]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/zfs_vnops.c
f35165de3e8976cd95b2baab53e255935dc2517e
[mirror_zfs.git] / module / zfs / zfs_vnops.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2012, 2015 by Delphix. All rights reserved.
25 * Copyright (c) 2015 by Chunwei Chen. All rights reserved.
26 * Copyright 2017 Nexenta Systems, Inc.
27 */
28
29 /* Portions Copyright 2007 Jeremy Teo */
30 /* Portions Copyright 2010 Robert Milkowski */
31
32
33 #include <sys/types.h>
34 #include <sys/param.h>
35 #include <sys/time.h>
36 #include <sys/systm.h>
37 #include <sys/sysmacros.h>
38 #include <sys/resource.h>
39 #include <sys/vfs.h>
40 #include <sys/vfs_opreg.h>
41 #include <sys/file.h>
42 #include <sys/stat.h>
43 #include <sys/kmem.h>
44 #include <sys/taskq.h>
45 #include <sys/uio.h>
46 #include <sys/vmsystm.h>
47 #include <sys/atomic.h>
48 #include <vm/pvn.h>
49 #include <sys/pathname.h>
50 #include <sys/cmn_err.h>
51 #include <sys/errno.h>
52 #include <sys/unistd.h>
53 #include <sys/zfs_dir.h>
54 #include <sys/zfs_acl.h>
55 #include <sys/zfs_ioctl.h>
56 #include <sys/fs/zfs.h>
57 #include <sys/dmu.h>
58 #include <sys/dmu_objset.h>
59 #include <sys/spa.h>
60 #include <sys/txg.h>
61 #include <sys/dbuf.h>
62 #include <sys/zap.h>
63 #include <sys/sa.h>
64 #include <sys/dirent.h>
65 #include <sys/policy.h>
66 #include <sys/sunddi.h>
67 #include <sys/sid.h>
68 #include <sys/mode.h>
69 #include "fs/fs_subr.h"
70 #include <sys/zfs_ctldir.h>
71 #include <sys/zfs_fuid.h>
72 #include <sys/zfs_sa.h>
73 #include <sys/zfs_vnops.h>
74 #include <sys/dnlc.h>
75 #include <sys/zfs_rlock.h>
76 #include <sys/extdirent.h>
77 #include <sys/kidmap.h>
78 #include <sys/cred.h>
79 #include <sys/attr.h>
80 #include <sys/zpl.h>
81 #include <sys/zil.h>
82 #include <sys/sa_impl.h>
83
84 /*
85 * Programming rules.
86 *
87 * Each vnode op performs some logical unit of work. To do this, the ZPL must
88 * properly lock its in-core state, create a DMU transaction, do the work,
89 * record this work in the intent log (ZIL), commit the DMU transaction,
90 * and wait for the intent log to commit if it is a synchronous operation.
91 * Moreover, the vnode ops must work in both normal and log replay context.
92 * The ordering of events is important to avoid deadlocks and references
93 * to freed memory. The example below illustrates the following Big Rules:
94 *
95 * (1) A check must be made in each zfs thread for a mounted file system.
96 * This is done avoiding races using ZFS_ENTER(zfsvfs).
97 * A ZFS_EXIT(zfsvfs) is needed before all returns. Any znodes
98 * must be checked with ZFS_VERIFY_ZP(zp). Both of these macros
99 * can return EIO from the calling function.
100 *
101 * (2) iput() should always be the last thing except for zil_commit()
102 * (if necessary) and ZFS_EXIT(). This is for 3 reasons:
103 * First, if it's the last reference, the vnode/znode
104 * can be freed, so the zp may point to freed memory. Second, the last
105 * reference will call zfs_zinactive(), which may induce a lot of work --
106 * pushing cached pages (which acquires range locks) and syncing out
107 * cached atime changes. Third, zfs_zinactive() may require a new tx,
108 * which could deadlock the system if you were already holding one.
109 * If you must call iput() within a tx then use zfs_iput_async().
110 *
111 * (3) All range locks must be grabbed before calling dmu_tx_assign(),
112 * as they can span dmu_tx_assign() calls.
113 *
114 * (4) If ZPL locks are held, pass TXG_NOWAIT as the second argument to
115 * dmu_tx_assign(). This is critical because we don't want to block
116 * while holding locks.
117 *
118 * If no ZPL locks are held (aside from ZFS_ENTER()), use TXG_WAIT. This
119 * reduces lock contention and CPU usage when we must wait (note that if
120 * throughput is constrained by the storage, nearly every transaction
121 * must wait).
122 *
123 * Note, in particular, that if a lock is sometimes acquired before
124 * the tx assigns, and sometimes after (e.g. z_lock), then failing
125 * to use a non-blocking assign can deadlock the system. The scenario:
126 *
127 * Thread A has grabbed a lock before calling dmu_tx_assign().
128 * Thread B is in an already-assigned tx, and blocks for this lock.
129 * Thread A calls dmu_tx_assign(TXG_WAIT) and blocks in txg_wait_open()
130 * forever, because the previous txg can't quiesce until B's tx commits.
131 *
132 * If dmu_tx_assign() returns ERESTART and zfsvfs->z_assign is TXG_NOWAIT,
133 * then drop all locks, call dmu_tx_wait(), and try again. On subsequent
134 * calls to dmu_tx_assign(), pass TXG_NOTHROTTLE in addition to TXG_NOWAIT,
135 * to indicate that this operation has already called dmu_tx_wait().
136 * This will ensure that we don't retry forever, waiting a short bit
137 * each time.
138 *
139 * (5) If the operation succeeded, generate the intent log entry for it
140 * before dropping locks. This ensures that the ordering of events
141 * in the intent log matches the order in which they actually occurred.
142 * During ZIL replay the zfs_log_* functions will update the sequence
143 * number to indicate the zil transaction has replayed.
144 *
145 * (6) At the end of each vnode op, the DMU tx must always commit,
146 * regardless of whether there were any errors.
147 *
148 * (7) After dropping all locks, invoke zil_commit(zilog, foid)
149 * to ensure that synchronous semantics are provided when necessary.
150 *
151 * In general, this is how things should be ordered in each vnode op:
152 *
153 * ZFS_ENTER(zfsvfs); // exit if unmounted
154 * top:
155 * zfs_dirent_lock(&dl, ...) // lock directory entry (may igrab())
156 * rw_enter(...); // grab any other locks you need
157 * tx = dmu_tx_create(...); // get DMU tx
158 * dmu_tx_hold_*(); // hold each object you might modify
159 * error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
160 * if (error) {
161 * rw_exit(...); // drop locks
162 * zfs_dirent_unlock(dl); // unlock directory entry
163 * iput(...); // release held vnodes
164 * if (error == ERESTART) {
165 * waited = B_TRUE;
166 * dmu_tx_wait(tx);
167 * dmu_tx_abort(tx);
168 * goto top;
169 * }
170 * dmu_tx_abort(tx); // abort DMU tx
171 * ZFS_EXIT(zfsvfs); // finished in zfs
172 * return (error); // really out of space
173 * }
174 * error = do_real_work(); // do whatever this VOP does
175 * if (error == 0)
176 * zfs_log_*(...); // on success, make ZIL entry
177 * dmu_tx_commit(tx); // commit DMU tx -- error or not
178 * rw_exit(...); // drop locks
179 * zfs_dirent_unlock(dl); // unlock directory entry
180 * iput(...); // release held vnodes
181 * zil_commit(zilog, foid); // synchronous when necessary
182 * ZFS_EXIT(zfsvfs); // finished in zfs
183 * return (error); // done, report error
184 */
185
186 /*
187 * Virus scanning is unsupported. It would be possible to add a hook
188 * here to performance the required virus scan. This could be done
189 * entirely in the kernel or potentially as an update to invoke a
190 * scanning utility.
191 */
192 static int
193 zfs_vscan(struct inode *ip, cred_t *cr, int async)
194 {
195 return (0);
196 }
197
198 /* ARGSUSED */
199 int
200 zfs_open(struct inode *ip, int mode, int flag, cred_t *cr)
201 {
202 znode_t *zp = ITOZ(ip);
203 zfsvfs_t *zfsvfs = ITOZSB(ip);
204
205 ZFS_ENTER(zfsvfs);
206 ZFS_VERIFY_ZP(zp);
207
208 /* Honor ZFS_APPENDONLY file attribute */
209 if ((mode & FMODE_WRITE) && (zp->z_pflags & ZFS_APPENDONLY) &&
210 ((flag & O_APPEND) == 0)) {
211 ZFS_EXIT(zfsvfs);
212 return (SET_ERROR(EPERM));
213 }
214
215 /* Virus scan eligible files on open */
216 if (!zfs_has_ctldir(zp) && zfsvfs->z_vscan && S_ISREG(ip->i_mode) &&
217 !(zp->z_pflags & ZFS_AV_QUARANTINED) && zp->z_size > 0) {
218 if (zfs_vscan(ip, cr, 0) != 0) {
219 ZFS_EXIT(zfsvfs);
220 return (SET_ERROR(EACCES));
221 }
222 }
223
224 /* Keep a count of the synchronous opens in the znode */
225 if (flag & O_SYNC)
226 atomic_inc_32(&zp->z_sync_cnt);
227
228 ZFS_EXIT(zfsvfs);
229 return (0);
230 }
231
232 /* ARGSUSED */
233 int
234 zfs_close(struct inode *ip, int flag, cred_t *cr)
235 {
236 znode_t *zp = ITOZ(ip);
237 zfsvfs_t *zfsvfs = ITOZSB(ip);
238
239 ZFS_ENTER(zfsvfs);
240 ZFS_VERIFY_ZP(zp);
241
242 /* Decrement the synchronous opens in the znode */
243 if (flag & O_SYNC)
244 atomic_dec_32(&zp->z_sync_cnt);
245
246 if (!zfs_has_ctldir(zp) && zfsvfs->z_vscan && S_ISREG(ip->i_mode) &&
247 !(zp->z_pflags & ZFS_AV_QUARANTINED) && zp->z_size > 0)
248 VERIFY(zfs_vscan(ip, cr, 1) == 0);
249
250 ZFS_EXIT(zfsvfs);
251 return (0);
252 }
253
254 #if defined(SEEK_HOLE) && defined(SEEK_DATA)
255 /*
256 * Lseek support for finding holes (cmd == SEEK_HOLE) and
257 * data (cmd == SEEK_DATA). "off" is an in/out parameter.
258 */
259 static int
260 zfs_holey_common(struct inode *ip, int cmd, loff_t *off)
261 {
262 znode_t *zp = ITOZ(ip);
263 uint64_t noff = (uint64_t)*off; /* new offset */
264 uint64_t file_sz;
265 int error;
266 boolean_t hole;
267
268 file_sz = zp->z_size;
269 if (noff >= file_sz) {
270 return (SET_ERROR(ENXIO));
271 }
272
273 if (cmd == SEEK_HOLE)
274 hole = B_TRUE;
275 else
276 hole = B_FALSE;
277
278 error = dmu_offset_next(ZTOZSB(zp)->z_os, zp->z_id, hole, &noff);
279
280 if (error == ESRCH)
281 return (SET_ERROR(ENXIO));
282
283 /* file was dirty, so fall back to using generic logic */
284 if (error == EBUSY) {
285 if (hole)
286 *off = file_sz;
287
288 return (0);
289 }
290
291 /*
292 * We could find a hole that begins after the logical end-of-file,
293 * because dmu_offset_next() only works on whole blocks. If the
294 * EOF falls mid-block, then indicate that the "virtual hole"
295 * at the end of the file begins at the logical EOF, rather than
296 * at the end of the last block.
297 */
298 if (noff > file_sz) {
299 ASSERT(hole);
300 noff = file_sz;
301 }
302
303 if (noff < *off)
304 return (error);
305 *off = noff;
306 return (error);
307 }
308
309 int
310 zfs_holey(struct inode *ip, int cmd, loff_t *off)
311 {
312 znode_t *zp = ITOZ(ip);
313 zfsvfs_t *zfsvfs = ITOZSB(ip);
314 int error;
315
316 ZFS_ENTER(zfsvfs);
317 ZFS_VERIFY_ZP(zp);
318
319 error = zfs_holey_common(ip, cmd, off);
320
321 ZFS_EXIT(zfsvfs);
322 return (error);
323 }
324 #endif /* SEEK_HOLE && SEEK_DATA */
325
326 #if defined(_KERNEL)
327 /*
328 * When a file is memory mapped, we must keep the IO data synchronized
329 * between the DMU cache and the memory mapped pages. What this means:
330 *
331 * On Write: If we find a memory mapped page, we write to *both*
332 * the page and the dmu buffer.
