]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/spa.c
736b51feae1e67aa7cfab77e2dc987bbe52ba8b0
[mirror_zfs.git] / module / zfs / spa.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2011, 2017 by Delphix. All rights reserved.
25 * Copyright (c) 2015, Nexenta Systems, Inc. All rights reserved.
26 * Copyright (c) 2013, 2014, Nexenta Systems, Inc. All rights reserved.
27 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
28 * Copyright 2013 Saso Kiselkov. All rights reserved.
29 * Copyright (c) 2014 Integros [integros.com]
30 * Copyright 2016 Toomas Soome <tsoome@me.com>
31 * Copyright (c) 2016 Actifio, Inc. All rights reserved.
32 * Copyright (c) 2017 Datto Inc.
33 * Copyright 2017 Joyent, Inc.
34 */
35
36 /*
37 * SPA: Storage Pool Allocator
38 *
39 * This file contains all the routines used when modifying on-disk SPA state.
40 * This includes opening, importing, destroying, exporting a pool, and syncing a
41 * pool.
42 */
43
44 #include <sys/zfs_context.h>
45 #include <sys/fm/fs/zfs.h>
46 #include <sys/spa_impl.h>
47 #include <sys/zio.h>
48 #include <sys/zio_checksum.h>
49 #include <sys/dmu.h>
50 #include <sys/dmu_tx.h>
51 #include <sys/zap.h>
52 #include <sys/zil.h>
53 #include <sys/ddt.h>
54 #include <sys/vdev_impl.h>
55 #include <sys/vdev_disk.h>
56 #include <sys/metaslab.h>
57 #include <sys/metaslab_impl.h>
58 #include <sys/mmp.h>
59 #include <sys/uberblock_impl.h>
60 #include <sys/txg.h>
61 #include <sys/avl.h>
62 #include <sys/dmu_traverse.h>
63 #include <sys/dmu_objset.h>
64 #include <sys/unique.h>
65 #include <sys/dsl_pool.h>
66 #include <sys/dsl_dataset.h>
67 #include <sys/dsl_dir.h>
68 #include <sys/dsl_prop.h>
69 #include <sys/dsl_synctask.h>
70 #include <sys/fs/zfs.h>
71 #include <sys/arc.h>
72 #include <sys/callb.h>
73 #include <sys/systeminfo.h>
74 #include <sys/spa_boot.h>
75 #include <sys/zfs_ioctl.h>
76 #include <sys/dsl_scan.h>
77 #include <sys/zfeature.h>
78 #include <sys/dsl_destroy.h>
79 #include <sys/zvol.h>
80
81 #ifdef _KERNEL
82 #include <sys/fm/protocol.h>
83 #include <sys/fm/util.h>
84 #include <sys/bootprops.h>
85 #include <sys/callb.h>
86 #include <sys/cpupart.h>
87 #include <sys/pool.h>
88 #include <sys/sysdc.h>
89 #include <sys/zone.h>
90 #endif /* _KERNEL */
91
92 #include "zfs_prop.h"
93 #include "zfs_comutil.h"
94
95 /*
96 * The interval, in seconds, at which failed configuration cache file writes
97 * should be retried.
98 */
99 static int zfs_ccw_retry_interval = 300;
100
101 typedef enum zti_modes {
102 ZTI_MODE_FIXED, /* value is # of threads (min 1) */
103 ZTI_MODE_BATCH, /* cpu-intensive; value is ignored */
104 ZTI_MODE_NULL, /* don't create a taskq */
105 ZTI_NMODES
106 } zti_modes_t;
107
108 #define ZTI_P(n, q) { ZTI_MODE_FIXED, (n), (q) }
109 #define ZTI_PCT(n) { ZTI_MODE_ONLINE_PERCENT, (n), 1 }
110 #define ZTI_BATCH { ZTI_MODE_BATCH, 0, 1 }
111 #define ZTI_NULL { ZTI_MODE_NULL, 0, 0 }
112
113 #define ZTI_N(n) ZTI_P(n, 1)
114 #define ZTI_ONE ZTI_N(1)
115
116 typedef struct zio_taskq_info {
117 zti_modes_t zti_mode;
118 uint_t zti_value;
119 uint_t zti_count;
120 } zio_taskq_info_t;
121
122 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = {
123 "iss", "iss_h", "int", "int_h"
124 };
125
126 /*
127 * This table defines the taskq settings for each ZFS I/O type. When
128 * initializing a pool, we use this table to create an appropriately sized
129 * taskq. Some operations are low volume and therefore have a small, static
130 * number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE
131 * macros. Other operations process a large amount of data; the ZTI_BATCH
132 * macro causes us to create a taskq oriented for throughput. Some operations
133 * are so high frequency and short-lived that the taskq itself can become a a
134 * point of lock contention. The ZTI_P(#, #) macro indicates that we need an
135 * additional degree of parallelism specified by the number of threads per-
136 * taskq and the number of taskqs; when dispatching an event in this case, the
137 * particular taskq is chosen at random.
138 *
139 * The different taskq priorities are to handle the different contexts (issue
140 * and interrupt) and then to reserve threads for ZIO_PRIORITY_NOW I/Os that
141 * need to be handled with minimum delay.
142 */
143 const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = {
144 /* ISSUE ISSUE_HIGH INTR INTR_HIGH */
145 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* NULL */
146 { ZTI_N(8), ZTI_NULL, ZTI_P(12, 8), ZTI_NULL }, /* READ */
147 { ZTI_BATCH, ZTI_N(5), ZTI_P(12, 8), ZTI_N(5) }, /* WRITE */
148 { ZTI_P(12, 8), ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* FREE */
149 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* CLAIM */
150 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* IOCTL */
151 };
152
153 static sysevent_t *spa_event_create(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl,
154 const char *name);
155 static void spa_event_post(sysevent_t *ev);
156 static void spa_sync_version(void *arg, dmu_tx_t *tx);
157 static void spa_sync_props(void *arg, dmu_tx_t *tx);
158 static boolean_t spa_has_active_shared_spare(spa_t *spa);
159 static inline int spa_load_impl(spa_t *spa, uint64_t, nvlist_t *config,
160 spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
161 char **ereport);
162 static void spa_vdev_resilver_done(spa_t *spa);
163
164 uint_t zio_taskq_batch_pct = 75; /* 1 thread per cpu in pset */
165 id_t zio_taskq_psrset_bind = PS_NONE;
166 boolean_t zio_taskq_sysdc = B_TRUE; /* use SDC scheduling class */
167 uint_t zio_taskq_basedc = 80; /* base duty cycle */
168
169 boolean_t spa_create_process = B_TRUE; /* no process ==> no sysdc */
170
171 /*
172 * This (illegal) pool name is used when temporarily importing a spa_t in order
173 * to get the vdev stats associated with the imported devices.
174 */
175 #define TRYIMPORT_NAME "$import"
176
177 /*
178 * ==========================================================================
179 * SPA properties routines
180 * ==========================================================================
181 */
182
183 /*
184 * Add a (source=src, propname=propval) list to an nvlist.
185 */
186 static void
187 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval,
188 uint64_t intval, zprop_source_t src)
189 {
190 const char *propname = zpool_prop_to_name(prop);
191 nvlist_t *propval;
192
193 VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0);
194 VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0);
195
196 if (strval != NULL)
197 VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0);
198 else
199 VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0);
200
201 VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0);
202 nvlist_free(propval);
203 }
204
205 /*
206 * Get property values from the spa configuration.
207 */
208 static void
209 spa_prop_get_config(spa_t *spa, nvlist_t **nvp)
210 {
211 vdev_t *rvd = spa->spa_root_vdev;
212 dsl_pool_t *pool = spa->spa_dsl_pool;
213 uint64_t size, alloc, cap, version;
214 const zprop_source_t src = ZPROP_SRC_NONE;
215 spa_config_dirent_t *dp;
216 metaslab_class_t *mc = spa_normal_class(spa);
217
218 ASSERT(MUTEX_HELD(&spa->spa_props_lock));
219
220 if (rvd != NULL) {
221 alloc = metaslab_class_get_alloc(spa_normal_class(spa));
222 size = metaslab_class_get_space(spa_normal_class(spa));
223 spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src);
224 spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src);
225 spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src);
226 spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL,
227 size - alloc, src);
228
229 spa_prop_add_list(*nvp, ZPOOL_PROP_FRAGMENTATION, NULL,
230 metaslab_class_fragmentation(mc), src);
231 spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL,
232 metaslab_class_expandable_space(mc), src);
233 spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL,
234 (spa_mode(spa) == FREAD), src);
235
236 cap = (size == 0) ? 0 : (alloc * 100 / size);
237 spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src);
238
239 spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL,
240 ddt_get_pool_dedup_ratio(spa), src);
241
242 spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL,
243 rvd->vdev_state, src);
244
245 version = spa_version(spa);
246 if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION)) {
247 spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL,
248 version, ZPROP_SRC_DEFAULT);
249 } else {
250 spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL,
251 version, ZPROP_SRC_LOCAL);
252 }
253 }
254
255 if (pool != NULL) {
256 /*
257 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS,
258 * when opening pools before this version freedir will be NULL.
259 */
260 if (pool->dp_free_dir != NULL) {
261 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL,
262 dsl_dir_phys(pool->dp_free_dir)->dd_used_bytes,
263 src);
264 } else {
265 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING,
266 NULL, 0, src);
267 }
268
269 if (pool->dp_leak_dir != NULL) {
270 spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED, NULL,
271 dsl_dir_phys(pool->dp_leak_dir)->dd_used_bytes,
272 src);
273 } else {
274 spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED,
275 NULL, 0, src);
276 }
277 }
278
279 spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
280
281 if (spa->spa_comment != NULL) {
282 spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment,
283 0, ZPROP_SRC_LOCAL);
284 }
285
286 if (spa->spa_root != NULL)
287 spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root,
288 0, ZPROP_SRC_LOCAL);
289
290 if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) {
291 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
292 MIN(zfs_max_recordsize, SPA_MAXBLOCKSIZE), ZPROP_SRC_NONE);
293 } else {
294 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
295 SPA_OLD_MAXBLOCKSIZE, ZPROP_SRC_NONE);
296 }
297
298 if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_DNODE)) {
299 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXDNODESIZE, NULL,
300 DNODE_MAX_SIZE, ZPROP_SRC_NONE);
301 } else {
302 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXDNODESIZE, NULL,
303 DNODE_MIN_SIZE, ZPROP_SRC_NONE);
304 }
305
306 if ((dp = list_head(&spa->spa_config_list)) != NULL) {
307 if (dp->scd_path == NULL) {
308 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
309 "none", 0, ZPROP_SRC_LOCAL);
310 } else if (strcmp(dp->scd_path, spa_config_path) != 0) {
311 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
312 dp->scd_path, 0, ZPROP_SRC_LOCAL);
313 }
314 }
315 }
316
317 /*
318 * Get zpool property values.
319 */
320 int
321 spa_prop_get(spa_t *spa, nvlist_t **nvp)
322 {
323 objset_t *mos = spa->spa_meta_objset;
324 zap_cursor_t zc;
325 zap_attribute_t za;
326 int err;
327
328 err = nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP);
329 if (err)
330 return (err);
331
332 mutex_enter(&spa->spa_props_lock);
333
334 /*
335 * Get properties from the spa config.
336 */
337 spa_prop_get_config(spa, nvp);
338
339 /* If no pool property object, no more prop to get. */
340 if (mos == NULL || spa->spa_pool_props_object == 0) {
341 mutex_exit(&spa->spa_props_lock);
342 goto out;
343 }
344
345 /*
346 * Get properties from the MOS pool property object.
347 */
348 for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
349 (err = zap_cursor_retrieve(&zc, &za)) == 0;
350 zap_cursor_advance(&zc)) {
351 uint64_t intval = 0;
352 char *strval = NULL;
353 zprop_source_t src = ZPROP_SRC_DEFAULT;
354 zpool_prop_t prop;
355
356 if ((prop = zpool_name_to_prop(za.za_name)) == ZPOOL_PROP_INVAL)
357 continue;
358
359 switch (za.za_integer_length) {
360 case 8:
361 /* integer property */
362 if (za.za_first_integer !=
363 zpool_prop_default_numeric(prop))
364 src = ZPROP_SRC_LOCAL;
365
366 if (prop == ZPOOL_PROP_BOOTFS) {
367 dsl_pool_t *dp;
368 dsl_dataset_t *ds = NULL;
369
370 dp = spa_get_dsl(spa);
371 dsl_pool_config_enter(dp, FTAG);
372 if ((err = dsl_dataset_hold_obj(dp,
373 za.za_first_integer, FTAG, &ds))) {
374 dsl_pool_config_exit(dp, FTAG);
375 break;
376 }
377
378 strval = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN,
379 KM_SLEEP);
380 dsl_dataset_name(ds, strval);
381 dsl_dataset_rele(ds, FTAG);
382 dsl_pool_config_exit(dp, FTAG);
383 } else {
384 strval = NULL;
385 intval = za.za_first_integer;
386 }
387
388 spa_prop_add_list(*nvp, prop, strval, intval, src);
389
390 if (strval != NULL)
391 kmem_free(strval, ZFS_MAX_DATASET_NAME_LEN);
392
393 break;
394
395 case 1:
396 /* string property */
397 strval = kmem_alloc(za.za_num_integers, KM_SLEEP);
398 err = zap_lookup(mos, spa->spa_pool_props_object,
399 za.za_name, 1, za.za_num_integers, strval);
400 if (err) {
401 kmem_free(strval, za.za_num_integers);
402 break;
403 }
404 spa_prop_add_list(*nvp, prop, strval, 0, src);
405 kmem_free(strval, za.za_num_integers);
406 break;
407
408 default:
409 break;
410 }
411 }
412 zap_cursor_fini(&zc);
413 mutex_exit(&spa->spa_props_lock);
414 out:
415 if (err && err != ENOENT) {
416 nvlist_free(*nvp);
417 *nvp = NULL;
418 return (err);
419 }
420
421 return (0);
422 }
423
424 /*
425 * Validate the given pool properties nvlist and modify the list
426 * for the property values to be set.
427 */
428 static int
429 spa_prop_validate(spa_t *spa, nvlist_t *props)
430 {
431 nvpair_t *elem;
432 int error = 0, reset_bootfs = 0;
433 uint64_t objnum = 0;
434 boolean_t has_feature = B_FALSE;
435
436 elem = NULL;
437 while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
438 uint64_t intval;
439 char *strval, *slash, *check, *fname;
440 const char *propname = nvpair_name(elem);
441 zpool_prop_t prop = zpool_name_to_prop(propname);
442
443 switch (prop) {
444 case ZPOOL_PROP_INVAL:
445 if (!zpool_prop_feature(propname)) {
446 error = SET_ERROR(EINVAL);
447 break;
448 }
449
450 /*
451 * Sanitize the input.
452 */
453 if (nvpair_type(elem) != DATA_TYPE_UINT64) {
454 error = SET_ERROR(EINVAL);
455 break;
456 }
457
458 if (nvpair_value_uint64(elem, &intval) != 0) {
459 error = SET_ERROR(EINVAL);
460 break;
461 }
462
463 if (intval != 0) {
464 error = SET_ERROR(EINVAL);
465 break;
466 }
467
468 fname = strchr(propname, '@') + 1;
469 if (zfeature_lookup_name(fname, NULL) != 0) {
470 error = SET_ERROR(EINVAL);
471 break;
472 }
473
474 has_feature = B_TRUE;
475 break;
476
477 case ZPOOL_PROP_VERSION:
478 error = nvpair_value_uint64(elem, &intval);
479 if (!error &&
480 (intval < spa_version(spa) ||
481 intval > SPA_VERSION_BEFORE_FEATURES ||
482 has_feature))
483 error = SET_ERROR(EINVAL);
484 break;
485
486 case ZPOOL_PROP_DELEGATION:
487 case ZPOOL_PROP_AUTOREPLACE:
488 case ZPOOL_PROP_LISTSNAPS:
489 case ZPOOL_PROP_AUTOEXPAND:
490 error = nvpair_value_uint64(elem, &intval);
491 if (!error && intval > 1)
492 error = SET_ERROR(EINVAL);
493 break;
494
495 case ZPOOL_PROP_MULTIHOST:
496 error = nvpair_value_uint64(elem, &intval);
497 if (!error && intval > 1)
498 error = SET_ERROR(EINVAL);
499
500 if (!error && !spa_get_hostid())
501 error = SET_ERROR(ENOTSUP);
502
503 break;
504
505 case ZPOOL_PROP_BOOTFS:
506 /*
507 * If the pool version is less than SPA_VERSION_BOOTFS,
508 * or the pool is still being created (version == 0),
509 * the bootfs property cannot be set.
510 */
511 if (spa_version(spa) < SPA_VERSION_BOOTFS) {
512 error = SET_ERROR(ENOTSUP);
513 break;
514 }
515
516 /*
517 * Make sure the vdev config is bootable
518 */
519 if (!vdev_is_bootable(spa->spa_root_vdev)) {
520 error = SET_ERROR(ENOTSUP);
521 break;
522 }
523
524 reset_bootfs = 1;
525
526 error = nvpair_value_string(elem, &strval);
527
528 if (!error) {
529 objset_t *os;
530 uint64_t propval;
531
532 if (strval == NULL || strval[0] == '\0') {
533 objnum = zpool_prop_default_numeric(
534 ZPOOL_PROP_BOOTFS);
535 break;
536 }
537
538 error = dmu_objset_hold(strval, FTAG, &os);
539 if (error)
540 break;
541
542 /*
543 * Must be ZPL, and its property settings
544 * must be supported by GRUB (compression
545 * is not gzip, and large blocks or large
546 * dnodes are not used).
547 */
548
549 if (dmu_objset_type(os) != DMU_OST_ZFS) {
550 error = SET_ERROR(ENOTSUP);
551 } else if ((error =
552 dsl_prop_get_int_ds(dmu_objset_ds(os),
553 zfs_prop_to_name(ZFS_PROP_COMPRESSION),
554 &propval)) == 0 &&
555 !BOOTFS_COMPRESS_VALID(propval)) {
556 error = SET_ERROR(ENOTSUP);
557 } else if ((error =
558 dsl_prop_get_int_ds(dmu_objset_ds(os),
559 zfs_prop_to_name(ZFS_PROP_DNODESIZE),
560 &propval)) == 0 &&
561 propval != ZFS_DNSIZE_LEGACY) {
562 error = SET_ERROR(ENOTSUP);
563 } else {
564 objnum = dmu_objset_id(os);
565 }
566 dmu_objset_rele(os, FTAG);
567 }
568 break;
569
570 case ZPOOL_PROP_FAILUREMODE:
571 error = nvpair_value_uint64(elem, &intval);
572 if (!error && intval > ZIO_FAILURE_MODE_PANIC)
573 error = SET_ERROR(EINVAL);
574
575 /*
576 * This is a special case which only occurs when
577 * the pool has completely failed. This allows
578 * the user to change the in-core failmode property
579 * without syncing it out to disk (I/Os might
580 * currently be blocked). We do this by returning
581 * EIO to the caller (spa_prop_set) to trick it
582 * into thinking we encountered a property validation
583 * error.
584 */
585 if (!error && spa_suspended(spa)) {
586 spa->spa_failmode = intval;
587 error = SET_ERROR(EIO);
588 }
589 break;
590
591 case ZPOOL_PROP_CACHEFILE:
592 if ((error = nvpair_value_string(elem, &strval)) != 0)
593 break;
594
595 if (strval[0] == '\0')
596 break;
597
598 if (strcmp(strval, "none") == 0)
599 break;
600
601 if (strval[0] != '/') {
602 error = SET_ERROR(EINVAL);
603 break;
604 }
605
606 slash = strrchr(strval, '/');
607 ASSERT(slash != NULL);
608
609 if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
610 strcmp(slash, "/..") == 0)
611 error = SET_ERROR(EINVAL);
612 break;
613
614 case ZPOOL_PROP_COMMENT:
615 if ((error = nvpair_value_string(elem, &strval)) != 0)
616 break;
617 for (check = strval; *check != '\0'; check++) {
618 if (!isprint(*check)) {
619 error = SET_ERROR(EINVAL);
620 break;
621 }
622 }
623 if (strlen(strval) > ZPROP_MAX_COMMENT)
624 error = SET_ERROR(E2BIG);
625 break;
626
627 case ZPOOL_PROP_DEDUPDITTO:
628 if (spa_version(spa) < SPA_VERSION_DEDUP)
629 error = SET_ERROR(ENOTSUP);
630 else
631 error = nvpair_value_uint64(elem, &intval);
632 if (error == 0 &&
633 intval != 0 && intval < ZIO_DEDUPDITTO_MIN)
634 error = SET_ERROR(EINVAL);
635 break;
636
637 default:
638 break;
639 }
640
641 if (error)
642 break;
643 }
644
645 if (!error && reset_bootfs) {
646 error = nvlist_remove(props,
647 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
648
649 if (!error) {
650 error = nvlist_add_uint64(props,
651 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
652 }
653 }
654
655 return (error);
656 }
657
658 void
659 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync)
660 {
661 char *cachefile;
662 spa_config_dirent_t *dp;
663
664 if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE),
665 &cachefile) != 0)
666 return;
667
668 dp = kmem_alloc(sizeof (spa_config_dirent_t),
669 KM_SLEEP);
670
671 if (cachefile[0] == '\0')
672 dp->scd_path = spa_strdup(spa_config_path);
673 else if (strcmp(cachefile, "none") == 0)
674 dp->scd_path = NULL;
675 else
676 dp->scd_path = spa_strdup(cachefile);
677
678 list_insert_head(&spa->spa_config_list, dp);
679 if (need_sync)
680 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
681 }
682
683 int
684 spa_prop_set(spa_t *spa, nvlist_t *nvp)
685 {
686 int error;
687 nvpair_t *elem = NULL;
688 boolean_t need_sync = B_FALSE;
689
690 if ((error = spa_prop_validate(spa, nvp)) != 0)
691 return (error);
692
693 while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) {
694 zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem));
695
696 if (prop == ZPOOL_PROP_CACHEFILE ||
697 prop == ZPOOL_PROP_ALTROOT ||
698 prop == ZPOOL_PROP_READONLY)
699 continue;
700
701 if (prop == ZPOOL_PROP_VERSION || prop == ZPOOL_PROP_INVAL) {
702 uint64_t ver;
703
704 if (prop == ZPOOL_PROP_VERSION) {
705 VERIFY(nvpair_value_uint64(elem, &ver) == 0);
706 } else {
707 ASSERT(zpool_prop_feature(nvpair_name(elem)));
708 ver = SPA_VERSION_FEATURES;
709 need_sync = B_TRUE;
710 }
711
712 /* Save time if the version is already set. */
713 if (ver == spa_version(spa))
714 continue;
715
716 /*
717 * In addition to the pool directory object, we might
718 * create the pool properties object, the features for
719 * read object, the features for write object, or the
720 * feature descriptions object.
721 */
722 error = dsl_sync_task(spa->spa_name, NULL,
723 spa_sync_version, &ver,
724 6, ZFS_SPACE_CHECK_RESERVED);
725 if (error)
726 return (error);
727 continue;
728 }
729
730 need_sync = B_TRUE;
731 break;
732 }
733
734 if (need_sync) {
735 return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props,
736 nvp, 6, ZFS_SPACE_CHECK_RESERVED));
737 }
738
739 return (0);
740 }
741
742 /*
743 * If the bootfs property value is dsobj, clear it.
744 */
745 void
746 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
747 {
748 if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
749 VERIFY(zap_remove(spa->spa_meta_objset,
750 spa->spa_pool_props_object,
751 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
752 spa->spa_bootfs = 0;
753 }
754 }
755
756 /*ARGSUSED*/
757 static int
758 spa_change_guid_check(void *arg, dmu_tx_t *tx)
759 {
760 ASSERTV(uint64_t *newguid = arg);
761 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
762 vdev_t *rvd = spa->spa_root_vdev;
763 uint64_t vdev_state;
764
765 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
766 vdev_state = rvd->vdev_state;
767 spa_config_exit(spa, SCL_STATE, FTAG);
768
769 if (vdev_state != VDEV_STATE_HEALTHY)
770 return (SET_ERROR(ENXIO));
771
772 ASSERT3U(spa_guid(spa), !=, *newguid);
773
774 return (0);
775 }
776
777 static void
778 spa_change_guid_sync(void *arg, dmu_tx_t *tx)
779 {
780 uint64_t *newguid = arg;
781 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
782 uint64_t oldguid;
783 vdev_t *rvd = spa->spa_root_vdev;
784
785 oldguid = spa_guid(spa);
786
787 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
788 rvd->vdev_guid = *newguid;
789 rvd->vdev_guid_sum += (*newguid - oldguid);
790 vdev_config_dirty(rvd);
791 spa_config_exit(spa, SCL_STATE, FTAG);
792
793 spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu",
794 oldguid, *newguid);
795 }
796
797 /*
798 * Change the GUID for the pool. This is done so that we can later
799 * re-import a pool built from a clone of our own vdevs. We will modify
800 * the root vdev's guid, our own pool guid, and then mark all of our
801 * vdevs dirty. Note that we must make sure that all our vdevs are
802 * online when we do this, or else any vdevs that weren't present
803 * would be orphaned from our pool. We are also going to issue a
804 * sysevent to update any watchers.
805 */
806 int
807 spa_change_guid(spa_t *spa)
808 {
809 int error;
810 uint64_t guid;
811
812 mutex_enter(&spa->spa_vdev_top_lock);
813 mutex_enter(&spa_namespace_lock);
814 guid = spa_generate_guid(NULL);
815
816 error = dsl_sync_task(spa->spa_name, spa_change_guid_check,
817 spa_change_guid_sync, &guid, 5, ZFS_SPACE_CHECK_RESERVED);
818
819 if (error == 0) {
820 spa_config_sync(spa, B_FALSE, B_TRUE);
821 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_REGUID);
822 }
823
824 mutex_exit(&spa_namespace_lock);
825 mutex_exit(&spa->spa_vdev_top_lock);
826
827 return (error);
828 }
829
830 /*
831 * ==========================================================================
832 * SPA state manipulation (open/create/destroy/import/export)
833 * ==========================================================================
834 */
835
836 static int
837 spa_error_entry_compare(const void *a, const void *b)
838 {
839 const spa_error_entry_t *sa = (const spa_error_entry_t *)a;
840 const spa_error_entry_t *sb = (const spa_error_entry_t *)b;
841 int ret;
842
843 ret = memcmp(&sa->se_bookmark, &sb->se_bookmark,
844 sizeof (zbookmark_phys_t));
845
846 return (AVL_ISIGN(ret));
847 }
848
849 /*
850 * Utility function which retrieves copies of the current logs and
851 * re-initializes them in the process.
852 */
853 void
854 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
855 {
856 ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
857
858 bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t));
859 bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t));
860
861 avl_create(&spa->spa_errlist_scrub,
862 spa_error_entry_compare, sizeof (spa_error_entry_t),
863 offsetof(spa_error_entry_t, se_avl));
864 avl_create(&spa->spa_errlist_last,
865 spa_error_entry_compare, sizeof (spa_error_entry_t),
866 offsetof(spa_error_entry_t, se_avl));
867 }
868
869 static void
870 spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
871 {
872 const zio_taskq_info_t *ztip = &zio_taskqs[t][q];
873 enum zti_modes mode = ztip->zti_mode;
874 uint_t value = ztip->zti_value;
875 uint_t count = ztip->zti_count;
876 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
877 char name[32];
878 uint_t flags = 0;
879 boolean_t batch = B_FALSE;
880
881 if (mode == ZTI_MODE_NULL) {
882 tqs->stqs_count = 0;
883 tqs->stqs_taskq = NULL;
884 return;
885 }
886
887 ASSERT3U(count, >, 0);
888
889 tqs->stqs_count = count;
890 tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP);
891
892 switch (mode) {
893 case ZTI_MODE_FIXED:
894 ASSERT3U(value, >=, 1);
895 value = MAX(value, 1);
896 flags |= TASKQ_DYNAMIC;
897 break;
898
899 case ZTI_MODE_BATCH:
900 batch = B_TRUE;
901 flags |= TASKQ_THREADS_CPU_PCT;
902 value = MIN(zio_taskq_batch_pct, 100);
903 break;
904
905 default:
906 panic("unrecognized mode for %s_%s taskq (%u:%u) in "
907 "spa_activate()",
908 zio_type_name[t], zio_taskq_types[q], mode, value);
909 break;
910 }
911
912 for (uint_t i = 0; i < count; i++) {
913 taskq_t *tq;
914
915 if (count > 1) {
916 (void) snprintf(name, sizeof (name), "%s_%s_%u",
917 zio_type_name[t], zio_taskq_types[q], i);
918 } else {
919 (void) snprintf(name, sizeof (name), "%s_%s",
920 zio_type_name[t], zio_taskq_types[q]);
921 }
922
923 if (zio_taskq_sysdc && spa->spa_proc != &p0) {
924 if (batch)
925 flags |= TASKQ_DC_BATCH;
926
927 tq = taskq_create_sysdc(name, value, 50, INT_MAX,
928 spa->spa_proc, zio_taskq_basedc, flags);
929 } else {
930 pri_t pri = maxclsyspri;
931 /*
932 * The write issue taskq can be extremely CPU
933 * intensive. Run it at slightly less important
934 * priority than the other taskqs. Under Linux this
935 * means incrementing the priority value on platforms
936 * like illumos it should be decremented.
937 */
938 if (t == ZIO_TYPE_WRITE && q == ZIO_TASKQ_ISSUE)
939 pri++;
940
941 tq = taskq_create_proc(name, value, pri, 50,
942 INT_MAX, spa->spa_proc, flags);
943 }
944
945 tqs->stqs_taskq[i] = tq;
946 }
947 }
948
949 static void
950 spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
951 {
952 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
953
954 if (tqs->stqs_taskq == NULL) {
955 ASSERT3U(tqs->stqs_count, ==, 0);
956 return;
957 }
958
959 for (uint_t i = 0; i < tqs->stqs_count; i++) {
960 ASSERT3P(tqs->stqs_taskq[i], !=, NULL);
961 taskq_destroy(tqs->stqs_taskq[i]);
962 }
963
964 kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *));
965 tqs->stqs_taskq = NULL;
966 }
967
968 /*
969 * Dispatch a task to the appropriate taskq for the ZFS I/O type and priority.
970 * Note that a type may have multiple discrete taskqs to avoid lock contention
971 * on the taskq itself. In that case we choose which taskq at random by using
972 * the low bits of gethrtime().
973 */
974 void
975 spa_taskq_dispatch_ent(spa_t *spa, zio_type_t t, zio_taskq_type_t q,
976 task_func_t *func, void *arg, uint_t flags, taskq_ent_t *ent)
977 {
978 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
979 taskq_t *tq;
980
981 ASSERT3P(tqs->stqs_taskq, !=, NULL);
982 ASSERT3U(tqs->stqs_count, !=, 0);
983
984 if (tqs->stqs_count == 1) {
985 tq = tqs->stqs_taskq[0];
986 } else {
987 tq = tqs->stqs_taskq[((uint64_t)gethrtime()) % tqs->stqs_count];
988 }
989
990 taskq_dispatch_ent(tq, func, arg, flags, ent);
991 }
992
993 /*
994 * Same as spa_taskq_dispatch_ent() but block on the task until completion.
