]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/vdev_removal.c
dcce93c70feb762a24ed2f267687595b744b35a9
[mirror_zfs.git] / module / zfs / vdev_removal.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2011, 2017 by Delphix. All rights reserved.
25 */
26
27 #include <sys/zfs_context.h>
28 #include <sys/spa_impl.h>
29 #include <sys/dmu.h>
30 #include <sys/dmu_tx.h>
31 #include <sys/zap.h>
32 #include <sys/vdev_impl.h>
33 #include <sys/metaslab.h>
34 #include <sys/metaslab_impl.h>
35 #include <sys/uberblock_impl.h>
36 #include <sys/txg.h>
37 #include <sys/avl.h>
38 #include <sys/bpobj.h>
39 #include <sys/dsl_pool.h>
40 #include <sys/dsl_synctask.h>
41 #include <sys/dsl_dir.h>
42 #include <sys/arc.h>
43 #include <sys/zfeature.h>
44 #include <sys/vdev_indirect_births.h>
45 #include <sys/vdev_indirect_mapping.h>
46 #include <sys/abd.h>
47 #include <sys/trace_vdev.h>
48
49 /*
50 * This file contains the necessary logic to remove vdevs from a
51 * storage pool. Currently, the only devices that can be removed
52 * are log, cache, and spare devices; and top level vdevs from a pool
53 * w/o raidz or mirrors. (Note that members of a mirror can be removed
54 * by the detach operation.)
55 *
56 * Log vdevs are removed by evacuating them and then turning the vdev
57 * into a hole vdev while holding spa config locks.
58 *
59 * Top level vdevs are removed and converted into an indirect vdev via
60 * a multi-step process:
61 *
62 * - Disable allocations from this device (spa_vdev_remove_top).
63 *
64 * - From a new thread (spa_vdev_remove_thread), copy data from
65 * the removing vdev to a different vdev. The copy happens in open
66 * context (spa_vdev_copy_impl) and issues a sync task
67 * (vdev_mapping_sync) so the sync thread can update the partial
68 * indirect mappings in core and on disk.
69 *
70 * - If a free happens during a removal, it is freed from the
71 * removing vdev, and if it has already been copied, from the new
72 * location as well (free_from_removing_vdev).
73 *
74 * - After the removal is completed, the copy thread converts the vdev
75 * into an indirect vdev (vdev_remove_complete) before instructing
76 * the sync thread to destroy the space maps and finish the removal
77 * (spa_finish_removal).
78 */
79
80 typedef struct vdev_copy_arg {
81 metaslab_t *vca_msp;
82 uint64_t vca_outstanding_bytes;
83 kcondvar_t vca_cv;
84 kmutex_t vca_lock;
85 } vdev_copy_arg_t;
86
87 /*
88 * The maximum amount of memory we can use for outstanding i/o while
89 * doing a device removal. This determines how much i/o we can have
90 * in flight concurrently.
91 */
92 int zfs_remove_max_copy_bytes = 64 * 1024 * 1024;
93
94 /*
95 * The largest contiguous segment that we will attempt to allocate when
96 * removing a device. This can be no larger than SPA_MAXBLOCKSIZE. If
97 * there is a performance problem with attempting to allocate large blocks,
98 * consider decreasing this.
99 */
100 int zfs_remove_max_segment = SPA_MAXBLOCKSIZE;
101
102 /*
103 * Allow a remap segment to span free chunks of at most this size. The main
104 * impact of a larger span is that we will read and write larger, more
105 * contiguous chunks, with more "unnecessary" data -- trading off bandwidth
106 * for iops. The value here was chosen to align with
107 * zfs_vdev_read_gap_limit, which is a similar concept when doing regular
108 * reads (but there's no reason it has to be the same).
109 *
110 * Additionally, a higher span will have the following relatively minor
111 * effects:
112 * - the mapping will be smaller, since one entry can cover more allocated
113 * segments
114 * - more of the fragmentation in the removing device will be preserved
115 * - we'll do larger allocations, which may fail and fall back on smaller
116 * allocations
117 */
118 int vdev_removal_max_span = 32 * 1024;
119
120 /*
121 * This is used by the test suite so that it can ensure that certain
122 * actions happen while in the middle of a removal.
123 */
124 unsigned long zfs_remove_max_bytes_pause = -1UL;
125
126 #define VDEV_REMOVAL_ZAP_OBJS "lzap"
127
128 static void spa_vdev_remove_thread(void *arg);
129
130 static void
131 spa_sync_removing_state(spa_t *spa, dmu_tx_t *tx)
132 {
133 VERIFY0(zap_update(spa->spa_dsl_pool->dp_meta_objset,
134 DMU_POOL_DIRECTORY_OBJECT,
135 DMU_POOL_REMOVING, sizeof (uint64_t),
136 sizeof (spa->spa_removing_phys) / sizeof (uint64_t),
137 &spa->spa_removing_phys, tx));
138 }
139
140 static nvlist_t *
141 spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid)
142 {
143 for (int i = 0; i < count; i++) {
144 uint64_t guid =
145 fnvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID);
146
147 if (guid == target_guid)
148 return (nvpp[i]);
149 }
150
151 return (NULL);
152 }
153
154 static void
155 spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count,
156 nvlist_t *dev_to_remove)
157 {
158 nvlist_t **newdev = NULL;
159
160 if (count > 1)
161 newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP);
162
163 for (int i = 0, j = 0; i < count; i++) {
164 if (dev[i] == dev_to_remove)
165 continue;
166 VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0);
167 }
168
169 VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0);
170 VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0);
171
172 for (int i = 0; i < count - 1; i++)
173 nvlist_free(newdev[i]);
174
175 if (count > 1)
176 kmem_free(newdev, (count - 1) * sizeof (void *));
177 }
178
179 static spa_vdev_removal_t *
180 spa_vdev_removal_create(vdev_t *vd)
181 {
182 spa_vdev_removal_t *svr = kmem_zalloc(sizeof (*svr), KM_SLEEP);
183 mutex_init(&svr->svr_lock, NULL, MUTEX_DEFAULT, NULL);
184 cv_init(&svr->svr_cv, NULL, CV_DEFAULT, NULL);
185 svr->svr_allocd_segs = range_tree_create(NULL, NULL);
186 svr->svr_vdev_id = vd->vdev_id;
187
188 for (int i = 0; i < TXG_SIZE; i++) {
189 svr->svr_frees[i] = range_tree_create(NULL, NULL);
190 list_create(&svr->svr_new_segments[i],
191 sizeof (vdev_indirect_mapping_entry_t),
192 offsetof(vdev_indirect_mapping_entry_t, vime_node));
193 }
194
195 return (svr);
196 }
197
198 void
199 spa_vdev_removal_destroy(spa_vdev_removal_t *svr)
200 {
201 for (int i = 0; i < TXG_SIZE; i++) {
202 ASSERT0(svr->svr_bytes_done[i]);
203 ASSERT0(svr->svr_max_offset_to_sync[i]);
204 range_tree_destroy(svr->svr_frees[i]);
205 list_destroy(&svr->svr_new_segments[i]);
206 }
207
208 range_tree_destroy(svr->svr_allocd_segs);
209 mutex_destroy(&svr->svr_lock);
210 cv_destroy(&svr->svr_cv);
211 kmem_free(svr, sizeof (*svr));
212 }
213
214 /*
215 * This is called as a synctask in the txg in which we will mark this vdev
216 * as removing (in the config stored in the MOS).
217 *
218 * It begins the evacuation of a toplevel vdev by:
219 * - initializing the spa_removing_phys which tracks this removal
220 * - computing the amount of space to remove for accounting purposes
221 * - dirtying all dbufs in the spa_config_object
222 * - creating the spa_vdev_removal
223 * - starting the spa_vdev_remove_thread
224 */
225 static void
226 vdev_remove_initiate_sync(void *arg, dmu_tx_t *tx)
227 {
228 int vdev_id = (uintptr_t)arg;
229 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
230 vdev_t *vd = vdev_lookup_top(spa, vdev_id);
231 vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
232 objset_t *mos = spa->spa_dsl_pool->dp_meta_objset;
233 spa_vdev_removal_t *svr = NULL;
234 ASSERTV(uint64_t txg = dmu_tx_get_txg(tx));
235
236 ASSERT3P(vd->vdev_ops, !=, &vdev_raidz_ops);
237 svr = spa_vdev_removal_create(vd);
238
239 ASSERT(vd->vdev_removing);
240 ASSERT3P(vd->vdev_indirect_mapping, ==, NULL);
241
242 spa_feature_incr(spa, SPA_FEATURE_DEVICE_REMOVAL, tx);
243 if (spa_feature_is_enabled(spa, SPA_FEATURE_OBSOLETE_COUNTS)) {
244 /*
245 * By activating the OBSOLETE_COUNTS feature, we prevent
246 * the pool from being downgraded and ensure that the
247 * refcounts are precise.
248 */
249 spa_feature_incr(spa, SPA_FEATURE_OBSOLETE_COUNTS, tx);
250 uint64_t one = 1;
251 VERIFY0(zap_add(spa->spa_meta_objset, vd->vdev_top_zap,
252 VDEV_TOP_ZAP_OBSOLETE_COUNTS_ARE_PRECISE, sizeof (one), 1,
253 &one, tx));
254 ASSERT3U(vdev_obsolete_counts_are_precise(vd), !=, 0);
255 }
256
257 vic->vic_mapping_object = vdev_indirect_mapping_alloc(mos, tx);
258 vd->vdev_indirect_mapping =
259 vdev_indirect_mapping_open(mos, vic->vic_mapping_object);
260 vic->vic_births_object = vdev_indirect_births_alloc(mos, tx);
261 vd->vdev_indirect_births =
262 vdev_indirect_births_open(mos, vic->vic_births_object);
263 spa->spa_removing_phys.sr_removing_vdev = vd->vdev_id;
264 spa->spa_removing_phys.sr_start_time = gethrestime_sec();
265 spa->spa_removing_phys.sr_end_time = 0;
266 spa->spa_removing_phys.sr_state = DSS_SCANNING;
267 spa->spa_removing_phys.sr_to_copy = 0;
268 spa->spa_removing_phys.sr_copied = 0;
269
270 /*
271 * Note: We can't use vdev_stat's vs_alloc for sr_to_copy, because
272 * there may be space in the defer tree, which is free, but still
273 * counted in vs_alloc.
274 */
275 for (uint64_t i = 0; i < vd->vdev_ms_count; i++) {
276 metaslab_t *ms = vd->vdev_ms[i];
277 if (ms->ms_sm == NULL)
278 continue;
279
280 /*
281 * Sync tasks happen before metaslab_sync(), therefore
282 * smp_alloc and sm_alloc must be the same.
283 */
284 ASSERT3U(space_map_allocated(ms->ms_sm), ==,
285 ms->ms_sm->sm_phys->smp_alloc);
286
287 spa->spa_removing_phys.sr_to_copy +=
288 space_map_allocated(ms->ms_sm);
289
290 /*
291 * Space which we are freeing this txg does not need to
292 * be copied.
