]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/vdev_label.c
65b847d66470275a024bcb8ffbea82fbaec722c6
[mirror_zfs.git] / module / zfs / vdev_label.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2012, 2018 by Delphix. All rights reserved.
25 * Copyright (c) 2012, 2016 by Delphix. All rights reserved.
26 * Copyright (c) 2017, Intel Corporation.
27 */
28
29 /*
30 * Virtual Device Labels
31 * ---------------------
32 *
33 * The vdev label serves several distinct purposes:
34 *
35 * 1. Uniquely identify this device as part of a ZFS pool and confirm its
36 * identity within the pool.
37 *
38 * 2. Verify that all the devices given in a configuration are present
39 * within the pool.
40 *
41 * 3. Determine the uberblock for the pool.
42 *
43 * 4. In case of an import operation, determine the configuration of the
44 * toplevel vdev of which it is a part.
45 *
46 * 5. If an import operation cannot find all the devices in the pool,
47 * provide enough information to the administrator to determine which
48 * devices are missing.
49 *
50 * It is important to note that while the kernel is responsible for writing the
51 * label, it only consumes the information in the first three cases. The
52 * latter information is only consumed in userland when determining the
53 * configuration to import a pool.
54 *
55 *
56 * Label Organization
57 * ------------------
58 *
59 * Before describing the contents of the label, it's important to understand how
60 * the labels are written and updated with respect to the uberblock.
61 *
62 * When the pool configuration is altered, either because it was newly created
63 * or a device was added, we want to update all the labels such that we can deal
64 * with fatal failure at any point. To this end, each disk has two labels which
65 * are updated before and after the uberblock is synced. Assuming we have
66 * labels and an uberblock with the following transaction groups:
67 *
68 * L1 UB L2
69 * +------+ +------+ +------+
70 * | | | | | |
71 * | t10 | | t10 | | t10 |
72 * | | | | | |
73 * +------+ +------+ +------+
74 *
75 * In this stable state, the labels and the uberblock were all updated within
76 * the same transaction group (10). Each label is mirrored and checksummed, so
77 * that we can detect when we fail partway through writing the label.
78 *
79 * In order to identify which labels are valid, the labels are written in the
80 * following manner:
81 *
82 * 1. For each vdev, update 'L1' to the new label
83 * 2. Update the uberblock
84 * 3. For each vdev, update 'L2' to the new label
85 *
86 * Given arbitrary failure, we can determine the correct label to use based on
87 * the transaction group. If we fail after updating L1 but before updating the
88 * UB, we will notice that L1's transaction group is greater than the uberblock,
89 * so L2 must be valid. If we fail after writing the uberblock but before
90 * writing L2, we will notice that L2's transaction group is less than L1, and
91 * therefore L1 is valid.
92 *
93 * Another added complexity is that not every label is updated when the config
94 * is synced. If we add a single device, we do not want to have to re-write
95 * every label for every device in the pool. This means that both L1 and L2 may
96 * be older than the pool uberblock, because the necessary information is stored
97 * on another vdev.
98 *
99 *
100 * On-disk Format
101 * --------------
102 *
103 * The vdev label consists of two distinct parts, and is wrapped within the
104 * vdev_label_t structure. The label includes 8k of padding to permit legacy
105 * VTOC disk labels, but is otherwise ignored.
106 *
107 * The first half of the label is a packed nvlist which contains pool wide
108 * properties, per-vdev properties, and configuration information. It is
109 * described in more detail below.
110 *
111 * The latter half of the label consists of a redundant array of uberblocks.
112 * These uberblocks are updated whenever a transaction group is committed,
113 * or when the configuration is updated. When a pool is loaded, we scan each
114 * vdev for the 'best' uberblock.
115 *
116 *
117 * Configuration Information
118 * -------------------------
119 *
120 * The nvlist describing the pool and vdev contains the following elements:
121 *
122 * version ZFS on-disk version
123 * name Pool name
124 * state Pool state
125 * txg Transaction group in which this label was written
126 * pool_guid Unique identifier for this pool
127 * vdev_tree An nvlist describing vdev tree.
128 * features_for_read
129 * An nvlist of the features necessary for reading the MOS.
130 *
131 * Each leaf device label also contains the following:
132 *
133 * top_guid Unique ID for top-level vdev in which this is contained
134 * guid Unique ID for the leaf vdev
135 *
136 * The 'vs' configuration follows the format described in 'spa_config.c'.
137 */
138
139 #include <sys/zfs_context.h>
140 #include <sys/spa.h>
141 #include <sys/spa_impl.h>
142 #include <sys/dmu.h>
143 #include <sys/zap.h>
144 #include <sys/vdev.h>
145 #include <sys/vdev_impl.h>
146 #include <sys/uberblock_impl.h>
147 #include <sys/metaslab.h>
148 #include <sys/metaslab_impl.h>
149 #include <sys/zio.h>
150 #include <sys/dsl_scan.h>
151 #include <sys/abd.h>
152 #include <sys/fs/zfs.h>
153
154 /*
155 * Basic routines to read and write from a vdev label.
156 * Used throughout the rest of this file.
157 */
158 uint64_t
159 vdev_label_offset(uint64_t psize, int l, uint64_t offset)
160 {
161 ASSERT(offset < sizeof (vdev_label_t));
162 ASSERT(P2PHASE_TYPED(psize, sizeof (vdev_label_t), uint64_t) == 0);
163
164 return (offset + l * sizeof (vdev_label_t) + (l < VDEV_LABELS / 2 ?
165 0 : psize - VDEV_LABELS * sizeof (vdev_label_t)));
166 }
167
168 /*
169 * Returns back the vdev label associated with the passed in offset.
170 */
171 int
172 vdev_label_number(uint64_t psize, uint64_t offset)
173 {
174 int l;
175
176 if (offset >= psize - VDEV_LABEL_END_SIZE) {
177 offset -= psize - VDEV_LABEL_END_SIZE;
178 offset += (VDEV_LABELS / 2) * sizeof (vdev_label_t);
179 }
180 l = offset / sizeof (vdev_label_t);
181 return (l < VDEV_LABELS ? l : -1);
182 }
183
184 static void
185 vdev_label_read(zio_t *zio, vdev_t *vd, int l, abd_t *buf, uint64_t offset,
186 uint64_t size, zio_done_func_t *done, void *private, int flags)
187 {
188 ASSERT(
189 spa_config_held(zio->io_spa, SCL_STATE, RW_READER) == SCL_STATE ||
190 spa_config_held(zio->io_spa, SCL_STATE, RW_WRITER) == SCL_STATE);
191 ASSERT(flags & ZIO_FLAG_CONFIG_WRITER);
192
193 zio_nowait(zio_read_phys(zio, vd,
194 vdev_label_offset(vd->vdev_psize, l, offset),
195 size, buf, ZIO_CHECKSUM_LABEL, done, private,
196 ZIO_PRIORITY_SYNC_READ, flags, B_TRUE));
197 }
198
199 void
200 vdev_label_write(zio_t *zio, vdev_t *vd, int l, abd_t *buf, uint64_t offset,
201 uint64_t size, zio_done_func_t *done, void *private, int flags)
202 {
203 ASSERT(
204 spa_config_held(zio->io_spa, SCL_STATE, RW_READER) == SCL_STATE ||
205 spa_config_held(zio->io_spa, SCL_STATE, RW_WRITER) == SCL_STATE);
206 ASSERT(flags & ZIO_FLAG_CONFIG_WRITER);
207
208 zio_nowait(zio_write_phys(zio, vd,
209 vdev_label_offset(vd->vdev_psize, l, offset),
210 size, buf, ZIO_CHECKSUM_LABEL, done, private,
211 ZIO_PRIORITY_SYNC_WRITE, flags, B_TRUE));
212 }
213
214 /*
215 * Generate the nvlist representing this vdev's stats
216 */
217 void
218 vdev_config_generate_stats(vdev_t *vd, nvlist_t *nv)
219 {
220 nvlist_t *nvx;
221 vdev_stat_t *vs;
222 vdev_stat_ex_t *vsx;
223
224 vs = kmem_alloc(sizeof (*vs), KM_SLEEP);
225 vsx = kmem_alloc(sizeof (*vsx), KM_SLEEP);
226
227 vdev_get_stats_ex(vd, vs, vsx);
228 fnvlist_add_uint64_array(nv, ZPOOL_CONFIG_VDEV_STATS,
229 (uint64_t *)vs, sizeof (*vs) / sizeof (uint64_t));
230
231 /*
232 * Add extended stats into a special extended stats nvlist. This keeps
233 * all the extended stats nicely grouped together. The extended stats
234 * nvlist is then added to the main nvlist.
