]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/vdev_trim.c
1c54eae40355e51bcea9d306c3386e9b77bdbc7d
[mirror_zfs.git] / module / zfs / vdev_trim.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2016 by Delphix. All rights reserved.
24 * Copyright (c) 2019 by Lawrence Livermore National Security, LLC.
25 * Copyright (c) 2021 Hewlett Packard Enterprise Development LP
26 * Copyright 2023 RackTop Systems, Inc.
27 */
28
29 #include <sys/spa.h>
30 #include <sys/spa_impl.h>
31 #include <sys/txg.h>
32 #include <sys/vdev_impl.h>
33 #include <sys/vdev_trim.h>
34 #include <sys/metaslab_impl.h>
35 #include <sys/dsl_synctask.h>
36 #include <sys/zap.h>
37 #include <sys/dmu_tx.h>
38 #include <sys/arc_impl.h>
39
40 /*
41 * TRIM is a feature which is used to notify a SSD that some previously
42 * written space is no longer allocated by the pool. This is useful because
43 * writes to a SSD must be performed to blocks which have first been erased.
44 * Ensuring the SSD always has a supply of erased blocks for new writes
45 * helps prevent the performance from deteriorating.
46 *
47 * There are two supported TRIM methods; manual and automatic.
48 *
49 * Manual TRIM:
50 *
51 * A manual TRIM is initiated by running the 'zpool trim' command. A single
52 * 'vdev_trim' thread is created for each leaf vdev, and it is responsible for
53 * managing that vdev TRIM process. This involves iterating over all the
54 * metaslabs, calculating the unallocated space ranges, and then issuing the
55 * required TRIM I/Os.
56 *
57 * While a metaslab is being actively trimmed it is not eligible to perform
58 * new allocations. After traversing all of the metaslabs the thread is
59 * terminated. Finally, both the requested options and current progress of
60 * the TRIM are regularly written to the pool. This allows the TRIM to be
61 * suspended and resumed as needed.
62 *
63 * Automatic TRIM:
64 *
65 * An automatic TRIM is enabled by setting the 'autotrim' pool property
66 * to 'on'. When enabled, a `vdev_autotrim' thread is created for each
67 * top-level (not leaf) vdev in the pool. These threads perform the same
68 * core TRIM process as a manual TRIM, but with a few key differences.
69 *
70 * 1) Automatic TRIM happens continuously in the background and operates
71 * solely on recently freed blocks (ms_trim not ms_allocatable).
72 *
73 * 2) Each thread is associated with a top-level (not leaf) vdev. This has
74 * the benefit of simplifying the threading model, it makes it easier
75 * to coordinate administrative commands, and it ensures only a single
76 * metaslab is disabled at a time. Unlike manual TRIM, this means each
77 * 'vdev_autotrim' thread is responsible for issuing TRIM I/Os for its
78 * children.
79 *
80 * 3) There is no automatic TRIM progress information stored on disk, nor
81 * is it reported by 'zpool status'.
82 *
83 * While the automatic TRIM process is highly effective it is more likely
84 * than a manual TRIM to encounter tiny ranges. Ranges less than or equal to
85 * 'zfs_trim_extent_bytes_min' (32k) are considered too small to efficiently
86 * TRIM and are skipped. This means small amounts of freed space may not
87 * be automatically trimmed.
88 *
89 * Furthermore, devices with attached hot spares and devices being actively
90 * replaced are skipped. This is done to avoid adding additional stress to
91 * a potentially unhealthy device and to minimize the required rebuild time.
92 *
93 * For this reason it may be beneficial to occasionally manually TRIM a pool
94 * even when automatic TRIM is enabled.
95 */
96
97 /*
98 * Maximum size of TRIM I/O, ranges will be chunked in to 128MiB lengths.
99 */
100 static unsigned int zfs_trim_extent_bytes_max = 128 * 1024 * 1024;
101
102 /*
103 * Minimum size of TRIM I/O, extents smaller than 32Kib will be skipped.
104 */
105 static unsigned int zfs_trim_extent_bytes_min = 32 * 1024;
106
107 /*
108 * Skip uninitialized metaslabs during the TRIM process. This option is
109 * useful for pools constructed from large thinly-provisioned devices where
110 * TRIM operations are slow. As a pool ages an increasing fraction of
111 * the pools metaslabs will be initialized progressively degrading the
112 * usefulness of this option. This setting is stored when starting a
113 * manual TRIM and will persist for the duration of the requested TRIM.
114 */
115 unsigned int zfs_trim_metaslab_skip = 0;
116
117 /*
118 * Maximum number of queued TRIM I/Os per leaf vdev. The number of
119 * concurrent TRIM I/Os issued to the device is controlled by the
120 * zfs_vdev_trim_min_active and zfs_vdev_trim_max_active module options.
121 */
122 static unsigned int zfs_trim_queue_limit = 10;
123
124 /*
125 * The minimum number of transaction groups between automatic trims of a
126 * metaslab. This setting represents a trade-off between issuing more
127 * efficient TRIM operations, by allowing them to be aggregated longer,
128 * and issuing them promptly so the trimmed space is available. Note
129 * that this value is a minimum; metaslabs can be trimmed less frequently
130 * when there are a large number of ranges which need to be trimmed.
131 *
132 * Increasing this value will allow frees to be aggregated for a longer
133 * time. This can result is larger TRIM operations, and increased memory
134 * usage in order to track the ranges to be trimmed. Decreasing this value
135 * has the opposite effect. The default value of 32 was determined though
136 * testing to be a reasonable compromise.
137 */
138 static unsigned int zfs_trim_txg_batch = 32;
139
140 /*
141 * The trim_args are a control structure which describe how a leaf vdev
142 * should be trimmed. The core elements are the vdev, the metaslab being
143 * trimmed and a range tree containing the extents to TRIM. All provided
144 * ranges must be within the metaslab.
145 */
146 typedef struct trim_args {
147 /*
148 * These fields are set by the caller of vdev_trim_ranges().
149 */
150 vdev_t *trim_vdev; /* Leaf vdev to TRIM */
151 metaslab_t *trim_msp; /* Disabled metaslab */
152 range_tree_t *trim_tree; /* TRIM ranges (in metaslab) */
153 trim_type_t trim_type; /* Manual or auto TRIM */
154 uint64_t trim_extent_bytes_max; /* Maximum TRIM I/O size */
155 uint64_t trim_extent_bytes_min; /* Minimum TRIM I/O size */
156 enum trim_flag trim_flags; /* TRIM flags (secure) */
157
158 /*
159 * These fields are updated by vdev_trim_ranges().
160 */
161 hrtime_t trim_start_time; /* Start time */
162 uint64_t trim_bytes_done; /* Bytes trimmed */
163 } trim_args_t;
164
165 /*
166 * Determines whether a vdev_trim_thread() should be stopped.
167 */
168 static boolean_t
169 vdev_trim_should_stop(vdev_t *vd)
170 {
171 return (vd->vdev_trim_exit_wanted || !vdev_writeable(vd) ||
172 vd->vdev_detached || vd->vdev_top->vdev_removing ||
173 vd->vdev_top->vdev_rz_expanding);
174 }
175
176 /*
177 * Determines whether a vdev_autotrim_thread() should be stopped.
178 */
179 static boolean_t
180 vdev_autotrim_should_stop(vdev_t *tvd)
181 {
182 return (tvd->vdev_autotrim_exit_wanted ||
183 !vdev_writeable(tvd) || tvd->vdev_removing ||
184 tvd->vdev_rz_expanding ||
185 spa_get_autotrim(tvd->vdev_spa) == SPA_AUTOTRIM_OFF);
186 }
187
188 /*
189 * Wait for given number of kicks, return true if the wait is aborted due to
190 * vdev_autotrim_exit_wanted.
191 */
192 static boolean_t
193 vdev_autotrim_wait_kick(vdev_t *vd, int num_of_kick)
194 {
195 mutex_enter(&vd->vdev_autotrim_lock);
196 for (int i = 0; i < num_of_kick; i++) {
197 if (vd->vdev_autotrim_exit_wanted)
198 break;
199 cv_wait(&vd->vdev_autotrim_kick_cv, &vd->vdev_autotrim_lock);
200 }
201 boolean_t exit_wanted = vd->vdev_autotrim_exit_wanted;
202 mutex_exit(&vd->vdev_autotrim_lock);
203
204 return (exit_wanted);
205 }
206
207 /*
208 * The sync task for updating the on-disk state of a manual TRIM. This
209 * is scheduled by vdev_trim_change_state().
210 */
211 static void
212 vdev_trim_zap_update_sync(void *arg, dmu_tx_t *tx)
213 {
214 /*
215 * We pass in the guid instead of the vdev_t since the vdev may
216 * have been freed prior to the sync task being processed. This
217 * happens when a vdev is detached as we call spa_config_vdev_exit(),
218 * stop the trimming thread, schedule the sync task, and free
219 * the vdev. Later when the scheduled sync task is invoked, it would
220 * find that the vdev has been freed.