293 */
294 spa->spa_removing_phys.sr_to_copy -=
295 range_tree_space(ms->ms_freeing);
296
297 ASSERT0(range_tree_space(ms->ms_freed));
298 for (int t = 0; t < TXG_SIZE; t++)
299 ASSERT0(range_tree_space(ms->ms_allocating[t]));
300 }
301
302 /*
303 * Sync tasks are called before metaslab_sync(), so there should
304 * be no already-synced metaslabs in the TXG_CLEAN list.
305 */
306 ASSERT3P(txg_list_head(&vd->vdev_ms_list, TXG_CLEAN(txg)), ==, NULL);
307
308 spa_sync_removing_state(spa, tx);
309
310 /*
311 * All blocks that we need to read the most recent mapping must be
312 * stored on concrete vdevs. Therefore, we must dirty anything that
313 * is read before spa_remove_init(). Specifically, the
314 * spa_config_object. (Note that although we already modified the
315 * spa_config_object in spa_sync_removing_state, that may not have
316 * modified all blocks of the object.)
317 */
318 dmu_object_info_t doi;
319 VERIFY0(dmu_object_info(mos, DMU_POOL_DIRECTORY_OBJECT, &doi));
320 for (uint64_t offset = 0; offset < doi.doi_max_offset; ) {
321 dmu_buf_t *dbuf;
322 VERIFY0(dmu_buf_hold(mos, DMU_POOL_DIRECTORY_OBJECT,
323 offset, FTAG, &dbuf, 0));
324 dmu_buf_will_dirty(dbuf, tx);
325 offset += dbuf->db_size;
326 dmu_buf_rele(dbuf, FTAG);
327 }
328
329 /*
330 * Now that we've allocated the im_object, dirty the vdev to ensure
331 * that the object gets written to the config on disk.
332 */
333 vdev_config_dirty(vd);
334
335 zfs_dbgmsg("starting removal thread for vdev %llu (%p) in txg %llu "
336 "im_obj=%llu", vd->vdev_id, vd, dmu_tx_get_txg(tx),
337 vic->vic_mapping_object);
338
339 spa_history_log_internal(spa, "vdev remove started", tx,
340 "%s vdev %llu %s", spa_name(spa), vd->vdev_id,
341 (vd->vdev_path != NULL) ? vd->vdev_path : "-");
342 /*
343 * Setting spa_vdev_removal causes subsequent frees to call
344 * free_from_removing_vdev(). Note that we don't need any locking
345 * because we are the sync thread, and metaslab_free_impl() is only
346 * called from syncing context (potentially from a zio taskq thread,
347 * but in any case only when there are outstanding free i/os, which
348 * there are not).
349 */
350 ASSERT3P(spa->spa_vdev_removal, ==, NULL);
351 spa->spa_vdev_removal = svr;
352 svr->svr_thread = thread_create(NULL, 0,
353 spa_vdev_remove_thread, spa, 0, &p0, TS_RUN, minclsyspri);
354 }
355
356 /*
357 * When we are opening a pool, we must read the mapping for each
358 * indirect vdev in order from most recently removed to least
359 * recently removed. We do this because the blocks for the mapping
360 * of older indirect vdevs may be stored on more recently removed vdevs.
361 * In order to read each indirect mapping object, we must have
362 * initialized all more recently removed vdevs.
363 */
364 int
365 spa_remove_init(spa_t *spa)
366 {
367 int error;
368
369 error = zap_lookup(spa->spa_dsl_pool->dp_meta_objset,
370 DMU_POOL_DIRECTORY_OBJECT,
371 DMU_POOL_REMOVING, sizeof (uint64_t),
372 sizeof (spa->spa_removing_phys) / sizeof (uint64_t),
373 &spa->spa_removing_phys);
374
375 if (error == ENOENT) {
376 spa->spa_removing_phys.sr_state = DSS_NONE;
377 spa->spa_removing_phys.sr_removing_vdev = -1;
378 spa->spa_removing_phys.sr_prev_indirect_vdev = -1;
379 spa->spa_indirect_vdevs_loaded = B_TRUE;
380 return (0);
381 } else if (error != 0) {
382 return (error);
383 }
384
385 if (spa->spa_removing_phys.sr_state == DSS_SCANNING) {
386 /*
387 * We are currently removing a vdev. Create and
388 * initialize a spa_vdev_removal_t from the bonus
389 * buffer of the removing vdevs vdev_im_object, and
390 * initialize its partial mapping.
391 */
392 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
393 vdev_t *vd = vdev_lookup_top(spa,
394 spa->spa_removing_phys.sr_removing_vdev);
395
396 if (vd == NULL) {
397 spa_config_exit(spa, SCL_STATE, FTAG);
398 return (EINVAL);
399 }
400
401 vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
402
403 ASSERT(vdev_is_concrete(vd));
404 spa_vdev_removal_t *svr = spa_vdev_removal_create(vd);
405 ASSERT3U(svr->svr_vdev_id, ==, vd->vdev_id);
406 ASSERT(vd->vdev_removing);
407
408 vd->vdev_indirect_mapping = vdev_indirect_mapping_open(
409 spa->spa_meta_objset, vic->vic_mapping_object);
410 vd->vdev_indirect_births = vdev_indirect_births_open(
411 spa->spa_meta_objset, vic->vic_births_object);
412 spa_config_exit(spa, SCL_STATE, FTAG);
413
414 spa->spa_vdev_removal = svr;
415 }
416
417 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
418 uint64_t indirect_vdev_id =
419 spa->spa_removing_phys.sr_prev_indirect_vdev;
420 while (indirect_vdev_id != UINT64_MAX) {
421 vdev_t *vd = vdev_lookup_top(spa, indirect_vdev_id);
422 vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
423
424 ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
425 vd->vdev_indirect_mapping = vdev_indirect_mapping_open(
426 spa->spa_meta_objset, vic->vic_mapping_object);
427 vd->vdev_indirect_births = vdev_indirect_births_open(
428 spa->spa_meta_objset, vic->vic_births_object);
429
430 indirect_vdev_id = vic->vic_prev_indirect_vdev;
431 }
432 spa_config_exit(spa, SCL_STATE, FTAG);
433
434 /*
435 * Now that we've loaded all the indirect mappings, we can allow
436 * reads from other blocks (e.g. via predictive prefetch).
437 */
438 spa->spa_indirect_vdevs_loaded = B_TRUE;
439 return (0);
440 }
441
442 void
443 spa_restart_removal(spa_t *spa)
444 {
445 spa_vdev_removal_t *svr = spa->spa_vdev_removal;
446
447 if (svr == NULL)
448 return;
449
450 /*
451 * In general when this function is called there is no
452 * removal thread running. The only scenario where this
453 * is not true is during spa_import() where this function
454 * is called twice [once from spa_import_impl() and
455 * spa_async_resume()]. Thus, in the scenario where we
456 * import a pool that has an ongoing removal we don't
457 * want to spawn a second thread.
458 */
459 if (svr->svr_thread != NULL)
460 return;
461
462 if (!spa_writeable(spa))
463 return;
464
465 zfs_dbgmsg("restarting removal of %llu", svr->svr_vdev_id);
466 svr->svr_thread = thread_create(NULL, 0, spa_vdev_remove_thread, spa,
467 0, &p0, TS_RUN, minclsyspri);
468 }
469
470 /*
471 * Process freeing from a device which is in the middle of being removed.
472 * We must handle this carefully so that we attempt to copy freed data,
473 * and we correctly free already-copied data.
474 */
475 void
476 free_from_removing_vdev(vdev_t *vd, uint64_t offset, uint64_t size)
477 {
478 spa_t *spa = vd->vdev_spa;
479 spa_vdev_removal_t *svr = spa->spa_vdev_removal;
480 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
481 uint64_t txg = spa_syncing_txg(spa);
482 uint64_t max_offset_yet = 0;
483
484 ASSERT(vd->vdev_indirect_config.vic_mapping_object != 0);
485 ASSERT3U(vd->vdev_indirect_config.vic_mapping_object, ==,
486 vdev_indirect_mapping_object(vim));
487 ASSERT3U(vd->vdev_id, ==, svr->svr_vdev_id);
488
489 mutex_enter(&svr->svr_lock);
490
491 /*
492 * Remove the segment from the removing vdev's spacemap. This
493 * ensures that we will not attempt to copy this space (if the
494 * removal thread has not yet visited it), and also ensures
495 * that we know what is actually allocated on the new vdevs
496 * (needed if we cancel the removal).
497 *
498 * Note: we must do the metaslab_free_concrete() with the svr_lock
499 * held, so that the remove_thread can not load this metaslab and then
500 * visit this offset between the time that we metaslab_free_concrete()
501 * and when we check to see if it has been visited.
502 *
503 * Note: The checkpoint flag is set to false as having/taking
504 * a checkpoint and removing a device can't happen at the same
505 * time.
506 */
507 ASSERT(!spa_has_checkpoint(spa));
508 metaslab_free_concrete(vd, offset, size, B_FALSE);
509
510 uint64_t synced_size = 0;
511 uint64_t synced_offset = 0;
512 uint64_t max_offset_synced = vdev_indirect_mapping_max_offset(vim);
513 if (offset < max_offset_synced) {
514 /*
515 * The mapping for this offset is already on disk.
516 * Free from the new location.
517 *
518 * Note that we use svr_max_synced_offset because it is
519 * updated atomically with respect to the in-core mapping.
520 * By contrast, vim_max_offset is not.
521 *
522 * This block may be split between a synced entry and an
523 * in-flight or unvisited entry. Only process the synced
524 * portion of it here.
525 */
526 synced_size = MIN(size, max_offset_synced - offset);
527 synced_offset = offset;
528
529 ASSERT3U(max_offset_yet, <=, max_offset_synced);
530 max_offset_yet = max_offset_synced;
531
532 DTRACE_PROBE3(remove__free__synced,
533 spa_t *, spa,
534 uint64_t, offset,
535 uint64_t, synced_size);
536
537 size -= synced_size;
538 offset += synced_size;
539 }
540
541 /*
542 * Look at all in-flight txgs starting from the currently syncing one
543 * and see if a section of this free is being copied. By starting from
544 * this txg and iterating forward, we might find that this region
545 * was copied in two different txgs and handle it appropriately.
546 */
547 for (int i = 0; i < TXG_CONCURRENT_STATES; i++) {
548 int txgoff = (txg + i) & TXG_MASK;
549 if (size > 0 && offset < svr->svr_max_offset_to_sync[txgoff]) {
550 /*
551 * The mapping for this offset is in flight, and
552 * will be synced in txg+i.
553 */
554 uint64_t inflight_size = MIN(size,
555 svr->svr_max_offset_to_sync[txgoff] - offset);
556
557 DTRACE_PROBE4(remove__free__inflight,
558 spa_t *, spa,
559 uint64_t, offset,
560 uint64_t, inflight_size,
561 uint64_t, txg + i);
562
563 /*
564 * We copy data in order of increasing offset.
