]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/space_map.c
a8f88b6710fe0c3d67758721267e6c80103abf45
[mirror_zfs.git] / module / zfs / space_map.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */
25 /*
26 * Copyright (c) 2012, 2016 by Delphix. All rights reserved.
27 */
28
29 #include <sys/zfs_context.h>
30 #include <sys/spa.h>
31 #include <sys/dmu.h>
32 #include <sys/dmu_tx.h>
33 #include <sys/dnode.h>
34 #include <sys/dsl_pool.h>
35 #include <sys/zio.h>
36 #include <sys/space_map.h>
37 #include <sys/refcount.h>
38 #include <sys/zfeature.h>
39
40 /*
41 * The data for a given space map can be kept on blocks of any size.
42 * Larger blocks entail fewer i/o operations, but they also cause the
43 * DMU to keep more data in-core, and also to waste more i/o bandwidth
44 * when only a few blocks have changed since the last transaction group.
45 */
46 int space_map_blksz = (1 << 12);
47
48 /*
49 * Load the space map disk into the specified range tree. Segments of maptype
50 * are added to the range tree, other segment types are removed.
51 *
52 * Note: space_map_load() will drop sm_lock across dmu_read() calls.
53 * The caller must be OK with this.
54 */
55 int
56 space_map_load(space_map_t *sm, range_tree_t *rt, maptype_t maptype)
57 {
58 uint64_t *entry, *entry_map, *entry_map_end;
59 uint64_t bufsize, size, offset, end, space;
60 int error = 0;
61
62 ASSERT(MUTEX_HELD(sm->sm_lock));
63
64 end = space_map_length(sm);
65 space = space_map_allocated(sm);
66
67 VERIFY0(range_tree_space(rt));
68
69 if (maptype == SM_FREE) {
70 range_tree_add(rt, sm->sm_start, sm->sm_size);
71 space = sm->sm_size - space;
72 }
73
74 bufsize = MAX(sm->sm_blksz, SPA_MINBLOCKSIZE);
75 entry_map = vmem_alloc(bufsize, KM_SLEEP);
76
77 mutex_exit(sm->sm_lock);
78 if (end > bufsize) {
79 dmu_prefetch(sm->sm_os, space_map_object(sm), 0, bufsize,
80 end - bufsize, ZIO_PRIORITY_SYNC_READ);
81 }
82 mutex_enter(sm->sm_lock);
83
84 for (offset = 0; offset < end; offset += bufsize) {
85 size = MIN(end - offset, bufsize);
86 VERIFY(P2PHASE(size, sizeof (uint64_t)) == 0);
87 VERIFY(size != 0);
88 ASSERT3U(sm->sm_blksz, !=, 0);
89
90 dprintf("object=%llu offset=%llx size=%llx\n",
91 space_map_object(sm), offset, size);
92
93 mutex_exit(sm->sm_lock);
94 error = dmu_read(sm->sm_os, space_map_object(sm), offset, size,
95 entry_map, DMU_READ_PREFETCH);
96 mutex_enter(sm->sm_lock);
97 if (error != 0)
98 break;
99
100 entry_map_end = entry_map + (size / sizeof (uint64_t));
101 for (entry = entry_map; entry < entry_map_end; entry++) {
102 uint64_t e = *entry;
103 uint64_t offset, size;
104
105 if (SM_DEBUG_DECODE(e)) /* Skip debug entries */
106 continue;
107
108 offset = (SM_OFFSET_DECODE(e) << sm->sm_shift) +
109 sm->sm_start;
110 size = SM_RUN_DECODE(e) << sm->sm_shift;
111
112 VERIFY0(P2PHASE(offset, 1ULL << sm->sm_shift));
113 VERIFY0(P2PHASE(size, 1ULL << sm->sm_shift));
114 VERIFY3U(offset, >=, sm->sm_start);
115 VERIFY3U(offset + size, <=, sm->sm_start + sm->sm_size);
116 if (SM_TYPE_DECODE(e) == maptype) {
117 VERIFY3U(range_tree_space(rt) + size, <=,
118 sm->sm_size);
119 range_tree_add(rt, offset, size);
120 } else {
121 range_tree_remove(rt, offset, size);
122 }
123 }
124 }
125
126 if (error == 0)
127 VERIFY3U(range_tree_space(rt), ==, space);
128 else
129 range_tree_vacate(rt, NULL, NULL);
130
131 vmem_free(entry_map, bufsize);
132 return (error);
133 }
134
135 void
136 space_map_histogram_clear(space_map_t *sm)
137 {
138 if (sm->sm_dbuf->db_size != sizeof (space_map_phys_t))
139 return;
140
141 bzero(sm->sm_phys->smp_histogram, sizeof (sm->sm_phys->smp_histogram));
142 }
143
144 boolean_t
145 space_map_histogram_verify(space_map_t *sm, range_tree_t *rt)
146 {
147 int i;
148
149 /*
150 * Verify that the in-core range tree does not have any
151 * ranges smaller than our sm_shift size.
