to hold its activity-specific lock when updating the state, and this
9785 * lock can (but doesn't have to) be dropped before calling spa_notify_waiters.
9786 *
9787 * Because spa_notify_waiters acquires spa_activities_lock before broadcasting,
9788 * and because it is held when the waiting thread checks the state of the
9789 * activity, it can never be the case that the completing thread both updates
9790 * the activity state and cv_broadcasts in between the waiting thread's check
9791 * and cv_wait. Thus, a waiting thread can never miss a wakeup.
9792 *
9793 * In order to prevent deadlock, when the waiting thread does its check, in some
9794 * cases it will temporarily drop spa_activities_lock in order to acquire the
9795 * activity-specific lock. The order in which spa_activities_lock and the
9796 * activity specific lock are acquired in the waiting thread is determined by
9797 * the order in which they are acquired in the completing thread; if the
9798 * completing thread calls spa_notify_waiters with the activity-specific lock
9799 * held, then the waiting thread must also acquire the activity-specific lock
9800 * first.
9801 */
9802
9803 static int
9804 spa_activity_in_progress(spa_t *spa, zpool_wait_activity_t activity,
9805 boolean_t use_tag, uint64_t tag, boolean_t *in_progress)
9806 {
9807 int error = 0;
9808
9809 ASSERT(MUTEX_HELD(&spa->spa_activities_lock));
9810
9811 switch (activity) {
9812 case ZPOOL_WAIT_CKPT_DISCARD:
9813 *in_progress =
9814 (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT) &&
9815 zap_contains(spa_meta_objset(spa),
9816 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_ZPOOL_CHECKPOINT) ==
9817 ENOENT);
9818 break;
9819 case ZPOOL_WAIT_FREE:
9820 *in_progress = ((spa_version(spa) >= SPA_VERSION_DEADLISTS &&
9821 !bpobj_is_empty(&spa->spa_dsl_pool->dp_free_bpobj)) ||
9822 spa_feature_is_active(spa, SPA_FEATURE_ASYNC_DESTROY) ||
9823 spa_livelist_delete_check(spa));
9824 break;
9825 case ZPOOL_WAIT_INITIALIZE:
9826 case ZPOOL_WAIT_TRIM:
9827 error = spa_vdev_activity_in_progress(spa, use_tag, tag,
9828 activity, in_progress);
9829 break;
9830 case ZPOOL_WAIT_REPLACE:
9831 mutex_exit(&spa->spa_activities_lock);
9832 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
9833 mutex_enter(&spa->spa_activities_lock);
9834
9835 *in_progress = vdev_replace_in_progress(spa->spa_root_vdev);
9836 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
9837 break;
9838 case ZPOOL_WAIT_REMOVE:
9839 *in_progress = (spa->spa_removing_phys.sr_state ==
9840 DSS_SCANNING);
9841 break;
9842 case ZPOOL_WAIT_RESILVER:
9843 if ((*in_progress = vdev_rebuild_active(spa->spa_root_vdev)))
9844 break;
9845 zfs_fallthrough;
9846 case ZPOOL_WAIT_SCRUB:
9847 {
9848 boolean_t scanning, paused, is_scrub;
9849 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
9850
9851 is_scrub = (scn->scn_phys.scn_func == POOL_SCAN_SCRUB);
9852 scanning = (scn->scn_phys.scn_state == DSS_SCANNING);
9853 paused = dsl_scan_is_paused_scrub(scn);
9854 *in_progress = (scanning && !paused &&
9855 is_scrub == (activity == ZPOOL_WAIT_SCRUB));
9856 break;
9857 }
9858 default:
9859 panic("unrecognized value for activity %d", activity);
9860 }
9861
9862 return (error);
9863 }
9864
9865 static int
9866 spa_wait_common(const char *pool, zpool_wait_activity_t activity,
9867 boolean_t use_tag, uint64_t tag, boolean_t *waited)
9868 {
9869 /*
9870 * The tag is used to distinguish between instances of an activity.
9871 * 'initialize' and 'trim' are the only activities that we use this for.
9872 * The other activities can only have a single instance in progress in a
9873 * pool at one time, making the tag unnecessary.
9874 *
9875 * There can be multiple devices being replaced at once, but since they
9876 * all finish once resilvering finishes, we don't bother keeping track
9877 * of them individually, we just wait for them all to finish.
