]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/vdev.c
e741a699870a1211202bf60a8dd4ef1234c0dc06
[mirror_zfs.git] / module / zfs / vdev.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2011, 2015 by Delphix. All rights reserved.
25 * Copyright 2015 Nexenta Systems, Inc. All rights reserved.
26 */
27
28 #include <sys/zfs_context.h>
29 #include <sys/fm/fs/zfs.h>
30 #include <sys/spa.h>
31 #include <sys/spa_impl.h>
32 #include <sys/dmu.h>
33 #include <sys/dmu_tx.h>
34 #include <sys/vdev_impl.h>
35 #include <sys/uberblock_impl.h>
36 #include <sys/metaslab.h>
37 #include <sys/metaslab_impl.h>
38 #include <sys/space_map.h>
39 #include <sys/space_reftree.h>
40 #include <sys/zio.h>
41 #include <sys/zap.h>
42 #include <sys/fs/zfs.h>
43 #include <sys/arc.h>
44 #include <sys/zil.h>
45 #include <sys/dsl_scan.h>
46 #include <sys/abd.h>
47 #include <sys/zvol.h>
48 #include <sys/zfs_ratelimit.h>
49
50 /*
51 * When a vdev is added, it will be divided into approximately (but no
52 * more than) this number of metaslabs.
53 */
54 int metaslabs_per_vdev = 200;
55
56 /*
57 * Virtual device management.
58 */
59
60 static vdev_ops_t *vdev_ops_table[] = {
61 &vdev_root_ops,
62 &vdev_raidz_ops,
63 &vdev_mirror_ops,
64 &vdev_replacing_ops,
65 &vdev_spare_ops,
66 &vdev_disk_ops,
67 &vdev_file_ops,
68 &vdev_missing_ops,
69 &vdev_hole_ops,
70 NULL
71 };
72
73 /*
74 * Given a vdev type, return the appropriate ops vector.
75 */
76 static vdev_ops_t *
77 vdev_getops(const char *type)
78 {
79 vdev_ops_t *ops, **opspp;
80
81 for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
82 if (strcmp(ops->vdev_op_type, type) == 0)
83 break;
84
85 return (ops);
86 }
87
88 /*
89 * Default asize function: return the MAX of psize with the asize of
90 * all children. This is what's used by anything other than RAID-Z.
91 */
92 uint64_t
93 vdev_default_asize(vdev_t *vd, uint64_t psize)
94 {
95 uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
96 uint64_t csize;
97 int c;
98
99 for (c = 0; c < vd->vdev_children; c++) {
100 csize = vdev_psize_to_asize(vd->vdev_child[c], psize);
101 asize = MAX(asize, csize);
102 }
103
104 return (asize);
105 }
106
107 /*
108 * Get the minimum allocatable size. We define the allocatable size as
109 * the vdev's asize rounded to the nearest metaslab. This allows us to
110 * replace or attach devices which don't have the same physical size but
111 * can still satisfy the same number of allocations.
112 */
113 uint64_t
114 vdev_get_min_asize(vdev_t *vd)
115 {
116 vdev_t *pvd = vd->vdev_parent;
117
118 /*
119 * If our parent is NULL (inactive spare or cache) or is the root,
120 * just return our own asize.
121 */
122 if (pvd == NULL)
123 return (vd->vdev_asize);
124
125 /*
126 * The top-level vdev just returns the allocatable size rounded
127 * to the nearest metaslab.
128 */
129 if (vd == vd->vdev_top)
130 return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift));
131
132 /*
133 * The allocatable space for a raidz vdev is N * sizeof(smallest child),
134 * so each child must provide at least 1/Nth of its asize.
135 */
136 if (pvd->vdev_ops == &vdev_raidz_ops)
137 return (pvd->vdev_min_asize / pvd->vdev_children);
138
139 return (pvd->vdev_min_asize);
140 }
141
142 void
143 vdev_set_min_asize(vdev_t *vd)
144 {
145 int c;
146 vd->vdev_min_asize = vdev_get_min_asize(vd);
147
148 for (c = 0; c < vd->vdev_children; c++)
149 vdev_set_min_asize(vd->vdev_child[c]);
150 }
151
152 vdev_t *
153 vdev_lookup_top(spa_t *spa, uint64_t vdev)
154 {
155 vdev_t *rvd = spa->spa_root_vdev;
156
157 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
158
159 if (vdev < rvd->vdev_children) {
160 ASSERT(rvd->vdev_child[vdev] != NULL);
161 return (rvd->vdev_child[vdev]);
162 }
163
164 return (NULL);
165 }
166
167 vdev_t *
168 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
169 {
170 vdev_t *mvd;
171 int c;
172
173 if (vd->vdev_guid == guid)
174 return (vd);
175
176 for (c = 0; c < vd->vdev_children; c++)
177 if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
178 NULL)
179 return (mvd);
180
181 return (NULL);
182 }
183
184 static int
185 vdev_count_leaves_impl(vdev_t *vd)
186 {
187 int n = 0;
188 int c;
189
190 if (vd->vdev_ops->vdev_op_leaf)
191 return (1);
192
193 for (c = 0; c < vd->vdev_children; c++)
194 n += vdev_count_leaves_impl(vd->vdev_child[c]);
195
196 return (n);
197 }
198
199 int
200 vdev_count_leaves(spa_t *spa)
201 {
202 return (vdev_count_leaves_impl(spa->spa_root_vdev));
203 }
204
205 void
206 vdev_add_child(vdev_t *pvd, vdev_t *cvd)
207 {
208 size_t oldsize, newsize;
209 uint64_t id = cvd->vdev_id;
210 vdev_t **newchild;
211
212 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
213 ASSERT(cvd->vdev_parent == NULL);
214
215 cvd->vdev_parent = pvd;
216
217 if (pvd == NULL)
218 return;
219
220 ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
221
222 oldsize = pvd->vdev_children * sizeof (vdev_t *);
223 pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
224 newsize = pvd->vdev_children * sizeof (vdev_t *);
225
226 newchild = kmem_alloc(newsize, KM_SLEEP);
227 if (pvd->vdev_child != NULL) {
228 bcopy(pvd->vdev_child, newchild, oldsize);
229 kmem_free(pvd->vdev_child, oldsize);
230 }
231
232 pvd->vdev_child = newchild;
233 pvd->vdev_child[id] = cvd;
234
235 cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
236 ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
237
238 /*
239 * Walk up all ancestors to update guid sum.
240 */
241 for (; pvd != NULL; pvd = pvd->vdev_parent)
242 pvd->vdev_guid_sum += cvd->vdev_guid_sum;
243 }
244
245 void
246 vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
247 {
248 int c;
249 uint_t id = cvd->vdev_id;
250
251 ASSERT(cvd->vdev_parent == pvd);
252
253 if (pvd == NULL)
254 return;
255
256 ASSERT(id < pvd->vdev_children);
257 ASSERT(pvd->vdev_child[id] == cvd);
258
259 pvd->vdev_child[id] = NULL;
260 cvd->vdev_parent = NULL;
261
262 for (c = 0; c < pvd->vdev_children; c++)
263 if (pvd->vdev_child[c])
264 break;
265
266 if (c == pvd->vdev_children) {
267 kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
268 pvd->vdev_child = NULL;
269 pvd->vdev_children = 0;
270 }
271
272 /*
273 * Walk up all ancestors to update guid sum.
274 */
275 for (; pvd != NULL; pvd = pvd->vdev_parent)
276 pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
277 }
278
279 /*
280 * Remove any holes in the child array.
281 */
282 void
283 vdev_compact_children(vdev_t *pvd)
284 {
285 vdev_t **newchild, *cvd;
286 int oldc = pvd->vdev_children;
287 int newc;
288 int c;
289
290 ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
291
292 for (c = newc = 0; c < oldc; c++)
293 if (pvd->vdev_child[c])
294 newc++;
295
296 newchild = kmem_zalloc(newc * sizeof (vdev_t *), KM_SLEEP);
297
298 for (c = newc = 0; c < oldc; c++) {
299 if ((cvd = pvd->vdev_child[c]) != NULL) {
300 newchild[newc] = cvd;
301 cvd->vdev_id = newc++;
302 }
303 }
304
305 kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
306 pvd->vdev_child = newchild;
307 pvd->vdev_children = newc;
308 }
309
310 /*
311 * Allocate and minimally initialize a vdev_t.
312 */
313 vdev_t *
314 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
315 {
316 vdev_t *vd;
317 int t;
318
319 vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
320
321 if (spa->spa_root_vdev == NULL) {
322 ASSERT(ops == &vdev_root_ops);
323 spa->spa_root_vdev = vd;
324 spa->spa_load_guid = spa_generate_guid(NULL);
325 }
326
327 if (guid == 0 && ops != &vdev_hole_ops) {
328 if (spa->spa_root_vdev == vd) {
329 /*
330 * The root vdev's guid will also be the pool guid,
331 * which must be unique among all pools.
332 */
333 guid = spa_generate_guid(NULL);
334 } else {
335 /*
336 * Any other vdev's guid must be unique within the pool.
337 */
338 guid = spa_generate_guid(spa);
339 }
340 ASSERT(!spa_guid_exists(spa_guid(spa), guid));
341 }
342
343 vd->vdev_spa = spa;
344 vd->vdev_id = id;
345 vd->vdev_guid = guid;
346 vd->vdev_guid_sum = guid;
347 vd->vdev_ops = ops;
348 vd->vdev_state = VDEV_STATE_CLOSED;
349 vd->vdev_ishole = (ops == &vdev_hole_ops);
350
351 /*
352 * Initialize rate limit structs for events. We rate limit ZIO delay
353 * and checksum events so that we don't overwhelm ZED with thousands
354 * of events when a disk is acting up.
355 */
356 zfs_ratelimit_init(&vd->vdev_delay_rl, DELAYS_PER_SECOND, 1);
357 zfs_ratelimit_init(&vd->vdev_checksum_rl, CHECKSUMS_PER_SECOND, 1);
358
359 list_link_init(&vd->vdev_config_dirty_node);
360 list_link_init(&vd->vdev_state_dirty_node);
361 mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_NOLOCKDEP, NULL);
362 mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
363 mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
364 mutex_init(&vd->vdev_queue_lock, NULL, MUTEX_DEFAULT, NULL);
365
366 for (t = 0; t < DTL_TYPES; t++) {
367 vd->vdev_dtl[t] = range_tree_create(NULL, NULL,
368 &vd->vdev_dtl_lock);
369 }
370 txg_list_create(&vd->vdev_ms_list,
371 offsetof(struct metaslab, ms_txg_node));
372 txg_list_create(&vd->vdev_dtl_list,
373 offsetof(struct vdev, vdev_dtl_node));
374 vd->vdev_stat.vs_timestamp = gethrtime();
375 vdev_queue_init(vd);
376 vdev_cache_init(vd);
377
378 return (vd);
379 }
380
381 /*
382 * Allocate a new vdev. The 'alloctype' is used to control whether we are
383 * creating a new vdev or loading an existing one - the behavior is slightly
384 * different for each case.
385 */
386 int
387 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
388 int alloctype)
389 {
390 vdev_ops_t *ops;
391 char *type;
392 uint64_t guid = 0, islog, nparity;
393 vdev_t *vd;
394
395 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
396
397 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
398 return (SET_ERROR(EINVAL));
399
400 if ((ops = vdev_getops(type)) == NULL)
401 return (SET_ERROR(EINVAL));
402
403 /*
404 * If this is a load, get the vdev guid from the nvlist.
405 * Otherwise, vdev_alloc_common() will generate one for us.
406 */
407 if (alloctype == VDEV_ALLOC_LOAD) {
408 uint64_t label_id;
409
410 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
411 label_id != id)
412 return (SET_ERROR(EINVAL));
413
414 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
415 return (SET_ERROR(EINVAL));
416 } else if (alloctype == VDEV_ALLOC_SPARE) {
417 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
418 return (SET_ERROR(EINVAL));
419 } else if (alloctype == VDEV_ALLOC_L2CACHE) {
420 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
421 return (SET_ERROR(EINVAL));
422 } else if (alloctype == VDEV_ALLOC_ROOTPOOL) {
423 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
424 return (SET_ERROR(EINVAL));
425 }
426
427 /*
428 * The first allocated vdev must be of type 'root'.
429 */
430 if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
431 return (SET_ERROR(EINVAL));
432
433 /*
434 * Determine whether we're a log vdev.
435 */
436 islog = 0;
437 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
438 if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
439 return (SET_ERROR(ENOTSUP));
440
441 if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES)
442 return (SET_ERROR(ENOTSUP));
443
444 /*
445 * Set the nparity property for RAID-Z vdevs.
446 */
447 nparity = -1ULL;
448 if (ops == &vdev_raidz_ops) {
449 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY,
450 &nparity) == 0) {
451 if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY)
452 return (SET_ERROR(EINVAL));
453 /*
454 * Previous versions could only support 1 or 2 parity
455 * device.
456 */
457 if (nparity > 1 &&
458 spa_version(spa) < SPA_VERSION_RAIDZ2)
459 return (SET_ERROR(ENOTSUP));
460 if (nparity > 2 &&
461 spa_version(spa) < SPA_VERSION_RAIDZ3)
462 return (SET_ERROR(ENOTSUP));
463 } else {
464 /*
465 * We require the parity to be specified for SPAs that
466 * support multiple parity levels.
467 */
468 if (spa_version(spa) >= SPA_VERSION_RAIDZ2)
469 return (SET_ERROR(EINVAL));
470 /*
471 * Otherwise, we default to 1 parity device for RAID-Z.
472 */
473 nparity = 1;
474 }
475 } else {
476 nparity = 0;
477 }
478 ASSERT(nparity != -1ULL);
479
480 vd = vdev_alloc_common(spa, id, guid, ops);
481
482 vd->vdev_islog = islog;
483 vd->vdev_nparity = nparity;
484
485 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0)
486 vd->vdev_path = spa_strdup(vd->vdev_path);
487 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0)
488 vd->vdev_devid = spa_strdup(vd->vdev_devid);
489 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH,
490 &vd->vdev_physpath) == 0)
491 vd->vdev_physpath = spa_strdup(vd->vdev_physpath);
492
493 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_VDEV_ENC_SYSFS_PATH,
494 &vd->vdev_enc_sysfs_path) == 0)
495 vd->vdev_enc_sysfs_path = spa_strdup(vd->vdev_enc_sysfs_path);
496
497 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0)
498 vd->vdev_fru = spa_strdup(vd->vdev_fru);
499
500 /*
501 * Set the whole_disk property. If it's not specified, leave the value
502 * as -1.
503 */
504 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
505 &vd->vdev_wholedisk) != 0)
506 vd->vdev_wholedisk = -1ULL;
507
508 /*
509 * Look for the 'not present' flag. This will only be set if the device
510 * was not present at the time of import.
511 */
512 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
513 &vd->vdev_not_present);
514
515 /*
516 * Get the alignment requirement.
517 */
518 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift);
519
520 /*
521 * Retrieve the vdev creation time.
522 */
523 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG,
524 &vd->vdev_crtxg);
525
526 /*
527 * If we're a top-level vdev, try to load the allocation parameters.
528 */
529 if (parent && !parent->vdev_parent &&
530 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
531 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
532 &vd->vdev_ms_array);
533 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
534 &vd->vdev_ms_shift);
535 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
536 &vd->vdev_asize);
537 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING,
538 &vd->vdev_removing);
539 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_VDEV_TOP_ZAP,
540 &vd->vdev_top_zap);
541 } else {
542 ASSERT0(vd->vdev_top_zap);
543 }
544
545 if (parent && !parent->vdev_parent && alloctype != VDEV_ALLOC_ATTACH) {
546 ASSERT(alloctype == VDEV_ALLOC_LOAD ||
547 alloctype == VDEV_ALLOC_ADD ||
548 alloctype == VDEV_ALLOC_SPLIT ||
549 alloctype == VDEV_ALLOC_ROOTPOOL);
550 vd->vdev_mg = metaslab_group_create(islog ?