333 */
334 static void
335 update_pages(struct inode *ip, int64_t start, int len,
336 objset_t *os, uint64_t oid)
337 {
338 struct address_space *mp = ip->i_mapping;
339 struct page *pp;
340 uint64_t nbytes;
341 int64_t off;
342 void *pb;
343
344 off = start & (PAGE_SIZE-1);
345 for (start &= PAGE_MASK; len > 0; start += PAGE_SIZE) {
346 nbytes = MIN(PAGE_SIZE - off, len);
347
348 pp = find_lock_page(mp, start >> PAGE_SHIFT);
349 if (pp) {
350 if (mapping_writably_mapped(mp))
351 flush_dcache_page(pp);
352
353 pb = kmap(pp);
354 (void) dmu_read(os, oid, start+off, nbytes, pb+off,
355 DMU_READ_PREFETCH);
356 kunmap(pp);
357
358 if (mapping_writably_mapped(mp))
359 flush_dcache_page(pp);
360
361 mark_page_accessed(pp);
362 SetPageUptodate(pp);
363 ClearPageError(pp);
364 unlock_page(pp);
365 put_page(pp);
366 }
367
368 len -= nbytes;
369 off = 0;
370 }
371 }
372
373 /*
374 * When a file is memory mapped, we must keep the IO data synchronized
375 * between the DMU cache and the memory mapped pages. What this means:
376 *
377 * On Read: We "read" preferentially from memory mapped pages,
378 * else we default from the dmu buffer.
379 *
380 * NOTE: We will always "break up" the IO into PAGESIZE uiomoves when
381 * the file is memory mapped.
382 */
383 static int
384 mappedread(struct inode *ip, int nbytes, uio_t *uio)
385 {
386 struct address_space *mp = ip->i_mapping;
387 struct page *pp;
388 znode_t *zp = ITOZ(ip);
389 int64_t start, off;
390 uint64_t bytes;
391 int len = nbytes;
392 int error = 0;
393 void *pb;
394
395 start = uio->uio_loffset;
396 off = start & (PAGE_SIZE-1);
397 for (start &= PAGE_MASK; len > 0; start += PAGE_SIZE) {
398 bytes = MIN(PAGE_SIZE - off, len);
399
400 pp = find_lock_page(mp, start >> PAGE_SHIFT);
401 if (pp) {
402 ASSERT(PageUptodate(pp));
403
404 pb = kmap(pp);
405 error = uiomove(pb + off, bytes, UIO_READ, uio);
406 kunmap(pp);
407
408 if (mapping_writably_mapped(mp))
409 flush_dcache_page(pp);
410
411 mark_page_accessed(pp);
412 unlock_page(pp);
413 put_page(pp);
414 } else {
415 error = dmu_read_uio_dbuf(sa_get_db(zp->z_sa_hdl),
416 uio, bytes);
417 }
418
419 len -= bytes;
420 off = 0;
421 if (error)
422 break;
423 }
424 return (error);
425 }
426 #endif /* _KERNEL */
427
428 unsigned long zfs_read_chunk_size = 1024 * 1024; /* Tunable */
429 unsigned long zfs_delete_blocks = DMU_MAX_DELETEBLKCNT;
430
431 /*
432 * Read bytes from specified file into supplied buffer.
433 *
434 * IN: ip - inode of file to be read from.
435 * uio - structure supplying read location, range info,
436 * and return buffer.
437 * ioflag - FSYNC flags; used to provide FRSYNC semantics.
438 * O_DIRECT flag; used to bypass page cache.
439 * cr - credentials of caller.
440 *
441 * OUT: uio - updated offset and range, buffer filled.
442 *
443 * RETURN: 0 on success, error code on failure.
444 *
445 * Side Effects:
446 * inode - atime updated if byte count > 0
447 */
448 /* ARGSUSED */
449 int
450 zfs_read(struct inode *ip, uio_t *uio, int ioflag, cred_t *cr)
451 {
452 znode_t *zp = ITOZ(ip);
453 zfsvfs_t *zfsvfs = ITOZSB(ip);
454 ssize_t n, nbytes;
455 int error = 0;
456 rl_t *rl;
457 #ifdef HAVE_UIO_ZEROCOPY
458 xuio_t *xuio = NULL;
459 #endif /* HAVE_UIO_ZEROCOPY */
460
461 ZFS_ENTER(zfsvfs);
462 ZFS_VERIFY_ZP(zp);
463
464 if (zp->z_pflags & ZFS_AV_QUARANTINED) {
465 ZFS_EXIT(zfsvfs);
466 return (SET_ERROR(EACCES));
467 }
468
469 /*
470 * Validate file offset
471 */
472 if (uio->uio_loffset < (offset_t)0) {
473 ZFS_EXIT(zfsvfs);
474 return (SET_ERROR(EINVAL));
475 }
476
477 /*
478 * Fasttrack empty reads
479 */
480 if (uio->uio_resid == 0) {
481 ZFS_EXIT(zfsvfs);
482 return (0);
483 }
484
485 /*
486 * If we're in FRSYNC mode, sync out this znode before reading it.
487 * Only do this for non-snapshots.
488 */
489 if (zfsvfs->z_log &&
490 (ioflag & FRSYNC || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS))
491 zil_commit(zfsvfs->z_log, zp->z_id);
492
493 /*
494 * Lock the range against changes.
495 */
496 rl = zfs_range_lock(&zp->z_range_lock, uio->uio_loffset, uio->uio_resid,
497 RL_READER);
498
499 /*
500 * If we are reading past end-of-file we can skip
501 * to the end; but we might still need to set atime.
502 */
503 if (uio->uio_loffset >= zp->z_size) {
504 error = 0;
505 goto out;
506 }
507
508 ASSERT(uio->uio_loffset < zp->z_size);
509 n = MIN(uio->uio_resid, zp->z_size - uio->uio_loffset);
510
511 #ifdef HAVE_UIO_ZEROCOPY
512 if ((uio->uio_extflg == UIO_XUIO) &&
513 (((xuio_t *)uio)->xu_type == UIOTYPE_ZEROCOPY)) {
514 int nblk;
515 int blksz = zp->z_blksz;
516 uint64_t offset = uio->uio_loffset;
517
518 xuio = (xuio_t *)uio;
519 if ((ISP2(blksz))) {
520 nblk = (P2ROUNDUP(offset + n, blksz) - P2ALIGN(offset,
521 blksz)) / blksz;
522 } else {
523 ASSERT(offset + n <= blksz);
524 nblk = 1;
525 }
526 (void) dmu_xuio_init(xuio, nblk);
527
528 if (vn_has_cached_data(ip)) {
529 /*
530 * For simplicity, we always allocate a full buffer
531 * even if we only expect to read a portion of a block.
532 */
533 while (--nblk >= 0) {
534 (void) dmu_xuio_add(xuio,
535 dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
536 blksz), 0, blksz);
537 }
538 }
539 }
540 #endif /* HAVE_UIO_ZEROCOPY */
541
542 while (n > 0) {
543 nbytes = MIN(n, zfs_read_chunk_size -
544 P2PHASE(uio->uio_loffset, zfs_read_chunk_size));
545
546 if (zp->z_is_mapped && !(ioflag & O_DIRECT)) {
547 error = mappedread(ip, nbytes, uio);
548 } else {
549 error = dmu_read_uio_dbuf(sa_get_db(zp->z_sa_hdl),
550 uio, nbytes);
551 }
552
553 if (error) {
554 /* convert checksum errors into IO errors */
555 if (error == ECKSUM)
556 error = SET_ERROR(EIO);
557 break;
558 }
559
560 n -= nbytes;
561 }
562 out:
563 zfs_range_unlock(rl);
564
565 ZFS_EXIT(zfsvfs);
566 return (error);
567 }
568
569 /*
570 * Write the bytes to a file.
571 *
572 * IN: ip - inode of file to be written to.
573 * uio - structure supplying write location, range info,
574 * and data buffer.
575 * ioflag - FAPPEND flag set if in append mode.
576 * O_DIRECT flag; used to bypass page cache.
577 * cr - credentials of caller.
578 *
579 * OUT: uio - updated offset and range.
580 *
581 * RETURN: 0 if success
582 * error code if failure
583 *
584 * Timestamps:
585 * ip - ctime|mtime updated if byte count > 0
586 */
587
588 /* ARGSUSED */
589 int
590 zfs_write(struct inode *ip, uio_t *uio, int ioflag, cred_t *cr)
591 {
592 znode_t *zp = ITOZ(ip);
593 rlim64_t limit = uio->uio_limit;
594 ssize_t start_resid = uio->uio_resid;
595 ssize_t tx_bytes;
596 uint64_t end_size;
597 dmu_tx_t *tx;
598 zfsvfs_t *zfsvfs = ZTOZSB(zp);
599 zilog_t *zilog;
600 offset_t woff;
601 ssize_t n, nbytes;
602 rl_t *rl;
603 int max_blksz = zfsvfs->z_max_blksz;
604 int error = 0;
605 arc_buf_t *abuf;
606 const iovec_t *aiov = NULL;
607 xuio_t *xuio = NULL;
608 int write_eof;
609 int count = 0;
610 sa_bulk_attr_t bulk[4];
611 uint64_t mtime[2], ctime[2];
612 uint32_t uid;
613 #ifdef HAVE_UIO_ZEROCOPY
614 int i_iov = 0;
615 const iovec_t *iovp = uio->uio_iov;
616 ASSERTV(int iovcnt = uio->uio_iovcnt);
617 #endif
618
619 /*
620 * Fasttrack empty write
621 */
622 n = start_resid;
623 if (n == 0)
624 return (0);
625
626 if (limit == RLIM64_INFINITY || limit > MAXOFFSET_T)
627 limit = MAXOFFSET_T;
628
629 ZFS_ENTER(zfsvfs);
630 ZFS_VERIFY_ZP(zp);
631
632 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
633 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
634 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL,
635 &zp->z_size, 8);
636 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
637 &zp->z_pflags, 8);
638
639 /*
640 * Callers might not be able to detect properly that we are read-only,
641 * so check it explicitly here.
642 */
643 if (zfs_is_readonly(zfsvfs)) {
644 ZFS_EXIT(zfsvfs);
645 return (SET_ERROR(EROFS));
646 }
647
648 /*
649 * If immutable or not appending then return EPERM
650 */
651 if ((zp->z_pflags & (ZFS_IMMUTABLE | ZFS_READONLY)) ||
652 ((zp->z_pflags & ZFS_APPENDONLY) && !(ioflag & FAPPEND) &&
653 (uio->uio_loffset < zp->z_size))) {
654 ZFS_EXIT(zfsvfs);
655 return (SET_ERROR(EPERM));
656 }
657
658 zilog = zfsvfs->z_log;
659
660 /*
661 * Validate file offset
662 */
663 woff = ioflag & FAPPEND ? zp->z_size : uio->uio_loffset;
664 if (woff < 0) {
665 ZFS_EXIT(zfsvfs);
666 return (SET_ERROR(EINVAL));
667 }
668
669 /*
670 * Pre-fault the pages to ensure slow (eg NFS) pages
671 * don't hold up txg.
672 * Skip this if uio contains loaned arc_buf.
673 */
674 #ifdef HAVE_UIO_ZEROCOPY
675 if ((uio->uio_extflg == UIO_XUIO) &&
676 (((xuio_t *)uio)->xu_type == UIOTYPE_ZEROCOPY))
677 xuio = (xuio_t *)uio;
678 else
679 #endif
680 uio_prefaultpages(MIN(n, max_blksz), uio);
681
682 /*
683 * If in append mode, set the io offset pointer to eof.
684 */
685 if (ioflag & FAPPEND) {
686 /*
687 * Obtain an appending range lock to guarantee file append
688 * semantics. We reset the write offset once we have the lock.
689 */
690 rl = zfs_range_lock(&zp->z_range_lock, 0, n, RL_APPEND);
691 woff = rl->r_off;
692 if (rl->r_len == UINT64_MAX) {
693 /*
694 * We overlocked the file because this write will cause
695 * the file block size to increase.
