]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/zfs_fm.c
bdd0e96c327a904fc1a26c11ec6b9c00200769f2
[mirror_zfs.git] / module / zfs / zfs_fm.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */
25
26 /*
27 * Copyright (c) 2012,2021 by Delphix. All rights reserved.
28 */
29
30 #include <sys/spa.h>
31 #include <sys/spa_impl.h>
32 #include <sys/vdev.h>
33 #include <sys/vdev_impl.h>
34 #include <sys/zio.h>
35 #include <sys/zio_checksum.h>
36
37 #include <sys/fm/fs/zfs.h>
38 #include <sys/fm/protocol.h>
39 #include <sys/fm/util.h>
40 #include <sys/sysevent.h>
41
42 /*
43 * This general routine is responsible for generating all the different ZFS
44 * ereports. The payload is dependent on the class, and which arguments are
45 * supplied to the function:
46 *
47 * EREPORT POOL VDEV IO
48 * block X X X
49 * data X X
50 * device X X
51 * pool X
52 *
53 * If we are in a loading state, all errors are chained together by the same
54 * SPA-wide ENA (Error Numeric Association).
55 *
56 * For isolated I/O requests, we get the ENA from the zio_t. The propagation
57 * gets very complicated due to RAID-Z, gang blocks, and vdev caching. We want
58 * to chain together all ereports associated with a logical piece of data. For
59 * read I/Os, there are basically three 'types' of I/O, which form a roughly
60 * layered diagram:
61 *
62 * +---------------+
63 * | Aggregate I/O | No associated logical data or device
64 * +---------------+
65 * |
66 * V
67 * +---------------+ Reads associated with a piece of logical data.
68 * | Read I/O | This includes reads on behalf of RAID-Z,
69 * +---------------+ mirrors, gang blocks, retries, etc.
70 * |
71 * V
72 * +---------------+ Reads associated with a particular device, but
73 * | Physical I/O | no logical data. Issued as part of vdev caching
74 * +---------------+ and I/O aggregation.
75 *
76 * Note that 'physical I/O' here is not the same terminology as used in the rest
77 * of ZIO. Typically, 'physical I/O' simply means that there is no attached
78 * blockpointer. But I/O with no associated block pointer can still be related
79 * to a logical piece of data (i.e. RAID-Z requests).
80 *
81 * Purely physical I/O always have unique ENAs. They are not related to a
82 * particular piece of logical data, and therefore cannot be chained together.
83 * We still generate an ereport, but the DE doesn't correlate it with any
84 * logical piece of data. When such an I/O fails, the delegated I/O requests
85 * will issue a retry, which will trigger the 'real' ereport with the correct
86 * ENA.
87 *
88 * We keep track of the ENA for a ZIO chain through the 'io_logical' member.
89 * When a new logical I/O is issued, we set this to point to itself. Child I/Os
90 * then inherit this pointer, so that when it is first set subsequent failures
91 * will use the same ENA. For vdev cache fill and queue aggregation I/O,
92 * this pointer is set to NULL, and no ereport will be generated (since it
93 * doesn't actually correspond to any particular device or piece of data,
94 * and the caller will always retry without caching or queueing anyway).
95 *
96 * For checksum errors, we want to include more information about the actual
97 * error which occurs. Accordingly, we build an ereport when the error is
98 * noticed, but instead of sending it in immediately, we hang it off of the
99 * io_cksum_report field of the logical IO. When the logical IO completes
100 * (successfully or not), zfs_ereport_finish_checksum() is called with the
101 * good and bad versions of the buffer (if available), and we annotate the
102 * ereport with information about the differences.
103 */
104
105 #ifdef _KERNEL
106 /*
107 * Duplicate ereport Detection
108 *
109 * Some ereports are retained momentarily for detecting duplicates. These
110 * are kept in a recent_events_node_t in both a time-ordered list and an AVL
111 * tree of recent unique ereports.
112 *
113 * The lifespan of these recent ereports is bounded (15 mins) and a cleaner
114 * task is used to purge stale entries.
115 */
116 static list_t recent_events_list;
117 static avl_tree_t recent_events_tree;
118 static kmutex_t recent_events_lock;
119 static taskqid_t recent_events_cleaner_tqid;
120
121 /*
122 * Each node is about 128 bytes so 2,000 would consume 1/4 MiB.
123 *
124 * This setting can be changed dynamically and setting it to zero
125 * disables duplicate detection.
126 */
127 static unsigned int zfs_zevent_retain_max = 2000;
128
129 /*
130 * The lifespan for a recent ereport entry. The default of 15 minutes is
131 * intended to outlive the zfs diagnosis engine's threshold of 10 errors
132 * over a period of 10 minutes.
133 */
134 static unsigned int zfs_zevent_retain_expire_secs = 900;
135
136 typedef enum zfs_subclass {
137 ZSC_IO,
138 ZSC_DATA,
139 ZSC_CHECKSUM
140 } zfs_subclass_t;
141
142 typedef struct {
143 /* common criteria */
144 uint64_t re_pool_guid;
145 uint64_t re_vdev_guid;
146 int re_io_error;
147 uint64_t re_io_size;
148 uint64_t re_io_offset;
149 zfs_subclass_t re_subclass;
150 zio_priority_t re_io_priority;
151
152 /* logical zio criteria (optional) */
153 zbookmark_phys_t re_io_bookmark;
154
155 /* internal state */
156 avl_node_t re_tree_link;
157 list_node_t re_list_link;
158 uint64_t re_timestamp;
159 } recent_events_node_t;
160
161 static int
162 recent_events_compare(const void *a, const void *b)
163 {
164 const recent_events_node_t *node1 = a;
165 const recent_events_node_t *node2 = b;
166 int cmp;
167
168 /*
169 * The comparison order here is somewhat arbitrary.
170 * What's important is that if every criteria matches, then it
171 * is a duplicate (i.e. compare returns 0)
172 */
173 if ((cmp = TREE_CMP(node1->re_subclass, node2->re_subclass)) != 0)
174 return (cmp);
175 if ((cmp = TREE_CMP(node1->re_pool_guid, node2->re_pool_guid)) != 0)
176 return (cmp);
177 if ((cmp = TREE_CMP(node1->re_vdev_guid, node2->re_vdev_guid)) != 0)
178 return (cmp);
179 if ((cmp = TREE_CMP(node1->re_io_error, node2->re_io_error)) != 0)
180 return (cmp);
181 if ((cmp = TREE_CMP(node1->re_io_priority, node2->re_io_priority)) != 0)
182 return (cmp);
183 if ((cmp = TREE_CMP(node1->re_io_size, node2->re_io_size)) != 0)
184 return (cmp);
185 if ((cmp = TREE_CMP(node1->re_io_offset, node2->re_io_offset)) != 0)
186 return (cmp);
187
188 const zbookmark_phys_t *zb1 = &node1->re_io_bookmark;
189 const zbookmark_phys_t *zb2 = &node2->re_io_bookmark;
190
191 if ((cmp = TREE_CMP(zb1->zb_objset, zb2->zb_objset)) != 0)
192 return (cmp);
193 if ((cmp = TREE_CMP(zb1->zb_object, zb2->zb_object)) != 0)
194 return (cmp);
195 if ((cmp = TREE_CMP(zb1->zb_level, zb2->zb_level)) != 0)
196 return (cmp);
197 if ((cmp = TREE_CMP(zb1->zb_blkid, zb2->zb_blkid)) != 0)
198 return (cmp);
199
200 return (0);
201 }
202
203 /*
204 * workaround: vdev properties don't have inheritance
205 */
206 static uint64_t
207 vdev_prop_get_inherited(vdev_t *vd, vdev_prop_t prop)
208 {
209 uint64_t propdef, propval;
210
211 propdef = vdev_prop_default_numeric(prop);
212 switch (prop) {
213 case VDEV_PROP_CHECKSUM_N:
214 propval = vd->vdev_checksum_n;
215 break;
216 case VDEV_PROP_CHECKSUM_T:
217 propval = vd->vdev_checksum_t;
218 break;
219 case VDEV_PROP_IO_N:
220 propval = vd->vdev_io_n;
221 break;
222 case VDEV_PROP_IO_T:
223 propval = vd->vdev_io_t;
224 break;
225 default:
226 propval = propdef;
227 break;
228 }
229
230 if (propval != propdef)
231 return (propval);
232
233 if (vd->vdev_parent == NULL)
234 return (propdef);
235
236 return (vdev_prop_get_inherited(vd->vdev_parent, prop));
237 }
238
239 static void zfs_ereport_schedule_cleaner(void);
240
241 /*
242 * background task to clean stale recent event nodes.