551 spa_log_class(spa) : spa_normal_class(spa), vd);
552 }
553
554 if (vd->vdev_ops->vdev_op_leaf &&
555 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
556 (void) nvlist_lookup_uint64(nv,
557 ZPOOL_CONFIG_VDEV_LEAF_ZAP, &vd->vdev_leaf_zap);
558 } else {
559 ASSERT0(vd->vdev_leaf_zap);
560 }
561
562 /*
563 * If we're a leaf vdev, try to load the DTL object and other state.
564 */
565
566 if (vd->vdev_ops->vdev_op_leaf &&
567 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE ||
568 alloctype == VDEV_ALLOC_ROOTPOOL)) {
569 if (alloctype == VDEV_ALLOC_LOAD) {
570 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
571 &vd->vdev_dtl_object);
572 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
573 &vd->vdev_unspare);
574 }
575
576 if (alloctype == VDEV_ALLOC_ROOTPOOL) {
577 uint64_t spare = 0;
578
579 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE,
580 &spare) == 0 && spare)
581 spa_spare_add(vd);
582 }
583
584 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
585 &vd->vdev_offline);
586
587 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG,
588 &vd->vdev_resilver_txg);
589
590 /*
591 * When importing a pool, we want to ignore the persistent fault
592 * state, as the diagnosis made on another system may not be
593 * valid in the current context. Local vdevs will
594 * remain in the faulted state.
595 */
596 if (spa_load_state(spa) == SPA_LOAD_OPEN) {
597 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
598 &vd->vdev_faulted);
599 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
600 &vd->vdev_degraded);
601 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
602 &vd->vdev_removed);
603
604 if (vd->vdev_faulted || vd->vdev_degraded) {
605 char *aux;
606
607 vd->vdev_label_aux =
608 VDEV_AUX_ERR_EXCEEDED;
609 if (nvlist_lookup_string(nv,
610 ZPOOL_CONFIG_AUX_STATE, &aux) == 0 &&
611 strcmp(aux, "external") == 0)
612 vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
613 }
614 }
615 }
616
617 /*
618 * Add ourselves to the parent's list of children.
619 */
620 vdev_add_child(parent, vd);
621
622 *vdp = vd;
623
624 return (0);
625 }
626
627 void
628 vdev_free(vdev_t *vd)
629 {
630 int c, t;
631 spa_t *spa = vd->vdev_spa;
632
633 /*
634 * vdev_free() implies closing the vdev first. This is simpler than
635 * trying to ensure complicated semantics for all callers.
636 */
637 vdev_close(vd);
638
639 ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
640 ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
641
642 /*
643 * Free all children.
644 */
645 for (c = 0; c < vd->vdev_children; c++)
646 vdev_free(vd->vdev_child[c]);
647
648 ASSERT(vd->vdev_child == NULL);
649 ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
650
651 /*
652 * Discard allocation state.
653 */
654 if (vd->vdev_mg != NULL) {
655 vdev_metaslab_fini(vd);
656 metaslab_group_destroy(vd->vdev_mg);
657 }
658
659 ASSERT0(vd->vdev_stat.vs_space);
660 ASSERT0(vd->vdev_stat.vs_dspace);
661 ASSERT0(vd->vdev_stat.vs_alloc);
662
663 /*
664 * Remove this vdev from its parent's child list.
665 */
666 vdev_remove_child(vd->vdev_parent, vd);
667
668 ASSERT(vd->vdev_parent == NULL);
669
670 /*
671 * Clean up vdev structure.
672 */
673 vdev_queue_fini(vd);
674 vdev_cache_fini(vd);
675
676 if (vd->vdev_path)
677 spa_strfree(vd->vdev_path);
678 if (vd->vdev_devid)
679 spa_strfree(vd->vdev_devid);
680 if (vd->vdev_physpath)
681 spa_strfree(vd->vdev_physpath);
682
683 if (vd->vdev_enc_sysfs_path)
684 spa_strfree(vd->vdev_enc_sysfs_path);
685
686 if (vd->vdev_fru)
687 spa_strfree(vd->vdev_fru);
688
689 if (vd->vdev_isspare)
690 spa_spare_remove(vd);
691 if (vd->vdev_isl2cache)
692 spa_l2cache_remove(vd);
693
694 txg_list_destroy(&vd->vdev_ms_list);
695 txg_list_destroy(&vd->vdev_dtl_list);
696
697 mutex_enter(&vd->vdev_dtl_lock);
698 space_map_close(vd->vdev_dtl_sm);
699 for (t = 0; t < DTL_TYPES; t++) {
700 range_tree_vacate(vd->vdev_dtl[t], NULL, NULL);
701 range_tree_destroy(vd->vdev_dtl[t]);
702 }
703 mutex_exit(&vd->vdev_dtl_lock);
704
705 mutex_destroy(&vd->vdev_queue_lock);
706 mutex_destroy(&vd->vdev_dtl_lock);
707 mutex_destroy(&vd->vdev_stat_lock);
708 mutex_destroy(&vd->vdev_probe_lock);
709
710 if (vd == spa->spa_root_vdev)
711 spa->spa_root_vdev = NULL;
712
713 kmem_free(vd, sizeof (vdev_t));
714 }
715
716 /*
717 * Transfer top-level vdev state from svd to tvd.
718 */
719 static void
720 vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
721 {
722 spa_t *spa = svd->vdev_spa;
723 metaslab_t *msp;
724 vdev_t *vd;
725 int t;
726
727 ASSERT(tvd == tvd->vdev_top);
728
729 tvd->vdev_pending_fastwrite = svd->vdev_pending_fastwrite;
730 tvd->vdev_ms_array = svd->vdev_ms_array;
731 tvd->vdev_ms_shift = svd->vdev_ms_shift;
732 tvd->vdev_ms_count = svd->vdev_ms_count;
733 tvd->vdev_top_zap = svd->vdev_top_zap;
734
735 svd->vdev_ms_array = 0;
736 svd->vdev_ms_shift = 0;
737 svd->vdev_ms_count = 0;
738 svd->vdev_top_zap = 0;
739
740 if (tvd->vdev_mg)
741 ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg);
742 tvd->vdev_mg = svd->vdev_mg;
743 tvd->vdev_ms = svd->vdev_ms;
744
745 svd->vdev_mg = NULL;
746 svd->vdev_ms = NULL;
747
748 if (tvd->vdev_mg != NULL)
749 tvd->vdev_mg->mg_vd = tvd;
750
751 tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
752 tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
753 tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
754
755 svd->vdev_stat.vs_alloc = 0;
756 svd->vdev_stat.vs_space = 0;
757 svd->vdev_stat.vs_dspace = 0;
758
759 for (t = 0; t < TXG_SIZE; t++) {
760 while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
761 (void) txg_list_add(&tvd->vdev_ms_list, msp, t);
762 while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
763 (void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
764 if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
765 (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
766 }
767
768 if (list_link_active(&svd->vdev_config_dirty_node)) {
769 vdev_config_clean(svd);
770 vdev_config_dirty(tvd);
771 }
772
773 if (list_link_active(&svd->vdev_state_dirty_node)) {
774 vdev_state_clean(svd);
775 vdev_state_dirty(tvd);
776 }
777
778 tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
779 svd->vdev_deflate_ratio = 0;
780
781 tvd->vdev_islog = svd->vdev_islog;
782 svd->vdev_islog = 0;
783 }
784
785 static void
786 vdev_top_update(vdev_t *tvd, vdev_t *vd)
787 {
788 int c;
789
790 if (vd == NULL)
791 return;
792
793 vd->vdev_top = tvd;
794
795 for (c = 0; c < vd->vdev_children; c++)
796 vdev_top_update(tvd, vd->vdev_child[c]);
797 }
798
799 /*
800 * Add a mirror/replacing vdev above an existing vdev.
801 */
802 vdev_t *
803 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
804 {
805 spa_t *spa = cvd->vdev_spa;
806 vdev_t *pvd = cvd->vdev_parent;
807 vdev_t *mvd;
808
809 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
810
811 mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
812
813 mvd->vdev_asize = cvd->vdev_asize;
814 mvd->vdev_min_asize = cvd->vdev_min_asize;
815 mvd->vdev_max_asize = cvd->vdev_max_asize;
816 mvd->vdev_ashift = cvd->vdev_ashift;
817 mvd->vdev_state = cvd->vdev_state;
818 mvd->vdev_crtxg = cvd->vdev_crtxg;
819
820 vdev_remove_child(pvd, cvd);
821 vdev_add_child(pvd, mvd);
822 cvd->vdev_id = mvd->vdev_children;
823 vdev_add_child(mvd, cvd);
824 vdev_top_update(cvd->vdev_top, cvd->vdev_top);
825
826 if (mvd == mvd->vdev_top)
827 vdev_top_transfer(cvd, mvd);
828
829 return (mvd);
830 }
831
832 /*
833 * Remove a 1-way mirror/replacing vdev from the tree.
834 */
835 void
836 vdev_remove_parent(vdev_t *cvd)
837 {
838 vdev_t *mvd = cvd->vdev_parent;
839 vdev_t *pvd = mvd->vdev_parent;
840
841 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
842
843 ASSERT(mvd->vdev_children == 1);
844 ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
845 mvd->vdev_ops == &vdev_replacing_ops ||
846 mvd->vdev_ops == &vdev_spare_ops);
847 cvd->vdev_ashift = mvd->vdev_ashift;
848
849 vdev_remove_child(mvd, cvd);
850 vdev_remove_child(pvd, mvd);
851
852 /*
853 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
854 * Otherwise, we could have detached an offline device, and when we
855 * go to import the pool we'll think we have two top-level vdevs,
856 * instead of a different version of the same top-level vdev.
857 */
858 if (mvd->vdev_top == mvd) {
859 uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid;
860 cvd->vdev_orig_guid = cvd->vdev_guid;
861 cvd->vdev_guid += guid_delta;
862 cvd->vdev_guid_sum += guid_delta;
863
864 /*
865 * If pool not set for autoexpand, we need to also preserve
866 * mvd's asize to prevent automatic expansion of cvd.
867 * Otherwise if we are adjusting the mirror by attaching and
868 * detaching children of non-uniform sizes, the mirror could
869 * autoexpand, unexpectedly requiring larger devices to
870 * re-establish the mirror.
871 */
872 if (!cvd->vdev_spa->spa_autoexpand)
873 cvd->vdev_asize = mvd->vdev_asize;
874 }
875 cvd->vdev_id = mvd->vdev_id;
876 vdev_add_child(pvd, cvd);
877 vdev_top_update(cvd->vdev_top, cvd->vdev_top);
878
879 if (cvd == cvd->vdev_top)
880 vdev_top_transfer(mvd, cvd);
881
882 ASSERT(mvd->vdev_children == 0);
883 vdev_free(mvd);
884 }
885
886 int
887 vdev_metaslab_init(vdev_t *vd, uint64_t txg)
888 {
889 spa_t *spa = vd->vdev_spa;
890 objset_t *mos = spa->spa_meta_objset;
891 uint64_t m;
892 uint64_t oldc = vd->vdev_ms_count;
893 uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
894 metaslab_t **mspp;
895 int error;
896
897 ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER));
898
899 /*
900 * This vdev is not being allocated from yet or is a hole.
901 */
902 if (vd->vdev_ms_shift == 0)
903 return (0);
904
905 ASSERT(!vd->vdev_ishole);
906
907 /*
908 * Compute the raidz-deflation ratio. Note, we hard-code
909 * in 128k (1 << 17) because it is the "typical" blocksize.
910 * Even though SPA_MAXBLOCKSIZE changed, this algorithm can not change,
911 * otherwise it would inconsistently account for existing bp's.
912 */
913 vd->vdev_deflate_ratio = (1 << 17) /
914 (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT);
915
916 ASSERT(oldc <= newc);
917
918 mspp = vmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);
919
920 if (oldc != 0) {
921 bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp));
922 vmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
923 }
924
925 vd->vdev_ms = mspp;
926 vd->vdev_ms_count = newc;
927
928 for (m = oldc; m < newc; m++) {
929 uint64_t object = 0;
930
931 if (txg == 0) {
932 error = dmu_read(mos, vd->vdev_ms_array,
933 m * sizeof (uint64_t), sizeof (uint64_t), &object,
934 DMU_READ_PREFETCH);
935 if (error)
936 return (error);
937 }
938
939 error = metaslab_init(vd->vdev_mg, m, object, txg,
940 &(vd->vdev_ms[m]));
941 if (error)
942 return (error);
943 }
944
945 if (txg == 0)
946 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER);
947
948 /*
949 * If the vdev is being removed we don't activate
950 * the metaslabs since we want to ensure that no new
951 * allocations are performed on this device.
952 */
953 if (oldc == 0 && !vd->vdev_removing)
954 metaslab_group_activate(vd->vdev_mg);
955
956 if (txg == 0)
957 spa_config_exit(spa, SCL_ALLOC, FTAG);
958
959 return (0);
960 }
961
962 void
963 vdev_metaslab_fini(vdev_t *vd)
964 {
965 uint64_t m;
966 uint64_t count = vd->vdev_ms_count;
967
968 if (vd->vdev_ms != NULL) {
969 metaslab_group_passivate(vd->vdev_mg);
970 for (m = 0; m < count; m++) {
971 metaslab_t *msp = vd->vdev_ms[m];
972
973 if (msp != NULL)
974 metaslab_fini(msp);
975 }
976 vmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
977 vd->vdev_ms = NULL;
978 }
979
980 ASSERT3U(vd->vdev_pending_fastwrite, ==, 0);
981 }
982
983 typedef struct vdev_probe_stats {
984 boolean_t vps_readable;
985 boolean_t vps_writeable;
986 int vps_flags;
987 } vdev_probe_stats_t;
988
989 static void
990 vdev_probe_done(zio_t *zio)
991 {
992 spa_t *spa = zio->io_spa;
993 vdev_t *vd = zio->io_vd;
994 vdev_probe_stats_t *vps = zio->io_private;
995
996 ASSERT(vd->vdev_probe_zio != NULL);
997
998 if (zio->io_type == ZIO_TYPE_READ) {
999 if (zio->io_error == 0)
1000 vps->vps_readable = 1;
1001 if (zio->io_error == 0 && spa_writeable(spa)) {
1002 zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd,
1003 zio->io_offset, zio->io_size, zio->io_abd,
1004 ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1005 ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
1006 } else {
1007 abd_free(zio->io_abd);
1008 }
1009 } else if (zio->io_type == ZIO_TYPE_WRITE) {
1010 if (zio->io_error == 0)
1011 vps->vps_writeable = 1;
1012 abd_free(zio->io_abd);
1013 } else if (zio->io_type == ZIO_TYPE_NULL) {
1014 zio_t *pio;
1015 zio_link_t *zl;
1016
1017 vd->vdev_cant_read |= !vps->vps_readable;
1018 vd->vdev_cant_write |= !vps->vps_writeable;
1019
1020 if (vdev_readable(vd) &&
1021 (vdev_writeable(vd) || !spa_writeable(spa))) {
1022 zio->io_error = 0;
1023 } else {
1024 ASSERT(zio->io_error != 0);
1025 zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
1026 spa, vd, NULL, 0, 0);
1027 zio->io_error = SET_ERROR(ENXIO);
1028 }
1029
1030 mutex_enter(&vd->vdev_probe_lock);
1031 ASSERT(vd->vdev_probe_zio == zio);
1032 vd->vdev_probe_zio = NULL;
1033 mutex_exit(&vd->vdev_probe_lock);
1034
1035 zl = NULL;
1036 while ((pio = zio_walk_parents(zio, &zl)) != NULL)
1037 if (!vdev_accessible(vd, pio))
1038 pio->io_error = SET_ERROR(ENXIO);
1039
1040 kmem_free(vps, sizeof (*vps));
1041 }
1042 }
1043
1044 /*
1045 * Determine whether this device is accessible.