152 */
153 for (i = 0; i < sm->sm_shift; i++) {
154 if (rt->rt_histogram[i] != 0)
155 return (B_FALSE);
156 }
157 return (B_TRUE);
158 }
159
160 void
161 space_map_histogram_add(space_map_t *sm, range_tree_t *rt, dmu_tx_t *tx)
162 {
163 int idx = 0;
164 int i;
165
166 ASSERT(MUTEX_HELD(rt->rt_lock));
167 ASSERT(dmu_tx_is_syncing(tx));
168 VERIFY3U(space_map_object(sm), !=, 0);
169
170 if (sm->sm_dbuf->db_size != sizeof (space_map_phys_t))
171 return;
172
173 dmu_buf_will_dirty(sm->sm_dbuf, tx);
174
175 ASSERT(space_map_histogram_verify(sm, rt));
176 /*
177 * Transfer the content of the range tree histogram to the space
178 * map histogram. The space map histogram contains 32 buckets ranging
179 * between 2^sm_shift to 2^(32+sm_shift-1). The range tree,
180 * however, can represent ranges from 2^0 to 2^63. Since the space
181 * map only cares about allocatable blocks (minimum of sm_shift) we
182 * can safely ignore all ranges in the range tree smaller than sm_shift.
183 */
184 for (i = sm->sm_shift; i < RANGE_TREE_HISTOGRAM_SIZE; i++) {
185
186 /*
187 * Since the largest histogram bucket in the space map is
188 * 2^(32+sm_shift-1), we need to normalize the values in
189 * the range tree for any bucket larger than that size. For
190 * example given an sm_shift of 9, ranges larger than 2^40
191 * would get normalized as if they were 1TB ranges. Assume
192 * the range tree had a count of 5 in the 2^44 (16TB) bucket,
193 * the calculation below would normalize this to 5 * 2^4 (16).
194 */
195 ASSERT3U(i, >=, idx + sm->sm_shift);
196 sm->sm_phys->smp_histogram[idx] +=
197 rt->rt_histogram[i] << (i - idx - sm->sm_shift);
198
199 /*
200 * Increment the space map's index as long as we haven't
201 * reached the maximum bucket size. Accumulate all ranges
202 * larger than the max bucket size into the last bucket.
203 */
204 if (idx < SPACE_MAP_HISTOGRAM_SIZE - 1) {
205 ASSERT3U(idx + sm->sm_shift, ==, i);
206 idx++;
207 ASSERT3U(idx, <, SPACE_MAP_HISTOGRAM_SIZE);
208 }
209 }
210 }
211
212 uint64_t
213 space_map_entries(space_map_t *sm, range_tree_t *rt)
214 {
215 avl_tree_t *t = &rt->rt_root;
216 range_seg_t *rs;
217 uint64_t size, entries;
218
219 /*
220 * All space_maps always have a debug entry so account for it here.
221 */
222 entries = 1;
223
224 /*
225 * Traverse the range tree and calculate the number of space map
226 * entries that would be required to write out the range tree.