696 * Note that zp_size cannot change with this lock held.
697 */
698 woff = zp->z_size;
699 }
700 uio->uio_loffset = woff;
701 } else {
702 /*
703 * Note that if the file block size will change as a result of
704 * this write, then this range lock will lock the entire file
705 * so that we can re-write the block safely.
706 */
707 rl = zfs_range_lock(&zp->z_range_lock, woff, n, RL_WRITER);
708 }
709
710 if (woff >= limit) {
711 zfs_range_unlock(rl);
712 ZFS_EXIT(zfsvfs);
713 return (SET_ERROR(EFBIG));
714 }
715
716 if ((woff + n) > limit || woff > (limit - n))
717 n = limit - woff;
718
719 /* Will this write extend the file length? */
720 write_eof = (woff + n > zp->z_size);
721
722 end_size = MAX(zp->z_size, woff + n);
723
724 /*
725 * Write the file in reasonable size chunks. Each chunk is written
726 * in a separate transaction; this keeps the intent log records small
727 * and allows us to do more fine-grained space accounting.
728 */
729 while (n > 0) {
730 abuf = NULL;
731 woff = uio->uio_loffset;
732 if (zfs_id_overblockquota(zfsvfs, DMU_USERUSED_OBJECT,
733 KUID_TO_SUID(ip->i_uid)) ||
734 zfs_id_overblockquota(zfsvfs, DMU_GROUPUSED_OBJECT,
735 KGID_TO_SGID(ip->i_gid)) ||
736 (zp->z_projid != ZFS_DEFAULT_PROJID &&
737 zfs_id_overblockquota(zfsvfs, DMU_PROJECTUSED_OBJECT,
738 zp->z_projid))) {
739 if (abuf != NULL)
740 dmu_return_arcbuf(abuf);
741 error = SET_ERROR(EDQUOT);
742 break;
743 }
744
745 if (xuio && abuf == NULL) {
746 #ifdef HAVE_UIO_ZEROCOPY
747 ASSERT(i_iov < iovcnt);
748 ASSERT3U(uio->uio_segflg, !=, UIO_BVEC);
749 aiov = &iovp[i_iov];
750 abuf = dmu_xuio_arcbuf(xuio, i_iov);
751 dmu_xuio_clear(xuio, i_iov);
752 ASSERT((aiov->iov_base == abuf->b_data) ||
753 ((char *)aiov->iov_base - (char *)abuf->b_data +
754 aiov->iov_len == arc_buf_size(abuf)));
755 i_iov++;
756 #endif
757 } else if (abuf == NULL && n >= max_blksz &&
758 woff >= zp->z_size &&
759 P2PHASE(woff, max_blksz) == 0 &&
760 zp->z_blksz == max_blksz) {
761 /*
762 * This write covers a full block. "Borrow" a buffer
763 * from the dmu so that we can fill it before we enter
764 * a transaction. This avoids the possibility of
765 * holding up the transaction if the data copy hangs
766 * up on a pagefault (e.g., from an NFS server mapping).
767 */
768 size_t cbytes;
769
770 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
771 max_blksz);
772 ASSERT(abuf != NULL);
773 ASSERT(arc_buf_size(abuf) == max_blksz);
774 if ((error = uiocopy(abuf->b_data, max_blksz,
775 UIO_WRITE, uio, &cbytes))) {
776 dmu_return_arcbuf(abuf);
777 break;
778 }
779 ASSERT(cbytes == max_blksz);
780 }
781
782 /*
783 * Start a transaction.
784 */
785 tx = dmu_tx_create(zfsvfs->z_os);
786 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
787 dmu_tx_hold_write(tx, zp->z_id, woff, MIN(n, max_blksz));
788 zfs_sa_upgrade_txholds(tx, zp);
789 error = dmu_tx_assign(tx, TXG_WAIT);
790 if (error) {
791 dmu_tx_abort(tx);
792 if (abuf != NULL)
793 dmu_return_arcbuf(abuf);
794 break;
795 }
796
797 /*
798 * If zfs_range_lock() over-locked we grow the blocksize
799 * and then reduce the lock range. This will only happen
800 * on the first iteration since zfs_range_reduce() will
801 * shrink down r_len to the appropriate size.
802 */
803 if (rl->r_len == UINT64_MAX) {
804 uint64_t new_blksz;
805
806 if (zp->z_blksz > max_blksz) {
807 /*
808 * File's blocksize is already larger than the
809 * "recordsize" property. Only let it grow to
810 * the next power of 2.
811 */
812 ASSERT(!ISP2(zp->z_blksz));
813 new_blksz = MIN(end_size,
814 1 << highbit64(zp->z_blksz));
815 } else {
816 new_blksz = MIN(end_size, max_blksz);
817 }
818 zfs_grow_blocksize(zp, new_blksz, tx);
819 zfs_range_reduce(rl, woff, n);
820 }
821
822 /*
823 * XXX - should we really limit each write to z_max_blksz?
824 * Perhaps we should use SPA_MAXBLOCKSIZE chunks?
825 */
826 nbytes = MIN(n, max_blksz - P2PHASE(woff, max_blksz));
827
828 if (abuf == NULL) {
829 tx_bytes = uio->uio_resid;
830 error = dmu_write_uio_dbuf(sa_get_db(zp->z_sa_hdl),
831 uio, nbytes, tx);
832 tx_bytes -= uio->uio_resid;
833 } else {
834 tx_bytes = nbytes;
835 ASSERT(xuio == NULL || tx_bytes == aiov->iov_len);
836 /*
837 * If this is not a full block write, but we are
838 * extending the file past EOF and this data starts
839 * block-aligned, use assign_arcbuf(). Otherwise,
840 * write via dmu_write().
841 */
842 if (tx_bytes < max_blksz && (!write_eof ||
843 aiov->iov_base != abuf->b_data)) {
844 ASSERT(xuio);
845 dmu_write(zfsvfs->z_os, zp->z_id, woff,
846 /* cppcheck-suppress nullPointer */
847 aiov->iov_len, aiov->iov_base, tx);
848 dmu_return_arcbuf(abuf);
849 xuio_stat_wbuf_copied();
850 } else {
851 ASSERT(xuio || tx_bytes == max_blksz);
852 dmu_assign_arcbuf_by_dbuf(
853 sa_get_db(zp->z_sa_hdl), woff, abuf, tx);
854 }
855 ASSERT(tx_bytes <= uio->uio_resid);
856 uioskip(uio, tx_bytes);
857 }
858 if (tx_bytes && zp->z_is_mapped && !(ioflag & O_DIRECT)) {
859 update_pages(ip, woff,
860 tx_bytes, zfsvfs->z_os, zp->z_id);
861 }
862
863 /*
864 * If we made no progress, we're done. If we made even
865 * partial progress, update the znode and ZIL accordingly.
866 */
867 if (tx_bytes == 0) {
868 (void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs),
869 (void *)&zp->z_size, sizeof (uint64_t), tx);
870 dmu_tx_commit(tx);
871 ASSERT(error != 0);
872 break;
873 }
874
875 /*
876 * Clear Set-UID/Set-GID bits on successful write if not
877 * privileged and at least one of the execute bits is set.
878 *
879 * It would be nice to to this after all writes have
880 * been done, but that would still expose the ISUID/ISGID
881 * to another app after the partial write is committed.
882 *
883 * Note: we don't call zfs_fuid_map_id() here because
884 * user 0 is not an ephemeral uid.
885 */
886 mutex_enter(&zp->z_acl_lock);
887 uid = KUID_TO_SUID(ip->i_uid);
888 if ((zp->z_mode & (S_IXUSR | (S_IXUSR >> 3) |
889 (S_IXUSR >> 6))) != 0 &&
890 (zp->z_mode & (S_ISUID | S_ISGID)) != 0 &&
891 secpolicy_vnode_setid_retain(cr,
892 ((zp->z_mode & S_ISUID) != 0 && uid == 0)) != 0) {
893 uint64_t newmode;
894 zp->z_mode &= ~(S_ISUID | S_ISGID);
895 ip->i_mode = newmode = zp->z_mode;
896 (void) sa_update(zp->z_sa_hdl, SA_ZPL_MODE(zfsvfs),
897 (void *)&newmode, sizeof (uint64_t), tx);
898 }
899 mutex_exit(&zp->z_acl_lock);
900
901 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime);
902
903 /*
904 * Update the file size (zp_size) if it has changed;
905 * account for possible concurrent updates.
906 */
907 while ((end_size = zp->z_size) < uio->uio_loffset) {
908 (void) atomic_cas_64(&zp->z_size, end_size,
909 uio->uio_loffset);
910 ASSERT(error == 0);
911 }
912 /*
913 * If we are replaying and eof is non zero then force
914 * the file size to the specified eof. Note, there's no
915 * concurrency during replay.
916 */
917 if (zfsvfs->z_replay && zfsvfs->z_replay_eof != 0)
918 zp->z_size = zfsvfs->z_replay_eof;
919
920 error = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
921
922 zfs_log_write(zilog, tx, TX_WRITE, zp, woff, tx_bytes, ioflag,
923 NULL, NULL);
924 dmu_tx_commit(tx);
925
926 if (error != 0)
927 break;
928 ASSERT(tx_bytes == nbytes);
929 n -= nbytes;
930
931 if (!xuio && n > 0)
932 uio_prefaultpages(MIN(n, max_blksz), uio);
933 }
934
935 zfs_inode_update(zp);
936 zfs_range_unlock(rl);
937
938 /*
939 * If we're in replay mode, or we made no progress, return error.
940 * Otherwise, it's at least a partial write, so it's successful.
941 */
942 if (zfsvfs->z_replay || uio->uio_resid == start_resid) {
943 ZFS_EXIT(zfsvfs);
944 return (error);
945 }
946
947 if (ioflag & (FSYNC | FDSYNC) ||
948 zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
949 zil_commit(zilog, zp->z_id);
950
951 ZFS_EXIT(zfsvfs);
952 return (0);
953 }
954
955 /*
956 * Drop a reference on the passed inode asynchronously. This ensures
957 * that the caller will never drop the last reference on an inode in
958 * the current context. Doing so while holding open a tx could result
959 * in a deadlock if iput_final() re-enters the filesystem code.
960 */
961 void
962 zfs_iput_async(struct inode *ip)
963 {
964 objset_t *os = ITOZSB(ip)->z_os;
965
966 ASSERT(atomic_read(&ip->i_count) > 0);
967 ASSERT(os != NULL);
968
969 if (atomic_read(&ip->i_count) == 1)
970 VERIFY(taskq_dispatch(dsl_pool_iput_taskq(dmu_objset_pool(os)),
971 (task_func_t *)iput, ip, TQ_SLEEP) != TASKQID_INVALID);
972 else
973 iput(ip);
974 }
975
976 void
977 zfs_get_done(zgd_t *zgd, int error)
978 {
979 znode_t *zp = zgd->zgd_private;
980
981 if (zgd->zgd_db)
982 dmu_buf_rele(zgd->zgd_db, zgd);
983
984 zfs_range_unlock(zgd->zgd_rl);
985
986 /*
987 * Release the vnode asynchronously as we currently have the
988 * txg stopped from syncing.
989 */
990 zfs_iput_async(ZTOI(zp));
991
992 if (error == 0 && zgd->zgd_bp)
993 zil_lwb_add_block(zgd->zgd_lwb, zgd->zgd_bp);
994
995 kmem_free(zgd, sizeof (zgd_t));
996 }
997
998 #ifdef DEBUG
999 static int zil_fault_io = 0;
1000 #endif
1001
1002 /*
1003 * Get data to generate a TX_WRITE intent log record.
1004 */
1005 int
1006 zfs_get_data(void *arg, lr_write_t *lr, char *buf, struct lwb *lwb, zio_t *zio)
1007 {
1008 zfsvfs_t *zfsvfs = arg;
1009 objset_t *os = zfsvfs->z_os;
1010 znode_t *zp;
1011 uint64_t object = lr->lr_foid;
1012 uint64_t offset = lr->lr_offset;
1013 uint64_t size = lr->lr_length;
1014 dmu_buf_t *db;
1015 zgd_t *zgd;
1016 int error = 0;
1017
1018 ASSERT3P(lwb, !=, NULL);
1019 ASSERT3P(zio, !=, NULL);
1020 ASSERT3U(size, !=, 0);
1021
1022 /*
1023 * Nothing to do if the file has been removed
1024 */
1025 if (zfs_zget(zfsvfs, object, &zp) != 0)
1026 return (SET_ERROR(ENOENT));
1027 if (zp->z_unlinked) {
1028 /*
1029 * Release the vnode asynchronously as we currently have the
1030 * txg stopped from syncing.