995 */
996 void
997 spa_taskq_dispatch_sync(spa_t *spa, zio_type_t t, zio_taskq_type_t q,
998 task_func_t *func, void *arg, uint_t flags)
999 {
1000 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1001 taskq_t *tq;
1002 taskqid_t id;
1003
1004 ASSERT3P(tqs->stqs_taskq, !=, NULL);
1005 ASSERT3U(tqs->stqs_count, !=, 0);
1006
1007 if (tqs->stqs_count == 1) {
1008 tq = tqs->stqs_taskq[0];
1009 } else {
1010 tq = tqs->stqs_taskq[((uint64_t)gethrtime()) % tqs->stqs_count];
1011 }
1012
1013 id = taskq_dispatch(tq, func, arg, flags);
1014 if (id)
1015 taskq_wait_id(tq, id);
1016 }
1017
1018 static void
1019 spa_create_zio_taskqs(spa_t *spa)
1020 {
1021 for (int t = 0; t < ZIO_TYPES; t++) {
1022 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1023 spa_taskqs_init(spa, t, q);
1024 }
1025 }
1026 }
1027
1028 /*
1029 * Disabled until spa_thread() can be adapted for Linux.
1030 */
1031 #undef HAVE_SPA_THREAD
1032
1033 #if defined(_KERNEL) && defined(HAVE_SPA_THREAD)
1034 static void
1035 spa_thread(void *arg)
1036 {
1037 callb_cpr_t cprinfo;
1038
1039 spa_t *spa = arg;
1040 user_t *pu = PTOU(curproc);
1041
1042 CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr,
1043 spa->spa_name);
1044
1045 ASSERT(curproc != &p0);
1046 (void) snprintf(pu->u_psargs, sizeof (pu->u_psargs),
1047 "zpool-%s", spa->spa_name);
1048 (void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm));
1049
1050 /* bind this thread to the requested psrset */
1051 if (zio_taskq_psrset_bind != PS_NONE) {
1052 pool_lock();
1053 mutex_enter(&cpu_lock);
1054 mutex_enter(&pidlock);
1055 mutex_enter(&curproc->p_lock);
1056
1057 if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind,
1058 0, NULL, NULL) == 0) {
1059 curthread->t_bind_pset = zio_taskq_psrset_bind;
1060 } else {
1061 cmn_err(CE_WARN,
1062 "Couldn't bind process for zfs pool \"%s\" to "
1063 "pset %d\n", spa->spa_name, zio_taskq_psrset_bind);
1064 }
1065
1066 mutex_exit(&curproc->p_lock);
1067 mutex_exit(&pidlock);
1068 mutex_exit(&cpu_lock);
1069 pool_unlock();
1070 }
1071
1072 if (zio_taskq_sysdc) {
1073 sysdc_thread_enter(curthread, 100, 0);
1074 }
1075
1076 spa->spa_proc = curproc;
1077 spa->spa_did = curthread->t_did;
1078
1079 spa_create_zio_taskqs(spa);
1080
1081 mutex_enter(&spa->spa_proc_lock);
1082 ASSERT(spa->spa_proc_state == SPA_PROC_CREATED);
1083
1084 spa->spa_proc_state = SPA_PROC_ACTIVE;
1085 cv_broadcast(&spa->spa_proc_cv);
1086
1087 CALLB_CPR_SAFE_BEGIN(&cprinfo);
1088 while (spa->spa_proc_state == SPA_PROC_ACTIVE)
1089 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1090 CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock);
1091
1092 ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE);
1093 spa->spa_proc_state = SPA_PROC_GONE;
1094 spa->spa_proc = &p0;
1095 cv_broadcast(&spa->spa_proc_cv);
1096 CALLB_CPR_EXIT(&cprinfo); /* drops spa_proc_lock */
1097
1098 mutex_enter(&curproc->p_lock);
1099 lwp_exit();
1100 }
1101 #endif
1102
1103 /*
1104 * Activate an uninitialized pool.
1105 */
1106 static void
1107 spa_activate(spa_t *spa, int mode)
1108 {
1109 ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
1110
1111 spa->spa_state = POOL_STATE_ACTIVE;
1112 spa->spa_mode = mode;
1113
1114 spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops);
1115 spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops);
1116
1117 /* Try to create a covering process */
1118 mutex_enter(&spa->spa_proc_lock);
1119 ASSERT(spa->spa_proc_state == SPA_PROC_NONE);
1120 ASSERT(spa->spa_proc == &p0);
1121 spa->spa_did = 0;
1122
1123 #ifdef HAVE_SPA_THREAD
1124 /* Only create a process if we're going to be around a while. */
1125 if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) {
1126 if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri,
1127 NULL, 0) == 0) {
1128 spa->spa_proc_state = SPA_PROC_CREATED;
1129 while (spa->spa_proc_state == SPA_PROC_CREATED) {
1130 cv_wait(&spa->spa_proc_cv,
1131 &spa->spa_proc_lock);
1132 }
1133 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1134 ASSERT(spa->spa_proc != &p0);
1135 ASSERT(spa->spa_did != 0);
1136 } else {
1137 #ifdef _KERNEL
1138 cmn_err(CE_WARN,
1139 "Couldn't create process for zfs pool \"%s\"\n",
1140 spa->spa_name);
1141 #endif
1142 }
1143 }
1144 #endif /* HAVE_SPA_THREAD */
1145 mutex_exit(&spa->spa_proc_lock);
1146
1147 /* If we didn't create a process, we need to create our taskqs. */
1148 if (spa->spa_proc == &p0) {
1149 spa_create_zio_taskqs(spa);
1150 }
1151
1152 list_create(&spa->spa_config_dirty_list, sizeof (vdev_t),
1153 offsetof(vdev_t, vdev_config_dirty_node));
1154 list_create(&spa->spa_evicting_os_list, sizeof (objset_t),
1155 offsetof(objset_t, os_evicting_node));
1156 list_create(&spa->spa_state_dirty_list, sizeof (vdev_t),
1157 offsetof(vdev_t, vdev_state_dirty_node));
1158
1159 txg_list_create(&spa->spa_vdev_txg_list, spa,
1160 offsetof(struct vdev, vdev_txg_node));
1161
1162 avl_create(&spa->spa_errlist_scrub,
1163 spa_error_entry_compare, sizeof (spa_error_entry_t),
1164 offsetof(spa_error_entry_t, se_avl));
1165 avl_create(&spa->spa_errlist_last,
1166 spa_error_entry_compare, sizeof (spa_error_entry_t),
1167 offsetof(spa_error_entry_t, se_avl));
1168
1169 spa_keystore_init(&spa->spa_keystore);
1170
1171 /*
1172 * This taskq is used to perform zvol-minor-related tasks
1173 * asynchronously. This has several advantages, including easy
1174 * resolution of various deadlocks (zfsonlinux bug #3681).
1175 *
1176 * The taskq must be single threaded to ensure tasks are always
1177 * processed in the order in which they were dispatched.
1178 *
1179 * A taskq per pool allows one to keep the pools independent.
1180 * This way if one pool is suspended, it will not impact another.
1181 *
1182 * The preferred location to dispatch a zvol minor task is a sync
1183 * task. In this context, there is easy access to the spa_t and minimal
1184 * error handling is required because the sync task must succeed.
1185 */
1186 spa->spa_zvol_taskq = taskq_create("z_zvol", 1, defclsyspri,
1187 1, INT_MAX, 0);
1188
1189 /*
1190 * The taskq to upgrade datasets in this pool. Currently used by
1191 * feature SPA_FEATURE_USEROBJ_ACCOUNTING/SPA_FEATURE_PROJECT_QUOTA.
1192 */
1193 spa->spa_upgrade_taskq = taskq_create("z_upgrade", boot_ncpus,
1194 defclsyspri, 1, INT_MAX, TASKQ_DYNAMIC);
1195 }
1196
1197 /*
1198 * Opposite of spa_activate().
1199 */
1200 static void
1201 spa_deactivate(spa_t *spa)
1202 {
1203 ASSERT(spa->spa_sync_on == B_FALSE);
1204 ASSERT(spa->spa_dsl_pool == NULL);
1205 ASSERT(spa->spa_root_vdev == NULL);
1206 ASSERT(spa->spa_async_zio_root == NULL);
1207 ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
1208
1209 spa_evicting_os_wait(spa);
1210
1211 if (spa->spa_zvol_taskq) {
1212 taskq_destroy(spa->spa_zvol_taskq);
1213 spa->spa_zvol_taskq = NULL;
1214 }
1215
1216 if (spa->spa_upgrade_taskq) {
1217 taskq_destroy(spa->spa_upgrade_taskq);
1218 spa->spa_upgrade_taskq = NULL;
1219 }
1220
1221 txg_list_destroy(&spa->spa_vdev_txg_list);
1222
1223 list_destroy(&spa->spa_config_dirty_list);
1224 list_destroy(&spa->spa_evicting_os_list);
1225 list_destroy(&spa->spa_state_dirty_list);
1226
1227 taskq_cancel_id(system_delay_taskq, spa->spa_deadman_tqid);
1228
1229 for (int t = 0; t < ZIO_TYPES; t++) {
1230 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1231 spa_taskqs_fini(spa, t, q);
1232 }
1233 }
1234
1235 metaslab_class_destroy(spa->spa_normal_class);
1236 spa->spa_normal_class = NULL;
1237
1238 metaslab_class_destroy(spa->spa_log_class);
1239 spa->spa_log_class = NULL;
1240
1241 /*
1242 * If this was part of an import or the open otherwise failed, we may
1243 * still have errors left in the queues. Empty them just in case.
1244 */
1245 spa_errlog_drain(spa);
1246 avl_destroy(&spa->spa_errlist_scrub);
1247 avl_destroy(&spa->spa_errlist_last);
1248
1249 spa_keystore_fini(&spa->spa_keystore);
1250
1251 spa->spa_state = POOL_STATE_UNINITIALIZED;
1252
1253 mutex_enter(&spa->spa_proc_lock);
1254 if (spa->spa_proc_state != SPA_PROC_NONE) {
1255 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1256 spa->spa_proc_state = SPA_PROC_DEACTIVATE;
1257 cv_broadcast(&spa->spa_proc_cv);
1258 while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) {
1259 ASSERT(spa->spa_proc != &p0);
1260 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1261 }
1262 ASSERT(spa->spa_proc_state == SPA_PROC_GONE);
1263 spa->spa_proc_state = SPA_PROC_NONE;
1264 }
1265 ASSERT(spa->spa_proc == &p0);
1266 mutex_exit(&spa->spa_proc_lock);
1267
1268 /*
1269 * We want to make sure spa_thread() has actually exited the ZFS
1270 * module, so that the module can't be unloaded out from underneath
1271 * it.
1272 */
1273 if (spa->spa_did != 0) {
1274 thread_join(spa->spa_did);
1275 spa->spa_did = 0;
1276 }
1277 }
1278
1279 /*
1280 * Verify a pool configuration, and construct the vdev tree appropriately. This
1281 * will create all the necessary vdevs in the appropriate layout, with each vdev
1282 * in the CLOSED state. This will prep the pool before open/creation/import.
1283 * All vdev validation is done by the vdev_alloc() routine.
1284 */
1285 static int
1286 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
1287 uint_t id, int atype)
1288 {
1289 nvlist_t **child;
1290 uint_t children;
1291 int error;
1292
1293 if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
1294 return (error);
1295
1296 if ((*vdp)->vdev_ops->vdev_op_leaf)
1297 return (0);
1298
1299 error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1300 &child, &children);
1301
1302 if (error == ENOENT)
1303 return (0);
1304
1305 if (error) {
1306 vdev_free(*vdp);
1307 *vdp = NULL;
1308 return (SET_ERROR(EINVAL));
1309 }
1310
1311 for (int c = 0; c < children; c++) {
1312 vdev_t *vd;
1313 if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
1314 atype)) != 0) {
1315 vdev_free(*vdp);
1316 *vdp = NULL;
1317 return (error);
1318 }
1319 }
1320
1321 ASSERT(*vdp != NULL);
1322
1323 return (0);
1324 }
1325
1326 /*
1327 * Opposite of spa_load().
1328 */
1329 static void
1330 spa_unload(spa_t *spa)
1331 {
1332 int i;
1333
1334 ASSERT(MUTEX_HELD(&spa_namespace_lock));
1335
1336 /*
1337 * Stop async tasks.
1338 */
1339 spa_async_suspend(spa);
1340
1341 /*
1342 * Stop syncing.
1343 */
1344 if (spa->spa_sync_on) {
1345 txg_sync_stop(spa->spa_dsl_pool);
1346 spa->spa_sync_on = B_FALSE;
1347 }
1348
1349 /*
1350 * Even though vdev_free() also calls vdev_metaslab_fini, we need
1351 * to call it earlier, before we wait for async i/o to complete.
1352 * This ensures that there is no async metaslab prefetching, by
1353 * calling taskq_wait(mg_taskq).
1354 */
1355 if (spa->spa_root_vdev != NULL) {
1356 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1357 for (int c = 0; c < spa->spa_root_vdev->vdev_children; c++)
1358 vdev_metaslab_fini(spa->spa_root_vdev->vdev_child[c]);
1359 spa_config_exit(spa, SCL_ALL, FTAG);
1360 }
1361
1362 if (spa->spa_mmp.mmp_thread)
1363 mmp_thread_stop(spa);
1364
1365 /*
1366 * Wait for any outstanding async I/O to complete.
1367 */
1368 if (spa->spa_async_zio_root != NULL) {
1369 for (int i = 0; i < max_ncpus; i++)
1370 (void) zio_wait(spa->spa_async_zio_root[i]);
1371 kmem_free(spa->spa_async_zio_root, max_ncpus * sizeof (void *));
1372 spa->spa_async_zio_root = NULL;
1373 }
1374
1375 bpobj_close(&spa->spa_deferred_bpobj);
1376
1377 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1378
1379 /*
1380 * Close all vdevs.
1381 */
1382 if (spa->spa_root_vdev)
1383 vdev_free(spa->spa_root_vdev);
1384 ASSERT(spa->spa_root_vdev == NULL);
1385
1386 /*
1387 * Close the dsl pool.
1388 */
1389 if (spa->spa_dsl_pool) {
1390 dsl_pool_close(spa->spa_dsl_pool);
1391 spa->spa_dsl_pool = NULL;
1392 spa->spa_meta_objset = NULL;
1393 }
1394
1395 ddt_unload(spa);
1396
1397 /*
1398 * Drop and purge level 2 cache
1399 */
1400 spa_l2cache_drop(spa);
1401
1402 for (i = 0; i < spa->spa_spares.sav_count; i++)
1403 vdev_free(spa->spa_spares.sav_vdevs[i]);
1404 if (spa->spa_spares.sav_vdevs) {
1405 kmem_free(spa->spa_spares.sav_vdevs,
1406 spa->spa_spares.sav_count * sizeof (void *));
1407 spa->spa_spares.sav_vdevs = NULL;
1408 }
1409 if (spa->spa_spares.sav_config) {
1410 nvlist_free(spa->spa_spares.sav_config);
1411 spa->spa_spares.sav_config = NULL;
1412 }
1413 spa->spa_spares.sav_count = 0;
1414
1415 for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
1416 vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]);
1417 vdev_free(spa->spa_l2cache.sav_vdevs[i]);
1418 }
1419 if (spa->spa_l2cache.sav_vdevs) {
1420 kmem_free(spa->spa_l2cache.sav_vdevs,
1421 spa->spa_l2cache.sav_count * sizeof (void *));
1422 spa->spa_l2cache.sav_vdevs = NULL;
1423 }
1424 if (spa->spa_l2cache.sav_config) {
1425 nvlist_free(spa->spa_l2cache.sav_config);
1426 spa->spa_l2cache.sav_config = NULL;
1427 }
1428 spa->spa_l2cache.sav_count = 0;
1429
1430 spa->spa_async_suspended = 0;
1431
1432 if (spa->spa_comment != NULL) {
1433 spa_strfree(spa->spa_comment);
1434 spa->spa_comment = NULL;
1435 }
1436
1437 spa_config_exit(spa, SCL_ALL, FTAG);
1438 }
1439
1440 /*
1441 * Load (or re-load) the current list of vdevs describing the active spares for
1442 * this pool. When this is called, we have some form of basic information in
1443 * 'spa_spares.sav_config'. We parse this into vdevs, try to open them, and
1444 * then re-generate a more complete list including status information.
1445 */
1446 static void
1447 spa_load_spares(spa_t *spa)
1448 {
1449 nvlist_t **spares;
1450 uint_t nspares;
1451 int i;
1452 vdev_t *vd, *tvd;
1453
1454 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1455
1456 /*
1457 * First, close and free any existing spare vdevs.
1458 */
1459 for (i = 0; i < spa->spa_spares.sav_count; i++) {
1460 vd = spa->spa_spares.sav_vdevs[i];
1461
1462 /* Undo the call to spa_activate() below */
1463 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1464 B_FALSE)) != NULL && tvd->vdev_isspare)
1465 spa_spare_remove(tvd);
1466 vdev_close(vd);
1467 vdev_free(vd);
1468 }
1469
1470 if (spa->spa_spares.sav_vdevs)
1471 kmem_free(spa->spa_spares.sav_vdevs,
1472 spa->spa_spares.sav_count * sizeof (void *));
1473
1474 if (spa->spa_spares.sav_config == NULL)
1475 nspares = 0;
1476 else
1477 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
1478 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
1479
1480 spa->spa_spares.sav_count = (int)nspares;
1481 spa->spa_spares.sav_vdevs = NULL;
1482
1483 if (nspares == 0)
1484 return;
1485
1486 /*
1487 * Construct the array of vdevs, opening them to get status in the
1488 * process. For each spare, there is potentially two different vdev_t
1489 * structures associated with it: one in the list of spares (used only
1490 * for basic validation purposes) and one in the active vdev
1491 * configuration (if it's spared in). During this phase we open and
1492 * validate each vdev on the spare list. If the vdev also exists in the
1493 * active configuration, then we also mark this vdev as an active spare.
1494 */
1495 spa->spa_spares.sav_vdevs = kmem_zalloc(nspares * sizeof (void *),
1496 KM_SLEEP);
1497 for (i = 0; i < spa->spa_spares.sav_count; i++) {
1498 VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
1499 VDEV_ALLOC_SPARE) == 0);
1500 ASSERT(vd != NULL);
1501
1502 spa->spa_spares.sav_vdevs[i] = vd;
1503
1504 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1505 B_FALSE)) != NULL) {
1506 if (!tvd->vdev_isspare)
1507 spa_spare_add(tvd);
1508
1509 /*
1510 * We only mark the spare active if we were successfully
1511 * able to load the vdev. Otherwise, importing a pool
1512 * with a bad active spare would result in strange
1513 * behavior, because multiple pool would think the spare
1514 * is actively in use.
1515 *
1516 * There is a vulnerability here to an equally bizarre
1517 * circumstance, where a dead active spare is later
1518 * brought back to life (onlined or otherwise). Given
1519 * the rarity of this scenario, and the extra complexity
1520 * it adds, we ignore the possibility.
1521 */
1522 if (!vdev_is_dead(tvd))
1523 spa_spare_activate(tvd);
1524 }
1525
1526 vd->vdev_top = vd;
1527 vd->vdev_aux = &spa->spa_spares;
1528
1529 if (vdev_open(vd) != 0)
1530 continue;
1531
1532 if (vdev_validate_aux(vd) == 0)
1533 spa_spare_add(vd);
1534 }
1535
1536 /*
1537 * Recompute the stashed list of spares, with status information
1538 * this time.
1539 */
1540 VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES,
1541 DATA_TYPE_NVLIST_ARRAY) == 0);
1542
1543 spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
1544 KM_SLEEP);
1545 for (i = 0; i < spa->spa_spares.sav_count; i++)
1546 spares[i] = vdev_config_generate(spa,
1547 spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE);
1548 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
1549 ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0);
1550 for (i = 0; i < spa->spa_spares.sav_count; i++)
1551 nvlist_free(spares[i]);
1552 kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
1553 }
1554
1555 /*
1556 * Load (or re-load) the current list of vdevs describing the active l2cache for
1557 * this pool. When this is called, we have some form of basic information in
1558 * 'spa_l2cache.sav_config'. We parse this into vdevs, try to open them, and
1559 * then re-generate a more complete list including status information.
1560 * Devices which are already active have their details maintained, and are
1561 * not re-opened.
1562 */
1563 static void
1564 spa_load_l2cache(spa_t *spa)
1565 {
1566 nvlist_t **l2cache = NULL;
1567 uint_t nl2cache;
1568 int i, j, oldnvdevs;
1569 uint64_t guid;
1570 vdev_t *vd, **oldvdevs, **newvdevs;
1571 spa_aux_vdev_t *sav = &spa->spa_l2cache;
1572
1573 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1574
1575 oldvdevs = sav->sav_vdevs;
1576 oldnvdevs = sav->sav_count;
1577 sav->sav_vdevs = NULL;
1578 sav->sav_count = 0;
1579
1580 if (sav->sav_config == NULL) {
1581 nl2cache = 0;
1582 newvdevs = NULL;
1583 goto out;
1584 }
1585
1586 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
1587 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
1588 newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP);
1589
1590 /*
1591 * Process new nvlist of vdevs.
1592 */
1593 for (i = 0; i < nl2cache; i++) {
1594 VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID,
1595 &guid) == 0);
1596
1597 newvdevs[i] = NULL;
1598 for (j = 0; j < oldnvdevs; j++) {
1599 vd = oldvdevs[j];
1600 if (vd != NULL && guid == vd->vdev_guid) {
1601 /*
1602 * Retain previous vdev for add/remove ops.
1603 */
1604 newvdevs[i] = vd;
1605 oldvdevs[j] = NULL;
1606 break;
1607 }
1608 }
1609
1610 if (newvdevs[i] == NULL) {
1611 /*
1612 * Create new vdev
1613 */
1614 VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
1615 VDEV_ALLOC_L2CACHE) == 0);
1616 ASSERT(vd != NULL);
1617 newvdevs[i] = vd;
1618
1619 /*
1620 * Commit this vdev as an l2cache device,
1621 * even if it fails to open.
1622 */
1623 spa_l2cache_add(vd);
1624
1625 vd->vdev_top = vd;
1626 vd->vdev_aux = sav;
1627
1628 spa_l2cache_activate(vd);
1629
1630 if (vdev_open(vd) != 0)
1631 continue;
1632
1633 (void) vdev_validate_aux(vd);
1634
1635 if (!vdev_is_dead(vd))
1636 l2arc_add_vdev(spa, vd);
1637 }
1638 }
1639
1640 sav->sav_vdevs = newvdevs;
1641 sav->sav_count = (int)nl2cache;
1642
1643 /*
1644 * Recompute the stashed list of l2cache devices, with status
1645 * information this time.
1646 */
1647 VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
1648 DATA_TYPE_NVLIST_ARRAY) == 0);
1649
1650 if (sav->sav_count > 0)
1651 l2cache = kmem_alloc(sav->sav_count * sizeof (void *),
1652 KM_SLEEP);
1653 for (i = 0; i < sav->sav_count; i++)
1654 l2cache[i] = vdev_config_generate(spa,
1655 sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE);
1656 VERIFY(nvlist_add_nvlist_array(sav->sav_config,
1657 ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0);
1658
1659 out:
1660 /*
1661 * Purge vdevs that were dropped
1662 */
1663 for (i = 0; i < oldnvdevs; i++) {
1664 uint64_t pool;
1665
1666 vd = oldvdevs[i];
1667 if (vd != NULL) {
1668 ASSERT(vd->vdev_isl2cache);
1669
1670 if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
1671 pool != 0ULL && l2arc_vdev_present(vd))
1672 l2arc_remove_vdev(vd);
1673 vdev_clear_stats(vd);
1674 vdev_free(vd);
1675 }
1676 }
1677
1678 if (oldvdevs)
1679 kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
1680
1681 for (i = 0; i < sav->sav_count; i++)
1682 nvlist_free(l2cache[i]);
1683 if (sav->sav_count)
1684 kmem_free(l2cache, sav->sav_count * sizeof (void *));
1685 }
1686
1687 static int
1688 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
1689 {
1690 dmu_buf_t *db;
1691 char *packed = NULL;
1692 size_t nvsize = 0;
1693 int error;
1694 *value = NULL;
1695
1696 error = dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db);
1697 if (error)
1698 return (error);
1699
1700 nvsize = *(uint64_t *)db->db_data;
1701 dmu_buf_rele(db, FTAG);
1702
1703 packed = vmem_alloc(nvsize, KM_SLEEP);
1704 error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed,
1705 DMU_READ_PREFETCH);
1706 if (error == 0)
1707 error = nvlist_unpack(packed, nvsize, value, 0);
1708 vmem_free(packed, nvsize);
1709
1710 return (error);
1711 }
1712
1713 /*
1714 * Checks to see if the given vdev could not be opened, in which case we post a
1715 * sysevent to notify the autoreplace code that the device has been removed.
1716 */
1717 static void
1718 spa_check_removed(vdev_t *vd)
1719 {
1720 for (int c = 0; c < vd->vdev_children; c++)
1721 spa_check_removed(vd->vdev_child[c]);
1722
1723 if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) &&
1724 !vd->vdev_ishole) {
1725 zfs_post_autoreplace(vd->vdev_spa, vd);
1726 spa_event_notify(vd->vdev_spa, vd, NULL, ESC_ZFS_VDEV_CHECK);
1727 }
1728 }
1729
1730 static void
1731 spa_config_valid_zaps(vdev_t *vd, vdev_t *mvd)
1732 {
1733 ASSERT3U(vd->vdev_children, ==, mvd->vdev_children);
1734
1735 vd->vdev_top_zap = mvd->vdev_top_zap;
1736 vd->vdev_leaf_zap = mvd->vdev_leaf_zap;
1737
1738 for (uint64_t i = 0; i < vd->vdev_children; i++) {
1739 spa_config_valid_zaps(vd->vdev_child[i], mvd->vdev_child[i]);
1740 }
1741 }
1742
1743 /*
1744 * Validate the current config against the MOS config
1745 */
1746 static boolean_t
1747 spa_config_valid(spa_t *spa, nvlist_t *config)
1748 {
1749 vdev_t *mrvd, *rvd = spa->spa_root_vdev;
1750 nvlist_t *nv;
1751
1752 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nv) == 0);
1753
1754 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1755 VERIFY(spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0);
1756
1757 ASSERT3U(rvd->vdev_children, ==, mrvd->vdev_children);
1758
1759 /*
1760 * If we're doing a normal import, then build up any additional
1761 * diagnostic information about missing devices in this config.
1762 * We'll pass this up to the user for further processing.
1763 */
1764 if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) {
1765 nvlist_t **child, *nv;
1766 uint64_t idx = 0;
1767
1768 child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t *),
1769 KM_SLEEP);
1770 VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0);
1771
1772 for (int c = 0; c < rvd->vdev_children; c++) {
1773 vdev_t *tvd = rvd->vdev_child[c];
1774 vdev_t *mtvd = mrvd->vdev_child[c];
1775
1776 if (tvd->vdev_ops == &vdev_missing_ops &&
1777 mtvd->vdev_ops != &vdev_missing_ops &&
1778 mtvd->vdev_islog)
1779 child[idx++] = vdev_config_generate(spa, mtvd,
1780 B_FALSE, 0);
1781 }
1782
1783 if (idx) {
1784 VERIFY(nvlist_add_nvlist_array(nv,
1785 ZPOOL_CONFIG_CHILDREN, child, idx) == 0);
1786 VERIFY(nvlist_add_nvlist(spa->spa_load_info,
1787 ZPOOL_CONFIG_MISSING_DEVICES, nv) == 0);
1788
1789 for (int i = 0; i < idx; i++)
1790 nvlist_free(child[i]);
1791 }
1792 nvlist_free(nv);
1793 kmem_free(child, rvd->vdev_children * sizeof (char **));
1794 }
1795
1796 /*
1797 * Compare the root vdev tree with the information we have
1798 * from the MOS config (mrvd). Check each top-level vdev
1799 * with the corresponding MOS config top-level (mtvd).
1800 */
1801 for (int c = 0; c < rvd->vdev_children; c++) {
1802 vdev_t *tvd = rvd->vdev_child[c];
1803 vdev_t *mtvd = mrvd->vdev_child[c];
1804
1805 /*
1806 * Resolve any "missing" vdevs in the current configuration.
1807 * If we find that the MOS config has more accurate information
1808 * about the top-level vdev then use that vdev instead.
1809 */
1810 if (tvd->vdev_ops == &vdev_missing_ops &&
1811 mtvd->vdev_ops != &vdev_missing_ops) {
1812
1813 if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG))
1814 continue;
1815
1816 /*
1817 * Device specific actions.
1818 */
1819 if (mtvd->vdev_islog) {
1820 spa_set_log_state(spa, SPA_LOG_CLEAR);
1821 } else {
1822 /*
1823 * XXX - once we have 'readonly' pool
1824 * support we should be able to handle
1825 * missing data devices by transitioning
1826 * the pool to readonly.
1827 */
1828 continue;
1829 }
1830
1831 /*
1832 * Swap the missing vdev with the data we were
1833 * able to obtain from the MOS config.
1834 */
1835 vdev_remove_child(rvd, tvd);
1836 vdev_remove_child(mrvd, mtvd);
1837
1838 vdev_add_child(rvd, mtvd);
1839 vdev_add_child(mrvd, tvd);
1840
1841 spa_config_exit(spa, SCL_ALL, FTAG);
1842 vdev_load(mtvd);
1843 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1844
1845 vdev_reopen(rvd);
1846 } else {
1847 if (mtvd->vdev_islog) {
1848 /*
1849 * Load the slog device's state from the MOS
1850 * config since it's possible that the label
1851 * does not contain the most up-to-date
1852 * information.
1853 */
1854 vdev_load_log_state(tvd, mtvd);
1855 vdev_reopen(tvd);
1856 }
1857
1858 /*
1859 * Per-vdev ZAP info is stored exclusively in the MOS.
1860 */
1861 spa_config_valid_zaps(tvd, mtvd);
1862 }
1863 }
1864
1865 vdev_free(mrvd);
1866 spa_config_exit(spa, SCL_ALL, FTAG);
1867
1868 /*
1869 * Ensure we were able to validate the config.