243 */
244 static void
245 zfs_ereport_cleaner(void *arg)
246 {
247 recent_events_node_t *entry;
248 uint64_t now = gethrtime();
249
250 /*
251 * purge expired entries
252 */
253 mutex_enter(&recent_events_lock);
254 while ((entry = list_tail(&recent_events_list)) != NULL) {
255 uint64_t age = NSEC2SEC(now - entry->re_timestamp);
256 if (age <= zfs_zevent_retain_expire_secs)
257 break;
258
259 /* remove expired node */
260 avl_remove(&recent_events_tree, entry);
261 list_remove(&recent_events_list, entry);
262 kmem_free(entry, sizeof (*entry));
263 }
264
265 /* Restart the cleaner if more entries remain */
266 recent_events_cleaner_tqid = 0;
267 if (!list_is_empty(&recent_events_list))
268 zfs_ereport_schedule_cleaner();
269
270 mutex_exit(&recent_events_lock);
271 }
272
273 static void
274 zfs_ereport_schedule_cleaner(void)
275 {
276 ASSERT(MUTEX_HELD(&recent_events_lock));
277
278 uint64_t timeout = SEC2NSEC(zfs_zevent_retain_expire_secs + 1);
279
280 recent_events_cleaner_tqid = taskq_dispatch_delay(
281 system_delay_taskq, zfs_ereport_cleaner, NULL, TQ_SLEEP,
282 ddi_get_lbolt() + NSEC_TO_TICK(timeout));
283 }
284
285 /*
286 * Clear entries for a given vdev or all vdevs in a pool when vdev == NULL
287 */
288 void
289 zfs_ereport_clear(spa_t *spa, vdev_t *vd)
290 {
291 uint64_t vdev_guid, pool_guid;
292
293 ASSERT(vd != NULL || spa != NULL);
294 if (vd == NULL) {
295 vdev_guid = 0;
296 pool_guid = spa_guid(spa);
297 } else {
298 vdev_guid = vd->vdev_guid;
299 pool_guid = 0;
300 }
301
302 mutex_enter(&recent_events_lock);
303
304 recent_events_node_t *next = list_head(&recent_events_list);
305 while (next != NULL) {
306 recent_events_node_t *entry = next;
307
308 next = list_next(&recent_events_list, next);
309
310 if (entry->re_vdev_guid == vdev_guid ||
311 entry->re_pool_guid == pool_guid) {
312 avl_remove(&recent_events_tree, entry);
313 list_remove(&recent_events_list, entry);
314 kmem_free(entry, sizeof (*entry));
315 }
316 }
317
318 mutex_exit(&recent_events_lock);
319 }
320
321 /*
322 * Check if an ereport would be a duplicate of one recently posted.
323 *
324 * An ereport is considered a duplicate if the set of criteria in
325 * recent_events_node_t all match.
326 *
327 * Only FM_EREPORT_ZFS_IO, FM_EREPORT_ZFS_DATA, and FM_EREPORT_ZFS_CHECKSUM
328 * are candidates for duplicate checking.
329 */
330 static boolean_t
331 zfs_ereport_is_duplicate(const char *subclass, spa_t *spa, vdev_t *vd,
332 const zbookmark_phys_t *zb, zio_t *zio, uint64_t offset, uint64_t size)
333 {
334 recent_events_node_t search = {0}, *entry;
335
336 if (vd == NULL || zio == NULL)
337 return (B_FALSE);
338
339 if (zfs_zevent_retain_max == 0)
340 return (B_FALSE);
341
342 if (strcmp(subclass, FM_EREPORT_ZFS_IO) == 0)
343 search.re_subclass = ZSC_IO;
344 else if (strcmp(subclass, FM_EREPORT_ZFS_DATA) == 0)
345 search.re_subclass = ZSC_DATA;
346 else if (strcmp(subclass, FM_EREPORT_ZFS_CHECKSUM) == 0)
347 search.re_subclass = ZSC_CHECKSUM;
348 else
349 return (B_FALSE);
350
351 search.re_pool_guid = spa_guid(spa);
352 search.re_vdev_guid = vd->vdev_guid;
353 search.re_io_error = zio->io_error;
354 search.re_io_priority = zio->io_priority;
355 /* if size is supplied use it over what's in zio */
356 if (size) {
357 search.re_io_size = size;
358 search.re_io_offset = offset;
359 } else {
360 search.re_io_size = zio->io_size;
361 search.re_io_offset = zio->io_offset;
362 }
363
364 /* grab optional logical zio criteria */
365 if (zb != NULL) {
366 search.re_io_bookmark.zb_objset = zb->zb_objset;
367 search.re_io_bookmark.zb_object = zb->zb_object;
368 search.re_io_bookmark.zb_level = zb->zb_level;
369 search.re_io_bookmark.zb_blkid = zb->zb_blkid;
370 }
371
372 uint64_t now = gethrtime();
373
374 mutex_enter(&recent_events_lock);
375
376 /* check if we have seen this one recently */
377 entry = avl_find(&recent_events_tree, &search, NULL);
378 if (entry != NULL) {
379 uint64_t age = NSEC2SEC(now - entry->re_timestamp);
380
381 /*
382 * There is still an active cleaner (since we're here).
383 * Reset the last seen time for this duplicate entry
384 * so that its lifespand gets extended.
385 */
386 list_remove(&recent_events_list, entry);
387 list_insert_head(&recent_events_list, entry);
388 entry->re_timestamp = now;
389
390 zfs_zevent_track_duplicate();
391 mutex_exit(&recent_events_lock);
392
393 return (age <= zfs_zevent_retain_expire_secs);
394 }
395
396 if (avl_numnodes(&recent_events_tree) >= zfs_zevent_retain_max) {
397 /* recycle oldest node */
398 entry = list_tail(&recent_events_list);
399 ASSERT(entry != NULL);
400 list_remove(&recent_events_list, entry);
401 avl_remove(&recent_events_tree, entry);
402 } else {
403 entry = kmem_alloc(sizeof (recent_events_node_t), KM_SLEEP);
404 }
405
406 /* record this as a recent ereport */
407 *entry = search;
408 avl_add(&recent_events_tree, entry);
409 list_insert_head(&recent_events_list, entry);
410 entry->re_timestamp = now;
411
412 /* Start a cleaner if not already scheduled */
413 if (recent_events_cleaner_tqid == 0)
414 zfs_ereport_schedule_cleaner();
415
416 mutex_exit(&recent_events_lock);
417 return (B_FALSE);
418 }
419
420 void
421 zfs_zevent_post_cb(nvlist_t *nvl, nvlist_t *detector)
422 {
423 if (nvl)
424 fm_nvlist_destroy(nvl, FM_NVA_FREE);
425
426 if (detector)
427 fm_nvlist_destroy(detector, FM_NVA_FREE);
428 }
429
430 /*
431 * We want to rate limit ZIO delay, deadman, and checksum events so as to not
432 * flood zevent consumers when a disk is acting up.
433 *
434 * Returns 1 if we're ratelimiting, 0 if not.
435 */
436 static int
437 zfs_is_ratelimiting_event(const char *subclass, vdev_t *vd)
438 {
439 int rc = 0;
440 /*
441 * zfs_ratelimit() returns 1 if we're *not* ratelimiting and 0 if we
442 * are. Invert it to get our return value.
443 */
444 if (strcmp(subclass, FM_EREPORT_ZFS_DELAY) == 0) {
445 rc = !zfs_ratelimit(&vd->vdev_delay_rl);
446 } else if (strcmp(subclass, FM_EREPORT_ZFS_DEADMAN) == 0) {
447 rc = !zfs_ratelimit(&vd->vdev_deadman_rl);
448 } else if (strcmp(subclass, FM_EREPORT_ZFS_CHECKSUM) == 0) {
449 rc = !zfs_ratelimit(&vd->vdev_checksum_rl);
450 }
451
452 if (rc) {
453 /* We're rate limiting */
454 fm_erpt_dropped_increment();
455 }
456
457 return (rc);
458 }
459
460 /*
461 * Return B_TRUE if the event actually posted, B_FALSE if not.