1031 */
1032 zfs_iput_async(ZTOI(zp));
1033 return (SET_ERROR(ENOENT));
1034 }
1035
1036 zgd = (zgd_t *)kmem_zalloc(sizeof (zgd_t), KM_SLEEP);
1037 zgd->zgd_lwb = lwb;
1038 zgd->zgd_private = zp;
1039
1040 /*
1041 * Write records come in two flavors: immediate and indirect.
1042 * For small writes it's cheaper to store the data with the
1043 * log record (immediate); for large writes it's cheaper to
1044 * sync the data and get a pointer to it (indirect) so that
1045 * we don't have to write the data twice.
1046 */
1047 if (buf != NULL) { /* immediate write */
1048 zgd->zgd_rl = zfs_range_lock(&zp->z_range_lock, offset, size,
1049 RL_READER);
1050 /* test for truncation needs to be done while range locked */
1051 if (offset >= zp->z_size) {
1052 error = SET_ERROR(ENOENT);
1053 } else {
1054 error = dmu_read(os, object, offset, size, buf,
1055 DMU_READ_NO_PREFETCH);
1056 }
1057 ASSERT(error == 0 || error == ENOENT);
1058 } else { /* indirect write */
1059 /*
1060 * Have to lock the whole block to ensure when it's
1061 * written out and its checksum is being calculated
1062 * that no one can change the data. We need to re-check
1063 * blocksize after we get the lock in case it's changed!
1064 */
1065 for (;;) {
1066 uint64_t blkoff;
1067 size = zp->z_blksz;
1068 blkoff = ISP2(size) ? P2PHASE(offset, size) : offset;
1069 offset -= blkoff;
1070 zgd->zgd_rl = zfs_range_lock(&zp->z_range_lock, offset,
1071 size, RL_READER);
1072 if (zp->z_blksz == size)
1073 break;
1074 offset += blkoff;
1075 zfs_range_unlock(zgd->zgd_rl);
1076 }
1077 /* test for truncation needs to be done while range locked */
1078 if (lr->lr_offset >= zp->z_size)
1079 error = SET_ERROR(ENOENT);
1080 #ifdef DEBUG
1081 if (zil_fault_io) {
1082 error = SET_ERROR(EIO);
1083 zil_fault_io = 0;
1084 }
1085 #endif
1086 if (error == 0)
1087 error = dmu_buf_hold(os, object, offset, zgd, &db,
1088 DMU_READ_NO_PREFETCH);
1089
1090 if (error == 0) {
1091 blkptr_t *bp = &lr->lr_blkptr;
1092
1093 zgd->zgd_db = db;
1094 zgd->zgd_bp = bp;
1095
1096 ASSERT(db->db_offset == offset);
1097 ASSERT(db->db_size == size);
1098
1099 error = dmu_sync(zio, lr->lr_common.lrc_txg,
1100 zfs_get_done, zgd);
1101 ASSERT(error || lr->lr_length <= size);
1102
1103 /*
1104 * On success, we need to wait for the write I/O
1105 * initiated by dmu_sync() to complete before we can
1106 * release this dbuf. We will finish everything up
1107 * in the zfs_get_done() callback.
1108 */
1109 if (error == 0)
1110 return (0);
1111
1112 if (error == EALREADY) {
1113 lr->lr_common.lrc_txtype = TX_WRITE2;
1114 error = 0;
1115 }
1116 }
1117 }
1118
1119 zfs_get_done(zgd, error);
1120
1121 return (error);
1122 }
1123
1124 /*ARGSUSED*/
1125 int
1126 zfs_access(struct inode *ip, int mode, int flag, cred_t *cr)
1127 {
1128 znode_t *zp = ITOZ(ip);
1129 zfsvfs_t *zfsvfs = ITOZSB(ip);
1130 int error;
1131
1132 ZFS_ENTER(zfsvfs);
1133 ZFS_VERIFY_ZP(zp);
1134
1135 if (flag & V_ACE_MASK)
1136 error = zfs_zaccess(zp, mode, flag, B_FALSE, cr);
1137 else
1138 error = zfs_zaccess_rwx(zp, mode, flag, cr);
1139
1140 ZFS_EXIT(zfsvfs);
1141 return (error);
1142 }
1143
1144 /*
1145 * Lookup an entry in a directory, or an extended attribute directory.
1146 * If it exists, return a held inode reference for it.
1147 *
1148 * IN: dip - inode of directory to search.
1149 * nm - name of entry to lookup.
1150 * flags - LOOKUP_XATTR set if looking for an attribute.
1151 * cr - credentials of caller.
1152 * direntflags - directory lookup flags
1153 * realpnp - returned pathname.
1154 *
1155 * OUT: ipp - inode of located entry, NULL if not found.
1156 *
1157 * RETURN: 0 on success, error code on failure.
1158 *
1159 * Timestamps:
1160 * NA
1161 */
1162 /* ARGSUSED */
1163 int
1164 zfs_lookup(struct inode *dip, char *nm, struct inode **ipp, int flags,
1165 cred_t *cr, int *direntflags, pathname_t *realpnp)
1166 {
1167 znode_t *zdp = ITOZ(dip);
1168 zfsvfs_t *zfsvfs = ITOZSB(dip);
1169 int error = 0;
1170
1171 /*
1172 * Fast path lookup, however we must skip DNLC lookup
1173 * for case folding or normalizing lookups because the
1174 * DNLC code only stores the passed in name. This means
1175 * creating 'a' and removing 'A' on a case insensitive
1176 * file system would work, but DNLC still thinks 'a'
1177 * exists and won't let you create it again on the next
1178 * pass through fast path.
1179 */
1180 if (!(flags & (LOOKUP_XATTR | FIGNORECASE))) {
1181
1182 if (!S_ISDIR(dip->i_mode)) {
1183 return (SET_ERROR(ENOTDIR));
1184 } else if (zdp->z_sa_hdl == NULL) {
1185 return (SET_ERROR(EIO));
1186 }
1187
1188 if (nm[0] == 0 || (nm[0] == '.' && nm[1] == '\0')) {
1189 error = zfs_fastaccesschk_execute(zdp, cr);
1190 if (!error) {
1191 *ipp = dip;
1192 igrab(*ipp);
1193 return (0);
1194 }
1195 return (error);
1196 #ifdef HAVE_DNLC
1197 } else if (!zdp->z_zfsvfs->z_norm &&
1198 (zdp->z_zfsvfs->z_case == ZFS_CASE_SENSITIVE)) {
1199
1200 vnode_t *tvp = dnlc_lookup(dvp, nm);
1201
1202 if (tvp) {
1203 error = zfs_fastaccesschk_execute(zdp, cr);
1204 if (error) {
1205 iput(tvp);
1206 return (error);
1207 }
1208 if (tvp == DNLC_NO_VNODE) {
1209 iput(tvp);
1210 return (SET_ERROR(ENOENT));
1211 } else {
1212 *vpp = tvp;
1213 return (specvp_check(vpp, cr));
1214 }
1215 }
1216 #endif /* HAVE_DNLC */
1217 }
1218 }
1219
1220 ZFS_ENTER(zfsvfs);
1221 ZFS_VERIFY_ZP(zdp);
1222
1223 *ipp = NULL;
1224
1225 if (flags & LOOKUP_XATTR) {
1226 /*
1227 * We don't allow recursive attributes..
1228 * Maybe someday we will.
1229 */
1230 if (zdp->z_pflags & ZFS_XATTR) {
1231 ZFS_EXIT(zfsvfs);
1232 return (SET_ERROR(EINVAL));
1233 }
1234
1235 if ((error = zfs_get_xattrdir(zdp, ipp, cr, flags))) {
1236 ZFS_EXIT(zfsvfs);
1237 return (error);
1238 }
1239
1240 /*
1241 * Do we have permission to get into attribute directory?
1242 */
1243
1244 if ((error = zfs_zaccess(ITOZ(*ipp), ACE_EXECUTE, 0,
1245 B_FALSE, cr))) {
1246 iput(*ipp);
1247 *ipp = NULL;
1248 }
1249
1250 ZFS_EXIT(zfsvfs);
1251 return (error);
1252 }
1253
1254 if (!S_ISDIR(dip->i_mode)) {
1255 ZFS_EXIT(zfsvfs);
1256 return (SET_ERROR(ENOTDIR));
1257 }
1258
1259 /*
1260 * Check accessibility of directory.
1261 */
1262
1263 if ((error = zfs_zaccess(zdp, ACE_EXECUTE, 0, B_FALSE, cr))) {
1264 ZFS_EXIT(zfsvfs);
1265 return (error);
1266 }
1267
1268 if (zfsvfs->z_utf8 && u8_validate(nm, strlen(nm),
1269 NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1270 ZFS_EXIT(zfsvfs);
1271 return (SET_ERROR(EILSEQ));
1272 }
1273
1274 error = zfs_dirlook(zdp, nm, ipp, flags, direntflags, realpnp);
1275 if ((error == 0) && (*ipp))
1276 zfs_inode_update(ITOZ(*ipp));
1277
1278 ZFS_EXIT(zfsvfs);
1279 return (error);
1280 }
1281
1282 /*
1283 * Attempt to create a new entry in a directory. If the entry
1284 * already exists, truncate the file if permissible, else return
1285 * an error. Return the ip of the created or trunc'd file.
1286 *
1287 * IN: dip - inode of directory to put new file entry in.
1288 * name - name of new file entry.
1289 * vap - attributes of new file.
1290 * excl - flag indicating exclusive or non-exclusive mode.
1291 * mode - mode to open file with.
1292 * cr - credentials of caller.
1293 * flag - large file flag [UNUSED].
1294 * vsecp - ACL to be set
1295 *
1296 * OUT: ipp - inode of created or trunc'd entry.
1297 *
1298 * RETURN: 0 on success, error code on failure.
1299 *
1300 * Timestamps:
1301 * dip - ctime|mtime updated if new entry created
1302 * ip - ctime|mtime always, atime if new
1303 */
1304
1305 /* ARGSUSED */
1306 int
1307 zfs_create(struct inode *dip, char *name, vattr_t *vap, int excl,
1308 int mode, struct inode **ipp, cred_t *cr, int flag, vsecattr_t *vsecp)
1309 {
1310 znode_t *zp, *dzp = ITOZ(dip);
1311 zfsvfs_t *zfsvfs = ITOZSB(dip);
1312 zilog_t *zilog;
1313 objset_t *os;
1314 zfs_dirlock_t *dl;
1315 dmu_tx_t *tx;
1316 int error;
1317 uid_t uid;
1318 gid_t gid;
1319 zfs_acl_ids_t acl_ids;
1320 boolean_t fuid_dirtied;
1321 boolean_t have_acl = B_FALSE;
1322 boolean_t waited = B_FALSE;
1323
1324 /*
1325 * If we have an ephemeral id, ACL, or XVATTR then
1326 * make sure file system is at proper version
1327 */
1328
1329 gid = crgetgid(cr);
1330 uid = crgetuid(cr);
1331
1332 if (zfsvfs->z_use_fuids == B_FALSE &&
1333 (vsecp || IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid)))
1334 return (SET_ERROR(EINVAL));
1335
1336 if (name == NULL)
1337 return (SET_ERROR(EINVAL));
1338
1339 ZFS_ENTER(zfsvfs);
1340 ZFS_VERIFY_ZP(dzp);
1341 os = zfsvfs->z_os;
1342 zilog = zfsvfs->z_log;
1343
1344 if (zfsvfs->z_utf8 && u8_validate(name, strlen(name),
1345 NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1346 ZFS_EXIT(zfsvfs);
1347 return (SET_ERROR(EILSEQ));
1348 }
1349
1350 if (vap->va_mask & ATTR_XVATTR) {
1351 if ((error = secpolicy_xvattr((xvattr_t *)vap,
1352 crgetuid(cr), cr, vap->va_mode)) != 0) {
1353 ZFS_EXIT(zfsvfs);
1354 return (error);
1355 }
1356 }
1357
1358 top:
1359 *ipp = NULL;
1360 if (*name == '\0') {
1361 /*
1362 * Null component name refers to the directory itself.