1870 */
1871 return (rvd->vdev_guid_sum == spa->spa_uberblock.ub_guid_sum);
1872 }
1873
1874 /*
1875 * Check for missing log devices
1876 */
1877 static boolean_t
1878 spa_check_logs(spa_t *spa)
1879 {
1880 boolean_t rv = B_FALSE;
1881 dsl_pool_t *dp = spa_get_dsl(spa);
1882
1883 switch (spa->spa_log_state) {
1884 default:
1885 break;
1886 case SPA_LOG_MISSING:
1887 /* need to recheck in case slog has been restored */
1888 case SPA_LOG_UNKNOWN:
1889 rv = (dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
1890 zil_check_log_chain, NULL, DS_FIND_CHILDREN) != 0);
1891 if (rv)
1892 spa_set_log_state(spa, SPA_LOG_MISSING);
1893 break;
1894 }
1895 return (rv);
1896 }
1897
1898 static boolean_t
1899 spa_passivate_log(spa_t *spa)
1900 {
1901 vdev_t *rvd = spa->spa_root_vdev;
1902 boolean_t slog_found = B_FALSE;
1903
1904 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1905
1906 if (!spa_has_slogs(spa))
1907 return (B_FALSE);
1908
1909 for (int c = 0; c < rvd->vdev_children; c++) {
1910 vdev_t *tvd = rvd->vdev_child[c];
1911 metaslab_group_t *mg = tvd->vdev_mg;
1912
1913 if (tvd->vdev_islog) {
1914 metaslab_group_passivate(mg);
1915 slog_found = B_TRUE;
1916 }
1917 }
1918
1919 return (slog_found);
1920 }
1921
1922 static void
1923 spa_activate_log(spa_t *spa)
1924 {
1925 vdev_t *rvd = spa->spa_root_vdev;
1926
1927 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1928
1929 for (int c = 0; c < rvd->vdev_children; c++) {
1930 vdev_t *tvd = rvd->vdev_child[c];
1931 metaslab_group_t *mg = tvd->vdev_mg;
1932
1933 if (tvd->vdev_islog)
1934 metaslab_group_activate(mg);
1935 }
1936 }
1937
1938 int
1939 spa_offline_log(spa_t *spa)
1940 {
1941 int error;
1942
1943 error = dmu_objset_find(spa_name(spa), zil_vdev_offline,
1944 NULL, DS_FIND_CHILDREN);
1945 if (error == 0) {
1946 /*
1947 * We successfully offlined the log device, sync out the
1948 * current txg so that the "stubby" block can be removed
1949 * by zil_sync().
1950 */
1951 txg_wait_synced(spa->spa_dsl_pool, 0);
1952 }
1953 return (error);
1954 }
1955
1956 static void
1957 spa_aux_check_removed(spa_aux_vdev_t *sav)
1958 {
1959 for (int i = 0; i < sav->sav_count; i++)
1960 spa_check_removed(sav->sav_vdevs[i]);
1961 }
1962
1963 void
1964 spa_claim_notify(zio_t *zio)
1965 {
1966 spa_t *spa = zio->io_spa;
1967
1968 if (zio->io_error)
1969 return;
1970
1971 mutex_enter(&spa->spa_props_lock); /* any mutex will do */
1972 if (spa->spa_claim_max_txg < zio->io_bp->blk_birth)
1973 spa->spa_claim_max_txg = zio->io_bp->blk_birth;
1974 mutex_exit(&spa->spa_props_lock);
1975 }
1976
1977 typedef struct spa_load_error {
1978 uint64_t sle_meta_count;
1979 uint64_t sle_data_count;
1980 } spa_load_error_t;
1981
1982 static void
1983 spa_load_verify_done(zio_t *zio)
1984 {
1985 blkptr_t *bp = zio->io_bp;
1986 spa_load_error_t *sle = zio->io_private;
1987 dmu_object_type_t type = BP_GET_TYPE(bp);
1988 int error = zio->io_error;
1989 spa_t *spa = zio->io_spa;
1990
1991 abd_free(zio->io_abd);
1992 if (error) {
1993 if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) &&
1994 type != DMU_OT_INTENT_LOG)
1995 atomic_inc_64(&sle->sle_meta_count);
1996 else
1997 atomic_inc_64(&sle->sle_data_count);
1998 }
1999
2000 mutex_enter(&spa->spa_scrub_lock);
2001 spa->spa_load_verify_ios--;
2002 cv_broadcast(&spa->spa_scrub_io_cv);
2003 mutex_exit(&spa->spa_scrub_lock);
2004 }
2005
2006 /*
2007 * Maximum number of concurrent scrub i/os to create while verifying
2008 * a pool while importing it.
2009 */
2010 int spa_load_verify_maxinflight = 10000;
2011 int spa_load_verify_metadata = B_TRUE;
2012 int spa_load_verify_data = B_TRUE;
2013
2014 /*ARGSUSED*/
2015 static int
2016 spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
2017 const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg)
2018 {
2019 if (bp == NULL || BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp))
2020 return (0);
2021 /*
2022 * Note: normally this routine will not be called if
2023 * spa_load_verify_metadata is not set. However, it may be useful
2024 * to manually set the flag after the traversal has begun.
2025 */
2026 if (!spa_load_verify_metadata)
2027 return (0);
2028 if (!BP_IS_METADATA(bp) && !spa_load_verify_data)
2029 return (0);
2030
2031 zio_t *rio = arg;
2032 size_t size = BP_GET_PSIZE(bp);
2033
2034 mutex_enter(&spa->spa_scrub_lock);
2035 while (spa->spa_load_verify_ios >= spa_load_verify_maxinflight)
2036 cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
2037 spa->spa_load_verify_ios++;
2038 mutex_exit(&spa->spa_scrub_lock);
2039
2040 zio_nowait(zio_read(rio, spa, bp, abd_alloc_for_io(size, B_FALSE), size,
2041 spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB,
2042 ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL |
2043 ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb));
2044 return (0);
2045 }
2046
2047 /* ARGSUSED */
2048 int
2049 verify_dataset_name_len(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
2050 {
2051 if (dsl_dataset_namelen(ds) >= ZFS_MAX_DATASET_NAME_LEN)
2052 return (SET_ERROR(ENAMETOOLONG));
2053
2054 return (0);
2055 }
2056
2057 static int
2058 spa_load_verify(spa_t *spa)
2059 {
2060 zio_t *rio;
2061 spa_load_error_t sle = { 0 };
2062 zpool_rewind_policy_t policy;
2063 boolean_t verify_ok = B_FALSE;
2064 int error = 0;
2065
2066 zpool_get_rewind_policy(spa->spa_config, &policy);
2067
2068 if (policy.zrp_request & ZPOOL_NEVER_REWIND)
2069 return (0);
2070
2071 dsl_pool_config_enter(spa->spa_dsl_pool, FTAG);
2072 error = dmu_objset_find_dp(spa->spa_dsl_pool,
2073 spa->spa_dsl_pool->dp_root_dir_obj, verify_dataset_name_len, NULL,
2074 DS_FIND_CHILDREN);
2075 dsl_pool_config_exit(spa->spa_dsl_pool, FTAG);
2076 if (error != 0)
2077 return (error);
2078
2079 rio = zio_root(spa, NULL, &sle,
2080 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
2081
2082 if (spa_load_verify_metadata) {
2083 error = traverse_pool(spa, spa->spa_verify_min_txg,
2084 TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA |
2085 TRAVERSE_NO_DECRYPT, spa_load_verify_cb, rio);
2086 }
2087
2088 (void) zio_wait(rio);
2089
2090 spa->spa_load_meta_errors = sle.sle_meta_count;
2091 spa->spa_load_data_errors = sle.sle_data_count;
2092
2093 if (!error && sle.sle_meta_count <= policy.zrp_maxmeta &&
2094 sle.sle_data_count <= policy.zrp_maxdata) {
2095 int64_t loss = 0;
2096
2097 verify_ok = B_TRUE;
2098 spa->spa_load_txg = spa->spa_uberblock.ub_txg;
2099 spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp;
2100
2101 loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts;
2102 VERIFY(nvlist_add_uint64(spa->spa_load_info,
2103 ZPOOL_CONFIG_LOAD_TIME, spa->spa_load_txg_ts) == 0);
2104 VERIFY(nvlist_add_int64(spa->spa_load_info,
2105 ZPOOL_CONFIG_REWIND_TIME, loss) == 0);
2106 VERIFY(nvlist_add_uint64(spa->spa_load_info,
2107 ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count) == 0);
2108 } else {
2109 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg;
2110 }
2111
2112 if (error) {
2113 if (error != ENXIO && error != EIO)
2114 error = SET_ERROR(EIO);
2115 return (error);
2116 }
2117
2118 return (verify_ok ? 0 : EIO);
2119 }
2120
2121 /*
2122 * Find a value in the pool props object.
2123 */
2124 static void
2125 spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val)
2126 {
2127 (void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object,
2128 zpool_prop_to_name(prop), sizeof (uint64_t), 1, val);
2129 }
2130
2131 /*
2132 * Find a value in the pool directory object.
2133 */
2134 static int
2135 spa_dir_prop(spa_t *spa, const char *name, uint64_t *val)
2136 {
2137 return (zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
2138 name, sizeof (uint64_t), 1, val));
2139 }
2140
2141 static int
2142 spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err)
2143 {
2144 vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux);
2145 return (err);
2146 }
2147
2148 /*
2149 * Fix up config after a partly-completed split. This is done with the
2150 * ZPOOL_CONFIG_SPLIT nvlist. Both the splitting pool and the split-off
2151 * pool have that entry in their config, but only the splitting one contains
2152 * a list of all the guids of the vdevs that are being split off.
2153 *
2154 * This function determines what to do with that list: either rejoin
2155 * all the disks to the pool, or complete the splitting process. To attempt
2156 * the rejoin, each disk that is offlined is marked online again, and
2157 * we do a reopen() call. If the vdev label for every disk that was
2158 * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL)
2159 * then we call vdev_split() on each disk, and complete the split.
2160 *
2161 * Otherwise we leave the config alone, with all the vdevs in place in
2162 * the original pool.
2163 */
2164 static void
2165 spa_try_repair(spa_t *spa, nvlist_t *config)
2166 {
2167 uint_t extracted;
2168 uint64_t *glist;
2169 uint_t i, gcount;
2170 nvlist_t *nvl;
2171 vdev_t **vd;
2172 boolean_t attempt_reopen;
2173
2174 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0)
2175 return;
2176
2177 /* check that the config is complete */
2178 if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
2179 &glist, &gcount) != 0)
2180 return;
2181
2182 vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP);
2183
2184 /* attempt to online all the vdevs & validate */
2185 attempt_reopen = B_TRUE;
2186 for (i = 0; i < gcount; i++) {
2187 if (glist[i] == 0) /* vdev is hole */
2188 continue;
2189
2190 vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE);
2191 if (vd[i] == NULL) {
2192 /*
2193 * Don't bother attempting to reopen the disks;
2194 * just do the split.
2195 */
2196 attempt_reopen = B_FALSE;
2197 } else {
2198 /* attempt to re-online it */
2199 vd[i]->vdev_offline = B_FALSE;
2200 }
2201 }
2202
2203 if (attempt_reopen) {
2204 vdev_reopen(spa->spa_root_vdev);
2205
2206 /* check each device to see what state it's in */
2207 for (extracted = 0, i = 0; i < gcount; i++) {
2208 if (vd[i] != NULL &&
2209 vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL)
2210 break;
2211 ++extracted;
2212 }
2213 }
2214
2215 /*
2216 * If every disk has been moved to the new pool, or if we never
2217 * even attempted to look at them, then we split them off for
2218 * good.
2219 */
2220 if (!attempt_reopen || gcount == extracted) {
2221 for (i = 0; i < gcount; i++)
2222 if (vd[i] != NULL)
2223 vdev_split(vd[i]);
2224 vdev_reopen(spa->spa_root_vdev);
2225 }
2226
2227 kmem_free(vd, gcount * sizeof (vdev_t *));
2228 }
2229
2230 static int
2231 spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type,
2232 boolean_t mosconfig)
2233 {
2234 nvlist_t *config = spa->spa_config;
2235 char *ereport = FM_EREPORT_ZFS_POOL;
2236 char *comment;
2237 int error;
2238 uint64_t pool_guid;
2239 nvlist_t *nvl;
2240
2241 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid))
2242 return (SET_ERROR(EINVAL));
2243
2244 ASSERT(spa->spa_comment == NULL);
2245 if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0)
2246 spa->spa_comment = spa_strdup(comment);
2247
2248 /*
2249 * Versioning wasn't explicitly added to the label until later, so if
2250 * it's not present treat it as the initial version.
2251 */
2252 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
2253 &spa->spa_ubsync.ub_version) != 0)
2254 spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
2255
2256 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
2257 &spa->spa_config_txg);
2258
2259 if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) &&
2260 spa_guid_exists(pool_guid, 0)) {
2261 error = SET_ERROR(EEXIST);
2262 } else {
2263 spa->spa_config_guid = pool_guid;
2264
2265 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT,
2266 &nvl) == 0) {
2267 VERIFY(nvlist_dup(nvl, &spa->spa_config_splitting,
2268 KM_SLEEP) == 0);
2269 }
2270
2271 nvlist_free(spa->spa_load_info);
2272 spa->spa_load_info = fnvlist_alloc();
2273
2274 gethrestime(&spa->spa_loaded_ts);
2275 error = spa_load_impl(spa, pool_guid, config, state, type,
2276 mosconfig, &ereport);
2277 }
2278
2279 /*
2280 * Don't count references from objsets that are already closed
2281 * and are making their way through the eviction process.
2282 */
2283 spa_evicting_os_wait(spa);
2284 spa->spa_minref = refcount_count(&spa->spa_refcount);
2285 if (error) {
2286 if (error != EEXIST) {
2287 spa->spa_loaded_ts.tv_sec = 0;
2288 spa->spa_loaded_ts.tv_nsec = 0;
2289 }
2290 if (error != EBADF) {
2291 zfs_ereport_post(ereport, spa, NULL, NULL, NULL, 0, 0);
2292 }
2293 }
2294 spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE;
2295 spa->spa_ena = 0;
2296
2297 return (error);
2298 }
2299
2300 #ifdef ZFS_DEBUG
2301 /*
2302 * Count the number of per-vdev ZAPs associated with all of the vdevs in the
2303 * vdev tree rooted in the given vd, and ensure that each ZAP is present in the
2304 * spa's per-vdev ZAP list.
2305 */
2306 static uint64_t
2307 vdev_count_verify_zaps(vdev_t *vd)
2308 {
2309 spa_t *spa = vd->vdev_spa;
2310 uint64_t total = 0;
2311
2312 if (vd->vdev_top_zap != 0) {
2313 total++;
2314 ASSERT0(zap_lookup_int(spa->spa_meta_objset,
2315 spa->spa_all_vdev_zaps, vd->vdev_top_zap));
2316 }
2317 if (vd->vdev_leaf_zap != 0) {
2318 total++;
2319 ASSERT0(zap_lookup_int(spa->spa_meta_objset,
2320 spa->spa_all_vdev_zaps, vd->vdev_leaf_zap));
2321 }
2322
2323 for (uint64_t i = 0; i < vd->vdev_children; i++) {
2324 total += vdev_count_verify_zaps(vd->vdev_child[i]);
2325 }
2326
2327 return (total);
2328 }
2329 #endif
2330
2331 /*
2332 * Determine whether the activity check is required.
2333 */
2334 static boolean_t
2335 spa_activity_check_required(spa_t *spa, uberblock_t *ub, nvlist_t *label,
2336 nvlist_t *config)
2337 {
2338 uint64_t state = 0;
2339 uint64_t hostid = 0;
2340 uint64_t tryconfig_txg = 0;
2341 uint64_t tryconfig_timestamp = 0;
2342 nvlist_t *nvinfo;
2343
2344 if (nvlist_exists(config, ZPOOL_CONFIG_LOAD_INFO)) {
2345 nvinfo = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_LOAD_INFO);
2346 (void) nvlist_lookup_uint64(nvinfo, ZPOOL_CONFIG_MMP_TXG,
2347 &tryconfig_txg);
2348 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
2349 &tryconfig_timestamp);
2350 }
2351
2352 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE, &state);
2353
2354 /*
2355 * Disable the MMP activity check - This is used by zdb which
2356 * is intended to be used on potentially active pools.
2357 */
2358 if (spa->spa_import_flags & ZFS_IMPORT_SKIP_MMP)
2359 return (B_FALSE);
2360
2361 /*
2362 * Skip the activity check when the MMP feature is disabled.
2363 */
2364 if (ub->ub_mmp_magic == MMP_MAGIC && ub->ub_mmp_delay == 0)
2365 return (B_FALSE);
2366 /*
2367 * If the tryconfig_* values are nonzero, they are the results of an
2368 * earlier tryimport. If they match the uberblock we just found, then
2369 * the pool has not changed and we return false so we do not test a
2370 * second time.
2371 */
2372 if (tryconfig_txg && tryconfig_txg == ub->ub_txg &&
2373 tryconfig_timestamp && tryconfig_timestamp == ub->ub_timestamp)
2374 return (B_FALSE);
2375
2376 /*
2377 * Allow the activity check to be skipped when importing the pool
2378 * on the same host which last imported it. Since the hostid from
2379 * configuration may be stale use the one read from the label.
2380 */
2381 if (nvlist_exists(label, ZPOOL_CONFIG_HOSTID))
2382 hostid = fnvlist_lookup_uint64(label, ZPOOL_CONFIG_HOSTID);
2383
2384 if (hostid == spa_get_hostid())
2385 return (B_FALSE);
2386
2387 /*
2388 * Skip the activity test when the pool was cleanly exported.
2389 */
2390 if (state != POOL_STATE_ACTIVE)
2391 return (B_FALSE);
2392
2393 return (B_TRUE);
2394 }
2395
2396 /*
2397 * Perform the import activity check. If the user canceled the import or
2398 * we detected activity then fail.
2399 */
2400 static int
2401 spa_activity_check(spa_t *spa, uberblock_t *ub, nvlist_t *config)
2402 {
2403 uint64_t import_intervals = MAX(zfs_multihost_import_intervals, 1);
2404 uint64_t txg = ub->ub_txg;
2405 uint64_t timestamp = ub->ub_timestamp;
2406 uint64_t import_delay = NANOSEC;
2407 hrtime_t import_expire;
2408 nvlist_t *mmp_label = NULL;
2409 vdev_t *rvd = spa->spa_root_vdev;
2410 kcondvar_t cv;
2411 kmutex_t mtx;
2412 int error = 0;
2413
2414 cv_init(&cv, NULL, CV_DEFAULT, NULL);
2415 mutex_init(&mtx, NULL, MUTEX_DEFAULT, NULL);
2416 mutex_enter(&mtx);
2417
2418 /*
2419 * If ZPOOL_CONFIG_MMP_TXG is present an activity check was performed
2420 * during the earlier tryimport. If the txg recorded there is 0 then
2421 * the pool is known to be active on another host.
2422 *
2423 * Otherwise, the pool might be in use on another node. Check for
2424 * changes in the uberblocks on disk if necessary.
2425 */
2426 if (nvlist_exists(config, ZPOOL_CONFIG_LOAD_INFO)) {
2427 nvlist_t *nvinfo = fnvlist_lookup_nvlist(config,
2428 ZPOOL_CONFIG_LOAD_INFO);
2429
2430 if (nvlist_exists(nvinfo, ZPOOL_CONFIG_MMP_TXG) &&
2431 fnvlist_lookup_uint64(nvinfo, ZPOOL_CONFIG_MMP_TXG) == 0) {
2432 vdev_uberblock_load(rvd, ub, &mmp_label);
2433 error = SET_ERROR(EREMOTEIO);
2434 goto out;
2435 }
2436 }
2437
2438 /*
2439 * Preferentially use the zfs_multihost_interval from the node which
2440 * last imported the pool. This value is stored in an MMP uberblock as.
2441 *
2442 * ub_mmp_delay * vdev_count_leaves() == zfs_multihost_interval
2443 */
2444 if (ub->ub_mmp_magic == MMP_MAGIC && ub->ub_mmp_delay)
2445 import_delay = MAX(import_delay, import_intervals *
2446 ub->ub_mmp_delay * MAX(vdev_count_leaves(spa), 1));
2447
2448 /* Apply a floor using the local default values. */
2449 import_delay = MAX(import_delay, import_intervals *
2450 MSEC2NSEC(MAX(zfs_multihost_interval, MMP_MIN_INTERVAL)));
2451
2452 /* Add a small random factor in case of simultaneous imports (0-25%) */
2453 import_expire = gethrtime() + import_delay +
2454 (import_delay * spa_get_random(250) / 1000);
2455
2456 while (gethrtime() < import_expire) {
2457 vdev_uberblock_load(rvd, ub, &mmp_label);
2458
2459 if (txg != ub->ub_txg || timestamp != ub->ub_timestamp) {
2460 error = SET_ERROR(EREMOTEIO);
2461 break;
2462 }
2463
2464 if (mmp_label) {
2465 nvlist_free(mmp_label);
2466 mmp_label = NULL;
2467 }
2468
2469 error = cv_timedwait_sig(&cv, &mtx, ddi_get_lbolt() + hz);
2470 if (error != -1) {
2471 error = SET_ERROR(EINTR);
2472 break;
2473 }
2474 error = 0;
2475 }
2476
2477 out:
2478 mutex_exit(&mtx);
2479 mutex_destroy(&mtx);
2480 cv_destroy(&cv);
2481
2482 /*
2483 * If the pool is determined to be active store the status in the
2484 * spa->spa_load_info nvlist. If the remote hostname or hostid are
2485 * available from configuration read from disk store them as well.
2486 * This allows 'zpool import' to generate a more useful message.
2487 *
2488 * ZPOOL_CONFIG_MMP_STATE - observed pool status (mandatory)
2489 * ZPOOL_CONFIG_MMP_HOSTNAME - hostname from the active pool
2490 * ZPOOL_CONFIG_MMP_HOSTID - hostid from the active pool
2491 */
2492 if (error == EREMOTEIO) {
2493 char *hostname = "<unknown>";
2494 uint64_t hostid = 0;
2495
2496 if (mmp_label) {
2497 if (nvlist_exists(mmp_label, ZPOOL_CONFIG_HOSTNAME)) {
2498 hostname = fnvlist_lookup_string(mmp_label,
2499 ZPOOL_CONFIG_HOSTNAME);
2500 fnvlist_add_string(spa->spa_load_info,
2501 ZPOOL_CONFIG_MMP_HOSTNAME, hostname);
2502 }
2503
2504 if (nvlist_exists(mmp_label, ZPOOL_CONFIG_HOSTID)) {
2505 hostid = fnvlist_lookup_uint64(mmp_label,
2506 ZPOOL_CONFIG_HOSTID);
2507 fnvlist_add_uint64(spa->spa_load_info,
2508 ZPOOL_CONFIG_MMP_HOSTID, hostid);
2509 }
2510 }
2511
2512 fnvlist_add_uint64(spa->spa_load_info,
2513 ZPOOL_CONFIG_MMP_STATE, MMP_STATE_ACTIVE);
2514 fnvlist_add_uint64(spa->spa_load_info,
2515 ZPOOL_CONFIG_MMP_TXG, 0);
2516
2517 error = spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO);
2518 }
2519
2520 if (mmp_label)
2521 nvlist_free(mmp_label);
2522
2523 return (error);
2524 }
2525
2526 /*
2527 * Load an existing storage pool, using the pool's builtin spa_config as a
2528 * source of configuration information.
2529 */
2530 __attribute__((always_inline))
2531 static inline int
2532 spa_load_impl(spa_t *spa, uint64_t pool_guid, nvlist_t *config,
2533 spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
2534 char **ereport)
2535 {
2536 int error = 0;
2537 nvlist_t *nvroot = NULL;
2538 nvlist_t *label;
2539 vdev_t *rvd;
2540 uberblock_t *ub = &spa->spa_uberblock;
2541 uint64_t children, config_cache_txg = spa->spa_config_txg;
2542 int orig_mode = spa->spa_mode;
2543 int parse;
2544 uint64_t obj;
2545 boolean_t missing_feat_write = B_FALSE;
2546 boolean_t activity_check = B_FALSE;
2547
2548 /*
2549 * If this is an untrusted config, access the pool in read-only mode.
2550 * This prevents things like resilvering recently removed devices.
2551 */
2552 if (!mosconfig)
2553 spa->spa_mode = FREAD;
2554
2555 ASSERT(MUTEX_HELD(&spa_namespace_lock));
2556
2557 spa->spa_load_state = state;
2558
2559 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot))
2560 return (SET_ERROR(EINVAL));
2561
2562 parse = (type == SPA_IMPORT_EXISTING ?
2563 VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT);
2564
2565 /*
2566 * Create "The Godfather" zio to hold all async IOs
2567 */
2568 spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
2569 KM_SLEEP);
2570 for (int i = 0; i < max_ncpus; i++) {
2571 spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
2572 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
2573 ZIO_FLAG_GODFATHER);
2574 }
2575
2576 /*
2577 * Parse the configuration into a vdev tree. We explicitly set the
2578 * value that will be returned by spa_version() since parsing the
2579 * configuration requires knowing the version number.
2580 */
2581 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2582 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, parse);
2583 spa_config_exit(spa, SCL_ALL, FTAG);
2584
2585 if (error != 0)
2586 return (error);
2587
2588 ASSERT(spa->spa_root_vdev == rvd);
2589 ASSERT3U(spa->spa_min_ashift, >=, SPA_MINBLOCKSHIFT);
2590 ASSERT3U(spa->spa_max_ashift, <=, SPA_MAXBLOCKSHIFT);
2591
2592 if (type != SPA_IMPORT_ASSEMBLE) {
2593 ASSERT(spa_guid(spa) == pool_guid);
2594 }
2595
2596 /*
2597 * Try to open all vdevs, loading each label in the process.
2598 */
2599 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2600 error = vdev_open(rvd);
2601 spa_config_exit(spa, SCL_ALL, FTAG);
2602 if (error != 0)
2603 return (error);
2604
2605 /*
2606 * We need to validate the vdev labels against the configuration that
2607 * we have in hand, which is dependent on the setting of mosconfig. If
2608 * mosconfig is true then we're validating the vdev labels based on
2609 * that config. Otherwise, we're validating against the cached config
2610 * (zpool.cache) that was read when we loaded the zfs module, and then
2611 * later we will recursively call spa_load() and validate against
2612 * the vdev config.
2613 *
2614 * If we're assembling a new pool that's been split off from an
2615 * existing pool, the labels haven't yet been updated so we skip
2616 * validation for now.
2617 */
2618 if (type != SPA_IMPORT_ASSEMBLE) {
2619 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2620 error = vdev_validate(rvd, mosconfig);
2621 spa_config_exit(spa, SCL_ALL, FTAG);
2622
2623 if (error != 0)
2624 return (error);
2625
2626 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
2627 return (SET_ERROR(ENXIO));
2628 }
2629
2630 /*
2631 * Find the best uberblock.
2632 */
2633 vdev_uberblock_load(rvd, ub, &label);
2634
2635 /*
2636 * If we weren't able to find a single valid uberblock, return failure.
2637 */
2638 if (ub->ub_txg == 0) {
2639 nvlist_free(label);
2640 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO));
2641 }
2642
2643 /*
2644 * For pools which have the multihost property on determine if the
2645 * pool is truly inactive and can be safely imported. Prevent
2646 * hosts which don't have a hostid set from importing the pool.
2647 */
2648 activity_check = spa_activity_check_required(spa, ub, label, config);
2649 if (activity_check) {
2650 if (ub->ub_mmp_magic == MMP_MAGIC && ub->ub_mmp_delay &&
2651 spa_get_hostid() == 0) {
2652 nvlist_free(label);
2653 fnvlist_add_uint64(spa->spa_load_info,
2654 ZPOOL_CONFIG_MMP_STATE, MMP_STATE_NO_HOSTID);
2655 return (spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO));
2656 }
2657
2658 error = spa_activity_check(spa, ub, config);
2659 if (error) {
2660 nvlist_free(label);
2661 return (error);
2662 }
2663
2664 fnvlist_add_uint64(spa->spa_load_info,
2665 ZPOOL_CONFIG_MMP_STATE, MMP_STATE_INACTIVE);
2666 fnvlist_add_uint64(spa->spa_load_info,
2667 ZPOOL_CONFIG_MMP_TXG, ub->ub_txg);
2668 }
2669
2670 /*
2671 * If the pool has an unsupported version we can't open it.
2672 */
2673 if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) {
2674 nvlist_free(label);
2675 return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP));
2676 }
2677
2678 if (ub->ub_version >= SPA_VERSION_FEATURES) {
2679 nvlist_t *features;
2680
2681 /*
2682 * If we weren't able to find what's necessary for reading the
2683 * MOS in the label, return failure.
2684 */
2685 if (label == NULL || nvlist_lookup_nvlist(label,
2686 ZPOOL_CONFIG_FEATURES_FOR_READ, &features) != 0) {
2687 nvlist_free(label);
2688 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2689 ENXIO));
2690 }
2691
2692 /*
2693 * Update our in-core representation with the definitive values
2694 * from the label.
2695 */
2696 nvlist_free(spa->spa_label_features);
2697 VERIFY(nvlist_dup(features, &spa->spa_label_features, 0) == 0);
2698 }
2699
2700 nvlist_free(label);
2701
2702 /*
2703 * Look through entries in the label nvlist's features_for_read. If
2704 * there is a feature listed there which we don't understand then we
2705 * cannot open a pool.
2706 */
2707 if (ub->ub_version >= SPA_VERSION_FEATURES) {
2708 nvlist_t *unsup_feat;
2709
2710 VERIFY(nvlist_alloc(&unsup_feat, NV_UNIQUE_NAME, KM_SLEEP) ==
2711 0);
2712
2713 for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features,
2714 NULL); nvp != NULL;
2715 nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) {
2716 if (!zfeature_is_supported(nvpair_name(nvp))) {
2717 VERIFY(nvlist_add_string(unsup_feat,
2718 nvpair_name(nvp), "") == 0);
2719 }
2720 }
2721
2722 if (!nvlist_empty(unsup_feat)) {
2723 VERIFY(nvlist_add_nvlist(spa->spa_load_info,
2724 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat) == 0);
2725 nvlist_free(unsup_feat);
2726 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2727 ENOTSUP));
2728 }
2729
2730 nvlist_free(unsup_feat);
2731 }
2732
2733 /*
2734 * If the vdev guid sum doesn't match the uberblock, we have an
2735 * incomplete configuration. We first check to see if the pool
2736 * is aware of the complete config (i.e ZPOOL_CONFIG_VDEV_CHILDREN).
2737 * If it is, defer the vdev_guid_sum check till later so we
2738 * can handle missing vdevs.
2739 */
2740 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN,
2741 &children) != 0 && mosconfig && type != SPA_IMPORT_ASSEMBLE &&
2742 rvd->vdev_guid_sum != ub->ub_guid_sum)
2743 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO));
2744
2745 if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) {
2746 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2747 spa_try_repair(spa, config);
2748 spa_config_exit(spa, SCL_ALL, FTAG);
2749 nvlist_free(spa->spa_config_splitting);
2750 spa->spa_config_splitting = NULL;
2751 }
2752
2753 /*
2754 * Initialize internal SPA structures.
2755 */
2756 spa->spa_state = POOL_STATE_ACTIVE;
2757 spa->spa_ubsync = spa->spa_uberblock;
2758 spa->spa_verify_min_txg = spa->spa_extreme_rewind ?
2759 TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1;
2760 spa->spa_first_txg = spa->spa_last_ubsync_txg ?