9878 */
9879 if (use_tag && activity != ZPOOL_WAIT_INITIALIZE &&
9880 activity != ZPOOL_WAIT_TRIM)
9881 return (EINVAL);
9882
9883 if (activity < 0 || activity >= ZPOOL_WAIT_NUM_ACTIVITIES)
9884 return (EINVAL);
9885
9886 spa_t *spa;
9887 int error = spa_open(pool, &spa, FTAG);
9888 if (error != 0)
9889 return (error);
9890
9891 /*
9892 * Increment the spa's waiter count so that we can call spa_close and
9893 * still ensure that the spa_t doesn't get freed before this thread is
9894 * finished with it when the pool is exported. We want to call spa_close
9895 * before we start waiting because otherwise the additional ref would
9896 * prevent the pool from being exported or destroyed throughout the
9897 * potentially long wait.
9898 */
9899 mutex_enter(&spa->spa_activities_lock);
9900 spa->spa_waiters++;
9901 spa_close(spa, FTAG);
9902
9903 *waited = B_FALSE;
9904 for (;;) {
9905 boolean_t in_progress;
9906 error = spa_activity_in_progress(spa, activity, use_tag, tag,
9907 &in_progress);
9908
9909 if (error || !in_progress || spa->spa_waiters_cancel)
9910 break;
9911
9912 *waited = B_TRUE;
9913
9914 if (cv_wait_sig(&spa->spa_activities_cv,
9915 &spa->spa_activities_lock) == 0) {
9916 error = EINTR;
9917 break;
9918 }
9919 }
9920
9921 spa->spa_waiters--;
9922 cv_signal(&spa->spa_waiters_cv);
9923 mutex_exit(&spa->spa_activities_lock);
9924
9925 return (error);
9926 }
9927
9928 /*
9929 * Wait for a particular instance of the specified activity to complete, where
9930 * the instance is identified by 'tag'
9931 */
9932 int
9933 spa_wait_tag(const char *pool, zpool_wait_activity_t activity, uint64_t tag,
9934 boolean_t *waited)
9935 {
9936 return (spa_wait_common(pool, activity, B_TRUE, tag, waited));
9937 }
9938
9939 /*
9940 * Wait for all instances of the specified activity complete
9941 */
9942 int
9943 spa_wait(const char *pool, zpool_wait_activity_t activity, boolean_t *waited)
9944 {
9945
9946 return (spa_wait_common(pool, activity, B_FALSE, 0, waited));
9947 }
9948
9949 sysevent_t *
9950 spa_event_create(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl, const char *name)
9951 {
9952 sysevent_t *ev = NULL;
9953 #ifdef _KERNEL
9954 nvlist_t *resource;
9955
9956 resource = zfs_event_create(spa, vd, FM_SYSEVENT_CLASS, name, hist_nvl);
9957 if (resource) {
9958 ev = kmem_alloc(sizeof (sysevent_t), KM_SLEEP);
9959 ev->resource = resource;
9960 }
9961 #else
9962 (void) spa, (void) vd, (void) hist_nvl, (void) name;
9963 #endif
9964 return (ev);
9965 }
9966
9967 void
9968 spa_event_post(sysevent_t *ev)
9969 {
9970 #ifdef _KERNEL
9971 if (ev) {
9972 zfs_zevent_post(ev->resource, NULL, zfs_zevent_post_cb);
9973 kmem_free(ev, sizeof (*ev));
9974 }
9975 #else
9976 (void) ev;
9977 #endif
9978 }
9979
9980 /*
9981 * Post a zevent corresponding to the given sysevent. The 'name' must be one
9982 * of the event definitions in sys/sysevent/eventdefs.h. The payload will be
9983 * filled in from the spa and (optionally) the vdev. This doesn't do anything
9984 * in the userland libzpool, as we don't want consumers to misinterpret ztest
9985 * or zdb as real changes.