462 */
463 static boolean_t
464 zfs_ereport_start(nvlist_t **ereport_out, nvlist_t **detector_out,
465 const char *subclass, spa_t *spa, vdev_t *vd, const zbookmark_phys_t *zb,
466 zio_t *zio, uint64_t stateoroffset, uint64_t size)
467 {
468 nvlist_t *ereport, *detector;
469
470 uint64_t ena;
471 char class[64];
472
473 if ((ereport = fm_nvlist_create(NULL)) == NULL)
474 return (B_FALSE);
475
476 if ((detector = fm_nvlist_create(NULL)) == NULL) {
477 fm_nvlist_destroy(ereport, FM_NVA_FREE);
478 return (B_FALSE);
479 }
480
481 /*
482 * Serialize ereport generation
483 */
484 mutex_enter(&spa->spa_errlist_lock);
485
486 /*
487 * Determine the ENA to use for this event. If we are in a loading
488 * state, use a SPA-wide ENA. Otherwise, if we are in an I/O state, use
489 * a root zio-wide ENA. Otherwise, simply use a unique ENA.
490 */
491 if (spa_load_state(spa) != SPA_LOAD_NONE) {
492 if (spa->spa_ena == 0)
493 spa->spa_ena = fm_ena_generate(0, FM_ENA_FMT1);
494 ena = spa->spa_ena;
495 } else if (zio != NULL && zio->io_logical != NULL) {
496 if (zio->io_logical->io_ena == 0)
497 zio->io_logical->io_ena =
498 fm_ena_generate(0, FM_ENA_FMT1);
499 ena = zio->io_logical->io_ena;
500 } else {
501 ena = fm_ena_generate(0, FM_ENA_FMT1);
502 }
503
504 /*
505 * Construct the full class, detector, and other standard FMA fields.
506 */
507 (void) snprintf(class, sizeof (class), "%s.%s",
508 ZFS_ERROR_CLASS, subclass);
509
510 fm_fmri_zfs_set(detector, FM_ZFS_SCHEME_VERSION, spa_guid(spa),
511 vd != NULL ? vd->vdev_guid : 0);
512
513 fm_ereport_set(ereport, FM_EREPORT_VERSION, class, ena, detector, NULL);
514
515 /*
516 * Construct the per-ereport payload, depending on which parameters are
517 * passed in.
518 */
519
520 /*
521 * Generic payload members common to all ereports.
522 */
523 fm_payload_set(ereport,
524 FM_EREPORT_PAYLOAD_ZFS_POOL, DATA_TYPE_STRING, spa_name(spa),
525 FM_EREPORT_PAYLOAD_ZFS_POOL_GUID, DATA_TYPE_UINT64, spa_guid(spa),
526 FM_EREPORT_PAYLOAD_ZFS_POOL_STATE, DATA_TYPE_UINT64,
527 (uint64_t)spa_state(spa),
528 FM_EREPORT_PAYLOAD_ZFS_POOL_CONTEXT, DATA_TYPE_INT32,
529 (int32_t)spa_load_state(spa), NULL);
530
531 fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_POOL_FAILMODE,
532 DATA_TYPE_STRING,
533 spa_get_failmode(spa) == ZIO_FAILURE_MODE_WAIT ?
534 FM_EREPORT_FAILMODE_WAIT :
535 spa_get_failmode(spa) == ZIO_FAILURE_MODE_CONTINUE ?
536 FM_EREPORT_FAILMODE_CONTINUE : FM_EREPORT_FAILMODE_PANIC,
537 NULL);
538
539 if (vd != NULL) {
540 vdev_t *pvd = vd->vdev_parent;
541 vdev_queue_t *vq = &vd->vdev_queue;
542 vdev_stat_t *vs = &vd->vdev_stat;
543 vdev_t *spare_vd;
544 uint64_t *spare_guids;
545 char **spare_paths;
546 int i, spare_count;
547
548 fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_VDEV_GUID,
549 DATA_TYPE_UINT64, vd->vdev_guid,
550 FM_EREPORT_PAYLOAD_ZFS_VDEV_TYPE,
551 DATA_TYPE_STRING, vd->vdev_ops->vdev_op_type, NULL);
552 if (vd->vdev_path != NULL)
553 fm_payload_set(ereport,
554 FM_EREPORT_PAYLOAD_ZFS_VDEV_PATH,
555 DATA_TYPE_STRING, vd->vdev_path, NULL);
556 if (vd->vdev_devid != NULL)
557 fm_payload_set(ereport,
558 FM_EREPORT_PAYLOAD_ZFS_VDEV_DEVID,
559 DATA_TYPE_STRING, vd->vdev_devid, NULL);
560 if (vd->vdev_fru != NULL)
561 fm_payload_set(ereport,
562 FM_EREPORT_PAYLOAD_ZFS_VDEV_FRU,
563 DATA_TYPE_STRING, vd->vdev_fru, NULL);
564 if (vd->vdev_enc_sysfs_path != NULL)
565 fm_payload_set(ereport,
566 FM_EREPORT_PAYLOAD_ZFS_VDEV_ENC_SYSFS_PATH,
567 DATA_TYPE_STRING, vd->vdev_enc_sysfs_path, NULL);
568 if (vd->vdev_ashift)
569 fm_payload_set(ereport,
570 FM_EREPORT_PAYLOAD_ZFS_VDEV_ASHIFT,
571 DATA_TYPE_UINT64, vd->vdev_ashift, NULL);
572
573 if (vq != NULL) {
574 fm_payload_set(ereport,
575 FM_EREPORT_PAYLOAD_ZFS_VDEV_COMP_TS,
576 DATA_TYPE_UINT64, vq->vq_io_complete_ts, NULL);
577 fm_payload_set(ereport,
578 FM_EREPORT_PAYLOAD_ZFS_VDEV_DELTA_TS,
579 DATA_TYPE_UINT64, vq->vq_io_delta_ts, NULL);
580 }
581
582 if (vs != NULL) {
583 fm_payload_set(ereport,
584 FM_EREPORT_PAYLOAD_ZFS_VDEV_READ_ERRORS,
585 DATA_TYPE_UINT64, vs->vs_read_errors,
586 FM_EREPORT_PAYLOAD_ZFS_VDEV_WRITE_ERRORS,
587 DATA_TYPE_UINT64, vs->vs_write_errors,
588 FM_EREPORT_PAYLOAD_ZFS_VDEV_CKSUM_ERRORS,
589 DATA_TYPE_UINT64, vs->vs_checksum_errors,
590 FM_EREPORT_PAYLOAD_ZFS_VDEV_DELAYS,
591 DATA_TYPE_UINT64, vs->vs_slow_ios,
592 NULL);
593 }
594
595 if (pvd != NULL) {
596 fm_payload_set(ereport,
597 FM_EREPORT_PAYLOAD_ZFS_PARENT_GUID,
598 DATA_TYPE_UINT64, pvd->vdev_guid,
599 FM_EREPORT_PAYLOAD_ZFS_PARENT_TYPE,
600 DATA_TYPE_STRING, pvd->vdev_ops->vdev_op_type,
601 NULL);
602 if (pvd->vdev_path)
603 fm_payload_set(ereport,
604 FM_EREPORT_PAYLOAD_ZFS_PARENT_PATH,
605 DATA_TYPE_STRING, pvd->vdev_path, NULL);
606 if (pvd->vdev_devid)
607 fm_payload_set(ereport,
608 FM_EREPORT_PAYLOAD_ZFS_PARENT_DEVID,
609 DATA_TYPE_STRING, pvd->vdev_devid, NULL);
610 }
611
612 spare_count = spa->spa_spares.sav_count;
613 spare_paths = kmem_zalloc(sizeof (char *) * spare_count,
614 KM_SLEEP);
615 spare_guids = kmem_zalloc(sizeof (uint64_t) * spare_count,
616 KM_SLEEP);
617
618 for (i = 0; i < spare_count; i++) {
619 spare_vd = spa->spa_spares.sav_vdevs[i];
620 if (spare_vd) {
621 spare_paths[i] = spare_vd->vdev_path;
622 spare_guids[i] = spare_vd->vdev_guid;
623 }
624 }
625
626 fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_VDEV_SPARE_PATHS,
627 DATA_TYPE_STRING_ARRAY, spare_count, spare_paths,
628 FM_EREPORT_PAYLOAD_ZFS_VDEV_SPARE_GUIDS,
629 DATA_TYPE_UINT64_ARRAY, spare_count, spare_guids, NULL);
630
631 kmem_free(spare_guids, sizeof (uint64_t) * spare_count);
632 kmem_free(spare_paths, sizeof (char *) * spare_count);
633 }
634
635 if (zio != NULL) {
636 /*
637 * Payload common to all I/Os.