565 * Therefore the max_offset_to_sync[] must increase
566 * (or be zero, indicating that nothing is being
567 * copied in that txg).
568 */
569 if (svr->svr_max_offset_to_sync[txgoff] != 0) {
570 ASSERT3U(svr->svr_max_offset_to_sync[txgoff],
571 >=, max_offset_yet);
572 max_offset_yet =
573 svr->svr_max_offset_to_sync[txgoff];
574 }
575
576 /*
577 * We've already committed to copying this segment:
578 * we have allocated space elsewhere in the pool for
579 * it and have an IO outstanding to copy the data. We
580 * cannot free the space before the copy has
581 * completed, or else the copy IO might overwrite any
582 * new data. To free that space, we record the
583 * segment in the appropriate svr_frees tree and free
584 * the mapped space later, in the txg where we have
585 * completed the copy and synced the mapping (see
586 * vdev_mapping_sync).
587 */
588 range_tree_add(svr->svr_frees[txgoff],
589 offset, inflight_size);
590 size -= inflight_size;
591 offset += inflight_size;
592
593 /*
594 * This space is already accounted for as being
595 * done, because it is being copied in txg+i.
596 * However, if i!=0, then it is being copied in
597 * a future txg. If we crash after this txg
598 * syncs but before txg+i syncs, then the space
599 * will be free. Therefore we must account
600 * for the space being done in *this* txg
601 * (when it is freed) rather than the future txg
602 * (when it will be copied).
603 */
604 ASSERT3U(svr->svr_bytes_done[txgoff], >=,
605 inflight_size);
606 svr->svr_bytes_done[txgoff] -= inflight_size;
607 svr->svr_bytes_done[txg & TXG_MASK] += inflight_size;
608 }
609 }
610 ASSERT0(svr->svr_max_offset_to_sync[TXG_CLEAN(txg) & TXG_MASK]);
611
612 if (size > 0) {
613 /*
614 * The copy thread has not yet visited this offset. Ensure
615 * that it doesn't.
616 */
617
618 DTRACE_PROBE3(remove__free__unvisited,
619 spa_t *, spa,
620 uint64_t, offset,
621 uint64_t, size);
622
623 if (svr->svr_allocd_segs != NULL)
624 range_tree_clear(svr->svr_allocd_segs, offset, size);
625
626 /*
627 * Since we now do not need to copy this data, for
628 * accounting purposes we have done our job and can count
629 * it as completed.
630 */
631 svr->svr_bytes_done[txg & TXG_MASK] += size;
632 }
633 mutex_exit(&svr->svr_lock);
634
635 /*
636 * Now that we have dropped svr_lock, process the synced portion
637 * of this free.
638 */
639 if (synced_size > 0) {
640 vdev_indirect_mark_obsolete(vd, synced_offset, synced_size);
641
642 /*
643 * Note: this can only be called from syncing context,
644 * and the vdev_indirect_mapping is only changed from the
645 * sync thread, so we don't need svr_lock while doing
646 * metaslab_free_impl_cb.
647 */
648 boolean_t checkpoint = B_FALSE;
649 vdev_indirect_ops.vdev_op_remap(vd, synced_offset, synced_size,
650 metaslab_free_impl_cb, &checkpoint);
651 }
652 }
653
654 /*
655 * Stop an active removal and update the spa_removing phys.
656 */
657 static void
658 spa_finish_removal(spa_t *spa, dsl_scan_state_t state, dmu_tx_t *tx)
659 {
660 spa_vdev_removal_t *svr = spa->spa_vdev_removal;
661 ASSERT3U(dmu_tx_get_txg(tx), ==, spa_syncing_txg(spa));
662
663 /* Ensure the removal thread has completed before we free the svr. */
664 spa_vdev_remove_suspend(spa);
665
666 ASSERT(state == DSS_FINISHED || state == DSS_CANCELED);
667
668 if (state == DSS_FINISHED) {
669 spa_removing_phys_t *srp = &spa->spa_removing_phys;
670 vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id);
671 vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
672
673 if (srp->sr_prev_indirect_vdev != UINT64_MAX) {
674 vdev_t *pvd;
675 pvd = vdev_lookup_top(spa,
676 srp->sr_prev_indirect_vdev);
677 ASSERT3P(pvd->vdev_ops, ==, &vdev_indirect_ops);
678 }
679
680 vic->vic_prev_indirect_vdev = srp->sr_prev_indirect_vdev;
681 srp->sr_prev_indirect_vdev = vd->vdev_id;
682 }
683 spa->spa_removing_phys.sr_state = state;
684 spa->spa_removing_phys.sr_end_time = gethrestime_sec();
685
686 spa->spa_vdev_removal = NULL;
687 spa_vdev_removal_destroy(svr);
688
689 spa_sync_removing_state(spa, tx);
690
691 vdev_config_dirty(spa->spa_root_vdev);
692 }
693
694 static void
695 free_mapped_segment_cb(void *arg, uint64_t offset, uint64_t size)
696 {
697 vdev_t *vd = arg;
698 vdev_indirect_mark_obsolete(vd, offset, size);
699 boolean_t checkpoint = B_FALSE;
700 vdev_indirect_ops.vdev_op_remap(vd, offset, size,
701 metaslab_free_impl_cb, &checkpoint);
702 }
703
704 /*
705 * On behalf of the removal thread, syncs an incremental bit more of
706 * the indirect mapping to disk and updates the in-memory mapping.
707 * Called as a sync task in every txg that the removal thread makes progress.
708 */
709 static void
710 vdev_mapping_sync(void *arg, dmu_tx_t *tx)
711 {
712 spa_vdev_removal_t *svr = arg;
713 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
714 vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id);
715 ASSERTV(vdev_indirect_config_t *vic = &vd->vdev_indirect_config);
716 uint64_t txg = dmu_tx_get_txg(tx);
717 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
718
719 ASSERT(vic->vic_mapping_object != 0);
720 ASSERT3U(txg, ==, spa_syncing_txg(spa));
721
722 vdev_indirect_mapping_add_entries(vim,
723 &svr->svr_new_segments[txg & TXG_MASK], tx);
724 vdev_indirect_births_add_entry(vd->vdev_indirect_births,
725 vdev_indirect_mapping_max_offset(vim), dmu_tx_get_txg(tx), tx);
726
727 /*
728 * Free the copied data for anything that was freed while the
729 * mapping entries were in flight.
730 */
731 mutex_enter(&svr->svr_lock);
732 range_tree_vacate(svr->svr_frees[txg & TXG_MASK],
733 free_mapped_segment_cb, vd);
734 ASSERT3U(svr->svr_max_offset_to_sync[txg & TXG_MASK], >=,
735 vdev_indirect_mapping_max_offset(vim));
736 svr->svr_max_offset_to_sync[txg & TXG_MASK] = 0;
737 mutex_exit(&svr->svr_lock);
738
739 spa_sync_removing_state(spa, tx);
740 }
741
742 typedef struct vdev_copy_segment_arg {
743 spa_t *vcsa_spa;
744 dva_t *vcsa_dest_dva;
745 uint64_t vcsa_txg;
746 range_tree_t *vcsa_obsolete_segs;
747 } vdev_copy_segment_arg_t;
748
749 static void
750 unalloc_seg(void *arg, uint64_t start, uint64_t size)
751 {
752 vdev_copy_segment_arg_t *vcsa = arg;
753 spa_t *spa = vcsa->vcsa_spa;
754 blkptr_t bp = { { { {0} } } };
755
756 BP_SET_BIRTH(&bp, TXG_INITIAL, TXG_INITIAL);
757 BP_SET_LSIZE(&bp, size);
758 BP_SET_PSIZE(&bp, size);
759 BP_SET_COMPRESS(&bp, ZIO_COMPRESS_OFF);
760 BP_SET_CHECKSUM(&bp, ZIO_CHECKSUM_OFF);
761 BP_SET_TYPE(&bp, DMU_OT_NONE);
762 BP_SET_LEVEL(&bp, 0);
763 BP_SET_DEDUP(&bp, 0);
764 BP_SET_BYTEORDER(&bp, ZFS_HOST_BYTEORDER);
765
766 DVA_SET_VDEV(&bp.blk_dva[0], DVA_GET_VDEV(vcsa->vcsa_dest_dva));
767 DVA_SET_OFFSET(&bp.blk_dva[0],
768 DVA_GET_OFFSET(vcsa->vcsa_dest_dva) + start);
769 DVA_SET_ASIZE(&bp.blk_dva[0], size);
770
771 zio_free(spa, vcsa->vcsa_txg, &bp);
772 }
773
774 /*
775 * All reads and writes associated with a call to spa_vdev_copy_segment()
776 * are done.
777 */
778 static void
779 spa_vdev_copy_segment_done(zio_t *zio)
780 {
781 vdev_copy_segment_arg_t *vcsa = zio->io_private;
782
783 range_tree_vacate(vcsa->vcsa_obsolete_segs,
784 unalloc_seg, vcsa);
785 range_tree_destroy(vcsa->vcsa_obsolete_segs);
786 kmem_free(vcsa, sizeof (*vcsa));
787
788 spa_config_exit(zio->io_spa, SCL_STATE, zio->io_spa);
789 }
790
791 /*
792 * The write of the new location is done.
793 */
794 static void
795 spa_vdev_copy_segment_write_done(zio_t *zio)
796 {
797 vdev_copy_arg_t *vca = zio->io_private;
798
799 abd_free(zio->io_abd);
800
801 mutex_enter(&vca->vca_lock);
802 vca->vca_outstanding_bytes -= zio->io_size;
803 cv_signal(&vca->vca_cv);
804 mutex_exit(&vca->vca_lock);
805 }
806
807 /*
808 * The read of the old location is done. The parent zio is the write to
809 * the new location. Allow it to start.
810 */
811 static void
812 spa_vdev_copy_segment_read_done(zio_t *zio)
813 {
814 zio_nowait(zio_unique_parent(zio));
815 }
816
817 /*
818 * If the old and new vdevs are mirrors, we will read both sides of the old
819 * mirror, and write each copy to the corresponding side of the new mirror.
820 * If the old and new vdevs have a different number of children, we will do
821 * this as best as possible. Since we aren't verifying checksums, this
822 * ensures that as long as there's a good copy of the data, we'll have a
823 * good copy after the removal, even if there's silent damage to one side
824 * of the mirror. If we're removing a mirror that has some silent damage,
825 * we'll have exactly the same damage in the new location (assuming that
826 * the new location is also a mirror).
827 *
828 * We accomplish this by creating a tree of zio_t's, with as many writes as
829 * there are "children" of the new vdev (a non-redundant vdev counts as one
830 * child, a 2-way mirror has 2 children, etc). Each write has an associated
831 * read from a child of the old vdev. Typically there will be the same
832 * number of children of the old and new vdevs. However, if there are more
833 * children of the new vdev, some child(ren) of the old vdev will be issued
834 * multiple reads. If there are more children of the old vdev, some copies
835 * will be dropped.