221 */
222 uint64_t guid = *(uint64_t *)arg;
223 uint64_t txg = dmu_tx_get_txg(tx);
224 kmem_free(arg, sizeof (uint64_t));
225
226 vdev_t *vd = spa_lookup_by_guid(tx->tx_pool->dp_spa, guid, B_FALSE);
227 if (vd == NULL || vd->vdev_top->vdev_removing ||
228 !vdev_is_concrete(vd) || vd->vdev_top->vdev_rz_expanding)
229 return;
230
231 uint64_t last_offset = vd->vdev_trim_offset[txg & TXG_MASK];
232 vd->vdev_trim_offset[txg & TXG_MASK] = 0;
233
234 VERIFY3U(vd->vdev_leaf_zap, !=, 0);
235
236 objset_t *mos = vd->vdev_spa->spa_meta_objset;
237
238 if (last_offset > 0 || vd->vdev_trim_last_offset == UINT64_MAX) {
239
240 if (vd->vdev_trim_last_offset == UINT64_MAX)
241 last_offset = 0;
242
243 vd->vdev_trim_last_offset = last_offset;
244 VERIFY0(zap_update(mos, vd->vdev_leaf_zap,
245 VDEV_LEAF_ZAP_TRIM_LAST_OFFSET,
246 sizeof (last_offset), 1, &last_offset, tx));
247 }
248
249 if (vd->vdev_trim_action_time > 0) {
250 uint64_t val = (uint64_t)vd->vdev_trim_action_time;
251 VERIFY0(zap_update(mos, vd->vdev_leaf_zap,
252 VDEV_LEAF_ZAP_TRIM_ACTION_TIME, sizeof (val),
253 1, &val, tx));
254 }
255
256 if (vd->vdev_trim_rate > 0) {
257 uint64_t rate = (uint64_t)vd->vdev_trim_rate;
258
259 if (rate == UINT64_MAX)
260 rate = 0;
261
262 VERIFY0(zap_update(mos, vd->vdev_leaf_zap,
263 VDEV_LEAF_ZAP_TRIM_RATE, sizeof (rate), 1, &rate, tx));
264 }
265
266 uint64_t partial = vd->vdev_trim_partial;
267 if (partial == UINT64_MAX)
268 partial = 0;
269
270 VERIFY0(zap_update(mos, vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_PARTIAL,
271 sizeof (partial), 1, &partial, tx));
272
273 uint64_t secure = vd->vdev_trim_secure;
274 if (secure == UINT64_MAX)
275 secure = 0;
276
277 VERIFY0(zap_update(mos, vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_SECURE,
278 sizeof (secure), 1, &secure, tx));
279
280
281 uint64_t trim_state = vd->vdev_trim_state;
282 VERIFY0(zap_update(mos, vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_STATE,
283 sizeof (trim_state), 1, &trim_state, tx));
284 }
285
286 /*
287 * Update the on-disk state of a manual TRIM. This is called to request
288 * that a TRIM be started/suspended/canceled, or to change one of the
289 * TRIM options (partial, secure, rate).
290 */
291 static void
292 vdev_trim_change_state(vdev_t *vd, vdev_trim_state_t new_state,
293 uint64_t rate, boolean_t partial, boolean_t secure)
294 {
295 ASSERT(MUTEX_HELD(&vd->vdev_trim_lock));
296 spa_t *spa = vd->vdev_spa;
297
298 if (new_state == vd->vdev_trim_state)
299 return;
300
301 /*
302 * Copy the vd's guid, this will be freed by the sync task.
303 */
304 uint64_t *guid = kmem_zalloc(sizeof (uint64_t), KM_SLEEP);
305 *guid = vd->vdev_guid;
306
307 /*
308 * If we're suspending, then preserve the original start time.
309 */
310 if (vd->vdev_trim_state != VDEV_TRIM_SUSPENDED) {
311 vd->vdev_trim_action_time = gethrestime_sec();
312 }
313
314 /*
315 * If we're activating, then preserve the requested rate and trim
316 * method. Setting the last offset and rate to UINT64_MAX is used
317 * as a sentinel to indicate they should be reset to default values.
318 */
319 if (new_state == VDEV_TRIM_ACTIVE) {
320 if (vd->vdev_trim_state == VDEV_TRIM_COMPLETE ||
321 vd->vdev_trim_state == VDEV_TRIM_CANCELED) {
322 vd->vdev_trim_last_offset = UINT64_MAX;
323 vd->vdev_trim_rate = UINT64_MAX;
324 vd->vdev_trim_partial = UINT64_MAX;
325 vd->vdev_trim_secure = UINT64_MAX;
326 }
327
328 if (rate != 0)
329 vd->vdev_trim_rate = rate;
330
331 if (partial != 0)
332 vd->vdev_trim_partial = partial;
333
334 if (secure != 0)
335 vd->vdev_trim_secure = secure;
336 }
337
338 vdev_trim_state_t old_state = vd->vdev_trim_state;
339 boolean_t resumed = (old_state == VDEV_TRIM_SUSPENDED);
340 vd->vdev_trim_state = new_state;
341
342 dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
343 VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
344 dsl_sync_task_nowait(spa_get_dsl(spa), vdev_trim_zap_update_sync,
345 guid, tx);
346
347 switch (new_state) {
348 case VDEV_TRIM_ACTIVE:
349 spa_event_notify(spa, vd, NULL,
350 resumed ? ESC_ZFS_TRIM_RESUME : ESC_ZFS_TRIM_START);
351 spa_history_log_internal(spa, "trim", tx,
352 "vdev=%s activated", vd->vdev_path);
353 break;
354 case VDEV_TRIM_SUSPENDED:
355 spa_event_notify(spa, vd, NULL, ESC_ZFS_TRIM_SUSPEND);
356 spa_history_log_internal(spa, "trim", tx,
357 "vdev=%s suspended", vd->vdev_path);
358 break;
359 case VDEV_TRIM_CANCELED:
360 if (old_state == VDEV_TRIM_ACTIVE ||
361 old_state == VDEV_TRIM_SUSPENDED) {
362 spa_event_notify(spa, vd, NULL, ESC_ZFS_TRIM_CANCEL);
363 spa_history_log_internal(spa, "trim", tx,
364 "vdev=%s canceled", vd->vdev_path);
365 }
366 break;
367 case VDEV_TRIM_COMPLETE:
368 spa_event_notify(spa, vd, NULL, ESC_ZFS_TRIM_FINISH);
369 spa_history_log_internal(spa, "trim", tx,
370 "vdev=%s complete", vd->vdev_path);
371 break;
372 default:
373 panic("invalid state %llu", (unsigned long long)new_state);
374 }
375
376 dmu_tx_commit(tx);
377
378 if (new_state != VDEV_TRIM_ACTIVE)
379 spa_notify_waiters(spa);
380 }
381
382 /*
383 * The zio_done_func_t done callback for each manual TRIM issued. It is
384 * responsible for updating the TRIM stats, reissuing failed TRIM I/Os,
385 * and limiting the number of in flight TRIM I/Os.
386 */
387 static void
388 vdev_trim_cb(zio_t *zio)
389 {
390 vdev_t *vd = zio->io_vd;
391
392 mutex_enter(&vd->vdev_trim_io_lock);
393 if (zio->io_error == ENXIO && !vdev_writeable(vd)) {
394 /*
395 * The I/O failed because the vdev was unavailable; roll the
396 * last offset back. (This works because spa_sync waits on
397 * spa_txg_zio before it runs sync tasks.)
398 */
399 uint64_t *offset =
400 &vd->vdev_trim_offset[zio->io_txg & TXG_MASK];
401 *offset = MIN(*offset, zio->io_offset);
402 } else {
403 if (zio->io_error != 0) {
404 vd->vdev_stat.vs_trim_errors++;
405 spa_iostats_trim_add(vd->vdev_spa, TRIM_TYPE_MANUAL,
406 0, 0, 0, 0, 1, zio->io_orig_size);
407 } else {
408 spa_iostats_trim_add(vd->vdev_spa, TRIM_TYPE_MANUAL,
409 1, zio->io_orig_size, 0, 0, 0, 0);
410 }
411
412 vd->vdev_trim_bytes_done += zio->io_orig_size;
413 }
414
415 ASSERT3U(vd->vdev_trim_inflight[TRIM_TYPE_MANUAL], >, 0);
416 vd->vdev_trim_inflight[TRIM_TYPE_MANUAL]--;
417 cv_broadcast(&vd->vdev_trim_io_cv);
418 mutex_exit(&vd->vdev_trim_io_lock);
419
420 spa_config_exit(vd->vdev_spa, SCL_STATE_ALL, vd);
421 }
422
423 /*
424 * The zio_done_func_t done callback for each automatic TRIM issued. It
425 * is responsible for updating the TRIM stats and limiting the number of
426 * in flight TRIM I/Os. Automatic TRIM I/Os are best effort and are
427 * never reissued on failure.
428 */
429 static void
430 vdev_autotrim_cb(zio_t *zio)
431 {
432 vdev_t *vd = zio->io_vd;
433
434 mutex_enter(&vd->vdev_trim_io_lock);
435
436 if (zio->io_error != 0) {
437 vd->vdev_stat.vs_trim_errors++;
438 spa_iostats_trim_add(vd->vdev_spa, TRIM_TYPE_AUTO,
439 0, 0, 0, 0, 1, zio->io_orig_size);
440 } else {
441 spa_iostats_trim_add(vd->vdev_spa, TRIM_TYPE_AUTO,
442 1, zio->io_orig_size, 0, 0, 0, 0);
443 }
444
445 ASSERT3U(vd->vdev_trim_inflight[TRIM_TYPE_AUTO], >, 0);
446 vd->vdev_trim_inflight[TRIM_TYPE_AUTO]--;
447 cv_broadcast(&vd->vdev_trim_io_cv);
448 mutex_exit(&vd->vdev_trim_io_lock);
449
450 spa_config_exit(vd->vdev_spa, SCL_STATE_ALL, vd);
451 }
452
453 /*
454 * The zio_done_func_t done callback for each TRIM issued via
455 * vdev_trim_simple(). It is responsible for updating the TRIM stats and
456 * limiting the number of in flight TRIM I/Os. Simple TRIM I/Os are best
457 * effort and are never reissued on failure.