227 */
228 for (rs = avl_first(t); rs != NULL; rs = AVL_NEXT(t, rs)) {
229 size = (rs->rs_end - rs->rs_start) >> sm->sm_shift;
230 entries += howmany(size, SM_RUN_MAX);
231 }
232 return (entries);
233 }
234
235 /*
236 * Note: space_map_write() will drop sm_lock across dmu_write() calls.
237 */
238 void
239 space_map_write(space_map_t *sm, range_tree_t *rt, maptype_t maptype,
240 dmu_tx_t *tx)
241 {
242 objset_t *os = sm->sm_os;
243 spa_t *spa = dmu_objset_spa(os);
244 avl_tree_t *t = &rt->rt_root;
245 range_seg_t *rs;
246 uint64_t size, total, rt_space, nodes;
247 uint64_t *entry, *entry_map, *entry_map_end;
248 uint64_t expected_entries, actual_entries = 1;
249
250 ASSERT(MUTEX_HELD(rt->rt_lock));
251 ASSERT(dsl_pool_sync_context(dmu_objset_pool(os)));
252 VERIFY3U(space_map_object(sm), !=, 0);
253 dmu_buf_will_dirty(sm->sm_dbuf, tx);
254
255 /*
256 * This field is no longer necessary since the in-core space map
257 * now contains the object number but is maintained for backwards
258 * compatibility.
259 */
260 sm->sm_phys->smp_object = sm->sm_object;
261
262 if (range_tree_space(rt) == 0) {
263 VERIFY3U(sm->sm_object, ==, sm->sm_phys->smp_object);
264 return;
265 }
266
267 if (maptype == SM_ALLOC)
268 sm->sm_phys->smp_alloc += range_tree_space(rt);
269 else
270 sm->sm_phys->smp_alloc -= range_tree_space(rt);
271
272 expected_entries = space_map_entries(sm, rt);
273
274 entry_map = vmem_alloc(sm->sm_blksz, KM_SLEEP);
275 entry_map_end = entry_map + (sm->sm_blksz / sizeof (uint64_t));
276 entry = entry_map;
277
278 *entry++ = SM_DEBUG_ENCODE(1) |
279 SM_DEBUG_ACTION_ENCODE(maptype) |
280 SM_DEBUG_SYNCPASS_ENCODE(spa_sync_pass(spa)) |
281 SM_DEBUG_TXG_ENCODE(dmu_tx_get_txg(tx));
282
283 total = 0;
284 nodes = avl_numnodes(&rt->rt_root);
285 rt_space = range_tree_space(rt);
286 for (rs = avl_first(t); rs != NULL; rs = AVL_NEXT(t, rs)) {
287 uint64_t start;
288
289 size = (rs->rs_end - rs->rs_start) >> sm->sm_shift;
290 start = (rs->rs_start - sm->sm_start) >> sm->sm_shift;
291
292 total += size << sm->sm_shift;
293
294 while (size != 0) {
295 uint64_t run_len;
296
297 run_len = MIN(size, SM_RUN_MAX);
298
299 if (entry == entry_map_end) {
300 mutex_exit(rt->rt_lock);
301 dmu_write(os, space_map_object(sm),
302 sm->sm_phys->smp_objsize, sm->sm_blksz,
303 entry_map, tx);
304 mutex_enter(rt->rt_lock);
305 sm->sm_phys->smp_objsize += sm->sm_blksz;
306 entry = entry_map;
307 }
308
309 *entry++ = SM_OFFSET_ENCODE(start) |
310 SM_TYPE_ENCODE(maptype) |
311 SM_RUN_ENCODE(run_len);
312
313 start += run_len;
314 size -= run_len;
315 actual_entries++;
316 }
317 }
318
319 if (entry != entry_map) {
320 size = (entry - entry_map) * sizeof (uint64_t);
321 mutex_exit(rt->rt_lock);
322 dmu_write(os, space_map_object(sm), sm->sm_phys->smp_objsize,
323 size, entry_map, tx);
324 mutex_enter(rt->rt_lock);
325 sm->sm_phys->smp_objsize += size;
326 }
327 ASSERT3U(expected_entries, ==, actual_entries);
328
329 /*
330 * Ensure that the space_map's accounting wasn't changed
331 * while we were in the middle of writing it out.