235 */
236 nvx = fnvlist_alloc();
237
238 /* ZIOs in flight to disk */
239 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SYNC_R_ACTIVE_QUEUE,
240 vsx->vsx_active_queue[ZIO_PRIORITY_SYNC_READ]);
241
242 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SYNC_W_ACTIVE_QUEUE,
243 vsx->vsx_active_queue[ZIO_PRIORITY_SYNC_WRITE]);
244
245 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_ASYNC_R_ACTIVE_QUEUE,
246 vsx->vsx_active_queue[ZIO_PRIORITY_ASYNC_READ]);
247
248 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_ASYNC_W_ACTIVE_QUEUE,
249 vsx->vsx_active_queue[ZIO_PRIORITY_ASYNC_WRITE]);
250
251 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SCRUB_ACTIVE_QUEUE,
252 vsx->vsx_active_queue[ZIO_PRIORITY_SCRUB]);
253
254 /* ZIOs pending */
255 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SYNC_R_PEND_QUEUE,
256 vsx->vsx_pend_queue[ZIO_PRIORITY_SYNC_READ]);
257
258 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SYNC_W_PEND_QUEUE,
259 vsx->vsx_pend_queue[ZIO_PRIORITY_SYNC_WRITE]);
260
261 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_ASYNC_R_PEND_QUEUE,
262 vsx->vsx_pend_queue[ZIO_PRIORITY_ASYNC_READ]);
263
264 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_ASYNC_W_PEND_QUEUE,
265 vsx->vsx_pend_queue[ZIO_PRIORITY_ASYNC_WRITE]);
266
267 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SCRUB_PEND_QUEUE,
268 vsx->vsx_pend_queue[ZIO_PRIORITY_SCRUB]);
269
270 /* Histograms */
271 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_TOT_R_LAT_HISTO,
272 vsx->vsx_total_histo[ZIO_TYPE_READ],
273 ARRAY_SIZE(vsx->vsx_total_histo[ZIO_TYPE_READ]));
274
275 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_TOT_W_LAT_HISTO,
276 vsx->vsx_total_histo[ZIO_TYPE_WRITE],
277 ARRAY_SIZE(vsx->vsx_total_histo[ZIO_TYPE_WRITE]));
278
279 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_DISK_R_LAT_HISTO,
280 vsx->vsx_disk_histo[ZIO_TYPE_READ],
281 ARRAY_SIZE(vsx->vsx_disk_histo[ZIO_TYPE_READ]));
282
283 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_DISK_W_LAT_HISTO,
284 vsx->vsx_disk_histo[ZIO_TYPE_WRITE],
285 ARRAY_SIZE(vsx->vsx_disk_histo[ZIO_TYPE_WRITE]));
286
287 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_R_LAT_HISTO,
288 vsx->vsx_queue_histo[ZIO_PRIORITY_SYNC_READ],
289 ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_SYNC_READ]));
290
291 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_W_LAT_HISTO,
292 vsx->vsx_queue_histo[ZIO_PRIORITY_SYNC_WRITE],
293 ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_SYNC_WRITE]));
294
295 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_R_LAT_HISTO,
296 vsx->vsx_queue_histo[ZIO_PRIORITY_ASYNC_READ],
297 ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_ASYNC_READ]));
298
299 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_W_LAT_HISTO,
300 vsx->vsx_queue_histo[ZIO_PRIORITY_ASYNC_WRITE],
301 ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_ASYNC_WRITE]));
302
303 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SCRUB_LAT_HISTO,
304 vsx->vsx_queue_histo[ZIO_PRIORITY_SCRUB],
305 ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_SCRUB]));
306
307 /* Request sizes */
308 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_IND_R_HISTO,
309 vsx->vsx_ind_histo[ZIO_PRIORITY_SYNC_READ],
310 ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_SYNC_READ]));
311
312 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_IND_W_HISTO,
313 vsx->vsx_ind_histo[ZIO_PRIORITY_SYNC_WRITE],
314 ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_SYNC_WRITE]));
315
316 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_IND_R_HISTO,
317 vsx->vsx_ind_histo[ZIO_PRIORITY_ASYNC_READ],
318 ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_ASYNC_READ]));
319
320 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_IND_W_HISTO,
321 vsx->vsx_ind_histo[ZIO_PRIORITY_ASYNC_WRITE],
322 ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_ASYNC_WRITE]));
323
324 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_IND_SCRUB_HISTO,
325 vsx->vsx_ind_histo[ZIO_PRIORITY_SCRUB],
326 ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_SCRUB]));
327
328 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_AGG_R_HISTO,
329 vsx->vsx_agg_histo[ZIO_PRIORITY_SYNC_READ],
330 ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_SYNC_READ]));
331
332 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_AGG_W_HISTO,
333 vsx->vsx_agg_histo[ZIO_PRIORITY_SYNC_WRITE],
334 ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_SYNC_WRITE]));
335
336 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_AGG_R_HISTO,
337 vsx->vsx_agg_histo[ZIO_PRIORITY_ASYNC_READ],
338 ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_ASYNC_READ]));
339
340 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_AGG_W_HISTO,
341 vsx->vsx_agg_histo[ZIO_PRIORITY_ASYNC_WRITE],
342 ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_ASYNC_WRITE]));
343
344 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_AGG_SCRUB_HISTO,
345 vsx->vsx_agg_histo[ZIO_PRIORITY_SCRUB],
346 ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_SCRUB]));
347
348 /* IO delays */
349 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SLOW_IOS, vs->vs_slow_ios);
350
351 /* Add extended stats nvlist to main nvlist */
352 fnvlist_add_nvlist(nv, ZPOOL_CONFIG_VDEV_STATS_EX, nvx);
353
354 fnvlist_free(nvx);
355 kmem_free(vs, sizeof (*vs));
356 kmem_free(vsx, sizeof (*vsx));
357 }
358
359 static void
360 root_vdev_actions_getprogress(vdev_t *vd, nvlist_t *nvl)
361 {
362 spa_t *spa = vd->vdev_spa;
363
364 if (vd != spa->spa_root_vdev)
365 return;
366
367 /* provide either current or previous scan information */
368 pool_scan_stat_t ps;
369 if (spa_scan_get_stats(spa, &ps) == 0) {
370 fnvlist_add_uint64_array(nvl,
371 ZPOOL_CONFIG_SCAN_STATS, (uint64_t *)&ps,
372 sizeof (pool_scan_stat_t) / sizeof (uint64_t));
373 }
374
375 pool_removal_stat_t prs;
376 if (spa_removal_get_stats(spa, &prs) == 0) {
377 fnvlist_add_uint64_array(nvl,
378 ZPOOL_CONFIG_REMOVAL_STATS, (uint64_t *)&prs,
379 sizeof (prs) / sizeof (uint64_t));
380 }
381
382 pool_checkpoint_stat_t pcs;
383 if (spa_checkpoint_get_stats(spa, &pcs) == 0) {
384 fnvlist_add_uint64_array(nvl,
385 ZPOOL_CONFIG_CHECKPOINT_STATS, (uint64_t *)&pcs,
386 sizeof (pcs) / sizeof (uint64_t));
387 }
388 }
389
390 /*
391 * Generate the nvlist representing this vdev's config.
392 */
393 nvlist_t *
394 vdev_config_generate(spa_t *spa, vdev_t *vd, boolean_t getstats,
395 vdev_config_flag_t flags)
396 {
397 nvlist_t *nv = NULL;
398 vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
399
400 nv = fnvlist_alloc();
401
402 fnvlist_add_string(nv, ZPOOL_CONFIG_TYPE, vd->vdev_ops->vdev_op_type);
403 if (!(flags & (VDEV_CONFIG_SPARE | VDEV_CONFIG_L2CACHE)))
404 fnvlist_add_uint64(nv, ZPOOL_CONFIG_ID, vd->vdev_id);
405 fnvlist_add_uint64(nv, ZPOOL_CONFIG_GUID, vd->vdev_guid);
406
407 if (vd->vdev_path != NULL)
408 fnvlist_add_string(nv, ZPOOL_CONFIG_PATH, vd->vdev_path);
409
410 if (vd->vdev_devid != NULL)
411 fnvlist_add_string(nv, ZPOOL_CONFIG_DEVID, vd->vdev_devid);
412
413 if (vd->vdev_physpath != NULL)
414 fnvlist_add_string(nv, ZPOOL_CONFIG_PHYS_PATH,
415 vd->vdev_physpath);
416
417 if (vd->vdev_enc_sysfs_path != NULL)
418 fnvlist_add_string(nv, ZPOOL_CONFIG_VDEV_ENC_SYSFS_PATH,
419 vd->vdev_enc_sysfs_path);
420
421 if (vd->vdev_fru != NULL)
422 fnvlist_add_string(nv, ZPOOL_CONFIG_FRU, vd->vdev_fru);
423
424 if (vd->vdev_nparity != 0) {
425 ASSERT(strcmp(vd->vdev_ops->vdev_op_type,
426 VDEV_TYPE_RAIDZ) == 0);
427
428 /*
429 * Make sure someone hasn't managed to sneak a fancy new vdev
430 * into a crufty old storage pool.