458 */
459 static void
460 vdev_trim_simple_cb(zio_t *zio)
461 {
462 vdev_t *vd = zio->io_vd;
463
464 mutex_enter(&vd->vdev_trim_io_lock);
465
466 if (zio->io_error != 0) {
467 vd->vdev_stat.vs_trim_errors++;
468 spa_iostats_trim_add(vd->vdev_spa, TRIM_TYPE_SIMPLE,
469 0, 0, 0, 0, 1, zio->io_orig_size);
470 } else {
471 spa_iostats_trim_add(vd->vdev_spa, TRIM_TYPE_SIMPLE,
472 1, zio->io_orig_size, 0, 0, 0, 0);
473 }
474
475 ASSERT3U(vd->vdev_trim_inflight[TRIM_TYPE_SIMPLE], >, 0);
476 vd->vdev_trim_inflight[TRIM_TYPE_SIMPLE]--;
477 cv_broadcast(&vd->vdev_trim_io_cv);
478 mutex_exit(&vd->vdev_trim_io_lock);
479
480 spa_config_exit(vd->vdev_spa, SCL_STATE_ALL, vd);
481 }
482 /*
483 * Returns the average trim rate in bytes/sec for the ta->trim_vdev.
484 */
485 static uint64_t
486 vdev_trim_calculate_rate(trim_args_t *ta)
487 {
488 return (ta->trim_bytes_done * 1000 /
489 (NSEC2MSEC(gethrtime() - ta->trim_start_time) + 1));
490 }
491
492 /*
493 * Issues a physical TRIM and takes care of rate limiting (bytes/sec)
494 * and number of concurrent TRIM I/Os.
495 */
496 static int
497 vdev_trim_range(trim_args_t *ta, uint64_t start, uint64_t size)
498 {
499 vdev_t *vd = ta->trim_vdev;
500 spa_t *spa = vd->vdev_spa;
501 void *cb;
502
503 mutex_enter(&vd->vdev_trim_io_lock);
504
505 /*
506 * Limit manual TRIM I/Os to the requested rate. This does not
507 * apply to automatic TRIM since no per vdev rate can be specified.
508 */
509 if (ta->trim_type == TRIM_TYPE_MANUAL) {
510 while (vd->vdev_trim_rate != 0 && !vdev_trim_should_stop(vd) &&
511 vdev_trim_calculate_rate(ta) > vd->vdev_trim_rate) {
512 cv_timedwait_idle(&vd->vdev_trim_io_cv,
513 &vd->vdev_trim_io_lock, ddi_get_lbolt() +
514 MSEC_TO_TICK(10));
515 }
516 }
517 ta->trim_bytes_done += size;
518
519 /* Limit in flight trimming I/Os */
520 while (vd->vdev_trim_inflight[0] + vd->vdev_trim_inflight[1] +
521 vd->vdev_trim_inflight[2] >= zfs_trim_queue_limit) {
522 cv_wait(&vd->vdev_trim_io_cv, &vd->vdev_trim_io_lock);
523 }
524 vd->vdev_trim_inflight[ta->trim_type]++;
525 mutex_exit(&vd->vdev_trim_io_lock);
526
527 dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
528 VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
529 uint64_t txg = dmu_tx_get_txg(tx);
530
531 spa_config_enter(spa, SCL_STATE_ALL, vd, RW_READER);
532 mutex_enter(&vd->vdev_trim_lock);
533
534 if (ta->trim_type == TRIM_TYPE_MANUAL &&
535 vd->vdev_trim_offset[txg & TXG_MASK] == 0) {
536 uint64_t *guid = kmem_zalloc(sizeof (uint64_t), KM_SLEEP);
537 *guid = vd->vdev_guid;
538
539 /* This is the first write of this txg. */
540 dsl_sync_task_nowait(spa_get_dsl(spa),
541 vdev_trim_zap_update_sync, guid, tx);
542 }
543
544 /*
545 * We know the vdev_t will still be around since all consumers of
546 * vdev_free must stop the trimming first.
547 */
548 if ((ta->trim_type == TRIM_TYPE_MANUAL &&
549 vdev_trim_should_stop(vd)) ||
550 (ta->trim_type == TRIM_TYPE_AUTO &&
551 vdev_autotrim_should_stop(vd->vdev_top))) {
552 mutex_enter(&vd->vdev_trim_io_lock);
553 vd->vdev_trim_inflight[ta->trim_type]--;
554 mutex_exit(&vd->vdev_trim_io_lock);
555 spa_config_exit(vd->vdev_spa, SCL_STATE_ALL, vd);
556 mutex_exit(&vd->vdev_trim_lock);
557 dmu_tx_commit(tx);
558 return (SET_ERROR(EINTR));
559 }
560 mutex_exit(&vd->vdev_trim_lock);
561
562 if (ta->trim_type == TRIM_TYPE_MANUAL)
563 vd->vdev_trim_offset[txg & TXG_MASK] = start + size;
564
565 if (ta->trim_type == TRIM_TYPE_MANUAL) {
566 cb = vdev_trim_cb;
567 } else if (ta->trim_type == TRIM_TYPE_AUTO) {
568 cb = vdev_autotrim_cb;
569 } else {
570 cb = vdev_trim_simple_cb;
571 }
572
573 zio_nowait(zio_trim(spa->spa_txg_zio[txg & TXG_MASK], vd,
574 start, size, cb, NULL, ZIO_PRIORITY_TRIM, ZIO_FLAG_CANFAIL,
575 ta->trim_flags));
576 /* vdev_trim_cb and vdev_autotrim_cb release SCL_STATE_ALL */
577
578 dmu_tx_commit(tx);
579
580 return (0);
581 }
582
583 /*
584 * Issues TRIM I/Os for all ranges in the provided ta->trim_tree range tree.
585 * Additional parameters describing how the TRIM should be performed must
586 * be set in the trim_args structure. See the trim_args definition for
587 * additional information.
588 */
589 static int
590 vdev_trim_ranges(trim_args_t *ta)
591 {
592 vdev_t *vd = ta->trim_vdev;
593 zfs_btree_t *t = &ta->trim_tree->rt_root;
594 zfs_btree_index_t idx;
595 uint64_t extent_bytes_max = ta->trim_extent_bytes_max;
596 uint64_t extent_bytes_min = ta->trim_extent_bytes_min;
597 spa_t *spa = vd->vdev_spa;
598 int error = 0;
599
600 ta->trim_start_time = gethrtime();
601 ta->trim_bytes_done = 0;
602
603 for (range_seg_t *rs = zfs_btree_first(t, &idx); rs != NULL;
604 rs = zfs_btree_next(t, &idx, &idx)) {
605 uint64_t size = rs_get_end(rs, ta->trim_tree) - rs_get_start(rs,
606 ta->trim_tree);
607
608 if (extent_bytes_min && size < extent_bytes_min) {
609 spa_iostats_trim_add(spa, ta->trim_type,
610 0, 0, 1, size, 0, 0);
611 continue;
612 }
613
614 /* Split range into legally-sized physical chunks */
615 uint64_t writes_required = ((size - 1) / extent_bytes_max) + 1;
616
617 for (uint64_t w = 0; w < writes_required; w++) {
618 error = vdev_trim_range(ta, VDEV_LABEL_START_SIZE +
619 rs_get_start(rs, ta->trim_tree) +
620 (w *extent_bytes_max), MIN(size -
621 (w * extent_bytes_max), extent_bytes_max));
622 if (error != 0) {
623 goto done;
624 }
625 }
626 }
627
628 done:
629 /*
630 * Make sure all TRIMs for this metaslab have completed before
631 * returning. TRIM zios have lower priority over regular or syncing
632 * zios, so all TRIM zios for this metaslab must complete before the
633 * metaslab is re-enabled. Otherwise it's possible write zios to
634 * this metaslab could cut ahead of still queued TRIM zios for this
635 * metaslab causing corruption if the ranges overlap.
636 */
637 mutex_enter(&vd->vdev_trim_io_lock);
638 while (vd->vdev_trim_inflight[0] > 0) {
639 cv_wait(&vd->vdev_trim_io_cv, &vd->vdev_trim_io_lock);
640 }
641 mutex_exit(&vd->vdev_trim_io_lock);
642
643 return (error);
644 }
645
646 static void
647 vdev_trim_xlate_last_rs_end(void *arg, range_seg64_t *physical_rs)
648 {
649 uint64_t *last_rs_end = (uint64_t *)arg;
650
651 if (physical_rs->rs_end > *last_rs_end)
652 *last_rs_end = physical_rs->rs_end;
653 }
654
655 static void
656 vdev_trim_xlate_progress(void *arg, range_seg64_t *physical_rs)
657 {
658 vdev_t *vd = (vdev_t *)arg;
659
660 uint64_t size = physical_rs->rs_end - physical_rs->rs_start;
661 vd->vdev_trim_bytes_est += size;
662
663 if (vd->vdev_trim_last_offset >= physical_rs->rs_end) {
664 vd->vdev_trim_bytes_done += size;
665 } else if (vd->vdev_trim_last_offset > physical_rs->rs_start &&
666 vd->vdev_trim_last_offset <= physical_rs->rs_end) {
667 vd->vdev_trim_bytes_done +=
668 vd->vdev_trim_last_offset - physical_rs->rs_start;
669 }
670 }
671
672 /*
673 * Calculates the completion percentage of a manual TRIM.