1046 *
1047 * Read and write to several known locations: the pad regions of each
1048 * vdev label but the first, which we leave alone in case it contains
1049 * a VTOC.
1050 */
1051 zio_t *
1052 vdev_probe(vdev_t *vd, zio_t *zio)
1053 {
1054 spa_t *spa = vd->vdev_spa;
1055 vdev_probe_stats_t *vps = NULL;
1056 zio_t *pio;
1057 int l;
1058
1059 ASSERT(vd->vdev_ops->vdev_op_leaf);
1060
1061 /*
1062 * Don't probe the probe.
1063 */
1064 if (zio && (zio->io_flags & ZIO_FLAG_PROBE))
1065 return (NULL);
1066
1067 /*
1068 * To prevent 'probe storms' when a device fails, we create
1069 * just one probe i/o at a time. All zios that want to probe
1070 * this vdev will become parents of the probe io.
1071 */
1072 mutex_enter(&vd->vdev_probe_lock);
1073
1074 if ((pio = vd->vdev_probe_zio) == NULL) {
1075 vps = kmem_zalloc(sizeof (*vps), KM_SLEEP);
1076
1077 vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
1078 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE |
1079 ZIO_FLAG_TRYHARD;
1080
1081 if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
1082 /*
1083 * vdev_cant_read and vdev_cant_write can only
1084 * transition from TRUE to FALSE when we have the
1085 * SCL_ZIO lock as writer; otherwise they can only
1086 * transition from FALSE to TRUE. This ensures that
1087 * any zio looking at these values can assume that
1088 * failures persist for the life of the I/O. That's
1089 * important because when a device has intermittent
1090 * connectivity problems, we want to ensure that
1091 * they're ascribed to the device (ENXIO) and not
1092 * the zio (EIO).
1093 *
1094 * Since we hold SCL_ZIO as writer here, clear both
1095 * values so the probe can reevaluate from first
1096 * principles.
1097 */
1098 vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
1099 vd->vdev_cant_read = B_FALSE;
1100 vd->vdev_cant_write = B_FALSE;
1101 }
1102
1103 vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd,
1104 vdev_probe_done, vps,
1105 vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE);
1106
1107 /*
1108 * We can't change the vdev state in this context, so we
1109 * kick off an async task to do it on our behalf.
1110 */
1111 if (zio != NULL) {
1112 vd->vdev_probe_wanted = B_TRUE;
1113 spa_async_request(spa, SPA_ASYNC_PROBE);
1114 }
1115 }
1116
1117 if (zio != NULL)
1118 zio_add_child(zio, pio);
1119
1120 mutex_exit(&vd->vdev_probe_lock);
1121
1122 if (vps == NULL) {
1123 ASSERT(zio != NULL);
1124 return (NULL);
1125 }
1126
1127 for (l = 1; l < VDEV_LABELS; l++) {
1128 zio_nowait(zio_read_phys(pio, vd,
1129 vdev_label_offset(vd->vdev_psize, l,
1130 offsetof(vdev_label_t, vl_pad2)), VDEV_PAD_SIZE,
1131 abd_alloc_for_io(VDEV_PAD_SIZE, B_TRUE),
1132 ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1133 ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
1134 }
1135
1136 if (zio == NULL)
1137 return (pio);
1138
1139 zio_nowait(pio);
1140 return (NULL);
1141 }
1142
1143 static void
1144 vdev_open_child(void *arg)
1145 {
1146 vdev_t *vd = arg;
1147
1148 vd->vdev_open_thread = curthread;
1149 vd->vdev_open_error = vdev_open(vd);
1150 vd->vdev_open_thread = NULL;
1151 }
1152
1153 static boolean_t
1154 vdev_uses_zvols(vdev_t *vd)
1155 {
1156 int c;
1157
1158 #ifdef _KERNEL
1159 if (zvol_is_zvol(vd->vdev_path))
1160 return (B_TRUE);
1161 #endif
1162
1163 for (c = 0; c < vd->vdev_children; c++)
1164 if (vdev_uses_zvols(vd->vdev_child[c]))
1165 return (B_TRUE);
1166
1167 return (B_FALSE);
1168 }
1169
1170 void
1171 vdev_open_children(vdev_t *vd)
1172 {
1173 taskq_t *tq;
1174 int children = vd->vdev_children;
1175 int c;
1176
1177 /*
1178 * in order to handle pools on top of zvols, do the opens
1179 * in a single thread so that the same thread holds the
1180 * spa_namespace_lock
1181 */
1182 if (vdev_uses_zvols(vd)) {
1183 retry_sync:
1184 for (c = 0; c < children; c++)
1185 vd->vdev_child[c]->vdev_open_error =
1186 vdev_open(vd->vdev_child[c]);
1187 } else {
1188 tq = taskq_create("vdev_open", children, minclsyspri,
1189 children, children, TASKQ_PREPOPULATE);
1190 if (tq == NULL)
1191 goto retry_sync;
1192
1193 for (c = 0; c < children; c++)
1194 VERIFY(taskq_dispatch(tq, vdev_open_child,
1195 vd->vdev_child[c], TQ_SLEEP) != TASKQID_INVALID);
1196
1197 taskq_destroy(tq);
1198 }
1199
1200 vd->vdev_nonrot = B_TRUE;
1201
1202 for (c = 0; c < children; c++)
1203 vd->vdev_nonrot &= vd->vdev_child[c]->vdev_nonrot;
1204 }
1205
1206 /*
1207 * Prepare a virtual device for access.
1208 */
1209 int
1210 vdev_open(vdev_t *vd)
1211 {
1212 spa_t *spa = vd->vdev_spa;
1213 int error;
1214 uint64_t osize = 0;
1215 uint64_t max_osize = 0;
1216 uint64_t asize, max_asize, psize;
1217 uint64_t ashift = 0;
1218 int c;
1219
1220 ASSERT(vd->vdev_open_thread == curthread ||
1221 spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1222 ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
1223 vd->vdev_state == VDEV_STATE_CANT_OPEN ||
1224 vd->vdev_state == VDEV_STATE_OFFLINE);
1225
1226 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1227 vd->vdev_cant_read = B_FALSE;
1228 vd->vdev_cant_write = B_FALSE;
1229 vd->vdev_min_asize = vdev_get_min_asize(vd);
1230
1231 /*
1232 * If this vdev is not removed, check its fault status. If it's
1233 * faulted, bail out of the open.
1234 */
1235 if (!vd->vdev_removed && vd->vdev_faulted) {
1236 ASSERT(vd->vdev_children == 0);
1237 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1238 vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1239 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1240 vd->vdev_label_aux);
1241 return (SET_ERROR(ENXIO));
1242 } else if (vd->vdev_offline) {
1243 ASSERT(vd->vdev_children == 0);
1244 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
1245 return (SET_ERROR(ENXIO));
1246 }
1247
1248 error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize, &ashift);
1249
1250 /*
1251 * Reset the vdev_reopening flag so that we actually close
1252 * the vdev on error.
1253 */
1254 vd->vdev_reopening = B_FALSE;
1255 if (zio_injection_enabled && error == 0)
1256 error = zio_handle_device_injection(vd, NULL, ENXIO);
1257
1258 if (error) {
1259 if (vd->vdev_removed &&
1260 vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
1261 vd->vdev_removed = B_FALSE;
1262
1263 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1264 vd->vdev_stat.vs_aux);
1265 return (error);
1266 }
1267
1268 vd->vdev_removed = B_FALSE;
1269
1270 /*
1271 * Recheck the faulted flag now that we have confirmed that
1272 * the vdev is accessible. If we're faulted, bail.
1273 */
1274 if (vd->vdev_faulted) {
1275 ASSERT(vd->vdev_children == 0);
1276 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1277 vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1278 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1279 vd->vdev_label_aux);
1280 return (SET_ERROR(ENXIO));
1281 }
1282
1283 if (vd->vdev_degraded) {
1284 ASSERT(vd->vdev_children == 0);
1285 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1286 VDEV_AUX_ERR_EXCEEDED);
1287 } else {
1288 vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0);
1289 }
1290
1291 /*
1292 * For hole or missing vdevs we just return success.
1293 */
1294 if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops)
1295 return (0);
1296
1297 for (c = 0; c < vd->vdev_children; c++) {
1298 if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
1299 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1300 VDEV_AUX_NONE);
1301 break;
1302 }
1303 }
1304
1305 osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t));
1306 max_osize = P2ALIGN(max_osize, (uint64_t)sizeof (vdev_label_t));
1307
1308 if (vd->vdev_children == 0) {
1309 if (osize < SPA_MINDEVSIZE) {
1310 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1311 VDEV_AUX_TOO_SMALL);
1312 return (SET_ERROR(EOVERFLOW));
1313 }
1314 psize = osize;
1315 asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
1316 max_asize = max_osize - (VDEV_LABEL_START_SIZE +
1317 VDEV_LABEL_END_SIZE);
1318 } else {
1319 if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
1320 (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
1321 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1322 VDEV_AUX_TOO_SMALL);
1323 return (SET_ERROR(EOVERFLOW));
1324 }
1325 psize = 0;
1326 asize = osize;
1327 max_asize = max_osize;
1328 }
1329
1330 vd->vdev_psize = psize;
1331
1332 /*
1333 * Make sure the allocatable size hasn't shrunk.
1334 */
1335 if (asize < vd->vdev_min_asize) {
1336 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1337 VDEV_AUX_BAD_LABEL);
1338 return (SET_ERROR(EINVAL));
1339 }
1340
1341 if (vd->vdev_asize == 0) {
1342 /*
1343 * This is the first-ever open, so use the computed values.
1344 * For compatibility, a different ashift can be requested.
1345 */
1346 vd->vdev_asize = asize;
1347 vd->vdev_max_asize = max_asize;
1348 if (vd->vdev_ashift == 0)
1349 vd->vdev_ashift = ashift;
1350 } else {
1351 /*
1352 * Detect if the alignment requirement has increased.
1353 * We don't want to make the pool unavailable, just
1354 * post an event instead.
1355 */
1356 if (ashift > vd->vdev_top->vdev_ashift &&
1357 vd->vdev_ops->vdev_op_leaf) {
1358 zfs_ereport_post(FM_EREPORT_ZFS_DEVICE_BAD_ASHIFT,
1359 spa, vd, NULL, 0, 0);
1360 }
1361
1362 vd->vdev_max_asize = max_asize;
1363 }
1364
1365 /*
1366 * If all children are healthy and the asize has increased,
1367 * then we've experienced dynamic LUN growth. If automatic
1368 * expansion is enabled then use the additional space.
1369 */
1370 if (vd->vdev_state == VDEV_STATE_HEALTHY && asize > vd->vdev_asize &&
1371 (vd->vdev_expanding || spa->spa_autoexpand))
1372 vd->vdev_asize = asize;
1373
1374 vdev_set_min_asize(vd);
1375
1376 /*
1377 * Ensure we can issue some IO before declaring the
1378 * vdev open for business.
1379 */
1380 if (vd->vdev_ops->vdev_op_leaf &&
1381 (error = zio_wait(vdev_probe(vd, NULL))) != 0) {
1382 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1383 VDEV_AUX_ERR_EXCEEDED);
1384 return (error);
1385 }
1386
1387 /*
1388 * Track the min and max ashift values for normal data devices.
1389 */
1390 if (vd->vdev_top == vd && vd->vdev_ashift != 0 &&
1391 !vd->vdev_islog && vd->vdev_aux == NULL) {
1392 if (vd->vdev_ashift > spa->spa_max_ashift)
1393 spa->spa_max_ashift = vd->vdev_ashift;
1394 if (vd->vdev_ashift < spa->spa_min_ashift)
1395 spa->spa_min_ashift = vd->vdev_ashift;
1396 }
1397
1398 /*
1399 * If a leaf vdev has a DTL, and seems healthy, then kick off a
1400 * resilver. But don't do this if we are doing a reopen for a scrub,
1401 * since this would just restart the scrub we are already doing.
1402 */
1403 if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen &&
1404 vdev_resilver_needed(vd, NULL, NULL))
1405 spa_async_request(spa, SPA_ASYNC_RESILVER);
1406
1407 return (0);
1408 }
1409
1410 /*
1411 * Called once the vdevs are all opened, this routine validates the label
1412 * contents. This needs to be done before vdev_load() so that we don't
1413 * inadvertently do repair I/Os to the wrong device.
1414 *
1415 * If 'strict' is false ignore the spa guid check. This is necessary because
1416 * if the machine crashed during a re-guid the new guid might have been written
1417 * to all of the vdev labels, but not the cached config. The strict check
1418 * will be performed when the pool is opened again using the mos config.
1419 *
1420 * This function will only return failure if one of the vdevs indicates that it
1421 * has since been destroyed or exported. This is only possible if
1422 * /etc/zfs/zpool.cache was readonly at the time. Otherwise, the vdev state
1423 * will be updated but the function will return 0.
1424 */
1425 int
1426 vdev_validate(vdev_t *vd, boolean_t strict)
1427 {
1428 spa_t *spa = vd->vdev_spa;
1429 nvlist_t *label;
1430 uint64_t guid = 0, top_guid;
1431 uint64_t state;
1432 int c;
1433
1434 for (c = 0; c < vd->vdev_children; c++)
1435 if (vdev_validate(vd->vdev_child[c], strict) != 0)
1436 return (SET_ERROR(EBADF));
1437
1438 /*
1439 * If the device has already failed, or was marked offline, don't do
1440 * any further validation. Otherwise, label I/O will fail and we will
1441 * overwrite the previous state.
1442 */
1443 if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
1444 uint64_t aux_guid = 0;
1445 nvlist_t *nvl;
1446 uint64_t txg = spa_last_synced_txg(spa) != 0 ?
1447 spa_last_synced_txg(spa) : -1ULL;
1448
1449 if ((label = vdev_label_read_config(vd, txg)) == NULL) {
1450 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1451 VDEV_AUX_BAD_LABEL);
1452 return (0);
1453 }
1454
1455 /*
1456 * Determine if this vdev has been split off into another
1457 * pool. If so, then refuse to open it.
1458 */
1459 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID,
1460 &aux_guid) == 0 && aux_guid == spa_guid(spa)) {
1461 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1462 VDEV_AUX_SPLIT_POOL);
1463 nvlist_free(label);
1464 return (0);
1465 }
1466
1467 if (strict && (nvlist_lookup_uint64(label,
1468 ZPOOL_CONFIG_POOL_GUID, &guid) != 0 ||
1469 guid != spa_guid(spa))) {
1470 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1471 VDEV_AUX_CORRUPT_DATA);
1472 nvlist_free(label);
1473 return (0);
1474 }
1475
1476 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl)
1477 != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID,
1478 &aux_guid) != 0)
1479 aux_guid = 0;
1480
1481 /*
1482 * If this vdev just became a top-level vdev because its
1483 * sibling was detached, it will have adopted the parent's
1484 * vdev guid -- but the label may or may not be on disk yet.
1485 * Fortunately, either version of the label will have the
1486 * same top guid, so if we're a top-level vdev, we can
1487 * safely compare to that instead.
1488 *
1489 * If we split this vdev off instead, then we also check the
1490 * original pool's guid. We don't want to consider the vdev
1491 * corrupt if it is partway through a split operation.