2761 spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1;
2762 spa->spa_claim_max_txg = spa->spa_first_txg;
2763 spa->spa_prev_software_version = ub->ub_software_version;
2764
2765 error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
2766 if (error)
2767 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2768 spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
2769
2770 if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object) != 0)
2771 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2772
2773 if (spa_version(spa) >= SPA_VERSION_FEATURES) {
2774 boolean_t missing_feat_read = B_FALSE;
2775 nvlist_t *unsup_feat, *enabled_feat;
2776
2777 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ,
2778 &spa->spa_feat_for_read_obj) != 0) {
2779 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2780 }
2781
2782 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE,
2783 &spa->spa_feat_for_write_obj) != 0) {
2784 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2785 }
2786
2787 if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS,
2788 &spa->spa_feat_desc_obj) != 0) {
2789 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2790 }
2791
2792 enabled_feat = fnvlist_alloc();
2793 unsup_feat = fnvlist_alloc();
2794
2795 if (!spa_features_check(spa, B_FALSE,
2796 unsup_feat, enabled_feat))
2797 missing_feat_read = B_TRUE;
2798
2799 if (spa_writeable(spa) || state == SPA_LOAD_TRYIMPORT) {
2800 if (!spa_features_check(spa, B_TRUE,
2801 unsup_feat, enabled_feat)) {
2802 missing_feat_write = B_TRUE;
2803 }
2804 }
2805
2806 fnvlist_add_nvlist(spa->spa_load_info,
2807 ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat);
2808
2809 if (!nvlist_empty(unsup_feat)) {
2810 fnvlist_add_nvlist(spa->spa_load_info,
2811 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat);
2812 }
2813
2814 fnvlist_free(enabled_feat);
2815 fnvlist_free(unsup_feat);
2816
2817 if (!missing_feat_read) {
2818 fnvlist_add_boolean(spa->spa_load_info,
2819 ZPOOL_CONFIG_CAN_RDONLY);
2820 }
2821
2822 /*
2823 * If the state is SPA_LOAD_TRYIMPORT, our objective is
2824 * twofold: to determine whether the pool is available for
2825 * import in read-write mode and (if it is not) whether the
2826 * pool is available for import in read-only mode. If the pool
2827 * is available for import in read-write mode, it is displayed
2828 * as available in userland; if it is not available for import
2829 * in read-only mode, it is displayed as unavailable in
2830 * userland. If the pool is available for import in read-only
2831 * mode but not read-write mode, it is displayed as unavailable
2832 * in userland with a special note that the pool is actually
2833 * available for open in read-only mode.
2834 *
2835 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are
2836 * missing a feature for write, we must first determine whether
2837 * the pool can be opened read-only before returning to
2838 * userland in order to know whether to display the
2839 * abovementioned note.
2840 */
2841 if (missing_feat_read || (missing_feat_write &&
2842 spa_writeable(spa))) {
2843 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2844 ENOTSUP));
2845 }
2846
2847 /*
2848 * Load refcounts for ZFS features from disk into an in-memory
2849 * cache during SPA initialization.
2850 */
2851 for (spa_feature_t i = 0; i < SPA_FEATURES; i++) {
2852 uint64_t refcount;
2853
2854 error = feature_get_refcount_from_disk(spa,
2855 &spa_feature_table[i], &refcount);
2856 if (error == 0) {
2857 spa->spa_feat_refcount_cache[i] = refcount;
2858 } else if (error == ENOTSUP) {
2859 spa->spa_feat_refcount_cache[i] =
2860 SPA_FEATURE_DISABLED;
2861 } else {
2862 return (spa_vdev_err(rvd,
2863 VDEV_AUX_CORRUPT_DATA, EIO));
2864 }
2865 }
2866 }
2867
2868 if (spa_feature_is_active(spa, SPA_FEATURE_ENABLED_TXG)) {
2869 if (spa_dir_prop(spa, DMU_POOL_FEATURE_ENABLED_TXG,
2870 &spa->spa_feat_enabled_txg_obj) != 0)
2871 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2872 }
2873
2874 spa->spa_is_initializing = B_TRUE;
2875 error = dsl_pool_open(spa->spa_dsl_pool);
2876 spa->spa_is_initializing = B_FALSE;
2877 if (error != 0)
2878 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2879
2880 if (!mosconfig) {
2881 uint64_t hostid;
2882 nvlist_t *policy = NULL, *nvconfig;
2883
2884 if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2885 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2886
2887 if (!spa_is_root(spa) && nvlist_lookup_uint64(nvconfig,
2888 ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
2889 char *hostname;
2890 unsigned long myhostid = 0;
2891
2892 VERIFY(nvlist_lookup_string(nvconfig,
2893 ZPOOL_CONFIG_HOSTNAME, &hostname) == 0);
2894
2895 myhostid = spa_get_hostid();
2896 if (hostid && myhostid && hostid != myhostid) {
2897 nvlist_free(nvconfig);
2898 return (SET_ERROR(EBADF));
2899 }
2900 }
2901 if (nvlist_lookup_nvlist(spa->spa_config,
2902 ZPOOL_REWIND_POLICY, &policy) == 0)
2903 VERIFY(nvlist_add_nvlist(nvconfig,
2904 ZPOOL_REWIND_POLICY, policy) == 0);
2905
2906 spa_config_set(spa, nvconfig);
2907 spa_unload(spa);
2908 spa_deactivate(spa);
2909 spa_activate(spa, orig_mode);
2910
2911 return (spa_load(spa, state, SPA_IMPORT_EXISTING, B_TRUE));
2912 }
2913
2914 /* Grab the checksum salt from the MOS. */
2915 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
2916 DMU_POOL_CHECKSUM_SALT, 1,
2917 sizeof (spa->spa_cksum_salt.zcs_bytes),
2918 spa->spa_cksum_salt.zcs_bytes);
2919 if (error == ENOENT) {
2920 /* Generate a new salt for subsequent use */
2921 (void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes,
2922 sizeof (spa->spa_cksum_salt.zcs_bytes));
2923 } else if (error != 0) {
2924 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2925 }
2926
2927 if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj) != 0)
2928 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2929 error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj);
2930 if (error != 0)
2931 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2932
2933 /*
2934 * Load the bit that tells us to use the new accounting function
2935 * (raid-z deflation). If we have an older pool, this will not
2936 * be present.
2937 */
2938 error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate);
2939 if (error != 0 && error != ENOENT)
2940 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2941
2942 error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION,
2943 &spa->spa_creation_version);
2944 if (error != 0 && error != ENOENT)
2945 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2946
2947 /*
2948 * Load the persistent error log. If we have an older pool, this will
2949 * not be present.
2950 */
2951 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last);
2952 if (error != 0 && error != ENOENT)
2953 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2954
2955 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB,
2956 &spa->spa_errlog_scrub);
2957 if (error != 0 && error != ENOENT)
2958 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2959
2960 /*
2961 * Load the history object. If we have an older pool, this
2962 * will not be present.
2963 */
2964 error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history);
2965 if (error != 0 && error != ENOENT)
2966 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2967
2968 /*
2969 * Load the per-vdev ZAP map. If we have an older pool, this will not
2970 * be present; in this case, defer its creation to a later time to
2971 * avoid dirtying the MOS this early / out of sync context. See
2972 * spa_sync_config_object.
2973 */
2974
2975 /* The sentinel is only available in the MOS config. */
2976 nvlist_t *mos_config;
2977 if (load_nvlist(spa, spa->spa_config_object, &mos_config) != 0)
2978 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2979
2980 error = spa_dir_prop(spa, DMU_POOL_VDEV_ZAP_MAP,
2981 &spa->spa_all_vdev_zaps);
2982
2983 if (error == ENOENT) {
2984 VERIFY(!nvlist_exists(mos_config,
2985 ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS));
2986 spa->spa_avz_action = AVZ_ACTION_INITIALIZE;
2987 ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev));
2988 } else if (error != 0) {
2989 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2990 } else if (!nvlist_exists(mos_config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS)) {
2991 /*
2992 * An older version of ZFS overwrote the sentinel value, so
2993 * we have orphaned per-vdev ZAPs in the MOS. Defer their
2994 * destruction to later; see spa_sync_config_object.
2995 */
2996 spa->spa_avz_action = AVZ_ACTION_DESTROY;
2997 /*
2998 * We're assuming that no vdevs have had their ZAPs created
2999 * before this. Better be sure of it.
3000 */
3001 ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev));
3002 }
3003 nvlist_free(mos_config);
3004
3005 /*
3006 * If we're assembling the pool from the split-off vdevs of
3007 * an existing pool, we don't want to attach the spares & cache
3008 * devices.
3009 */
3010
3011 /*
3012 * Load any hot spares for this pool.
3013 */
3014 error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object);
3015 if (error != 0 && error != ENOENT)
3016 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3017 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
3018 ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
3019 if (load_nvlist(spa, spa->spa_spares.sav_object,
3020 &spa->spa_spares.sav_config) != 0)
3021 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3022
3023 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3024 spa_load_spares(spa);
3025 spa_config_exit(spa, SCL_ALL, FTAG);
3026 } else if (error == 0) {
3027 spa->spa_spares.sav_sync = B_TRUE;
3028 }
3029
3030 /*
3031 * Load any level 2 ARC devices for this pool.
3032 */
3033 error = spa_dir_prop(spa, DMU_POOL_L2CACHE,
3034 &spa->spa_l2cache.sav_object);
3035 if (error != 0 && error != ENOENT)
3036 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3037 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
3038 ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
3039 if (load_nvlist(spa, spa->spa_l2cache.sav_object,
3040 &spa->spa_l2cache.sav_config) != 0)
3041 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3042
3043 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3044 spa_load_l2cache(spa);
3045 spa_config_exit(spa, SCL_ALL, FTAG);
3046 } else if (error == 0) {
3047 spa->spa_l2cache.sav_sync = B_TRUE;
3048 }
3049
3050 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
3051
3052 error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object);
3053 if (error && error != ENOENT)
3054 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3055
3056 if (error == 0) {
3057 uint64_t autoreplace = 0;
3058
3059 spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs);
3060 spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace);
3061 spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation);
3062 spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode);
3063 spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand);
3064 spa_prop_find(spa, ZPOOL_PROP_MULTIHOST, &spa->spa_multihost);
3065 spa_prop_find(spa, ZPOOL_PROP_DEDUPDITTO,
3066 &spa->spa_dedup_ditto);
3067
3068 spa->spa_autoreplace = (autoreplace != 0);
3069 }
3070
3071 /*
3072 * If the 'multihost' property is set, then never allow a pool to
3073 * be imported when the system hostid is zero. The exception to
3074 * this rule is zdb which is always allowed to access pools.
3075 */
3076 if (spa_multihost(spa) && spa_get_hostid() == 0 &&
3077 (spa->spa_import_flags & ZFS_IMPORT_SKIP_MMP) == 0) {
3078 fnvlist_add_uint64(spa->spa_load_info,
3079 ZPOOL_CONFIG_MMP_STATE, MMP_STATE_NO_HOSTID);
3080 return (spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO));
3081 }
3082
3083 /*
3084 * If the 'autoreplace' property is set, then post a resource notifying
3085 * the ZFS DE that it should not issue any faults for unopenable
3086 * devices. We also iterate over the vdevs, and post a sysevent for any
3087 * unopenable vdevs so that the normal autoreplace handler can take
3088 * over.
3089 */
3090 if (spa->spa_autoreplace && state != SPA_LOAD_TRYIMPORT) {
3091 spa_check_removed(spa->spa_root_vdev);
3092 /*
3093 * For the import case, this is done in spa_import(), because
3094 * at this point we're using the spare definitions from
3095 * the MOS config, not necessarily from the userland config.
3096 */
3097 if (state != SPA_LOAD_IMPORT) {
3098 spa_aux_check_removed(&spa->spa_spares);
3099 spa_aux_check_removed(&spa->spa_l2cache);
3100 }
3101 }
3102
3103 /*
3104 * Load the vdev state for all toplevel vdevs.
3105 */
3106 vdev_load(rvd);
3107
3108 /*
3109 * Propagate the leaf DTLs we just loaded all the way up the tree.
3110 */
3111 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3112 vdev_dtl_reassess(rvd, 0, 0, B_FALSE);
3113 spa_config_exit(spa, SCL_ALL, FTAG);
3114
3115 /*
3116 * Load the DDTs (dedup tables).
3117 */
3118 error = ddt_load(spa);
3119 if (error != 0)
3120 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3121
3122 spa_update_dspace(spa);
3123
3124 /*
3125 * Validate the config, using the MOS config to fill in any
3126 * information which might be missing. If we fail to validate
3127 * the config then declare the pool unfit for use. If we're
3128 * assembling a pool from a split, the log is not transferred
3129 * over.
3130 */
3131 if (type != SPA_IMPORT_ASSEMBLE) {
3132 nvlist_t *nvconfig;
3133
3134 if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
3135 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3136
3137 if (!spa_config_valid(spa, nvconfig)) {
3138 nvlist_free(nvconfig);
3139 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM,
3140 ENXIO));
3141 }
3142 nvlist_free(nvconfig);
3143
3144 /*
3145 * Now that we've validated the config, check the state of the
3146 * root vdev. If it can't be opened, it indicates one or
3147 * more toplevel vdevs are faulted.
3148 */
3149 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
3150 return (SET_ERROR(ENXIO));
3151
3152 if (spa_writeable(spa) && spa_check_logs(spa)) {
3153 *ereport = FM_EREPORT_ZFS_LOG_REPLAY;
3154 return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG, ENXIO));
3155 }
3156 }
3157
3158 if (missing_feat_write) {
3159 ASSERT(state == SPA_LOAD_TRYIMPORT);
3160
3161 /*
3162 * At this point, we know that we can open the pool in
3163 * read-only mode but not read-write mode. We now have enough
3164 * information and can return to userland.
3165 */
3166 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, ENOTSUP));
3167 }
3168
3169 /*
3170 * We've successfully opened the pool, verify that we're ready
3171 * to start pushing transactions.
3172 */
3173 if (state != SPA_LOAD_TRYIMPORT) {
3174 if ((error = spa_load_verify(spa)))
3175 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
3176 error));
3177 }
3178
3179 if (spa_writeable(spa) && (state == SPA_LOAD_RECOVER ||
3180 spa->spa_load_max_txg == UINT64_MAX)) {
3181 dmu_tx_t *tx;
3182 int need_update = B_FALSE;
3183 dsl_pool_t *dp = spa_get_dsl(spa);
3184
3185 ASSERT(state != SPA_LOAD_TRYIMPORT);
3186
3187 /*
3188 * Claim log blocks that haven't been committed yet.
3189 * This must all happen in a single txg.
3190 * Note: spa_claim_max_txg is updated by spa_claim_notify(),
3191 * invoked from zil_claim_log_block()'s i/o done callback.
3192 * Price of rollback is that we abandon the log.
3193 */
3194 spa->spa_claiming = B_TRUE;
3195
3196 tx = dmu_tx_create_assigned(dp, spa_first_txg(spa));
3197 (void) dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
3198 zil_claim, tx, DS_FIND_CHILDREN);
3199 dmu_tx_commit(tx);
3200
3201 spa->spa_claiming = B_FALSE;
3202
3203 spa_set_log_state(spa, SPA_LOG_GOOD);
3204 spa->spa_sync_on = B_TRUE;
3205 txg_sync_start(spa->spa_dsl_pool);
3206 mmp_thread_start(spa);
3207
3208 /*
3209 * Wait for all claims to sync. We sync up to the highest
3210 * claimed log block birth time so that claimed log blocks
3211 * don't appear to be from the future. spa_claim_max_txg
3212 * will have been set for us by either zil_check_log_chain()
3213 * (invoked from spa_check_logs()) or zil_claim() above.
3214 */
3215 txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg);
3216
3217 /*
3218 * If the config cache is stale, or we have uninitialized
3219 * metaslabs (see spa_vdev_add()), then update the config.
3220 *
3221 * If this is a verbatim import, trust the current
3222 * in-core spa_config and update the disk labels.
3223 */
3224 if (config_cache_txg != spa->spa_config_txg ||
3225 state == SPA_LOAD_IMPORT ||
3226 state == SPA_LOAD_RECOVER ||
3227 (spa->spa_import_flags & ZFS_IMPORT_VERBATIM))
3228 need_update = B_TRUE;
3229
3230 for (int c = 0; c < rvd->vdev_children; c++)
3231 if (rvd->vdev_child[c]->vdev_ms_array == 0)
3232 need_update = B_TRUE;
3233
3234 /*
3235 * Update the config cache asychronously in case we're the
3236 * root pool, in which case the config cache isn't writable yet.
3237 */
3238 if (need_update)
3239 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
3240
3241 /*
3242 * Check all DTLs to see if anything needs resilvering.
3243 */
3244 if (!dsl_scan_resilvering(spa->spa_dsl_pool) &&
3245 vdev_resilver_needed(rvd, NULL, NULL))
3246 spa_async_request(spa, SPA_ASYNC_RESILVER);
3247
3248 /*
3249 * Log the fact that we booted up (so that we can detect if
3250 * we rebooted in the middle of an operation).
3251 */
3252 spa_history_log_version(spa, "open", NULL);
3253
3254 /*
3255 * Delete any inconsistent datasets.
3256 */
3257 (void) dmu_objset_find(spa_name(spa),
3258 dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN);
3259
3260 /*
3261 * Clean up any stale temporary dataset userrefs.
3262 */
3263 dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool);
3264 }
3265
3266 return (0);
3267 }
3268
3269 static int
3270 spa_load_retry(spa_t *spa, spa_load_state_t state, int mosconfig)
3271 {
3272 int mode = spa->spa_mode;
3273
3274 spa_unload(spa);
3275 spa_deactivate(spa);
3276
3277 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg - 1;
3278
3279 spa_activate(spa, mode);
3280 spa_async_suspend(spa);
3281
3282 return (spa_load(spa, state, SPA_IMPORT_EXISTING, mosconfig));
3283 }
3284
3285 /*
3286 * If spa_load() fails this function will try loading prior txg's. If
3287 * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool
3288 * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this
3289 * function will not rewind the pool and will return the same error as
3290 * spa_load().
3291 */
3292 static int
3293 spa_load_best(spa_t *spa, spa_load_state_t state, int mosconfig,
3294 uint64_t max_request, int rewind_flags)
3295 {
3296 nvlist_t *loadinfo = NULL;
3297 nvlist_t *config = NULL;
3298 int load_error, rewind_error;
3299 uint64_t safe_rewind_txg;
3300 uint64_t min_txg;
3301
3302 if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) {
3303 spa->spa_load_max_txg = spa->spa_load_txg;
3304 spa_set_log_state(spa, SPA_LOG_CLEAR);
3305 } else {
3306 spa->spa_load_max_txg = max_request;
3307 if (max_request != UINT64_MAX)
3308 spa->spa_extreme_rewind = B_TRUE;
3309 }
3310
3311 load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING,
3312 mosconfig);
3313 if (load_error == 0)
3314 return (0);
3315
3316 if (spa->spa_root_vdev != NULL)
3317 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
3318
3319 spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg;
3320 spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp;
3321
3322 if (rewind_flags & ZPOOL_NEVER_REWIND) {
3323 nvlist_free(config);
3324 return (load_error);
3325 }
3326
3327 if (state == SPA_LOAD_RECOVER) {
3328 /* Price of rolling back is discarding txgs, including log */
3329 spa_set_log_state(spa, SPA_LOG_CLEAR);
3330 } else {
3331 /*
3332 * If we aren't rolling back save the load info from our first
3333 * import attempt so that we can restore it after attempting
3334 * to rewind.
3335 */
3336 loadinfo = spa->spa_load_info;
3337 spa->spa_load_info = fnvlist_alloc();
3338 }
3339
3340 spa->spa_load_max_txg = spa->spa_last_ubsync_txg;
3341 safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE;
3342 min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ?
3343 TXG_INITIAL : safe_rewind_txg;
3344
3345 /*
3346 * Continue as long as we're finding errors, we're still within
3347 * the acceptable rewind range, and we're still finding uberblocks
3348 */
3349 while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg &&
3350 spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) {
3351 if (spa->spa_load_max_txg < safe_rewind_txg)
3352 spa->spa_extreme_rewind = B_TRUE;
3353 rewind_error = spa_load_retry(spa, state, mosconfig);
3354 }
3355
3356 spa->spa_extreme_rewind = B_FALSE;
3357 spa->spa_load_max_txg = UINT64_MAX;
3358
3359 if (config && (rewind_error || state != SPA_LOAD_RECOVER))
3360 spa_config_set(spa, config);
3361 else
3362 nvlist_free(config);
3363
3364 if (state == SPA_LOAD_RECOVER) {
3365 ASSERT3P(loadinfo, ==, NULL);
3366 return (rewind_error);
3367 } else {
3368 /* Store the rewind info as part of the initial load info */
3369 fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO,
3370 spa->spa_load_info);
3371
3372 /* Restore the initial load info */
3373 fnvlist_free(spa->spa_load_info);
3374 spa->spa_load_info = loadinfo;
3375
3376 return (load_error);
3377 }
3378 }
3379
3380 /*
3381 * Pool Open/Import
3382 *
3383 * The import case is identical to an open except that the configuration is sent
3384 * down from userland, instead of grabbed from the configuration cache. For the
3385 * case of an open, the pool configuration will exist in the
3386 * POOL_STATE_UNINITIALIZED state.
3387 *
3388 * The stats information (gen/count/ustats) is used to gather vdev statistics at
3389 * the same time open the pool, without having to keep around the spa_t in some
3390 * ambiguous state.
3391 */
3392 static int
3393 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy,
3394 nvlist_t **config)
3395 {
3396 spa_t *spa;
3397 spa_load_state_t state = SPA_LOAD_OPEN;
3398 int error;
3399 int locked = B_FALSE;
3400 int firstopen = B_FALSE;
3401
3402 *spapp = NULL;
3403
3404 /*
3405 * As disgusting as this is, we need to support recursive calls to this
3406 * function because dsl_dir_open() is called during spa_load(), and ends
3407 * up calling spa_open() again. The real fix is to figure out how to
3408 * avoid dsl_dir_open() calling this in the first place.
3409 */
3410 if (MUTEX_NOT_HELD(&spa_namespace_lock)) {
3411 mutex_enter(&spa_namespace_lock);
3412 locked = B_TRUE;
3413 }
3414
3415 if ((spa = spa_lookup(pool)) == NULL) {
3416 if (locked)
3417 mutex_exit(&spa_namespace_lock);
3418 return (SET_ERROR(ENOENT));
3419 }
3420
3421 if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
3422 zpool_rewind_policy_t policy;
3423
3424 firstopen = B_TRUE;
3425
3426 zpool_get_rewind_policy(nvpolicy ? nvpolicy : spa->spa_config,
3427 &policy);
3428 if (policy.zrp_request & ZPOOL_DO_REWIND)
3429 state = SPA_LOAD_RECOVER;
3430
3431 spa_activate(spa, spa_mode_global);
3432
3433 if (state != SPA_LOAD_RECOVER)
3434 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
3435
3436 error = spa_load_best(spa, state, B_FALSE, policy.zrp_txg,
3437 policy.zrp_request);
3438
3439 if (error == EBADF) {
3440 /*
3441 * If vdev_validate() returns failure (indicated by
3442 * EBADF), it indicates that one of the vdevs indicates
3443 * that the pool has been exported or destroyed. If
3444 * this is the case, the config cache is out of sync and
3445 * we should remove the pool from the namespace.
3446 */
3447 spa_unload(spa);
3448 spa_deactivate(spa);
3449 spa_config_sync(spa, B_TRUE, B_TRUE);
3450 spa_remove(spa);
3451 if (locked)
3452 mutex_exit(&spa_namespace_lock);
3453 return (SET_ERROR(ENOENT));
3454 }
3455
3456 if (error) {
3457 /*
3458 * We can't open the pool, but we still have useful
3459 * information: the state of each vdev after the
3460 * attempted vdev_open(). Return this to the user.
3461 */
3462 if (config != NULL && spa->spa_config) {
3463 VERIFY(nvlist_dup(spa->spa_config, config,
3464 KM_SLEEP) == 0);
3465 VERIFY(nvlist_add_nvlist(*config,
3466 ZPOOL_CONFIG_LOAD_INFO,
3467 spa->spa_load_info) == 0);
3468 }
3469 spa_unload(spa);
3470 spa_deactivate(spa);
3471 spa->spa_last_open_failed = error;
3472 if (locked)
3473 mutex_exit(&spa_namespace_lock);
3474 *spapp = NULL;
3475 return (error);
3476 }
3477 }
3478
3479 spa_open_ref(spa, tag);
3480
3481 if (config != NULL)
3482 *config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
3483
3484 /*
3485 * If we've recovered the pool, pass back any information we
3486 * gathered while doing the load.
3487 */
3488 if (state == SPA_LOAD_RECOVER) {
3489 VERIFY(nvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO,
3490 spa->spa_load_info) == 0);
3491 }
3492
3493 if (locked) {
3494 spa->spa_last_open_failed = 0;
3495 spa->spa_last_ubsync_txg = 0;
3496 spa->spa_load_txg = 0;
3497 mutex_exit(&spa_namespace_lock);
3498 }
3499
3500 if (firstopen)
3501 zvol_create_minors(spa, spa_name(spa), B_TRUE);
3502
3503 *spapp = spa;
3504
3505 return (0);
3506 }
3507
3508 int
3509 spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy,
3510 nvlist_t **config)
3511 {
3512 return (spa_open_common(name, spapp, tag, policy, config));
3513 }
3514
3515 int
3516 spa_open(const char *name, spa_t **spapp, void *tag)
3517 {
3518 return (spa_open_common(name, spapp, tag, NULL, NULL));
3519 }
3520
3521 /*
3522 * Lookup the given spa_t, incrementing the inject count in the process,
3523 * preventing it from being exported or destroyed.
3524 */
3525 spa_t *
3526 spa_inject_addref(char *name)
3527 {
3528 spa_t *spa;
3529
3530 mutex_enter(&spa_namespace_lock);
3531 if ((spa = spa_lookup(name)) == NULL) {
3532 mutex_exit(&spa_namespace_lock);
3533 return (NULL);
3534 }
3535 spa->spa_inject_ref++;
3536 mutex_exit(&spa_namespace_lock);
3537
3538 return (spa);
3539 }
3540
3541 void
3542 spa_inject_delref(spa_t *spa)
3543 {
3544 mutex_enter(&spa_namespace_lock);
3545 spa->spa_inject_ref--;
3546 mutex_exit(&spa_namespace_lock);
3547 }
3548
3549 /*
3550 * Add spares device information to the nvlist.
3551 */
3552 static void
3553 spa_add_spares(spa_t *spa, nvlist_t *config)
3554 {
3555 nvlist_t **spares;
3556 uint_t i, nspares;
3557 nvlist_t *nvroot;
3558 uint64_t guid;
3559 vdev_stat_t *vs;
3560 uint_t vsc;
3561 uint64_t pool;
3562
3563 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3564
3565 if (spa->spa_spares.sav_count == 0)
3566 return;
3567
3568 VERIFY(nvlist_lookup_nvlist(config,
3569 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
3570 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
3571 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
3572 if (nspares != 0) {
3573 VERIFY(nvlist_add_nvlist_array(nvroot,
3574 ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3575 VERIFY(nvlist_lookup_nvlist_array(nvroot,
3576 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
3577
3578 /*
3579 * Go through and find any spares which have since been
3580 * repurposed as an active spare. If this is the case, update
3581 * their status appropriately.
3582 */
3583 for (i = 0; i < nspares; i++) {
3584 VERIFY(nvlist_lookup_uint64(spares[i],
3585 ZPOOL_CONFIG_GUID, &guid) == 0);
3586 if (spa_spare_exists(guid, &pool, NULL) &&
3587 pool != 0ULL) {
3588 VERIFY(nvlist_lookup_uint64_array(
3589 spares[i], ZPOOL_CONFIG_VDEV_STATS,
3590 (uint64_t **)&vs, &vsc) == 0);
3591 vs->vs_state = VDEV_STATE_CANT_OPEN;
3592 vs->vs_aux = VDEV_AUX_SPARED;
3593 }
3594 }
3595 }
3596 }
3597
3598 /*
3599 * Add l2cache device information to the nvlist, including vdev stats.
3600 */
3601 static void
3602 spa_add_l2cache(spa_t *spa, nvlist_t *config)
3603 {
3604 nvlist_t **l2cache;
3605 uint_t i, j, nl2cache;
3606 nvlist_t *nvroot;
3607 uint64_t guid;
3608 vdev_t *vd;
3609 vdev_stat_t *vs;
3610 uint_t vsc;
3611
3612 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3613
3614 if (spa->spa_l2cache.sav_count == 0)
3615 return;
3616
3617 VERIFY(nvlist_lookup_nvlist(config,
3618 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
3619 VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
3620 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
3621 if (nl2cache != 0) {
3622 VERIFY(nvlist_add_nvlist_array(nvroot,
3623 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3624 VERIFY(nvlist_lookup_nvlist_array(nvroot,
3625 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
3626
3627 /*
3628 * Update level 2 cache device stats.
3629 */
3630
3631 for (i = 0; i < nl2cache; i++) {
3632 VERIFY(nvlist_lookup_uint64(l2cache[i],
3633 ZPOOL_CONFIG_GUID, &guid) == 0);
3634
3635 vd = NULL;
3636 for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
3637 if (guid ==
3638 spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
3639 vd = spa->spa_l2cache.sav_vdevs[j];
3640 break;
3641 }
3642 }
3643 ASSERT(vd != NULL);
3644
3645 VERIFY(nvlist_lookup_uint64_array(l2cache[i],
3646 ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc)
3647 == 0);
3648 vdev_get_stats(vd, vs);
3649 vdev_config_generate_stats(vd, l2cache[i]);
3650
3651 }
3652 }
3653 }
3654
3655 static void
3656 spa_feature_stats_from_disk(spa_t *spa, nvlist_t *features)
3657 {
3658 zap_cursor_t zc;
3659 zap_attribute_t za;
3660
3661 if (spa->spa_feat_for_read_obj != 0) {
3662 for (zap_cursor_init(&zc, spa->spa_meta_objset,
3663 spa->spa_feat_for_read_obj);
3664 zap_cursor_retrieve(&zc, &za) == 0;
3665 zap_cursor_advance(&zc)) {
3666 ASSERT(za.za_integer_length == sizeof (uint64_t) &&
3667 za.za_num_integers == 1);
3668 VERIFY0(nvlist_add_uint64(features, za.za_name,
3669 za.za_first_integer));
3670 }
3671 zap_cursor_fini(&zc);
3672 }
3673
3674 if (spa->spa_feat_for_write_obj != 0) {
3675 for (zap_cursor_init(&zc, spa->spa_meta_objset,
3676 spa->spa_feat_for_write_obj);
3677 zap_cursor_retrieve(&zc, &za) == 0;
3678 zap_cursor_advance(&zc)) {
3679 ASSERT(za.za_integer_length == sizeof (uint64_t) &&
3680 za.za_num_integers == 1);
3681 VERIFY0(nvlist_add_uint64(features, za.za_name,
3682 za.za_first_integer));
3683 }
3684 zap_cursor_fini(&zc);
3685 }
3686 }
3687
3688 static void
3689 spa_feature_stats_from_cache(spa_t *spa, nvlist_t *features)
3690 {
3691 int i;
3692
3693 for (i = 0; i < SPA_FEATURES; i++) {
3694 zfeature_info_t feature = spa_feature_table[i];
3695 uint64_t refcount;
3696
3697 if (feature_get_refcount(spa, &feature, &refcount) != 0)
3698 continue;
3699
3700 VERIFY0(nvlist_add_uint64(features, feature.fi_guid, refcount));
3701 }
3702 }
3703
3704 /*
3705 * Store a list of pool features and their reference counts in the
3706 * config.