674 */
675 static void
676 vdev_trim_calculate_progress(vdev_t *vd)
677 {
678 ASSERT(spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_READER) ||
679 spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_WRITER));
680 ASSERT(vd->vdev_leaf_zap != 0);
681
682 vd->vdev_trim_bytes_est = 0;
683 vd->vdev_trim_bytes_done = 0;
684
685 for (uint64_t i = 0; i < vd->vdev_top->vdev_ms_count; i++) {
686 metaslab_t *msp = vd->vdev_top->vdev_ms[i];
687 mutex_enter(&msp->ms_lock);
688
689 uint64_t ms_free = (msp->ms_size -
690 metaslab_allocated_space(msp)) /
691 vdev_get_ndisks(vd->vdev_top);
692
693 /*
694 * Convert the metaslab range to a physical range
695 * on our vdev. We use this to determine if we are
696 * in the middle of this metaslab range.
697 */
698 range_seg64_t logical_rs, physical_rs, remain_rs;
699 logical_rs.rs_start = msp->ms_start;
700 logical_rs.rs_end = msp->ms_start + msp->ms_size;
701
702 /* Metaslab space after this offset has not been trimmed. */
703 vdev_xlate(vd, &logical_rs, &physical_rs, &remain_rs);
704 if (vd->vdev_trim_last_offset <= physical_rs.rs_start) {
705 vd->vdev_trim_bytes_est += ms_free;
706 mutex_exit(&msp->ms_lock);
707 continue;
708 }
709
710 /* Metaslab space before this offset has been trimmed */
711 uint64_t last_rs_end = physical_rs.rs_end;
712 if (!vdev_xlate_is_empty(&remain_rs)) {
713 vdev_xlate_walk(vd, &remain_rs,
714 vdev_trim_xlate_last_rs_end, &last_rs_end);
715 }
716
717 if (vd->vdev_trim_last_offset > last_rs_end) {
718 vd->vdev_trim_bytes_done += ms_free;
719 vd->vdev_trim_bytes_est += ms_free;
720 mutex_exit(&msp->ms_lock);
721 continue;
722 }
723
724 /*
725 * If we get here, we're in the middle of trimming this
726 * metaslab. Load it and walk the free tree for more
727 * accurate progress estimation.
728 */
729 VERIFY0(metaslab_load(msp));
730
731 range_tree_t *rt = msp->ms_allocatable;
732 zfs_btree_t *bt = &rt->rt_root;
733 zfs_btree_index_t idx;
734 for (range_seg_t *rs = zfs_btree_first(bt, &idx);
735 rs != NULL; rs = zfs_btree_next(bt, &idx, &idx)) {
736 logical_rs.rs_start = rs_get_start(rs, rt);
737 logical_rs.rs_end = rs_get_end(rs, rt);
738
739 vdev_xlate_walk(vd, &logical_rs,
740 vdev_trim_xlate_progress, vd);
741 }
742 mutex_exit(&msp->ms_lock);
743 }
744 }
745
746 /*
747 * Load from disk the vdev's manual TRIM information. This includes the
748 * state, progress, and options provided when initiating the manual TRIM.
749 */
750 static int
751 vdev_trim_load(vdev_t *vd)
752 {
753 int err = 0;
754 ASSERT(spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_READER) ||
755 spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_WRITER));
756 ASSERT(vd->vdev_leaf_zap != 0);
757
758 if (vd->vdev_trim_state == VDEV_TRIM_ACTIVE ||
759 vd->vdev_trim_state == VDEV_TRIM_SUSPENDED) {
760 err = zap_lookup(vd->vdev_spa->spa_meta_objset,
761 vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_LAST_OFFSET,
762 sizeof (vd->vdev_trim_last_offset), 1,
763 &vd->vdev_trim_last_offset);
764 if (err == ENOENT) {
765 vd->vdev_trim_last_offset = 0;
766 err = 0;
767 }
768
769 if (err == 0) {
770 err = zap_lookup(vd->vdev_spa->spa_meta_objset,
771 vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_RATE,
772 sizeof (vd->vdev_trim_rate), 1,
773 &vd->vdev_trim_rate);
774 if (err == ENOENT) {
775 vd->vdev_trim_rate = 0;
776 err = 0;
777 }
778 }
779
780 if (err == 0) {
781 err = zap_lookup(vd->vdev_spa->spa_meta_objset,
782 vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_PARTIAL,
783 sizeof (vd->vdev_trim_partial), 1,
784 &vd->vdev_trim_partial);
785 if (err == ENOENT) {
786 vd->vdev_trim_partial = 0;
787 err = 0;
788 }
789 }
790
791 if (err == 0) {
792 err = zap_lookup(vd->vdev_spa->spa_meta_objset,
793 vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_SECURE,
794 sizeof (vd->vdev_trim_secure), 1,
795 &vd->vdev_trim_secure);
796 if (err == ENOENT) {
797 vd->vdev_trim_secure = 0;
798 err = 0;
799 }
800 }
801 }
802
803 vdev_trim_calculate_progress(vd);
804
805 return (err);
806 }
807
808 static void
809 vdev_trim_xlate_range_add(void *arg, range_seg64_t *physical_rs)
810 {
811 trim_args_t *ta = arg;
812 vdev_t *vd = ta->trim_vdev;
813
814 /*
815 * Only a manual trim will be traversing the vdev sequentially.
816 * For an auto trim all valid ranges should be added.
817 */
818 if (ta->trim_type == TRIM_TYPE_MANUAL) {
819
820 /* Only add segments that we have not visited yet */
821 if (physical_rs->rs_end <= vd->vdev_trim_last_offset)
822 return;
823
824 /* Pick up where we left off mid-range. */
825 if (vd->vdev_trim_last_offset > physical_rs->rs_start) {
826 ASSERT3U(physical_rs->rs_end, >,
827 vd->vdev_trim_last_offset);
828 physical_rs->rs_start = vd->vdev_trim_last_offset;
829 }
830 }
831
832 ASSERT3U(physical_rs->rs_end, >, physical_rs->rs_start);
833
834 range_tree_add(ta->trim_tree, physical_rs->rs_start,
835 physical_rs->rs_end - physical_rs->rs_start);
836 }
837
838 /*
839 * Convert the logical range into physical ranges and add them to the
840 * range tree passed in the trim_args_t.
841 */
842 static void
843 vdev_trim_range_add(void *arg, uint64_t start, uint64_t size)
844 {
845 trim_args_t *ta = arg;
846 vdev_t *vd = ta->trim_vdev;
847 range_seg64_t logical_rs;
848 logical_rs.rs_start = start;
849 logical_rs.rs_end = start + size;
850
851 /*
852 * Every range to be trimmed must be part of ms_allocatable.
853 * When ZFS_DEBUG_TRIM is set load the metaslab to verify this
854 * is always the case.
855 */
856 if (zfs_flags & ZFS_DEBUG_TRIM) {
857 metaslab_t *msp = ta->trim_msp;
858 VERIFY0(metaslab_load(msp));
859 VERIFY3B(msp->ms_loaded, ==, B_TRUE);
860 VERIFY(range_tree_contains(msp->ms_allocatable, start, size));
861 }
862
863 ASSERT(vd->vdev_ops->vdev_op_leaf);
864 vdev_xlate_walk(vd, &logical_rs, vdev_trim_xlate_range_add, arg);
865 }
866
867 /*
868 * Each manual TRIM thread is responsible for trimming the unallocated
869 * space for each leaf vdev. This is accomplished by sequentially iterating
870 * over its top-level metaslabs and issuing TRIM I/O for the space described
871 * by its ms_allocatable. While a metaslab is undergoing trimming it is
872 * not eligible for new allocations.
873 */
874 static __attribute__((noreturn)) void
875 vdev_trim_thread(void *arg)
876 {
877 vdev_t *vd = arg;
878 spa_t *spa = vd->vdev_spa;
879 trim_args_t ta;
880 int error = 0;
881
882 /*
883 * The VDEV_LEAF_ZAP_TRIM_* entries may have been updated by
884 * vdev_trim(). Wait for the updated values to be reflected
885 * in the zap in order to start with the requested settings.
886 */
887 txg_wait_synced(spa_get_dsl(vd->vdev_spa), 0);
888
889 ASSERT(vdev_is_concrete(vd));
890 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
891
892 vd->vdev_trim_last_offset = 0;
893 vd->vdev_trim_rate = 0;
894 vd->vdev_trim_partial = 0;
895 vd->vdev_trim_secure = 0;
896
897 VERIFY0(vdev_trim_load(vd));
898
899 ta.trim_vdev = vd;
900 ta.trim_extent_bytes_max = zfs_trim_extent_bytes_max;
901 ta.trim_extent_bytes_min = zfs_trim_extent_bytes_min;
902 ta.trim_tree = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0);
903 ta.trim_type = TRIM_TYPE_MANUAL;
904 ta.trim_flags = 0;
905
906 /*
907 * When a secure TRIM has been requested infer that the intent
908 * is that everything must be trimmed. Override the default
909 * minimum TRIM size to prevent ranges from being skipped.