332 */
333 VERIFY3U(nodes, ==, avl_numnodes(&rt->rt_root));
334 VERIFY3U(range_tree_space(rt), ==, rt_space);
335 VERIFY3U(range_tree_space(rt), ==, total);
336
337 vmem_free(entry_map, sm->sm_blksz);
338 }
339
340 static int
341 space_map_open_impl(space_map_t *sm)
342 {
343 int error;
344 u_longlong_t blocks;
345
346 error = dmu_bonus_hold(sm->sm_os, sm->sm_object, sm, &sm->sm_dbuf);
347 if (error)
348 return (error);
349
350 dmu_object_size_from_db(sm->sm_dbuf, &sm->sm_blksz, &blocks);
351 sm->sm_phys = sm->sm_dbuf->db_data;
352 return (0);
353 }
354
355 int
356 space_map_open(space_map_t **smp, objset_t *os, uint64_t object,
357 uint64_t start, uint64_t size, uint8_t shift, kmutex_t *lp)
358 {
359 space_map_t *sm;
360 int error;
361
362 ASSERT(*smp == NULL);
363 ASSERT(os != NULL);
364 ASSERT(object != 0);
365
366 sm = kmem_alloc(sizeof (space_map_t), KM_SLEEP);
367
368 sm->sm_start = start;
369 sm->sm_size = size;
370 sm->sm_shift = shift;
371 sm->sm_lock = lp;
372 sm->sm_os = os;
373 sm->sm_object = object;
374 sm->sm_length = 0;
375 sm->sm_alloc = 0;
376 sm->sm_blksz = 0;
377 sm->sm_dbuf = NULL;
378 sm->sm_phys = NULL;
379
380 error = space_map_open_impl(sm);
381 if (error != 0) {
382 space_map_close(sm);
383 return (error);
384 }
385
386 *smp = sm;
387
388 return (0);
389 }
390
391 void
392 space_map_close(space_map_t *sm)
393 {
394 if (sm == NULL)
395 return;
396
397 if (sm->sm_dbuf != NULL)
398 dmu_buf_rele(sm->sm_dbuf, sm);
399 sm->sm_dbuf = NULL;
400 sm->sm_phys = NULL;
401
402 kmem_free(sm, sizeof (*sm));
403 }
404
405 void
406 space_map_truncate(space_map_t *sm, dmu_tx_t *tx)
407 {
408 objset_t *os = sm->sm_os;
409 spa_t *spa = dmu_objset_spa(os);
410 dmu_object_info_t doi;
411
412 ASSERT(dsl_pool_sync_context(dmu_objset_pool(os)));
413 ASSERT(dmu_tx_is_syncing(tx));
414 VERIFY3U(dmu_tx_get_txg(tx), <=, spa_final_dirty_txg(spa));
415
416 dmu_object_info_from_db(sm->sm_dbuf, &doi);
417
418 /*
419 * If the space map has the wrong bonus size (because
420 * SPA_FEATURE_SPACEMAP_HISTOGRAM has recently been enabled), or
421 * the wrong block size (because space_map_blksz has changed),
422 * free and re-allocate its object with the updated sizes.
423 *
424 * Otherwise, just truncate the current object.
425 */
426 if ((spa_feature_is_enabled(spa, SPA_FEATURE_SPACEMAP_HISTOGRAM) &&
427 doi.doi_bonus_size != sizeof (space_map_phys_t)) ||
428 doi.doi_data_block_size != space_map_blksz) {
429 zfs_dbgmsg("txg %llu, spa %s, sm %p, reallocating "
430 "object[%llu]: old bonus %u, old blocksz %u",
431 dmu_tx_get_txg(tx), spa_name(spa), sm, sm->sm_object,
432 doi.doi_bonus_size, doi.doi_data_block_size);
433
434 space_map_free(sm, tx);
435 dmu_buf_rele(sm->sm_dbuf, sm);
436
437 sm->sm_object = space_map_alloc(sm->sm_os, tx);
438 VERIFY0(space_map_open_impl(sm));
439 } else {
440 VERIFY0(dmu_free_range(os, space_map_object(sm), 0, -1ULL, tx));
441
442 /*
443 * If the spacemap is reallocated, its histogram
444 * will be reset. Do the same in the common case so that
445 * bugs related to the uncommon case do not go unnoticed.