431 */
432 ASSERT(vd->vdev_nparity == 1 ||
433 (vd->vdev_nparity <= 2 &&
434 spa_version(spa) >= SPA_VERSION_RAIDZ2) ||
435 (vd->vdev_nparity <= 3 &&
436 spa_version(spa) >= SPA_VERSION_RAIDZ3));
437
438 /*
439 * Note that we'll add the nparity tag even on storage pools
440 * that only support a single parity device -- older software
441 * will just ignore it.
442 */
443 fnvlist_add_uint64(nv, ZPOOL_CONFIG_NPARITY, vd->vdev_nparity);
444 }
445
446 if (vd->vdev_wholedisk != -1ULL)
447 fnvlist_add_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
448 vd->vdev_wholedisk);
449
450 if (vd->vdev_not_present && !(flags & VDEV_CONFIG_MISSING))
451 fnvlist_add_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT, 1);
452
453 if (vd->vdev_isspare)
454 fnvlist_add_uint64(nv, ZPOOL_CONFIG_IS_SPARE, 1);
455
456 if (!(flags & (VDEV_CONFIG_SPARE | VDEV_CONFIG_L2CACHE)) &&
457 vd == vd->vdev_top) {
458 fnvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
459 vd->vdev_ms_array);
460 fnvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
461 vd->vdev_ms_shift);
462 fnvlist_add_uint64(nv, ZPOOL_CONFIG_ASHIFT, vd->vdev_ashift);
463 fnvlist_add_uint64(nv, ZPOOL_CONFIG_ASIZE,
464 vd->vdev_asize);
465 fnvlist_add_uint64(nv, ZPOOL_CONFIG_IS_LOG, vd->vdev_islog);
466 if (vd->vdev_removing) {
467 fnvlist_add_uint64(nv, ZPOOL_CONFIG_REMOVING,
468 vd->vdev_removing);
469 }
470
471 /* zpool command expects alloc class data */
472 if (getstats && vd->vdev_alloc_bias != VDEV_BIAS_NONE) {
473 const char *bias = NULL;
474
475 switch (vd->vdev_alloc_bias) {
476 case VDEV_BIAS_LOG:
477 bias = VDEV_ALLOC_BIAS_LOG;
478 break;
479 case VDEV_BIAS_SPECIAL:
480 bias = VDEV_ALLOC_BIAS_SPECIAL;
481 break;
482 case VDEV_BIAS_DEDUP:
483 bias = VDEV_ALLOC_BIAS_DEDUP;
484 break;
485 default:
486 ASSERT3U(vd->vdev_alloc_bias, ==,
487 VDEV_BIAS_NONE);
488 }
489 fnvlist_add_string(nv, ZPOOL_CONFIG_ALLOCATION_BIAS,
490 bias);
491 }
492 }
493
494 if (vd->vdev_dtl_sm != NULL) {
495 fnvlist_add_uint64(nv, ZPOOL_CONFIG_DTL,
496 space_map_object(vd->vdev_dtl_sm));
497 }
498
499 if (vic->vic_mapping_object != 0) {
500 fnvlist_add_uint64(nv, ZPOOL_CONFIG_INDIRECT_OBJECT,
501 vic->vic_mapping_object);
502 }
503
504 if (vic->vic_births_object != 0) {
505 fnvlist_add_uint64(nv, ZPOOL_CONFIG_INDIRECT_BIRTHS,
506 vic->vic_births_object);
507 }
508
509 if (vic->vic_prev_indirect_vdev != UINT64_MAX) {
510 fnvlist_add_uint64(nv, ZPOOL_CONFIG_PREV_INDIRECT_VDEV,
511 vic->vic_prev_indirect_vdev);
512 }
513
514 if (vd->vdev_crtxg)
515 fnvlist_add_uint64(nv, ZPOOL_CONFIG_CREATE_TXG, vd->vdev_crtxg);
516
517 if (vd->vdev_expansion_time)
518 fnvlist_add_uint64(nv, ZPOOL_CONFIG_EXPANSION_TIME,
519 vd->vdev_expansion_time);
520
521 if (flags & VDEV_CONFIG_MOS) {
522 if (vd->vdev_leaf_zap != 0) {
523 ASSERT(vd->vdev_ops->vdev_op_leaf);
524 fnvlist_add_uint64(nv, ZPOOL_CONFIG_VDEV_LEAF_ZAP,
525 vd->vdev_leaf_zap);
526 }
527
528 if (vd->vdev_top_zap != 0) {
529 ASSERT(vd == vd->vdev_top);
530 fnvlist_add_uint64(nv, ZPOOL_CONFIG_VDEV_TOP_ZAP,
531 vd->vdev_top_zap);
532 }
533
534 if (vd->vdev_resilver_deferred) {
535 ASSERT(vd->vdev_ops->vdev_op_leaf);
536 ASSERT(spa->spa_resilver_deferred);
537 fnvlist_add_boolean(nv, ZPOOL_CONFIG_RESILVER_DEFER);
538 }
539 }
540
541 if (getstats) {
542 vdev_config_generate_stats(vd, nv);
543
544 root_vdev_actions_getprogress(vd, nv);
545
546 /*
547 * Note: this can be called from open context
548 * (spa_get_stats()), so we need the rwlock to prevent
549 * the mapping from being changed by condensing.
550 */
551 rw_enter(&vd->vdev_indirect_rwlock, RW_READER);
552 if (vd->vdev_indirect_mapping != NULL) {
553 ASSERT(vd->vdev_indirect_births != NULL);
554 vdev_indirect_mapping_t *vim =
555 vd->vdev_indirect_mapping;
556 fnvlist_add_uint64(nv, ZPOOL_CONFIG_INDIRECT_SIZE,
557 vdev_indirect_mapping_size(vim));
558 }
559 rw_exit(&vd->vdev_indirect_rwlock);
560 if (vd->vdev_mg != NULL &&
561 vd->vdev_mg->mg_fragmentation != ZFS_FRAG_INVALID) {
562 /*
563 * Compute approximately how much memory would be used
564 * for the indirect mapping if this device were to
565 * be removed.
566 *
567 * Note: If the frag metric is invalid, then not
568 * enough metaslabs have been converted to have
569 * histograms.
570 */
571 uint64_t seg_count = 0;
572 uint64_t to_alloc = vd->vdev_stat.vs_alloc;
573
574 /*
575 * There are the same number of allocated segments
576 * as free segments, so we will have at least one
577 * entry per free segment. However, small free
578 * segments (smaller than vdev_removal_max_span)
579 * will be combined with adjacent allocated segments
580 * as a single mapping.
581 */
582 for (int i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++) {
583 if (1ULL << (i + 1) < vdev_removal_max_span) {
584 to_alloc +=
585 vd->vdev_mg->mg_histogram[i] <<
586 (i + 1);
587 } else {
588 seg_count +=
589 vd->vdev_mg->mg_histogram[i];
590 }
591 }
592
593 /*
594 * The maximum length of a mapping is
595 * zfs_remove_max_segment, so we need at least one entry
596 * per zfs_remove_max_segment of allocated data.
597 */
598 seg_count += to_alloc / zfs_remove_max_segment;
599
600 fnvlist_add_uint64(nv, ZPOOL_CONFIG_INDIRECT_SIZE,
601 seg_count *
602 sizeof (vdev_indirect_mapping_entry_phys_t));
603 }
604 }
605
606 if (!vd->vdev_ops->vdev_op_leaf) {
607 nvlist_t **child;
608 int c, idx;
609
610 ASSERT(!vd->vdev_ishole);
611
612 child = kmem_alloc(vd->vdev_children * sizeof (nvlist_t *),
613 KM_SLEEP);
614
615 for (c = 0, idx = 0; c < vd->vdev_children; c++) {
616 vdev_t *cvd = vd->vdev_child[c];
617
618 /*
619 * If we're generating an nvlist of removing
620 * vdevs then skip over any device which is
621 * not being removed.