910 */
911 if (vd->vdev_trim_secure) {
912 ta.trim_flags |= ZIO_TRIM_SECURE;
913 ta.trim_extent_bytes_min = SPA_MINBLOCKSIZE;
914 }
915
916 uint64_t ms_count = 0;
917 for (uint64_t i = 0; !vd->vdev_detached &&
918 i < vd->vdev_top->vdev_ms_count; i++) {
919 metaslab_t *msp = vd->vdev_top->vdev_ms[i];
920
921 /*
922 * If we've expanded the top-level vdev or it's our
923 * first pass, calculate our progress.
924 */
925 if (vd->vdev_top->vdev_ms_count != ms_count) {
926 vdev_trim_calculate_progress(vd);
927 ms_count = vd->vdev_top->vdev_ms_count;
928 }
929
930 spa_config_exit(spa, SCL_CONFIG, FTAG);
931 metaslab_disable(msp);
932 mutex_enter(&msp->ms_lock);
933 VERIFY0(metaslab_load(msp));
934
935 /*
936 * If a partial TRIM was requested skip metaslabs which have
937 * never been initialized and thus have never been written.
938 */
939 if (msp->ms_sm == NULL && vd->vdev_trim_partial) {
940 mutex_exit(&msp->ms_lock);
941 metaslab_enable(msp, B_FALSE, B_FALSE);
942 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
943 vdev_trim_calculate_progress(vd);
944 continue;
945 }
946
947 ta.trim_msp = msp;
948 range_tree_walk(msp->ms_allocatable, vdev_trim_range_add, &ta);
949 range_tree_vacate(msp->ms_trim, NULL, NULL);
950 mutex_exit(&msp->ms_lock);
951
952 error = vdev_trim_ranges(&ta);
953 metaslab_enable(msp, B_TRUE, B_FALSE);
954 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
955
956 range_tree_vacate(ta.trim_tree, NULL, NULL);
957 if (error != 0)
958 break;
959 }
960
961 spa_config_exit(spa, SCL_CONFIG, FTAG);
962
963 range_tree_destroy(ta.trim_tree);
964
965 mutex_enter(&vd->vdev_trim_lock);
966 if (!vd->vdev_trim_exit_wanted) {
967 if (vdev_writeable(vd)) {
968 vdev_trim_change_state(vd, VDEV_TRIM_COMPLETE,
969 vd->vdev_trim_rate, vd->vdev_trim_partial,
970 vd->vdev_trim_secure);
971 } else if (vd->vdev_faulted) {
972 vdev_trim_change_state(vd, VDEV_TRIM_CANCELED,
973 vd->vdev_trim_rate, vd->vdev_trim_partial,
974 vd->vdev_trim_secure);
975 }
976 }
977 ASSERT(vd->vdev_trim_thread != NULL || vd->vdev_trim_inflight[0] == 0);
978
979 /*
980 * Drop the vdev_trim_lock while we sync out the txg since it's
981 * possible that a device might be trying to come online and must
982 * check to see if it needs to restart a trim. That thread will be
983 * holding the spa_config_lock which would prevent the txg_wait_synced
984 * from completing.
985 */
986 mutex_exit(&vd->vdev_trim_lock);
987 txg_wait_synced(spa_get_dsl(spa), 0);
988 mutex_enter(&vd->vdev_trim_lock);
989
990 vd->vdev_trim_thread = NULL;
991 cv_broadcast(&vd->vdev_trim_cv);
992 mutex_exit(&vd->vdev_trim_lock);
993
994 thread_exit();
995 }
996
997 /*
998 * Initiates a manual TRIM for the vdev_t. Callers must hold vdev_trim_lock,
999 * the vdev_t must be a leaf and cannot already be manually trimming.
1000 */
1001 void
1002 vdev_trim(vdev_t *vd, uint64_t rate, boolean_t partial, boolean_t secure)
1003 {
1004 ASSERT(MUTEX_HELD(&vd->vdev_trim_lock));
1005 ASSERT(vd->vdev_ops->vdev_op_leaf);
1006 ASSERT(vdev_is_concrete(vd));
1007 ASSERT3P(vd->vdev_trim_thread, ==, NULL);
1008 ASSERT(!vd->vdev_detached);
1009 ASSERT(!vd->vdev_trim_exit_wanted);
1010 ASSERT(!vd->vdev_top->vdev_removing);
1011 ASSERT(!vd->vdev_rz_expanding);
1012
1013 vdev_trim_change_state(vd, VDEV_TRIM_ACTIVE, rate, partial, secure);
1014 vd->vdev_trim_thread = thread_create(NULL, 0,
1015 vdev_trim_thread, vd, 0, &p0, TS_RUN, maxclsyspri);
1016 }
1017
1018 /*
1019 * Wait for the trimming thread to be terminated (canceled or stopped).
1020 */
1021 static void
1022 vdev_trim_stop_wait_impl(vdev_t *vd)
1023 {
1024 ASSERT(MUTEX_HELD(&vd->vdev_trim_lock));
1025
1026 while (vd->vdev_trim_thread != NULL)
1027 cv_wait(&vd->vdev_trim_cv, &vd->vdev_trim_lock);
1028
1029 ASSERT3P(vd->vdev_trim_thread, ==, NULL);
1030 vd->vdev_trim_exit_wanted = B_FALSE;
1031 }
1032
1033 /*
1034 * Wait for vdev trim threads which were listed to cleanly exit.
1035 */
1036 void
1037 vdev_trim_stop_wait(spa_t *spa, list_t *vd_list)
1038 {
1039 (void) spa;
1040 vdev_t *vd;
1041
1042 ASSERT(MUTEX_HELD(&spa_namespace_lock));
1043
1044 while ((vd = list_remove_head(vd_list)) != NULL) {
1045 mutex_enter(&vd->vdev_trim_lock);
1046 vdev_trim_stop_wait_impl(vd);
1047 mutex_exit(&vd->vdev_trim_lock);
1048 }
1049 }
1050
1051 /*
1052 * Stop trimming a device, with the resultant trimming state being tgt_state.
1053 * For blocking behavior pass NULL for vd_list. Otherwise, when a list_t is
1054 * provided the stopping vdev is inserted in to the list. Callers are then
1055 * required to call vdev_trim_stop_wait() to block for all the trim threads
1056 * to exit. The caller must hold vdev_trim_lock and must not be writing to
1057 * the spa config, as the trimming thread may try to enter the config as a
1058 * reader before exiting.
1059 */
1060 void
1061 vdev_trim_stop(vdev_t *vd, vdev_trim_state_t tgt_state, list_t *vd_list)
1062 {
1063 ASSERT(!spa_config_held(vd->vdev_spa, SCL_CONFIG|SCL_STATE, RW_WRITER));
1064 ASSERT(MUTEX_HELD(&vd->vdev_trim_lock));
1065 ASSERT(vd->vdev_ops->vdev_op_leaf);
1066 ASSERT(vdev_is_concrete(vd));
1067
1068 /*
1069 * Allow cancel requests to proceed even if the trim thread has
1070 * stopped.
1071 */
1072 if (vd->vdev_trim_thread == NULL && tgt_state != VDEV_TRIM_CANCELED)
1073 return;
1074
1075 vdev_trim_change_state(vd, tgt_state, 0, 0, 0);
1076 vd->vdev_trim_exit_wanted = B_TRUE;
1077
1078 if (vd_list == NULL) {
1079 vdev_trim_stop_wait_impl(vd);
1080 } else {
1081 ASSERT(MUTEX_HELD(&spa_namespace_lock));
1082 list_insert_tail(vd_list, vd);
1083 }
1084 }
1085
1086 /*
1087 * Requests that all listed vdevs stop trimming.
1088 */
1089 static void
1090 vdev_trim_stop_all_impl(vdev_t *vd, vdev_trim_state_t tgt_state,
1091 list_t *vd_list)
1092 {
1093 if (vd->vdev_ops->vdev_op_leaf && vdev_is_concrete(vd)) {
1094 mutex_enter(&vd->vdev_trim_lock);
1095 vdev_trim_stop(vd, tgt_state, vd_list);
1096 mutex_exit(&vd->vdev_trim_lock);
1097 return;
1098 }
1099
1100 for (uint64_t i = 0; i < vd->vdev_children; i++) {
1101 vdev_trim_stop_all_impl(vd->vdev_child[i], tgt_state,
1102 vd_list);
1103 }
1104 }
1105
1106 /*
1107 * Convenience function to stop trimming of a vdev tree and set all trim
1108 * thread pointers to NULL.
1109 */
1110 void
1111 vdev_trim_stop_all(vdev_t *vd, vdev_trim_state_t tgt_state)
1112 {
1113 spa_t *spa = vd->vdev_spa;
1114 list_t vd_list;
1115 vdev_t *vd_l2cache;
1116
1117 ASSERT(MUTEX_HELD(&spa_namespace_lock));
1118
1119 list_create(&vd_list, sizeof (vdev_t),
1120 offsetof(vdev_t, vdev_trim_node));
1121
1122 vdev_trim_stop_all_impl(vd, tgt_state, &vd_list);
1123
1124 /*
1125 * Iterate over cache devices and request stop trimming the
1126 * whole device in case we export the pool or remove the cache
1127 * device prematurely.
1128 */
1129 for (int i = 0; i < spa->spa_l2cache.sav_count; i++) {
1130 vd_l2cache = spa->spa_l2cache.sav_vdevs[i];
1131 vdev_trim_stop_all_impl(vd_l2cache, tgt_state, &vd_list);
1132 }
1133
1134 vdev_trim_stop_wait(spa, &vd_list);
1135
1136 if (vd->vdev_spa->spa_sync_on) {
1137 /* Make sure that our state has been synced to disk */
1138 txg_wait_synced(spa_get_dsl(vd->vdev_spa), 0);
1139 }
1140
1141 list_destroy(&vd_list);
1142 }
1143
1144 /*
1145 * Conditionally restarts a manual TRIM given its on-disk state.