3707 *
3708 * The first time this is called on a spa, allocate a new nvlist, fetch
3709 * the pool features and reference counts from disk, then save the list
3710 * in the spa. In subsequent calls on the same spa use the saved nvlist
3711 * and refresh its values from the cached reference counts. This
3712 * ensures we don't block here on I/O on a suspended pool so 'zpool
3713 * clear' can resume the pool.
3714 */
3715 static void
3716 spa_add_feature_stats(spa_t *spa, nvlist_t *config)
3717 {
3718 nvlist_t *features;
3719
3720 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3721
3722 mutex_enter(&spa->spa_feat_stats_lock);
3723 features = spa->spa_feat_stats;
3724
3725 if (features != NULL) {
3726 spa_feature_stats_from_cache(spa, features);
3727 } else {
3728 VERIFY0(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP));
3729 spa->spa_feat_stats = features;
3730 spa_feature_stats_from_disk(spa, features);
3731 }
3732
3733 VERIFY0(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS,
3734 features));
3735
3736 mutex_exit(&spa->spa_feat_stats_lock);
3737 }
3738
3739 int
3740 spa_get_stats(const char *name, nvlist_t **config,
3741 char *altroot, size_t buflen)
3742 {
3743 int error;
3744 spa_t *spa;
3745
3746 *config = NULL;
3747 error = spa_open_common(name, &spa, FTAG, NULL, config);
3748
3749 if (spa != NULL) {
3750 /*
3751 * This still leaves a window of inconsistency where the spares
3752 * or l2cache devices could change and the config would be
3753 * self-inconsistent.
3754 */
3755 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
3756
3757 if (*config != NULL) {
3758 uint64_t loadtimes[2];
3759
3760 loadtimes[0] = spa->spa_loaded_ts.tv_sec;
3761 loadtimes[1] = spa->spa_loaded_ts.tv_nsec;
3762 VERIFY(nvlist_add_uint64_array(*config,
3763 ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2) == 0);
3764
3765 VERIFY(nvlist_add_uint64(*config,
3766 ZPOOL_CONFIG_ERRCOUNT,
3767 spa_get_errlog_size(spa)) == 0);
3768
3769 if (spa_suspended(spa))
3770 VERIFY(nvlist_add_uint64(*config,
3771 ZPOOL_CONFIG_SUSPENDED,
3772 spa->spa_failmode) == 0);
3773
3774 spa_add_spares(spa, *config);
3775 spa_add_l2cache(spa, *config);
3776 spa_add_feature_stats(spa, *config);
3777 }
3778 }
3779
3780 /*
3781 * We want to get the alternate root even for faulted pools, so we cheat
3782 * and call spa_lookup() directly.
3783 */
3784 if (altroot) {
3785 if (spa == NULL) {
3786 mutex_enter(&spa_namespace_lock);
3787 spa = spa_lookup(name);
3788 if (spa)
3789 spa_altroot(spa, altroot, buflen);
3790 else
3791 altroot[0] = '\0';
3792 spa = NULL;
3793 mutex_exit(&spa_namespace_lock);
3794 } else {
3795 spa_altroot(spa, altroot, buflen);
3796 }
3797 }
3798
3799 if (spa != NULL) {
3800 spa_config_exit(spa, SCL_CONFIG, FTAG);
3801 spa_close(spa, FTAG);
3802 }
3803
3804 return (error);
3805 }
3806
3807 /*
3808 * Validate that the auxiliary device array is well formed. We must have an
3809 * array of nvlists, each which describes a valid leaf vdev. If this is an
3810 * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
3811 * specified, as long as they are well-formed.
3812 */
3813 static int
3814 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
3815 spa_aux_vdev_t *sav, const char *config, uint64_t version,
3816 vdev_labeltype_t label)
3817 {
3818 nvlist_t **dev;
3819 uint_t i, ndev;
3820 vdev_t *vd;
3821 int error;
3822
3823 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3824
3825 /*
3826 * It's acceptable to have no devs specified.
3827 */
3828 if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
3829 return (0);
3830
3831 if (ndev == 0)
3832 return (SET_ERROR(EINVAL));
3833
3834 /*
3835 * Make sure the pool is formatted with a version that supports this
3836 * device type.
3837 */
3838 if (spa_version(spa) < version)
3839 return (SET_ERROR(ENOTSUP));
3840
3841 /*
3842 * Set the pending device list so we correctly handle device in-use
3843 * checking.
3844 */
3845 sav->sav_pending = dev;
3846 sav->sav_npending = ndev;
3847
3848 for (i = 0; i < ndev; i++) {
3849 if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
3850 mode)) != 0)
3851 goto out;
3852
3853 if (!vd->vdev_ops->vdev_op_leaf) {
3854 vdev_free(vd);
3855 error = SET_ERROR(EINVAL);
3856 goto out;
3857 }
3858
3859 vd->vdev_top = vd;
3860
3861 if ((error = vdev_open(vd)) == 0 &&
3862 (error = vdev_label_init(vd, crtxg, label)) == 0) {
3863 VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
3864 vd->vdev_guid) == 0);
3865 }
3866
3867 vdev_free(vd);
3868
3869 if (error &&
3870 (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
3871 goto out;
3872 else
3873 error = 0;
3874 }
3875
3876 out:
3877 sav->sav_pending = NULL;
3878 sav->sav_npending = 0;
3879 return (error);
3880 }
3881
3882 static int
3883 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
3884 {
3885 int error;
3886
3887 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3888
3889 if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
3890 &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
3891 VDEV_LABEL_SPARE)) != 0) {
3892 return (error);
3893 }
3894
3895 return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
3896 &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
3897 VDEV_LABEL_L2CACHE));
3898 }
3899
3900 static void
3901 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
3902 const char *config)
3903 {
3904 int i;
3905
3906 if (sav->sav_config != NULL) {
3907 nvlist_t **olddevs;
3908 uint_t oldndevs;
3909 nvlist_t **newdevs;
3910
3911 /*
3912 * Generate new dev list by concatenating with the
3913 * current dev list.
3914 */
3915 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config,
3916 &olddevs, &oldndevs) == 0);
3917
3918 newdevs = kmem_alloc(sizeof (void *) *
3919 (ndevs + oldndevs), KM_SLEEP);
3920 for (i = 0; i < oldndevs; i++)
3921 VERIFY(nvlist_dup(olddevs[i], &newdevs[i],
3922 KM_SLEEP) == 0);
3923 for (i = 0; i < ndevs; i++)
3924 VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs],
3925 KM_SLEEP) == 0);
3926
3927 VERIFY(nvlist_remove(sav->sav_config, config,
3928 DATA_TYPE_NVLIST_ARRAY) == 0);
3929
3930 VERIFY(nvlist_add_nvlist_array(sav->sav_config,
3931 config, newdevs, ndevs + oldndevs) == 0);
3932 for (i = 0; i < oldndevs + ndevs; i++)
3933 nvlist_free(newdevs[i]);
3934 kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
3935 } else {
3936 /*
3937 * Generate a new dev list.
3938 */
3939 VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME,
3940 KM_SLEEP) == 0);
3941 VERIFY(nvlist_add_nvlist_array(sav->sav_config, config,
3942 devs, ndevs) == 0);
3943 }
3944 }
3945
3946 /*
3947 * Stop and drop level 2 ARC devices
3948 */
3949 void
3950 spa_l2cache_drop(spa_t *spa)
3951 {
3952 vdev_t *vd;
3953 int i;
3954 spa_aux_vdev_t *sav = &spa->spa_l2cache;
3955
3956 for (i = 0; i < sav->sav_count; i++) {
3957 uint64_t pool;
3958
3959 vd = sav->sav_vdevs[i];
3960 ASSERT(vd != NULL);
3961
3962 if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
3963 pool != 0ULL && l2arc_vdev_present(vd))
3964 l2arc_remove_vdev(vd);
3965 }
3966 }
3967
3968 /*
3969 * Verify encryption parameters for spa creation. If we are encrypting, we must
3970 * have the encryption feature flag enabled.
3971 */
3972 static int
3973 spa_create_check_encryption_params(dsl_crypto_params_t *dcp,
3974 boolean_t has_encryption)
3975 {
3976 if (dcp->cp_crypt != ZIO_CRYPT_OFF &&
3977 dcp->cp_crypt != ZIO_CRYPT_INHERIT &&
3978 !has_encryption)
3979 return (SET_ERROR(ENOTSUP));
3980
3981 return (dmu_objset_create_crypt_check(NULL, dcp));
3982 }
3983
3984 /*
3985 * Pool Creation
3986 */
3987 int
3988 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
3989 nvlist_t *zplprops, dsl_crypto_params_t *dcp)
3990 {
3991 spa_t *spa;
3992 char *altroot = NULL;
3993 vdev_t *rvd;
3994 dsl_pool_t *dp;
3995 dmu_tx_t *tx;
3996 int error = 0;
3997 uint64_t txg = TXG_INITIAL;
3998 nvlist_t **spares, **l2cache;
3999 uint_t nspares, nl2cache;
4000 uint64_t version, obj, root_dsobj = 0;
4001 boolean_t has_features;
4002 boolean_t has_encryption;
4003 spa_feature_t feat;
4004 char *feat_name;
4005 char *poolname;
4006 nvlist_t *nvl;
4007
4008 if (nvlist_lookup_string(props, "tname", &poolname) != 0)
4009 poolname = (char *)pool;
4010
4011 /*
4012 * If this pool already exists, return failure.
4013 */
4014 mutex_enter(&spa_namespace_lock);
4015 if (spa_lookup(poolname) != NULL) {
4016 mutex_exit(&spa_namespace_lock);
4017 return (SET_ERROR(EEXIST));
4018 }
4019
4020 /*
4021 * Allocate a new spa_t structure.
4022 */
4023 nvl = fnvlist_alloc();
4024 fnvlist_add_string(nvl, ZPOOL_CONFIG_POOL_NAME, pool);
4025 (void) nvlist_lookup_string(props,
4026 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
4027 spa = spa_add(poolname, nvl, altroot);
4028 fnvlist_free(nvl);
4029 spa_activate(spa, spa_mode_global);
4030
4031 if (props && (error = spa_prop_validate(spa, props))) {
4032 spa_deactivate(spa);
4033 spa_remove(spa);
4034 mutex_exit(&spa_namespace_lock);
4035 return (error);
4036 }
4037
4038 /*
4039 * Temporary pool names should never be written to disk.
4040 */
4041 if (poolname != pool)
4042 spa->spa_import_flags |= ZFS_IMPORT_TEMP_NAME;
4043
4044 has_features = B_FALSE;
4045 has_encryption = B_FALSE;
4046 for (nvpair_t *elem = nvlist_next_nvpair(props, NULL);
4047 elem != NULL; elem = nvlist_next_nvpair(props, elem)) {
4048 if (zpool_prop_feature(nvpair_name(elem))) {
4049 has_features = B_TRUE;
4050
4051 feat_name = strchr(nvpair_name(elem), '@') + 1;
4052 VERIFY0(zfeature_lookup_name(feat_name, &feat));
4053 if (feat == SPA_FEATURE_ENCRYPTION)
4054 has_encryption = B_TRUE;
4055 }
4056 }
4057
4058 /* verify encryption params, if they were provided */
4059 if (dcp != NULL) {
4060 error = spa_create_check_encryption_params(dcp, has_encryption);
4061 if (error != 0) {
4062 spa_deactivate(spa);
4063 spa_remove(spa);
4064 mutex_exit(&spa_namespace_lock);
4065 return (error);
4066 }
4067 }
4068
4069 if (has_features || nvlist_lookup_uint64(props,
4070 zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) {
4071 version = SPA_VERSION;
4072 }
4073 ASSERT(SPA_VERSION_IS_SUPPORTED(version));
4074
4075 spa->spa_first_txg = txg;
4076 spa->spa_uberblock.ub_txg = txg - 1;
4077 spa->spa_uberblock.ub_version = version;
4078 spa->spa_ubsync = spa->spa_uberblock;
4079 spa->spa_load_state = SPA_LOAD_CREATE;
4080
4081 /*
4082 * Create "The Godfather" zio to hold all async IOs
4083 */
4084 spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
4085 KM_SLEEP);
4086 for (int i = 0; i < max_ncpus; i++) {
4087 spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
4088 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
4089 ZIO_FLAG_GODFATHER);
4090 }
4091
4092 /*
4093 * Create the root vdev.
4094 */
4095 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4096
4097 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
4098
4099 ASSERT(error != 0 || rvd != NULL);
4100 ASSERT(error != 0 || spa->spa_root_vdev == rvd);
4101
4102 if (error == 0 && !zfs_allocatable_devs(nvroot))
4103 error = SET_ERROR(EINVAL);
4104
4105 if (error == 0 &&
4106 (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
4107 (error = spa_validate_aux(spa, nvroot, txg,
4108 VDEV_ALLOC_ADD)) == 0) {
4109 for (int c = 0; c < rvd->vdev_children; c++) {
4110 vdev_metaslab_set_size(rvd->vdev_child[c]);
4111 vdev_expand(rvd->vdev_child[c], txg);
4112 }
4113 }
4114
4115 spa_config_exit(spa, SCL_ALL, FTAG);
4116
4117 if (error != 0) {
4118 spa_unload(spa);
4119 spa_deactivate(spa);
4120 spa_remove(spa);
4121 mutex_exit(&spa_namespace_lock);
4122 return (error);
4123 }
4124
4125 /*
4126 * Get the list of spares, if specified.
4127 */
4128 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
4129 &spares, &nspares) == 0) {
4130 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME,
4131 KM_SLEEP) == 0);
4132 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
4133 ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
4134 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4135 spa_load_spares(spa);
4136 spa_config_exit(spa, SCL_ALL, FTAG);
4137 spa->spa_spares.sav_sync = B_TRUE;
4138 }
4139
4140 /*
4141 * Get the list of level 2 cache devices, if specified.
4142 */
4143 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
4144 &l2cache, &nl2cache) == 0) {
4145 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
4146 NV_UNIQUE_NAME, KM_SLEEP) == 0);
4147 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
4148 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
4149 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4150 spa_load_l2cache(spa);
4151 spa_config_exit(spa, SCL_ALL, FTAG);
4152 spa->spa_l2cache.sav_sync = B_TRUE;
4153 }
4154
4155 spa->spa_is_initializing = B_TRUE;
4156 spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, dcp, txg);
4157 spa->spa_is_initializing = B_FALSE;
4158
4159 /*
4160 * Create DDTs (dedup tables).
4161 */
4162 ddt_create(spa);
4163
4164 spa_update_dspace(spa);
4165
4166 tx = dmu_tx_create_assigned(dp, txg);
4167
4168 /*
4169 * Create the pool's history object.
4170 */
4171 if (version >= SPA_VERSION_ZPOOL_HISTORY && !spa->spa_history)
4172 spa_history_create_obj(spa, tx);
4173
4174 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_CREATE);
4175 spa_history_log_version(spa, "create", tx);
4176
4177 /*
4178 * Create the pool config object.
4179 */
4180 spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
4181 DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE,
4182 DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
4183
4184 if (zap_add(spa->spa_meta_objset,
4185 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
4186 sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
4187 cmn_err(CE_PANIC, "failed to add pool config");
4188 }
4189
4190 if (zap_add(spa->spa_meta_objset,
4191 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION,
4192 sizeof (uint64_t), 1, &version, tx) != 0) {
4193 cmn_err(CE_PANIC, "failed to add pool version");
4194 }
4195
4196 /* Newly created pools with the right version are always deflated. */
4197 if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
4198 spa->spa_deflate = TRUE;
4199 if (zap_add(spa->spa_meta_objset,
4200 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
4201 sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
4202 cmn_err(CE_PANIC, "failed to add deflate");
4203 }
4204 }
4205
4206 /*
4207 * Create the deferred-free bpobj. Turn off compression
4208 * because sync-to-convergence takes longer if the blocksize
4209 * keeps changing.
4210 */
4211 obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx);
4212 dmu_object_set_compress(spa->spa_meta_objset, obj,
4213 ZIO_COMPRESS_OFF, tx);
4214 if (zap_add(spa->spa_meta_objset,
4215 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ,
4216 sizeof (uint64_t), 1, &obj, tx) != 0) {
4217 cmn_err(CE_PANIC, "failed to add bpobj");
4218 }
4219 VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj,
4220 spa->spa_meta_objset, obj));
4221
4222 /*
4223 * Generate some random noise for salted checksums to operate on.
4224 */
4225 (void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes,
4226 sizeof (spa->spa_cksum_salt.zcs_bytes));
4227
4228 /*
4229 * Set pool properties.
4230 */
4231 spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
4232 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
4233 spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
4234 spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND);
4235 spa->spa_multihost = zpool_prop_default_numeric(ZPOOL_PROP_MULTIHOST);
4236
4237 if (props != NULL) {
4238 spa_configfile_set(spa, props, B_FALSE);
4239 spa_sync_props(props, tx);
4240 }
4241
4242 dmu_tx_commit(tx);
4243
4244 /*
4245 * If the root dataset is encrypted we will need to create key mappings
4246 * for the zio layer before we start to write any data to disk and hold
4247 * them until after the first txg has been synced. Waiting for the first
4248 * transaction to complete also ensures that our bean counters are
4249 * appropriately updated.
4250 */
4251 if (dp->dp_root_dir->dd_crypto_obj != 0) {
4252 root_dsobj = dsl_dir_phys(dp->dp_root_dir)->dd_head_dataset_obj;
4253 VERIFY0(spa_keystore_create_mapping_impl(spa, root_dsobj,
4254 dp->dp_root_dir, FTAG));
4255 }
4256
4257 spa->spa_sync_on = B_TRUE;
4258 txg_sync_start(dp);
4259 mmp_thread_start(spa);
4260 txg_wait_synced(dp, txg);
4261
4262 if (dp->dp_root_dir->dd_crypto_obj != 0)
4263 VERIFY0(spa_keystore_remove_mapping(spa, root_dsobj, FTAG));
4264
4265 spa_config_sync(spa, B_FALSE, B_TRUE);
4266
4267 /*
4268 * Don't count references from objsets that are already closed
4269 * and are making their way through the eviction process.
4270 */
4271 spa_evicting_os_wait(spa);
4272 spa->spa_minref = refcount_count(&spa->spa_refcount);
4273 spa->spa_load_state = SPA_LOAD_NONE;
4274
4275 mutex_exit(&spa_namespace_lock);
4276
4277 return (0);
4278 }
4279
4280 /*
4281 * Import a non-root pool into the system.
4282 */
4283 int
4284 spa_import(char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags)
4285 {
4286 spa_t *spa;
4287 char *altroot = NULL;
4288 spa_load_state_t state = SPA_LOAD_IMPORT;
4289 zpool_rewind_policy_t policy;
4290 uint64_t mode = spa_mode_global;
4291 uint64_t readonly = B_FALSE;
4292 int error;
4293 nvlist_t *nvroot;
4294 nvlist_t **spares, **l2cache;
4295 uint_t nspares, nl2cache;
4296
4297 /*
4298 * If a pool with this name exists, return failure.
4299 */
4300 mutex_enter(&spa_namespace_lock);
4301 if (spa_lookup(pool) != NULL) {
4302 mutex_exit(&spa_namespace_lock);
4303 return (SET_ERROR(EEXIST));
4304 }
4305
4306 /*
4307 * Create and initialize the spa structure.
4308 */
4309 (void) nvlist_lookup_string(props,
4310 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
4311 (void) nvlist_lookup_uint64(props,
4312 zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly);
4313 if (readonly)
4314 mode = FREAD;
4315 spa = spa_add(pool, config, altroot);
4316 spa->spa_import_flags = flags;
4317
4318 /*
4319 * Verbatim import - Take a pool and insert it into the namespace
4320 * as if it had been loaded at boot.
4321 */
4322 if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) {
4323 if (props != NULL)
4324 spa_configfile_set(spa, props, B_FALSE);
4325
4326 spa_config_sync(spa, B_FALSE, B_TRUE);
4327 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_IMPORT);
4328
4329 mutex_exit(&spa_namespace_lock);
4330 return (0);
4331 }
4332
4333 spa_activate(spa, mode);
4334
4335 /*
4336 * Don't start async tasks until we know everything is healthy.
4337 */
4338 spa_async_suspend(spa);
4339
4340 zpool_get_rewind_policy(config, &policy);
4341 if (policy.zrp_request & ZPOOL_DO_REWIND)
4342 state = SPA_LOAD_RECOVER;
4343
4344 /*
4345 * Pass off the heavy lifting to spa_load(). Pass TRUE for mosconfig
4346 * because the user-supplied config is actually the one to trust when
4347 * doing an import.
4348 */
4349 if (state != SPA_LOAD_RECOVER)
4350 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
4351
4352 error = spa_load_best(spa, state, B_TRUE, policy.zrp_txg,
4353 policy.zrp_request);
4354
4355 /*
4356 * Propagate anything learned while loading the pool and pass it
4357 * back to caller (i.e. rewind info, missing devices, etc).
4358 */
4359 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
4360 spa->spa_load_info) == 0);
4361
4362 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4363 /*
4364 * Toss any existing sparelist, as it doesn't have any validity
4365 * anymore, and conflicts with spa_has_spare().
4366 */
4367 if (spa->spa_spares.sav_config) {
4368 nvlist_free(spa->spa_spares.sav_config);
4369 spa->spa_spares.sav_config = NULL;
4370 spa_load_spares(spa);
4371 }
4372 if (spa->spa_l2cache.sav_config) {
4373 nvlist_free(spa->spa_l2cache.sav_config);
4374 spa->spa_l2cache.sav_config = NULL;
4375 spa_load_l2cache(spa);
4376 }
4377
4378 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
4379 &nvroot) == 0);
4380 spa_config_exit(spa, SCL_ALL, FTAG);
4381
4382 if (props != NULL)
4383 spa_configfile_set(spa, props, B_FALSE);
4384
4385 if (error != 0 || (props && spa_writeable(spa) &&
4386 (error = spa_prop_set(spa, props)))) {
4387 spa_unload(spa);
4388 spa_deactivate(spa);
4389 spa_remove(spa);
4390 mutex_exit(&spa_namespace_lock);
4391 return (error);
4392 }
4393
4394 spa_async_resume(spa);
4395
4396 /*
4397 * Override any spares and level 2 cache devices as specified by
4398 * the user, as these may have correct device names/devids, etc.
4399 */
4400 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
4401 &spares, &nspares) == 0) {
4402 if (spa->spa_spares.sav_config)
4403 VERIFY(nvlist_remove(spa->spa_spares.sav_config,
4404 ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0);
4405 else
4406 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config,
4407 NV_UNIQUE_NAME, KM_SLEEP) == 0);
4408 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
4409 ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
4410 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4411 spa_load_spares(spa);
4412 spa_config_exit(spa, SCL_ALL, FTAG);
4413 spa->spa_spares.sav_sync = B_TRUE;
4414 }
4415 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
4416 &l2cache, &nl2cache) == 0) {
4417 if (spa->spa_l2cache.sav_config)
4418 VERIFY(nvlist_remove(spa->spa_l2cache.sav_config,
4419 ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0);
4420 else
4421 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
4422 NV_UNIQUE_NAME, KM_SLEEP) == 0);
4423 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
4424 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
4425 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4426 spa_load_l2cache(spa);
4427 spa_config_exit(spa, SCL_ALL, FTAG);
4428 spa->spa_l2cache.sav_sync = B_TRUE;
4429 }
4430
4431 /*
4432 * Check for any removed devices.
4433 */
4434 if (spa->spa_autoreplace) {
4435 spa_aux_check_removed(&spa->spa_spares);
4436 spa_aux_check_removed(&spa->spa_l2cache);
4437 }
4438
4439 if (spa_writeable(spa)) {
4440 /*
4441 * Update the config cache to include the newly-imported pool.
4442 */
4443 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
4444 }
4445
4446 /*
4447 * It's possible that the pool was expanded while it was exported.
4448 * We kick off an async task to handle this for us.
4449 */
4450 spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
4451
4452 spa_history_log_version(spa, "import", NULL);
4453
4454 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_IMPORT);
4455
4456 zvol_create_minors(spa, pool, B_TRUE);
4457
4458 mutex_exit(&spa_namespace_lock);
4459
4460 return (0);
4461 }
4462
4463 nvlist_t *
4464 spa_tryimport(nvlist_t *tryconfig)
4465 {
4466 nvlist_t *config = NULL;
4467 char *poolname;
4468 spa_t *spa;
4469 uint64_t state;
4470 int error;
4471
4472 if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
4473 return (NULL);
4474
4475 if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
4476 return (NULL);
4477
4478 /*
4479 * Create and initialize the spa structure.
4480 */
4481 mutex_enter(&spa_namespace_lock);
4482 spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL);
4483 spa_activate(spa, FREAD);
4484
4485 /*
4486 * Pass off the heavy lifting to spa_load().
4487 * Pass TRUE for mosconfig because the user-supplied config
4488 * is actually the one to trust when doing an import.
4489 */
4490 error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING, B_TRUE);
4491
4492 /*
4493 * If 'tryconfig' was at least parsable, return the current config.
4494 */
4495 if (spa->spa_root_vdev != NULL) {
4496 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
4497 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
4498 poolname) == 0);
4499 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
4500 state) == 0);
4501 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
4502 spa->spa_uberblock.ub_timestamp) == 0);
4503 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
4504 spa->spa_load_info) == 0);
4505 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_ERRATA,
4506 spa->spa_errata) == 0);
4507
4508 /*
4509 * If the bootfs property exists on this pool then we
4510 * copy it out so that external consumers can tell which
4511 * pools are bootable.
4512 */
4513 if ((!error || error == EEXIST) && spa->spa_bootfs) {
4514 char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
4515
4516 /*
4517 * We have to play games with the name since the
4518 * pool was opened as TRYIMPORT_NAME.
4519 */
4520 if (dsl_dsobj_to_dsname(spa_name(spa),
4521 spa->spa_bootfs, tmpname) == 0) {
4522 char *cp;
4523 char *dsname;
4524
4525 dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
4526
4527 cp = strchr(tmpname, '/');
4528 if (cp == NULL) {
4529 (void) strlcpy(dsname, tmpname,
4530 MAXPATHLEN);
4531 } else {
4532 (void) snprintf(dsname, MAXPATHLEN,
4533 "%s/%s", poolname, ++cp);
4534 }
4535 VERIFY(nvlist_add_string(config,
4536 ZPOOL_CONFIG_BOOTFS, dsname) == 0);
4537 kmem_free(dsname, MAXPATHLEN);
4538 }
4539 kmem_free(tmpname, MAXPATHLEN);
4540 }
4541
4542 /*
4543 * Add the list of hot spares and level 2 cache devices.
4544 */
4545 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
4546 spa_add_spares(spa, config);
4547 spa_add_l2cache(spa, config);
4548 spa_config_exit(spa, SCL_CONFIG, FTAG);
4549 }
4550
4551 spa_unload(spa);
4552 spa_deactivate(spa);
4553 spa_remove(spa);
4554 mutex_exit(&spa_namespace_lock);
4555
4556 return (config);
4557 }
4558
4559 /*
4560 * Pool export/destroy
4561 *
4562 * The act of destroying or exporting a pool is very simple. We make sure there
4563 * is no more pending I/O and any references to the pool are gone. Then, we
4564 * update the pool state and sync all the labels to disk, removing the
4565 * configuration from the cache afterwards. If the 'hardforce' flag is set, then
4566 * we don't sync the labels or remove the configuration cache.
4567 */
4568 static int
4569 spa_export_common(char *pool, int new_state, nvlist_t **oldconfig,
4570 boolean_t force, boolean_t hardforce)
4571 {
4572 spa_t *spa;
4573
4574 if (oldconfig)
4575 *oldconfig = NULL;
4576
4577 if (!(spa_mode_global & FWRITE))
4578 return (SET_ERROR(EROFS));
4579
4580 mutex_enter(&spa_namespace_lock);
4581 if ((spa = spa_lookup(pool)) == NULL) {
4582 mutex_exit(&spa_namespace_lock);
4583 return (SET_ERROR(ENOENT));
4584 }
4585
4586 /*
4587 * Put a hold on the pool, drop the namespace lock, stop async tasks,
4588 * reacquire the namespace lock, and see if we can export.
4589 */
4590 spa_open_ref(spa, FTAG);
4591 mutex_exit(&spa_namespace_lock);
4592 spa_async_suspend(spa);
4593 if (spa->spa_zvol_taskq) {
4594 zvol_remove_minors(spa, spa_name(spa), B_TRUE);
4595 taskq_wait(spa->spa_zvol_taskq);
4596 }
4597 mutex_enter(&spa_namespace_lock);
4598 spa_close(spa, FTAG);
4599
4600 if (spa->spa_state == POOL_STATE_UNINITIALIZED)
4601 goto export_spa;
4602 /*
4603 * The pool will be in core if it's openable, in which case we can
4604 * modify its state. Objsets may be open only because they're dirty,
4605 * so we have to force it to sync before checking spa_refcnt.
4606 */
4607 if (spa->spa_sync_on) {
4608 txg_wait_synced(spa->spa_dsl_pool, 0);
4609 spa_evicting_os_wait(spa);
4610 }
4611
4612 /*
4613 * A pool cannot be exported or destroyed if there are active
4614 * references. If we are resetting a pool, allow references by
4615 * fault injection handlers.
4616 */
4617 if (!spa_refcount_zero(spa) ||
4618 (spa->spa_inject_ref != 0 &&
4619 new_state != POOL_STATE_UNINITIALIZED)) {
4620 spa_async_resume(spa);
4621 mutex_exit(&spa_namespace_lock);
4622 return (SET_ERROR(EBUSY));
4623 }
4624
4625 if (spa->spa_sync_on) {
4626 /*
4627 * A pool cannot be exported if it has an active shared spare.
4628 * This is to prevent other pools stealing the active spare
4629 * from an exported pool. At user's own will, such pool can
4630 * be forcedly exported.
4631 */
4632 if (!force && new_state == POOL_STATE_EXPORTED &&
4633 spa_has_active_shared_spare(spa)) {
4634 spa_async_resume(spa);
4635 mutex_exit(&spa_namespace_lock);
4636 return (SET_ERROR(EXDEV));
4637 }
4638
4639 /*
4640 * We want this to be reflected on every label,
4641 * so mark them all dirty. spa_unload() will do the
4642 * final sync that pushes these changes out.