622 */
623 if ((flags & VDEV_CONFIG_REMOVING) &&
624 !cvd->vdev_removing)
625 continue;
626
627 child[idx++] = vdev_config_generate(spa, cvd,
628 getstats, flags);
629 }
630
631 if (idx) {
632 fnvlist_add_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
633 child, idx);
634 }
635
636 for (c = 0; c < idx; c++)
637 nvlist_free(child[c]);
638
639 kmem_free(child, vd->vdev_children * sizeof (nvlist_t *));
640
641 } else {
642 const char *aux = NULL;
643
644 if (vd->vdev_offline && !vd->vdev_tmpoffline)
645 fnvlist_add_uint64(nv, ZPOOL_CONFIG_OFFLINE, B_TRUE);
646 if (vd->vdev_resilver_txg != 0)
647 fnvlist_add_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG,
648 vd->vdev_resilver_txg);
649 if (vd->vdev_faulted)
650 fnvlist_add_uint64(nv, ZPOOL_CONFIG_FAULTED, B_TRUE);
651 if (vd->vdev_degraded)
652 fnvlist_add_uint64(nv, ZPOOL_CONFIG_DEGRADED, B_TRUE);
653 if (vd->vdev_removed)
654 fnvlist_add_uint64(nv, ZPOOL_CONFIG_REMOVED, B_TRUE);
655 if (vd->vdev_unspare)
656 fnvlist_add_uint64(nv, ZPOOL_CONFIG_UNSPARE, B_TRUE);
657 if (vd->vdev_ishole)
658 fnvlist_add_uint64(nv, ZPOOL_CONFIG_IS_HOLE, B_TRUE);
659
660 /* Set the reason why we're FAULTED/DEGRADED. */
661 switch (vd->vdev_stat.vs_aux) {
662 case VDEV_AUX_ERR_EXCEEDED:
663 aux = "err_exceeded";
664 break;
665
666 case VDEV_AUX_EXTERNAL:
667 aux = "external";
668 break;
669 }
670
671 if (aux != NULL && !vd->vdev_tmpoffline) {
672 fnvlist_add_string(nv, ZPOOL_CONFIG_AUX_STATE, aux);
673 } else {
674 /*
675 * We're healthy - clear any previous AUX_STATE values.
676 */
677 if (nvlist_exists(nv, ZPOOL_CONFIG_AUX_STATE))
678 nvlist_remove_all(nv, ZPOOL_CONFIG_AUX_STATE);
679 }
680
681 if (vd->vdev_splitting && vd->vdev_orig_guid != 0LL) {
682 fnvlist_add_uint64(nv, ZPOOL_CONFIG_ORIG_GUID,
683 vd->vdev_orig_guid);
684 }
685 }
686
687 return (nv);
688 }
689
690 /*
691 * Generate a view of the top-level vdevs. If we currently have holes
692 * in the namespace, then generate an array which contains a list of holey
693 * vdevs. Additionally, add the number of top-level children that currently
694 * exist.
695 */
696 void
697 vdev_top_config_generate(spa_t *spa, nvlist_t *config)
698 {
699 vdev_t *rvd = spa->spa_root_vdev;
700 uint64_t *array;
701 uint_t c, idx;
702
703 array = kmem_alloc(rvd->vdev_children * sizeof (uint64_t), KM_SLEEP);
704
705 for (c = 0, idx = 0; c < rvd->vdev_children; c++) {
706 vdev_t *tvd = rvd->vdev_child[c];
707
708 if (tvd->vdev_ishole) {
709 array[idx++] = c;
710 }
711 }
712
713 if (idx) {
714 VERIFY(nvlist_add_uint64_array(config, ZPOOL_CONFIG_HOLE_ARRAY,
715 array, idx) == 0);
716 }
717
718 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN,
719 rvd->vdev_children) == 0);
720
721 kmem_free(array, rvd->vdev_children * sizeof (uint64_t));
722 }
723
724 /*
725 * Returns the configuration from the label of the given vdev. For vdevs
726 * which don't have a txg value stored on their label (i.e. spares/cache)
727 * or have not been completely initialized (txg = 0) just return
728 * the configuration from the first valid label we find. Otherwise,
729 * find the most up-to-date label that does not exceed the specified
730 * 'txg' value.
731 */
732 nvlist_t *
733 vdev_label_read_config(vdev_t *vd, uint64_t txg)
734 {
735 spa_t *spa = vd->vdev_spa;
736 nvlist_t *config = NULL;
737 vdev_phys_t *vp;
738 abd_t *vp_abd;
739 zio_t *zio;
740 uint64_t best_txg = 0;
741 uint64_t label_txg = 0;
742 int error = 0;
743 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL |
744 ZIO_FLAG_SPECULATIVE;
745
746 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
747
748 if (!vdev_readable(vd))
749 return (NULL);
750
751 vp_abd = abd_alloc_linear(sizeof (vdev_phys_t), B_TRUE);
752 vp = abd_to_buf(vp_abd);
753
754 retry:
755 for (int l = 0; l < VDEV_LABELS; l++) {
756 nvlist_t *label = NULL;
757
758 zio = zio_root(spa, NULL, NULL, flags);
759
760 vdev_label_read(zio, vd, l, vp_abd,
761 offsetof(vdev_label_t, vl_vdev_phys),
762 sizeof (vdev_phys_t), NULL, NULL, flags);
763
764 if (zio_wait(zio) == 0 &&
765 nvlist_unpack(vp->vp_nvlist, sizeof (vp->vp_nvlist),
766 &label, 0) == 0) {
767 /*
768 * Auxiliary vdevs won't have txg values in their
769 * labels and newly added vdevs may not have been
770 * completely initialized so just return the
771 * configuration from the first valid label we
772 * encounter.
773 */
774 error = nvlist_lookup_uint64(label,
775 ZPOOL_CONFIG_POOL_TXG, &label_txg);
776 if ((error || label_txg == 0) && !config) {
777 config = label;
778 break;
779 } else if (label_txg <= txg && label_txg > best_txg) {
780 best_txg = label_txg;
781 nvlist_free(config);
782 config = fnvlist_dup(label);
783 }
784 }
785
786 if (label != NULL) {
787 nvlist_free(label);
788 label = NULL;
789 }
790 }
791
792 if (config == NULL && !(flags & ZIO_FLAG_TRYHARD)) {
793 flags |= ZIO_FLAG_TRYHARD;
794 goto retry;
795 }
796
797 /*
798 * We found a valid label but it didn't pass txg restrictions.
799 */
800 if (config == NULL && label_txg != 0) {
801 vdev_dbgmsg(vd, "label discarded as txg is too large "
802 "(%llu > %llu)", (u_longlong_t)label_txg,
803 (u_longlong_t)txg);
804 }
805
806 abd_free(vp_abd);
807
808 return (config);
809 }
810
811 /*
812 * Determine if a device is in use. The 'spare_guid' parameter will be filled
813 * in with the device guid if this spare is active elsewhere on the system.
814 */
815 static boolean_t
816 vdev_inuse(vdev_t *vd, uint64_t crtxg, vdev_labeltype_t reason,
817 uint64_t *spare_guid, uint64_t *l2cache_guid)
818 {
819 spa_t *spa = vd->vdev_spa;
820 uint64_t state, pool_guid, device_guid, txg, spare_pool;
821 uint64_t vdtxg = 0;
822 nvlist_t *label;
823
824 if (spare_guid)
825 *spare_guid = 0ULL;
826 if (l2cache_guid)
827 *l2cache_guid = 0ULL;
828
829 /*
830 * Read the label, if any, and perform some basic sanity checks.
831 */
832 if ((label = vdev_label_read_config(vd, -1ULL)) == NULL)
833 return (B_FALSE);
834
835 (void) nvlist_lookup_uint64(label, ZPOOL_CONFIG_CREATE_TXG,
836 &vdtxg);
837
838 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
839 &state) != 0 ||
840 nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
841 &device_guid) != 0) {
842 nvlist_free(label);
843 return (B_FALSE);
844 }
845
846 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
847 (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID,
848 &pool_guid) != 0 ||
849 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
850 &txg) != 0)) {
851 nvlist_free(label);
852 return (B_FALSE);
853 }
854
855 nvlist_free(label);
856
857 /*
858 * Check to see if this device indeed belongs to the pool it claims to
859 * be a part of. The only way this is allowed is if the device is a hot
860 * spare (which we check for later on).