9986 */
9987 void
9988 spa_event_notify(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl, const char *name)
9989 {
9990 spa_event_post(spa_event_create(spa, vd, hist_nvl, name));
9991 }
9992
9993 /* state manipulation functions */
9994 EXPORT_SYMBOL(spa_open);
9995 EXPORT_SYMBOL(spa_open_rewind);
9996 EXPORT_SYMBOL(spa_get_stats);
9997 EXPORT_SYMBOL(spa_create);
9998 EXPORT_SYMBOL(spa_import);
9999 EXPORT_SYMBOL(spa_tryimport);
10000 EXPORT_SYMBOL(spa_destroy);
10001 EXPORT_SYMBOL(spa_export);
10002 EXPORT_SYMBOL(spa_reset);
10003 EXPORT_SYMBOL(spa_async_request);
10004 EXPORT_SYMBOL(spa_async_suspend);
10005 EXPORT_SYMBOL(spa_async_resume);
10006 EXPORT_SYMBOL(spa_inject_addref);
10007 EXPORT_SYMBOL(spa_inject_delref);
10008 EXPORT_SYMBOL(spa_scan_stat_init);
10009 EXPORT_SYMBOL(spa_scan_get_stats);
10010
10011 /* device manipulation */
10012 EXPORT_SYMBOL(spa_vdev_add);
10013 EXPORT_SYMBOL(spa_vdev_attach);
10014 EXPORT_SYMBOL(spa_vdev_detach);
10015 EXPORT_SYMBOL(spa_vdev_setpath);
10016 EXPORT_SYMBOL(spa_vdev_setfru);
10017 EXPORT_SYMBOL(spa_vdev_split_mirror);
10018
10019 /* spare statech is global across all pools) */
10020 EXPORT_SYMBOL(spa_spare_add);
10021 EXPORT_SYMBOL(spa_spare_remove);
10022 EXPORT_SYMBOL(spa_spare_exists);
10023 EXPORT_SYMBOL(spa_spare_activate);
10024
10025 /* L2ARC statech is global across all pools) */
10026 EXPORT_SYMBOL(spa_l2cache_add);
10027 EXPORT_SYMBOL(spa_l2cache_remove);
10028 EXPORT_SYMBOL(spa_l2cache_exists);
10029 EXPORT_SYMBOL(spa_l2cache_activate);
10030 EXPORT_SYMBOL(spa_l2cache_drop);
10031
10032 /* scanning */
10033 EXPORT_SYMBOL(spa_scan);
10034 EXPORT_SYMBOL(spa_scan_stop);
10035
10036 /* spa syncing */
10037 EXPORT_SYMBOL(spa_sync); /* only for DMU use */
10038 EXPORT_SYMBOL(spa_sync_allpools);
10039
10040 /* properties */
10041 EXPORT_SYMBOL(spa_prop_set);
10042 EXPORT_SYMBOL(spa_prop_get);
10043 EXPORT_SYMBOL(spa_prop_clear_bootfs);
10044
10045 /* asynchronous event notification */
10046 EXPORT_SYMBOL(spa_event_notify);
10047
10048 /* BEGIN CSTYLED */
10049 ZFS_MODULE_PARAM(zfs_spa, spa_, load_verify_shift, UINT, ZMOD_RW,
10050 "log2 fraction of arc that can be used by inflight I/Os when "
10051 "verifying pool during import");
10052 /* END CSTYLED */
10053
10054 ZFS_MODULE_PARAM(zfs_spa, spa_, load_verify_metadata, INT, ZMOD_RW,
10055 "Set to traverse metadata on pool import");
10056
10057 ZFS_MODULE_PARAM(zfs_spa, spa_, load_verify_data, INT, ZMOD_RW,
10058 "Set to traverse data on pool import");
10059
10060 ZFS_MODULE_PARAM(zfs_spa, spa_, load_print_vdev_tree, INT, ZMOD_RW,
10061 "Print vdev tree to zfs_dbgmsg during pool import");
10062
10063 ZFS_MODULE_PARAM(zfs_zio, zio_, taskq_batch_pct, UINT, ZMOD_RD,
10064 "Percentage of CPUs to run an IO worker thread");
10065
10066 ZFS_MODULE_PARAM(zfs_zio, zio_, taskq_batch_tpq, UINT, ZMOD_RD,
10067 "Number of threads per IO worker taskqueue");
10068
10069 /* BEGIN CSTYLED */
10070 ZFS_MODULE_PARAM(zfs, zfs_, max_missing_tvds, U64, ZMOD_RW,
10071 "Allow importing pool with up to this number of missing top-level "
10072 "vdevs (in read-only mode)");
10073 /* END CSTYLED */
10074
10075 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, zthr_pause, INT,
10076 ZMOD_RW, "Set the livelist condense zthr to pause");
10077
10078 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, sync_pause, INT,
10079 ZMOD_RW, "Set the livelist condense synctask to pause");
10080
10081 /* BEGIN CSTYLED */
10082 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, sync_cancel,
10083 INT, ZMOD_RW,
10084 "Whether livelist condensing was canceled in the synctask");
10085
10086 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, zthr_cancel,
10087 INT, ZMOD_RW,
10088 "Whether livelist condensing was canceled in the zthr function");
10089
10090 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, new_alloc, INT,
10091 ZMOD_RW,
10092 "Whether extra ALLOC blkptrs were added to a livelist entry while it "
10093 "was being condensed");
10094 /* END CSTYLED */