1146 */
1147 void
1148 vdev_trim_restart(vdev_t *vd)
1149 {
1150 ASSERT(MUTEX_HELD(&spa_namespace_lock));
1151 ASSERT(!spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER));
1152
1153 if (vd->vdev_leaf_zap != 0) {
1154 mutex_enter(&vd->vdev_trim_lock);
1155 uint64_t trim_state = VDEV_TRIM_NONE;
1156 int err = zap_lookup(vd->vdev_spa->spa_meta_objset,
1157 vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_STATE,
1158 sizeof (trim_state), 1, &trim_state);
1159 ASSERT(err == 0 || err == ENOENT);
1160 vd->vdev_trim_state = trim_state;
1161
1162 uint64_t timestamp = 0;
1163 err = zap_lookup(vd->vdev_spa->spa_meta_objset,
1164 vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_ACTION_TIME,
1165 sizeof (timestamp), 1, &timestamp);
1166 ASSERT(err == 0 || err == ENOENT);
1167 vd->vdev_trim_action_time = timestamp;
1168
1169 if ((vd->vdev_trim_state == VDEV_TRIM_SUSPENDED ||
1170 vd->vdev_offline) && !vd->vdev_top->vdev_rz_expanding) {
1171 /* load progress for reporting, but don't resume */
1172 VERIFY0(vdev_trim_load(vd));
1173 } else if (vd->vdev_trim_state == VDEV_TRIM_ACTIVE &&
1174 vdev_writeable(vd) && !vd->vdev_top->vdev_removing &&
1175 !vd->vdev_top->vdev_rz_expanding &&
1176 vd->vdev_trim_thread == NULL) {
1177 VERIFY0(vdev_trim_load(vd));
1178 vdev_trim(vd, vd->vdev_trim_rate,
1179 vd->vdev_trim_partial, vd->vdev_trim_secure);
1180 }
1181
1182 mutex_exit(&vd->vdev_trim_lock);
1183 }
1184
1185 for (uint64_t i = 0; i < vd->vdev_children; i++) {
1186 vdev_trim_restart(vd->vdev_child[i]);
1187 }
1188 }
1189
1190 /*
1191 * Used by the automatic TRIM when ZFS_DEBUG_TRIM is set to verify that
1192 * every TRIM range is contained within ms_allocatable.
1193 */
1194 static void
1195 vdev_trim_range_verify(void *arg, uint64_t start, uint64_t size)
1196 {
1197 trim_args_t *ta = arg;
1198 metaslab_t *msp = ta->trim_msp;
1199
1200 VERIFY3B(msp->ms_loaded, ==, B_TRUE);
1201 VERIFY3U(msp->ms_disabled, >, 0);
1202 VERIFY(range_tree_contains(msp->ms_allocatable, start, size));
1203 }
1204
1205 /*
1206 * Each automatic TRIM thread is responsible for managing the trimming of a
1207 * top-level vdev in the pool. No automatic TRIM state is maintained on-disk.
1208 *
1209 * N.B. This behavior is different from a manual TRIM where a thread
1210 * is created for each leaf vdev, instead of each top-level vdev.
1211 */
1212 static __attribute__((noreturn)) void
1213 vdev_autotrim_thread(void *arg)
1214 {
1215 vdev_t *vd = arg;
1216 spa_t *spa = vd->vdev_spa;
1217 int shift = 0;
1218
1219 mutex_enter(&vd->vdev_autotrim_lock);
1220 ASSERT3P(vd->vdev_top, ==, vd);
1221 ASSERT3P(vd->vdev_autotrim_thread, !=, NULL);
1222 mutex_exit(&vd->vdev_autotrim_lock);
1223 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
1224
1225 while (!vdev_autotrim_should_stop(vd)) {
1226 int txgs_per_trim = MAX(zfs_trim_txg_batch, 1);
1227 uint64_t extent_bytes_max = zfs_trim_extent_bytes_max;
1228 uint64_t extent_bytes_min = zfs_trim_extent_bytes_min;
1229
1230 /*
1231 * All of the metaslabs are divided in to groups of size
1232 * num_metaslabs / zfs_trim_txg_batch. Each of these groups
1233 * is composed of metaslabs which are spread evenly over the
1234 * device.
1235 *
1236 * For example, when zfs_trim_txg_batch = 32 (default) then
1237 * group 0 will contain metaslabs 0, 32, 64, ...;
1238 * group 1 will contain metaslabs 1, 33, 65, ...;
1239 * group 2 will contain metaslabs 2, 34, 66, ...; and so on.
1240 *
1241 * On each pass through the while() loop one of these groups
1242 * is selected. This is accomplished by using a shift value
1243 * to select the starting metaslab, then striding over the
1244 * metaslabs using the zfs_trim_txg_batch size. This is
1245 * done to accomplish two things.
1246 *
1247 * 1) By dividing the metaslabs in to groups, and making sure
1248 * that each group takes a minimum of one txg to process.
1249 * Then zfs_trim_txg_batch controls the minimum number of
1250 * txgs which must occur before a metaslab is revisited.
1251 *
1252 * 2) Selecting non-consecutive metaslabs distributes the
1253 * TRIM commands for a group evenly over the entire device.
1254 * This can be advantageous for certain types of devices.
1255 */
1256 for (uint64_t i = shift % txgs_per_trim; i < vd->vdev_ms_count;
1257 i += txgs_per_trim) {
1258 metaslab_t *msp = vd->vdev_ms[i];
1259 range_tree_t *trim_tree;
1260 boolean_t issued_trim = B_FALSE;
1261 boolean_t wait_aborted = B_FALSE;
1262
1263 spa_config_exit(spa, SCL_CONFIG, FTAG);
1264 metaslab_disable(msp);
1265 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
1266
1267 mutex_enter(&msp->ms_lock);
1268
1269 /*
1270 * Skip the metaslab when it has never been allocated
1271 * or when there are no recent frees to trim.
1272 */
1273 if (msp->ms_sm == NULL ||
1274 range_tree_is_empty(msp->ms_trim)) {
1275 mutex_exit(&msp->ms_lock);
1276 metaslab_enable(msp, B_FALSE, B_FALSE);
1277 continue;
1278 }
1279
1280 /*
1281 * Skip the metaslab when it has already been disabled.
1282 * This may happen when a manual TRIM or initialize
1283 * operation is running concurrently. In the case
1284 * of a manual TRIM, the ms_trim tree will have been
1285 * vacated. Only ranges added after the manual TRIM
1286 * disabled the metaslab will be included in the tree.
1287 * These will be processed when the automatic TRIM
1288 * next revisits this metaslab.
1289 */
1290 if (msp->ms_disabled > 1) {
1291 mutex_exit(&msp->ms_lock);
1292 metaslab_enable(msp, B_FALSE, B_FALSE);
1293 continue;
1294 }
1295
1296 /*
1297 * Allocate an empty range tree which is swapped in
1298 * for the existing ms_trim tree while it is processed.
1299 */
1300 trim_tree = range_tree_create(NULL, RANGE_SEG64, NULL,
1301 0, 0);
1302 range_tree_swap(&msp->ms_trim, &trim_tree);
1303 ASSERT(range_tree_is_empty(msp->ms_trim));
1304
1305 /*
1306 * There are two cases when constructing the per-vdev
1307 * trim trees for a metaslab. If the top-level vdev
1308 * has no children then it is also a leaf and should
1309 * be trimmed. Otherwise our children are the leaves
1310 * and a trim tree should be constructed for each.
1311 */
1312 trim_args_t *tap;
1313 uint64_t children = vd->vdev_children;
1314 if (children == 0) {
1315 children = 1;
1316 tap = kmem_zalloc(sizeof (trim_args_t) *
1317 children, KM_SLEEP);
1318 tap[0].trim_vdev = vd;
1319 } else {
1320 tap = kmem_zalloc(sizeof (trim_args_t) *
1321 children, KM_SLEEP);
1322
1323 for (uint64_t c = 0; c < children; c++) {
1324 tap[c].trim_vdev = vd->vdev_child[c];
1325 }
1326 }
1327
1328 for (uint64_t c = 0; c < children; c++) {
1329 trim_args_t *ta = &tap[c];
1330 vdev_t *cvd = ta->trim_vdev;
1331
1332 ta->trim_msp = msp;
1333 ta->trim_extent_bytes_max = extent_bytes_max;
1334 ta->trim_extent_bytes_min = extent_bytes_min;
1335 ta->trim_type = TRIM_TYPE_AUTO;
1336 ta->trim_flags = 0;
1337
1338 if (cvd->vdev_detached ||
1339 !vdev_writeable(cvd) ||
1340 !cvd->vdev_has_trim ||
1341 cvd->vdev_trim_thread != NULL) {
1342 continue;
1343 }
1344
1345 /*
1346 * When a device has an attached hot spare, or
1347 * is being replaced it will not be trimmed.
1348 * This is done to avoid adding additional
1349 * stress to a potentially unhealthy device,
1350 * and to minimize the required rebuild time.