1492 */
1493 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
1494 &guid) != 0 ||
1495 nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID,
1496 &top_guid) != 0 ||
1497 ((vd->vdev_guid != guid && vd->vdev_guid != aux_guid) &&
1498 (vd->vdev_guid != top_guid || vd != vd->vdev_top))) {
1499 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1500 VDEV_AUX_CORRUPT_DATA);
1501 nvlist_free(label);
1502 return (0);
1503 }
1504
1505 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
1506 &state) != 0) {
1507 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1508 VDEV_AUX_CORRUPT_DATA);
1509 nvlist_free(label);
1510 return (0);
1511 }
1512
1513 nvlist_free(label);
1514
1515 /*
1516 * If this is a verbatim import, no need to check the
1517 * state of the pool.
1518 */
1519 if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) &&
1520 spa_load_state(spa) == SPA_LOAD_OPEN &&
1521 state != POOL_STATE_ACTIVE)
1522 return (SET_ERROR(EBADF));
1523
1524 /*
1525 * If we were able to open and validate a vdev that was
1526 * previously marked permanently unavailable, clear that state
1527 * now.
1528 */
1529 if (vd->vdev_not_present)
1530 vd->vdev_not_present = 0;
1531 }
1532
1533 return (0);
1534 }
1535
1536 /*
1537 * Close a virtual device.
1538 */
1539 void
1540 vdev_close(vdev_t *vd)
1541 {
1542 vdev_t *pvd = vd->vdev_parent;
1543 ASSERTV(spa_t *spa = vd->vdev_spa);
1544
1545 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1546
1547 /*
1548 * If our parent is reopening, then we are as well, unless we are
1549 * going offline.
1550 */
1551 if (pvd != NULL && pvd->vdev_reopening)
1552 vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline);
1553
1554 vd->vdev_ops->vdev_op_close(vd);
1555
1556 vdev_cache_purge(vd);
1557
1558 /*
1559 * We record the previous state before we close it, so that if we are
1560 * doing a reopen(), we don't generate FMA ereports if we notice that
1561 * it's still faulted.
1562 */
1563 vd->vdev_prevstate = vd->vdev_state;
1564
1565 if (vd->vdev_offline)
1566 vd->vdev_state = VDEV_STATE_OFFLINE;
1567 else
1568 vd->vdev_state = VDEV_STATE_CLOSED;
1569 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1570 }
1571
1572 void
1573 vdev_hold(vdev_t *vd)
1574 {
1575 spa_t *spa = vd->vdev_spa;
1576 int c;
1577
1578 ASSERT(spa_is_root(spa));
1579 if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1580 return;
1581
1582 for (c = 0; c < vd->vdev_children; c++)
1583 vdev_hold(vd->vdev_child[c]);
1584
1585 if (vd->vdev_ops->vdev_op_leaf)
1586 vd->vdev_ops->vdev_op_hold(vd);
1587 }
1588
1589 void
1590 vdev_rele(vdev_t *vd)
1591 {
1592 int c;
1593
1594 ASSERT(spa_is_root(vd->vdev_spa));
1595 for (c = 0; c < vd->vdev_children; c++)
1596 vdev_rele(vd->vdev_child[c]);
1597
1598 if (vd->vdev_ops->vdev_op_leaf)
1599 vd->vdev_ops->vdev_op_rele(vd);
1600 }
1601
1602 /*
1603 * Reopen all interior vdevs and any unopened leaves. We don't actually
1604 * reopen leaf vdevs which had previously been opened as they might deadlock
1605 * on the spa_config_lock. Instead we only obtain the leaf's physical size.
1606 * If the leaf has never been opened then open it, as usual.
1607 */
1608 void
1609 vdev_reopen(vdev_t *vd)
1610 {
1611 spa_t *spa = vd->vdev_spa;
1612
1613 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1614
1615 /* set the reopening flag unless we're taking the vdev offline */
1616 vd->vdev_reopening = !vd->vdev_offline;
1617 vdev_close(vd);
1618 (void) vdev_open(vd);
1619
1620 /*
1621 * Call vdev_validate() here to make sure we have the same device.
1622 * Otherwise, a device with an invalid label could be successfully
1623 * opened in response to vdev_reopen().
1624 */
1625 if (vd->vdev_aux) {
1626 (void) vdev_validate_aux(vd);
1627 if (vdev_readable(vd) && vdev_writeable(vd) &&
1628 vd->vdev_aux == &spa->spa_l2cache &&
1629 !l2arc_vdev_present(vd))
1630 l2arc_add_vdev(spa, vd);
1631 } else {
1632 (void) vdev_validate(vd, B_TRUE);
1633 }
1634
1635 /*
1636 * Reassess parent vdev's health.
1637 */
1638 vdev_propagate_state(vd);
1639 }
1640
1641 int
1642 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
1643 {
1644 int error;
1645
1646 /*
1647 * Normally, partial opens (e.g. of a mirror) are allowed.
1648 * For a create, however, we want to fail the request if
1649 * there are any components we can't open.
1650 */
1651 error = vdev_open(vd);
1652
1653 if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
1654 vdev_close(vd);
1655 return (error ? error : ENXIO);
1656 }
1657
1658 /*
1659 * Recursively load DTLs and initialize all labels.
1660 */
1661 if ((error = vdev_dtl_load(vd)) != 0 ||
1662 (error = vdev_label_init(vd, txg, isreplacing ?
1663 VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
1664 vdev_close(vd);
1665 return (error);
1666 }
1667
1668 return (0);
1669 }
1670
1671 void
1672 vdev_metaslab_set_size(vdev_t *vd)
1673 {
1674 /*
1675 * Aim for roughly metaslabs_per_vdev (default 200) metaslabs per vdev.
1676 */
1677 vd->vdev_ms_shift = highbit64(vd->vdev_asize / metaslabs_per_vdev);
1678 vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT);
1679 }
1680
1681 void
1682 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
1683 {
1684 ASSERT(vd == vd->vdev_top);
1685 ASSERT(!vd->vdev_ishole);
1686 ASSERT(ISP2(flags));
1687 ASSERT(spa_writeable(vd->vdev_spa));
1688
1689 if (flags & VDD_METASLAB)
1690 (void) txg_list_add(&vd->vdev_ms_list, arg, txg);
1691
1692 if (flags & VDD_DTL)
1693 (void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
1694
1695 (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
1696 }
1697
1698 void
1699 vdev_dirty_leaves(vdev_t *vd, int flags, uint64_t txg)
1700 {
1701 int c;
1702
1703 for (c = 0; c < vd->vdev_children; c++)
1704 vdev_dirty_leaves(vd->vdev_child[c], flags, txg);
1705
1706 if (vd->vdev_ops->vdev_op_leaf)
1707 vdev_dirty(vd->vdev_top, flags, vd, txg);
1708 }
1709
1710 /*
1711 * DTLs.
1712 *
1713 * A vdev's DTL (dirty time log) is the set of transaction groups for which
1714 * the vdev has less than perfect replication. There are four kinds of DTL:
1715 *
1716 * DTL_MISSING: txgs for which the vdev has no valid copies of the data
1717 *
1718 * DTL_PARTIAL: txgs for which data is available, but not fully replicated
1719 *
1720 * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon
1721 * scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of
1722 * txgs that was scrubbed.
1723 *
1724 * DTL_OUTAGE: txgs which cannot currently be read, whether due to
1725 * persistent errors or just some device being offline.
1726 * Unlike the other three, the DTL_OUTAGE map is not generally
1727 * maintained; it's only computed when needed, typically to
1728 * determine whether a device can be detached.
1729 *
1730 * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device
1731 * either has the data or it doesn't.
1732 *
1733 * For interior vdevs such as mirror and RAID-Z the picture is more complex.
1734 * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because
1735 * if any child is less than fully replicated, then so is its parent.
1736 * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs,
1737 * comprising only those txgs which appear in 'maxfaults' or more children;
1738 * those are the txgs we don't have enough replication to read. For example,
1739 * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2);
1740 * thus, its DTL_MISSING consists of the set of txgs that appear in more than
1741 * two child DTL_MISSING maps.
1742 *
1743 * It should be clear from the above that to compute the DTLs and outage maps
1744 * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps.
1745 * Therefore, that is all we keep on disk. When loading the pool, or after
1746 * a configuration change, we generate all other DTLs from first principles.
1747 */
1748 void
1749 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1750 {
1751 range_tree_t *rt = vd->vdev_dtl[t];
1752
1753 ASSERT(t < DTL_TYPES);
1754 ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1755 ASSERT(spa_writeable(vd->vdev_spa));
1756
1757 mutex_enter(rt->rt_lock);
1758 if (!range_tree_contains(rt, txg, size))
1759 range_tree_add(rt, txg, size);
1760 mutex_exit(rt->rt_lock);
1761 }
1762
1763 boolean_t
1764 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1765 {
1766 range_tree_t *rt = vd->vdev_dtl[t];
1767 boolean_t dirty = B_FALSE;
1768
1769 ASSERT(t < DTL_TYPES);
1770 ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1771
1772 mutex_enter(rt->rt_lock);
1773 if (range_tree_space(rt) != 0)
1774 dirty = range_tree_contains(rt, txg, size);
1775 mutex_exit(rt->rt_lock);
1776
1777 return (dirty);
1778 }
1779
1780 boolean_t
1781 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
1782 {
1783 range_tree_t *rt = vd->vdev_dtl[t];
1784 boolean_t empty;
1785
1786 mutex_enter(rt->rt_lock);
1787 empty = (range_tree_space(rt) == 0);
1788 mutex_exit(rt->rt_lock);
1789
1790 return (empty);
1791 }
1792
1793 /*
1794 * Returns the lowest txg in the DTL range.
1795 */
1796 static uint64_t
1797 vdev_dtl_min(vdev_t *vd)
1798 {
1799 range_seg_t *rs;
1800
1801 ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
1802 ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
1803 ASSERT0(vd->vdev_children);
1804
1805 rs = avl_first(&vd->vdev_dtl[DTL_MISSING]->rt_root);
1806 return (rs->rs_start - 1);
1807 }
1808
1809 /*
1810 * Returns the highest txg in the DTL.
1811 */
1812 static uint64_t
1813 vdev_dtl_max(vdev_t *vd)
1814 {
1815 range_seg_t *rs;
1816
1817 ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
1818 ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
1819 ASSERT0(vd->vdev_children);
1820
1821 rs = avl_last(&vd->vdev_dtl[DTL_MISSING]->rt_root);
1822 return (rs->rs_end);
1823 }
1824
1825 /*
1826 * Determine if a resilvering vdev should remove any DTL entries from
1827 * its range. If the vdev was resilvering for the entire duration of the
1828 * scan then it should excise that range from its DTLs. Otherwise, this
1829 * vdev is considered partially resilvered and should leave its DTL
1830 * entries intact. The comment in vdev_dtl_reassess() describes how we
1831 * excise the DTLs.
1832 */
1833 static boolean_t
1834 vdev_dtl_should_excise(vdev_t *vd)
1835 {
1836 spa_t *spa = vd->vdev_spa;
1837 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
1838
1839 ASSERT0(scn->scn_phys.scn_errors);
1840 ASSERT0(vd->vdev_children);
1841
1842 if (vd->vdev_resilver_txg == 0 ||
1843 range_tree_space(vd->vdev_dtl[DTL_MISSING]) == 0)
1844 return (B_TRUE);
1845
1846 /*
1847 * When a resilver is initiated the scan will assign the scn_max_txg
1848 * value to the highest txg value that exists in all DTLs. If this
1849 * device's max DTL is not part of this scan (i.e. it is not in
1850 * the range (scn_min_txg, scn_max_txg] then it is not eligible
1851 * for excision.
1852 */
1853 if (vdev_dtl_max(vd) <= scn->scn_phys.scn_max_txg) {
1854 ASSERT3U(scn->scn_phys.scn_min_txg, <=, vdev_dtl_min(vd));
1855 ASSERT3U(scn->scn_phys.scn_min_txg, <, vd->vdev_resilver_txg);
1856 ASSERT3U(vd->vdev_resilver_txg, <=, scn->scn_phys.scn_max_txg);
1857 return (B_TRUE);
1858 }
1859 return (B_FALSE);
1860 }
1861
1862 /*
1863 * Reassess DTLs after a config change or scrub completion.
1864 */
1865 void
1866 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done)
1867 {
1868 spa_t *spa = vd->vdev_spa;
1869 avl_tree_t reftree;
1870 int c, t, minref;
1871
1872 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1873
1874 for (c = 0; c < vd->vdev_children; c++)
1875 vdev_dtl_reassess(vd->vdev_child[c], txg,
1876 scrub_txg, scrub_done);
1877
1878 if (vd == spa->spa_root_vdev || vd->vdev_ishole || vd->vdev_aux)
1879 return;
1880
1881 if (vd->vdev_ops->vdev_op_leaf) {
1882 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
1883
1884 mutex_enter(&vd->vdev_dtl_lock);
1885
1886 /*
1887 * If we've completed a scan cleanly then determine
1888 * if this vdev should remove any DTLs. We only want to
1889 * excise regions on vdevs that were available during
1890 * the entire duration of this scan.
1891 */
1892 if (scrub_txg != 0 &&
1893 (spa->spa_scrub_started ||
1894 (scn != NULL && scn->scn_phys.scn_errors == 0)) &&
1895 vdev_dtl_should_excise(vd)) {
1896 /*
1897 * We completed a scrub up to scrub_txg. If we
1898 * did it without rebooting, then the scrub dtl
1899 * will be valid, so excise the old region and
1900 * fold in the scrub dtl. Otherwise, leave the
1901 * dtl as-is if there was an error.
1902 *
1903 * There's little trick here: to excise the beginning
1904 * of the DTL_MISSING map, we put it into a reference
1905 * tree and then add a segment with refcnt -1 that
1906 * covers the range [0, scrub_txg). This means
1907 * that each txg in that range has refcnt -1 or 0.
1908 * We then add DTL_SCRUB with a refcnt of 2, so that
1909 * entries in the range [0, scrub_txg) will have a
1910 * positive refcnt -- either 1 or 2. We then convert
1911 * the reference tree into the new DTL_MISSING map.
1912 */
1913 space_reftree_create(&reftree);
1914 space_reftree_add_map(&reftree,
1915 vd->vdev_dtl[DTL_MISSING], 1);
1916 space_reftree_add_seg(&reftree, 0, scrub_txg, -1);
1917 space_reftree_add_map(&reftree,
1918 vd->vdev_dtl[DTL_SCRUB], 2);
1919 space_reftree_generate_map(&reftree,
1920 vd->vdev_dtl[DTL_MISSING], 1);
1921 space_reftree_destroy(&reftree);
1922 }
1923 range_tree_vacate(vd->vdev_dtl[DTL_PARTIAL], NULL, NULL);
1924 range_tree_walk(vd->vdev_dtl[DTL_MISSING],
1925 range_tree_add, vd->vdev_dtl[DTL_PARTIAL]);
1926 if (scrub_done)
1927 range_tree_vacate(vd->vdev_dtl[DTL_SCRUB], NULL, NULL);
1928 range_tree_vacate(vd->vdev_dtl[DTL_OUTAGE], NULL, NULL);
1929 if (!vdev_readable(vd))
1930 range_tree_add(vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL);
1931 else
1932 range_tree_walk(vd->vdev_dtl[DTL_MISSING],
1933 range_tree_add, vd->vdev_dtl[DTL_OUTAGE]);
1934
1935 /*
1936 * If the vdev was resilvering and no longer has any
1937 * DTLs then reset its resilvering flag and dirty
1938 * the top level so that we persist the change.