861 */
862 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
863 !spa_guid_exists(pool_guid, device_guid) &&
864 !spa_spare_exists(device_guid, NULL, NULL) &&
865 !spa_l2cache_exists(device_guid, NULL))
866 return (B_FALSE);
867
868 /*
869 * If the transaction group is zero, then this an initialized (but
870 * unused) label. This is only an error if the create transaction
871 * on-disk is the same as the one we're using now, in which case the
872 * user has attempted to add the same vdev multiple times in the same
873 * transaction.
874 */
875 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
876 txg == 0 && vdtxg == crtxg)
877 return (B_TRUE);
878
879 /*
880 * Check to see if this is a spare device. We do an explicit check for
881 * spa_has_spare() here because it may be on our pending list of spares
882 * to add. We also check if it is an l2cache device.
883 */
884 if (spa_spare_exists(device_guid, &spare_pool, NULL) ||
885 spa_has_spare(spa, device_guid)) {
886 if (spare_guid)
887 *spare_guid = device_guid;
888
889 switch (reason) {
890 case VDEV_LABEL_CREATE:
891 case VDEV_LABEL_L2CACHE:
892 return (B_TRUE);
893
894 case VDEV_LABEL_REPLACE:
895 return (!spa_has_spare(spa, device_guid) ||
896 spare_pool != 0ULL);
897
898 case VDEV_LABEL_SPARE:
899 return (spa_has_spare(spa, device_guid));
900 default:
901 break;
902 }
903 }
904
905 /*
906 * Check to see if this is an l2cache device.
907 */
908 if (spa_l2cache_exists(device_guid, NULL))
909 return (B_TRUE);
910
911 /*
912 * We can't rely on a pool's state if it's been imported
913 * read-only. Instead we look to see if the pools is marked
914 * read-only in the namespace and set the state to active.
915 */
916 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
917 (spa = spa_by_guid(pool_guid, device_guid)) != NULL &&
918 spa_mode(spa) == FREAD)
919 state = POOL_STATE_ACTIVE;
920
921 /*
922 * If the device is marked ACTIVE, then this device is in use by another
923 * pool on the system.
924 */
925 return (state == POOL_STATE_ACTIVE);
926 }
927
928 /*
929 * Initialize a vdev label. We check to make sure each leaf device is not in
930 * use, and writable. We put down an initial label which we will later
931 * overwrite with a complete label. Note that it's important to do this
932 * sequentially, not in parallel, so that we catch cases of multiple use of the
933 * same leaf vdev in the vdev we're creating -- e.g. mirroring a disk with
934 * itself.
935 */
936 int
937 vdev_label_init(vdev_t *vd, uint64_t crtxg, vdev_labeltype_t reason)
938 {
939 spa_t *spa = vd->vdev_spa;
940 nvlist_t *label;
941 vdev_phys_t *vp;
942 abd_t *vp_abd;
943 abd_t *pad2;
944 uberblock_t *ub;
945 abd_t *ub_abd;
946 zio_t *zio;
947 char *buf;
948 size_t buflen;
949 int error;
950 uint64_t spare_guid = 0, l2cache_guid = 0;
951 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL;
952
953 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
954
955 for (int c = 0; c < vd->vdev_children; c++)
956 if ((error = vdev_label_init(vd->vdev_child[c],
957 crtxg, reason)) != 0)
958 return (error);
959
960 /* Track the creation time for this vdev */
961 vd->vdev_crtxg = crtxg;
962
963 if (!vd->vdev_ops->vdev_op_leaf || !spa_writeable(spa))
964 return (0);
965
966 /*
967 * Dead vdevs cannot be initialized.
968 */
969 if (vdev_is_dead(vd))
970 return (SET_ERROR(EIO));
971
972 /*
973 * Determine if the vdev is in use.
974 */
975 if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_SPLIT &&
976 vdev_inuse(vd, crtxg, reason, &spare_guid, &l2cache_guid))
977 return (SET_ERROR(EBUSY));
978
979 /*
980 * If this is a request to add or replace a spare or l2cache device
981 * that is in use elsewhere on the system, then we must update the
982 * guid (which was initialized to a random value) to reflect the
983 * actual GUID (which is shared between multiple pools).
984 */
985 if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_L2CACHE &&
986 spare_guid != 0ULL) {
987 uint64_t guid_delta = spare_guid - vd->vdev_guid;
988
989 vd->vdev_guid += guid_delta;
990
991 for (vdev_t *pvd = vd; pvd != NULL; pvd = pvd->vdev_parent)
992 pvd->vdev_guid_sum += guid_delta;
993
994 /*
995 * If this is a replacement, then we want to fallthrough to the
996 * rest of the code. If we're adding a spare, then it's already
997 * labeled appropriately and we can just return.
998 */
999 if (reason == VDEV_LABEL_SPARE)
1000 return (0);
1001 ASSERT(reason == VDEV_LABEL_REPLACE ||
1002 reason == VDEV_LABEL_SPLIT);
1003 }
1004
1005 if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_SPARE &&
1006 l2cache_guid != 0ULL) {
1007 uint64_t guid_delta = l2cache_guid - vd->vdev_guid;
1008
1009 vd->vdev_guid += guid_delta;
1010
1011 for (vdev_t *pvd = vd; pvd != NULL; pvd = pvd->vdev_parent)
1012 pvd->vdev_guid_sum += guid_delta;
1013
1014 /*
1015 * If this is a replacement, then we want to fallthrough to the
1016 * rest of the code. If we're adding an l2cache, then it's
1017 * already labeled appropriately and we can just return.
1018 */
1019 if (reason == VDEV_LABEL_L2CACHE)
1020 return (0);
1021 ASSERT(reason == VDEV_LABEL_REPLACE);
1022 }
1023
1024 /*
1025 * Initialize its label.
1026 */
1027 vp_abd = abd_alloc_linear(sizeof (vdev_phys_t), B_TRUE);
1028 abd_zero(vp_abd, sizeof (vdev_phys_t));
1029 vp = abd_to_buf(vp_abd);
1030
1031 /*
1032 * Generate a label describing the pool and our top-level vdev.
1033 * We mark it as being from txg 0 to indicate that it's not
1034 * really part of an active pool just yet. The labels will
1035 * be written again with a meaningful txg by spa_sync().
1036 */
1037 if (reason == VDEV_LABEL_SPARE ||
1038 (reason == VDEV_LABEL_REMOVE && vd->vdev_isspare)) {
1039 /*
1040 * For inactive hot spares, we generate a special label that
1041 * identifies as a mutually shared hot spare. We write the
1042 * label if we are adding a hot spare, or if we are removing an
1043 * active hot spare (in which case we want to revert the
1044 * labels).
1045 */
1046 VERIFY(nvlist_alloc(&label, NV_UNIQUE_NAME, KM_SLEEP) == 0);
1047
1048 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_VERSION,
1049 spa_version(spa)) == 0);
1050 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_POOL_STATE,
1051 POOL_STATE_SPARE) == 0);
1052 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_GUID,
1053 vd->vdev_guid) == 0);
1054 } else if (reason == VDEV_LABEL_L2CACHE ||
1055 (reason == VDEV_LABEL_REMOVE && vd->vdev_isl2cache)) {
1056 /*
1057 * For level 2 ARC devices, add a special label.
1058 */
1059 VERIFY(nvlist_alloc(&label, NV_UNIQUE_NAME, KM_SLEEP) == 0);
1060
1061 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_VERSION,
1062 spa_version(spa)) == 0);
1063 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_POOL_STATE,
1064 POOL_STATE_L2CACHE) == 0);
1065 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_GUID,
1066 vd->vdev_guid) == 0);
1067 } else {
1068 uint64_t txg = 0ULL;
1069
1070 if (reason == VDEV_LABEL_SPLIT)
1071 txg = spa->spa_uberblock.ub_txg;
1072 label = spa_config_generate(spa, vd, txg, B_FALSE);
1073
1074 /*
1075 * Add our creation time. This allows us to detect multiple
1076 * vdev uses as described above, and automatically expires if we
1077 * fail.