1351 */
1352 if (!cvd->vdev_ops->vdev_op_leaf)
1353 continue;
1354
1355 ta->trim_tree = range_tree_create(NULL,
1356 RANGE_SEG64, NULL, 0, 0);
1357 range_tree_walk(trim_tree,
1358 vdev_trim_range_add, ta);
1359 }
1360
1361 mutex_exit(&msp->ms_lock);
1362 spa_config_exit(spa, SCL_CONFIG, FTAG);
1363
1364 /*
1365 * Issue the TRIM I/Os for all ranges covered by the
1366 * TRIM trees. These ranges are safe to TRIM because
1367 * no new allocations will be performed until the call
1368 * to metaslab_enabled() below.
1369 */
1370 for (uint64_t c = 0; c < children; c++) {
1371 trim_args_t *ta = &tap[c];
1372
1373 /*
1374 * Always yield to a manual TRIM if one has
1375 * been started for the child vdev.
1376 */
1377 if (ta->trim_tree == NULL ||
1378 ta->trim_vdev->vdev_trim_thread != NULL) {
1379 continue;
1380 }
1381
1382 /*
1383 * After this point metaslab_enable() must be
1384 * called with the sync flag set. This is done
1385 * here because vdev_trim_ranges() is allowed
1386 * to be interrupted (EINTR) before issuing all
1387 * of the required TRIM I/Os.
1388 */
1389 issued_trim = B_TRUE;
1390
1391 int error = vdev_trim_ranges(ta);
1392 if (error)
1393 break;
1394 }
1395
1396 /*
1397 * Verify every range which was trimmed is still
1398 * contained within the ms_allocatable tree.
1399 */
1400 if (zfs_flags & ZFS_DEBUG_TRIM) {
1401 mutex_enter(&msp->ms_lock);
1402 VERIFY0(metaslab_load(msp));
1403 VERIFY3P(tap[0].trim_msp, ==, msp);
1404 range_tree_walk(trim_tree,
1405 vdev_trim_range_verify, &tap[0]);
1406 mutex_exit(&msp->ms_lock);
1407 }
1408
1409 range_tree_vacate(trim_tree, NULL, NULL);
1410 range_tree_destroy(trim_tree);
1411
1412 /*
1413 * Wait for couples of kicks, to ensure the trim io is
1414 * synced. If the wait is aborted due to
1415 * vdev_autotrim_exit_wanted, we need to signal
1416 * metaslab_enable() to wait for sync.
1417 */
1418 if (issued_trim) {
1419 wait_aborted = vdev_autotrim_wait_kick(vd,
1420 TXG_CONCURRENT_STATES + TXG_DEFER_SIZE);
1421 }
1422
1423 metaslab_enable(msp, wait_aborted, B_FALSE);
1424 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
1425
1426 for (uint64_t c = 0; c < children; c++) {
1427 trim_args_t *ta = &tap[c];
1428
1429 if (ta->trim_tree == NULL)
1430 continue;
1431
1432 range_tree_vacate(ta->trim_tree, NULL, NULL);
1433 range_tree_destroy(ta->trim_tree);
1434 }
1435
1436 kmem_free(tap, sizeof (trim_args_t) * children);
1437
1438 if (vdev_autotrim_should_stop(vd))
1439 break;
1440 }
1441
1442 spa_config_exit(spa, SCL_CONFIG, FTAG);
1443
1444 vdev_autotrim_wait_kick(vd, 1);
1445
1446 shift++;
1447 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
1448 }
1449
1450 for (uint64_t c = 0; c < vd->vdev_children; c++) {
1451 vdev_t *cvd = vd->vdev_child[c];
1452 mutex_enter(&cvd->vdev_trim_io_lock);
1453
1454 while (cvd->vdev_trim_inflight[1] > 0) {
1455 cv_wait(&cvd->vdev_trim_io_cv,
1456 &cvd->vdev_trim_io_lock);
1457 }
1458 mutex_exit(&cvd->vdev_trim_io_lock);
1459 }
1460
1461 spa_config_exit(spa, SCL_CONFIG, FTAG);
1462
1463 /*
1464 * When exiting because the autotrim property was set to off, then
1465 * abandon any unprocessed ms_trim ranges to reclaim the memory.
1466 */
1467 if (spa_get_autotrim(spa) == SPA_AUTOTRIM_OFF) {
1468 for (uint64_t i = 0; i < vd->vdev_ms_count; i++) {
1469 metaslab_t *msp = vd->vdev_ms[i];
1470
1471 mutex_enter(&msp->ms_lock);
1472 range_tree_vacate(msp->ms_trim, NULL, NULL);
1473 mutex_exit(&msp->ms_lock);
1474 }
1475 }
1476
1477 mutex_enter(&vd->vdev_autotrim_lock);
1478 ASSERT(vd->vdev_autotrim_thread != NULL);
1479 vd->vdev_autotrim_thread = NULL;
1480 cv_broadcast(&vd->vdev_autotrim_cv);
1481 mutex_exit(&vd->vdev_autotrim_lock);
1482
1483 thread_exit();
1484 }
1485
1486 /*
1487 * Starts an autotrim thread, if needed, for each top-level vdev which can be
1488 * trimmed. A top-level vdev which has been evacuated will never be trimmed.
1489 */
1490 void
1491 vdev_autotrim(spa_t *spa)
1492 {
1493 vdev_t *root_vd = spa->spa_root_vdev;
1494
1495 for (uint64_t i = 0; i < root_vd->vdev_children; i++) {
1496 vdev_t *tvd = root_vd->vdev_child[i];
1497
1498 mutex_enter(&tvd->vdev_autotrim_lock);
1499 if (vdev_writeable(tvd) && !tvd->vdev_removing &&
1500 tvd->vdev_autotrim_thread == NULL &&
1501 !tvd->vdev_rz_expanding) {
1502 ASSERT3P(tvd->vdev_top, ==, tvd);
1503
1504 tvd->vdev_autotrim_thread = thread_create(NULL, 0,
1505 vdev_autotrim_thread, tvd, 0, &p0, TS_RUN,
1506 maxclsyspri);
1507 ASSERT(tvd->vdev_autotrim_thread != NULL);
1508 }
1509 mutex_exit(&tvd->vdev_autotrim_lock);
1510 }
1511 }
1512
1513 /*
1514 * Wait for the vdev_autotrim_thread associated with the passed top-level
1515 * vdev to be terminated (canceled or stopped).
1516 */
1517 void
1518 vdev_autotrim_stop_wait(vdev_t *tvd)
1519 {
1520 mutex_enter(&tvd->vdev_autotrim_lock);
1521 if (tvd->vdev_autotrim_thread != NULL) {
1522 tvd->vdev_autotrim_exit_wanted = B_TRUE;
1523 cv_broadcast(&tvd->vdev_autotrim_kick_cv);
1524 cv_wait(&tvd->vdev_autotrim_cv,
1525 &tvd->vdev_autotrim_lock);
1526
1527 ASSERT3P(tvd->vdev_autotrim_thread, ==, NULL);
1528 tvd->vdev_autotrim_exit_wanted = B_FALSE;
1529 }
1530 mutex_exit(&tvd->vdev_autotrim_lock);
1531 }
1532
1533 void
1534 vdev_autotrim_kick(spa_t *spa)
1535 {
1536 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
1537
1538 vdev_t *root_vd = spa->spa_root_vdev;
1539 vdev_t *tvd;
1540
1541 for (uint64_t i = 0; i < root_vd->vdev_children; i++) {
1542 tvd = root_vd->vdev_child[i];
1543
1544 mutex_enter(&tvd->vdev_autotrim_lock);
1545 if (tvd->vdev_autotrim_thread != NULL)
1546 cv_broadcast(&tvd->vdev_autotrim_kick_cv);
1547 mutex_exit(&tvd->vdev_autotrim_lock);
1548 }
1549 }
1550
1551 /*
1552 * Wait for all of the vdev_autotrim_thread associated with the pool to
1553 * be terminated (canceled or stopped).
1554 */
1555 void
1556 vdev_autotrim_stop_all(spa_t *spa)
1557 {
1558 vdev_t *root_vd = spa->spa_root_vdev;
1559
1560 for (uint64_t i = 0; i < root_vd->vdev_children; i++)
1561 vdev_autotrim_stop_wait(root_vd->vdev_child[i]);
1562 }
1563
1564 /*
1565 * Conditionally restart all of the vdev_autotrim_thread's for the pool.