836 *
837 * For example, the tree of zio_t's for a 2-way mirror is:
838 *
839 * null
840 * / \
841 * write(new vdev, child 0) write(new vdev, child 1)
842 * | |
843 * read(old vdev, child 0) read(old vdev, child 1)
844 *
845 * Child zio's complete before their parents complete. However, zio's
846 * created with zio_vdev_child_io() may be issued before their children
847 * complete. In this case we need to make sure that the children (reads)
848 * complete before the parents (writes) are *issued*. We do this by not
849 * calling zio_nowait() on each write until its corresponding read has
850 * completed.
851 *
852 * The spa_config_lock must be held while zio's created by
853 * zio_vdev_child_io() are in progress, to ensure that the vdev tree does
854 * not change (e.g. due to a concurrent "zpool attach/detach"). The "null"
855 * zio is needed to release the spa_config_lock after all the reads and
856 * writes complete. (Note that we can't grab the config lock for each read,
857 * because it is not reentrant - we could deadlock with a thread waiting
858 * for a write lock.)
859 */
860 static void
861 spa_vdev_copy_one_child(vdev_copy_arg_t *vca, zio_t *nzio,
862 vdev_t *source_vd, uint64_t source_offset,
863 vdev_t *dest_child_vd, uint64_t dest_offset, int dest_id, uint64_t size)
864 {
865 ASSERT3U(spa_config_held(nzio->io_spa, SCL_ALL, RW_READER), !=, 0);
866
867 mutex_enter(&vca->vca_lock);
868 vca->vca_outstanding_bytes += size;
869 mutex_exit(&vca->vca_lock);
870
871 abd_t *abd = abd_alloc_for_io(size, B_FALSE);
872
873 vdev_t *source_child_vd;
874 if (source_vd->vdev_ops == &vdev_mirror_ops && dest_id != -1) {
875 /*
876 * Source and dest are both mirrors. Copy from the same
877 * child id as we are copying to (wrapping around if there
878 * are more dest children than source children).
879 */
880 source_child_vd =
881 source_vd->vdev_child[dest_id % source_vd->vdev_children];
882 } else {
883 source_child_vd = source_vd;
884 }
885
886 zio_t *write_zio = zio_vdev_child_io(nzio, NULL,
887 dest_child_vd, dest_offset, abd, size,
888 ZIO_TYPE_WRITE, ZIO_PRIORITY_REMOVAL,
889 ZIO_FLAG_CANFAIL,
890 spa_vdev_copy_segment_write_done, vca);
891
892 zio_nowait(zio_vdev_child_io(write_zio, NULL,
893 source_child_vd, source_offset, abd, size,
894 ZIO_TYPE_READ, ZIO_PRIORITY_REMOVAL,
895 ZIO_FLAG_CANFAIL,
896 spa_vdev_copy_segment_read_done, vca));
897 }
898
899 /*
900 * Allocate a new location for this segment, and create the zio_t's to
901 * read from the old location and write to the new location.
902 */
903 static int
904 spa_vdev_copy_segment(vdev_t *vd, range_tree_t *segs,
905 uint64_t maxalloc, uint64_t txg,
906 vdev_copy_arg_t *vca, zio_alloc_list_t *zal)
907 {
908 metaslab_group_t *mg = vd->vdev_mg;
909 spa_t *spa = vd->vdev_spa;
910 spa_vdev_removal_t *svr = spa->spa_vdev_removal;
911 vdev_indirect_mapping_entry_t *entry;
912 dva_t dst = {{ 0 }};
913 uint64_t start = range_tree_min(segs);
914
915 ASSERT3U(maxalloc, <=, SPA_MAXBLOCKSIZE);
916
917 uint64_t size = range_tree_span(segs);
918 if (range_tree_span(segs) > maxalloc) {
919 /*
920 * We can't allocate all the segments. Prefer to end
921 * the allocation at the end of a segment, thus avoiding
922 * additional split blocks.
923 */
924 range_seg_t search;
925 avl_index_t where;
926 search.rs_start = start + maxalloc;
927 search.rs_end = search.rs_start;
928 range_seg_t *rs = avl_find(&segs->rt_root, &search, &where);
929 if (rs == NULL) {
930 rs = avl_nearest(&segs->rt_root, where, AVL_BEFORE);
931 } else {
932 rs = AVL_PREV(&segs->rt_root, rs);
933 }
934 if (rs != NULL) {
935 size = rs->rs_end - start;
936 } else {
937 /*
938 * There are no segments that end before maxalloc.
939 * I.e. the first segment is larger than maxalloc,
940 * so we must split it.
941 */
942 size = maxalloc;
943 }
944 }
945 ASSERT3U(size, <=, maxalloc);
946
947 int error = metaslab_alloc_dva(spa, mg->mg_class, size,
948 &dst, 0, NULL, txg, 0, zal, 0);
949 if (error != 0)
950 return (error);
951
952 /*
953 * Determine the ranges that are not actually needed. Offsets are
954 * relative to the start of the range to be copied (i.e. relative to the
955 * local variable "start").
956 */
957 range_tree_t *obsolete_segs = range_tree_create(NULL, NULL);
958
959 range_seg_t *rs = avl_first(&segs->rt_root);
960 ASSERT3U(rs->rs_start, ==, start);
961 uint64_t prev_seg_end = rs->rs_end;
962 while ((rs = AVL_NEXT(&segs->rt_root, rs)) != NULL) {
963 if (rs->rs_start >= start + size) {
964 break;
965 } else {
966 range_tree_add(obsolete_segs,
967 prev_seg_end - start,
968 rs->rs_start - prev_seg_end);
969 }
970 prev_seg_end = rs->rs_end;
971 }
972 /* We don't end in the middle of an obsolete range */
973 ASSERT3U(start + size, <=, prev_seg_end);
974
975 range_tree_clear(segs, start, size);
976
977 /*
978 * We can't have any padding of the allocated size, otherwise we will
979 * misunderstand what's allocated, and the size of the mapping.
980 * The caller ensures this will be true by passing in a size that is
981 * aligned to the worst (highest) ashift in the pool.
982 */
983 ASSERT3U(DVA_GET_ASIZE(&dst), ==, size);
984
985 entry = kmem_zalloc(sizeof (vdev_indirect_mapping_entry_t), KM_SLEEP);
986 DVA_MAPPING_SET_SRC_OFFSET(&entry->vime_mapping, start);
987 entry->vime_mapping.vimep_dst = dst;
988 if (spa_feature_is_enabled(spa, SPA_FEATURE_OBSOLETE_COUNTS)) {
989 entry->vime_obsolete_count = range_tree_space(obsolete_segs);
990 }
991
992 vdev_copy_segment_arg_t *vcsa = kmem_zalloc(sizeof (*vcsa), KM_SLEEP);
993 vcsa->vcsa_dest_dva = &entry->vime_mapping.vimep_dst;
994 vcsa->vcsa_obsolete_segs = obsolete_segs;
995 vcsa->vcsa_spa = spa;
996 vcsa->vcsa_txg = txg;
997
998 /*
999 * See comment before spa_vdev_copy_one_child().
1000 */
1001 spa_config_enter(spa, SCL_STATE, spa, RW_READER);
1002 zio_t *nzio = zio_null(spa->spa_txg_zio[txg & TXG_MASK], spa, NULL,
1003 spa_vdev_copy_segment_done, vcsa, 0);
1004 vdev_t *dest_vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dst));
1005 if (dest_vd->vdev_ops == &vdev_mirror_ops) {
1006 for (int i = 0; i < dest_vd->vdev_children; i++) {
1007 vdev_t *child = dest_vd->vdev_child[i];
1008 spa_vdev_copy_one_child(vca, nzio, vd, start,
1009 child, DVA_GET_OFFSET(&dst), i, size);
1010 }
1011 } else {
1012 spa_vdev_copy_one_child(vca, nzio, vd, start,
1013 dest_vd, DVA_GET_OFFSET(&dst), -1, size);
1014 }
1015 zio_nowait(nzio);
1016
1017 list_insert_tail(&svr->svr_new_segments[txg & TXG_MASK], entry);
1018 ASSERT3U(start + size, <=, vd->vdev_ms_count << vd->vdev_ms_shift);
1019 vdev_dirty(vd, 0, NULL, txg);
1020
1021 return (0);
1022 }
1023
1024 /*
1025 * Complete the removal of a toplevel vdev. This is called as a
1026 * synctask in the same txg that we will sync out the new config (to the
1027 * MOS object) which indicates that this vdev is indirect.
1028 */
1029 static void
1030 vdev_remove_complete_sync(void *arg, dmu_tx_t *tx)
1031 {
1032 spa_vdev_removal_t *svr = arg;
1033 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
1034 vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id);
1035
1036 ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
1037
1038 for (int i = 0; i < TXG_SIZE; i++) {
1039 ASSERT0(svr->svr_bytes_done[i]);
1040 }
1041
1042 ASSERT3U(spa->spa_removing_phys.sr_copied, ==,
1043 spa->spa_removing_phys.sr_to_copy);
1044
1045 vdev_destroy_spacemaps(vd, tx);
1046
1047 /* destroy leaf zaps, if any */
1048 ASSERT3P(svr->svr_zaplist, !=, NULL);
1049 for (nvpair_t *pair = nvlist_next_nvpair(svr->svr_zaplist, NULL);
1050 pair != NULL;
1051 pair = nvlist_next_nvpair(svr->svr_zaplist, pair)) {
1052 vdev_destroy_unlink_zap(vd, fnvpair_value_uint64(pair), tx);
1053 }
1054 fnvlist_free(svr->svr_zaplist);
1055
1056 spa_finish_removal(dmu_tx_pool(tx)->dp_spa, DSS_FINISHED, tx);
1057 /* vd->vdev_path is not available here */
1058 spa_history_log_internal(spa, "vdev remove completed", tx,
1059 "%s vdev %llu", spa_name(spa), vd->vdev_id);
1060 }
1061
1062 static void
1063 vdev_remove_enlist_zaps(vdev_t *vd, nvlist_t *zlist)
1064 {
1065 ASSERT3P(zlist, !=, NULL);
1066 ASSERT3P(vd->vdev_ops, !=, &vdev_raidz_ops);
1067
1068 if (vd->vdev_leaf_zap != 0) {
1069 char zkey[32];
1070 (void) snprintf(zkey, sizeof (zkey), "%s-%llu",
1071 VDEV_REMOVAL_ZAP_OBJS, (u_longlong_t)vd->vdev_leaf_zap);
1072 fnvlist_add_uint64(zlist, zkey, vd->vdev_leaf_zap);
1073 }
1074
1075 for (uint64_t id = 0; id < vd->vdev_children; id++) {
1076 vdev_remove_enlist_zaps(vd->vdev_child[id], zlist);
1077 }
1078 }
1079
1080 static void
1081 vdev_remove_replace_with_indirect(vdev_t *vd, uint64_t txg)
1082 {
1083 vdev_t *ivd;
1084 dmu_tx_t *tx;
1085 spa_t *spa = vd->vdev_spa;
1086 spa_vdev_removal_t *svr = spa->spa_vdev_removal;
1087
1088 /*
1089 * First, build a list of leaf zaps to be destroyed.