1939 */
1940 if (vd->vdev_resilver_txg != 0 &&
1941 range_tree_space(vd->vdev_dtl[DTL_MISSING]) == 0 &&
1942 range_tree_space(vd->vdev_dtl[DTL_OUTAGE]) == 0) {
1943 vd->vdev_resilver_txg = 0;
1944 vdev_config_dirty(vd->vdev_top);
1945 }
1946
1947 mutex_exit(&vd->vdev_dtl_lock);
1948
1949 if (txg != 0)
1950 vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
1951 return;
1952 }
1953
1954 mutex_enter(&vd->vdev_dtl_lock);
1955 for (t = 0; t < DTL_TYPES; t++) {
1956 int c;
1957
1958 /* account for child's outage in parent's missing map */
1959 int s = (t == DTL_MISSING) ? DTL_OUTAGE: t;
1960 if (t == DTL_SCRUB)
1961 continue; /* leaf vdevs only */
1962 if (t == DTL_PARTIAL)
1963 minref = 1; /* i.e. non-zero */
1964 else if (vd->vdev_nparity != 0)
1965 minref = vd->vdev_nparity + 1; /* RAID-Z */
1966 else
1967 minref = vd->vdev_children; /* any kind of mirror */
1968 space_reftree_create(&reftree);
1969 for (c = 0; c < vd->vdev_children; c++) {
1970 vdev_t *cvd = vd->vdev_child[c];
1971 mutex_enter(&cvd->vdev_dtl_lock);
1972 space_reftree_add_map(&reftree, cvd->vdev_dtl[s], 1);
1973 mutex_exit(&cvd->vdev_dtl_lock);
1974 }
1975 space_reftree_generate_map(&reftree, vd->vdev_dtl[t], minref);
1976 space_reftree_destroy(&reftree);
1977 }
1978 mutex_exit(&vd->vdev_dtl_lock);
1979 }
1980
1981 int
1982 vdev_dtl_load(vdev_t *vd)
1983 {
1984 spa_t *spa = vd->vdev_spa;
1985 objset_t *mos = spa->spa_meta_objset;
1986 int error = 0;
1987 int c;
1988
1989 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_dtl_object != 0) {
1990 ASSERT(!vd->vdev_ishole);
1991
1992 error = space_map_open(&vd->vdev_dtl_sm, mos,
1993 vd->vdev_dtl_object, 0, -1ULL, 0, &vd->vdev_dtl_lock);
1994 if (error)
1995 return (error);
1996 ASSERT(vd->vdev_dtl_sm != NULL);
1997
1998 mutex_enter(&vd->vdev_dtl_lock);
1999
2000 /*
2001 * Now that we've opened the space_map we need to update
2002 * the in-core DTL.
2003 */
2004 space_map_update(vd->vdev_dtl_sm);
2005
2006 error = space_map_load(vd->vdev_dtl_sm,
2007 vd->vdev_dtl[DTL_MISSING], SM_ALLOC);
2008 mutex_exit(&vd->vdev_dtl_lock);
2009
2010 return (error);
2011 }
2012
2013 for (c = 0; c < vd->vdev_children; c++) {
2014 error = vdev_dtl_load(vd->vdev_child[c]);
2015 if (error != 0)
2016 break;
2017 }
2018
2019 return (error);
2020 }
2021
2022 void
2023 vdev_destroy_unlink_zap(vdev_t *vd, uint64_t zapobj, dmu_tx_t *tx)
2024 {
2025 spa_t *spa = vd->vdev_spa;
2026
2027 VERIFY0(zap_destroy(spa->spa_meta_objset, zapobj, tx));
2028 VERIFY0(zap_remove_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps,
2029 zapobj, tx));
2030 }
2031
2032 uint64_t
2033 vdev_create_link_zap(vdev_t *vd, dmu_tx_t *tx)
2034 {
2035 spa_t *spa = vd->vdev_spa;
2036 uint64_t zap = zap_create(spa->spa_meta_objset, DMU_OTN_ZAP_METADATA,
2037 DMU_OT_NONE, 0, tx);
2038
2039 ASSERT(zap != 0);
2040 VERIFY0(zap_add_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps,
2041 zap, tx));
2042
2043 return (zap);
2044 }
2045
2046 void
2047 vdev_construct_zaps(vdev_t *vd, dmu_tx_t *tx)
2048 {
2049 uint64_t i;
2050
2051 if (vd->vdev_ops != &vdev_hole_ops &&
2052 vd->vdev_ops != &vdev_missing_ops &&
2053 vd->vdev_ops != &vdev_root_ops &&
2054 !vd->vdev_top->vdev_removing) {
2055 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_leaf_zap == 0) {
2056 vd->vdev_leaf_zap = vdev_create_link_zap(vd, tx);
2057 }
2058 if (vd == vd->vdev_top && vd->vdev_top_zap == 0) {
2059 vd->vdev_top_zap = vdev_create_link_zap(vd, tx);
2060 }
2061 }
2062 for (i = 0; i < vd->vdev_children; i++) {
2063 vdev_construct_zaps(vd->vdev_child[i], tx);
2064 }
2065 }
2066
2067 void
2068 vdev_dtl_sync(vdev_t *vd, uint64_t txg)
2069 {
2070 spa_t *spa = vd->vdev_spa;
2071 range_tree_t *rt = vd->vdev_dtl[DTL_MISSING];
2072 objset_t *mos = spa->spa_meta_objset;
2073 range_tree_t *rtsync;
2074 kmutex_t rtlock;
2075 dmu_tx_t *tx;
2076 uint64_t object = space_map_object(vd->vdev_dtl_sm);
2077
2078 ASSERT(!vd->vdev_ishole);
2079 ASSERT(vd->vdev_ops->vdev_op_leaf);
2080
2081 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2082
2083 if (vd->vdev_detached || vd->vdev_top->vdev_removing) {
2084 mutex_enter(&vd->vdev_dtl_lock);
2085 space_map_free(vd->vdev_dtl_sm, tx);
2086 space_map_close(vd->vdev_dtl_sm);
2087 vd->vdev_dtl_sm = NULL;
2088 mutex_exit(&vd->vdev_dtl_lock);
2089
2090 /*
2091 * We only destroy the leaf ZAP for detached leaves or for
2092 * removed log devices. Removed data devices handle leaf ZAP
2093 * cleanup later, once cancellation is no longer possible.
2094 */
2095 if (vd->vdev_leaf_zap != 0 && (vd->vdev_detached ||
2096 vd->vdev_top->vdev_islog)) {
2097 vdev_destroy_unlink_zap(vd, vd->vdev_leaf_zap, tx);
2098 vd->vdev_leaf_zap = 0;
2099 }
2100
2101 dmu_tx_commit(tx);
2102 return;
2103 }
2104
2105 if (vd->vdev_dtl_sm == NULL) {
2106 uint64_t new_object;
2107
2108 new_object = space_map_alloc(mos, tx);
2109 VERIFY3U(new_object, !=, 0);
2110
2111 VERIFY0(space_map_open(&vd->vdev_dtl_sm, mos, new_object,
2112 0, -1ULL, 0, &vd->vdev_dtl_lock));
2113 ASSERT(vd->vdev_dtl_sm != NULL);
2114 }
2115
2116 mutex_init(&rtlock, NULL, MUTEX_DEFAULT, NULL);
2117
2118 rtsync = range_tree_create(NULL, NULL, &rtlock);
2119
2120 mutex_enter(&rtlock);
2121
2122 mutex_enter(&vd->vdev_dtl_lock);
2123 range_tree_walk(rt, range_tree_add, rtsync);
2124 mutex_exit(&vd->vdev_dtl_lock);
2125
2126 space_map_truncate(vd->vdev_dtl_sm, tx);
2127 space_map_write(vd->vdev_dtl_sm, rtsync, SM_ALLOC, tx);
2128 range_tree_vacate(rtsync, NULL, NULL);
2129
2130 range_tree_destroy(rtsync);
2131
2132 mutex_exit(&rtlock);
2133 mutex_destroy(&rtlock);
2134
2135 /*
2136 * If the object for the space map has changed then dirty
2137 * the top level so that we update the config.
2138 */
2139 if (object != space_map_object(vd->vdev_dtl_sm)) {
2140 zfs_dbgmsg("txg %llu, spa %s, DTL old object %llu, "
2141 "new object %llu", txg, spa_name(spa), object,
2142 space_map_object(vd->vdev_dtl_sm));
2143 vdev_config_dirty(vd->vdev_top);
2144 }
2145
2146 dmu_tx_commit(tx);
2147
2148 mutex_enter(&vd->vdev_dtl_lock);
2149 space_map_update(vd->vdev_dtl_sm);
2150 mutex_exit(&vd->vdev_dtl_lock);
2151 }
2152
2153 /*
2154 * Determine whether the specified vdev can be offlined/detached/removed
2155 * without losing data.
2156 */
2157 boolean_t
2158 vdev_dtl_required(vdev_t *vd)
2159 {
2160 spa_t *spa = vd->vdev_spa;
2161 vdev_t *tvd = vd->vdev_top;
2162 uint8_t cant_read = vd->vdev_cant_read;
2163 boolean_t required;
2164
2165 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2166
2167 if (vd == spa->spa_root_vdev || vd == tvd)
2168 return (B_TRUE);
2169
2170 /*
2171 * Temporarily mark the device as unreadable, and then determine
2172 * whether this results in any DTL outages in the top-level vdev.
2173 * If not, we can safely offline/detach/remove the device.
2174 */
2175 vd->vdev_cant_read = B_TRUE;
2176 vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
2177 required = !vdev_dtl_empty(tvd, DTL_OUTAGE);
2178 vd->vdev_cant_read = cant_read;
2179 vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
2180
2181 if (!required && zio_injection_enabled)
2182 required = !!zio_handle_device_injection(vd, NULL, ECHILD);
2183
2184 return (required);
2185 }
2186
2187 /*
2188 * Determine if resilver is needed, and if so the txg range.
2189 */
2190 boolean_t
2191 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
2192 {
2193 boolean_t needed = B_FALSE;
2194 uint64_t thismin = UINT64_MAX;
2195 uint64_t thismax = 0;
2196 int c;
2197
2198 if (vd->vdev_children == 0) {
2199 mutex_enter(&vd->vdev_dtl_lock);
2200 if (range_tree_space(vd->vdev_dtl[DTL_MISSING]) != 0 &&
2201 vdev_writeable(vd)) {
2202
2203 thismin = vdev_dtl_min(vd);
2204 thismax = vdev_dtl_max(vd);
2205 needed = B_TRUE;
2206 }
2207 mutex_exit(&vd->vdev_dtl_lock);
2208 } else {
2209 for (c = 0; c < vd->vdev_children; c++) {
2210 vdev_t *cvd = vd->vdev_child[c];
2211 uint64_t cmin, cmax;
2212
2213 if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
2214 thismin = MIN(thismin, cmin);
2215 thismax = MAX(thismax, cmax);
2216 needed = B_TRUE;
2217 }
2218 }
2219 }
2220
2221 if (needed && minp) {
2222 *minp = thismin;
2223 *maxp = thismax;
2224 }
2225 return (needed);
2226 }
2227
2228 void
2229 vdev_load(vdev_t *vd)
2230 {
2231 int c;
2232
2233 /*
2234 * Recursively load all children.
2235 */
2236 for (c = 0; c < vd->vdev_children; c++)
2237 vdev_load(vd->vdev_child[c]);
2238
2239 /*
2240 * If this is a top-level vdev, initialize its metaslabs.
2241 */
2242 if (vd == vd->vdev_top && !vd->vdev_ishole &&
2243 (vd->vdev_ashift == 0 || vd->vdev_asize == 0 ||
2244 vdev_metaslab_init(vd, 0) != 0))
2245 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2246 VDEV_AUX_CORRUPT_DATA);
2247 /*
2248 * If this is a leaf vdev, load its DTL.
2249 */
2250 if (vd->vdev_ops->vdev_op_leaf && vdev_dtl_load(vd) != 0)
2251 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2252 VDEV_AUX_CORRUPT_DATA);
2253 }
2254
2255 /*
2256 * The special vdev case is used for hot spares and l2cache devices. Its
2257 * sole purpose it to set the vdev state for the associated vdev. To do this,
2258 * we make sure that we can open the underlying device, then try to read the
2259 * label, and make sure that the label is sane and that it hasn't been
2260 * repurposed to another pool.
2261 */
2262 int
2263 vdev_validate_aux(vdev_t *vd)
2264 {
2265 nvlist_t *label;
2266 uint64_t guid, version;
2267 uint64_t state;
2268
2269 if (!vdev_readable(vd))
2270 return (0);
2271
2272 if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) {
2273 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2274 VDEV_AUX_CORRUPT_DATA);
2275 return (-1);
2276 }
2277
2278 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
2279 !SPA_VERSION_IS_SUPPORTED(version) ||
2280 nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
2281 guid != vd->vdev_guid ||
2282 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
2283 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2284 VDEV_AUX_CORRUPT_DATA);
2285 nvlist_free(label);
2286 return (-1);
2287 }
2288
2289 /*
2290 * We don't actually check the pool state here. If it's in fact in
2291 * use by another pool, we update this fact on the fly when requested.
2292 */
2293 nvlist_free(label);
2294 return (0);
2295 }
2296
2297 void
2298 vdev_remove(vdev_t *vd, uint64_t txg)
2299 {
2300 spa_t *spa = vd->vdev_spa;
2301 objset_t *mos = spa->spa_meta_objset;
2302 dmu_tx_t *tx;
2303 int m, i;
2304
2305 tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
2306 ASSERT(vd == vd->vdev_top);
2307 ASSERT3U(txg, ==, spa_syncing_txg(spa));
2308
2309 if (vd->vdev_ms != NULL) {
2310 metaslab_group_t *mg = vd->vdev_mg;
2311
2312 metaslab_group_histogram_verify(mg);
2313 metaslab_class_histogram_verify(mg->mg_class);
2314
2315 for (m = 0; m < vd->vdev_ms_count; m++) {
2316 metaslab_t *msp = vd->vdev_ms[m];
2317
2318 if (msp == NULL || msp->ms_sm == NULL)
2319 continue;
2320
2321 mutex_enter(&msp->ms_lock);
2322 /*
2323 * If the metaslab was not loaded when the vdev
2324 * was removed then the histogram accounting may
2325 * not be accurate. Update the histogram information
2326 * here so that we ensure that the metaslab group
2327 * and metaslab class are up-to-date.
2328 */
2329 metaslab_group_histogram_remove(mg, msp);
2330
2331 VERIFY0(space_map_allocated(msp->ms_sm));
2332 space_map_free(msp->ms_sm, tx);
2333 space_map_close(msp->ms_sm);
2334 msp->ms_sm = NULL;
2335 mutex_exit(&msp->ms_lock);
2336 }
2337
2338 metaslab_group_histogram_verify(mg);
2339 metaslab_class_histogram_verify(mg->mg_class);
2340 for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++)
2341 ASSERT0(mg->mg_histogram[i]);
2342
2343 }
2344
2345 if (vd->vdev_ms_array) {
2346 (void) dmu_object_free(mos, vd->vdev_ms_array, tx);
2347 vd->vdev_ms_array = 0;
2348 }
2349
2350 if (vd->vdev_islog && vd->vdev_top_zap != 0) {
2351 vdev_destroy_unlink_zap(vd, vd->vdev_top_zap, tx);
2352 vd->vdev_top_zap = 0;
2353 }
2354 dmu_tx_commit(tx);
2355 }
2356
2357 void
2358 vdev_sync_done(vdev_t *vd, uint64_t txg)
2359 {
2360 metaslab_t *msp;
2361 boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg));
2362
2363 ASSERT(!vd->vdev_ishole);
2364
2365 while ((msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg))))
2366 metaslab_sync_done(msp, txg);
2367
2368 if (reassess)
2369 metaslab_sync_reassess(vd->vdev_mg);
2370 }
2371
2372 void
2373 vdev_sync(vdev_t *vd, uint64_t txg)
2374 {
2375 spa_t *spa = vd->vdev_spa;
2376 vdev_t *lvd;
2377 metaslab_t *msp;
2378 dmu_tx_t *tx;
2379
2380 ASSERT(!vd->vdev_ishole);
2381
2382 if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0) {
2383 ASSERT(vd == vd->vdev_top);
2384 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2385 vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
2386 DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
2387 ASSERT(vd->vdev_ms_array != 0);
2388 vdev_config_dirty(vd);
2389 dmu_tx_commit(tx);
2390 }
2391
2392 /*
2393 * Remove the metadata associated with this vdev once it's empty.