638 */
639 fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_ZIO_ERR,
640 DATA_TYPE_INT32, zio->io_error, NULL);
641 fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_ZIO_FLAGS,
642 DATA_TYPE_INT32, zio->io_flags, NULL);
643 fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_ZIO_STAGE,
644 DATA_TYPE_UINT32, zio->io_stage, NULL);
645 fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_ZIO_PIPELINE,
646 DATA_TYPE_UINT32, zio->io_pipeline, NULL);
647 fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_ZIO_DELAY,
648 DATA_TYPE_UINT64, zio->io_delay, NULL);
649 fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_ZIO_TIMESTAMP,
650 DATA_TYPE_UINT64, zio->io_timestamp, NULL);
651 fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_ZIO_DELTA,
652 DATA_TYPE_UINT64, zio->io_delta, NULL);
653 fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_ZIO_PRIORITY,
654 DATA_TYPE_UINT32, zio->io_priority, NULL);
655
656 /*
657 * If the 'size' parameter is non-zero, it indicates this is a
658 * RAID-Z or other I/O where the physical offset and length are
659 * provided for us, instead of within the zio_t.
660 */
661 if (vd != NULL) {
662 if (size)
663 fm_payload_set(ereport,
664 FM_EREPORT_PAYLOAD_ZFS_ZIO_OFFSET,
665 DATA_TYPE_UINT64, stateoroffset,
666 FM_EREPORT_PAYLOAD_ZFS_ZIO_SIZE,
667 DATA_TYPE_UINT64, size, NULL);
668 else
669 fm_payload_set(ereport,
670 FM_EREPORT_PAYLOAD_ZFS_ZIO_OFFSET,
671 DATA_TYPE_UINT64, zio->io_offset,
672 FM_EREPORT_PAYLOAD_ZFS_ZIO_SIZE,
673 DATA_TYPE_UINT64, zio->io_size, NULL);
674 }
675 } else if (vd != NULL) {
676 /*
677 * If we have a vdev but no zio, this is a device fault, and the
678 * 'stateoroffset' parameter indicates the previous state of the
679 * vdev.
680 */
681 fm_payload_set(ereport,
682 FM_EREPORT_PAYLOAD_ZFS_PREV_STATE,
683 DATA_TYPE_UINT64, stateoroffset, NULL);
684 }
685
686 /*
687 * Payload for I/Os with corresponding logical information.
688 */
689 if (zb != NULL && (zio == NULL || zio->io_logical != NULL)) {
690 fm_payload_set(ereport,
691 FM_EREPORT_PAYLOAD_ZFS_ZIO_OBJSET,
692 DATA_TYPE_UINT64, zb->zb_objset,
693 FM_EREPORT_PAYLOAD_ZFS_ZIO_OBJECT,
694 DATA_TYPE_UINT64, zb->zb_object,
695 FM_EREPORT_PAYLOAD_ZFS_ZIO_LEVEL,
696 DATA_TYPE_INT64, zb->zb_level,
697 FM_EREPORT_PAYLOAD_ZFS_ZIO_BLKID,
698 DATA_TYPE_UINT64, zb->zb_blkid, NULL);
699 }
700
701 /*
702 * Payload for tuning the zed
703 */
704 if (vd != NULL && strcmp(subclass, FM_EREPORT_ZFS_CHECKSUM) == 0) {
705 uint64_t cksum_n, cksum_t;
706
707 cksum_n = vdev_prop_get_inherited(vd, VDEV_PROP_CHECKSUM_N);
708 if (cksum_n != vdev_prop_default_numeric(VDEV_PROP_CHECKSUM_N))
709 fm_payload_set(ereport,
710 FM_EREPORT_PAYLOAD_ZFS_VDEV_CKSUM_N,
711 DATA_TYPE_UINT64,
712 cksum_n,
713 NULL);
714
715 cksum_t = vdev_prop_get_inherited(vd, VDEV_PROP_CHECKSUM_T);
716 if (cksum_t != vdev_prop_default_numeric(VDEV_PROP_CHECKSUM_T))
717 fm_payload_set(ereport,
718 FM_EREPORT_PAYLOAD_ZFS_VDEV_CKSUM_T,
719 DATA_TYPE_UINT64,
720 cksum_t,
721 NULL);
722 }
723
724 if (vd != NULL && strcmp(subclass, FM_EREPORT_ZFS_IO) == 0) {
725 uint64_t io_n, io_t;
726
727 io_n = vdev_prop_get_inherited(vd, VDEV_PROP_IO_N);
728 if (io_n != vdev_prop_default_numeric(VDEV_PROP_IO_N))
729 fm_payload_set(ereport,
730 FM_EREPORT_PAYLOAD_ZFS_VDEV_IO_N,
731 DATA_TYPE_UINT64,
732 io_n,
733 NULL);
734
735 io_t = vdev_prop_get_inherited(vd, VDEV_PROP_IO_T);
736 if (io_t != vdev_prop_default_numeric(VDEV_PROP_IO_T))
737 fm_payload_set(ereport,
738 FM_EREPORT_PAYLOAD_ZFS_VDEV_IO_T,
739 DATA_TYPE_UINT64,
740 io_t,
741 NULL);
742 }
743
744 mutex_exit(&spa->spa_errlist_lock);
745
746 *ereport_out = ereport;
747 *detector_out = detector;
748 return (B_TRUE);
749 }
750
751 /* if it's <= 128 bytes, save the corruption directly */
752 #define ZFM_MAX_INLINE (128 / sizeof (uint64_t))
753
754 #define MAX_RANGES 16
755
756 typedef struct zfs_ecksum_info {
757 /* histograms of set and cleared bits by bit number in a 64-bit word */
758 uint8_t zei_histogram_set[sizeof (uint64_t) * NBBY];
759 uint8_t zei_histogram_cleared[sizeof (uint64_t) * NBBY];
760
761 /* inline arrays of bits set and cleared. */
762 uint64_t zei_bits_set[ZFM_MAX_INLINE];
763 uint64_t zei_bits_cleared[ZFM_MAX_INLINE];
764
765 /*
766 * for each range, the number of bits set and cleared. The Hamming
767 * distance between the good and bad buffers is the sum of them all.
768 */
769 uint32_t zei_range_sets[MAX_RANGES];
770 uint32_t zei_range_clears[MAX_RANGES];
771
772 struct zei_ranges {
773 uint32_t zr_start;
774 uint32_t zr_end;
775 } zei_ranges[MAX_RANGES];
776
777 size_t zei_range_count;
778 uint32_t zei_mingap;
779 uint32_t zei_allowed_mingap;
780
781 } zfs_ecksum_info_t;
782
783 static void
784 update_histogram(uint64_t value_arg, uint8_t *hist, uint32_t *count)
785 {
786 size_t i;
787 size_t bits = 0;
788 uint64_t value = BE_64(value_arg);
789
790 /* We store the bits in big-endian (largest-first) order */
791 for (i = 0; i < 64; i++) {
792 if (value & (1ull << i)) {
793 hist[63 - i]++;
794 ++bits;
795 }
796 }
797 /* update the count of bits changed */
798 *count += bits;
799 }
800
801 /*
802 * We've now filled up the range array, and need to increase "mingap" and
803 * shrink the range list accordingly. zei_mingap is always the smallest
804 * distance between array entries, so we set the new_allowed_gap to be
805 * one greater than that. We then go through the list, joining together
806 * any ranges which are closer than the new_allowed_gap.
807 *
808 * By construction, there will be at least one. We also update zei_mingap
809 * to the new smallest gap, to prepare for our next invocation.