1090 * This is passed to the sync context thread,
1091 * which does the actual unlinking.
1092 */
1093 svr->svr_zaplist = fnvlist_alloc();
1094 vdev_remove_enlist_zaps(vd, svr->svr_zaplist);
1095
1096 ivd = vdev_add_parent(vd, &vdev_indirect_ops);
1097 ivd->vdev_removing = 0;
1098
1099 vd->vdev_leaf_zap = 0;
1100
1101 vdev_remove_child(ivd, vd);
1102 vdev_compact_children(ivd);
1103
1104 ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
1105
1106 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
1107 dsl_sync_task_nowait(spa->spa_dsl_pool, vdev_remove_complete_sync, svr,
1108 0, ZFS_SPACE_CHECK_NONE, tx);
1109 dmu_tx_commit(tx);
1110
1111 /*
1112 * Indicate that this thread has exited.
1113 * After this, we can not use svr.
1114 */
1115 mutex_enter(&svr->svr_lock);
1116 svr->svr_thread = NULL;
1117 cv_broadcast(&svr->svr_cv);
1118 mutex_exit(&svr->svr_lock);
1119 }
1120
1121 /*
1122 * Complete the removal of a toplevel vdev. This is called in open
1123 * context by the removal thread after we have copied all vdev's data.
1124 */
1125 static void
1126 vdev_remove_complete(spa_t *spa)
1127 {
1128 uint64_t txg;
1129
1130 /*
1131 * Wait for any deferred frees to be synced before we call
1132 * vdev_metaslab_fini()
1133 */
1134 txg_wait_synced(spa->spa_dsl_pool, 0);
1135 txg = spa_vdev_enter(spa);
1136 vdev_t *vd = vdev_lookup_top(spa, spa->spa_vdev_removal->svr_vdev_id);
1137
1138 sysevent_t *ev = spa_event_create(spa, vd, NULL,
1139 ESC_ZFS_VDEV_REMOVE_DEV);
1140
1141 zfs_dbgmsg("finishing device removal for vdev %llu in txg %llu",
1142 vd->vdev_id, txg);
1143
1144 /*
1145 * Discard allocation state.
1146 */
1147 if (vd->vdev_mg != NULL) {
1148 vdev_metaslab_fini(vd);
1149 metaslab_group_destroy(vd->vdev_mg);
1150 vd->vdev_mg = NULL;
1151 }
1152 ASSERT0(vd->vdev_stat.vs_space);
1153 ASSERT0(vd->vdev_stat.vs_dspace);
1154
1155 vdev_remove_replace_with_indirect(vd, txg);
1156
1157 /*
1158 * We now release the locks, allowing spa_sync to run and finish the
1159 * removal via vdev_remove_complete_sync in syncing context.
1160 *
1161 * Note that we hold on to the vdev_t that has been replaced. Since
1162 * it isn't part of the vdev tree any longer, it can't be concurrently
1163 * manipulated, even while we don't have the config lock.
1164 */
1165 (void) spa_vdev_exit(spa, NULL, txg, 0);
1166
1167 /*
1168 * Top ZAP should have been transferred to the indirect vdev in
1169 * vdev_remove_replace_with_indirect.
1170 */
1171 ASSERT0(vd->vdev_top_zap);
1172
1173 /*
1174 * Leaf ZAP should have been moved in vdev_remove_replace_with_indirect.
1175 */
1176 ASSERT0(vd->vdev_leaf_zap);
1177
1178 txg = spa_vdev_enter(spa);
1179 (void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
1180 /*
1181 * Request to update the config and the config cachefile.
1182 */
1183 vdev_config_dirty(spa->spa_root_vdev);
1184 (void) spa_vdev_exit(spa, vd, txg, 0);
1185
1186 if (ev != NULL)
1187 spa_event_post(ev);
1188 }
1189
1190 /*
1191 * Evacuates a segment of size at most max_alloc from the vdev
1192 * via repeated calls to spa_vdev_copy_segment. If an allocation
1193 * fails, the pool is probably too fragmented to handle such a
1194 * large size, so decrease max_alloc so that the caller will not try
1195 * this size again this txg.
1196 */
1197 static void
1198 spa_vdev_copy_impl(vdev_t *vd, spa_vdev_removal_t *svr, vdev_copy_arg_t *vca,
1199 uint64_t *max_alloc, dmu_tx_t *tx)
1200 {
1201 uint64_t txg = dmu_tx_get_txg(tx);
1202 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
1203
1204 mutex_enter(&svr->svr_lock);
1205
1206 /*
1207 * Determine how big of a chunk to copy. We can allocate up
1208 * to max_alloc bytes, and we can span up to vdev_removal_max_span
1209 * bytes of unallocated space at a time. "segs" will track the
1210 * allocated segments that we are copying. We may also be copying
1211 * free segments (of up to vdev_removal_max_span bytes).
1212 */
1213 range_tree_t *segs = range_tree_create(NULL, NULL);
1214 for (;;) {
1215 range_seg_t *rs = range_tree_first(svr->svr_allocd_segs);
1216
1217 if (rs == NULL)
1218 break;
1219
1220 uint64_t seg_length;
1221
1222 if (range_tree_is_empty(segs)) {
1223 /* need to truncate the first seg based on max_alloc */
1224 seg_length =
1225 MIN(rs->rs_end - rs->rs_start, *max_alloc);
1226 } else {
1227 if (rs->rs_start - range_tree_max(segs) >
1228 vdev_removal_max_span) {
1229 /*
1230 * Including this segment would cause us to
1231 * copy a larger unneeded chunk than is allowed.
1232 */
1233 break;
1234 } else if (rs->rs_end - range_tree_min(segs) >
1235 *max_alloc) {
1236 /*
1237 * This additional segment would extend past
1238 * max_alloc. Rather than splitting this
1239 * segment, leave it for the next mapping.
1240 */
1241 break;
1242 } else {
1243 seg_length = rs->rs_end - rs->rs_start;
1244 }
1245 }
1246
1247 range_tree_add(segs, rs->rs_start, seg_length);
1248 range_tree_remove(svr->svr_allocd_segs,
1249 rs->rs_start, seg_length);
1250 }
1251
1252 if (range_tree_is_empty(segs)) {
1253 mutex_exit(&svr->svr_lock);
1254 range_tree_destroy(segs);
1255 return;
1256 }
1257
1258 if (svr->svr_max_offset_to_sync[txg & TXG_MASK] == 0) {
1259 dsl_sync_task_nowait(dmu_tx_pool(tx), vdev_mapping_sync,
1260 svr, 0, ZFS_SPACE_CHECK_NONE, tx);
1261 }
1262
1263 svr->svr_max_offset_to_sync[txg & TXG_MASK] = range_tree_max(segs);
1264
1265 /*
1266 * Note: this is the amount of *allocated* space
1267 * that we are taking care of each txg.
1268 */
1269 svr->svr_bytes_done[txg & TXG_MASK] += range_tree_space(segs);
1270
1271 mutex_exit(&svr->svr_lock);
1272
1273 zio_alloc_list_t zal;
1274 metaslab_trace_init(&zal);
1275 uint64_t thismax = SPA_MAXBLOCKSIZE;
1276 while (!range_tree_is_empty(segs)) {
1277 int error = spa_vdev_copy_segment(vd,
1278 segs, thismax, txg, vca, &zal);
1279
1280 if (error == ENOSPC) {
1281 /*
1282 * Cut our segment in half, and don't try this
1283 * segment size again this txg. Note that the
1284 * allocation size must be aligned to the highest
1285 * ashift in the pool, so that the allocation will
1286 * not be padded out to a multiple of the ashift,
1287 * which could cause us to think that this mapping
1288 * is larger than we intended.
1289 */
1290 ASSERT3U(spa->spa_max_ashift, >=, SPA_MINBLOCKSHIFT);
1291 ASSERT3U(spa->spa_max_ashift, ==, spa->spa_min_ashift);
1292 uint64_t attempted =
1293 MIN(range_tree_span(segs), thismax);
1294 thismax = P2ROUNDUP(attempted / 2,
1295 1 << spa->spa_max_ashift);
1296 /*
1297 * The minimum-size allocation can not fail.
1298 */
1299 ASSERT3U(attempted, >, 1 << spa->spa_max_ashift);
1300 *max_alloc = attempted - (1 << spa->spa_max_ashift);
1301 } else {
1302 ASSERT0(error);
1303
1304 /*
1305 * We've performed an allocation, so reset the
1306 * alloc trace list.
1307 */
1308 metaslab_trace_fini(&zal);
1309 metaslab_trace_init(&zal);
1310 }
1311 }
1312 metaslab_trace_fini(&zal);
1313 range_tree_destroy(segs);
1314 }
1315
1316 /*
1317 * The removal thread operates in open context. It iterates over all
1318 * allocated space in the vdev, by loading each metaslab's spacemap.
1319 * For each contiguous segment of allocated space (capping the segment
1320 * size at SPA_MAXBLOCKSIZE), we:
1321 * - Allocate space for it on another vdev.
1322 * - Create a new mapping from the old location to the new location
1323 * (as a record in svr_new_segments).
1324 * - Initiate a physical read zio to get the data off the removing disk.
1325 * - In the read zio's done callback, initiate a physical write zio to
1326 * write it to the new vdev.
1327 * Note that all of this will take effect when a particular TXG syncs.
1328 * The sync thread ensures that all the phys reads and writes for the syncing
1329 * TXG have completed (see spa_txg_zio) and writes the new mappings to disk
1330 * (see vdev_mapping_sync()).
1331 */
1332 static void
1333 spa_vdev_remove_thread(void *arg)
1334 {
1335 spa_t *spa = arg;
1336 spa_vdev_removal_t *svr = spa->spa_vdev_removal;
1337 vdev_copy_arg_t vca;
1338 uint64_t max_alloc = zfs_remove_max_segment;
1339 uint64_t last_txg = 0;
1340
1341 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
1342 vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id);
1343 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
1344 uint64_t start_offset = vdev_indirect_mapping_max_offset(vim);
1345
1346 ASSERT3P(vd->vdev_ops, !=, &vdev_indirect_ops);
1347 ASSERT(vdev_is_concrete(vd));
1348 ASSERT(vd->vdev_removing);
1349 ASSERT(vd->vdev_indirect_config.vic_mapping_object != 0);
1350 ASSERT(vim != NULL);
1351
1352 mutex_init(&vca.vca_lock, NULL, MUTEX_DEFAULT, NULL);
1353 cv_init(&vca.vca_cv, NULL, CV_DEFAULT, NULL);
1354 vca.vca_outstanding_bytes = 0;
1355
1356 mutex_enter(&svr->svr_lock);
1357
1358 /*
1359 * Start from vim_max_offset so we pick up where we left off
1360 * if we are restarting the removal after opening the pool.