1363 */
1364 igrab(dip);
1365 zp = dzp;
1366 dl = NULL;
1367 error = 0;
1368 } else {
1369 /* possible igrab(zp) */
1370 int zflg = 0;
1371
1372 if (flag & FIGNORECASE)
1373 zflg |= ZCILOOK;
1374
1375 error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
1376 NULL, NULL);
1377 if (error) {
1378 if (have_acl)
1379 zfs_acl_ids_free(&acl_ids);
1380 if (strcmp(name, "..") == 0)
1381 error = SET_ERROR(EISDIR);
1382 ZFS_EXIT(zfsvfs);
1383 return (error);
1384 }
1385 }
1386
1387 if (zp == NULL) {
1388 uint64_t txtype;
1389 uint64_t projid = ZFS_DEFAULT_PROJID;
1390
1391 /*
1392 * Create a new file object and update the directory
1393 * to reference it.
1394 */
1395 if ((error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr))) {
1396 if (have_acl)
1397 zfs_acl_ids_free(&acl_ids);
1398 goto out;
1399 }
1400
1401 /*
1402 * We only support the creation of regular files in
1403 * extended attribute directories.
1404 */
1405
1406 if ((dzp->z_pflags & ZFS_XATTR) && !S_ISREG(vap->va_mode)) {
1407 if (have_acl)
1408 zfs_acl_ids_free(&acl_ids);
1409 error = SET_ERROR(EINVAL);
1410 goto out;
1411 }
1412
1413 if (!have_acl && (error = zfs_acl_ids_create(dzp, 0, vap,
1414 cr, vsecp, &acl_ids)) != 0)
1415 goto out;
1416 have_acl = B_TRUE;
1417
1418 if (S_ISREG(vap->va_mode) || S_ISDIR(vap->va_mode))
1419 projid = zfs_inherit_projid(dzp);
1420 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids, projid)) {
1421 zfs_acl_ids_free(&acl_ids);
1422 error = SET_ERROR(EDQUOT);
1423 goto out;
1424 }
1425
1426 tx = dmu_tx_create(os);
1427
1428 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
1429 ZFS_SA_BASE_ATTR_SIZE);
1430
1431 fuid_dirtied = zfsvfs->z_fuid_dirty;
1432 if (fuid_dirtied)
1433 zfs_fuid_txhold(zfsvfs, tx);
1434 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
1435 dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE);
1436 if (!zfsvfs->z_use_sa &&
1437 acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
1438 dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
1439 0, acl_ids.z_aclp->z_acl_bytes);
1440 }
1441
1442 error = dmu_tx_assign(tx,
1443 (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
1444 if (error) {
1445 zfs_dirent_unlock(dl);
1446 if (error == ERESTART) {
1447 waited = B_TRUE;
1448 dmu_tx_wait(tx);
1449 dmu_tx_abort(tx);
1450 goto top;
1451 }
1452 zfs_acl_ids_free(&acl_ids);
1453 dmu_tx_abort(tx);
1454 ZFS_EXIT(zfsvfs);
1455 return (error);
1456 }
1457 zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
1458
1459 error = zfs_link_create(dl, zp, tx, ZNEW);
1460 if (error != 0) {
1461 /*
1462 * Since, we failed to add the directory entry for it,
1463 * delete the newly created dnode.
1464 */
1465 zfs_znode_delete(zp, tx);
1466 remove_inode_hash(ZTOI(zp));
1467 zfs_acl_ids_free(&acl_ids);
1468 dmu_tx_commit(tx);
1469 goto out;
1470 }
1471
1472 if (fuid_dirtied)
1473 zfs_fuid_sync(zfsvfs, tx);
1474
1475 txtype = zfs_log_create_txtype(Z_FILE, vsecp, vap);
1476 if (flag & FIGNORECASE)
1477 txtype |= TX_CI;
1478 zfs_log_create(zilog, tx, txtype, dzp, zp, name,
1479 vsecp, acl_ids.z_fuidp, vap);
1480 zfs_acl_ids_free(&acl_ids);
1481 dmu_tx_commit(tx);
1482 } else {
1483 int aflags = (flag & FAPPEND) ? V_APPEND : 0;
1484
1485 if (have_acl)
1486 zfs_acl_ids_free(&acl_ids);
1487 have_acl = B_FALSE;
1488
1489 /*
1490 * A directory entry already exists for this name.
1491 */
1492 /*
1493 * Can't truncate an existing file if in exclusive mode.
1494 */
1495 if (excl) {
1496 error = SET_ERROR(EEXIST);
1497 goto out;
1498 }
1499 /*
1500 * Can't open a directory for writing.
1501 */
1502 if (S_ISDIR(ZTOI(zp)->i_mode)) {
1503 error = SET_ERROR(EISDIR);
1504 goto out;
1505 }
1506 /*
1507 * Verify requested access to file.
1508 */
1509 if (mode && (error = zfs_zaccess_rwx(zp, mode, aflags, cr))) {
1510 goto out;
1511 }
1512
1513 mutex_enter(&dzp->z_lock);
1514 dzp->z_seq++;
1515 mutex_exit(&dzp->z_lock);
1516
1517 /*
1518 * Truncate regular files if requested.
1519 */
1520 if (S_ISREG(ZTOI(zp)->i_mode) &&
1521 (vap->va_mask & ATTR_SIZE) && (vap->va_size == 0)) {
1522 /* we can't hold any locks when calling zfs_freesp() */
1523 if (dl) {
1524 zfs_dirent_unlock(dl);
1525 dl = NULL;
1526 }
1527 error = zfs_freesp(zp, 0, 0, mode, TRUE);
1528 }
1529 }
1530 out:
1531
1532 if (dl)
1533 zfs_dirent_unlock(dl);
1534
1535 if (error) {
1536 if (zp)
1537 iput(ZTOI(zp));
1538 } else {
1539 zfs_inode_update(dzp);
1540 zfs_inode_update(zp);
1541 *ipp = ZTOI(zp);
1542 }
1543
1544 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1545 zil_commit(zilog, 0);
1546
1547 ZFS_EXIT(zfsvfs);
1548 return (error);
1549 }
1550
1551 /* ARGSUSED */
1552 int
1553 zfs_tmpfile(struct inode *dip, vattr_t *vap, int excl,
1554 int mode, struct inode **ipp, cred_t *cr, int flag, vsecattr_t *vsecp)
1555 {
1556 znode_t *zp = NULL, *dzp = ITOZ(dip);
1557 zfsvfs_t *zfsvfs = ITOZSB(dip);
1558 objset_t *os;
1559 dmu_tx_t *tx;
1560 int error;
1561 uid_t uid;
1562 gid_t gid;
1563 zfs_acl_ids_t acl_ids;
1564 uint64_t projid = ZFS_DEFAULT_PROJID;
1565 boolean_t fuid_dirtied;
1566 boolean_t have_acl = B_FALSE;
1567 boolean_t waited = B_FALSE;
1568
1569 /*
1570 * If we have an ephemeral id, ACL, or XVATTR then
1571 * make sure file system is at proper version
1572 */
1573
1574 gid = crgetgid(cr);
1575 uid = crgetuid(cr);
1576
1577 if (zfsvfs->z_use_fuids == B_FALSE &&
1578 (vsecp || IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid)))
1579 return (SET_ERROR(EINVAL));
1580
1581 ZFS_ENTER(zfsvfs);
1582 ZFS_VERIFY_ZP(dzp);
1583 os = zfsvfs->z_os;
1584
1585 if (vap->va_mask & ATTR_XVATTR) {
1586 if ((error = secpolicy_xvattr((xvattr_t *)vap,
1587 crgetuid(cr), cr, vap->va_mode)) != 0) {
1588 ZFS_EXIT(zfsvfs);
1589 return (error);
1590 }
1591 }
1592
1593 top:
1594 *ipp = NULL;
1595
1596 /*
1597 * Create a new file object and update the directory
1598 * to reference it.
1599 */
1600 if ((error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr))) {
1601 if (have_acl)
1602 zfs_acl_ids_free(&acl_ids);
1603 goto out;
1604 }
1605
1606 if (!have_acl && (error = zfs_acl_ids_create(dzp, 0, vap,
1607 cr, vsecp, &acl_ids)) != 0)
1608 goto out;
1609 have_acl = B_TRUE;
1610
1611 if (S_ISREG(vap->va_mode) || S_ISDIR(vap->va_mode))
1612 projid = zfs_inherit_projid(dzp);
1613 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids, projid)) {
1614 zfs_acl_ids_free(&acl_ids);
1615 error = SET_ERROR(EDQUOT);
1616 goto out;
1617 }
1618
1619 tx = dmu_tx_create(os);
1620
1621 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
1622 ZFS_SA_BASE_ATTR_SIZE);
1623 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
1624
1625 fuid_dirtied = zfsvfs->z_fuid_dirty;
1626 if (fuid_dirtied)
1627 zfs_fuid_txhold(zfsvfs, tx);
1628 if (!zfsvfs->z_use_sa &&
1629 acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
1630 dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
1631 0, acl_ids.z_aclp->z_acl_bytes);
1632 }
1633 error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
1634 if (error) {
1635 if (error == ERESTART) {
1636 waited = B_TRUE;
1637 dmu_tx_wait(tx);
1638 dmu_tx_abort(tx);
1639 goto top;
1640 }
1641 zfs_acl_ids_free(&acl_ids);
1642 dmu_tx_abort(tx);
1643 ZFS_EXIT(zfsvfs);
1644 return (error);
1645 }
1646 zfs_mknode(dzp, vap, tx, cr, IS_TMPFILE, &zp, &acl_ids);
1647
1648 if (fuid_dirtied)
1649 zfs_fuid_sync(zfsvfs, tx);
1650
1651 /* Add to unlinked set */
1652 zp->z_unlinked = 1;
1653 zfs_unlinked_add(zp, tx);
1654 zfs_acl_ids_free(&acl_ids);
1655 dmu_tx_commit(tx);
1656 out:
1657
1658 if (error) {
1659 if (zp)
1660 iput(ZTOI(zp));
1661 } else {
1662 zfs_inode_update(dzp);
1663 zfs_inode_update(zp);
1664 *ipp = ZTOI(zp);
1665 }
1666
1667 ZFS_EXIT(zfsvfs);
1668 return (error);
1669 }
1670
1671 /*
1672 * Remove an entry from a directory.
1673 *
1674 * IN: dip - inode of directory to remove entry from.
1675 * name - name of entry to remove.
1676 * cr - credentials of caller.
1677 *
1678 * RETURN: 0 if success
1679 * error code if failure
1680 *
1681 * Timestamps:
1682 * dip - ctime|mtime
1683 * ip - ctime (if nlink > 0)
1684 */
1685
1686 uint64_t null_xattr = 0;
1687
1688 /*ARGSUSED*/
1689 int
1690 zfs_remove(struct inode *dip, char *name, cred_t *cr, int flags)
1691 {
1692 znode_t *zp, *dzp = ITOZ(dip);
1693 znode_t *xzp;
1694 struct inode *ip;
1695 zfsvfs_t *zfsvfs = ITOZSB(dip);
1696 zilog_t *zilog;
1697 uint64_t acl_obj, xattr_obj;
1698 uint64_t xattr_obj_unlinked = 0;
1699 uint64_t obj = 0;
1700 uint64_t links;
1701 zfs_dirlock_t *dl;
1702 dmu_tx_t *tx;
1703 boolean_t may_delete_now, delete_now = FALSE;
1704 boolean_t unlinked, toobig = FALSE;
1705 uint64_t txtype;
1706 pathname_t *realnmp = NULL;
1707 pathname_t realnm;
1708 int error;
1709 int zflg = ZEXISTS;
1710 boolean_t waited = B_FALSE;
1711
1712 if (name == NULL)
1713 return (SET_ERROR(EINVAL));
1714
1715 ZFS_ENTER(zfsvfs);
1716 ZFS_VERIFY_ZP(dzp);
1717 zilog = zfsvfs->z_log;
1718
1719 if (flags & FIGNORECASE) {
1720 zflg |= ZCILOOK;
1721 pn_alloc(&realnm);
1722 realnmp = &realnm;
1723 }
1724
1725 top:
1726 xattr_obj = 0;
1727 xzp = NULL;
1728 /*
1729 * Attempt to lock directory; fail if entry doesn't exist.