2394 */
2395 if (vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing)
2396 vdev_remove(vd, txg);
2397
2398 while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
2399 metaslab_sync(msp, txg);
2400 (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
2401 }
2402
2403 while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
2404 vdev_dtl_sync(lvd, txg);
2405
2406 (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
2407 }
2408
2409 uint64_t
2410 vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
2411 {
2412 return (vd->vdev_ops->vdev_op_asize(vd, psize));
2413 }
2414
2415 /*
2416 * Mark the given vdev faulted. A faulted vdev behaves as if the device could
2417 * not be opened, and no I/O is attempted.
2418 */
2419 int
2420 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2421 {
2422 vdev_t *vd, *tvd;
2423
2424 spa_vdev_state_enter(spa, SCL_NONE);
2425
2426 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2427 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2428
2429 if (!vd->vdev_ops->vdev_op_leaf)
2430 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2431
2432 tvd = vd->vdev_top;
2433
2434 /*
2435 * We don't directly use the aux state here, but if we do a
2436 * vdev_reopen(), we need this value to be present to remember why we
2437 * were faulted.
2438 */
2439 vd->vdev_label_aux = aux;
2440
2441 /*
2442 * Faulted state takes precedence over degraded.
2443 */
2444 vd->vdev_delayed_close = B_FALSE;
2445 vd->vdev_faulted = 1ULL;
2446 vd->vdev_degraded = 0ULL;
2447 vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux);
2448
2449 /*
2450 * If this device has the only valid copy of the data, then
2451 * back off and simply mark the vdev as degraded instead.
2452 */
2453 if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) {
2454 vd->vdev_degraded = 1ULL;
2455 vd->vdev_faulted = 0ULL;
2456
2457 /*
2458 * If we reopen the device and it's not dead, only then do we
2459 * mark it degraded.
2460 */
2461 vdev_reopen(tvd);
2462
2463 if (vdev_readable(vd))
2464 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux);
2465 }
2466
2467 return (spa_vdev_state_exit(spa, vd, 0));
2468 }
2469
2470 /*
2471 * Mark the given vdev degraded. A degraded vdev is purely an indication to the
2472 * user that something is wrong. The vdev continues to operate as normal as far
2473 * as I/O is concerned.
2474 */
2475 int
2476 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2477 {
2478 vdev_t *vd;
2479
2480 spa_vdev_state_enter(spa, SCL_NONE);
2481
2482 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2483 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2484
2485 if (!vd->vdev_ops->vdev_op_leaf)
2486 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2487
2488 /*
2489 * If the vdev is already faulted, then don't do anything.
2490 */
2491 if (vd->vdev_faulted || vd->vdev_degraded)
2492 return (spa_vdev_state_exit(spa, NULL, 0));
2493
2494 vd->vdev_degraded = 1ULL;
2495 if (!vdev_is_dead(vd))
2496 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
2497 aux);
2498
2499 return (spa_vdev_state_exit(spa, vd, 0));
2500 }
2501
2502 /*
2503 * Online the given vdev.
2504 *
2505 * If 'ZFS_ONLINE_UNSPARE' is set, it implies two things. First, any attached
2506 * spare device should be detached when the device finishes resilvering.
2507 * Second, the online should be treated like a 'test' online case, so no FMA
2508 * events are generated if the device fails to open.
2509 */
2510 int
2511 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
2512 {
2513 vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev;
2514 boolean_t postevent = B_FALSE;
2515
2516 spa_vdev_state_enter(spa, SCL_NONE);
2517
2518 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2519 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2520
2521 if (!vd->vdev_ops->vdev_op_leaf)
2522 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2523
2524 postevent =
2525 (vd->vdev_offline == B_TRUE || vd->vdev_tmpoffline == B_TRUE) ?
2526 B_TRUE : B_FALSE;
2527
2528 tvd = vd->vdev_top;
2529 vd->vdev_offline = B_FALSE;
2530 vd->vdev_tmpoffline = B_FALSE;
2531 vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
2532 vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
2533
2534 /* XXX - L2ARC 1.0 does not support expansion */
2535 if (!vd->vdev_aux) {
2536 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2537 pvd->vdev_expanding = !!(flags & ZFS_ONLINE_EXPAND);
2538 }
2539
2540 vdev_reopen(tvd);
2541 vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
2542
2543 if (!vd->vdev_aux) {
2544 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2545 pvd->vdev_expanding = B_FALSE;
2546 }
2547
2548 if (newstate)
2549 *newstate = vd->vdev_state;
2550 if ((flags & ZFS_ONLINE_UNSPARE) &&
2551 !vdev_is_dead(vd) && vd->vdev_parent &&
2552 vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2553 vd->vdev_parent->vdev_child[0] == vd)
2554 vd->vdev_unspare = B_TRUE;
2555
2556 if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) {
2557
2558 /* XXX - L2ARC 1.0 does not support expansion */
2559 if (vd->vdev_aux)
2560 return (spa_vdev_state_exit(spa, vd, ENOTSUP));
2561 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2562 }
2563
2564 if (postevent)
2565 spa_event_notify(spa, vd, ESC_ZFS_VDEV_ONLINE);
2566
2567 return (spa_vdev_state_exit(spa, vd, 0));
2568 }
2569
2570 static int
2571 vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags)
2572 {
2573 vdev_t *vd, *tvd;
2574 int error = 0;
2575 uint64_t generation;
2576 metaslab_group_t *mg;
2577
2578 top:
2579 spa_vdev_state_enter(spa, SCL_ALLOC);
2580
2581 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2582 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2583
2584 if (!vd->vdev_ops->vdev_op_leaf)
2585 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2586
2587 tvd = vd->vdev_top;
2588 mg = tvd->vdev_mg;
2589 generation = spa->spa_config_generation + 1;
2590
2591 /*
2592 * If the device isn't already offline, try to offline it.
2593 */
2594 if (!vd->vdev_offline) {
2595 /*
2596 * If this device has the only valid copy of some data,
2597 * don't allow it to be offlined. Log devices are always
2598 * expendable.
2599 */
2600 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2601 vdev_dtl_required(vd))
2602 return (spa_vdev_state_exit(spa, NULL, EBUSY));
2603
2604 /*
2605 * If the top-level is a slog and it has had allocations
2606 * then proceed. We check that the vdev's metaslab group
2607 * is not NULL since it's possible that we may have just
2608 * added this vdev but not yet initialized its metaslabs.
2609 */
2610 if (tvd->vdev_islog && mg != NULL) {
2611 /*
2612 * Prevent any future allocations.
2613 */
2614 metaslab_group_passivate(mg);
2615 (void) spa_vdev_state_exit(spa, vd, 0);
2616
2617 error = spa_offline_log(spa);
2618
2619 spa_vdev_state_enter(spa, SCL_ALLOC);
2620
2621 /*
2622 * Check to see if the config has changed.
2623 */
2624 if (error || generation != spa->spa_config_generation) {
2625 metaslab_group_activate(mg);
2626 if (error)
2627 return (spa_vdev_state_exit(spa,
2628 vd, error));
2629 (void) spa_vdev_state_exit(spa, vd, 0);
2630 goto top;
2631 }
2632 ASSERT0(tvd->vdev_stat.vs_alloc);
2633 }
2634
2635 /*
2636 * Offline this device and reopen its top-level vdev.
2637 * If the top-level vdev is a log device then just offline
2638 * it. Otherwise, if this action results in the top-level
2639 * vdev becoming unusable, undo it and fail the request.
2640 */
2641 vd->vdev_offline = B_TRUE;
2642 vdev_reopen(tvd);
2643
2644 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2645 vdev_is_dead(tvd)) {
2646 vd->vdev_offline = B_FALSE;
2647 vdev_reopen(tvd);
2648 return (spa_vdev_state_exit(spa, NULL, EBUSY));
2649 }
2650
2651 /*
2652 * Add the device back into the metaslab rotor so that
2653 * once we online the device it's open for business.
2654 */
2655 if (tvd->vdev_islog && mg != NULL)
2656 metaslab_group_activate(mg);
2657 }
2658
2659 vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
2660
2661 return (spa_vdev_state_exit(spa, vd, 0));
2662 }
2663
2664 int
2665 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
2666 {
2667 int error;
2668
2669 mutex_enter(&spa->spa_vdev_top_lock);
2670 error = vdev_offline_locked(spa, guid, flags);
2671 mutex_exit(&spa->spa_vdev_top_lock);
2672
2673 return (error);
2674 }
2675
2676 /*
2677 * Clear the error counts associated with this vdev. Unlike vdev_online() and
2678 * vdev_offline(), we assume the spa config is locked. We also clear all
2679 * children. If 'vd' is NULL, then the user wants to clear all vdevs.
2680 */
2681 void
2682 vdev_clear(spa_t *spa, vdev_t *vd)
2683 {
2684 vdev_t *rvd = spa->spa_root_vdev;
2685 int c;
2686
2687 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2688
2689 if (vd == NULL)
2690 vd = rvd;
2691
2692 vd->vdev_stat.vs_read_errors = 0;
2693 vd->vdev_stat.vs_write_errors = 0;
2694 vd->vdev_stat.vs_checksum_errors = 0;
2695
2696 for (c = 0; c < vd->vdev_children; c++)
2697 vdev_clear(spa, vd->vdev_child[c]);
2698
2699 /*
2700 * If we're in the FAULTED state or have experienced failed I/O, then
2701 * clear the persistent state and attempt to reopen the device. We
2702 * also mark the vdev config dirty, so that the new faulted state is
2703 * written out to disk.
2704 */
2705 if (vd->vdev_faulted || vd->vdev_degraded ||
2706 !vdev_readable(vd) || !vdev_writeable(vd)) {
2707
2708 /*
2709 * When reopening in response to a clear event, it may be due to
2710 * a fmadm repair request. In this case, if the device is
2711 * still broken, we want to still post the ereport again.
2712 */
2713 vd->vdev_forcefault = B_TRUE;
2714
2715 vd->vdev_faulted = vd->vdev_degraded = 0ULL;
2716 vd->vdev_cant_read = B_FALSE;
2717 vd->vdev_cant_write = B_FALSE;
2718
2719 vdev_reopen(vd == rvd ? rvd : vd->vdev_top);
2720
2721 vd->vdev_forcefault = B_FALSE;
2722
2723 if (vd != rvd && vdev_writeable(vd->vdev_top))
2724 vdev_state_dirty(vd->vdev_top);
2725
2726 if (vd->vdev_aux == NULL && !vdev_is_dead(vd))
2727 spa_async_request(spa, SPA_ASYNC_RESILVER);
2728
2729 spa_event_notify(spa, vd, ESC_ZFS_VDEV_CLEAR);
2730 }
2731
2732 /*
2733 * When clearing a FMA-diagnosed fault, we always want to
2734 * unspare the device, as we assume that the original spare was
2735 * done in response to the FMA fault.
2736 */
2737 if (!vdev_is_dead(vd) && vd->vdev_parent != NULL &&
2738 vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2739 vd->vdev_parent->vdev_child[0] == vd)
2740 vd->vdev_unspare = B_TRUE;
2741 }
2742
2743 boolean_t
2744 vdev_is_dead(vdev_t *vd)
2745 {
2746 /*
2747 * Holes and missing devices are always considered "dead".
2748 * This simplifies the code since we don't have to check for
2749 * these types of devices in the various code paths.
2750 * Instead we rely on the fact that we skip over dead devices
2751 * before issuing I/O to them.
2752 */
2753 return (vd->vdev_state < VDEV_STATE_DEGRADED || vd->vdev_ishole ||
2754 vd->vdev_ops == &vdev_missing_ops);
2755 }
2756
2757 boolean_t
2758 vdev_readable(vdev_t *vd)
2759 {
2760 return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
2761 }
2762
2763 boolean_t
2764 vdev_writeable(vdev_t *vd)
2765 {
2766 return (!vdev_is_dead(vd) && !vd->vdev_cant_write);
2767 }
2768
2769 boolean_t
2770 vdev_allocatable(vdev_t *vd)
2771 {
2772 uint64_t state = vd->vdev_state;
2773
2774 /*
2775 * We currently allow allocations from vdevs which may be in the
2776 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device
2777 * fails to reopen then we'll catch it later when we're holding
2778 * the proper locks. Note that we have to get the vdev state
2779 * in a local variable because although it changes atomically,
2780 * we're asking two separate questions about it.
2781 */
2782 return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) &&
2783 !vd->vdev_cant_write && !vd->vdev_ishole &&
2784 vd->vdev_mg->mg_initialized);
2785 }
2786
2787 boolean_t
2788 vdev_accessible(vdev_t *vd, zio_t *zio)
2789 {
2790 ASSERT(zio->io_vd == vd);
2791
2792 if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
2793 return (B_FALSE);
2794
2795 if (zio->io_type == ZIO_TYPE_READ)
2796 return (!vd->vdev_cant_read);
2797
2798 if (zio->io_type == ZIO_TYPE_WRITE)
2799 return (!vd->vdev_cant_write);
2800
2801 return (B_TRUE);
2802 }
2803
2804 static void
2805 vdev_get_child_stat(vdev_t *cvd, vdev_stat_t *vs, vdev_stat_t *cvs)
2806 {
2807 int t;
2808 for (t = 0; t < ZIO_TYPES; t++) {
2809 vs->vs_ops[t] += cvs->vs_ops[t];
2810 vs->vs_bytes[t] += cvs->vs_bytes[t];
2811 }
2812
2813 cvs->vs_scan_removing = cvd->vdev_removing;
2814 }
2815
2816 /*
2817 * Get extended stats
2818 */
2819 static void
2820 vdev_get_child_stat_ex(vdev_t *cvd, vdev_stat_ex_t *vsx, vdev_stat_ex_t *cvsx)
2821 {
2822 int t, b;
2823 for (t = 0; t < ZIO_TYPES; t++) {
2824 for (b = 0; b < ARRAY_SIZE(vsx->vsx_disk_histo[0]); b++)
2825 vsx->vsx_disk_histo[t][b] += cvsx->vsx_disk_histo[t][b];
2826
2827 for (b = 0; b < ARRAY_SIZE(vsx->vsx_total_histo[0]); b++) {
2828 vsx->vsx_total_histo[t][b] +=
2829 cvsx->vsx_total_histo[t][b];
2830 }
2831 }
2832
2833 for (t = 0; t < ZIO_PRIORITY_NUM_QUEUEABLE; t++) {
2834 for (b = 0; b < ARRAY_SIZE(vsx->vsx_queue_histo[0]); b++) {
2835 vsx->vsx_queue_histo[t][b] +=
2836 cvsx->vsx_queue_histo[t][b];
2837 }
2838 vsx->vsx_active_queue[t] += cvsx->vsx_active_queue[t];
2839 vsx->vsx_pend_queue[t] += cvsx->vsx_pend_queue[t];
2840
2841 for (b = 0; b < ARRAY_SIZE(vsx->vsx_ind_histo[0]); b++)
2842 vsx->vsx_ind_histo[t][b] += cvsx->vsx_ind_histo[t][b];
2843
2844 for (b = 0; b < ARRAY_SIZE(vsx->vsx_agg_histo[0]); b++)
2845 vsx->vsx_agg_histo[t][b] += cvsx->vsx_agg_histo[t][b];
2846 }
2847
2848 }
2849
2850 /*
2851 * Get statistics for the given vdev.