810 */
811 static void
812 zei_shrink_ranges(zfs_ecksum_info_t *eip)
813 {
814 uint32_t mingap = UINT32_MAX;
815 uint32_t new_allowed_gap = eip->zei_mingap + 1;
816
817 size_t idx, output;
818 size_t max = eip->zei_range_count;
819
820 struct zei_ranges *r = eip->zei_ranges;
821
822 ASSERT3U(eip->zei_range_count, >, 0);
823 ASSERT3U(eip->zei_range_count, <=, MAX_RANGES);
824
825 output = idx = 0;
826 while (idx < max - 1) {
827 uint32_t start = r[idx].zr_start;
828 uint32_t end = r[idx].zr_end;
829
830 while (idx < max - 1) {
831 idx++;
832
833 uint32_t nstart = r[idx].zr_start;
834 uint32_t nend = r[idx].zr_end;
835
836 uint32_t gap = nstart - end;
837 if (gap < new_allowed_gap) {
838 end = nend;
839 continue;
840 }
841 if (gap < mingap)
842 mingap = gap;
843 break;
844 }
845 r[output].zr_start = start;
846 r[output].zr_end = end;
847 output++;
848 }
849 ASSERT3U(output, <, eip->zei_range_count);
850 eip->zei_range_count = output;
851 eip->zei_mingap = mingap;
852 eip->zei_allowed_mingap = new_allowed_gap;
853 }
854
855 static void
856 zei_add_range(zfs_ecksum_info_t *eip, int start, int end)
857 {
858 struct zei_ranges *r = eip->zei_ranges;
859 size_t count = eip->zei_range_count;
860
861 if (count >= MAX_RANGES) {
862 zei_shrink_ranges(eip);
863 count = eip->zei_range_count;
864 }
865 if (count == 0) {
866 eip->zei_mingap = UINT32_MAX;
867 eip->zei_allowed_mingap = 1;
868 } else {
869 int gap = start - r[count - 1].zr_end;
870
871 if (gap < eip->zei_allowed_mingap) {
872 r[count - 1].zr_end = end;
873 return;
874 }
875 if (gap < eip->zei_mingap)
876 eip->zei_mingap = gap;
877 }
878 r[count].zr_start = start;
879 r[count].zr_end = end;
880 eip->zei_range_count++;
881 }
882
883 static size_t
884 zei_range_total_size(zfs_ecksum_info_t *eip)
885 {
886 struct zei_ranges *r = eip->zei_ranges;
887 size_t count = eip->zei_range_count;
888 size_t result = 0;
889 size_t idx;
890
891 for (idx = 0; idx < count; idx++)
892 result += (r[idx].zr_end - r[idx].zr_start);
893
894 return (result);
895 }
896
897 static zfs_ecksum_info_t *
898 annotate_ecksum(nvlist_t *ereport, zio_bad_cksum_t *info,
899 const abd_t *goodabd, const abd_t *badabd, size_t size,
900 boolean_t drop_if_identical)
901 {
902 const uint64_t *good;
903 const uint64_t *bad;
904
905 size_t nui64s = size / sizeof (uint64_t);
906
907 size_t inline_size;
908 int no_inline = 0;
909 size_t idx;
910 size_t range;
911
912 size_t offset = 0;
913 ssize_t start = -1;
914
915 zfs_ecksum_info_t *eip = kmem_zalloc(sizeof (*eip), KM_SLEEP);
916
917 /* don't do any annotation for injected checksum errors */
918 if (info != NULL && info->zbc_injected)
919 return (eip);
920
921 if (info != NULL && info->zbc_has_cksum) {
922 fm_payload_set(ereport,
923 FM_EREPORT_PAYLOAD_ZFS_CKSUM_EXPECTED,
924 DATA_TYPE_UINT64_ARRAY,
925 sizeof (info->zbc_expected) / sizeof (uint64_t),
926 (uint64_t *)&info->zbc_expected,
927 FM_EREPORT_PAYLOAD_ZFS_CKSUM_ACTUAL,
928 DATA_TYPE_UINT64_ARRAY,
929 sizeof (info->zbc_actual) / sizeof (uint64_t),
930 (uint64_t *)&info->zbc_actual,
931 FM_EREPORT_PAYLOAD_ZFS_CKSUM_ALGO,
932 DATA_TYPE_STRING,
933 info->zbc_checksum_name,
934 NULL);
935
936 if (info->zbc_byteswapped) {
937 fm_payload_set(ereport,
938 FM_EREPORT_PAYLOAD_ZFS_CKSUM_BYTESWAP,
939 DATA_TYPE_BOOLEAN, 1,
940 NULL);
941 }
942 }
943
944 if (badabd == NULL || goodabd == NULL)
945 return (eip);
946
947 ASSERT3U(nui64s, <=, UINT32_MAX);
948 ASSERT3U(size, ==, nui64s * sizeof (uint64_t));
949 ASSERT3U(size, <=, SPA_MAXBLOCKSIZE);
950 ASSERT3U(size, <=, UINT32_MAX);
951
952 good = (const uint64_t *) abd_borrow_buf_copy((abd_t *)goodabd, size);
953 bad = (const uint64_t *) abd_borrow_buf_copy((abd_t *)badabd, size);
954
955 /* build up the range list by comparing the two buffers. */
956 for (idx = 0; idx < nui64s; idx++) {
957 if (good[idx] == bad[idx]) {
958 if (start == -1)
959 continue;
960
961 zei_add_range(eip, start, idx);
962 start = -1;
963 } else {
964 if (start != -1)
965 continue;
966
967 start = idx;
968 }
969 }
970 if (start != -1)
971 zei_add_range(eip, start, idx);
972
973 /* See if it will fit in our inline buffers */
974 inline_size = zei_range_total_size(eip);
975 if (inline_size > ZFM_MAX_INLINE)
976 no_inline = 1;
977
978 /*
979 * If there is no change and we want to drop if the buffers are
980 * identical, do so.
981 */
982 if (inline_size == 0 && drop_if_identical) {
983 kmem_free(eip, sizeof (*eip));
984 abd_return_buf((abd_t *)goodabd, (void *)good, size);
985 abd_return_buf((abd_t *)badabd, (void *)bad, size);
986 return (NULL);
987 }
988
989 /*
990 * Now walk through the ranges, filling in the details of the
991 * differences. Also convert our uint64_t-array offsets to byte
992 * offsets.
993 */
994 for (range = 0; range < eip->zei_range_count; range++) {
995 size_t start = eip->zei_ranges[range].zr_start;
996 size_t end = eip->zei_ranges[range].zr_end;
997
998 for (idx = start; idx < end; idx++) {
999 uint64_t set, cleared;
1000
1001 // bits set in bad, but not in good
1002 set = ((~good[idx]) & bad[idx]);
1003 // bits set in good, but not in bad
1004 cleared = (good[idx] & (~bad[idx]));
1005
1006 if (!no_inline) {
1007 ASSERT3U(offset, <, inline_size);
1008 eip->zei_bits_set[offset] = set;
1009 eip->zei_bits_cleared[offset] = cleared;
1010 offset++;
1011 }
1012
1013 update_histogram(set, eip->zei_histogram_set,
1014 &eip->zei_range_sets[range]);
1015 update_histogram(cleared, eip->zei_histogram_cleared,
1016 &eip->zei_range_clears[range]);
1017 }
1018
1019 /* convert to byte offsets */
1020 eip->zei_ranges[range].zr_start *= sizeof (uint64_t);
1021 eip->zei_ranges[range].zr_end *= sizeof (uint64_t);
1022 }
1023
1024 abd_return_buf((abd_t *)goodabd, (void *)good, size);
1025 abd_return_buf((abd_t *)badabd, (void *)bad, size);
1026
1027 eip->zei_allowed_mingap *= sizeof (uint64_t);
1028 inline_size *= sizeof (uint64_t);
1029
1030 /* fill in ereport */
1031 fm_payload_set(ereport,
1032 FM_EREPORT_PAYLOAD_ZFS_BAD_OFFSET_RANGES,
1033 DATA_TYPE_UINT32_ARRAY, 2 * eip->zei_range_count,
1034 (uint32_t *)eip->zei_ranges,
1035 FM_EREPORT_PAYLOAD_ZFS_BAD_RANGE_MIN_GAP,
1036 DATA_TYPE_UINT32, eip->zei_allowed_mingap,
1037 FM_EREPORT_PAYLOAD_ZFS_BAD_RANGE_SETS,
1038 DATA_TYPE_UINT32_ARRAY, eip->zei_range_count, eip->zei_range_sets,
1039 FM_EREPORT_PAYLOAD_ZFS_BAD_RANGE_CLEARS,
1040 DATA_TYPE_UINT32_ARRAY, eip->zei_range_count, eip->zei_range_clears,
1041 NULL);
1042
1043 if (!no_inline) {
1044 fm_payload_set(ereport,
1045 FM_EREPORT_PAYLOAD_ZFS_BAD_SET_BITS,
1046 DATA_TYPE_UINT8_ARRAY,
1047 inline_size, (uint8_t *)eip->zei_bits_set,
1048 FM_EREPORT_PAYLOAD_ZFS_BAD_CLEARED_BITS,
1049 DATA_TYPE_UINT8_ARRAY,
1050 inline_size, (uint8_t *)eip->zei_bits_cleared,
1051 NULL);
1052 } else {
1053 fm_payload_set(ereport,
1054 FM_EREPORT_PAYLOAD_ZFS_BAD_SET_HISTOGRAM,
1055 DATA_TYPE_UINT8_ARRAY,
1056 NBBY * sizeof (uint64_t), eip->zei_histogram_set,
1057 FM_EREPORT_PAYLOAD_ZFS_BAD_CLEARED_HISTOGRAM,
1058 DATA_TYPE_UINT8_ARRAY,
1059 NBBY * sizeof (uint64_t), eip->zei_histogram_cleared,
1060 NULL);
1061 }
1062 return (eip);
1063 }
1064 #else
1065 void
1066 zfs_ereport_clear(spa_t *spa, vdev_t *vd)
1067 {
1068 (void) spa, (void) vd;
1069 }
1070 #endif
1071
1072 /*
1073 * Make sure our event is still valid for the given zio/vdev/pool. For example,
1074 * we don't want to keep logging events for a faulted or missing vdev.