1361 */
1362 uint64_t msi;
1363 for (msi = start_offset >> vd->vdev_ms_shift;
1364 msi < vd->vdev_ms_count && !svr->svr_thread_exit; msi++) {
1365 metaslab_t *msp = vd->vdev_ms[msi];
1366 ASSERT3U(msi, <=, vd->vdev_ms_count);
1367
1368 ASSERT0(range_tree_space(svr->svr_allocd_segs));
1369
1370 mutex_enter(&msp->ms_sync_lock);
1371 mutex_enter(&msp->ms_lock);
1372
1373 /*
1374 * Assert nothing in flight -- ms_*tree is empty.
1375 */
1376 for (int i = 0; i < TXG_SIZE; i++) {
1377 ASSERT0(range_tree_space(msp->ms_allocating[i]));
1378 }
1379
1380 /*
1381 * If the metaslab has ever been allocated from (ms_sm!=NULL),
1382 * read the allocated segments from the space map object
1383 * into svr_allocd_segs. Since we do this while holding
1384 * svr_lock and ms_sync_lock, concurrent frees (which
1385 * would have modified the space map) will wait for us
1386 * to finish loading the spacemap, and then take the
1387 * appropriate action (see free_from_removing_vdev()).
1388 */
1389 if (msp->ms_sm != NULL) {
1390 space_map_t *sm = NULL;
1391
1392 /*
1393 * We have to open a new space map here, because
1394 * ms_sm's sm_length and sm_alloc may not reflect
1395 * what's in the object contents, if we are in between
1396 * metaslab_sync() and metaslab_sync_done().
1397 */
1398 VERIFY0(space_map_open(&sm,
1399 spa->spa_dsl_pool->dp_meta_objset,
1400 msp->ms_sm->sm_object, msp->ms_sm->sm_start,
1401 msp->ms_sm->sm_size, msp->ms_sm->sm_shift));
1402 space_map_update(sm);
1403 VERIFY0(space_map_load(sm, svr->svr_allocd_segs,
1404 SM_ALLOC));
1405 space_map_close(sm);
1406
1407 range_tree_walk(msp->ms_freeing,
1408 range_tree_remove, svr->svr_allocd_segs);
1409
1410 /*
1411 * When we are resuming from a paused removal (i.e.
1412 * when importing a pool with a removal in progress),
1413 * discard any state that we have already processed.
1414 */
1415 range_tree_clear(svr->svr_allocd_segs, 0, start_offset);
1416 }
1417 mutex_exit(&msp->ms_lock);
1418 mutex_exit(&msp->ms_sync_lock);
1419
1420 vca.vca_msp = msp;
1421 zfs_dbgmsg("copying %llu segments for metaslab %llu",
1422 avl_numnodes(&svr->svr_allocd_segs->rt_root),
1423 msp->ms_id);
1424
1425 while (!svr->svr_thread_exit &&
1426 !range_tree_is_empty(svr->svr_allocd_segs)) {
1427
1428 mutex_exit(&svr->svr_lock);
1429
1430 /*
1431 * We need to periodically drop the config lock so that
1432 * writers can get in. Additionally, we can't wait
1433 * for a txg to sync while holding a config lock
1434 * (since a waiting writer could cause a 3-way deadlock
1435 * with the sync thread, which also gets a config
1436 * lock for reader). So we can't hold the config lock
1437 * while calling dmu_tx_assign().
1438 */
1439 spa_config_exit(spa, SCL_CONFIG, FTAG);
1440
1441 /*
1442 * This delay will pause the removal around the point
1443 * specified by zfs_remove_max_bytes_pause. We do this
1444 * solely from the test suite or during debugging.
1445 */
1446 uint64_t bytes_copied =
1447 spa->spa_removing_phys.sr_copied;
1448 for (int i = 0; i < TXG_SIZE; i++)
1449 bytes_copied += svr->svr_bytes_done[i];
1450 while (zfs_remove_max_bytes_pause <= bytes_copied &&
1451 !svr->svr_thread_exit)
1452 delay(hz);
1453
1454 mutex_enter(&vca.vca_lock);
1455 while (vca.vca_outstanding_bytes >
1456 zfs_remove_max_copy_bytes) {
1457 cv_wait(&vca.vca_cv, &vca.vca_lock);
1458 }
1459 mutex_exit(&vca.vca_lock);
1460
1461 dmu_tx_t *tx =
1462 dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
1463 dmu_tx_hold_space(tx, SPA_MAXBLOCKSIZE);
1464 VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
1465 uint64_t txg = dmu_tx_get_txg(tx);
1466
1467 /*
1468 * Reacquire the vdev_config lock. The vdev_t
1469 * that we're removing may have changed, e.g. due
1470 * to a vdev_attach or vdev_detach.
1471 */
1472 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
1473 vd = vdev_lookup_top(spa, svr->svr_vdev_id);
1474
1475 if (txg != last_txg)
1476 max_alloc = zfs_remove_max_segment;
1477 last_txg = txg;
1478
1479 spa_vdev_copy_impl(vd, svr, &vca, &max_alloc, tx);
1480
1481 dmu_tx_commit(tx);
1482 mutex_enter(&svr->svr_lock);
1483 }
1484 }
1485
1486 mutex_exit(&svr->svr_lock);
1487
1488 spa_config_exit(spa, SCL_CONFIG, FTAG);
1489
1490 /*
1491 * Wait for all copies to finish before cleaning up the vca.
1492 */
1493 txg_wait_synced(spa->spa_dsl_pool, 0);
1494 ASSERT0(vca.vca_outstanding_bytes);
1495
1496 mutex_destroy(&vca.vca_lock);
1497 cv_destroy(&vca.vca_cv);
1498
1499 if (svr->svr_thread_exit) {
1500 mutex_enter(&svr->svr_lock);
1501 range_tree_vacate(svr->svr_allocd_segs, NULL, NULL);
1502 svr->svr_thread = NULL;
1503 cv_broadcast(&svr->svr_cv);
1504 mutex_exit(&svr->svr_lock);
1505 } else {
1506 ASSERT0(range_tree_space(svr->svr_allocd_segs));
1507 vdev_remove_complete(spa);
1508 }
1509 }
1510
1511 void
1512 spa_vdev_remove_suspend(spa_t *spa)
1513 {
1514 spa_vdev_removal_t *svr = spa->spa_vdev_removal;
1515
1516 if (svr == NULL)
1517 return;
1518
1519 mutex_enter(&svr->svr_lock);
1520 svr->svr_thread_exit = B_TRUE;
1521 while (svr->svr_thread != NULL)
1522 cv_wait(&svr->svr_cv, &svr->svr_lock);
1523 svr->svr_thread_exit = B_FALSE;
1524 mutex_exit(&svr->svr_lock);
1525 }
1526
1527 /* ARGSUSED */
1528 static int
1529 spa_vdev_remove_cancel_check(void *arg, dmu_tx_t *tx)
1530 {
1531 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
1532
1533 if (spa->spa_vdev_removal == NULL)
1534 return (ENOTACTIVE);
1535 return (0);
1536 }
1537
1538 /*
1539 * Cancel a removal by freeing all entries from the partial mapping
1540 * and marking the vdev as no longer being removing.
1541 */
1542 /* ARGSUSED */
1543 static void
1544 spa_vdev_remove_cancel_sync(void *arg, dmu_tx_t *tx)
1545 {
1546 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
1547 spa_vdev_removal_t *svr = spa->spa_vdev_removal;
1548 vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id);
1549 vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
1550 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
1551 objset_t *mos = spa->spa_meta_objset;
1552
1553 ASSERT3P(svr->svr_thread, ==, NULL);
1554
1555 spa_feature_decr(spa, SPA_FEATURE_DEVICE_REMOVAL, tx);
1556 if (vdev_obsolete_counts_are_precise(vd)) {
1557 spa_feature_decr(spa, SPA_FEATURE_OBSOLETE_COUNTS, tx);
1558 VERIFY0(zap_remove(spa->spa_meta_objset, vd->vdev_top_zap,
1559 VDEV_TOP_ZAP_OBSOLETE_COUNTS_ARE_PRECISE, tx));
1560 }
1561
1562 if (vdev_obsolete_sm_object(vd) != 0) {
1563 ASSERT(vd->vdev_obsolete_sm != NULL);
1564 ASSERT3U(vdev_obsolete_sm_object(vd), ==,
1565 space_map_object(vd->vdev_obsolete_sm));
1566
1567 space_map_free(vd->vdev_obsolete_sm, tx);
1568 VERIFY0(zap_remove(spa->spa_meta_objset, vd->vdev_top_zap,
1569 VDEV_TOP_ZAP_INDIRECT_OBSOLETE_SM, tx));
1570 space_map_close(vd->vdev_obsolete_sm);
1571 vd->vdev_obsolete_sm = NULL;
1572 spa_feature_decr(spa, SPA_FEATURE_OBSOLETE_COUNTS, tx);
1573 }
1574 for (int i = 0; i < TXG_SIZE; i++) {
1575 ASSERT(list_is_empty(&svr->svr_new_segments[i]));
1576 ASSERT3U(svr->svr_max_offset_to_sync[i], <=,
1577 vdev_indirect_mapping_max_offset(vim));
1578 }
1579
1580 for (uint64_t msi = 0; msi < vd->vdev_ms_count; msi++) {
1581 metaslab_t *msp = vd->vdev_ms[msi];
1582
1583 if (msp->ms_start >= vdev_indirect_mapping_max_offset(vim))
1584 break;
1585
1586 ASSERT0(range_tree_space(svr->svr_allocd_segs));
1587
1588 mutex_enter(&msp->ms_lock);
1589
1590 /*
1591 * Assert nothing in flight -- ms_*tree is empty.
1592 */
1593 for (int i = 0; i < TXG_SIZE; i++)
1594 ASSERT0(range_tree_space(msp->ms_allocating[i]));
1595 for (int i = 0; i < TXG_DEFER_SIZE; i++)
1596 ASSERT0(range_tree_space(msp->ms_defer[i]));
1597 ASSERT0(range_tree_space(msp->ms_freed));
1598
1599 if (msp->ms_sm != NULL) {
1600 /*
1601 * Assert that the in-core spacemap has the same
1602 * length as the on-disk one, so we can use the
1603 * existing in-core spacemap to load it from disk.
1604 */
1605 ASSERT3U(msp->ms_sm->sm_alloc, ==,
1606 msp->ms_sm->sm_phys->smp_alloc);
1607 ASSERT3U(msp->ms_sm->sm_length, ==,
1608 msp->ms_sm->sm_phys->smp_objsize);
1609
1610 mutex_enter(&svr->svr_lock);
1611 VERIFY0(space_map_load(msp->ms_sm,
1612 svr->svr_allocd_segs, SM_ALLOC));
1613 range_tree_walk(msp->ms_freeing,
1614 range_tree_remove, svr->svr_allocd_segs);
1615
1616 /*
1617 * Clear everything past what has been synced,
1618 * because we have not allocated mappings for it yet.