2852 */
2853 static void
2854 vdev_get_stats_ex_impl(vdev_t *vd, vdev_stat_t *vs, vdev_stat_ex_t *vsx)
2855 {
2856 int c, t;
2857 /*
2858 * If we're getting stats on the root vdev, aggregate the I/O counts
2859 * over all top-level vdevs (i.e. the direct children of the root).
2860 */
2861 if (!vd->vdev_ops->vdev_op_leaf) {
2862 if (vs) {
2863 memset(vs->vs_ops, 0, sizeof (vs->vs_ops));
2864 memset(vs->vs_bytes, 0, sizeof (vs->vs_bytes));
2865 }
2866 if (vsx)
2867 memset(vsx, 0, sizeof (*vsx));
2868
2869 for (c = 0; c < vd->vdev_children; c++) {
2870 vdev_t *cvd = vd->vdev_child[c];
2871 vdev_stat_t *cvs = &cvd->vdev_stat;
2872 vdev_stat_ex_t *cvsx = &cvd->vdev_stat_ex;
2873
2874 vdev_get_stats_ex_impl(cvd, cvs, cvsx);
2875 if (vs)
2876 vdev_get_child_stat(cvd, vs, cvs);
2877 if (vsx)
2878 vdev_get_child_stat_ex(cvd, vsx, cvsx);
2879
2880 }
2881 } else {
2882 /*
2883 * We're a leaf. Just copy our ZIO active queue stats in. The
2884 * other leaf stats are updated in vdev_stat_update().
2885 */
2886 if (!vsx)
2887 return;
2888
2889 memcpy(vsx, &vd->vdev_stat_ex, sizeof (vd->vdev_stat_ex));
2890
2891 for (t = 0; t < ARRAY_SIZE(vd->vdev_queue.vq_class); t++) {
2892 vsx->vsx_active_queue[t] =
2893 vd->vdev_queue.vq_class[t].vqc_active;
2894 vsx->vsx_pend_queue[t] = avl_numnodes(
2895 &vd->vdev_queue.vq_class[t].vqc_queued_tree);
2896 }
2897 }
2898 }
2899
2900 void
2901 vdev_get_stats_ex(vdev_t *vd, vdev_stat_t *vs, vdev_stat_ex_t *vsx)
2902 {
2903 vdev_t *tvd = vd->vdev_top;
2904 mutex_enter(&vd->vdev_stat_lock);
2905 if (vs) {
2906 bcopy(&vd->vdev_stat, vs, sizeof (*vs));
2907 vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
2908 vs->vs_state = vd->vdev_state;
2909 vs->vs_rsize = vdev_get_min_asize(vd);
2910 if (vd->vdev_ops->vdev_op_leaf)
2911 vs->vs_rsize += VDEV_LABEL_START_SIZE +
2912 VDEV_LABEL_END_SIZE;
2913 /*
2914 * Report expandable space on top-level, non-auxillary devices
2915 * only. The expandable space is reported in terms of metaslab
2916 * sized units since that determines how much space the pool
2917 * can expand.
2918 */
2919 if (vd->vdev_aux == NULL && tvd != NULL) {
2920 vs->vs_esize = P2ALIGN(
2921 vd->vdev_max_asize - vd->vdev_asize,
2922 1ULL << tvd->vdev_ms_shift);
2923 }
2924 vs->vs_esize = vd->vdev_max_asize - vd->vdev_asize;
2925 if (vd->vdev_aux == NULL && vd == vd->vdev_top &&
2926 !vd->vdev_ishole) {
2927 vs->vs_fragmentation = vd->vdev_mg->mg_fragmentation;
2928 }
2929 }
2930
2931 ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_READER) != 0);
2932 vdev_get_stats_ex_impl(vd, vs, vsx);
2933 mutex_exit(&vd->vdev_stat_lock);
2934 }
2935
2936 void
2937 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
2938 {
2939 return (vdev_get_stats_ex(vd, vs, NULL));
2940 }
2941
2942 void
2943 vdev_clear_stats(vdev_t *vd)
2944 {
2945 mutex_enter(&vd->vdev_stat_lock);
2946 vd->vdev_stat.vs_space = 0;
2947 vd->vdev_stat.vs_dspace = 0;
2948 vd->vdev_stat.vs_alloc = 0;
2949 mutex_exit(&vd->vdev_stat_lock);
2950 }
2951
2952 void
2953 vdev_scan_stat_init(vdev_t *vd)
2954 {
2955 vdev_stat_t *vs = &vd->vdev_stat;
2956 int c;
2957
2958 for (c = 0; c < vd->vdev_children; c++)
2959 vdev_scan_stat_init(vd->vdev_child[c]);
2960
2961 mutex_enter(&vd->vdev_stat_lock);
2962 vs->vs_scan_processed = 0;
2963 mutex_exit(&vd->vdev_stat_lock);
2964 }
2965
2966 void
2967 vdev_stat_update(zio_t *zio, uint64_t psize)
2968 {
2969 spa_t *spa = zio->io_spa;
2970 vdev_t *rvd = spa->spa_root_vdev;
2971 vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
2972 vdev_t *pvd;
2973 uint64_t txg = zio->io_txg;
2974 vdev_stat_t *vs = &vd->vdev_stat;
2975 vdev_stat_ex_t *vsx = &vd->vdev_stat_ex;
2976 zio_type_t type = zio->io_type;
2977 int flags = zio->io_flags;
2978
2979 /*
2980 * If this i/o is a gang leader, it didn't do any actual work.
2981 */
2982 if (zio->io_gang_tree)
2983 return;
2984
2985 if (zio->io_error == 0) {
2986 /*
2987 * If this is a root i/o, don't count it -- we've already
2988 * counted the top-level vdevs, and vdev_get_stats() will
2989 * aggregate them when asked. This reduces contention on
2990 * the root vdev_stat_lock and implicitly handles blocks
2991 * that compress away to holes, for which there is no i/o.
2992 * (Holes never create vdev children, so all the counters
2993 * remain zero, which is what we want.)
2994 *
2995 * Note: this only applies to successful i/o (io_error == 0)
2996 * because unlike i/o counts, errors are not additive.
2997 * When reading a ditto block, for example, failure of
2998 * one top-level vdev does not imply a root-level error.
2999 */
3000 if (vd == rvd)
3001 return;
3002
3003 ASSERT(vd == zio->io_vd);
3004
3005 if (flags & ZIO_FLAG_IO_BYPASS)
3006 return;
3007
3008 mutex_enter(&vd->vdev_stat_lock);
3009
3010 if (flags & ZIO_FLAG_IO_REPAIR) {
3011 if (flags & ZIO_FLAG_SCAN_THREAD) {
3012 dsl_scan_phys_t *scn_phys =
3013 &spa->spa_dsl_pool->dp_scan->scn_phys;
3014 uint64_t *processed = &scn_phys->scn_processed;
3015
3016 /* XXX cleanup? */
3017 if (vd->vdev_ops->vdev_op_leaf)
3018 atomic_add_64(processed, psize);
3019 vs->vs_scan_processed += psize;
3020 }
3021
3022 if (flags & ZIO_FLAG_SELF_HEAL)
3023 vs->vs_self_healed += psize;
3024 }
3025
3026 /*
3027 * The bytes/ops/histograms are recorded at the leaf level and
3028 * aggregated into the higher level vdevs in vdev_get_stats().
3029 */
3030 if (vd->vdev_ops->vdev_op_leaf &&
3031 (zio->io_priority < ZIO_PRIORITY_NUM_QUEUEABLE)) {
3032
3033 vs->vs_ops[type]++;
3034 vs->vs_bytes[type] += psize;
3035
3036 if (flags & ZIO_FLAG_DELEGATED) {
3037 vsx->vsx_agg_histo[zio->io_priority]
3038 [RQ_HISTO(zio->io_size)]++;
3039 } else {
3040 vsx->vsx_ind_histo[zio->io_priority]
3041 [RQ_HISTO(zio->io_size)]++;
3042 }
3043
3044 if (zio->io_delta && zio->io_delay) {
3045 vsx->vsx_queue_histo[zio->io_priority]
3046 [L_HISTO(zio->io_delta - zio->io_delay)]++;
3047 vsx->vsx_disk_histo[type]
3048 [L_HISTO(zio->io_delay)]++;
3049 vsx->vsx_total_histo[type]
3050 [L_HISTO(zio->io_delta)]++;
3051 }
3052 }
3053
3054 mutex_exit(&vd->vdev_stat_lock);
3055 return;
3056 }
3057
3058 if (flags & ZIO_FLAG_SPECULATIVE)
3059 return;
3060
3061 /*
3062 * If this is an I/O error that is going to be retried, then ignore the
3063 * error. Otherwise, the user may interpret B_FAILFAST I/O errors as
3064 * hard errors, when in reality they can happen for any number of
3065 * innocuous reasons (bus resets, MPxIO link failure, etc).
3066 */
3067 if (zio->io_error == EIO &&
3068 !(zio->io_flags & ZIO_FLAG_IO_RETRY))
3069 return;
3070
3071 /*
3072 * Intent logs writes won't propagate their error to the root
3073 * I/O so don't mark these types of failures as pool-level
3074 * errors.
3075 */
3076 if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
3077 return;
3078
3079 mutex_enter(&vd->vdev_stat_lock);
3080 if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) {
3081 if (zio->io_error == ECKSUM)
3082 vs->vs_checksum_errors++;
3083 else
3084 vs->vs_read_errors++;
3085 }
3086 if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd))
3087 vs->vs_write_errors++;
3088 mutex_exit(&vd->vdev_stat_lock);
3089
3090 if (type == ZIO_TYPE_WRITE && txg != 0 &&
3091 (!(flags & ZIO_FLAG_IO_REPAIR) ||
3092 (flags & ZIO_FLAG_SCAN_THREAD) ||
3093 spa->spa_claiming)) {
3094 /*
3095 * This is either a normal write (not a repair), or it's
3096 * a repair induced by the scrub thread, or it's a repair
3097 * made by zil_claim() during spa_load() in the first txg.
3098 * In the normal case, we commit the DTL change in the same
3099 * txg as the block was born. In the scrub-induced repair
3100 * case, we know that scrubs run in first-pass syncing context,
3101 * so we commit the DTL change in spa_syncing_txg(spa).
3102 * In the zil_claim() case, we commit in spa_first_txg(spa).
3103 *
3104 * We currently do not make DTL entries for failed spontaneous
3105 * self-healing writes triggered by normal (non-scrubbing)
3106 * reads, because we have no transactional context in which to
3107 * do so -- and it's not clear that it'd be desirable anyway.
3108 */
3109 if (vd->vdev_ops->vdev_op_leaf) {
3110 uint64_t commit_txg = txg;
3111 if (flags & ZIO_FLAG_SCAN_THREAD) {
3112 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
3113 ASSERT(spa_sync_pass(spa) == 1);
3114 vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1);
3115 commit_txg = spa_syncing_txg(spa);
3116 } else if (spa->spa_claiming) {
3117 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
3118 commit_txg = spa_first_txg(spa);
3119 }
3120 ASSERT(commit_txg >= spa_syncing_txg(spa));
3121 if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1))
3122 return;
3123 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
3124 vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1);
3125 vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg);
3126 }
3127 if (vd != rvd)
3128 vdev_dtl_dirty(vd, DTL_MISSING, txg, 1);
3129 }
3130 }
3131
3132 /*
3133 * Update the in-core space usage stats for this vdev, its metaslab class,
3134 * and the root vdev.
3135 */
3136 void
3137 vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta,
3138 int64_t space_delta)
3139 {
3140 int64_t dspace_delta = space_delta;
3141 spa_t *spa = vd->vdev_spa;
3142 vdev_t *rvd = spa->spa_root_vdev;
3143 metaslab_group_t *mg = vd->vdev_mg;
3144 metaslab_class_t *mc = mg ? mg->mg_class : NULL;
3145
3146 ASSERT(vd == vd->vdev_top);
3147
3148 /*
3149 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
3150 * factor. We must calculate this here and not at the root vdev
3151 * because the root vdev's psize-to-asize is simply the max of its
3152 * childrens', thus not accurate enough for us.
3153 */
3154 ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0);
3155 ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache);
3156 dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) *
3157 vd->vdev_deflate_ratio;
3158
3159 mutex_enter(&vd->vdev_stat_lock);
3160 vd->vdev_stat.vs_alloc += alloc_delta;
3161 vd->vdev_stat.vs_space += space_delta;
3162 vd->vdev_stat.vs_dspace += dspace_delta;
3163 mutex_exit(&vd->vdev_stat_lock);
3164
3165 if (mc == spa_normal_class(spa)) {
3166 mutex_enter(&rvd->vdev_stat_lock);
3167 rvd->vdev_stat.vs_alloc += alloc_delta;
3168 rvd->vdev_stat.vs_space += space_delta;
3169 rvd->vdev_stat.vs_dspace += dspace_delta;
3170 mutex_exit(&rvd->vdev_stat_lock);
3171 }
3172
3173 if (mc != NULL) {
3174 ASSERT(rvd == vd->vdev_parent);
3175 ASSERT(vd->vdev_ms_count != 0);
3176
3177 metaslab_class_space_update(mc,
3178 alloc_delta, defer_delta, space_delta, dspace_delta);
3179 }
3180 }
3181
3182 /*
3183 * Mark a top-level vdev's config as dirty, placing it on the dirty list
3184 * so that it will be written out next time the vdev configuration is synced.
3185 * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
3186 */
3187 void
3188 vdev_config_dirty(vdev_t *vd)
3189 {
3190 spa_t *spa = vd->vdev_spa;
3191 vdev_t *rvd = spa->spa_root_vdev;
3192 int c;
3193
3194 ASSERT(spa_writeable(spa));
3195
3196 /*
3197 * If this is an aux vdev (as with l2cache and spare devices), then we
3198 * update the vdev config manually and set the sync flag.
3199 */
3200 if (vd->vdev_aux != NULL) {
3201 spa_aux_vdev_t *sav = vd->vdev_aux;
3202 nvlist_t **aux;
3203 uint_t naux;
3204
3205 for (c = 0; c < sav->sav_count; c++) {
3206 if (sav->sav_vdevs[c] == vd)
3207 break;
3208 }
3209
3210 if (c == sav->sav_count) {
3211 /*
3212 * We're being removed. There's nothing more to do.
3213 */
3214 ASSERT(sav->sav_sync == B_TRUE);
3215 return;
3216 }
3217
3218 sav->sav_sync = B_TRUE;
3219
3220 if (nvlist_lookup_nvlist_array(sav->sav_config,
3221 ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) {
3222 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
3223 ZPOOL_CONFIG_SPARES, &aux, &naux) == 0);
3224 }
3225
3226 ASSERT(c < naux);
3227
3228 /*
3229 * Setting the nvlist in the middle if the array is a little
3230 * sketchy, but it will work.
3231 */
3232 nvlist_free(aux[c]);
3233 aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0);
3234
3235 return;
3236 }
3237
3238 /*
3239 * The dirty list is protected by the SCL_CONFIG lock. The caller
3240 * must either hold SCL_CONFIG as writer, or must be the sync thread
3241 * (which holds SCL_CONFIG as reader). There's only one sync thread,
3242 * so this is sufficient to ensure mutual exclusion.