1075 */
1076 boolean_t
1077 zfs_ereport_is_valid(const char *subclass, spa_t *spa, vdev_t *vd, zio_t *zio)
1078 {
1079 #ifdef _KERNEL
1080 /*
1081 * If we are doing a spa_tryimport() or in recovery mode,
1082 * ignore errors.
1083 */
1084 if (spa_load_state(spa) == SPA_LOAD_TRYIMPORT ||
1085 spa_load_state(spa) == SPA_LOAD_RECOVER)
1086 return (B_FALSE);
1087
1088 /*
1089 * If we are in the middle of opening a pool, and the previous attempt
1090 * failed, don't bother logging any new ereports - we're just going to
1091 * get the same diagnosis anyway.
1092 */
1093 if (spa_load_state(spa) != SPA_LOAD_NONE &&
1094 spa->spa_last_open_failed)
1095 return (B_FALSE);
1096
1097 if (zio != NULL) {
1098 /*
1099 * If this is not a read or write zio, ignore the error. This
1100 * can occur if the DKIOCFLUSHWRITECACHE ioctl fails.
1101 */
1102 if (zio->io_type != ZIO_TYPE_READ &&
1103 zio->io_type != ZIO_TYPE_WRITE)
1104 return (B_FALSE);
1105
1106 if (vd != NULL) {
1107 /*
1108 * If the vdev has already been marked as failing due
1109 * to a failed probe, then ignore any subsequent I/O
1110 * errors, as the DE will automatically fault the vdev
1111 * on the first such failure. This also catches cases
1112 * where vdev_remove_wanted is set and the device has
1113 * not yet been asynchronously placed into the REMOVED
1114 * state.
1115 */
1116 if (zio->io_vd == vd && !vdev_accessible(vd, zio))
1117 return (B_FALSE);
1118
1119 /*
1120 * Ignore checksum errors for reads from DTL regions of
1121 * leaf vdevs.
1122 */
1123 if (zio->io_type == ZIO_TYPE_READ &&
1124 zio->io_error == ECKSUM &&
1125 vd->vdev_ops->vdev_op_leaf &&
1126 vdev_dtl_contains(vd, DTL_MISSING, zio->io_txg, 1))
1127 return (B_FALSE);
1128 }
1129 }
1130
1131 /*
1132 * For probe failure, we want to avoid posting ereports if we've
1133 * already removed the device in the meantime.
1134 */
1135 if (vd != NULL &&
1136 strcmp(subclass, FM_EREPORT_ZFS_PROBE_FAILURE) == 0 &&
1137 (vd->vdev_remove_wanted || vd->vdev_state == VDEV_STATE_REMOVED))
1138 return (B_FALSE);
1139
1140 /* Ignore bogus delay events (like from ioctls or unqueued IOs) */
1141 if ((strcmp(subclass, FM_EREPORT_ZFS_DELAY) == 0) &&
1142 (zio != NULL) && (!zio->io_timestamp)) {
1143 return (B_FALSE);
1144 }
1145 #else
1146 (void) subclass, (void) spa, (void) vd, (void) zio;
1147 #endif
1148 return (B_TRUE);
1149 }
1150
1151 /*
1152 * Post an ereport for the given subclass
1153 *
1154 * Returns
1155 * - 0 if an event was posted
1156 * - EINVAL if there was a problem posting event
1157 * - EBUSY if the event was rate limited
1158 * - EALREADY if the event was already posted (duplicate)
1159 */
1160 int
1161 zfs_ereport_post(const char *subclass, spa_t *spa, vdev_t *vd,
1162 const zbookmark_phys_t *zb, zio_t *zio, uint64_t state)
1163 {
1164 int rc = 0;
1165 #ifdef _KERNEL
1166 nvlist_t *ereport = NULL;
1167 nvlist_t *detector = NULL;
1168
1169 if (!zfs_ereport_is_valid(subclass, spa, vd, zio))
1170 return (EINVAL);
1171
1172 if (zfs_ereport_is_duplicate(subclass, spa, vd, zb, zio, 0, 0))
1173 return (SET_ERROR(EALREADY));
1174
1175 if (zfs_is_ratelimiting_event(subclass, vd))
1176 return (SET_ERROR(EBUSY));
1177
1178 if (!zfs_ereport_start(&ereport, &detector, subclass, spa, vd,
1179 zb, zio, state, 0))
1180 return (SET_ERROR(EINVAL)); /* couldn't post event */
1181
1182 if (ereport == NULL)
1183 return (SET_ERROR(EINVAL));
1184
1185 /* Cleanup is handled by the callback function */
1186 rc = zfs_zevent_post(ereport, detector, zfs_zevent_post_cb);
1187 #else
1188 (void) subclass, (void) spa, (void) vd, (void) zb, (void) zio,
1189 (void) state;
1190 #endif
1191 return (rc);
1192 }
1193
1194 /*
1195 * Prepare a checksum ereport
1196 *
1197 * Returns
1198 * - 0 if an event was posted
1199 * - EINVAL if there was a problem posting event
1200 * - EBUSY if the event was rate limited
1201 * - EALREADY if the event was already posted (duplicate)
1202 */
1203 int
1204 zfs_ereport_start_checksum(spa_t *spa, vdev_t *vd, const zbookmark_phys_t *zb,
1205 struct zio *zio, uint64_t offset, uint64_t length, zio_bad_cksum_t *info)
1206 {
1207 zio_cksum_report_t *report;
1208
1209 #ifdef _KERNEL
1210 if (!zfs_ereport_is_valid(FM_EREPORT_ZFS_CHECKSUM, spa, vd, zio))
1211 return (SET_ERROR(EINVAL));
1212
1213 if (zfs_ereport_is_duplicate(FM_EREPORT_ZFS_CHECKSUM, spa, vd, zb, zio,
1214 offset, length))
1215 return (SET_ERROR(EALREADY));
1216
1217 if (zfs_is_ratelimiting_event(FM_EREPORT_ZFS_CHECKSUM, vd))
1218 return (SET_ERROR(EBUSY));
1219 #else
1220 (void) zb, (void) offset;
1221 #endif
1222
1223 report = kmem_zalloc(sizeof (*report), KM_SLEEP);
1224
1225 zio_vsd_default_cksum_report(zio, report);
1226
1227 /* copy the checksum failure information if it was provided */
1228 if (info != NULL) {
1229 report->zcr_ckinfo = kmem_zalloc(sizeof (*info), KM_SLEEP);
1230 memcpy(report->zcr_ckinfo, info, sizeof (*info));
1231 }
1232
1233 report->zcr_sector = 1ULL << vd->vdev_top->vdev_ashift;
1234 report->zcr_align =
1235 vdev_psize_to_asize(vd->vdev_top, report->zcr_sector);
1236 report->zcr_length = length;
1237
1238 #ifdef _KERNEL
1239 (void) zfs_ereport_start(&report->zcr_ereport, &report->zcr_detector,
1240 FM_EREPORT_ZFS_CHECKSUM, spa, vd, zb, zio, offset, length);
1241
1242 if (report->zcr_ereport == NULL) {
1243 zfs_ereport_free_checksum(report);
1244 return (0);
1245 }
1246 #endif
1247
1248 mutex_enter(&spa->spa_errlist_lock);
1249 report->zcr_next = zio->io_logical->io_cksum_report;
1250 zio->io_logical->io_cksum_report = report;
1251 mutex_exit(&spa->spa_errlist_lock);
1252 return (0);
1253 }
1254
1255 void
1256 zfs_ereport_finish_checksum(zio_cksum_report_t *report, const abd_t *good_data,
1257 const abd_t *bad_data, boolean_t drop_if_identical)