1730 */
1731 if ((error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
1732 NULL, realnmp))) {
1733 if (realnmp)
1734 pn_free(realnmp);
1735 ZFS_EXIT(zfsvfs);
1736 return (error);
1737 }
1738
1739 ip = ZTOI(zp);
1740
1741 if ((error = zfs_zaccess_delete(dzp, zp, cr))) {
1742 goto out;
1743 }
1744
1745 /*
1746 * Need to use rmdir for removing directories.
1747 */
1748 if (S_ISDIR(ip->i_mode)) {
1749 error = SET_ERROR(EPERM);
1750 goto out;
1751 }
1752
1753 #ifdef HAVE_DNLC
1754 if (realnmp)
1755 dnlc_remove(dvp, realnmp->pn_buf);
1756 else
1757 dnlc_remove(dvp, name);
1758 #endif /* HAVE_DNLC */
1759
1760 mutex_enter(&zp->z_lock);
1761 may_delete_now = atomic_read(&ip->i_count) == 1 && !(zp->z_is_mapped);
1762 mutex_exit(&zp->z_lock);
1763
1764 /*
1765 * We may delete the znode now, or we may put it in the unlinked set;
1766 * it depends on whether we're the last link, and on whether there are
1767 * other holds on the inode. So we dmu_tx_hold() the right things to
1768 * allow for either case.
1769 */
1770 obj = zp->z_id;
1771 tx = dmu_tx_create(zfsvfs->z_os);
1772 dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name);
1773 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
1774 zfs_sa_upgrade_txholds(tx, zp);
1775 zfs_sa_upgrade_txholds(tx, dzp);
1776 if (may_delete_now) {
1777 toobig = zp->z_size > zp->z_blksz * zfs_delete_blocks;
1778 /* if the file is too big, only hold_free a token amount */
1779 dmu_tx_hold_free(tx, zp->z_id, 0,
1780 (toobig ? DMU_MAX_ACCESS : DMU_OBJECT_END));
1781 }
1782
1783 /* are there any extended attributes? */
1784 error = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
1785 &xattr_obj, sizeof (xattr_obj));
1786 if (error == 0 && xattr_obj) {
1787 error = zfs_zget(zfsvfs, xattr_obj, &xzp);
1788 ASSERT0(error);
1789 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
1790 dmu_tx_hold_sa(tx, xzp->z_sa_hdl, B_FALSE);
1791 }
1792
1793 mutex_enter(&zp->z_lock);
1794 if ((acl_obj = zfs_external_acl(zp)) != 0 && may_delete_now)
1795 dmu_tx_hold_free(tx, acl_obj, 0, DMU_OBJECT_END);
1796 mutex_exit(&zp->z_lock);
1797
1798 /* charge as an update -- would be nice not to charge at all */
1799 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
1800
1801 /*
1802 * Mark this transaction as typically resulting in a net free of space
1803 */
1804 dmu_tx_mark_netfree(tx);
1805
1806 error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
1807 if (error) {
1808 zfs_dirent_unlock(dl);
1809 if (error == ERESTART) {
1810 waited = B_TRUE;
1811 dmu_tx_wait(tx);
1812 dmu_tx_abort(tx);
1813 iput(ip);
1814 if (xzp)
1815 iput(ZTOI(xzp));
1816 goto top;
1817 }
1818 if (realnmp)
1819 pn_free(realnmp);
1820 dmu_tx_abort(tx);
1821 iput(ip);
1822 if (xzp)
1823 iput(ZTOI(xzp));
1824 ZFS_EXIT(zfsvfs);
1825 return (error);
1826 }
1827
1828 /*
1829 * Remove the directory entry.
1830 */
1831 error = zfs_link_destroy(dl, zp, tx, zflg, &unlinked);
1832
1833 if (error) {
1834 dmu_tx_commit(tx);
1835 goto out;
1836 }
1837
1838 if (unlinked) {
1839 /*
1840 * Hold z_lock so that we can make sure that the ACL obj
1841 * hasn't changed. Could have been deleted due to
1842 * zfs_sa_upgrade().
1843 */
1844 mutex_enter(&zp->z_lock);
1845 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
1846 &xattr_obj_unlinked, sizeof (xattr_obj_unlinked));
1847 delete_now = may_delete_now && !toobig &&
1848 atomic_read(&ip->i_count) == 1 && !(zp->z_is_mapped) &&
1849 xattr_obj == xattr_obj_unlinked && zfs_external_acl(zp) ==
1850 acl_obj;
1851 }
1852
1853 if (delete_now) {
1854 if (xattr_obj_unlinked) {
1855 ASSERT3U(ZTOI(xzp)->i_nlink, ==, 2);
1856 mutex_enter(&xzp->z_lock);
1857 xzp->z_unlinked = 1;
1858 clear_nlink(ZTOI(xzp));
1859 links = 0;
1860 error = sa_update(xzp->z_sa_hdl, SA_ZPL_LINKS(zfsvfs),
1861 &links, sizeof (links), tx);
1862 ASSERT3U(error, ==, 0);
1863 mutex_exit(&xzp->z_lock);
1864 zfs_unlinked_add(xzp, tx);
1865
1866 if (zp->z_is_sa)
1867 error = sa_remove(zp->z_sa_hdl,
1868 SA_ZPL_XATTR(zfsvfs), tx);
1869 else
1870 error = sa_update(zp->z_sa_hdl,
1871 SA_ZPL_XATTR(zfsvfs), &null_xattr,
1872 sizeof (uint64_t), tx);
1873 ASSERT0(error);
1874 }
1875 /*
1876 * Add to the unlinked set because a new reference could be
1877 * taken concurrently resulting in a deferred destruction.
1878 */
1879 zfs_unlinked_add(zp, tx);
1880 mutex_exit(&zp->z_lock);
1881 } else if (unlinked) {
1882 mutex_exit(&zp->z_lock);
1883 zfs_unlinked_add(zp, tx);
1884 }
1885
1886 txtype = TX_REMOVE;
1887 if (flags & FIGNORECASE)
1888 txtype |= TX_CI;
1889 zfs_log_remove(zilog, tx, txtype, dzp, name, obj);
1890
1891 dmu_tx_commit(tx);
1892 out:
1893 if (realnmp)
1894 pn_free(realnmp);
1895
1896 zfs_dirent_unlock(dl);
1897 zfs_inode_update(dzp);
1898 zfs_inode_update(zp);
1899
1900 if (delete_now)
1901 iput(ip);
1902 else
1903 zfs_iput_async(ip);
1904
1905 if (xzp) {
1906 zfs_inode_update(xzp);
1907 zfs_iput_async(ZTOI(xzp));
1908 }
1909
1910 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1911 zil_commit(zilog, 0);
1912
1913 ZFS_EXIT(zfsvfs);
1914 return (error);
1915 }
1916
1917 /*
1918 * Create a new directory and insert it into dip using the name
1919 * provided. Return a pointer to the inserted directory.
1920 *
1921 * IN: dip - inode of directory to add subdir to.
1922 * dirname - name of new directory.
1923 * vap - attributes of new directory.
1924 * cr - credentials of caller.
1925 * vsecp - ACL to be set
1926 *
1927 * OUT: ipp - inode of created directory.
1928 *
1929 * RETURN: 0 if success
1930 * error code if failure
1931 *
1932 * Timestamps:
1933 * dip - ctime|mtime updated
1934 * ipp - ctime|mtime|atime updated
1935 */
1936 /*ARGSUSED*/
1937 int
1938 zfs_mkdir(struct inode *dip, char *dirname, vattr_t *vap, struct inode **ipp,
1939 cred_t *cr, int flags, vsecattr_t *vsecp)
1940 {
1941 znode_t *zp, *dzp = ITOZ(dip);
1942 zfsvfs_t *zfsvfs = ITOZSB(dip);
1943 zilog_t *zilog;
1944 zfs_dirlock_t *dl;
1945 uint64_t txtype;
1946 dmu_tx_t *tx;
1947 int error;
1948 int zf = ZNEW;
1949 uid_t uid;
1950 gid_t gid = crgetgid(cr);
1951 zfs_acl_ids_t acl_ids;
1952 boolean_t fuid_dirtied;
1953 boolean_t waited = B_FALSE;
1954
1955 ASSERT(S_ISDIR(vap->va_mode));
1956
1957 /*
1958 * If we have an ephemeral id, ACL, or XVATTR then
1959 * make sure file system is at proper version
1960 */
1961
1962 uid = crgetuid(cr);
1963 if (zfsvfs->z_use_fuids == B_FALSE &&
1964 (vsecp || IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid)))
1965 return (SET_ERROR(EINVAL));
1966
1967 if (dirname == NULL)
1968 return (SET_ERROR(EINVAL));
1969
1970 ZFS_ENTER(zfsvfs);
1971 ZFS_VERIFY_ZP(dzp);
1972 zilog = zfsvfs->z_log;
1973
1974 if (dzp->z_pflags & ZFS_XATTR) {
1975 ZFS_EXIT(zfsvfs);
1976 return (SET_ERROR(EINVAL));
1977 }
1978
1979 if (zfsvfs->z_utf8 && u8_validate(dirname,
1980 strlen(dirname), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1981 ZFS_EXIT(zfsvfs);
1982 return (SET_ERROR(EILSEQ));
1983 }
1984 if (flags & FIGNORECASE)
1985 zf |= ZCILOOK;
1986
1987 if (vap->va_mask & ATTR_XVATTR) {
1988 if ((error = secpolicy_xvattr((xvattr_t *)vap,
1989 crgetuid(cr), cr, vap->va_mode)) != 0) {
1990 ZFS_EXIT(zfsvfs);
1991 return (error);
1992 }
1993 }
1994
1995 if ((error = zfs_acl_ids_create(dzp, 0, vap, cr,
1996 vsecp, &acl_ids)) != 0) {
1997 ZFS_EXIT(zfsvfs);
1998 return (error);
1999 }
2000 /*
2001 * First make sure the new directory doesn't exist.
2002 *
2003 * Existence is checked first to make sure we don't return
2004 * EACCES instead of EEXIST which can cause some applications
2005 * to fail.
2006 */
2007 top:
2008 *ipp = NULL;
2009
2010 if ((error = zfs_dirent_lock(&dl, dzp, dirname, &zp, zf,
2011 NULL, NULL))) {
2012 zfs_acl_ids_free(&acl_ids);
2013 ZFS_EXIT(zfsvfs);
2014 return (error);
2015 }
2016
2017 if ((error = zfs_zaccess(dzp, ACE_ADD_SUBDIRECTORY, 0, B_FALSE, cr))) {
2018 zfs_acl_ids_free(&acl_ids);
2019 zfs_dirent_unlock(dl);
2020 ZFS_EXIT(zfsvfs);
2021 return (error);
2022 }
2023
2024 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids, zfs_inherit_projid(dzp))) {
2025 zfs_acl_ids_free(&acl_ids);
2026 zfs_dirent_unlock(dl);
2027 ZFS_EXIT(zfsvfs);
2028 return (SET_ERROR(EDQUOT));
2029 }
2030
2031 /*
2032 * Add a new entry to the directory.
2033 */
2034 tx = dmu_tx_create(zfsvfs->z_os);
2035 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, dirname);
2036 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL);
2037 fuid_dirtied = zfsvfs->z_fuid_dirty;
2038 if (fuid_dirtied)
2039 zfs_fuid_txhold(zfsvfs, tx);
2040 if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
2041 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
2042 acl_ids.z_aclp->z_acl_bytes);
2043 }
2044
2045 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
2046 ZFS_SA_BASE_ATTR_SIZE);
2047
2048 error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
2049 if (error) {
2050 zfs_dirent_unlock(dl);
2051 if (error == ERESTART) {
2052 waited = B_TRUE;
2053 dmu_tx_wait(tx);
2054 dmu_tx_abort(tx);
2055 goto top;
2056 }
2057 zfs_acl_ids_free(&acl_ids);
2058 dmu_tx_abort(tx);
2059 ZFS_EXIT(zfsvfs);
2060 return (error);
2061 }
2062
2063 /*
2064 * Create new node.
2065 */
2066 zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
2067
2068 /*
2069 * Now put new name in parent dir.