1566 */
1567 void
1568 vdev_autotrim_restart(spa_t *spa)
1569 {
1570 ASSERT(MUTEX_HELD(&spa_namespace_lock));
1571
1572 if (spa->spa_autotrim)
1573 vdev_autotrim(spa);
1574 }
1575
1576 static __attribute__((noreturn)) void
1577 vdev_trim_l2arc_thread(void *arg)
1578 {
1579 vdev_t *vd = arg;
1580 spa_t *spa = vd->vdev_spa;
1581 l2arc_dev_t *dev = l2arc_vdev_get(vd);
1582 trim_args_t ta = {0};
1583 range_seg64_t physical_rs;
1584
1585 ASSERT(vdev_is_concrete(vd));
1586 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
1587
1588 vd->vdev_trim_last_offset = 0;
1589 vd->vdev_trim_rate = 0;
1590 vd->vdev_trim_partial = 0;
1591 vd->vdev_trim_secure = 0;
1592
1593 ta.trim_vdev = vd;
1594 ta.trim_tree = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0);
1595 ta.trim_type = TRIM_TYPE_MANUAL;
1596 ta.trim_extent_bytes_max = zfs_trim_extent_bytes_max;
1597 ta.trim_extent_bytes_min = SPA_MINBLOCKSIZE;
1598 ta.trim_flags = 0;
1599
1600 physical_rs.rs_start = vd->vdev_trim_bytes_done = 0;
1601 physical_rs.rs_end = vd->vdev_trim_bytes_est =
1602 vdev_get_min_asize(vd);
1603
1604 range_tree_add(ta.trim_tree, physical_rs.rs_start,
1605 physical_rs.rs_end - physical_rs.rs_start);
1606
1607 mutex_enter(&vd->vdev_trim_lock);
1608 vdev_trim_change_state(vd, VDEV_TRIM_ACTIVE, 0, 0, 0);
1609 mutex_exit(&vd->vdev_trim_lock);
1610
1611 (void) vdev_trim_ranges(&ta);
1612
1613 spa_config_exit(spa, SCL_CONFIG, FTAG);
1614 mutex_enter(&vd->vdev_trim_io_lock);
1615 while (vd->vdev_trim_inflight[TRIM_TYPE_MANUAL] > 0) {
1616 cv_wait(&vd->vdev_trim_io_cv, &vd->vdev_trim_io_lock);
1617 }
1618 mutex_exit(&vd->vdev_trim_io_lock);
1619
1620 range_tree_vacate(ta.trim_tree, NULL, NULL);
1621 range_tree_destroy(ta.trim_tree);
1622
1623 mutex_enter(&vd->vdev_trim_lock);
1624 if (!vd->vdev_trim_exit_wanted && vdev_writeable(vd)) {
1625 vdev_trim_change_state(vd, VDEV_TRIM_COMPLETE,
1626 vd->vdev_trim_rate, vd->vdev_trim_partial,
1627 vd->vdev_trim_secure);
1628 }
1629 ASSERT(vd->vdev_trim_thread != NULL ||
1630 vd->vdev_trim_inflight[TRIM_TYPE_MANUAL] == 0);
1631
1632 /*
1633 * Drop the vdev_trim_lock while we sync out the txg since it's
1634 * possible that a device might be trying to come online and
1635 * must check to see if it needs to restart a trim. That thread
1636 * will be holding the spa_config_lock which would prevent the
1637 * txg_wait_synced from completing. Same strategy as in
1638 * vdev_trim_thread().
1639 */
1640 mutex_exit(&vd->vdev_trim_lock);
1641 txg_wait_synced(spa_get_dsl(vd->vdev_spa), 0);
1642 mutex_enter(&vd->vdev_trim_lock);
1643
1644 /*
1645 * Update the header of the cache device here, before
1646 * broadcasting vdev_trim_cv which may lead to the removal
1647 * of the device. The same applies for setting l2ad_trim_all to
1648 * false.
1649 */
1650 spa_config_enter(vd->vdev_spa, SCL_L2ARC, vd,
1651 RW_READER);
1652 memset(dev->l2ad_dev_hdr, 0, dev->l2ad_dev_hdr_asize);
1653 l2arc_dev_hdr_update(dev);
1654 spa_config_exit(vd->vdev_spa, SCL_L2ARC, vd);
1655
1656 vd->vdev_trim_thread = NULL;
1657 if (vd->vdev_trim_state == VDEV_TRIM_COMPLETE)
1658 dev->l2ad_trim_all = B_FALSE;
1659
1660 cv_broadcast(&vd->vdev_trim_cv);
1661 mutex_exit(&vd->vdev_trim_lock);
1662
1663 thread_exit();
1664 }
1665
1666 /*
1667 * Punches out TRIM threads for the L2ARC devices in a spa and assigns them
1668 * to vd->vdev_trim_thread variable. This facilitates the management of
1669 * trimming the whole cache device using TRIM_TYPE_MANUAL upon addition
1670 * to a pool or pool creation or when the header of the device is invalid.
1671 */
1672 void
1673 vdev_trim_l2arc(spa_t *spa)
1674 {
1675 ASSERT(MUTEX_HELD(&spa_namespace_lock));
1676
1677 /*
1678 * Locate the spa's l2arc devices and kick off TRIM threads.
1679 */
1680 for (int i = 0; i < spa->spa_l2cache.sav_count; i++) {
1681 vdev_t *vd = spa->spa_l2cache.sav_vdevs[i];
1682 l2arc_dev_t *dev = l2arc_vdev_get(vd);
1683
1684 if (dev == NULL || !dev->l2ad_trim_all) {
1685 /*
1686 * Don't attempt TRIM if the vdev is UNAVAIL or if the
1687 * cache device was not marked for whole device TRIM
1688 * (ie l2arc_trim_ahead = 0, or the L2ARC device header
1689 * is valid with trim_state = VDEV_TRIM_COMPLETE and
1690 * l2ad_log_entries > 0).
1691 */
1692 continue;
1693 }
1694
1695 mutex_enter(&vd->vdev_trim_lock);
1696 ASSERT(vd->vdev_ops->vdev_op_leaf);
1697 ASSERT(vdev_is_concrete(vd));
1698 ASSERT3P(vd->vdev_trim_thread, ==, NULL);
1699 ASSERT(!vd->vdev_detached);
1700 ASSERT(!vd->vdev_trim_exit_wanted);
1701 ASSERT(!vd->vdev_top->vdev_removing);
1702 vdev_trim_change_state(vd, VDEV_TRIM_ACTIVE, 0, 0, 0);
1703 vd->vdev_trim_thread = thread_create(NULL, 0,
1704 vdev_trim_l2arc_thread, vd, 0, &p0, TS_RUN, maxclsyspri);
1705 mutex_exit(&vd->vdev_trim_lock);
1706 }
1707 }
1708
1709 /*
1710 * A wrapper which calls vdev_trim_ranges(). It is intended to be called
1711 * on leaf vdevs.
1712 */
1713 int
1714 vdev_trim_simple(vdev_t *vd, uint64_t start, uint64_t size)
1715 {
1716 trim_args_t ta = {0};
1717 range_seg64_t physical_rs;
1718 int error;
1719 physical_rs.rs_start = start;
1720 physical_rs.rs_end = start + size;
1721
1722 ASSERT(vdev_is_concrete(vd));
1723 ASSERT(vd->vdev_ops->vdev_op_leaf);
1724 ASSERT(!vd->vdev_detached);
1725 ASSERT(!vd->vdev_top->vdev_removing);
1726 ASSERT(!vd->vdev_top->vdev_rz_expanding);
1727
1728 ta.trim_vdev = vd;
1729 ta.trim_tree = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0);
1730 ta.trim_type = TRIM_TYPE_SIMPLE;
1731 ta.trim_extent_bytes_max = zfs_trim_extent_bytes_max;
1732 ta.trim_extent_bytes_min = SPA_MINBLOCKSIZE;
1733 ta.trim_flags = 0;
1734
1735 ASSERT3U(physical_rs.rs_end, >=, physical_rs.rs_start);
1736
1737 if (physical_rs.rs_end > physical_rs.rs_start) {
1738 range_tree_add(ta.trim_tree, physical_rs.rs_start,
1739 physical_rs.rs_end - physical_rs.rs_start);
1740 } else {
1741 ASSERT3U(physical_rs.rs_end, ==, physical_rs.rs_start);
1742 }
1743
1744 error = vdev_trim_ranges(&ta);
1745
1746 mutex_enter(&vd->vdev_trim_io_lock);
1747 while (vd->vdev_trim_inflight[TRIM_TYPE_SIMPLE] > 0) {
1748 cv_wait(&vd->vdev_trim_io_cv, &vd->vdev_trim_io_lock);
1749 }
1750 mutex_exit(&vd->vdev_trim_io_lock);
1751
1752 range_tree_vacate(ta.trim_tree, NULL, NULL);
1753 range_tree_destroy(ta.trim_tree);
1754
1755 return (error);
1756 }
1757
1758 EXPORT_SYMBOL(vdev_trim);
1759 EXPORT_SYMBOL(vdev_trim_stop);
1760 EXPORT_SYMBOL(vdev_trim_stop_all);
1761 EXPORT_SYMBOL(vdev_trim_stop_wait);
1762 EXPORT_SYMBOL(vdev_trim_restart);
1763 EXPORT_SYMBOL(vdev_autotrim);
1764 EXPORT_SYMBOL(vdev_autotrim_stop_all);
1765 EXPORT_SYMBOL(vdev_autotrim_stop_wait);
1766 EXPORT_SYMBOL(vdev_autotrim_restart);
1767 EXPORT_SYMBOL(vdev_trim_l2arc);
1768 EXPORT_SYMBOL(vdev_trim_simple);
1769
1770 ZFS_MODULE_PARAM(zfs_trim, zfs_trim_, extent_bytes_max, UINT, ZMOD_RW,
1771 "Max size of TRIM commands, larger will be split");
1772
1773 ZFS_MODULE_PARAM(zfs_trim, zfs_trim_, extent_bytes_min, UINT, ZMOD_RW,
1774 "Min size of TRIM commands, smaller will be skipped");
1775
1776 ZFS_MODULE_PARAM(zfs_trim, zfs_trim_, metaslab_skip, UINT, ZMOD_RW,
1777 "Skip metaslabs which have never been initialized");
1778
1779 ZFS_MODULE_PARAM(zfs_trim, zfs_trim_, txg_batch, UINT, ZMOD_RW,
1780 "Min number of txgs to aggregate frees before issuing TRIM");
1781
1782 ZFS_MODULE_PARAM(zfs_trim, zfs_trim_, queue_limit, UINT, ZMOD_RW,
1783 "Max queued TRIMs outstanding per leaf vdev");