446 */
447 bzero(sm->sm_phys->smp_histogram,
448 sizeof (sm->sm_phys->smp_histogram));
449 }
450
451 dmu_buf_will_dirty(sm->sm_dbuf, tx);
452 sm->sm_phys->smp_objsize = 0;
453 sm->sm_phys->smp_alloc = 0;
454 }
455
456 /*
457 * Update the in-core space_map allocation and length values.
458 */
459 void
460 space_map_update(space_map_t *sm)
461 {
462 if (sm == NULL)
463 return;
464
465 ASSERT(MUTEX_HELD(sm->sm_lock));
466
467 sm->sm_alloc = sm->sm_phys->smp_alloc;
468 sm->sm_length = sm->sm_phys->smp_objsize;
469 }
470
471 uint64_t
472 space_map_alloc(objset_t *os, dmu_tx_t *tx)
473 {
474 spa_t *spa = dmu_objset_spa(os);
475 uint64_t object;
476 int bonuslen;
477
478 if (spa_feature_is_enabled(spa, SPA_FEATURE_SPACEMAP_HISTOGRAM)) {
479 spa_feature_incr(spa, SPA_FEATURE_SPACEMAP_HISTOGRAM, tx);
480 bonuslen = sizeof (space_map_phys_t);
481 ASSERT3U(bonuslen, <=, dmu_bonus_max());
482 } else {
483 bonuslen = SPACE_MAP_SIZE_V0;
484 }
485
486 object = dmu_object_alloc(os,
487 DMU_OT_SPACE_MAP, space_map_blksz,
488 DMU_OT_SPACE_MAP_HEADER, bonuslen, tx);
489
490 return (object);
491 }
492
493 void
494 space_map_free(space_map_t *sm, dmu_tx_t *tx)
495 {
496 spa_t *spa;
497
498 if (sm == NULL)
499 return;
500
501 spa = dmu_objset_spa(sm->sm_os);
502 if (spa_feature_is_enabled(spa, SPA_FEATURE_SPACEMAP_HISTOGRAM)) {
503 dmu_object_info_t doi;
504
505 dmu_object_info_from_db(sm->sm_dbuf, &doi);
506 if (doi.doi_bonus_size != SPACE_MAP_SIZE_V0) {
507 VERIFY(spa_feature_is_active(spa,
508 SPA_FEATURE_SPACEMAP_HISTOGRAM));
509 spa_feature_decr(spa,
510 SPA_FEATURE_SPACEMAP_HISTOGRAM, tx);
511 }
512 }
513
514 VERIFY3U(dmu_object_free(sm->sm_os, space_map_object(sm), tx), ==, 0);
515 sm->sm_object = 0;
516 }
517
518 uint64_t
519 space_map_object(space_map_t *sm)
520 {
521 return (sm != NULL ? sm->sm_object : 0);
522 }
523
524 /*
525 * Returns the already synced, on-disk allocated space.
526 */
527 uint64_t
528 space_map_allocated(space_map_t *sm)
529 {
530 return (sm != NULL ? sm->sm_alloc : 0);
531 }
532
533 /*
534 * Returns the already synced, on-disk length;
535 */
536 uint64_t
537 space_map_length(space_map_t *sm)
538 {
539 return (sm != NULL ? sm->sm_length : 0);
540 }
541
542 /*
543 * Returns the allocated space that is currently syncing.
544 */
545 int64_t
546 space_map_alloc_delta(space_map_t *sm)
547 {
548 if (sm == NULL)
549 return (0);
550 ASSERT(sm->sm_dbuf != NULL);
551 return (sm->sm_phys->smp_alloc - space_map_allocated(sm));
552 }