1078 */
1079 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_CREATE_TXG,
1080 crtxg) == 0);
1081 }
1082
1083 buf = vp->vp_nvlist;
1084 buflen = sizeof (vp->vp_nvlist);
1085
1086 error = nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM_SLEEP);
1087 if (error != 0) {
1088 nvlist_free(label);
1089 abd_free(vp_abd);
1090 /* EFAULT means nvlist_pack ran out of room */
1091 return (SET_ERROR(error == EFAULT ? ENAMETOOLONG : EINVAL));
1092 }
1093
1094 /*
1095 * Initialize uberblock template.
1096 */
1097 ub_abd = abd_alloc_linear(VDEV_UBERBLOCK_RING, B_TRUE);
1098 abd_zero(ub_abd, VDEV_UBERBLOCK_RING);
1099 abd_copy_from_buf(ub_abd, &spa->spa_uberblock, sizeof (uberblock_t));
1100 ub = abd_to_buf(ub_abd);
1101 ub->ub_txg = 0;
1102
1103 /* Initialize the 2nd padding area. */
1104 pad2 = abd_alloc_for_io(VDEV_PAD_SIZE, B_TRUE);
1105 abd_zero(pad2, VDEV_PAD_SIZE);
1106
1107 /*
1108 * Write everything in parallel.
1109 */
1110 retry:
1111 zio = zio_root(spa, NULL, NULL, flags);
1112
1113 for (int l = 0; l < VDEV_LABELS; l++) {
1114
1115 vdev_label_write(zio, vd, l, vp_abd,
1116 offsetof(vdev_label_t, vl_vdev_phys),
1117 sizeof (vdev_phys_t), NULL, NULL, flags);
1118
1119 /*
1120 * Skip the 1st padding area.
1121 * Zero out the 2nd padding area where it might have
1122 * left over data from previous filesystem format.
1123 */
1124 vdev_label_write(zio, vd, l, pad2,
1125 offsetof(vdev_label_t, vl_pad2),
1126 VDEV_PAD_SIZE, NULL, NULL, flags);
1127
1128 vdev_label_write(zio, vd, l, ub_abd,
1129 offsetof(vdev_label_t, vl_uberblock),
1130 VDEV_UBERBLOCK_RING, NULL, NULL, flags);
1131 }
1132
1133 error = zio_wait(zio);
1134
1135 if (error != 0 && !(flags & ZIO_FLAG_TRYHARD)) {
1136 flags |= ZIO_FLAG_TRYHARD;
1137 goto retry;
1138 }
1139
1140 nvlist_free(label);
1141 abd_free(pad2);
1142 abd_free(ub_abd);
1143 abd_free(vp_abd);
1144
1145 /*
1146 * If this vdev hasn't been previously identified as a spare, then we
1147 * mark it as such only if a) we are labeling it as a spare, or b) it
1148 * exists as a spare elsewhere in the system. Do the same for
1149 * level 2 ARC devices.
1150 */
1151 if (error == 0 && !vd->vdev_isspare &&
1152 (reason == VDEV_LABEL_SPARE ||
1153 spa_spare_exists(vd->vdev_guid, NULL, NULL)))
1154 spa_spare_add(vd);
1155
1156 if (error == 0 && !vd->vdev_isl2cache &&
1157 (reason == VDEV_LABEL_L2CACHE ||
1158 spa_l2cache_exists(vd->vdev_guid, NULL)))
1159 spa_l2cache_add(vd);
1160
1161 return (error);
1162 }
1163
1164 /*
1165 * ==========================================================================
1166 * uberblock load/sync
1167 * ==========================================================================
1168 */
1169
1170 /*
1171 * Consider the following situation: txg is safely synced to disk. We've
1172 * written the first uberblock for txg + 1, and then we lose power. When we
1173 * come back up, we fail to see the uberblock for txg + 1 because, say,
1174 * it was on a mirrored device and the replica to which we wrote txg + 1
1175 * is now offline. If we then make some changes and sync txg + 1, and then
1176 * the missing replica comes back, then for a few seconds we'll have two
1177 * conflicting uberblocks on disk with the same txg. The solution is simple:
1178 * among uberblocks with equal txg, choose the one with the latest timestamp.
1179 */
1180 static int
1181 vdev_uberblock_compare(const uberblock_t *ub1, const uberblock_t *ub2)
1182 {
1183 int cmp = AVL_CMP(ub1->ub_txg, ub2->ub_txg);
1184 if (likely(cmp))
1185 return (cmp);
1186
1187 return (AVL_CMP(ub1->ub_timestamp, ub2->ub_timestamp));
1188 }
1189
1190 struct ubl_cbdata {
1191 uberblock_t *ubl_ubbest; /* Best uberblock */
1192 vdev_t *ubl_vd; /* vdev associated with the above */
1193 };
1194
1195 static void
1196 vdev_uberblock_load_done(zio_t *zio)
1197 {
1198 vdev_t *vd = zio->io_vd;
1199 spa_t *spa = zio->io_spa;
1200 zio_t *rio = zio->io_private;
1201 uberblock_t *ub = abd_to_buf(zio->io_abd);
1202 struct ubl_cbdata *cbp = rio->io_private;
1203
1204 ASSERT3U(zio->io_size, ==, VDEV_UBERBLOCK_SIZE(vd));
1205
1206 if (zio->io_error == 0 && uberblock_verify(ub) == 0) {
1207 mutex_enter(&rio->io_lock);
1208 if (ub->ub_txg <= spa->spa_load_max_txg &&
1209 vdev_uberblock_compare(ub, cbp->ubl_ubbest) > 0) {
1210 /*
1211 * Keep track of the vdev in which this uberblock
1212 * was found. We will use this information later
1213 * to obtain the config nvlist associated with
1214 * this uberblock.
1215 */
1216 *cbp->ubl_ubbest = *ub;
1217 cbp->ubl_vd = vd;
1218 }
1219 mutex_exit(&rio->io_lock);
1220 }
1221
1222 abd_free(zio->io_abd);
1223 }
1224
1225 static void
1226 vdev_uberblock_load_impl(zio_t *zio, vdev_t *vd, int flags,
1227 struct ubl_cbdata *cbp)
1228 {
1229 for (int c = 0; c < vd->vdev_children; c++)
1230 vdev_uberblock_load_impl(zio, vd->vdev_child[c], flags, cbp);
1231
1232 if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
1233 for (int l = 0; l < VDEV_LABELS; l++) {
1234 for (int n = 0; n < VDEV_UBERBLOCK_COUNT(vd); n++) {
1235 vdev_label_read(zio, vd, l,
1236 abd_alloc_linear(VDEV_UBERBLOCK_SIZE(vd),
1237 B_TRUE), VDEV_UBERBLOCK_OFFSET(vd, n),
1238 VDEV_UBERBLOCK_SIZE(vd),
1239 vdev_uberblock_load_done, zio, flags);
1240 }
1241 }
1242 }
1243 }
1244
1245 /*
1246 * Reads the 'best' uberblock from disk along with its associated
1247 * configuration. First, we read the uberblock array of each label of each
1248 * vdev, keeping track of the uberblock with the highest txg in each array.
1249 * Then, we read the configuration from the same vdev as the best uberblock.
1250 */
1251 void
1252 vdev_uberblock_load(vdev_t *rvd, uberblock_t *ub, nvlist_t **config)
1253 {
1254 zio_t *zio;
1255 spa_t *spa = rvd->vdev_spa;
1256 struct ubl_cbdata cb;
1257 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL |
1258 ZIO_FLAG_SPECULATIVE | ZIO_FLAG_TRYHARD;
1259
1260 ASSERT(ub);
1261 ASSERT(config);
1262
1263 bzero(ub, sizeof (uberblock_t));
1264 *config = NULL;
1265
1266 cb.ubl_ubbest = ub;
1267 cb.ubl_vd = NULL;
1268
1269 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1270 zio = zio_root(spa, NULL, &cb, flags);
1271 vdev_uberblock_load_impl(zio, rvd, flags, &cb);
1272 (void) zio_wait(zio);
1273
1274 /*
1275 * It's possible that the best uberblock was discovered on a label
1276 * that has a configuration which was written in a future txg.
1277 * Search all labels on this vdev to find the configuration that
1278 * matches the txg for our uberblock.