4643 */
4644 if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
4645 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4646 spa->spa_state = new_state;
4647 spa->spa_final_txg = spa_last_synced_txg(spa) +
4648 TXG_DEFER_SIZE + 1;
4649 vdev_config_dirty(spa->spa_root_vdev);
4650 spa_config_exit(spa, SCL_ALL, FTAG);
4651 }
4652 }
4653
4654 export_spa:
4655 if (new_state == POOL_STATE_DESTROYED)
4656 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_DESTROY);
4657 else if (new_state == POOL_STATE_EXPORTED)
4658 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_EXPORT);
4659
4660 if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
4661 spa_unload(spa);
4662 spa_deactivate(spa);
4663 }
4664
4665 if (oldconfig && spa->spa_config)
4666 VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0);
4667
4668 if (new_state != POOL_STATE_UNINITIALIZED) {
4669 if (!hardforce)
4670 spa_config_sync(spa, B_TRUE, B_TRUE);
4671 spa_remove(spa);
4672 }
4673 mutex_exit(&spa_namespace_lock);
4674
4675 return (0);
4676 }
4677
4678 /*
4679 * Destroy a storage pool.
4680 */
4681 int
4682 spa_destroy(char *pool)
4683 {
4684 return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL,
4685 B_FALSE, B_FALSE));
4686 }
4687
4688 /*
4689 * Export a storage pool.
4690 */
4691 int
4692 spa_export(char *pool, nvlist_t **oldconfig, boolean_t force,
4693 boolean_t hardforce)
4694 {
4695 return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig,
4696 force, hardforce));
4697 }
4698
4699 /*
4700 * Similar to spa_export(), this unloads the spa_t without actually removing it
4701 * from the namespace in any way.
4702 */
4703 int
4704 spa_reset(char *pool)
4705 {
4706 return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
4707 B_FALSE, B_FALSE));
4708 }
4709
4710 /*
4711 * ==========================================================================
4712 * Device manipulation
4713 * ==========================================================================
4714 */
4715
4716 /*
4717 * Add a device to a storage pool.
4718 */
4719 int
4720 spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
4721 {
4722 uint64_t txg, id;
4723 int error;
4724 vdev_t *rvd = spa->spa_root_vdev;
4725 vdev_t *vd, *tvd;
4726 nvlist_t **spares, **l2cache;
4727 uint_t nspares, nl2cache;
4728
4729 ASSERT(spa_writeable(spa));
4730
4731 txg = spa_vdev_enter(spa);
4732
4733 if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
4734 VDEV_ALLOC_ADD)) != 0)
4735 return (spa_vdev_exit(spa, NULL, txg, error));
4736
4737 spa->spa_pending_vdev = vd; /* spa_vdev_exit() will clear this */
4738
4739 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
4740 &nspares) != 0)
4741 nspares = 0;
4742
4743 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
4744 &nl2cache) != 0)
4745 nl2cache = 0;
4746
4747 if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0)
4748 return (spa_vdev_exit(spa, vd, txg, EINVAL));
4749
4750 if (vd->vdev_children != 0 &&
4751 (error = vdev_create(vd, txg, B_FALSE)) != 0)
4752 return (spa_vdev_exit(spa, vd, txg, error));
4753
4754 /*
4755 * We must validate the spares and l2cache devices after checking the
4756 * children. Otherwise, vdev_inuse() will blindly overwrite the spare.
4757 */
4758 if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0)
4759 return (spa_vdev_exit(spa, vd, txg, error));
4760
4761 /*
4762 * Transfer each new top-level vdev from vd to rvd.
4763 */
4764 for (int c = 0; c < vd->vdev_children; c++) {
4765
4766 /*
4767 * Set the vdev id to the first hole, if one exists.
4768 */
4769 for (id = 0; id < rvd->vdev_children; id++) {
4770 if (rvd->vdev_child[id]->vdev_ishole) {
4771 vdev_free(rvd->vdev_child[id]);
4772 break;
4773 }
4774 }
4775 tvd = vd->vdev_child[c];
4776 vdev_remove_child(vd, tvd);
4777 tvd->vdev_id = id;
4778 vdev_add_child(rvd, tvd);
4779 vdev_config_dirty(tvd);
4780 }
4781
4782 if (nspares != 0) {
4783 spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
4784 ZPOOL_CONFIG_SPARES);
4785 spa_load_spares(spa);
4786 spa->spa_spares.sav_sync = B_TRUE;
4787 }
4788
4789 if (nl2cache != 0) {
4790 spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
4791 ZPOOL_CONFIG_L2CACHE);
4792 spa_load_l2cache(spa);
4793 spa->spa_l2cache.sav_sync = B_TRUE;
4794 }
4795
4796 /*
4797 * We have to be careful when adding new vdevs to an existing pool.
4798 * If other threads start allocating from these vdevs before we
4799 * sync the config cache, and we lose power, then upon reboot we may
4800 * fail to open the pool because there are DVAs that the config cache
4801 * can't translate. Therefore, we first add the vdevs without
4802 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
4803 * and then let spa_config_update() initialize the new metaslabs.
4804 *
4805 * spa_load() checks for added-but-not-initialized vdevs, so that
4806 * if we lose power at any point in this sequence, the remaining
4807 * steps will be completed the next time we load the pool.
4808 */
4809 (void) spa_vdev_exit(spa, vd, txg, 0);
4810
4811 mutex_enter(&spa_namespace_lock);
4812 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
4813 spa_event_notify(spa, NULL, NULL, ESC_ZFS_VDEV_ADD);
4814 mutex_exit(&spa_namespace_lock);
4815
4816 return (0);
4817 }
4818
4819 /*
4820 * Attach a device to a mirror. The arguments are the path to any device
4821 * in the mirror, and the nvroot for the new device. If the path specifies
4822 * a device that is not mirrored, we automatically insert the mirror vdev.
4823 *
4824 * If 'replacing' is specified, the new device is intended to replace the
4825 * existing device; in this case the two devices are made into their own
4826 * mirror using the 'replacing' vdev, which is functionally identical to
4827 * the mirror vdev (it actually reuses all the same ops) but has a few
4828 * extra rules: you can't attach to it after it's been created, and upon
4829 * completion of resilvering, the first disk (the one being replaced)
4830 * is automatically detached.
4831 */
4832 int
4833 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing)
4834 {
4835 uint64_t txg, dtl_max_txg;
4836 ASSERTV(vdev_t *rvd = spa->spa_root_vdev);
4837 vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
4838 vdev_ops_t *pvops;
4839 char *oldvdpath, *newvdpath;
4840 int newvd_isspare;
4841 int error;
4842
4843 ASSERT(spa_writeable(spa));
4844
4845 txg = spa_vdev_enter(spa);
4846
4847 oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
4848
4849 if (oldvd == NULL)
4850 return (spa_vdev_exit(spa, NULL, txg, ENODEV));
4851
4852 if (!oldvd->vdev_ops->vdev_op_leaf)
4853 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4854
4855 pvd = oldvd->vdev_parent;
4856
4857 if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
4858 VDEV_ALLOC_ATTACH)) != 0)
4859 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4860
4861 if (newrootvd->vdev_children != 1)
4862 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
4863
4864 newvd = newrootvd->vdev_child[0];
4865
4866 if (!newvd->vdev_ops->vdev_op_leaf)
4867 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
4868
4869 if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
4870 return (spa_vdev_exit(spa, newrootvd, txg, error));
4871
4872 /*
4873 * Spares can't replace logs
4874 */
4875 if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare)
4876 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4877
4878 if (!replacing) {
4879 /*
4880 * For attach, the only allowable parent is a mirror or the root
4881 * vdev.
4882 */
4883 if (pvd->vdev_ops != &vdev_mirror_ops &&
4884 pvd->vdev_ops != &vdev_root_ops)
4885 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4886
4887 pvops = &vdev_mirror_ops;
4888 } else {
4889 /*
4890 * Active hot spares can only be replaced by inactive hot
4891 * spares.
4892 */
4893 if (pvd->vdev_ops == &vdev_spare_ops &&
4894 oldvd->vdev_isspare &&
4895 !spa_has_spare(spa, newvd->vdev_guid))
4896 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4897
4898 /*
4899 * If the source is a hot spare, and the parent isn't already a
4900 * spare, then we want to create a new hot spare. Otherwise, we
4901 * want to create a replacing vdev. The user is not allowed to
4902 * attach to a spared vdev child unless the 'isspare' state is
4903 * the same (spare replaces spare, non-spare replaces
4904 * non-spare).
4905 */
4906 if (pvd->vdev_ops == &vdev_replacing_ops &&
4907 spa_version(spa) < SPA_VERSION_MULTI_REPLACE) {
4908 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4909 } else if (pvd->vdev_ops == &vdev_spare_ops &&
4910 newvd->vdev_isspare != oldvd->vdev_isspare) {
4911 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4912 }
4913
4914 if (newvd->vdev_isspare)
4915 pvops = &vdev_spare_ops;
4916 else
4917 pvops = &vdev_replacing_ops;
4918 }
4919
4920 /*
4921 * Make sure the new device is big enough.
4922 */
4923 if (newvd->vdev_asize < vdev_get_min_asize(oldvd))
4924 return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
4925
4926 /*
4927 * The new device cannot have a higher alignment requirement
4928 * than the top-level vdev.
4929 */
4930 if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
4931 return (spa_vdev_exit(spa, newrootvd, txg, EDOM));
4932
4933 /*
4934 * If this is an in-place replacement, update oldvd's path and devid
4935 * to make it distinguishable from newvd, and unopenable from now on.
4936 */
4937 if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
4938 spa_strfree(oldvd->vdev_path);
4939 oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
4940 KM_SLEEP);
4941 (void) sprintf(oldvd->vdev_path, "%s/%s",
4942 newvd->vdev_path, "old");
4943 if (oldvd->vdev_devid != NULL) {
4944 spa_strfree(oldvd->vdev_devid);
4945 oldvd->vdev_devid = NULL;
4946 }
4947 }
4948
4949 /* mark the device being resilvered */
4950 newvd->vdev_resilver_txg = txg;
4951
4952 /*
4953 * If the parent is not a mirror, or if we're replacing, insert the new
4954 * mirror/replacing/spare vdev above oldvd.
4955 */
4956 if (pvd->vdev_ops != pvops)
4957 pvd = vdev_add_parent(oldvd, pvops);
4958
4959 ASSERT(pvd->vdev_top->vdev_parent == rvd);
4960 ASSERT(pvd->vdev_ops == pvops);
4961 ASSERT(oldvd->vdev_parent == pvd);
4962
4963 /*
4964 * Extract the new device from its root and add it to pvd.
4965 */
4966 vdev_remove_child(newrootvd, newvd);
4967 newvd->vdev_id = pvd->vdev_children;
4968 newvd->vdev_crtxg = oldvd->vdev_crtxg;
4969 vdev_add_child(pvd, newvd);
4970
4971 /*
4972 * Reevaluate the parent vdev state.
4973 */
4974 vdev_propagate_state(pvd);
4975
4976 tvd = newvd->vdev_top;
4977 ASSERT(pvd->vdev_top == tvd);
4978 ASSERT(tvd->vdev_parent == rvd);
4979
4980 vdev_config_dirty(tvd);
4981
4982 /*
4983 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account
4984 * for any dmu_sync-ed blocks. It will propagate upward when
4985 * spa_vdev_exit() calls vdev_dtl_reassess().
4986 */
4987 dtl_max_txg = txg + TXG_CONCURRENT_STATES;
4988
4989 vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL,
4990 dtl_max_txg - TXG_INITIAL);
4991
4992 if (newvd->vdev_isspare) {
4993 spa_spare_activate(newvd);
4994 spa_event_notify(spa, newvd, NULL, ESC_ZFS_VDEV_SPARE);
4995 }
4996
4997 oldvdpath = spa_strdup(oldvd->vdev_path);
4998 newvdpath = spa_strdup(newvd->vdev_path);
4999 newvd_isspare = newvd->vdev_isspare;
5000
5001 /*
5002 * Mark newvd's DTL dirty in this txg.
5003 */
5004 vdev_dirty(tvd, VDD_DTL, newvd, txg);
5005
5006 /*
5007 * Schedule the resilver to restart in the future. We do this to
5008 * ensure that dmu_sync-ed blocks have been stitched into the
5009 * respective datasets.
5010 */
5011 dsl_resilver_restart(spa->spa_dsl_pool, dtl_max_txg);
5012
5013 if (spa->spa_bootfs)
5014 spa_event_notify(spa, newvd, NULL, ESC_ZFS_BOOTFS_VDEV_ATTACH);
5015
5016 spa_event_notify(spa, newvd, NULL, ESC_ZFS_VDEV_ATTACH);
5017
5018 /*
5019 * Commit the config
5020 */
5021 (void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0);
5022
5023 spa_history_log_internal(spa, "vdev attach", NULL,
5024 "%s vdev=%s %s vdev=%s",
5025 replacing && newvd_isspare ? "spare in" :
5026 replacing ? "replace" : "attach", newvdpath,
5027 replacing ? "for" : "to", oldvdpath);
5028
5029 spa_strfree(oldvdpath);
5030 spa_strfree(newvdpath);
5031
5032 return (0);
5033 }
5034
5035 /*
5036 * Detach a device from a mirror or replacing vdev.
5037 *
5038 * If 'replace_done' is specified, only detach if the parent
5039 * is a replacing vdev.
5040 */
5041 int
5042 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done)
5043 {
5044 uint64_t txg;
5045 int error;
5046 ASSERTV(vdev_t *rvd = spa->spa_root_vdev);
5047 vdev_t *vd, *pvd, *cvd, *tvd;
5048 boolean_t unspare = B_FALSE;
5049 uint64_t unspare_guid = 0;
5050 char *vdpath;
5051
5052 ASSERT(spa_writeable(spa));
5053
5054 txg = spa_vdev_enter(spa);
5055
5056 vd = spa_lookup_by_guid(spa, guid, B_FALSE);
5057
5058 if (vd == NULL)
5059 return (spa_vdev_exit(spa, NULL, txg, ENODEV));
5060
5061 if (!vd->vdev_ops->vdev_op_leaf)
5062 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
5063
5064 pvd = vd->vdev_parent;
5065
5066 /*
5067 * If the parent/child relationship is not as expected, don't do it.
5068 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing
5069 * vdev that's replacing B with C. The user's intent in replacing
5070 * is to go from M(A,B) to M(A,C). If the user decides to cancel
5071 * the replace by detaching C, the expected behavior is to end up
5072 * M(A,B). But suppose that right after deciding to detach C,
5073 * the replacement of B completes. We would have M(A,C), and then
5074 * ask to detach C, which would leave us with just A -- not what
5075 * the user wanted. To prevent this, we make sure that the
5076 * parent/child relationship hasn't changed -- in this example,
5077 * that C's parent is still the replacing vdev R.
5078 */
5079 if (pvd->vdev_guid != pguid && pguid != 0)
5080 return (spa_vdev_exit(spa, NULL, txg, EBUSY));
5081
5082 /*
5083 * Only 'replacing' or 'spare' vdevs can be replaced.
5084 */
5085 if (replace_done && pvd->vdev_ops != &vdev_replacing_ops &&
5086 pvd->vdev_ops != &vdev_spare_ops)
5087 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
5088
5089 ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
5090 spa_version(spa) >= SPA_VERSION_SPARES);
5091
5092 /*
5093 * Only mirror, replacing, and spare vdevs support detach.
5094 */
5095 if (pvd->vdev_ops != &vdev_replacing_ops &&
5096 pvd->vdev_ops != &vdev_mirror_ops &&
5097 pvd->vdev_ops != &vdev_spare_ops)
5098 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
5099
5100 /*
5101 * If this device has the only valid copy of some data,
5102 * we cannot safely detach it.
5103 */
5104 if (vdev_dtl_required(vd))
5105 return (spa_vdev_exit(spa, NULL, txg, EBUSY));
5106
5107 ASSERT(pvd->vdev_children >= 2);
5108
5109 /*
5110 * If we are detaching the second disk from a replacing vdev, then
5111 * check to see if we changed the original vdev's path to have "/old"
5112 * at the end in spa_vdev_attach(). If so, undo that change now.
5113 */
5114 if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 &&
5115 vd->vdev_path != NULL) {
5116 size_t len = strlen(vd->vdev_path);
5117
5118 for (int c = 0; c < pvd->vdev_children; c++) {
5119 cvd = pvd->vdev_child[c];
5120
5121 if (cvd == vd || cvd->vdev_path == NULL)
5122 continue;
5123
5124 if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
5125 strcmp(cvd->vdev_path + len, "/old") == 0) {
5126 spa_strfree(cvd->vdev_path);
5127 cvd->vdev_path = spa_strdup(vd->vdev_path);
5128 break;
5129 }
5130 }
5131 }
5132
5133 /*
5134 * If we are detaching the original disk from a spare, then it implies
5135 * that the spare should become a real disk, and be removed from the
5136 * active spare list for the pool.
5137 */
5138 if (pvd->vdev_ops == &vdev_spare_ops &&
5139 vd->vdev_id == 0 &&
5140 pvd->vdev_child[pvd->vdev_children - 1]->vdev_isspare)
5141 unspare = B_TRUE;
5142
5143 /*
5144 * Erase the disk labels so the disk can be used for other things.
5145 * This must be done after all other error cases are handled,
5146 * but before we disembowel vd (so we can still do I/O to it).
5147 * But if we can't do it, don't treat the error as fatal --
5148 * it may be that the unwritability of the disk is the reason
5149 * it's being detached!
5150 */
5151 error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
5152
5153 /*
5154 * Remove vd from its parent and compact the parent's children.
5155 */
5156 vdev_remove_child(pvd, vd);
5157 vdev_compact_children(pvd);
5158
5159 /*
5160 * Remember one of the remaining children so we can get tvd below.
5161 */
5162 cvd = pvd->vdev_child[pvd->vdev_children - 1];
5163
5164 /*
5165 * If we need to remove the remaining child from the list of hot spares,
5166 * do it now, marking the vdev as no longer a spare in the process.
5167 * We must do this before vdev_remove_parent(), because that can
5168 * change the GUID if it creates a new toplevel GUID. For a similar
5169 * reason, we must remove the spare now, in the same txg as the detach;
5170 * otherwise someone could attach a new sibling, change the GUID, and
5171 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail.
5172 */
5173 if (unspare) {
5174 ASSERT(cvd->vdev_isspare);
5175 spa_spare_remove(cvd);
5176 unspare_guid = cvd->vdev_guid;
5177 (void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
5178 cvd->vdev_unspare = B_TRUE;
5179 }
5180
5181 /*
5182 * If the parent mirror/replacing vdev only has one child,
5183 * the parent is no longer needed. Remove it from the tree.
5184 */
5185 if (pvd->vdev_children == 1) {
5186 if (pvd->vdev_ops == &vdev_spare_ops)
5187 cvd->vdev_unspare = B_FALSE;
5188 vdev_remove_parent(cvd);
5189 }
5190
5191
5192 /*
5193 * We don't set tvd until now because the parent we just removed
5194 * may have been the previous top-level vdev.
5195 */
5196 tvd = cvd->vdev_top;
5197 ASSERT(tvd->vdev_parent == rvd);
5198
5199 /*
5200 * Reevaluate the parent vdev state.
5201 */
5202 vdev_propagate_state(cvd);
5203
5204 /*
5205 * If the 'autoexpand' property is set on the pool then automatically
5206 * try to expand the size of the pool. For example if the device we
5207 * just detached was smaller than the others, it may be possible to
5208 * add metaslabs (i.e. grow the pool). We need to reopen the vdev
5209 * first so that we can obtain the updated sizes of the leaf vdevs.
5210 */
5211 if (spa->spa_autoexpand) {
5212 vdev_reopen(tvd);
5213 vdev_expand(tvd, txg);
5214 }
5215
5216 vdev_config_dirty(tvd);
5217
5218 /*
5219 * Mark vd's DTL as dirty in this txg. vdev_dtl_sync() will see that
5220 * vd->vdev_detached is set and free vd's DTL object in syncing context.
5221 * But first make sure we're not on any *other* txg's DTL list, to
5222 * prevent vd from being accessed after it's freed.
5223 */
5224 vdpath = spa_strdup(vd->vdev_path ? vd->vdev_path : "none");
5225 for (int t = 0; t < TXG_SIZE; t++)
5226 (void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
5227 vd->vdev_detached = B_TRUE;
5228 vdev_dirty(tvd, VDD_DTL, vd, txg);
5229
5230 spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_REMOVE);
5231
5232 /* hang on to the spa before we release the lock */
5233 spa_open_ref(spa, FTAG);
5234
5235 error = spa_vdev_exit(spa, vd, txg, 0);
5236
5237 spa_history_log_internal(spa, "detach", NULL,
5238 "vdev=%s", vdpath);
5239 spa_strfree(vdpath);
5240
5241 /*
5242 * If this was the removal of the original device in a hot spare vdev,
5243 * then we want to go through and remove the device from the hot spare
5244 * list of every other pool.
5245 */
5246 if (unspare) {
5247 spa_t *altspa = NULL;
5248
5249 mutex_enter(&spa_namespace_lock);
5250 while ((altspa = spa_next(altspa)) != NULL) {
5251 if (altspa->spa_state != POOL_STATE_ACTIVE ||
5252 altspa == spa)
5253 continue;
5254
5255 spa_open_ref(altspa, FTAG);
5256 mutex_exit(&spa_namespace_lock);
5257 (void) spa_vdev_remove(altspa, unspare_guid, B_TRUE);
5258 mutex_enter(&spa_namespace_lock);
5259 spa_close(altspa, FTAG);
5260 }
5261 mutex_exit(&spa_namespace_lock);
5262
5263 /* search the rest of the vdevs for spares to remove */
5264 spa_vdev_resilver_done(spa);
5265 }
5266
5267 /* all done with the spa; OK to release */
5268 mutex_enter(&spa_namespace_lock);
5269 spa_close(spa, FTAG);
5270 mutex_exit(&spa_namespace_lock);
5271
5272 return (error);
5273 }
5274
5275 /*
5276 * Split a set of devices from their mirrors, and create a new pool from them.
5277 */
5278 int
5279 spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config,
5280 nvlist_t *props, boolean_t exp)
5281 {
5282 int error = 0;
5283 uint64_t txg, *glist;
5284 spa_t *newspa;
5285 uint_t c, children, lastlog;
5286 nvlist_t **child, *nvl, *tmp;
5287 dmu_tx_t *tx;
5288 char *altroot = NULL;
5289 vdev_t *rvd, **vml = NULL; /* vdev modify list */
5290 boolean_t activate_slog;
5291
5292 ASSERT(spa_writeable(spa));
5293
5294 txg = spa_vdev_enter(spa);
5295
5296 /* clear the log and flush everything up to now */
5297 activate_slog = spa_passivate_log(spa);
5298 (void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5299 error = spa_offline_log(spa);
5300 txg = spa_vdev_config_enter(spa);
5301
5302 if (activate_slog)
5303 spa_activate_log(spa);
5304
5305 if (error != 0)
5306 return (spa_vdev_exit(spa, NULL, txg, error));
5307
5308 /* check new spa name before going any further */
5309 if (spa_lookup(newname) != NULL)
5310 return (spa_vdev_exit(spa, NULL, txg, EEXIST));
5311
5312 /*
5313 * scan through all the children to ensure they're all mirrors
5314 */
5315 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 ||
5316 nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child,
5317 &children) != 0)
5318 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
5319
5320 /* first, check to ensure we've got the right child count */
5321 rvd = spa->spa_root_vdev;
5322 lastlog = 0;
5323 for (c = 0; c < rvd->vdev_children; c++) {
5324 vdev_t *vd = rvd->vdev_child[c];
5325
5326 /* don't count the holes & logs as children */
5327 if (vd->vdev_islog || vd->vdev_ishole) {
5328 if (lastlog == 0)
5329 lastlog = c;
5330 continue;
5331 }
5332
5333 lastlog = 0;
5334 }
5335 if (children != (lastlog != 0 ? lastlog : rvd->vdev_children))
5336 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
5337
5338 /* next, ensure no spare or cache devices are part of the split */
5339 if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 ||
5340 nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0)
5341 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
5342
5343 vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP);
5344 glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP);
5345
5346 /* then, loop over each vdev and validate it */
5347 for (c = 0; c < children; c++) {
5348 uint64_t is_hole = 0;
5349
5350 (void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE,
5351 &is_hole);
5352
5353 if (is_hole != 0) {
5354 if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole ||
5355 spa->spa_root_vdev->vdev_child[c]->vdev_islog) {
5356 continue;
5357 } else {
5358 error = SET_ERROR(EINVAL);
5359 break;
5360 }
5361 }
5362
5363 /* which disk is going to be split? */
5364 if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID,
5365 &glist[c]) != 0) {
5366 error = SET_ERROR(EINVAL);
5367 break;
5368 }
5369
5370 /* look it up in the spa */
5371 vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE);
5372 if (vml[c] == NULL) {
5373 error = SET_ERROR(ENODEV);
5374 break;
5375 }
5376
5377 /* make sure there's nothing stopping the split */
5378 if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops ||
5379 vml[c]->vdev_islog ||
5380 vml[c]->vdev_ishole ||
5381 vml[c]->vdev_isspare ||
5382 vml[c]->vdev_isl2cache ||
5383 !vdev_writeable(vml[c]) ||
5384 vml[c]->vdev_children != 0 ||
5385 vml[c]->vdev_state != VDEV_STATE_HEALTHY ||
5386 c != spa->spa_root_vdev->vdev_child[c]->vdev_id) {
5387 error = SET_ERROR(EINVAL);
5388 break;
5389 }
5390
5391 if (vdev_dtl_required(vml[c])) {
5392 error = SET_ERROR(EBUSY);
5393 break;
5394 }
5395
5396 /* we need certain info from the top level */
5397 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY,
5398 vml[c]->vdev_top->vdev_ms_array) == 0);
5399 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT,
5400 vml[c]->vdev_top->vdev_ms_shift) == 0);
5401 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE,
5402 vml[c]->vdev_top->vdev_asize) == 0);
5403 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT,
5404 vml[c]->vdev_top->vdev_ashift) == 0);
5405
5406 /* transfer per-vdev ZAPs */
5407 ASSERT3U(vml[c]->vdev_leaf_zap, !=, 0);
5408 VERIFY0(nvlist_add_uint64(child[c],
5409 ZPOOL_CONFIG_VDEV_LEAF_ZAP, vml[c]->vdev_leaf_zap));
5410
5411 ASSERT3U(vml[c]->vdev_top->vdev_top_zap, !=, 0);
5412 VERIFY0(nvlist_add_uint64(child[c],
5413 ZPOOL_CONFIG_VDEV_TOP_ZAP,
5414 vml[c]->vdev_parent->vdev_top_zap));
5415 }
5416
5417 if (error != 0) {
5418 kmem_free(vml, children * sizeof (vdev_t *));
5419 kmem_free(glist, children * sizeof (uint64_t));
5420 return (spa_vdev_exit(spa, NULL, txg, error));
5421 }
5422
5423 /* stop writers from using the disks */
5424 for (c = 0; c < children; c++) {
5425 if (vml[c] != NULL)
5426 vml[c]->vdev_offline = B_TRUE;
5427 }
5428 vdev_reopen(spa->spa_root_vdev);
5429
5430 /*
5431 * Temporarily record the splitting vdevs in the spa config. This
5432 * will disappear once the config is regenerated.
5433 */
5434 VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5435 VERIFY(nvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
5436 glist, children) == 0);
5437 kmem_free(glist, children * sizeof (uint64_t));
5438
5439 mutex_enter(&spa->spa_props_lock);
5440 VERIFY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT,
5441 nvl) == 0);
5442 mutex_exit(&spa->spa_props_lock);
5443 spa->spa_config_splitting = nvl;
5444 vdev_config_dirty(spa->spa_root_vdev);
5445
5446 /* configure and create the new pool */
5447 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname) == 0);
5448 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
5449 exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE) == 0);
5450 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
5451 spa_version(spa)) == 0);
5452 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG,
5453 spa->spa_config_txg) == 0);
5454 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID,
5455 spa_generate_guid(NULL)) == 0);
5456 VERIFY0(nvlist_add_boolean(config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS));
5457 (void) nvlist_lookup_string(props,
5458 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
5459
5460 /* add the new pool to the namespace */
5461 newspa = spa_add(newname, config, altroot);
5462 newspa->spa_avz_action = AVZ_ACTION_REBUILD;
5463 newspa->spa_config_txg = spa->spa_config_txg;
5464 spa_set_log_state(newspa, SPA_LOG_CLEAR);
5465
5466 /* release the spa config lock, retaining the namespace lock */
5467 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5468
5469 if (zio_injection_enabled)
5470 zio_handle_panic_injection(spa, FTAG, 1);
5471
5472 spa_activate(newspa, spa_mode_global);
5473 spa_async_suspend(newspa);
5474
5475 /* create the new pool from the disks of the original pool */
5476 error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE, B_TRUE);
5477 if (error)
5478 goto out;
5479
5480 /* if that worked, generate a real config for the new pool */
5481 if (newspa->spa_root_vdev != NULL) {
5482 VERIFY(nvlist_alloc(&newspa->spa_config_splitting,
5483 NV_UNIQUE_NAME, KM_SLEEP) == 0);
5484 VERIFY(nvlist_add_uint64(newspa->spa_config_splitting,
5485 ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)) == 0);
5486 spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL,
5487 B_TRUE));
5488 }
5489
5490 /* set the props */
5491 if (props != NULL) {
5492 spa_configfile_set(newspa, props, B_FALSE);
5493 error = spa_prop_set(newspa, props);
5494 if (error)
5495 goto out;
5496 }
5497
5498 /* flush everything */
5499 txg = spa_vdev_config_enter(newspa);
5500 vdev_config_dirty(newspa->spa_root_vdev);
5501 (void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG);
5502
5503 if (zio_injection_enabled)
5504 zio_handle_panic_injection(spa, FTAG, 2);
5505
5506 spa_async_resume(newspa);
5507
5508 /* finally, update the original pool's config */
5509 txg = spa_vdev_config_enter(spa);
5510 tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
5511 error = dmu_tx_assign(tx, TXG_WAIT);
5512 if (error != 0)
5513 dmu_tx_abort(tx);
5514 for (c = 0; c < children; c++) {
5515 if (vml[c] != NULL) {
5516 vdev_split(vml[c]);
5517 if (error == 0)
5518 spa_history_log_internal(spa, "detach", tx,
5519 "vdev=%s", vml[c]->vdev_path);
5520
5521 vdev_free(vml[c]);
5522 }
5523 }
5524 spa->spa_avz_action = AVZ_ACTION_REBUILD;
5525 vdev_config_dirty(spa->spa_root_vdev);
5526 spa->spa_config_splitting = NULL;
5527 nvlist_free(nvl);
5528 if (error == 0)
5529 dmu_tx_commit(tx);
5530 (void) spa_vdev_exit(spa, NULL, txg, 0);
5531
5532 if (zio_injection_enabled)
5533 zio_handle_panic_injection(spa, FTAG, 3);
5534
5535 /* split is complete; log a history record */
5536 spa_history_log_internal(newspa, "split", NULL,
5537 "from pool %s", spa_name(spa));
5538
5539 kmem_free(vml, children * sizeof (vdev_t *));
5540
5541 /* if we're not going to mount the filesystems in userland, export */
5542 if (exp)
5543 error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL,
5544 B_FALSE, B_FALSE);
5545
5546 return (error);
5547
5548 out:
5549 spa_unload(newspa);
5550 spa_deactivate(newspa);
5551 spa_remove(newspa);
5552
5553 txg = spa_vdev_config_enter(spa);
5554
5555 /* re-online all offlined disks */
5556 for (c = 0; c < children; c++) {
5557 if (vml[c] != NULL)
5558 vml[c]->vdev_offline = B_FALSE;
5559 }
5560 vdev_reopen(spa->spa_root_vdev);
5561
5562 nvlist_free(spa->spa_config_splitting);
5563 spa->spa_config_splitting = NULL;
5564 (void) spa_vdev_exit(spa, NULL, txg, error);
5565
5566 kmem_free(vml, children * sizeof (vdev_t *));
5567 return (error);
5568 }
5569
5570 static nvlist_t *
5571 spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid)
5572 {
5573 for (int i = 0; i < count; i++) {
5574 uint64_t guid;
5575
5576 VERIFY(nvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID,
5577 &guid) == 0);
5578
5579 if (guid == target_guid)
5580 return (nvpp[i]);
5581 }
5582
5583 return (NULL);
5584 }
5585
5586 static void
5587 spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count,
5588 nvlist_t *dev_to_remove)
5589 {
5590 nvlist_t **newdev = NULL;
5591
5592 if (count > 1)
5593 newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP);
5594
5595 for (int i = 0, j = 0; i < count; i++) {
5596 if (dev[i] == dev_to_remove)
5597 continue;
5598 VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0);
5599 }
5600
5601 VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0);
5602 VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0);
5603
5604 for (int i = 0; i < count - 1; i++)
5605 nvlist_free(newdev[i]);
5606
5607 if (count > 1)
5608 kmem_free(newdev, (count - 1) * sizeof (void *));
5609 }
5610
5611 /*
5612 * Evacuate the device.