1258 {
1259 #ifdef _KERNEL
1260 zfs_ecksum_info_t *info;
1261
1262 info = annotate_ecksum(report->zcr_ereport, report->zcr_ckinfo,
1263 good_data, bad_data, report->zcr_length, drop_if_identical);
1264 if (info != NULL)
1265 zfs_zevent_post(report->zcr_ereport,
1266 report->zcr_detector, zfs_zevent_post_cb);
1267 else
1268 zfs_zevent_post_cb(report->zcr_ereport, report->zcr_detector);
1269
1270 report->zcr_ereport = report->zcr_detector = NULL;
1271 if (info != NULL)
1272 kmem_free(info, sizeof (*info));
1273 #else
1274 (void) report, (void) good_data, (void) bad_data,
1275 (void) drop_if_identical;
1276 #endif
1277 }
1278
1279 void
1280 zfs_ereport_free_checksum(zio_cksum_report_t *rpt)
1281 {
1282 #ifdef _KERNEL
1283 if (rpt->zcr_ereport != NULL) {
1284 fm_nvlist_destroy(rpt->zcr_ereport,
1285 FM_NVA_FREE);
1286 fm_nvlist_destroy(rpt->zcr_detector,
1287 FM_NVA_FREE);
1288 }
1289 #endif
1290 rpt->zcr_free(rpt->zcr_cbdata, rpt->zcr_cbinfo);
1291
1292 if (rpt->zcr_ckinfo != NULL)
1293 kmem_free(rpt->zcr_ckinfo, sizeof (*rpt->zcr_ckinfo));
1294
1295 kmem_free(rpt, sizeof (*rpt));
1296 }
1297
1298 /*
1299 * Post a checksum ereport
1300 *
1301 * Returns
1302 * - 0 if an event was posted
1303 * - EINVAL if there was a problem posting event
1304 * - EBUSY if the event was rate limited
1305 * - EALREADY if the event was already posted (duplicate)
1306 */
1307 int
1308 zfs_ereport_post_checksum(spa_t *spa, vdev_t *vd, const zbookmark_phys_t *zb,
1309 struct zio *zio, uint64_t offset, uint64_t length,
1310 const abd_t *good_data, const abd_t *bad_data, zio_bad_cksum_t *zbc)
1311 {
1312 int rc = 0;
1313 #ifdef _KERNEL
1314 nvlist_t *ereport = NULL;
1315 nvlist_t *detector = NULL;
1316 zfs_ecksum_info_t *info;
1317
1318 if (!zfs_ereport_is_valid(FM_EREPORT_ZFS_CHECKSUM, spa, vd, zio))
1319 return (SET_ERROR(EINVAL));
1320
1321 if (zfs_ereport_is_duplicate(FM_EREPORT_ZFS_CHECKSUM, spa, vd, zb, zio,
1322 offset, length))
1323 return (SET_ERROR(EALREADY));
1324
1325 if (zfs_is_ratelimiting_event(FM_EREPORT_ZFS_CHECKSUM, vd))
1326 return (SET_ERROR(EBUSY));
1327
1328 if (!zfs_ereport_start(&ereport, &detector, FM_EREPORT_ZFS_CHECKSUM,
1329 spa, vd, zb, zio, offset, length) || (ereport == NULL)) {
1330 return (SET_ERROR(EINVAL));
1331 }
1332
1333 info = annotate_ecksum(ereport, zbc, good_data, bad_data, length,
1334 B_FALSE);
1335
1336 if (info != NULL) {
1337 rc = zfs_zevent_post(ereport, detector, zfs_zevent_post_cb);
1338 kmem_free(info, sizeof (*info));
1339 }
1340 #else
1341 (void) spa, (void) vd, (void) zb, (void) zio, (void) offset,
1342 (void) length, (void) good_data, (void) bad_data, (void) zbc;
1343 #endif
1344 return (rc);
1345 }
1346
1347 /*
1348 * The 'sysevent.fs.zfs.*' events are signals posted to notify user space of
1349 * change in the pool. All sysevents are listed in sys/sysevent/eventdefs.h
1350 * and are designed to be consumed by the ZFS Event Daemon (ZED). For
1351 * additional details refer to the zed(8) man page.
1352 */
1353 nvlist_t *
1354 zfs_event_create(spa_t *spa, vdev_t *vd, const char *type, const char *name,
1355 nvlist_t *aux)
1356 {
1357 nvlist_t *resource = NULL;
1358 #ifdef _KERNEL
1359 char class[64];
1360
1361 if (spa_load_state(spa) == SPA_LOAD_TRYIMPORT)
1362 return (NULL);
1363
1364 if ((resource = fm_nvlist_create(NULL)) == NULL)
1365 return (NULL);
1366
1367 (void) snprintf(class, sizeof (class), "%s.%s.%s", type,
1368 ZFS_ERROR_CLASS, name);
1369 VERIFY0(nvlist_add_uint8(resource, FM_VERSION, FM_RSRC_VERSION));
1370 VERIFY0(nvlist_add_string(resource, FM_CLASS, class));
1371 VERIFY0(nvlist_add_string(resource,
1372 FM_EREPORT_PAYLOAD_ZFS_POOL, spa_name(spa)));
1373 VERIFY0(nvlist_add_uint64(resource,
1374 FM_EREPORT_PAYLOAD_ZFS_POOL_GUID, spa_guid(spa)));
1375 VERIFY0(nvlist_add_uint64(resource,
1376 FM_EREPORT_PAYLOAD_ZFS_POOL_STATE, spa_state(spa)));
1377 VERIFY0(nvlist_add_int32(resource,
1378 FM_EREPORT_PAYLOAD_ZFS_POOL_CONTEXT, spa_load_state(spa)));
1379
1380 if (vd) {
1381 VERIFY0(nvlist_add_uint64(resource,
1382 FM_EREPORT_PAYLOAD_ZFS_VDEV_GUID, vd->vdev_guid));
1383 VERIFY0(nvlist_add_uint64(resource,
1384 FM_EREPORT_PAYLOAD_ZFS_VDEV_STATE, vd->vdev_state));
1385 if (vd->vdev_path != NULL)
1386 VERIFY0(nvlist_add_string(resource,
1387 FM_EREPORT_PAYLOAD_ZFS_VDEV_PATH, vd->vdev_path));
1388 if (vd->vdev_devid != NULL)
1389 VERIFY0(nvlist_add_string(resource,
1390 FM_EREPORT_PAYLOAD_ZFS_VDEV_DEVID, vd->vdev_devid));
1391 if (vd->vdev_fru != NULL)
1392 VERIFY0(nvlist_add_string(resource,
1393 FM_EREPORT_PAYLOAD_ZFS_VDEV_FRU, vd->vdev_fru));
1394 if (vd->vdev_enc_sysfs_path != NULL)
1395 VERIFY0(nvlist_add_string(resource,
1396 FM_EREPORT_PAYLOAD_ZFS_VDEV_ENC_SYSFS_PATH,
1397 vd->vdev_enc_sysfs_path));
1398 }
1399
1400 /* also copy any optional payload data */
1401 if (aux) {
1402 nvpair_t *elem = NULL;
1403
1404 while ((elem = nvlist_next_nvpair(aux, elem)) != NULL)
1405 (void) nvlist_add_nvpair(resource, elem);
1406 }
1407 #else
1408 (void) spa, (void) vd, (void) type, (void) name, (void) aux;
1409 #endif
1410 return (resource);
1411 }
1412
1413 static void
1414 zfs_post_common(spa_t *spa, vdev_t *vd, const char *type, const char *name,
1415 nvlist_t *aux)
1416 {
1417 #ifdef _KERNEL
1418 nvlist_t *resource;
1419
1420 resource = zfs_event_create(spa, vd, type, name, aux);
1421 if (resource)
1422 zfs_zevent_post(resource, NULL, zfs_zevent_post_cb);
1423 #else
1424 (void) spa, (void) vd, (void) type, (void) name, (void) aux;
1425 #endif
1426 }
1427
1428 /*
1429 * The 'resource.fs.zfs.removed' event is an internal signal that the given vdev
1430 * has been removed from the system. This will cause the DE to ignore any
1431 * recent I/O errors, inferring that they are due to the asynchronous device
1432 * removal.