1279 */
1280 if (cb.ubl_vd != NULL) {
1281 vdev_dbgmsg(cb.ubl_vd, "best uberblock found for spa %s. "
1282 "txg %llu", spa->spa_name, (u_longlong_t)ub->ub_txg);
1283
1284 *config = vdev_label_read_config(cb.ubl_vd, ub->ub_txg);
1285 if (*config == NULL && spa->spa_extreme_rewind) {
1286 vdev_dbgmsg(cb.ubl_vd, "failed to read label config. "
1287 "Trying again without txg restrictions.");
1288 *config = vdev_label_read_config(cb.ubl_vd, UINT64_MAX);
1289 }
1290 if (*config == NULL) {
1291 vdev_dbgmsg(cb.ubl_vd, "failed to read label config");
1292 }
1293 }
1294 spa_config_exit(spa, SCL_ALL, FTAG);
1295 }
1296
1297 /*
1298 * For use when a leaf vdev is expanded.
1299 * The location of labels 2 and 3 changed, and at the new location the
1300 * uberblock rings are either empty or contain garbage. The sync will write
1301 * new configs there because the vdev is dirty, but expansion also needs the
1302 * uberblock rings copied. Read them from label 0 which did not move.
1303 *
1304 * Since the point is to populate labels {2,3} with valid uberblocks,
1305 * we zero uberblocks we fail to read or which are not valid.
1306 */
1307
1308 static void
1309 vdev_copy_uberblocks(vdev_t *vd)
1310 {
1311 abd_t *ub_abd;
1312 zio_t *write_zio;
1313 int locks = (SCL_L2ARC | SCL_ZIO);
1314 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL |
1315 ZIO_FLAG_SPECULATIVE;
1316
1317 ASSERT(spa_config_held(vd->vdev_spa, SCL_STATE, RW_READER) ==
1318 SCL_STATE);
1319 ASSERT(vd->vdev_ops->vdev_op_leaf);
1320
1321 spa_config_enter(vd->vdev_spa, locks, FTAG, RW_READER);
1322
1323 ub_abd = abd_alloc_linear(VDEV_UBERBLOCK_SIZE(vd), B_TRUE);
1324
1325 write_zio = zio_root(vd->vdev_spa, NULL, NULL, flags);
1326 for (int n = 0; n < VDEV_UBERBLOCK_COUNT(vd); n++) {
1327 const int src_label = 0;
1328 zio_t *zio;
1329
1330 zio = zio_root(vd->vdev_spa, NULL, NULL, flags);
1331 vdev_label_read(zio, vd, src_label, ub_abd,
1332 VDEV_UBERBLOCK_OFFSET(vd, n), VDEV_UBERBLOCK_SIZE(vd),
1333 NULL, NULL, flags);
1334
1335 if (zio_wait(zio) || uberblock_verify(abd_to_buf(ub_abd)))
1336 abd_zero(ub_abd, VDEV_UBERBLOCK_SIZE(vd));
1337
1338 for (int l = 2; l < VDEV_LABELS; l++)
1339 vdev_label_write(write_zio, vd, l, ub_abd,
1340 VDEV_UBERBLOCK_OFFSET(vd, n),
1341 VDEV_UBERBLOCK_SIZE(vd), NULL, NULL,
1342 flags | ZIO_FLAG_DONT_PROPAGATE);
1343 }
1344 (void) zio_wait(write_zio);
1345
1346 spa_config_exit(vd->vdev_spa, locks, FTAG);
1347
1348 abd_free(ub_abd);
1349 }
1350
1351 /*
1352 * On success, increment root zio's count of good writes.
1353 * We only get credit for writes to known-visible vdevs; see spa_vdev_add().
1354 */
1355 static void
1356 vdev_uberblock_sync_done(zio_t *zio)
1357 {
1358 uint64_t *good_writes = zio->io_private;
1359
1360 if (zio->io_error == 0 && zio->io_vd->vdev_top->vdev_ms_array != 0)
1361 atomic_inc_64(good_writes);
1362 }
1363
1364 /*
1365 * Write the uberblock to all labels of all leaves of the specified vdev.
1366 */
1367 static void
1368 vdev_uberblock_sync(zio_t *zio, uint64_t *good_writes,
1369 uberblock_t *ub, vdev_t *vd, int flags)
1370 {
1371 for (uint64_t c = 0; c < vd->vdev_children; c++) {
1372 vdev_uberblock_sync(zio, good_writes,
1373 ub, vd->vdev_child[c], flags);
1374 }
1375
1376 if (!vd->vdev_ops->vdev_op_leaf)
1377 return;
1378
1379 if (!vdev_writeable(vd))
1380 return;
1381
1382 /* If the vdev was expanded, need to copy uberblock rings. */
1383 if (vd->vdev_state == VDEV_STATE_HEALTHY &&
1384 vd->vdev_copy_uberblocks == B_TRUE) {
1385 vdev_copy_uberblocks(vd);
1386 vd->vdev_copy_uberblocks = B_FALSE;
1387 }
1388
1389 int m = spa_multihost(vd->vdev_spa) ? MMP_BLOCKS_PER_LABEL : 0;
1390 int n = ub->ub_txg % (VDEV_UBERBLOCK_COUNT(vd) - m);
1391
1392 /* Copy the uberblock_t into the ABD */
1393 abd_t *ub_abd = abd_alloc_for_io(VDEV_UBERBLOCK_SIZE(vd), B_TRUE);
1394 abd_zero(ub_abd, VDEV_UBERBLOCK_SIZE(vd));
1395 abd_copy_from_buf(ub_abd, ub, sizeof (uberblock_t));
1396
1397 for (int l = 0; l < VDEV_LABELS; l++)
1398 vdev_label_write(zio, vd, l, ub_abd,
1399 VDEV_UBERBLOCK_OFFSET(vd, n), VDEV_UBERBLOCK_SIZE(vd),
1400 vdev_uberblock_sync_done, good_writes,
1401 flags | ZIO_FLAG_DONT_PROPAGATE);
1402
1403 abd_free(ub_abd);
1404 }
1405
1406 /* Sync the uberblocks to all vdevs in svd[] */
1407 int
1408 vdev_uberblock_sync_list(vdev_t **svd, int svdcount, uberblock_t *ub, int flags)
1409 {
1410 spa_t *spa = svd[0]->vdev_spa;
1411 zio_t *zio;
1412 uint64_t good_writes = 0;
1413
1414 zio = zio_root(spa, NULL, NULL, flags);
1415
1416 for (int v = 0; v < svdcount; v++)
1417 vdev_uberblock_sync(zio, &good_writes, ub, svd[v], flags);
1418
1419 (void) zio_wait(zio);
1420
1421 /*
1422 * Flush the uberblocks to disk. This ensures that the odd labels
1423 * are no longer needed (because the new uberblocks and the even
1424 * labels are safely on disk), so it is safe to overwrite them.
1425 */
1426 zio = zio_root(spa, NULL, NULL, flags);
1427
1428 for (int v = 0; v < svdcount; v++) {
1429 if (vdev_writeable(svd[v])) {
1430 zio_flush(zio, svd[v]);
1431 }
1432 }
1433
1434 (void) zio_wait(zio);
1435
1436 return (good_writes >= 1 ? 0 : EIO);
1437 }
1438
1439 /*
1440 * On success, increment the count of good writes for our top-level vdev.
1441 */
1442 static void
1443 vdev_label_sync_done(zio_t *zio)
1444 {
1445 uint64_t *good_writes = zio->io_private;
1446
1447 if (zio->io_error == 0)
1448 atomic_inc_64(good_writes);
1449 }
1450
1451 /*
1452 * If there weren't enough good writes, indicate failure to the parent.
1453 */
1454 static void
1455 vdev_label_sync_top_done(zio_t *zio)
1456 {
1457 uint64_t *good_writes = zio->io_private;
1458
1459 if (*good_writes == 0)
1460 zio->io_error = SET_ERROR(EIO);
1461
1462 kmem_free(good_writes, sizeof (uint64_t));
1463 }
1464
1465 /*
1466 * We ignore errors for log and cache devices, simply free the private data.
1467 */
1468 static void
1469 vdev_label_sync_ignore_done(zio_t *zio)
1470 {
1471 kmem_free(zio->io_private, sizeof (uint64_t));
1472 }
1473
1474 /*
1475 * Write all even or odd labels to all leaves of the specified vdev.