1619 */
1620 uint64_t syncd = vdev_indirect_mapping_max_offset(vim);
1621 uint64_t sm_end = msp->ms_sm->sm_start +
1622 msp->ms_sm->sm_size;
1623 if (sm_end > syncd)
1624 range_tree_clear(svr->svr_allocd_segs,
1625 syncd, sm_end - syncd);
1626
1627 mutex_exit(&svr->svr_lock);
1628 }
1629 mutex_exit(&msp->ms_lock);
1630
1631 mutex_enter(&svr->svr_lock);
1632 range_tree_vacate(svr->svr_allocd_segs,
1633 free_mapped_segment_cb, vd);
1634 mutex_exit(&svr->svr_lock);
1635 }
1636
1637 /*
1638 * Note: this must happen after we invoke free_mapped_segment_cb,
1639 * because it adds to the obsolete_segments.
1640 */
1641 range_tree_vacate(vd->vdev_obsolete_segments, NULL, NULL);
1642
1643 ASSERT3U(vic->vic_mapping_object, ==,
1644 vdev_indirect_mapping_object(vd->vdev_indirect_mapping));
1645 vdev_indirect_mapping_close(vd->vdev_indirect_mapping);
1646 vd->vdev_indirect_mapping = NULL;
1647 vdev_indirect_mapping_free(mos, vic->vic_mapping_object, tx);
1648 vic->vic_mapping_object = 0;
1649
1650 ASSERT3U(vic->vic_births_object, ==,
1651 vdev_indirect_births_object(vd->vdev_indirect_births));
1652 vdev_indirect_births_close(vd->vdev_indirect_births);
1653 vd->vdev_indirect_births = NULL;
1654 vdev_indirect_births_free(mos, vic->vic_births_object, tx);
1655 vic->vic_births_object = 0;
1656
1657 /*
1658 * We may have processed some frees from the removing vdev in this
1659 * txg, thus increasing svr_bytes_done; discard that here to
1660 * satisfy the assertions in spa_vdev_removal_destroy().
1661 * Note that future txg's can not have any bytes_done, because
1662 * future TXG's are only modified from open context, and we have
1663 * already shut down the copying thread.
1664 */
1665 svr->svr_bytes_done[dmu_tx_get_txg(tx) & TXG_MASK] = 0;
1666 spa_finish_removal(spa, DSS_CANCELED, tx);
1667
1668 vd->vdev_removing = B_FALSE;
1669 vdev_config_dirty(vd);
1670
1671 zfs_dbgmsg("canceled device removal for vdev %llu in %llu",
1672 vd->vdev_id, dmu_tx_get_txg(tx));
1673 spa_history_log_internal(spa, "vdev remove canceled", tx,
1674 "%s vdev %llu %s", spa_name(spa),
1675 vd->vdev_id, (vd->vdev_path != NULL) ? vd->vdev_path : "-");
1676 }
1677
1678 int
1679 spa_vdev_remove_cancel(spa_t *spa)
1680 {
1681 spa_vdev_remove_suspend(spa);
1682
1683 if (spa->spa_vdev_removal == NULL)
1684 return (ENOTACTIVE);
1685
1686 uint64_t vdid = spa->spa_vdev_removal->svr_vdev_id;
1687
1688 int error = dsl_sync_task(spa->spa_name, spa_vdev_remove_cancel_check,
1689 spa_vdev_remove_cancel_sync, NULL, 0,
1690 ZFS_SPACE_CHECK_EXTRA_RESERVED);
1691
1692 if (error == 0) {
1693 spa_config_enter(spa, SCL_ALLOC | SCL_VDEV, FTAG, RW_WRITER);
1694 vdev_t *vd = vdev_lookup_top(spa, vdid);
1695 metaslab_group_activate(vd->vdev_mg);
1696 spa_config_exit(spa, SCL_ALLOC | SCL_VDEV, FTAG);
1697 }
1698
1699 return (error);
1700 }
1701
1702 /*
1703 * Called every sync pass of every txg if there's a svr.
1704 */
1705 void
1706 svr_sync(spa_t *spa, dmu_tx_t *tx)
1707 {
1708 spa_vdev_removal_t *svr = spa->spa_vdev_removal;
1709 int txgoff = dmu_tx_get_txg(tx) & TXG_MASK;
1710
1711 /*
1712 * This check is necessary so that we do not dirty the
1713 * DIRECTORY_OBJECT via spa_sync_removing_state() when there
1714 * is nothing to do. Dirtying it every time would prevent us
1715 * from syncing-to-convergence.
1716 */
1717 if (svr->svr_bytes_done[txgoff] == 0)
1718 return;
1719
1720 /*
1721 * Update progress accounting.
1722 */
1723 spa->spa_removing_phys.sr_copied += svr->svr_bytes_done[txgoff];
1724 svr->svr_bytes_done[txgoff] = 0;
1725
1726 spa_sync_removing_state(spa, tx);
1727 }
1728
1729 static void
1730 vdev_remove_make_hole_and_free(vdev_t *vd)
1731 {
1732 uint64_t id = vd->vdev_id;
1733 spa_t *spa = vd->vdev_spa;
1734 vdev_t *rvd = spa->spa_root_vdev;
1735 boolean_t last_vdev = (id == (rvd->vdev_children - 1));
1736
1737 ASSERT(MUTEX_HELD(&spa_namespace_lock));
1738 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1739
1740 vdev_free(vd);
1741
1742 if (last_vdev) {
1743 vdev_compact_children(rvd);
1744 } else {
1745 vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops);
1746 vdev_add_child(rvd, vd);
1747 }
1748 vdev_config_dirty(rvd);
1749
1750 /*
1751 * Reassess the health of our root vdev.
1752 */
1753 vdev_reopen(rvd);
1754 }
1755
1756 /*
1757 * Remove a log device. The config lock is held for the specified TXG.
1758 */
1759 static int
1760 spa_vdev_remove_log(vdev_t *vd, uint64_t *txg)
1761 {
1762 metaslab_group_t *mg = vd->vdev_mg;
1763 spa_t *spa = vd->vdev_spa;
1764 int error = 0;
1765
1766 ASSERT(vd->vdev_islog);
1767 ASSERT(vd == vd->vdev_top);
1768
1769 /*
1770 * Stop allocating from this vdev.
1771 */
1772 metaslab_group_passivate(mg);
1773
1774 /*
1775 * Wait for the youngest allocations and frees to sync,
1776 * and then wait for the deferral of those frees to finish.
1777 */
1778 spa_vdev_config_exit(spa, NULL,
1779 *txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
1780
1781 /*
1782 * Evacuate the device. We don't hold the config lock as writer
1783 * since we need to do I/O but we do keep the
1784 * spa_namespace_lock held. Once this completes the device
1785 * should no longer have any blocks allocated on it.
1786 */
1787 if (vd->vdev_islog) {
1788 if (vd->vdev_stat.vs_alloc != 0)
1789 error = spa_reset_logs(spa);
1790 }
1791
1792 *txg = spa_vdev_config_enter(spa);
1793
1794 if (error != 0) {
1795 metaslab_group_activate(mg);
1796 return (error);
1797 }
1798 ASSERT0(vd->vdev_stat.vs_alloc);
1799
1800 /*
1801 * The evacuation succeeded. Remove any remaining MOS metadata
1802 * associated with this vdev, and wait for these changes to sync.
1803 */
1804 vd->vdev_removing = B_TRUE;
1805
1806 vdev_dirty_leaves(vd, VDD_DTL, *txg);
1807 vdev_config_dirty(vd);
1808
1809 spa_history_log_internal(spa, "vdev remove", NULL,
1810 "%s vdev %llu (log) %s", spa_name(spa), vd->vdev_id,
1811 (vd->vdev_path != NULL) ? vd->vdev_path : "-");
1812
1813 spa_vdev_config_exit(spa, NULL, *txg, 0, FTAG);
1814
1815 *txg = spa_vdev_config_enter(spa);
1816
1817 sysevent_t *ev = spa_event_create(spa, vd, NULL,
1818 ESC_ZFS_VDEV_REMOVE_DEV);
1819 ASSERT(MUTEX_HELD(&spa_namespace_lock));
1820 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1821
1822 /* The top ZAP should have been destroyed by vdev_remove_empty. */
1823 ASSERT0(vd->vdev_top_zap);
1824 /* The leaf ZAP should have been destroyed by vdev_dtl_sync. */
1825 ASSERT0(vd->vdev_leaf_zap);
1826
1827 (void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
1828
1829 if (list_link_active(&vd->vdev_state_dirty_node))
1830 vdev_state_clean(vd);
1831 if (list_link_active(&vd->vdev_config_dirty_node))
1832 vdev_config_clean(vd);
1833
1834 /*
1835 * Clean up the vdev namespace.
1836 */
1837 vdev_remove_make_hole_and_free(vd);
1838
1839 if (ev != NULL)
1840 spa_event_post(ev);
1841
1842 return (0);
1843 }
1844
1845 static int
1846 spa_vdev_remove_top_check(vdev_t *vd)
1847 {
1848 spa_t *spa = vd->vdev_spa;
1849
1850 if (vd != vd->vdev_top)
1851 return (SET_ERROR(ENOTSUP));
1852
1853 if (!spa_feature_is_enabled(spa, SPA_FEATURE_DEVICE_REMOVAL))
1854 return (SET_ERROR(ENOTSUP));
1855
1856 /*
1857 * There has to be enough free space to remove the
1858 * device and leave double the "slop" space (i.e. we
1859 * must leave at least 3% of the pool free, in addition to
1860 * the normal slop space).
1861 */
1862 if (dsl_dir_space_available(spa->spa_dsl_pool->dp_root_dir,
1863 NULL, 0, B_TRUE) <
1864 vd->vdev_stat.vs_dspace + spa_get_slop_space(spa)) {
1865 return (SET_ERROR(ENOSPC));
1866 }
1867
1868 /*
1869 * There can not be a removal in progress.
1870 */
1871 if (spa->spa_removing_phys.sr_state == DSS_SCANNING)
1872 return (SET_ERROR(EBUSY));
1873
1874 /*
1875 * The device must have all its data.
1876 */
1877 if (!vdev_dtl_empty(vd, DTL_MISSING) ||
1878 !vdev_dtl_empty(vd, DTL_OUTAGE))
1879 return (SET_ERROR(EBUSY));
1880
1881 /*
1882 * The device must be healthy.
1883 */
1884 if (!vdev_readable(vd))
1885 return (SET_ERROR(EIO));
1886
1887 /*
1888 * All vdevs in normal class must have the same ashift.
1889 */
1890 if (spa->spa_max_ashift != spa->spa_min_ashift) {
1891 return (SET_ERROR(EINVAL));
1892 }
1893
1894 /*
1895 * All vdevs in normal class must have the same ashift
1896 * and not be raidz.