3243 */
3244 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
3245 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3246 spa_config_held(spa, SCL_CONFIG, RW_READER)));
3247
3248 if (vd == rvd) {
3249 for (c = 0; c < rvd->vdev_children; c++)
3250 vdev_config_dirty(rvd->vdev_child[c]);
3251 } else {
3252 ASSERT(vd == vd->vdev_top);
3253
3254 if (!list_link_active(&vd->vdev_config_dirty_node) &&
3255 !vd->vdev_ishole)
3256 list_insert_head(&spa->spa_config_dirty_list, vd);
3257 }
3258 }
3259
3260 void
3261 vdev_config_clean(vdev_t *vd)
3262 {
3263 spa_t *spa = vd->vdev_spa;
3264
3265 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
3266 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3267 spa_config_held(spa, SCL_CONFIG, RW_READER)));
3268
3269 ASSERT(list_link_active(&vd->vdev_config_dirty_node));
3270 list_remove(&spa->spa_config_dirty_list, vd);
3271 }
3272
3273 /*
3274 * Mark a top-level vdev's state as dirty, so that the next pass of
3275 * spa_sync() can convert this into vdev_config_dirty(). We distinguish
3276 * the state changes from larger config changes because they require
3277 * much less locking, and are often needed for administrative actions.
3278 */
3279 void
3280 vdev_state_dirty(vdev_t *vd)
3281 {
3282 spa_t *spa = vd->vdev_spa;
3283
3284 ASSERT(spa_writeable(spa));
3285 ASSERT(vd == vd->vdev_top);
3286
3287 /*
3288 * The state list is protected by the SCL_STATE lock. The caller
3289 * must either hold SCL_STATE as writer, or must be the sync thread
3290 * (which holds SCL_STATE as reader). There's only one sync thread,
3291 * so this is sufficient to ensure mutual exclusion.
3292 */
3293 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
3294 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3295 spa_config_held(spa, SCL_STATE, RW_READER)));
3296
3297 if (!list_link_active(&vd->vdev_state_dirty_node) && !vd->vdev_ishole)
3298 list_insert_head(&spa->spa_state_dirty_list, vd);
3299 }
3300
3301 void
3302 vdev_state_clean(vdev_t *vd)
3303 {
3304 spa_t *spa = vd->vdev_spa;
3305
3306 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
3307 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3308 spa_config_held(spa, SCL_STATE, RW_READER)));
3309
3310 ASSERT(list_link_active(&vd->vdev_state_dirty_node));
3311 list_remove(&spa->spa_state_dirty_list, vd);
3312 }
3313
3314 /*
3315 * Propagate vdev state up from children to parent.
3316 */
3317 void
3318 vdev_propagate_state(vdev_t *vd)
3319 {
3320 spa_t *spa = vd->vdev_spa;
3321 vdev_t *rvd = spa->spa_root_vdev;
3322 int degraded = 0, faulted = 0;
3323 int corrupted = 0;
3324 vdev_t *child;
3325 int c;
3326
3327 if (vd->vdev_children > 0) {
3328 for (c = 0; c < vd->vdev_children; c++) {
3329 child = vd->vdev_child[c];
3330
3331 /*
3332 * Don't factor holes into the decision.
3333 */
3334 if (child->vdev_ishole)
3335 continue;
3336
3337 if (!vdev_readable(child) ||
3338 (!vdev_writeable(child) && spa_writeable(spa))) {
3339 /*
3340 * Root special: if there is a top-level log
3341 * device, treat the root vdev as if it were
3342 * degraded.
3343 */
3344 if (child->vdev_islog && vd == rvd)
3345 degraded++;
3346 else
3347 faulted++;
3348 } else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
3349 degraded++;
3350 }
3351
3352 if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
3353 corrupted++;
3354 }
3355
3356 vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
3357
3358 /*
3359 * Root special: if there is a top-level vdev that cannot be
3360 * opened due to corrupted metadata, then propagate the root
3361 * vdev's aux state as 'corrupt' rather than 'insufficient
3362 * replicas'.
3363 */
3364 if (corrupted && vd == rvd &&
3365 rvd->vdev_state == VDEV_STATE_CANT_OPEN)
3366 vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
3367 VDEV_AUX_CORRUPT_DATA);
3368 }
3369
3370 if (vd->vdev_parent)
3371 vdev_propagate_state(vd->vdev_parent);
3372 }
3373
3374 /*
3375 * Set a vdev's state. If this is during an open, we don't update the parent
3376 * state, because we're in the process of opening children depth-first.
3377 * Otherwise, we propagate the change to the parent.
3378 *
3379 * If this routine places a device in a faulted state, an appropriate ereport is
3380 * generated.
3381 */
3382 void
3383 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
3384 {
3385 uint64_t save_state;
3386 spa_t *spa = vd->vdev_spa;
3387
3388 if (state == vd->vdev_state) {
3389 /*
3390 * Since vdev_offline() code path is already in an offline
3391 * state we can miss a statechange event to OFFLINE. Check
3392 * the previous state to catch this condition.
3393 */
3394 if (vd->vdev_ops->vdev_op_leaf &&
3395 (state == VDEV_STATE_OFFLINE) &&
3396 (vd->vdev_prevstate >= VDEV_STATE_FAULTED)) {
3397 /* post an offline state change */
3398 zfs_post_state_change(spa, vd, vd->vdev_prevstate);
3399 }
3400 vd->vdev_stat.vs_aux = aux;
3401 return;
3402 }
3403
3404 save_state = vd->vdev_state;
3405
3406 vd->vdev_state = state;
3407 vd->vdev_stat.vs_aux = aux;
3408
3409 /*
3410 * If we are setting the vdev state to anything but an open state, then
3411 * always close the underlying device unless the device has requested
3412 * a delayed close (i.e. we're about to remove or fault the device).
3413 * Otherwise, we keep accessible but invalid devices open forever.
3414 * We don't call vdev_close() itself, because that implies some extra
3415 * checks (offline, etc) that we don't want here. This is limited to
3416 * leaf devices, because otherwise closing the device will affect other
3417 * children.
3418 */
3419 if (!vd->vdev_delayed_close && vdev_is_dead(vd) &&
3420 vd->vdev_ops->vdev_op_leaf)
3421 vd->vdev_ops->vdev_op_close(vd);
3422
3423 if (vd->vdev_removed &&
3424 state == VDEV_STATE_CANT_OPEN &&
3425 (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
3426 /*
3427 * If the previous state is set to VDEV_STATE_REMOVED, then this
3428 * device was previously marked removed and someone attempted to
3429 * reopen it. If this failed due to a nonexistent device, then
3430 * keep the device in the REMOVED state. We also let this be if
3431 * it is one of our special test online cases, which is only
3432 * attempting to online the device and shouldn't generate an FMA
3433 * fault.
3434 */
3435 vd->vdev_state = VDEV_STATE_REMOVED;
3436 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
3437 } else if (state == VDEV_STATE_REMOVED) {
3438 vd->vdev_removed = B_TRUE;
3439 } else if (state == VDEV_STATE_CANT_OPEN) {
3440 /*
3441 * If we fail to open a vdev during an import or recovery, we
3442 * mark it as "not available", which signifies that it was
3443 * never there to begin with. Failure to open such a device
3444 * is not considered an error.
3445 */
3446 if ((spa_load_state(spa) == SPA_LOAD_IMPORT ||
3447 spa_load_state(spa) == SPA_LOAD_RECOVER) &&
3448 vd->vdev_ops->vdev_op_leaf)
3449 vd->vdev_not_present = 1;
3450
3451 /*
3452 * Post the appropriate ereport. If the 'prevstate' field is
3453 * set to something other than VDEV_STATE_UNKNOWN, it indicates
3454 * that this is part of a vdev_reopen(). In this case, we don't
3455 * want to post the ereport if the device was already in the
3456 * CANT_OPEN state beforehand.
3457 *
3458 * If the 'checkremove' flag is set, then this is an attempt to
3459 * online the device in response to an insertion event. If we
3460 * hit this case, then we have detected an insertion event for a
3461 * faulted or offline device that wasn't in the removed state.
3462 * In this scenario, we don't post an ereport because we are
3463 * about to replace the device, or attempt an online with
3464 * vdev_forcefault, which will generate the fault for us.
3465 */
3466 if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
3467 !vd->vdev_not_present && !vd->vdev_checkremove &&
3468 vd != spa->spa_root_vdev) {
3469 const char *class;
3470
3471 switch (aux) {
3472 case VDEV_AUX_OPEN_FAILED:
3473 class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
3474 break;
3475 case VDEV_AUX_CORRUPT_DATA:
3476 class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
3477 break;
3478 case VDEV_AUX_NO_REPLICAS:
3479 class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
3480 break;
3481 case VDEV_AUX_BAD_GUID_SUM:
3482 class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
3483 break;
3484 case VDEV_AUX_TOO_SMALL:
3485 class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
3486 break;
3487 case VDEV_AUX_BAD_LABEL:
3488 class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
3489 break;
3490 default:
3491 class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
3492 }
3493
3494 zfs_ereport_post(class, spa, vd, NULL, save_state, 0);
3495 }
3496
3497 /* Erase any notion of persistent removed state */
3498 vd->vdev_removed = B_FALSE;
3499 } else {
3500 vd->vdev_removed = B_FALSE;
3501 }
3502
3503 /*
3504 * Notify ZED of any significant state-change on a leaf vdev.
3505 *
3506 */
3507 if (vd->vdev_ops->vdev_op_leaf) {
3508 /* preserve original state from a vdev_reopen() */
3509 if ((vd->vdev_prevstate != VDEV_STATE_UNKNOWN) &&
3510 (vd->vdev_prevstate != vd->vdev_state) &&
3511 (save_state <= VDEV_STATE_CLOSED))
3512 save_state = vd->vdev_prevstate;
3513
3514 /* filter out state change due to initial vdev_open */
3515 if (save_state > VDEV_STATE_CLOSED)
3516 zfs_post_state_change(spa, vd, save_state);
3517 }
3518
3519 if (!isopen && vd->vdev_parent)
3520 vdev_propagate_state(vd->vdev_parent);
3521 }
3522
3523 /*
3524 * Check the vdev configuration to ensure that it's capable of supporting
3525 * a root pool.
3526 */
3527 boolean_t
3528 vdev_is_bootable(vdev_t *vd)
3529 {
3530 #if defined(__sun__) || defined(__sun)
3531 /*
3532 * Currently, we do not support RAID-Z or partial configuration.
3533 * In addition, only a single top-level vdev is allowed and none of the
3534 * leaves can be wholedisks.
3535 */
3536 int c;
3537
3538 if (!vd->vdev_ops->vdev_op_leaf) {
3539 char *vdev_type = vd->vdev_ops->vdev_op_type;
3540
3541 if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 &&
3542 vd->vdev_children > 1) {
3543 return (B_FALSE);
3544 } else if (strcmp(vdev_type, VDEV_TYPE_RAIDZ) == 0 ||
3545 strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) {
3546 return (B_FALSE);
3547 }
3548 }
3549
3550 for (c = 0; c < vd->vdev_children; c++) {
3551 if (!vdev_is_bootable(vd->vdev_child[c]))
3552 return (B_FALSE);
3553 }
3554 #endif /* __sun__ || __sun */
3555 return (B_TRUE);
3556 }
3557
3558 /*
3559 * Load the state from the original vdev tree (ovd) which
3560 * we've retrieved from the MOS config object. If the original
3561 * vdev was offline or faulted then we transfer that state to the
3562 * device in the current vdev tree (nvd).
3563 */
3564 void
3565 vdev_load_log_state(vdev_t *nvd, vdev_t *ovd)
3566 {
3567 int c;
3568
3569 ASSERT(nvd->vdev_top->vdev_islog);
3570 ASSERT(spa_config_held(nvd->vdev_spa,
3571 SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
3572 ASSERT3U(nvd->vdev_guid, ==, ovd->vdev_guid);
3573
3574 for (c = 0; c < nvd->vdev_children; c++)
3575 vdev_load_log_state(nvd->vdev_child[c], ovd->vdev_child[c]);
3576
3577 if (nvd->vdev_ops->vdev_op_leaf) {
3578 /*
3579 * Restore the persistent vdev state
3580 */
3581 nvd->vdev_offline = ovd->vdev_offline;
3582 nvd->vdev_faulted = ovd->vdev_faulted;
3583 nvd->vdev_degraded = ovd->vdev_degraded;
3584 nvd->vdev_removed = ovd->vdev_removed;
3585 }
3586 }
3587
3588 /*
3589 * Determine if a log device has valid content. If the vdev was
3590 * removed or faulted in the MOS config then we know that
3591 * the content on the log device has already been written to the pool.
3592 */
3593 boolean_t
3594 vdev_log_state_valid(vdev_t *vd)
3595 {
3596 int c;
3597
3598 if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted &&
3599 !vd->vdev_removed)
3600 return (B_TRUE);
3601
3602 for (c = 0; c < vd->vdev_children; c++)
3603 if (vdev_log_state_valid(vd->vdev_child[c]))
3604 return (B_TRUE);
3605
3606 return (B_FALSE);
3607 }
3608
3609 /*
3610 * Expand a vdev if possible.
3611 */
3612 void
3613 vdev_expand(vdev_t *vd, uint64_t txg)
3614 {
3615 ASSERT(vd->vdev_top == vd);
3616 ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3617
3618 if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count) {
3619 VERIFY(vdev_metaslab_init(vd, txg) == 0);
3620 vdev_config_dirty(vd);
3621 }
3622 }
3623
3624 /*
3625 * Split a vdev.
3626 */
3627 void
3628 vdev_split(vdev_t *vd)
3629 {
3630 vdev_t *cvd, *pvd = vd->vdev_parent;
3631
3632 vdev_remove_child(pvd, vd);
3633 vdev_compact_children(pvd);
3634
3635 cvd = pvd->vdev_child[0];
3636 if (pvd->vdev_children == 1) {
3637 vdev_remove_parent(cvd);
3638 cvd->vdev_splitting = B_TRUE;
3639 }
3640 vdev_propagate_state(cvd);
3641 }
3642
3643 void
3644 vdev_deadman(vdev_t *vd)
3645 {
3646 int c;
3647
3648 for (c = 0; c < vd->vdev_children; c++) {
3649 vdev_t *cvd = vd->vdev_child[c];
3650
3651 vdev_deadman(cvd);
3652 }
3653
3654 if (vd->vdev_ops->vdev_op_leaf) {
3655 vdev_queue_t *vq = &vd->vdev_queue;
3656
3657 mutex_enter(&vq->vq_lock);
3658 if (avl_numnodes(&vq->vq_active_tree) > 0) {
3659 spa_t *spa = vd->vdev_spa;
3660 zio_t *fio;
3661 uint64_t delta;
3662
3663 /*
3664 * Look at the head of all the pending queues,
3665 * if any I/O has been outstanding for longer than
3666 * the spa_deadman_synctime we log a zevent.
3667 */
3668 fio = avl_first(&vq->vq_active_tree);
3669 delta = gethrtime() - fio->io_timestamp;
3670 if (delta > spa_deadman_synctime(spa)) {
3671 zfs_dbgmsg("SLOW IO: zio timestamp %lluns, "
3672 "delta %lluns, last io %lluns",
3673 fio->io_timestamp, delta,
3674 vq->vq_io_complete_ts);
3675 zfs_ereport_post(FM_EREPORT_ZFS_DELAY,
3676 spa, vd, fio, 0, 0);
3677 }
3678 }
3679 mutex_exit(&vq->vq_lock);
3680 }
3681 }
3682
3683 #if defined(_KERNEL) && defined(HAVE_SPL)
3684 EXPORT_SYMBOL(vdev_fault);
3685 EXPORT_SYMBOL(vdev_degrade);
3686 EXPORT_SYMBOL(vdev_online);
3687 EXPORT_SYMBOL(vdev_offline);
3688 EXPORT_SYMBOL(vdev_clear);
3689 /* BEGIN CSTYLED */
3690 module_param(metaslabs_per_vdev, int, 0644);
3691 MODULE_PARM_DESC(metaslabs_per_vdev,
3692 "Divide added vdev into approximately (but no more than) this number "
3693 "of metaslabs");
3694 /* END CSTYLED */
3695 #endif