5613 */
5614 static int
5615 spa_vdev_remove_evacuate(spa_t *spa, vdev_t *vd)
5616 {
5617 uint64_t txg;
5618 int error = 0;
5619
5620 ASSERT(MUTEX_HELD(&spa_namespace_lock));
5621 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5622 ASSERT(vd == vd->vdev_top);
5623
5624 /*
5625 * Evacuate the device. We don't hold the config lock as writer
5626 * since we need to do I/O but we do keep the
5627 * spa_namespace_lock held. Once this completes the device
5628 * should no longer have any blocks allocated on it.
5629 */
5630 if (vd->vdev_islog) {
5631 if (vd->vdev_stat.vs_alloc != 0)
5632 error = spa_offline_log(spa);
5633 } else {
5634 error = SET_ERROR(ENOTSUP);
5635 }
5636
5637 if (error)
5638 return (error);
5639
5640 /*
5641 * The evacuation succeeded. Remove any remaining MOS metadata
5642 * associated with this vdev, and wait for these changes to sync.
5643 */
5644 ASSERT0(vd->vdev_stat.vs_alloc);
5645 txg = spa_vdev_config_enter(spa);
5646 vd->vdev_removing = B_TRUE;
5647 vdev_dirty_leaves(vd, VDD_DTL, txg);
5648 vdev_config_dirty(vd);
5649 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5650
5651 return (0);
5652 }
5653
5654 /*
5655 * Complete the removal by cleaning up the namespace.
5656 */
5657 static void
5658 spa_vdev_remove_from_namespace(spa_t *spa, vdev_t *vd)
5659 {
5660 vdev_t *rvd = spa->spa_root_vdev;
5661 uint64_t id = vd->vdev_id;
5662 boolean_t last_vdev = (id == (rvd->vdev_children - 1));
5663
5664 ASSERT(MUTEX_HELD(&spa_namespace_lock));
5665 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
5666 ASSERT(vd == vd->vdev_top);
5667
5668 /*
5669 * Only remove any devices which are empty.
5670 */
5671 if (vd->vdev_stat.vs_alloc != 0)
5672 return;
5673
5674 (void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
5675
5676 if (list_link_active(&vd->vdev_state_dirty_node))
5677 vdev_state_clean(vd);
5678 if (list_link_active(&vd->vdev_config_dirty_node))
5679 vdev_config_clean(vd);
5680
5681 vdev_free(vd);
5682
5683 if (last_vdev) {
5684 vdev_compact_children(rvd);
5685 } else {
5686 vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops);
5687 vdev_add_child(rvd, vd);
5688 }
5689 vdev_config_dirty(rvd);
5690
5691 /*
5692 * Reassess the health of our root vdev.
5693 */
5694 vdev_reopen(rvd);
5695 }
5696
5697 /*
5698 * Remove a device from the pool -
5699 *
5700 * Removing a device from the vdev namespace requires several steps
5701 * and can take a significant amount of time. As a result we use
5702 * the spa_vdev_config_[enter/exit] functions which allow us to
5703 * grab and release the spa_config_lock while still holding the namespace
5704 * lock. During each step the configuration is synced out.
5705 *
5706 * Currently, this supports removing only hot spares, slogs, and level 2 ARC
5707 * devices.
5708 */
5709 int
5710 spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare)
5711 {
5712 vdev_t *vd;
5713 sysevent_t *ev = NULL;
5714 metaslab_group_t *mg;
5715 nvlist_t **spares, **l2cache, *nv;
5716 uint64_t txg = 0;
5717 uint_t nspares, nl2cache;
5718 int error = 0;
5719 boolean_t locked = MUTEX_HELD(&spa_namespace_lock);
5720
5721 ASSERT(spa_writeable(spa));
5722
5723 if (!locked)
5724 txg = spa_vdev_enter(spa);
5725
5726 vd = spa_lookup_by_guid(spa, guid, B_FALSE);
5727
5728 if (spa->spa_spares.sav_vdevs != NULL &&
5729 nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
5730 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 &&
5731 (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) {
5732 /*
5733 * Only remove the hot spare if it's not currently in use
5734 * in this pool.
5735 */
5736 if (vd == NULL || unspare) {
5737 if (vd == NULL)
5738 vd = spa_lookup_by_guid(spa, guid, B_TRUE);
5739 ev = spa_event_create(spa, vd, NULL,
5740 ESC_ZFS_VDEV_REMOVE_AUX);
5741 spa_vdev_remove_aux(spa->spa_spares.sav_config,
5742 ZPOOL_CONFIG_SPARES, spares, nspares, nv);
5743 spa_load_spares(spa);
5744 spa->spa_spares.sav_sync = B_TRUE;
5745 } else {
5746 error = SET_ERROR(EBUSY);
5747 }
5748 } else if (spa->spa_l2cache.sav_vdevs != NULL &&
5749 nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
5750 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 &&
5751 (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) {
5752 /*
5753 * Cache devices can always be removed.
5754 */
5755 vd = spa_lookup_by_guid(spa, guid, B_TRUE);
5756 ev = spa_event_create(spa, vd, NULL, ESC_ZFS_VDEV_REMOVE_AUX);
5757 spa_vdev_remove_aux(spa->spa_l2cache.sav_config,
5758 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv);
5759 spa_load_l2cache(spa);
5760 spa->spa_l2cache.sav_sync = B_TRUE;
5761 } else if (vd != NULL && vd->vdev_islog) {
5762 ASSERT(!locked);
5763 ASSERT(vd == vd->vdev_top);
5764
5765 mg = vd->vdev_mg;
5766
5767 /*
5768 * Stop allocating from this vdev.
5769 */
5770 metaslab_group_passivate(mg);
5771
5772 /*
5773 * Wait for the youngest allocations and frees to sync,
5774 * and then wait for the deferral of those frees to finish.
5775 */
5776 spa_vdev_config_exit(spa, NULL,
5777 txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
5778
5779 /*
5780 * Attempt to evacuate the vdev.
5781 */
5782 error = spa_vdev_remove_evacuate(spa, vd);
5783
5784 txg = spa_vdev_config_enter(spa);
5785
5786 /*
5787 * If we couldn't evacuate the vdev, unwind.
5788 */
5789 if (error) {
5790 metaslab_group_activate(mg);
5791 return (spa_vdev_exit(spa, NULL, txg, error));
5792 }
5793
5794 /*
5795 * Clean up the vdev namespace.
5796 */
5797 ev = spa_event_create(spa, vd, NULL, ESC_ZFS_VDEV_REMOVE_DEV);
5798 spa_vdev_remove_from_namespace(spa, vd);
5799
5800 } else if (vd != NULL) {
5801 /*
5802 * Normal vdevs cannot be removed (yet).
5803 */
5804 error = SET_ERROR(ENOTSUP);
5805 } else {
5806 /*
5807 * There is no vdev of any kind with the specified guid.
5808 */
5809 error = SET_ERROR(ENOENT);
5810 }
5811
5812 if (!locked)
5813 error = spa_vdev_exit(spa, NULL, txg, error);
5814
5815 if (ev)
5816 spa_event_post(ev);
5817
5818 return (error);
5819 }
5820
5821 /*
5822 * Find any device that's done replacing, or a vdev marked 'unspare' that's
5823 * currently spared, so we can detach it.
5824 */
5825 static vdev_t *
5826 spa_vdev_resilver_done_hunt(vdev_t *vd)
5827 {
5828 vdev_t *newvd, *oldvd;
5829
5830 for (int c = 0; c < vd->vdev_children; c++) {
5831 oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
5832 if (oldvd != NULL)
5833 return (oldvd);
5834 }
5835
5836 /*
5837 * Check for a completed replacement. We always consider the first
5838 * vdev in the list to be the oldest vdev, and the last one to be
5839 * the newest (see spa_vdev_attach() for how that works). In
5840 * the case where the newest vdev is faulted, we will not automatically
5841 * remove it after a resilver completes. This is OK as it will require
5842 * user intervention to determine which disk the admin wishes to keep.
5843 */
5844 if (vd->vdev_ops == &vdev_replacing_ops) {
5845 ASSERT(vd->vdev_children > 1);
5846
5847 newvd = vd->vdev_child[vd->vdev_children - 1];
5848 oldvd = vd->vdev_child[0];
5849
5850 if (vdev_dtl_empty(newvd, DTL_MISSING) &&
5851 vdev_dtl_empty(newvd, DTL_OUTAGE) &&
5852 !vdev_dtl_required(oldvd))
5853 return (oldvd);
5854 }
5855
5856 /*
5857 * Check for a completed resilver with the 'unspare' flag set.
5858 */
5859 if (vd->vdev_ops == &vdev_spare_ops) {
5860 vdev_t *first = vd->vdev_child[0];
5861 vdev_t *last = vd->vdev_child[vd->vdev_children - 1];
5862
5863 if (last->vdev_unspare) {
5864 oldvd = first;
5865 newvd = last;
5866 } else if (first->vdev_unspare) {
5867 oldvd = last;
5868 newvd = first;
5869 } else {
5870 oldvd = NULL;
5871 }
5872
5873 if (oldvd != NULL &&
5874 vdev_dtl_empty(newvd, DTL_MISSING) &&
5875 vdev_dtl_empty(newvd, DTL_OUTAGE) &&
5876 !vdev_dtl_required(oldvd))
5877 return (oldvd);
5878
5879 /*
5880 * If there are more than two spares attached to a disk,
5881 * and those spares are not required, then we want to
5882 * attempt to free them up now so that they can be used
5883 * by other pools. Once we're back down to a single
5884 * disk+spare, we stop removing them.
5885 */
5886 if (vd->vdev_children > 2) {
5887 newvd = vd->vdev_child[1];
5888
5889 if (newvd->vdev_isspare && last->vdev_isspare &&
5890 vdev_dtl_empty(last, DTL_MISSING) &&
5891 vdev_dtl_empty(last, DTL_OUTAGE) &&
5892 !vdev_dtl_required(newvd))
5893 return (newvd);
5894 }
5895 }
5896
5897 return (NULL);
5898 }
5899
5900 static void
5901 spa_vdev_resilver_done(spa_t *spa)
5902 {
5903 vdev_t *vd, *pvd, *ppvd;
5904 uint64_t guid, sguid, pguid, ppguid;
5905
5906 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5907
5908 while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
5909 pvd = vd->vdev_parent;
5910 ppvd = pvd->vdev_parent;
5911 guid = vd->vdev_guid;
5912 pguid = pvd->vdev_guid;
5913 ppguid = ppvd->vdev_guid;
5914 sguid = 0;
5915 /*
5916 * If we have just finished replacing a hot spared device, then
5917 * we need to detach the parent's first child (the original hot
5918 * spare) as well.
5919 */
5920 if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 &&
5921 ppvd->vdev_children == 2) {
5922 ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
5923 sguid = ppvd->vdev_child[1]->vdev_guid;
5924 }
5925 ASSERT(vd->vdev_resilver_txg == 0 || !vdev_dtl_required(vd));
5926
5927 spa_config_exit(spa, SCL_ALL, FTAG);
5928 if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0)
5929 return;
5930 if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0)
5931 return;
5932 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5933 }
5934
5935 spa_config_exit(spa, SCL_ALL, FTAG);
5936 }
5937
5938 /*
5939 * Update the stored path or FRU for this vdev.
5940 */
5941 int
5942 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value,
5943 boolean_t ispath)
5944 {
5945 vdev_t *vd;
5946 boolean_t sync = B_FALSE;
5947
5948 ASSERT(spa_writeable(spa));
5949
5950 spa_vdev_state_enter(spa, SCL_ALL);
5951
5952 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
5953 return (spa_vdev_state_exit(spa, NULL, ENOENT));
5954
5955 if (!vd->vdev_ops->vdev_op_leaf)
5956 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
5957
5958 if (ispath) {
5959 if (strcmp(value, vd->vdev_path) != 0) {
5960 spa_strfree(vd->vdev_path);
5961 vd->vdev_path = spa_strdup(value);
5962 sync = B_TRUE;
5963 }
5964 } else {
5965 if (vd->vdev_fru == NULL) {
5966 vd->vdev_fru = spa_strdup(value);
5967 sync = B_TRUE;
5968 } else if (strcmp(value, vd->vdev_fru) != 0) {
5969 spa_strfree(vd->vdev_fru);
5970 vd->vdev_fru = spa_strdup(value);
5971 sync = B_TRUE;
5972 }
5973 }
5974
5975 return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0));
5976 }
5977
5978 int
5979 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
5980 {
5981 return (spa_vdev_set_common(spa, guid, newpath, B_TRUE));
5982 }
5983
5984 int
5985 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru)
5986 {
5987 return (spa_vdev_set_common(spa, guid, newfru, B_FALSE));
5988 }
5989
5990 /*
5991 * ==========================================================================
5992 * SPA Scanning
5993 * ==========================================================================
5994 */
5995 int
5996 spa_scrub_pause_resume(spa_t *spa, pool_scrub_cmd_t cmd)
5997 {
5998 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5999
6000 if (dsl_scan_resilvering(spa->spa_dsl_pool))
6001 return (SET_ERROR(EBUSY));
6002
6003 return (dsl_scrub_set_pause_resume(spa->spa_dsl_pool, cmd));
6004 }
6005
6006 int
6007 spa_scan_stop(spa_t *spa)
6008 {
6009 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
6010 if (dsl_scan_resilvering(spa->spa_dsl_pool))
6011 return (SET_ERROR(EBUSY));
6012 return (dsl_scan_cancel(spa->spa_dsl_pool));
6013 }
6014
6015 int
6016 spa_scan(spa_t *spa, pool_scan_func_t func)
6017 {
6018 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
6019
6020 if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE)
6021 return (SET_ERROR(ENOTSUP));
6022
6023 /*
6024 * If a resilver was requested, but there is no DTL on a
6025 * writeable leaf device, we have nothing to do.
6026 */
6027 if (func == POOL_SCAN_RESILVER &&
6028 !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
6029 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
6030 return (0);
6031 }
6032
6033 return (dsl_scan(spa->spa_dsl_pool, func));
6034 }
6035
6036 /*
6037 * ==========================================================================
6038 * SPA async task processing
6039 * ==========================================================================
6040 */
6041
6042 static void
6043 spa_async_remove(spa_t *spa, vdev_t *vd)
6044 {
6045 if (vd->vdev_remove_wanted) {
6046 vd->vdev_remove_wanted = B_FALSE;
6047 vd->vdev_delayed_close = B_FALSE;
6048 vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE);
6049
6050 /*
6051 * We want to clear the stats, but we don't want to do a full
6052 * vdev_clear() as that will cause us to throw away
6053 * degraded/faulted state as well as attempt to reopen the
6054 * device, all of which is a waste.
6055 */
6056 vd->vdev_stat.vs_read_errors = 0;
6057 vd->vdev_stat.vs_write_errors = 0;
6058 vd->vdev_stat.vs_checksum_errors = 0;
6059
6060 vdev_state_dirty(vd->vdev_top);
6061 }
6062
6063 for (int c = 0; c < vd->vdev_children; c++)
6064 spa_async_remove(spa, vd->vdev_child[c]);
6065 }
6066
6067 static void
6068 spa_async_probe(spa_t *spa, vdev_t *vd)
6069 {
6070 if (vd->vdev_probe_wanted) {
6071 vd->vdev_probe_wanted = B_FALSE;
6072 vdev_reopen(vd); /* vdev_open() does the actual probe */
6073 }
6074
6075 for (int c = 0; c < vd->vdev_children; c++)
6076 spa_async_probe(spa, vd->vdev_child[c]);
6077 }
6078
6079 static void
6080 spa_async_autoexpand(spa_t *spa, vdev_t *vd)
6081 {
6082 if (!spa->spa_autoexpand)
6083 return;
6084
6085 for (int c = 0; c < vd->vdev_children; c++) {
6086 vdev_t *cvd = vd->vdev_child[c];
6087 spa_async_autoexpand(spa, cvd);
6088 }
6089
6090 if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL)
6091 return;
6092
6093 spa_event_notify(vd->vdev_spa, vd, NULL, ESC_ZFS_VDEV_AUTOEXPAND);
6094 }
6095
6096 static void
6097 spa_async_thread(void *arg)
6098 {
6099 spa_t *spa = (spa_t *)arg;
6100 int tasks;
6101
6102 ASSERT(spa->spa_sync_on);
6103
6104 mutex_enter(&spa->spa_async_lock);
6105 tasks = spa->spa_async_tasks;
6106 spa->spa_async_tasks = 0;
6107 mutex_exit(&spa->spa_async_lock);
6108
6109 /*
6110 * See if the config needs to be updated.
6111 */
6112 if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
6113 uint64_t old_space, new_space;
6114
6115 mutex_enter(&spa_namespace_lock);
6116 old_space = metaslab_class_get_space(spa_normal_class(spa));
6117 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
6118 new_space = metaslab_class_get_space(spa_normal_class(spa));
6119 mutex_exit(&spa_namespace_lock);
6120
6121 /*
6122 * If the pool grew as a result of the config update,
6123 * then log an internal history event.
6124 */
6125 if (new_space != old_space) {
6126 spa_history_log_internal(spa, "vdev online", NULL,
6127 "pool '%s' size: %llu(+%llu)",
6128 spa_name(spa), new_space, new_space - old_space);
6129 }
6130 }
6131
6132 /*
6133 * See if any devices need to be marked REMOVED.
6134 */
6135 if (tasks & SPA_ASYNC_REMOVE) {
6136 spa_vdev_state_enter(spa, SCL_NONE);
6137 spa_async_remove(spa, spa->spa_root_vdev);
6138 for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
6139 spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]);
6140 for (int i = 0; i < spa->spa_spares.sav_count; i++)
6141 spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]);
6142 (void) spa_vdev_state_exit(spa, NULL, 0);
6143 }
6144
6145 if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) {
6146 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
6147 spa_async_autoexpand(spa, spa->spa_root_vdev);
6148 spa_config_exit(spa, SCL_CONFIG, FTAG);
6149 }
6150
6151 /*
6152 * See if any devices need to be probed.
6153 */
6154 if (tasks & SPA_ASYNC_PROBE) {
6155 spa_vdev_state_enter(spa, SCL_NONE);
6156 spa_async_probe(spa, spa->spa_root_vdev);
6157 (void) spa_vdev_state_exit(spa, NULL, 0);
6158 }
6159
6160 /*
6161 * If any devices are done replacing, detach them.
6162 */
6163 if (tasks & SPA_ASYNC_RESILVER_DONE)
6164 spa_vdev_resilver_done(spa);
6165
6166 /*
6167 * Kick off a resilver.
6168 */
6169 if (tasks & SPA_ASYNC_RESILVER)
6170 dsl_resilver_restart(spa->spa_dsl_pool, 0);
6171
6172 /*
6173 * Let the world know that we're done.
6174 */
6175 mutex_enter(&spa->spa_async_lock);
6176 spa->spa_async_thread = NULL;
6177 cv_broadcast(&spa->spa_async_cv);
6178 mutex_exit(&spa->spa_async_lock);
6179 thread_exit();
6180 }
6181
6182 void
6183 spa_async_suspend(spa_t *spa)
6184 {
6185 mutex_enter(&spa->spa_async_lock);
6186 spa->spa_async_suspended++;
6187 while (spa->spa_async_thread != NULL)
6188 cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
6189 mutex_exit(&spa->spa_async_lock);
6190 }
6191
6192 void
6193 spa_async_resume(spa_t *spa)
6194 {
6195 mutex_enter(&spa->spa_async_lock);
6196 ASSERT(spa->spa_async_suspended != 0);
6197 spa->spa_async_suspended--;
6198 mutex_exit(&spa->spa_async_lock);
6199 }
6200
6201 static boolean_t
6202 spa_async_tasks_pending(spa_t *spa)
6203 {
6204 uint_t non_config_tasks;
6205 uint_t config_task;
6206 boolean_t config_task_suspended;
6207
6208 non_config_tasks = spa->spa_async_tasks & ~SPA_ASYNC_CONFIG_UPDATE;
6209 config_task = spa->spa_async_tasks & SPA_ASYNC_CONFIG_UPDATE;
6210 if (spa->spa_ccw_fail_time == 0) {
6211 config_task_suspended = B_FALSE;
6212 } else {
6213 config_task_suspended =
6214 (gethrtime() - spa->spa_ccw_fail_time) <
6215 ((hrtime_t)zfs_ccw_retry_interval * NANOSEC);
6216 }
6217
6218 return (non_config_tasks || (config_task && !config_task_suspended));
6219 }
6220
6221 static void
6222 spa_async_dispatch(spa_t *spa)
6223 {
6224 mutex_enter(&spa->spa_async_lock);
6225 if (spa_async_tasks_pending(spa) &&
6226 !spa->spa_async_suspended &&
6227 spa->spa_async_thread == NULL &&
6228 rootdir != NULL)
6229 spa->spa_async_thread = thread_create(NULL, 0,
6230 spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
6231 mutex_exit(&spa->spa_async_lock);
6232 }
6233
6234 void
6235 spa_async_request(spa_t *spa, int task)
6236 {
6237 zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task);
6238 mutex_enter(&spa->spa_async_lock);
6239 spa->spa_async_tasks |= task;
6240 mutex_exit(&spa->spa_async_lock);
6241 }
6242
6243 /*
6244 * ==========================================================================
6245 * SPA syncing routines
6246 * ==========================================================================
6247 */
6248
6249 static int
6250 bpobj_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
6251 {
6252 bpobj_t *bpo = arg;
6253 bpobj_enqueue(bpo, bp, tx);
6254 return (0);
6255 }
6256
6257 static int
6258 spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
6259 {
6260 zio_t *zio = arg;
6261
6262 zio_nowait(zio_free_sync(zio, zio->io_spa, dmu_tx_get_txg(tx), bp,
6263 zio->io_flags));
6264 return (0);
6265 }
6266
6267 /*
6268 * Note: this simple function is not inlined to make it easier to dtrace the
6269 * amount of time spent syncing frees.
6270 */
6271 static void
6272 spa_sync_frees(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx)
6273 {
6274 zio_t *zio = zio_root(spa, NULL, NULL, 0);
6275 bplist_iterate(bpl, spa_free_sync_cb, zio, tx);
6276 VERIFY(zio_wait(zio) == 0);
6277 }
6278
6279 /*
6280 * Note: this simple function is not inlined to make it easier to dtrace the
6281 * amount of time spent syncing deferred frees.
6282 */
6283 static void
6284 spa_sync_deferred_frees(spa_t *spa, dmu_tx_t *tx)
6285 {
6286 zio_t *zio = zio_root(spa, NULL, NULL, 0);
6287 VERIFY3U(bpobj_iterate(&spa->spa_deferred_bpobj,
6288 spa_free_sync_cb, zio, tx), ==, 0);
6289 VERIFY0(zio_wait(zio));
6290 }
6291
6292 static void
6293 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
6294 {
6295 char *packed = NULL;
6296 size_t bufsize;
6297 size_t nvsize = 0;
6298 dmu_buf_t *db;
6299
6300 VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
6301
6302 /*
6303 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration
6304 * information. This avoids the dmu_buf_will_dirty() path and
6305 * saves us a pre-read to get data we don't actually care about.
6306 */
6307 bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE);
6308 packed = vmem_alloc(bufsize, KM_SLEEP);
6309
6310 VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
6311 KM_SLEEP) == 0);
6312 bzero(packed + nvsize, bufsize - nvsize);
6313
6314 dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx);
6315
6316 vmem_free(packed, bufsize);
6317
6318 VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
6319 dmu_buf_will_dirty(db, tx);
6320 *(uint64_t *)db->db_data = nvsize;
6321 dmu_buf_rele(db, FTAG);
6322 }
6323
6324 static void
6325 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
6326 const char *config, const char *entry)
6327 {
6328 nvlist_t *nvroot;
6329 nvlist_t **list;
6330 int i;
6331
6332 if (!sav->sav_sync)
6333 return;
6334
6335 /*
6336 * Update the MOS nvlist describing the list of available devices.
6337 * spa_validate_aux() will have already made sure this nvlist is
6338 * valid and the vdevs are labeled appropriately.
6339 */
6340 if (sav->sav_object == 0) {
6341 sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
6342 DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
6343 sizeof (uint64_t), tx);
6344 VERIFY(zap_update(spa->spa_meta_objset,
6345 DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
6346 &sav->sav_object, tx) == 0);
6347 }
6348
6349 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
6350 if (sav->sav_count == 0) {
6351 VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0);
6352 } else {
6353 list = kmem_alloc(sav->sav_count*sizeof (void *), KM_SLEEP);
6354 for (i = 0; i < sav->sav_count; i++)
6355 list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
6356 B_FALSE, VDEV_CONFIG_L2CACHE);
6357 VERIFY(nvlist_add_nvlist_array(nvroot, config, list,
6358 sav->sav_count) == 0);
6359 for (i = 0; i < sav->sav_count; i++)
6360 nvlist_free(list[i]);
6361 kmem_free(list, sav->sav_count * sizeof (void *));
6362 }
6363
6364 spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
6365 nvlist_free(nvroot);
6366
6367 sav->sav_sync = B_FALSE;
6368 }
6369
6370 /*
6371 * Rebuild spa's all-vdev ZAP from the vdev ZAPs indicated in each vdev_t.
6372 * The all-vdev ZAP must be empty.
6373 */
6374 static void
6375 spa_avz_build(vdev_t *vd, uint64_t avz, dmu_tx_t *tx)
6376 {
6377 spa_t *spa = vd->vdev_spa;
6378
6379 if (vd->vdev_top_zap != 0) {
6380 VERIFY0(zap_add_int(spa->spa_meta_objset, avz,
6381 vd->vdev_top_zap, tx));
6382 }
6383 if (vd->vdev_leaf_zap != 0) {
6384 VERIFY0(zap_add_int(spa->spa_meta_objset, avz,
6385 vd->vdev_leaf_zap, tx));
6386 }
6387 for (uint64_t i = 0; i < vd->vdev_children; i++) {
6388 spa_avz_build(vd->vdev_child[i], avz, tx);
6389 }
6390 }
6391
6392 static void
6393 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
6394 {
6395 nvlist_t *config;
6396
6397 /*
6398 * If the pool is being imported from a pre-per-vdev-ZAP version of ZFS,
6399 * its config may not be dirty but we still need to build per-vdev ZAPs.
6400 * Similarly, if the pool is being assembled (e.g. after a split), we
6401 * need to rebuild the AVZ although the config may not be dirty.
6402 */
6403 if (list_is_empty(&spa->spa_config_dirty_list) &&
6404 spa->spa_avz_action == AVZ_ACTION_NONE)
6405 return;
6406
6407 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6408
6409 ASSERT(spa->spa_avz_action == AVZ_ACTION_NONE ||
6410 spa->spa_avz_action == AVZ_ACTION_INITIALIZE ||
6411 spa->spa_all_vdev_zaps != 0);
6412
6413 if (spa->spa_avz_action == AVZ_ACTION_REBUILD) {
6414 /* Make and build the new AVZ */
6415 uint64_t new_avz = zap_create(spa->spa_meta_objset,
6416 DMU_OTN_ZAP_METADATA, DMU_OT_NONE, 0, tx);
6417 spa_avz_build(spa->spa_root_vdev, new_avz, tx);
6418
6419 /* Diff old AVZ with new one */
6420 zap_cursor_t zc;
6421 zap_attribute_t za;
6422
6423 for (zap_cursor_init(&zc, spa->spa_meta_objset,
6424 spa->spa_all_vdev_zaps);
6425 zap_cursor_retrieve(&zc, &za) == 0;
6426 zap_cursor_advance(&zc)) {
6427 uint64_t vdzap = za.za_first_integer;
6428 if (zap_lookup_int(spa->spa_meta_objset, new_avz,
6429 vdzap) == ENOENT) {
6430 /*
6431 * ZAP is listed in old AVZ but not in new one;
6432 * destroy it
6433 */
6434 VERIFY0(zap_destroy(spa->spa_meta_objset, vdzap,
6435 tx));
6436 }
6437 }
6438
6439 zap_cursor_fini(&zc);
6440
6441 /* Destroy the old AVZ */
6442 VERIFY0(zap_destroy(spa->spa_meta_objset,
6443 spa->spa_all_vdev_zaps, tx));
6444
6445 /* Replace the old AVZ in the dir obj with the new one */
6446 VERIFY0(zap_update(spa->spa_meta_objset,
6447 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP,
6448 sizeof (new_avz), 1, &new_avz, tx));
6449
6450 spa->spa_all_vdev_zaps = new_avz;
6451 } else if (spa->spa_avz_action == AVZ_ACTION_DESTROY) {
6452 zap_cursor_t zc;
6453 zap_attribute_t za;
6454
6455 /* Walk through the AVZ and destroy all listed ZAPs */
6456 for (zap_cursor_init(&zc, spa->spa_meta_objset,
6457 spa->spa_all_vdev_zaps);
6458 zap_cursor_retrieve(&zc, &za) == 0;
6459 zap_cursor_advance(&zc)) {
6460 uint64_t zap = za.za_first_integer;
6461 VERIFY0(zap_destroy(spa->spa_meta_objset, zap, tx));
6462 }
6463
6464 zap_cursor_fini(&zc);
6465
6466 /* Destroy and unlink the AVZ itself */
6467 VERIFY0(zap_destroy(spa->spa_meta_objset,
6468 spa->spa_all_vdev_zaps, tx));
6469 VERIFY0(zap_remove(spa->spa_meta_objset,
6470 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP, tx));
6471 spa->spa_all_vdev_zaps = 0;
6472 }
6473
6474 if (spa->spa_all_vdev_zaps == 0) {
6475 spa->spa_all_vdev_zaps = zap_create_link(spa->spa_meta_objset,
6476 DMU_OTN_ZAP_METADATA, DMU_POOL_DIRECTORY_OBJECT,
6477 DMU_POOL_VDEV_ZAP_MAP, tx);
6478 }
6479 spa->spa_avz_action = AVZ_ACTION_NONE;
6480
6481 /* Create ZAPs for vdevs that don't have them. */
6482 vdev_construct_zaps(spa->spa_root_vdev, tx);
6483
6484 config = spa_config_generate(spa, spa->spa_root_vdev,
6485 dmu_tx_get_txg(tx), B_FALSE);
6486
6487 /*
6488 * If we're upgrading the spa version then make sure that
6489 * the config object gets updated with the correct version.