1897 */
1898 vdev_t *rvd = spa->spa_root_vdev;
1899 int num_indirect = 0;
1900 for (uint64_t id = 0; id < rvd->vdev_children; id++) {
1901 vdev_t *cvd = rvd->vdev_child[id];
1902 if (cvd->vdev_ashift != 0 && !cvd->vdev_islog)
1903 ASSERT3U(cvd->vdev_ashift, ==, spa->spa_max_ashift);
1904 if (cvd->vdev_ops == &vdev_indirect_ops)
1905 num_indirect++;
1906 if (!vdev_is_concrete(cvd))
1907 continue;
1908 if (cvd->vdev_ops == &vdev_raidz_ops)
1909 return (SET_ERROR(EINVAL));
1910 /*
1911 * Need the mirror to be mirror of leaf vdevs only
1912 */
1913 if (cvd->vdev_ops == &vdev_mirror_ops) {
1914 for (uint64_t cid = 0;
1915 cid < cvd->vdev_children; cid++) {
1916 if (!cvd->vdev_child[cid]->vdev_ops->
1917 vdev_op_leaf)
1918 return (SET_ERROR(EINVAL));
1919 }
1920 }
1921 }
1922
1923 return (0);
1924 }
1925
1926 /*
1927 * Initiate removal of a top-level vdev, reducing the total space in the pool.
1928 * The config lock is held for the specified TXG. Once initiated,
1929 * evacuation of all allocated space (copying it to other vdevs) happens
1930 * in the background (see spa_vdev_remove_thread()), and can be canceled
1931 * (see spa_vdev_remove_cancel()). If successful, the vdev will
1932 * be transformed to an indirect vdev (see spa_vdev_remove_complete()).
1933 */
1934 static int
1935 spa_vdev_remove_top(vdev_t *vd, uint64_t *txg)
1936 {
1937 spa_t *spa = vd->vdev_spa;
1938 int error;
1939
1940 /*
1941 * Check for errors up-front, so that we don't waste time
1942 * passivating the metaslab group and clearing the ZIL if there
1943 * are errors.
1944 */
1945 error = spa_vdev_remove_top_check(vd);
1946 if (error != 0)
1947 return (error);
1948
1949 /*
1950 * Stop allocating from this vdev. Note that we must check
1951 * that this is not the only device in the pool before
1952 * passivating, otherwise we will not be able to make
1953 * progress because we can't allocate from any vdevs.
1954 * The above check for sufficient free space serves this
1955 * purpose.
1956 */
1957 metaslab_group_t *mg = vd->vdev_mg;
1958 metaslab_group_passivate(mg);
1959
1960 /*
1961 * Wait for the youngest allocations and frees to sync,
1962 * and then wait for the deferral of those frees to finish.
1963 */
1964 spa_vdev_config_exit(spa, NULL,
1965 *txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
1966
1967 /*
1968 * We must ensure that no "stubby" log blocks are allocated
1969 * on the device to be removed. These blocks could be
1970 * written at any time, including while we are in the middle
1971 * of copying them.
1972 */
1973 error = spa_reset_logs(spa);
1974
1975 *txg = spa_vdev_config_enter(spa);
1976
1977 /*
1978 * Things might have changed while the config lock was dropped
1979 * (e.g. space usage). Check for errors again.
1980 */
1981 if (error == 0)
1982 error = spa_vdev_remove_top_check(vd);
1983
1984 if (error != 0) {
1985 metaslab_group_activate(mg);
1986 return (error);
1987 }
1988
1989 vd->vdev_removing = B_TRUE;
1990
1991 vdev_dirty_leaves(vd, VDD_DTL, *txg);
1992 vdev_config_dirty(vd);
1993 dmu_tx_t *tx = dmu_tx_create_assigned(spa->spa_dsl_pool, *txg);
1994 dsl_sync_task_nowait(spa->spa_dsl_pool,
1995 vdev_remove_initiate_sync,
1996 (void *)(uintptr_t)vd->vdev_id, 0, ZFS_SPACE_CHECK_NONE, tx);
1997 dmu_tx_commit(tx);
1998
1999 return (0);
2000 }
2001
2002 /*
2003 * Remove a device from the pool.
2004 *
2005 * Removing a device from the vdev namespace requires several steps
2006 * and can take a significant amount of time. As a result we use
2007 * the spa_vdev_config_[enter/exit] functions which allow us to
2008 * grab and release the spa_config_lock while still holding the namespace
2009 * lock. During each step the configuration is synced out.
2010 */
2011 int
2012 spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare)
2013 {
2014 vdev_t *vd;
2015 nvlist_t **spares, **l2cache, *nv;
2016 uint64_t txg = 0;
2017 uint_t nspares, nl2cache;
2018 int error = 0;
2019 boolean_t locked = MUTEX_HELD(&spa_namespace_lock);
2020 sysevent_t *ev = NULL;
2021
2022 ASSERT(spa_writeable(spa));
2023
2024 if (!locked)
2025 txg = spa_vdev_enter(spa);
2026
2027 ASSERT(MUTEX_HELD(&spa_namespace_lock));
2028 if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
2029 error = (spa_has_checkpoint(spa)) ?
2030 ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
2031
2032 if (!locked)
2033 return (spa_vdev_exit(spa, NULL, txg, error));
2034
2035 return (error);
2036 }
2037
2038 vd = spa_lookup_by_guid(spa, guid, B_FALSE);
2039
2040 if (spa->spa_spares.sav_vdevs != NULL &&
2041 nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
2042 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 &&
2043 (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) {
2044 /*
2045 * Only remove the hot spare if it's not currently in use
2046 * in this pool.
2047 */
2048 if (vd == NULL || unspare) {
2049 if (vd == NULL)
2050 vd = spa_lookup_by_guid(spa, guid, B_TRUE);
2051 ev = spa_event_create(spa, vd, NULL,
2052 ESC_ZFS_VDEV_REMOVE_AUX);
2053
2054 char *nvstr = fnvlist_lookup_string(nv,
2055 ZPOOL_CONFIG_PATH);
2056 spa_history_log_internal(spa, "vdev remove", NULL,
2057 "%s vdev (%s) %s", spa_name(spa),
2058 VDEV_TYPE_SPARE, nvstr);
2059 spa_vdev_remove_aux(spa->spa_spares.sav_config,
2060 ZPOOL_CONFIG_SPARES, spares, nspares, nv);
2061 spa_load_spares(spa);
2062 spa->spa_spares.sav_sync = B_TRUE;
2063 } else {
2064 error = SET_ERROR(EBUSY);
2065 }
2066 } else if (spa->spa_l2cache.sav_vdevs != NULL &&
2067 nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
2068 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 &&
2069 (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) {
2070 char *nvstr = fnvlist_lookup_string(nv, ZPOOL_CONFIG_PATH);
2071 spa_history_log_internal(spa, "vdev remove", NULL,
2072 "%s vdev (%s) %s", spa_name(spa), VDEV_TYPE_L2CACHE, nvstr);
2073 /*
2074 * Cache devices can always be removed.
2075 */
2076 vd = spa_lookup_by_guid(spa, guid, B_TRUE);
2077 ev = spa_event_create(spa, vd, NULL, ESC_ZFS_VDEV_REMOVE_AUX);
2078 spa_vdev_remove_aux(spa->spa_l2cache.sav_config,
2079 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv);
2080 spa_load_l2cache(spa);
2081 spa->spa_l2cache.sav_sync = B_TRUE;
2082 } else if (vd != NULL && vd->vdev_islog) {
2083 ASSERT(!locked);
2084 error = spa_vdev_remove_log(vd, &txg);
2085 } else if (vd != NULL) {
2086 ASSERT(!locked);
2087 error = spa_vdev_remove_top(vd, &txg);
2088 } else {
2089 /*
2090 * There is no vdev of any kind with the specified guid.
2091 */
2092 error = SET_ERROR(ENOENT);
2093 }
2094
2095 if (!locked)
2096 error = spa_vdev_exit(spa, NULL, txg, error);
2097
2098 if (ev != NULL)
2099 spa_event_post(ev);
2100
2101 return (error);
2102 }
2103
2104 int
2105 spa_removal_get_stats(spa_t *spa, pool_removal_stat_t *prs)
2106 {
2107 prs->prs_state = spa->spa_removing_phys.sr_state;
2108
2109 if (prs->prs_state == DSS_NONE)
2110 return (SET_ERROR(ENOENT));
2111
2112 prs->prs_removing_vdev = spa->spa_removing_phys.sr_removing_vdev;
2113 prs->prs_start_time = spa->spa_removing_phys.sr_start_time;
2114 prs->prs_end_time = spa->spa_removing_phys.sr_end_time;
2115 prs->prs_to_copy = spa->spa_removing_phys.sr_to_copy;
2116 prs->prs_copied = spa->spa_removing_phys.sr_copied;
2117
2118 if (spa->spa_vdev_removal != NULL) {
2119 for (int i = 0; i < TXG_SIZE; i++) {
2120 prs->prs_copied +=
2121 spa->spa_vdev_removal->svr_bytes_done[i];
2122 }
2123 }
2124
2125 prs->prs_mapping_memory = 0;
2126 uint64_t indirect_vdev_id =
2127 spa->spa_removing_phys.sr_prev_indirect_vdev;
2128 while (indirect_vdev_id != -1) {
2129 vdev_t *vd = spa->spa_root_vdev->vdev_child[indirect_vdev_id];
2130 vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
2131 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
2132
2133 ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
2134 prs->prs_mapping_memory += vdev_indirect_mapping_size(vim);
2135 indirect_vdev_id = vic->vic_prev_indirect_vdev;
2136 }
2137
2138 return (0);
2139 }
2140
2141 #if defined(_KERNEL)
2142 module_param(zfs_remove_max_segment, int, 0644);
2143 MODULE_PARM_DESC(zfs_remove_max_segment,
2144 "Largest contiguous segment to allocate when removing device");
2145
2146 module_param(vdev_removal_max_span, int, 0644);
2147 MODULE_PARM_DESC(vdev_removal_max_span,
2148 "Largest span of free chunks a remap segment can span");
2149
2150 /* BEGIN CSTYLED */
2151 module_param(zfs_remove_max_bytes_pause, ulong, 0644);
2152 MODULE_PARM_DESC(zfs_remove_max_bytes_pause,
2153 "Pause device removal after this many bytes are copied "
2154 "(debug use only - causes removal to hang)");
2155 /* END CSTYLED */
2156
2157 EXPORT_SYMBOL(free_from_removing_vdev);
2158 EXPORT_SYMBOL(spa_removal_get_stats);
2159 EXPORT_SYMBOL(spa_remove_init);
2160 EXPORT_SYMBOL(spa_restart_removal);
2161 EXPORT_SYMBOL(spa_vdev_removal_destroy);
2162 EXPORT_SYMBOL(spa_vdev_remove);
2163 EXPORT_SYMBOL(spa_vdev_remove_cancel);
2164 EXPORT_SYMBOL(spa_vdev_remove_suspend);
2165 EXPORT_SYMBOL(svr_sync);
2166 #endif