1433 */
1434 void
1435 zfs_post_remove(spa_t *spa, vdev_t *vd)
1436 {
1437 zfs_post_common(spa, vd, FM_RSRC_CLASS, FM_RESOURCE_REMOVED, NULL);
1438 }
1439
1440 /*
1441 * The 'resource.fs.zfs.autoreplace' event is an internal signal that the pool
1442 * has the 'autoreplace' property set, and therefore any broken vdevs will be
1443 * handled by higher level logic, and no vdev fault should be generated.
1444 */
1445 void
1446 zfs_post_autoreplace(spa_t *spa, vdev_t *vd)
1447 {
1448 zfs_post_common(spa, vd, FM_RSRC_CLASS, FM_RESOURCE_AUTOREPLACE, NULL);
1449 }
1450
1451 /*
1452 * The 'resource.fs.zfs.statechange' event is an internal signal that the
1453 * given vdev has transitioned its state to DEGRADED or HEALTHY. This will
1454 * cause the retire agent to repair any outstanding fault management cases
1455 * open because the device was not found (fault.fs.zfs.device).
1456 */
1457 void
1458 zfs_post_state_change(spa_t *spa, vdev_t *vd, uint64_t laststate)
1459 {
1460 #ifdef _KERNEL
1461 nvlist_t *aux;
1462
1463 /*
1464 * Add optional supplemental keys to payload
1465 */
1466 aux = fm_nvlist_create(NULL);
1467 if (vd && aux) {
1468 if (vd->vdev_physpath) {
1469 fnvlist_add_string(aux,
1470 FM_EREPORT_PAYLOAD_ZFS_VDEV_PHYSPATH,
1471 vd->vdev_physpath);
1472 }
1473 if (vd->vdev_enc_sysfs_path) {
1474 fnvlist_add_string(aux,
1475 FM_EREPORT_PAYLOAD_ZFS_VDEV_ENC_SYSFS_PATH,
1476 vd->vdev_enc_sysfs_path);
1477 }
1478
1479 fnvlist_add_uint64(aux,
1480 FM_EREPORT_PAYLOAD_ZFS_VDEV_LASTSTATE, laststate);
1481 }
1482
1483 zfs_post_common(spa, vd, FM_RSRC_CLASS, FM_RESOURCE_STATECHANGE,
1484 aux);
1485
1486 if (aux)
1487 fm_nvlist_destroy(aux, FM_NVA_FREE);
1488 #else
1489 (void) spa, (void) vd, (void) laststate;
1490 #endif
1491 }
1492
1493 #ifdef _KERNEL
1494 void
1495 zfs_ereport_init(void)
1496 {
1497 mutex_init(&recent_events_lock, NULL, MUTEX_DEFAULT, NULL);
1498 list_create(&recent_events_list, sizeof (recent_events_node_t),
1499 offsetof(recent_events_node_t, re_list_link));
1500 avl_create(&recent_events_tree, recent_events_compare,
1501 sizeof (recent_events_node_t), offsetof(recent_events_node_t,
1502 re_tree_link));
1503 }
1504
1505 /*
1506 * This 'early' fini needs to run before zfs_fini() which on Linux waits
1507 * for the system_delay_taskq to drain.
1508 */
1509 void
1510 zfs_ereport_taskq_fini(void)
1511 {
1512 mutex_enter(&recent_events_lock);
1513 if (recent_events_cleaner_tqid != 0) {
1514 taskq_cancel_id(system_delay_taskq, recent_events_cleaner_tqid);
1515 recent_events_cleaner_tqid = 0;
1516 }
1517 mutex_exit(&recent_events_lock);
1518 }
1519
1520 void
1521 zfs_ereport_fini(void)
1522 {
1523 recent_events_node_t *entry;
1524
1525 while ((entry = list_head(&recent_events_list)) != NULL) {
1526 avl_remove(&recent_events_tree, entry);
1527 list_remove(&recent_events_list, entry);
1528 kmem_free(entry, sizeof (*entry));
1529 }
1530 avl_destroy(&recent_events_tree);
1531 list_destroy(&recent_events_list);
1532 mutex_destroy(&recent_events_lock);
1533 }
1534
1535 void
1536 zfs_ereport_snapshot_post(const char *subclass, spa_t *spa, const char *name)
1537 {
1538 nvlist_t *aux;
1539
1540 aux = fm_nvlist_create(NULL);
1541 fnvlist_add_string(aux, FM_EREPORT_PAYLOAD_ZFS_SNAPSHOT_NAME, name);
1542
1543 zfs_post_common(spa, NULL, FM_RSRC_CLASS, subclass, aux);
1544 fm_nvlist_destroy(aux, FM_NVA_FREE);
1545 }
1546
1547 /*
1548 * Post when a event when a zvol is created or removed
1549 *
1550 * This is currently only used by macOS, since it uses the event to create
1551 * symlinks between the volume name (mypool/myvol) and the actual /dev
1552 * device (/dev/disk3). For example:
1553 *
1554 * /var/run/zfs/dsk/mypool/myvol -> /dev/disk3
1555 *
1556 * name: The full name of the zvol ("mypool/myvol")
1557 * dev_name: The full /dev name for the zvol ("/dev/disk3")
1558 * raw_name: The raw /dev name for the zvol ("/dev/rdisk3")
1559 */
1560 void
1561 zfs_ereport_zvol_post(const char *subclass, const char *name,
1562 const char *dev_name, const char *raw_name)
1563 {
1564 nvlist_t *aux;
1565 char *r;
1566
1567 boolean_t locked = mutex_owned(&spa_namespace_lock);
1568 if (!locked) mutex_enter(&spa_namespace_lock);
1569 spa_t *spa = spa_lookup(name);
1570 if (!locked) mutex_exit(&spa_namespace_lock);
1571
1572 if (spa == NULL)
1573 return;
1574
1575 aux = fm_nvlist_create(NULL);
1576 fnvlist_add_string(aux, FM_EREPORT_PAYLOAD_ZFS_DEVICE_NAME, dev_name);
1577 fnvlist_add_string(aux, FM_EREPORT_PAYLOAD_ZFS_RAW_DEVICE_NAME,
1578 raw_name);
1579 r = strchr(name, '/');
1580 if (r && r[1])
1581 fnvlist_add_string(aux, FM_EREPORT_PAYLOAD_ZFS_VOLUME, &r[1]);
1582
1583 zfs_post_common(spa, NULL, FM_RSRC_CLASS, subclass, aux);
1584 fm_nvlist_destroy(aux, FM_NVA_FREE);
1585 }
1586
1587 EXPORT_SYMBOL(zfs_ereport_post);
1588 EXPORT_SYMBOL(zfs_ereport_is_valid);
1589 EXPORT_SYMBOL(zfs_ereport_post_checksum);
1590 EXPORT_SYMBOL(zfs_post_remove);
1591 EXPORT_SYMBOL(zfs_post_autoreplace);
1592 EXPORT_SYMBOL(zfs_post_state_change);
1593
1594 ZFS_MODULE_PARAM(zfs_zevent, zfs_zevent_, retain_max, UINT, ZMOD_RW,
1595 "Maximum recent zevents records to retain for duplicate checking");
1596 ZFS_MODULE_PARAM(zfs_zevent, zfs_zevent_, retain_expire_secs, UINT, ZMOD_RW,
1597 "Expiration time for recent zevents records");
1598 #endif /* _KERNEL */