6490 */
6491 if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version)
6492 fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
6493 spa->spa_uberblock.ub_version);
6494
6495 spa_config_exit(spa, SCL_STATE, FTAG);
6496
6497 nvlist_free(spa->spa_config_syncing);
6498 spa->spa_config_syncing = config;
6499
6500 spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
6501 }
6502
6503 static void
6504 spa_sync_version(void *arg, dmu_tx_t *tx)
6505 {
6506 uint64_t *versionp = arg;
6507 uint64_t version = *versionp;
6508 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
6509
6510 /*
6511 * Setting the version is special cased when first creating the pool.
6512 */
6513 ASSERT(tx->tx_txg != TXG_INITIAL);
6514
6515 ASSERT(SPA_VERSION_IS_SUPPORTED(version));
6516 ASSERT(version >= spa_version(spa));
6517
6518 spa->spa_uberblock.ub_version = version;
6519 vdev_config_dirty(spa->spa_root_vdev);
6520 spa_history_log_internal(spa, "set", tx, "version=%lld", version);
6521 }
6522
6523 /*
6524 * Set zpool properties.
6525 */
6526 static void
6527 spa_sync_props(void *arg, dmu_tx_t *tx)
6528 {
6529 nvlist_t *nvp = arg;
6530 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
6531 objset_t *mos = spa->spa_meta_objset;
6532 nvpair_t *elem = NULL;
6533
6534 mutex_enter(&spa->spa_props_lock);
6535
6536 while ((elem = nvlist_next_nvpair(nvp, elem))) {
6537 uint64_t intval;
6538 char *strval, *fname;
6539 zpool_prop_t prop;
6540 const char *propname;
6541 zprop_type_t proptype;
6542 spa_feature_t fid;
6543
6544 switch (prop = zpool_name_to_prop(nvpair_name(elem))) {
6545 case ZPOOL_PROP_INVAL:
6546 /*
6547 * We checked this earlier in spa_prop_validate().
6548 */
6549 ASSERT(zpool_prop_feature(nvpair_name(elem)));
6550
6551 fname = strchr(nvpair_name(elem), '@') + 1;
6552 VERIFY0(zfeature_lookup_name(fname, &fid));
6553
6554 spa_feature_enable(spa, fid, tx);
6555 spa_history_log_internal(spa, "set", tx,
6556 "%s=enabled", nvpair_name(elem));
6557 break;
6558
6559 case ZPOOL_PROP_VERSION:
6560 intval = fnvpair_value_uint64(elem);
6561 /*
6562 * The version is synced separately before other
6563 * properties and should be correct by now.
6564 */
6565 ASSERT3U(spa_version(spa), >=, intval);
6566 break;
6567
6568 case ZPOOL_PROP_ALTROOT:
6569 /*
6570 * 'altroot' is a non-persistent property. It should
6571 * have been set temporarily at creation or import time.
6572 */
6573 ASSERT(spa->spa_root != NULL);
6574 break;
6575
6576 case ZPOOL_PROP_READONLY:
6577 case ZPOOL_PROP_CACHEFILE:
6578 /*
6579 * 'readonly' and 'cachefile' are also non-persisitent
6580 * properties.
6581 */
6582 break;
6583 case ZPOOL_PROP_COMMENT:
6584 strval = fnvpair_value_string(elem);
6585 if (spa->spa_comment != NULL)
6586 spa_strfree(spa->spa_comment);
6587 spa->spa_comment = spa_strdup(strval);
6588 /*
6589 * We need to dirty the configuration on all the vdevs
6590 * so that their labels get updated. It's unnecessary
6591 * to do this for pool creation since the vdev's
6592 * configuration has already been dirtied.
6593 */
6594 if (tx->tx_txg != TXG_INITIAL)
6595 vdev_config_dirty(spa->spa_root_vdev);
6596 spa_history_log_internal(spa, "set", tx,
6597 "%s=%s", nvpair_name(elem), strval);
6598 break;
6599 default:
6600 /*
6601 * Set pool property values in the poolprops mos object.
6602 */
6603 if (spa->spa_pool_props_object == 0) {
6604 spa->spa_pool_props_object =
6605 zap_create_link(mos, DMU_OT_POOL_PROPS,
6606 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
6607 tx);
6608 }
6609
6610 /* normalize the property name */
6611 propname = zpool_prop_to_name(prop);
6612 proptype = zpool_prop_get_type(prop);
6613
6614 if (nvpair_type(elem) == DATA_TYPE_STRING) {
6615 ASSERT(proptype == PROP_TYPE_STRING);
6616 strval = fnvpair_value_string(elem);
6617 VERIFY0(zap_update(mos,
6618 spa->spa_pool_props_object, propname,
6619 1, strlen(strval) + 1, strval, tx));
6620 spa_history_log_internal(spa, "set", tx,
6621 "%s=%s", nvpair_name(elem), strval);
6622 } else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
6623 intval = fnvpair_value_uint64(elem);
6624
6625 if (proptype == PROP_TYPE_INDEX) {
6626 const char *unused;
6627 VERIFY0(zpool_prop_index_to_string(
6628 prop, intval, &unused));
6629 }
6630 VERIFY0(zap_update(mos,
6631 spa->spa_pool_props_object, propname,
6632 8, 1, &intval, tx));
6633 spa_history_log_internal(spa, "set", tx,
6634 "%s=%lld", nvpair_name(elem), intval);
6635 } else {
6636 ASSERT(0); /* not allowed */
6637 }
6638
6639 switch (prop) {
6640 case ZPOOL_PROP_DELEGATION:
6641 spa->spa_delegation = intval;
6642 break;
6643 case ZPOOL_PROP_BOOTFS:
6644 spa->spa_bootfs = intval;
6645 break;
6646 case ZPOOL_PROP_FAILUREMODE:
6647 spa->spa_failmode = intval;
6648 break;
6649 case ZPOOL_PROP_AUTOEXPAND:
6650 spa->spa_autoexpand = intval;
6651 if (tx->tx_txg != TXG_INITIAL)
6652 spa_async_request(spa,
6653 SPA_ASYNC_AUTOEXPAND);
6654 break;
6655 case ZPOOL_PROP_MULTIHOST:
6656 spa->spa_multihost = intval;
6657 break;
6658 case ZPOOL_PROP_DEDUPDITTO:
6659 spa->spa_dedup_ditto = intval;
6660 break;
6661 default:
6662 break;
6663 }
6664 }
6665
6666 }
6667
6668 mutex_exit(&spa->spa_props_lock);
6669 }
6670
6671 /*
6672 * Perform one-time upgrade on-disk changes. spa_version() does not
6673 * reflect the new version this txg, so there must be no changes this
6674 * txg to anything that the upgrade code depends on after it executes.
6675 * Therefore this must be called after dsl_pool_sync() does the sync
6676 * tasks.
6677 */
6678 static void
6679 spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx)
6680 {
6681 dsl_pool_t *dp = spa->spa_dsl_pool;
6682
6683 ASSERT(spa->spa_sync_pass == 1);
6684
6685 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
6686
6687 if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
6688 spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
6689 dsl_pool_create_origin(dp, tx);
6690
6691 /* Keeping the origin open increases spa_minref */
6692 spa->spa_minref += 3;
6693 }
6694
6695 if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
6696 spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
6697 dsl_pool_upgrade_clones(dp, tx);
6698 }
6699
6700 if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES &&
6701 spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) {
6702 dsl_pool_upgrade_dir_clones(dp, tx);
6703
6704 /* Keeping the freedir open increases spa_minref */
6705 spa->spa_minref += 3;
6706 }
6707
6708 if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES &&
6709 spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
6710 spa_feature_create_zap_objects(spa, tx);
6711 }
6712
6713 /*
6714 * LZ4_COMPRESS feature's behaviour was changed to activate_on_enable
6715 * when possibility to use lz4 compression for metadata was added
6716 * Old pools that have this feature enabled must be upgraded to have
6717 * this feature active
6718 */
6719 if (spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
6720 boolean_t lz4_en = spa_feature_is_enabled(spa,
6721 SPA_FEATURE_LZ4_COMPRESS);
6722 boolean_t lz4_ac = spa_feature_is_active(spa,
6723 SPA_FEATURE_LZ4_COMPRESS);
6724
6725 if (lz4_en && !lz4_ac)
6726 spa_feature_incr(spa, SPA_FEATURE_LZ4_COMPRESS, tx);
6727 }
6728
6729 /*
6730 * If we haven't written the salt, do so now. Note that the
6731 * feature may not be activated yet, but that's fine since
6732 * the presence of this ZAP entry is backwards compatible.
6733 */
6734 if (zap_contains(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
6735 DMU_POOL_CHECKSUM_SALT) == ENOENT) {
6736 VERIFY0(zap_add(spa->spa_meta_objset,
6737 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CHECKSUM_SALT, 1,
6738 sizeof (spa->spa_cksum_salt.zcs_bytes),
6739 spa->spa_cksum_salt.zcs_bytes, tx));
6740 }
6741
6742 rrw_exit(&dp->dp_config_rwlock, FTAG);
6743 }
6744
6745 /*
6746 * Sync the specified transaction group. New blocks may be dirtied as
6747 * part of the process, so we iterate until it converges.
6748 */
6749 void
6750 spa_sync(spa_t *spa, uint64_t txg)
6751 {
6752 dsl_pool_t *dp = spa->spa_dsl_pool;
6753 objset_t *mos = spa->spa_meta_objset;
6754 bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK];
6755 vdev_t *rvd = spa->spa_root_vdev;
6756 vdev_t *vd;
6757 dmu_tx_t *tx;
6758 int error;
6759 uint32_t max_queue_depth = zfs_vdev_async_write_max_active *
6760 zfs_vdev_queue_depth_pct / 100;
6761
6762 VERIFY(spa_writeable(spa));
6763
6764 /*
6765 * Lock out configuration changes.
6766 */
6767 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
6768
6769 spa->spa_syncing_txg = txg;
6770 spa->spa_sync_pass = 0;
6771
6772 mutex_enter(&spa->spa_alloc_lock);
6773 VERIFY0(avl_numnodes(&spa->spa_alloc_tree));
6774 mutex_exit(&spa->spa_alloc_lock);
6775
6776 /*
6777 * If there are any pending vdev state changes, convert them
6778 * into config changes that go out with this transaction group.
6779 */
6780 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6781 while (list_head(&spa->spa_state_dirty_list) != NULL) {
6782 /*
6783 * We need the write lock here because, for aux vdevs,
6784 * calling vdev_config_dirty() modifies sav_config.
6785 * This is ugly and will become unnecessary when we
6786 * eliminate the aux vdev wart by integrating all vdevs
6787 * into the root vdev tree.
6788 */
6789 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6790 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER);
6791 while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
6792 vdev_state_clean(vd);
6793 vdev_config_dirty(vd);
6794 }
6795 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6796 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
6797 }
6798 spa_config_exit(spa, SCL_STATE, FTAG);
6799
6800 tx = dmu_tx_create_assigned(dp, txg);
6801
6802 spa->spa_sync_starttime = gethrtime();
6803 taskq_cancel_id(system_delay_taskq, spa->spa_deadman_tqid);
6804 spa->spa_deadman_tqid = taskq_dispatch_delay(system_delay_taskq,
6805 spa_deadman, spa, TQ_SLEEP, ddi_get_lbolt() +
6806 NSEC_TO_TICK(spa->spa_deadman_synctime));
6807
6808 /*
6809 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
6810 * set spa_deflate if we have no raid-z vdevs.
6811 */
6812 if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
6813 spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
6814 int i;
6815
6816 for (i = 0; i < rvd->vdev_children; i++) {
6817 vd = rvd->vdev_child[i];
6818 if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
6819 break;
6820 }
6821 if (i == rvd->vdev_children) {
6822 spa->spa_deflate = TRUE;
6823 VERIFY(0 == zap_add(spa->spa_meta_objset,
6824 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
6825 sizeof (uint64_t), 1, &spa->spa_deflate, tx));
6826 }
6827 }
6828
6829 /*
6830 * Set the top-level vdev's max queue depth. Evaluate each
6831 * top-level's async write queue depth in case it changed.
6832 * The max queue depth will not change in the middle of syncing
6833 * out this txg.
6834 */
6835 uint64_t queue_depth_total = 0;
6836 for (int c = 0; c < rvd->vdev_children; c++) {
6837 vdev_t *tvd = rvd->vdev_child[c];
6838 metaslab_group_t *mg = tvd->vdev_mg;
6839
6840 if (mg == NULL || mg->mg_class != spa_normal_class(spa) ||
6841 !metaslab_group_initialized(mg))
6842 continue;
6843
6844 /*
6845 * It is safe to do a lock-free check here because only async
6846 * allocations look at mg_max_alloc_queue_depth, and async
6847 * allocations all happen from spa_sync().
6848 */
6849 ASSERT0(refcount_count(&mg->mg_alloc_queue_depth));
6850 mg->mg_max_alloc_queue_depth = max_queue_depth;
6851 queue_depth_total += mg->mg_max_alloc_queue_depth;
6852 }
6853 metaslab_class_t *mc = spa_normal_class(spa);
6854 ASSERT0(refcount_count(&mc->mc_alloc_slots));
6855 mc->mc_alloc_max_slots = queue_depth_total;
6856 mc->mc_alloc_throttle_enabled = zio_dva_throttle_enabled;
6857
6858 ASSERT3U(mc->mc_alloc_max_slots, <=,
6859 max_queue_depth * rvd->vdev_children);
6860
6861 /*
6862 * Iterate to convergence.
6863 */
6864 do {
6865 int pass = ++spa->spa_sync_pass;
6866
6867 spa_sync_config_object(spa, tx);
6868 spa_sync_aux_dev(spa, &spa->spa_spares, tx,
6869 ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
6870 spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
6871 ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
6872 spa_errlog_sync(spa, txg);
6873 dsl_pool_sync(dp, txg);
6874
6875 if (pass < zfs_sync_pass_deferred_free) {
6876 spa_sync_frees(spa, free_bpl, tx);
6877 } else {
6878 /*
6879 * We can not defer frees in pass 1, because
6880 * we sync the deferred frees later in pass 1.
6881 */
6882 ASSERT3U(pass, >, 1);
6883 bplist_iterate(free_bpl, bpobj_enqueue_cb,
6884 &spa->spa_deferred_bpobj, tx);
6885 }
6886
6887 ddt_sync(spa, txg);
6888 dsl_scan_sync(dp, tx);
6889
6890 while ((vd = txg_list_remove(&spa->spa_vdev_txg_list, txg)))
6891 vdev_sync(vd, txg);
6892
6893 if (pass == 1) {
6894 spa_sync_upgrades(spa, tx);
6895 ASSERT3U(txg, >=,
6896 spa->spa_uberblock.ub_rootbp.blk_birth);
6897 /*
6898 * Note: We need to check if the MOS is dirty
6899 * because we could have marked the MOS dirty
6900 * without updating the uberblock (e.g. if we
6901 * have sync tasks but no dirty user data). We
6902 * need to check the uberblock's rootbp because
6903 * it is updated if we have synced out dirty
6904 * data (though in this case the MOS will most
6905 * likely also be dirty due to second order
6906 * effects, we don't want to rely on that here).
6907 */
6908 if (spa->spa_uberblock.ub_rootbp.blk_birth < txg &&
6909 !dmu_objset_is_dirty(mos, txg)) {
6910 /*
6911 * Nothing changed on the first pass,
6912 * therefore this TXG is a no-op. Avoid
6913 * syncing deferred frees, so that we
6914 * can keep this TXG as a no-op.
6915 */
6916 ASSERT(txg_list_empty(&dp->dp_dirty_datasets,
6917 txg));
6918 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
6919 ASSERT(txg_list_empty(&dp->dp_sync_tasks, txg));
6920 break;
6921 }
6922 spa_sync_deferred_frees(spa, tx);
6923 }
6924
6925 } while (dmu_objset_is_dirty(mos, txg));
6926
6927 #ifdef ZFS_DEBUG
6928 if (!list_is_empty(&spa->spa_config_dirty_list)) {
6929 /*
6930 * Make sure that the number of ZAPs for all the vdevs matches
6931 * the number of ZAPs in the per-vdev ZAP list. This only gets
6932 * called if the config is dirty; otherwise there may be
6933 * outstanding AVZ operations that weren't completed in
6934 * spa_sync_config_object.
6935 */
6936 uint64_t all_vdev_zap_entry_count;
6937 ASSERT0(zap_count(spa->spa_meta_objset,
6938 spa->spa_all_vdev_zaps, &all_vdev_zap_entry_count));
6939 ASSERT3U(vdev_count_verify_zaps(spa->spa_root_vdev), ==,
6940 all_vdev_zap_entry_count);
6941 }
6942 #endif
6943
6944 /*
6945 * Rewrite the vdev configuration (which includes the uberblock)
6946 * to commit the transaction group.
6947 *
6948 * If there are no dirty vdevs, we sync the uberblock to a few
6949 * random top-level vdevs that are known to be visible in the
6950 * config cache (see spa_vdev_add() for a complete description).
6951 * If there *are* dirty vdevs, sync the uberblock to all vdevs.
6952 */
6953 for (;;) {
6954 /*
6955 * We hold SCL_STATE to prevent vdev open/close/etc.
6956 * while we're attempting to write the vdev labels.
6957 */
6958 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6959
6960 if (list_is_empty(&spa->spa_config_dirty_list)) {
6961 vdev_t *svd[SPA_DVAS_PER_BP];
6962 int svdcount = 0;
6963 int children = rvd->vdev_children;
6964 int c0 = spa_get_random(children);
6965
6966 for (int c = 0; c < children; c++) {
6967 vd = rvd->vdev_child[(c0 + c) % children];
6968 if (vd->vdev_ms_array == 0 || vd->vdev_islog)
6969 continue;
6970 svd[svdcount++] = vd;
6971 if (svdcount == SPA_DVAS_PER_BP)
6972 break;
6973 }
6974 error = vdev_config_sync(svd, svdcount, txg);
6975 } else {
6976 error = vdev_config_sync(rvd->vdev_child,
6977 rvd->vdev_children, txg);
6978 }
6979
6980 if (error == 0)
6981 spa->spa_last_synced_guid = rvd->vdev_guid;
6982
6983 spa_config_exit(spa, SCL_STATE, FTAG);
6984
6985 if (error == 0)
6986 break;
6987 zio_suspend(spa, NULL);
6988 zio_resume_wait(spa);
6989 }
6990 dmu_tx_commit(tx);
6991
6992 taskq_cancel_id(system_delay_taskq, spa->spa_deadman_tqid);
6993 spa->spa_deadman_tqid = 0;
6994
6995 /*
6996 * Clear the dirty config list.
6997 */
6998 while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL)
6999 vdev_config_clean(vd);
7000
7001 /*
7002 * Now that the new config has synced transactionally,
7003 * let it become visible to the config cache.
7004 */
7005 if (spa->spa_config_syncing != NULL) {
7006 spa_config_set(spa, spa->spa_config_syncing);
7007 spa->spa_config_txg = txg;
7008 spa->spa_config_syncing = NULL;
7009 }
7010
7011 dsl_pool_sync_done(dp, txg);
7012
7013 mutex_enter(&spa->spa_alloc_lock);
7014 VERIFY0(avl_numnodes(&spa->spa_alloc_tree));
7015 mutex_exit(&spa->spa_alloc_lock);
7016
7017 /*
7018 * Update usable space statistics.
7019 */
7020 while ((vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg))))
7021 vdev_sync_done(vd, txg);
7022
7023 spa_update_dspace(spa);
7024
7025 /*
7026 * It had better be the case that we didn't dirty anything
7027 * since vdev_config_sync().
7028 */
7029 ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
7030 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
7031 ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
7032
7033 spa->spa_sync_pass = 0;
7034
7035 /*
7036 * Update the last synced uberblock here. We want to do this at
7037 * the end of spa_sync() so that consumers of spa_last_synced_txg()
7038 * will be guaranteed that all the processing associated with
7039 * that txg has been completed.
7040 */
7041 spa->spa_ubsync = spa->spa_uberblock;
7042 spa_config_exit(spa, SCL_CONFIG, FTAG);
7043
7044 spa_handle_ignored_writes(spa);
7045
7046 /*
7047 * If any async tasks have been requested, kick them off.
7048 */
7049 spa_async_dispatch(spa);
7050 }
7051
7052 /*
7053 * Sync all pools. We don't want to hold the namespace lock across these
7054 * operations, so we take a reference on the spa_t and drop the lock during the
7055 * sync.
7056 */
7057 void
7058 spa_sync_allpools(void)
7059 {
7060 spa_t *spa = NULL;
7061 mutex_enter(&spa_namespace_lock);
7062 while ((spa = spa_next(spa)) != NULL) {
7063 if (spa_state(spa) != POOL_STATE_ACTIVE ||
7064 !spa_writeable(spa) || spa_suspended(spa))
7065 continue;
7066 spa_open_ref(spa, FTAG);
7067 mutex_exit(&spa_namespace_lock);
7068 txg_wait_synced(spa_get_dsl(spa), 0);
7069 mutex_enter(&spa_namespace_lock);
7070 spa_close(spa, FTAG);
7071 }
7072 mutex_exit(&spa_namespace_lock);
7073 }
7074
7075 /*
7076 * ==========================================================================
7077 * Miscellaneous routines
7078 * ==========================================================================
7079 */
7080
7081 /*
7082 * Remove all pools in the system.
7083 */
7084 void
7085 spa_evict_all(void)
7086 {
7087 spa_t *spa;
7088
7089 /*
7090 * Remove all cached state. All pools should be closed now,
7091 * so every spa in the AVL tree should be unreferenced.
7092 */
7093 mutex_enter(&spa_namespace_lock);
7094 while ((spa = spa_next(NULL)) != NULL) {
7095 /*
7096 * Stop async tasks. The async thread may need to detach
7097 * a device that's been replaced, which requires grabbing
7098 * spa_namespace_lock, so we must drop it here.
7099 */
7100 spa_open_ref(spa, FTAG);
7101 mutex_exit(&spa_namespace_lock);
7102 spa_async_suspend(spa);
7103 mutex_enter(&spa_namespace_lock);
7104 spa_close(spa, FTAG);
7105
7106 if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
7107 spa_unload(spa);
7108 spa_deactivate(spa);
7109 }
7110 spa_remove(spa);
7111 }
7112 mutex_exit(&spa_namespace_lock);
7113 }
7114
7115 vdev_t *
7116 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux)
7117 {
7118 vdev_t *vd;
7119 int i;
7120
7121 if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
7122 return (vd);
7123
7124 if (aux) {
7125 for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
7126 vd = spa->spa_l2cache.sav_vdevs[i];
7127 if (vd->vdev_guid == guid)
7128 return (vd);
7129 }
7130
7131 for (i = 0; i < spa->spa_spares.sav_count; i++) {
7132 vd = spa->spa_spares.sav_vdevs[i];
7133 if (vd->vdev_guid == guid)
7134 return (vd);
7135 }
7136 }
7137
7138 return (NULL);
7139 }
7140
7141 void
7142 spa_upgrade(spa_t *spa, uint64_t version)
7143 {
7144 ASSERT(spa_writeable(spa));
7145
7146 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
7147
7148 /*
7149 * This should only be called for a non-faulted pool, and since a
7150 * future version would result in an unopenable pool, this shouldn't be
7151 * possible.
7152 */
7153 ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version));
7154 ASSERT3U(version, >=, spa->spa_uberblock.ub_version);
7155
7156 spa->spa_uberblock.ub_version = version;
7157 vdev_config_dirty(spa->spa_root_vdev);
7158
7159 spa_config_exit(spa, SCL_ALL, FTAG);
7160
7161 txg_wait_synced(spa_get_dsl(spa), 0);
7162 }
7163
7164 boolean_t
7165 spa_has_spare(spa_t *spa, uint64_t guid)
7166 {
7167 int i;
7168 uint64_t spareguid;
7169 spa_aux_vdev_t *sav = &spa->spa_spares;
7170
7171 for (i = 0; i < sav->sav_count; i++)
7172 if (sav->sav_vdevs[i]->vdev_guid == guid)
7173 return (B_TRUE);
7174
7175 for (i = 0; i < sav->sav_npending; i++) {
7176 if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
7177 &spareguid) == 0 && spareguid == guid)
7178 return (B_TRUE);
7179 }
7180
7181 return (B_FALSE);
7182 }
7183
7184 /*
7185 * Check if a pool has an active shared spare device.
7186 * Note: reference count of an active spare is 2, as a spare and as a replace
7187 */
7188 static boolean_t
7189 spa_has_active_shared_spare(spa_t *spa)
7190 {
7191 int i, refcnt;
7192 uint64_t pool;
7193 spa_aux_vdev_t *sav = &spa->spa_spares;
7194
7195 for (i = 0; i < sav->sav_count; i++) {
7196 if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
7197 &refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
7198 refcnt > 2)
7199 return (B_TRUE);
7200 }
7201
7202 return (B_FALSE);
7203 }
7204
7205 static sysevent_t *
7206 spa_event_create(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl, const char *name)
7207 {
7208 sysevent_t *ev = NULL;
7209 #ifdef _KERNEL
7210 nvlist_t *resource;
7211
7212 resource = zfs_event_create(spa, vd, FM_SYSEVENT_CLASS, name, hist_nvl);
7213 if (resource) {
7214 ev = kmem_alloc(sizeof (sysevent_t), KM_SLEEP);
7215 ev->resource = resource;
7216 }
7217 #endif
7218 return (ev);
7219 }
7220
7221 static void
7222 spa_event_post(sysevent_t *ev)
7223 {
7224 #ifdef _KERNEL
7225 if (ev) {
7226 zfs_zevent_post(ev->resource, NULL, zfs_zevent_post_cb);
7227 kmem_free(ev, sizeof (*ev));
7228 }
7229 #endif
7230 }
7231
7232 /*
7233 * Post a zevent corresponding to the given sysevent. The 'name' must be one
7234 * of the event definitions in sys/sysevent/eventdefs.h. The payload will be
7235 * filled in from the spa and (optionally) the vdev. This doesn't do anything
7236 * in the userland libzpool, as we don't want consumers to misinterpret ztest
7237 * or zdb as real changes.
7238 */
7239 void
7240 spa_event_notify(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl, const char *name)
7241 {
7242 spa_event_post(spa_event_create(spa, vd, hist_nvl, name));
7243 }
7244
7245 #if defined(_KERNEL) && defined(HAVE_SPL)
7246 /* state manipulation functions */
7247 EXPORT_SYMBOL(spa_open);
7248 EXPORT_SYMBOL(spa_open_rewind);
7249 EXPORT_SYMBOL(spa_get_stats);
7250 EXPORT_SYMBOL(spa_create);
7251 EXPORT_SYMBOL(spa_import);
7252 EXPORT_SYMBOL(spa_tryimport);
7253 EXPORT_SYMBOL(spa_destroy);
7254 EXPORT_SYMBOL(spa_export);
7255 EXPORT_SYMBOL(spa_reset);
7256 EXPORT_SYMBOL(spa_async_request);
7257 EXPORT_SYMBOL(spa_async_suspend);
7258 EXPORT_SYMBOL(spa_async_resume);
7259 EXPORT_SYMBOL(spa_inject_addref);
7260 EXPORT_SYMBOL(spa_inject_delref);
7261 EXPORT_SYMBOL(spa_scan_stat_init);
7262 EXPORT_SYMBOL(spa_scan_get_stats);
7263
7264 /* device maniion */
7265 EXPORT_SYMBOL(spa_vdev_add);
7266 EXPORT_SYMBOL(spa_vdev_attach);
7267 EXPORT_SYMBOL(spa_vdev_detach);
7268 EXPORT_SYMBOL(spa_vdev_remove);
7269 EXPORT_SYMBOL(spa_vdev_setpath);
7270 EXPORT_SYMBOL(spa_vdev_setfru);
7271 EXPORT_SYMBOL(spa_vdev_split_mirror);
7272
7273 /* spare statech is global across all pools) */
7274 EXPORT_SYMBOL(spa_spare_add);
7275 EXPORT_SYMBOL(spa_spare_remove);
7276 EXPORT_SYMBOL(spa_spare_exists);
7277 EXPORT_SYMBOL(spa_spare_activate);
7278
7279 /* L2ARC statech is global across all pools) */
7280 EXPORT_SYMBOL(spa_l2cache_add);
7281 EXPORT_SYMBOL(spa_l2cache_remove);
7282 EXPORT_SYMBOL(spa_l2cache_exists);
7283 EXPORT_SYMBOL(spa_l2cache_activate);
7284 EXPORT_SYMBOL(spa_l2cache_drop);
7285
7286 /* scanning */
7287 EXPORT_SYMBOL(spa_scan);
7288 EXPORT_SYMBOL(spa_scan_stop);
7289
7290 /* spa syncing */
7291 EXPORT_SYMBOL(spa_sync); /* only for DMU use */
7292 EXPORT_SYMBOL(spa_sync_allpools);
7293
7294 /* properties */
7295 EXPORT_SYMBOL(spa_prop_set);
7296 EXPORT_SYMBOL(spa_prop_get);
7297 EXPORT_SYMBOL(spa_prop_clear_bootfs);
7298
7299 /* asynchronous event notification */
7300 EXPORT_SYMBOL(spa_event_notify);
7301 #endif
7302
7303 #if defined(_KERNEL) && defined(HAVE_SPL)
7304 module_param(spa_load_verify_maxinflight, int, 0644);
7305 MODULE_PARM_DESC(spa_load_verify_maxinflight,
7306 "Max concurrent traversal I/Os while verifying pool during import -X");
7307
7308 module_param(spa_load_verify_metadata, int, 0644);
7309 MODULE_PARM_DESC(spa_load_verify_metadata,
7310 "Set to traverse metadata on pool import");
7311
7312 module_param(spa_load_verify_data, int, 0644);
7313 MODULE_PARM_DESC(spa_load_verify_data,
7314 "Set to traverse data on pool import");
7315
7316 /* CSTYLED */
7317 module_param(zio_taskq_batch_pct, uint, 0444);
7318 MODULE_PARM_DESC(zio_taskq_batch_pct,
7319 "Percentage of CPUs to run an IO worker thread");
7320
7321 #endif