1476 */
1477 static void
1478 vdev_label_sync(zio_t *zio, uint64_t *good_writes,
1479 vdev_t *vd, int l, uint64_t txg, int flags)
1480 {
1481 nvlist_t *label;
1482 vdev_phys_t *vp;
1483 abd_t *vp_abd;
1484 char *buf;
1485 size_t buflen;
1486
1487 for (int c = 0; c < vd->vdev_children; c++) {
1488 vdev_label_sync(zio, good_writes,
1489 vd->vdev_child[c], l, txg, flags);
1490 }
1491
1492 if (!vd->vdev_ops->vdev_op_leaf)
1493 return;
1494
1495 if (!vdev_writeable(vd))
1496 return;
1497
1498 /*
1499 * Generate a label describing the top-level config to which we belong.
1500 */
1501 label = spa_config_generate(vd->vdev_spa, vd, txg, B_FALSE);
1502
1503 vp_abd = abd_alloc_linear(sizeof (vdev_phys_t), B_TRUE);
1504 abd_zero(vp_abd, sizeof (vdev_phys_t));
1505 vp = abd_to_buf(vp_abd);
1506
1507 buf = vp->vp_nvlist;
1508 buflen = sizeof (vp->vp_nvlist);
1509
1510 if (!nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM_SLEEP)) {
1511 for (; l < VDEV_LABELS; l += 2) {
1512 vdev_label_write(zio, vd, l, vp_abd,
1513 offsetof(vdev_label_t, vl_vdev_phys),
1514 sizeof (vdev_phys_t),
1515 vdev_label_sync_done, good_writes,
1516 flags | ZIO_FLAG_DONT_PROPAGATE);
1517 }
1518 }
1519
1520 abd_free(vp_abd);
1521 nvlist_free(label);
1522 }
1523
1524 int
1525 vdev_label_sync_list(spa_t *spa, int l, uint64_t txg, int flags)
1526 {
1527 list_t *dl = &spa->spa_config_dirty_list;
1528 vdev_t *vd;
1529 zio_t *zio;
1530 int error;
1531
1532 /*
1533 * Write the new labels to disk.
1534 */
1535 zio = zio_root(spa, NULL, NULL, flags);
1536
1537 for (vd = list_head(dl); vd != NULL; vd = list_next(dl, vd)) {
1538 uint64_t *good_writes;
1539
1540 ASSERT(!vd->vdev_ishole);
1541
1542 good_writes = kmem_zalloc(sizeof (uint64_t), KM_SLEEP);
1543 zio_t *vio = zio_null(zio, spa, NULL,
1544 (vd->vdev_islog || vd->vdev_aux != NULL) ?
1545 vdev_label_sync_ignore_done : vdev_label_sync_top_done,
1546 good_writes, flags);
1547 vdev_label_sync(vio, good_writes, vd, l, txg, flags);
1548 zio_nowait(vio);
1549 }
1550
1551 error = zio_wait(zio);
1552
1553 /*
1554 * Flush the new labels to disk.
1555 */
1556 zio = zio_root(spa, NULL, NULL, flags);
1557
1558 for (vd = list_head(dl); vd != NULL; vd = list_next(dl, vd))
1559 zio_flush(zio, vd);
1560
1561 (void) zio_wait(zio);
1562
1563 return (error);
1564 }
1565
1566 /*
1567 * Sync the uberblock and any changes to the vdev configuration.
1568 *
1569 * The order of operations is carefully crafted to ensure that
1570 * if the system panics or loses power at any time, the state on disk
1571 * is still transactionally consistent. The in-line comments below
1572 * describe the failure semantics at each stage.
1573 *
1574 * Moreover, vdev_config_sync() is designed to be idempotent: if it fails
1575 * at any time, you can just call it again, and it will resume its work.
1576 */
1577 int
1578 vdev_config_sync(vdev_t **svd, int svdcount, uint64_t txg)
1579 {
1580 spa_t *spa = svd[0]->vdev_spa;
1581 uberblock_t *ub = &spa->spa_uberblock;
1582 int error = 0;
1583 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL;
1584
1585 ASSERT(svdcount != 0);
1586 retry:
1587 /*
1588 * Normally, we don't want to try too hard to write every label and
1589 * uberblock. If there is a flaky disk, we don't want the rest of the
1590 * sync process to block while we retry. But if we can't write a
1591 * single label out, we should retry with ZIO_FLAG_TRYHARD before
1592 * bailing out and declaring the pool faulted.
1593 */
1594 if (error != 0) {
1595 if ((flags & ZIO_FLAG_TRYHARD) != 0)
1596 return (error);
1597 flags |= ZIO_FLAG_TRYHARD;
1598 }
1599
1600 ASSERT(ub->ub_txg <= txg);
1601
1602 /*
1603 * If this isn't a resync due to I/O errors,
1604 * and nothing changed in this transaction group,
1605 * and the vdev configuration hasn't changed,
1606 * then there's nothing to do.
1607 */
1608 if (ub->ub_txg < txg) {
1609 boolean_t changed = uberblock_update(ub, spa->spa_root_vdev,
1610 txg, spa->spa_mmp.mmp_delay);
1611
1612 if (!changed && list_is_empty(&spa->spa_config_dirty_list))
1613 return (0);
1614 }
1615
1616 if (txg > spa_freeze_txg(spa))
1617 return (0);
1618
1619 ASSERT(txg <= spa->spa_final_txg);
1620
1621 /*
1622 * Flush the write cache of every disk that's been written to
1623 * in this transaction group. This ensures that all blocks
1624 * written in this txg will be committed to stable storage
1625 * before any uberblock that references them.
1626 */
1627 zio_t *zio = zio_root(spa, NULL, NULL, flags);
1628
1629 for (vdev_t *vd =
1630 txg_list_head(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)); vd != NULL;
1631 vd = txg_list_next(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg)))
1632 zio_flush(zio, vd);
1633
1634 (void) zio_wait(zio);
1635
1636 /*
1637 * Sync out the even labels (L0, L2) for every dirty vdev. If the
1638 * system dies in the middle of this process, that's OK: all of the
1639 * even labels that made it to disk will be newer than any uberblock,
1640 * and will therefore be considered invalid. The odd labels (L1, L3),
1641 * which have not yet been touched, will still be valid. We flush
1642 * the new labels to disk to ensure that all even-label updates
1643 * are committed to stable storage before the uberblock update.
1644 */
1645 if ((error = vdev_label_sync_list(spa, 0, txg, flags)) != 0) {
1646 if ((flags & ZIO_FLAG_TRYHARD) != 0) {
1647 zfs_dbgmsg("vdev_label_sync_list() returned error %d "
1648 "for pool '%s' when syncing out the even labels "
1649 "of dirty vdevs", error, spa_name(spa));
1650 }
1651 goto retry;
1652 }
1653
1654 /*
1655 * Sync the uberblocks to all vdevs in svd[].
1656 * If the system dies in the middle of this step, there are two cases
1657 * to consider, and the on-disk state is consistent either way:
1658 *
1659 * (1) If none of the new uberblocks made it to disk, then the
1660 * previous uberblock will be the newest, and the odd labels
1661 * (which had not yet been touched) will be valid with respect
1662 * to that uberblock.
1663 *
1664 * (2) If one or more new uberblocks made it to disk, then they
1665 * will be the newest, and the even labels (which had all
1666 * been successfully committed) will be valid with respect
1667 * to the new uberblocks.
1668 */
1669 if ((error = vdev_uberblock_sync_list(svd, svdcount, ub, flags)) != 0) {
1670 if ((flags & ZIO_FLAG_TRYHARD) != 0) {
1671 zfs_dbgmsg("vdev_uberblock_sync_list() returned error "
1672 "%d for pool '%s'", error, spa_name(spa));
1673 }
1674 goto retry;
1675 }
1676
1677 if (spa_multihost(spa))
1678 mmp_update_uberblock(spa, ub);
1679
1680 /*
1681 * Sync out odd labels for every dirty vdev. If the system dies
1682 * in the middle of this process, the even labels and the new
1683 * uberblocks will suffice to open the pool. The next time
1684 * the pool is opened, the first thing we'll do -- before any
1685 * user data is modified -- is mark every vdev dirty so that
1686 * all labels will be brought up to date. We flush the new labels
1687 * to disk to ensure that all odd-label updates are committed to
1688 * stable storage before the next transaction group begins.
1689 */
1690 if ((error = vdev_label_sync_list(spa, 1, txg, flags)) != 0) {
1691 if ((flags & ZIO_FLAG_TRYHARD) != 0) {
1692 zfs_dbgmsg("vdev_label_sync_list() returned error %d "
1693 "for pool '%s' when syncing out the odd labels of "
1694 "dirty vdevs", error, spa_name(spa));
1695 }
1696 goto retry;
1697 }
1698
1699 return (0);
1700 }