2070 */
2071 error = zfs_link_create(dl, zp, tx, ZNEW);
2072 if (error != 0) {
2073 zfs_znode_delete(zp, tx);
2074 remove_inode_hash(ZTOI(zp));
2075 goto out;
2076 }
2077
2078 if (fuid_dirtied)
2079 zfs_fuid_sync(zfsvfs, tx);
2080
2081 *ipp = ZTOI(zp);
2082
2083 txtype = zfs_log_create_txtype(Z_DIR, vsecp, vap);
2084 if (flags & FIGNORECASE)
2085 txtype |= TX_CI;
2086 zfs_log_create(zilog, tx, txtype, dzp, zp, dirname, vsecp,
2087 acl_ids.z_fuidp, vap);
2088
2089 out:
2090 zfs_acl_ids_free(&acl_ids);
2091
2092 dmu_tx_commit(tx);
2093
2094 zfs_dirent_unlock(dl);
2095
2096 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
2097 zil_commit(zilog, 0);
2098
2099 if (error != 0) {
2100 iput(ZTOI(zp));
2101 } else {
2102 zfs_inode_update(dzp);
2103 zfs_inode_update(zp);
2104 }
2105 ZFS_EXIT(zfsvfs);
2106 return (error);
2107 }
2108
2109 /*
2110 * Remove a directory subdir entry. If the current working
2111 * directory is the same as the subdir to be removed, the
2112 * remove will fail.
2113 *
2114 * IN: dip - inode of directory to remove from.
2115 * name - name of directory to be removed.
2116 * cwd - inode of current working directory.
2117 * cr - credentials of caller.
2118 * flags - case flags
2119 *
2120 * RETURN: 0 on success, error code on failure.
2121 *
2122 * Timestamps:
2123 * dip - ctime|mtime updated
2124 */
2125 /*ARGSUSED*/
2126 int
2127 zfs_rmdir(struct inode *dip, char *name, struct inode *cwd, cred_t *cr,
2128 int flags)
2129 {
2130 znode_t *dzp = ITOZ(dip);
2131 znode_t *zp;
2132 struct inode *ip;
2133 zfsvfs_t *zfsvfs = ITOZSB(dip);
2134 zilog_t *zilog;
2135 zfs_dirlock_t *dl;
2136 dmu_tx_t *tx;
2137 int error;
2138 int zflg = ZEXISTS;
2139 boolean_t waited = B_FALSE;
2140
2141 if (name == NULL)
2142 return (SET_ERROR(EINVAL));
2143
2144 ZFS_ENTER(zfsvfs);
2145 ZFS_VERIFY_ZP(dzp);
2146 zilog = zfsvfs->z_log;
2147
2148 if (flags & FIGNORECASE)
2149 zflg |= ZCILOOK;
2150 top:
2151 zp = NULL;
2152
2153 /*
2154 * Attempt to lock directory; fail if entry doesn't exist.
2155 */
2156 if ((error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
2157 NULL, NULL))) {
2158 ZFS_EXIT(zfsvfs);
2159 return (error);
2160 }
2161
2162 ip = ZTOI(zp);
2163
2164 if ((error = zfs_zaccess_delete(dzp, zp, cr))) {
2165 goto out;
2166 }
2167
2168 if (!S_ISDIR(ip->i_mode)) {
2169 error = SET_ERROR(ENOTDIR);
2170 goto out;
2171 }
2172
2173 if (ip == cwd) {
2174 error = SET_ERROR(EINVAL);
2175 goto out;
2176 }
2177
2178 /*
2179 * Grab a lock on the directory to make sure that no one is
2180 * trying to add (or lookup) entries while we are removing it.
2181 */
2182 rw_enter(&zp->z_name_lock, RW_WRITER);
2183
2184 /*
2185 * Grab a lock on the parent pointer to make sure we play well
2186 * with the treewalk and directory rename code.
2187 */
2188 rw_enter(&zp->z_parent_lock, RW_WRITER);
2189
2190 tx = dmu_tx_create(zfsvfs->z_os);
2191 dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name);
2192 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
2193 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
2194 zfs_sa_upgrade_txholds(tx, zp);
2195 zfs_sa_upgrade_txholds(tx, dzp);
2196 dmu_tx_mark_netfree(tx);
2197 error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
2198 if (error) {
2199 rw_exit(&zp->z_parent_lock);
2200 rw_exit(&zp->z_name_lock);
2201 zfs_dirent_unlock(dl);
2202 if (error == ERESTART) {
2203 waited = B_TRUE;
2204 dmu_tx_wait(tx);
2205 dmu_tx_abort(tx);
2206 iput(ip);
2207 goto top;
2208 }
2209 dmu_tx_abort(tx);
2210 iput(ip);
2211 ZFS_EXIT(zfsvfs);
2212 return (error);
2213 }
2214
2215 error = zfs_link_destroy(dl, zp, tx, zflg, NULL);
2216
2217 if (error == 0) {
2218 uint64_t txtype = TX_RMDIR;
2219 if (flags & FIGNORECASE)
2220 txtype |= TX_CI;
2221 zfs_log_remove(zilog, tx, txtype, dzp, name, ZFS_NO_OBJECT);
2222 }
2223
2224 dmu_tx_commit(tx);
2225
2226 rw_exit(&zp->z_parent_lock);
2227 rw_exit(&zp->z_name_lock);
2228 out:
2229 zfs_dirent_unlock(dl);
2230
2231 zfs_inode_update(dzp);
2232 zfs_inode_update(zp);
2233 iput(ip);
2234
2235 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
2236 zil_commit(zilog, 0);
2237
2238 ZFS_EXIT(zfsvfs);
2239 return (error);
2240 }
2241
2242 /*
2243 * Read as many directory entries as will fit into the provided
2244 * dirent buffer from the given directory cursor position.
2245 *
2246 * IN: ip - inode of directory to read.
2247 * dirent - buffer for directory entries.
2248 *
2249 * OUT: dirent - filler buffer of directory entries.
2250 *
2251 * RETURN: 0 if success
2252 * error code if failure
2253 *
2254 * Timestamps:
2255 * ip - atime updated
2256 *
2257 * Note that the low 4 bits of the cookie returned by zap is always zero.
2258 * This allows us to use the low range for "special" directory entries:
2259 * We use 0 for '.', and 1 for '..'. If this is the root of the filesystem,
2260 * we use the offset 2 for the '.zfs' directory.
2261 */
2262 /* ARGSUSED */
2263 int
2264 zfs_readdir(struct inode *ip, struct dir_context *ctx, cred_t *cr)
2265 {
2266 znode_t *zp = ITOZ(ip);
2267 zfsvfs_t *zfsvfs = ITOZSB(ip);
2268 objset_t *os;
2269 zap_cursor_t zc;
2270 zap_attribute_t zap;
2271 int error;
2272 uint8_t prefetch;
2273 uint8_t type;
2274 int done = 0;
2275 uint64_t parent;
2276 uint64_t offset; /* must be unsigned; checks for < 1 */
2277
2278 ZFS_ENTER(zfsvfs);
2279 ZFS_VERIFY_ZP(zp);
2280
2281 if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs),
2282 &parent, sizeof (parent))) != 0)
2283 goto out;
2284
2285 /*
2286 * Quit if directory has been removed (posix)
2287 */
2288 if (zp->z_unlinked)
2289 goto out;
2290
2291 error = 0;
2292 os = zfsvfs->z_os;
2293 offset = ctx->pos;
2294 prefetch = zp->z_zn_prefetch;
2295
2296 /*
2297 * Initialize the iterator cursor.
2298 */
2299 if (offset <= 3) {
2300 /*
2301 * Start iteration from the beginning of the directory.
2302 */
2303 zap_cursor_init(&zc, os, zp->z_id);
2304 } else {
2305 /*
2306 * The offset is a serialized cursor.
2307 */
2308 zap_cursor_init_serialized(&zc, os, zp->z_id, offset);
2309 }
2310
2311 /*
2312 * Transform to file-system independent format
2313 */
2314 while (!done) {
2315 uint64_t objnum;
2316 /*
2317 * Special case `.', `..', and `.zfs'.
2318 */
2319 if (offset == 0) {
2320 (void) strcpy(zap.za_name, ".");
2321 zap.za_normalization_conflict = 0;
2322 objnum = zp->z_id;
2323 type = DT_DIR;
2324 } else if (offset == 1) {
2325 (void) strcpy(zap.za_name, "..");
2326 zap.za_normalization_conflict = 0;
2327 objnum = parent;
2328 type = DT_DIR;
2329 } else if (offset == 2 && zfs_show_ctldir(zp)) {
2330 (void) strcpy(zap.za_name, ZFS_CTLDIR_NAME);
2331 zap.za_normalization_conflict = 0;
2332 objnum = ZFSCTL_INO_ROOT;
2333 type = DT_DIR;
2334 } else {
2335 /*
2336 * Grab next entry.
2337 */
2338 if ((error = zap_cursor_retrieve(&zc, &zap))) {
2339 if (error == ENOENT)
2340 break;
2341 else
2342 goto update;
2343 }
2344
2345 /*
2346 * Allow multiple entries provided the first entry is
2347 * the object id. Non-zpl consumers may safely make
2348 * use of the additional space.
2349 *
2350 * XXX: This should be a feature flag for compatibility
2351 */
2352 if (zap.za_integer_length != 8 ||
2353 zap.za_num_integers == 0) {
2354 cmn_err(CE_WARN, "zap_readdir: bad directory "
2355 "entry, obj = %lld, offset = %lld, "
2356 "length = %d, num = %lld\n",
2357 (u_longlong_t)zp->z_id,
2358 (u_longlong_t)offset,
2359 zap.za_integer_length,
2360 (u_longlong_t)zap.za_num_integers);
2361 error = SET_ERROR(ENXIO);
2362 goto update;
2363 }
2364
2365 objnum = ZFS_DIRENT_OBJ(zap.za_first_integer);
2366 type = ZFS_DIRENT_TYPE(zap.za_first_integer);
2367 }
2368
2369 done = !dir_emit(ctx, zap.za_name, strlen(zap.za_name),
2370 objnum, type);
2371 if (done)
2372 break;
2373
2374 /* Prefetch znode */
2375 if (prefetch) {
2376 dmu_prefetch(os, objnum, 0, 0, 0,
2377 ZIO_PRIORITY_SYNC_READ);
2378 }
2379
2380 /*
2381 * Move to the next entry, fill in the previous offset.
2382 */
2383 if (offset > 2 || (offset == 2 && !zfs_show_ctldir(zp))) {
2384 zap_cursor_advance(&zc);
2385 offset = zap_cursor_serialize(&zc);
2386 } else {
2387 offset += 1;
2388 }
2389 ctx->pos = offset;
2390 }
2391 zp->z_zn_prefetch = B_FALSE; /* a lookup will re-enable pre-fetching */
2392
2393 update:
2394 zap_cursor_fini(&zc);
2395 if (error == ENOENT)
2396 error = 0;
2397 out:
2398 ZFS_EXIT(zfsvfs);
2399
2400 return (error);
2401 }
2402
2403 ulong_t zfs_fsync_sync_cnt = 4;
2404
2405 int
2406 zfs_fsync(struct inode *ip, int syncflag, cred_t *cr)
2407 {
2408 znode_t *zp = ITOZ(ip);
2409 zfsvfs_t *zfsvfs = ITOZSB(ip);
2410
2411 (void) tsd_set(zfs_fsyncer_key, (void *)zfs_fsync_sync_cnt);
2412
2413 if (zfsvfs->z_os->os_sync != ZFS_SYNC_DISABLED) {
2414 ZFS_ENTER(zfsvfs);
2415 ZFS_VERIFY_ZP(zp);
2416 zil_commit(zfsvfs->z_log, zp->z_id);
2417 ZFS_EXIT(zfsvfs);
2418 }
2419 tsd_set(zfs_fsyncer_key, NULL);
2420
2421 return (0);
2422 }
2423
2424
2425 /*
2426 * Get the requested file attributes and place them in the provided
2427 * vattr structure.
2428 *
2429 * IN: ip - inode of file.
2430 * vap - va_mask identifies requested attributes.
2431 * If ATTR_XVATTR set, then optional attrs are requested
2432 * flags - ATTR_NOACLCHECK (CIFS server context)
2433 * cr - credentials of caller.
2434 *
2435 * OUT: vap - attribute values.
2436 *
2437 * RETURN: 0 (always succeeds)
2438 */
2439 /* ARGSUSED */
2440 int
2441 zfs_getattr(struct inode *ip, vattr_t *vap, int flags, cred_t *cr)
2442 {
2443 znode_t *zp = ITOZ(ip);
2444 zfsvfs_t *zfsvfs = ITOZSB(ip);
2445 int error = 0;
2446 uint64_t links;
2447 uint64_t atime[2], mtime[2], ctime[2];
2448 xvattr_t *xvap = (xvattr_t *)vap; /* vap may be an xvattr_t * */
2449 xoptattr_t *xoap = NULL;
2450 boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
2451 sa_bulk_attr_t bulk[3];
2452 int count = 0;
2453
2454 ZFS_ENTER(zfsvfs);
2455 ZFS_VERIFY_ZP(zp);
2456
2457 zfs_fuid_map_ids(zp, cr, &vap->va_uid, &vap->va_gid);
2458
2459 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zfsvfs), NULL, &atime, 16);
2460 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
2461 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
2462
2463 if ((error = sa_bulk_lookup(zp->z_sa_hdl, bulk, count)) != 0) {
2464 ZFS_EXIT(zfsvfs);
2465 return (error);
2466 }
2467
2468 /*
2469 * If ACL is trivial don't bother looking for ACE_READ_ATTRIBUTES.
2470 * Also, if we are the owner don't bother, since owner should
2471 * always be allowed to read basic attributes of file.
2472 */
2473 if (!(zp->z_pflags & ZFS_ACL_TRIVIAL) &&
2474 (vap->va_uid != crgetuid(cr))) {
2475 if ((error = zfs_zaccess(zp, ACE_READ_ATTRIBUTES, 0,
2476 skipaclchk, cr))) {
2477 ZFS_EXIT(zfsvfs);
2478 return (error);
2479 }
2480 }
2481
2482 /*
2483 * Return all attributes. It's cheaper to provide the answer
2484 * than to determine whether we were asked the question.
2485 */
2486
2487 mutex_enter(&zp->z_lock);
2488 vap->va_type = vn_mode_to_vtype(zp->z_mode);
2489 vap->va_mode = zp->z_mode;
2490 vap->va_fsid = ZTOI(zp)->i_sb->s_dev;
2491 vap->va_nodeid = zp->z_id;
2492 if ((zp->z_id == zfsvfs->z_root) && zfs_show_ctldir(zp))
2493 links = ZTOI(zp)->i_nlink + 1;
2494 else
2495 links = ZTOI(zp)->i_nlink;
2496 vap->va_nlink = MIN(links, ZFS_LINK_MAX);
2497 vap->va_size = i_size_read(ip);
2498 vap->va_rdev = ip->i_rdev;
2499 vap->va_seq = ip->i_generation;
2500
2501 /*
2502 * Add in any requested optional attributes and the create time.
2503 * Also set the corresponding bits in the returned attribute bitmap.
2504 */
2505 if ((xoap = xva_getxoptattr(xvap)) != NULL && zfsvfs->z_use_fuids) {
2506 if (XVA_ISSET_REQ(xvap, XAT_ARCHIVE)) {
2507 xoap->xoa_archive =
2508 ((zp->z_pflags & ZFS_ARCHIVE) != 0);
2509 XVA_SET_RTN(xvap, XAT_ARCHIVE);
2510 }
2511
2512 if (XVA_ISSET_REQ(xvap, XAT_READONLY)) {
2513 xoap->xoa_readonly =
2514 ((zp->z_pflags & ZFS_READONLY) != 0);
2515 XVA_SET_RTN(xvap, XAT_READONLY);
2516 }
2517
2518 if (XVA_ISSET_REQ(xvap, XAT_SYSTEM)) {
2519 xoap->xoa_system =
2520 ((zp->z_pflags & ZFS_SYSTEM) != 0);
2521 XVA_SET_RTN(xvap, XAT_SYSTEM);
2522 }
2523
2524 if (XVA_ISSET_REQ(xvap, XAT_HIDDEN)) {
2525 xoap->xoa_hidden =
2526 ((zp->z_pflags & ZFS_HIDDEN) != 0);
2527 XVA_SET_RTN(xvap, XAT_HIDDEN);
2528 }
2529
2530 if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) {
2531 xoap->xoa_nounlink =
2532 ((zp->z_pflags & ZFS_NOUNLINK) != 0);
2533 XVA_SET_RTN(xvap, XAT_NOUNLINK);
2534 }
2535
2536 if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) {
2537 xoap->xoa_immutable =
2538 ((zp->z_pflags & ZFS_IMMUTABLE) != 0);
2539 XVA_SET_RTN(xvap, XAT_IMMUTABLE);
2540 }
2541
2542 if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) {
2543 xoap->xoa_appendonly =
2544 ((zp->z_pflags & ZFS_APPENDONLY) != 0);
2545 XVA_SET_RTN(xvap, XAT_APPENDONLY);
2546 }
2547
2548 if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) {
2549 xoap->xoa_nodump =
2550 ((zp->z_pflags & ZFS_NODUMP) != 0);
2551 XVA_SET_RTN(xvap, XAT_NODUMP);
2552 }
2553
2554 if (XVA_ISSET_REQ(xvap, XAT_OPAQUE)) {
2555 xoap->xoa_opaque =
2556 ((zp->z_pflags & ZFS_OPAQUE) != 0);
2557 XVA_SET_RTN(xvap, XAT_OPAQUE);
2558 }
2559
2560 if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) {
2561 xoap->xoa_av_quarantined =
2562 ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0);
2563 XVA_SET_RTN(xvap, XAT_AV_QUARANTINED);
2564 }
2565
2566 if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) {
2567 xoap->xoa_av_modified =
2568 ((zp->z_pflags & ZFS_AV_MODIFIED) != 0);
2569 XVA_SET_RTN(xvap, XAT_AV_MODIFIED);
2570 }
2571
2572 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) &&
2573 S_ISREG(ip->i_mode)) {
2574 zfs_sa_get_scanstamp(zp, xvap);
2575 }
2576
2577 if (XVA_ISSET_REQ(xvap, XAT_CREATETIME)) {
2578 uint64_t times[2];
2579
2580 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_CRTIME(zfsvfs),
2581 times, sizeof (times));
2582 ZFS_TIME_DECODE(&xoap->xoa_createtime, times);
2583 XVA_SET_RTN(xvap, XAT_CREATETIME);
2584 }
2585
2586 if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) {
2587 xoap->xoa_reparse = ((zp->z_pflags & ZFS_REPARSE) != 0);
2588 XVA_SET_RTN(xvap, XAT_REPARSE);
2589 }
2590 if (XVA_ISSET_REQ(xvap, XAT_GEN)) {
2591 xoap->xoa_generation = ip->i_generation;
2592 XVA_SET_RTN(xvap, XAT_GEN);
2593 }
2594
2595 if (XVA_ISSET_REQ(xvap, XAT_OFFLINE)) {
2596 xoap->xoa_offline =
2597 ((zp->z_pflags & ZFS_OFFLINE) != 0);
2598 XVA_SET_RTN(xvap, XAT_OFFLINE);
2599 }
2600
2601 if (XVA_ISSET_REQ(xvap, XAT_SPARSE)) {
2602 xoap->xoa_sparse =
2603 ((zp->z_pflags & ZFS_SPARSE) != 0);
2604 XVA_SET_RTN(xvap, XAT_SPARSE);
2605 }
2606
2607 if (XVA_ISSET_REQ(xvap, XAT_PROJINHERIT)) {
2608 xoap->xoa_projinherit =
2609 ((zp->z_pflags & ZFS_PROJINHERIT) != 0);
2610 XVA_SET_RTN(xvap, XAT_PROJINHERIT);
2611 }
2612
2613 if (XVA_ISSET_REQ(xvap, XAT_PROJID)) {
2614 xoap->xoa_projid = zp->z_projid;
2615 XVA_SET_RTN(xvap, XAT_PROJID);
2616 }
2617 }
2618
2619 ZFS_TIME_DECODE(&vap->va_atime, atime);
2620 ZFS_TIME_DECODE(&vap->va_mtime, mtime);
2621 ZFS_TIME_DECODE(&vap->va_ctime, ctime);
2622
2623 mutex_exit(&zp->z_lock);
2624
2625 sa_object_size(zp->z_sa_hdl, &vap->va_blksize, &vap->va_nblocks);
2626
2627 if (zp->z_blksz == 0) {
2628 /*
2629 * Block size hasn't been set; suggest maximal I/O transfers.
2630 */
2631 vap->va_blksize = zfsvfs->z_max_blksz;
2632 }
2633
2634 ZFS_EXIT(zfsvfs);
2635 return (0);
2636 }
2637
2638 /*
2639 * Get the basic file attributes and place them in the provided kstat
2640 * structure. The inode is assumed to be the authoritative source
2641 * for most of the attributes. However, the znode currently has the
2642 * authoritative atime, blksize, and block count.
2643 *
2644 * IN: ip - inode of file.
2645 *
2646 * OUT: sp - kstat values.
2647 *
2648 * RETURN: 0 (always succeeds)
2649 */
2650 /* ARGSUSED */
2651 int
2652 zfs_getattr_fast(struct inode *ip, struct kstat *sp)
2653 {
2654 znode_t *zp = ITOZ(ip);
2655 zfsvfs_t *zfsvfs = ITOZSB(ip);
2656 uint32_t blksize;
2657 u_longlong_t nblocks;
2658
2659 ZFS_ENTER(zfsvfs);
2660 ZFS_VERIFY_ZP(zp);
2661
2662 mutex_enter(&zp->z_lock);
2663
2664 generic_fillattr(ip, sp);
2665
2666 sa_object_size(zp->z_sa_hdl, &blksize, &nblocks);
2667 sp->blksize = blksize;
2668 sp->blocks = nblocks;
2669
2670 if (unlikely(zp->z_blksz == 0)) {
2671 /*
2672 * Block size hasn't been set; suggest maximal I/O transfers.
2673 */
2674 sp->blksize = zfsvfs->z_max_blksz;
2675 }
2676
2677 mutex_exit(&zp->z_lock);
2678
2679 /*
2680 * Required to prevent NFS client from detecting different inode
2681 * numbers of snapshot root dentry before and after snapshot mount.
2682 */
2683 if (zfsvfs->z_issnap) {
2684 if (ip->i_sb->s_root->d_inode == ip)
2685 sp->ino = ZFSCTL_INO_SNAPDIRS -
2686 dmu_objset_id(zfsvfs->z_os);
2687 }
2688
2689 ZFS_EXIT(zfsvfs);
2690
2691 return (0);
2692 }
2693
2694 /*
2695 * For the operation of changing file's user/group/project, we need to
2696 * handle not only the main object that is assigned to the file directly,
2697 * but also the ones that are used by the file via hidden xattr directory.
2698 *
2699 * Because the xattr directory may contains many EA entries, as to it may
2700 * be impossible to change all of them via the transaction of changing the
2701 * main object's user/group/project attributes. Then we have to change them
2702 * via other multiple independent transactions one by one. It may be not good
2703 * solution, but we have no better idea yet.
2704 */
2705 static int
2706 zfs_setattr_dir(znode_t *dzp)
2707 {
2708 struct inode *dxip = ZTOI(dzp);
2709 struct inode *xip = NULL;
2710 zfsvfs_t *zfsvfs = ITOZSB(dxip);
2711 objset_t *os = zfsvfs->z_os;
2712 zap_cursor_t zc;
2713 zap_attribute_t zap;
2714 zfs_dirlock_t *dl;
2715 znode_t *zp;
2716 dmu_tx_t *tx = NULL;
2717 uint64_t uid, gid;
2718 sa_bulk_attr_t bulk[4];
2719 int count = 0;
2720 int err;
2721
2722 zap_cursor_init(&zc, os, dzp->z_id);
2723 while ((err = zap_cursor_retrieve(&zc, &zap)) == 0) {
2724 if (zap.za_integer_length != 8 || zap.za_num_integers != 1) {
2725 err = ENXIO;
2726 break;
2727 }
2728
2729 err = zfs_dirent_lock(&dl, dzp, (char *)zap.za_name, &zp,
2730 ZEXISTS, NULL, NULL);
2731 if (err == ENOENT)
2732 goto next;
2733 if (err)
2734 break;
2735
2736 xip = ZTOI(zp);
2737 if (KUID_TO_SUID(xip->i_uid) == KUID_TO_SUID(dxip->i_uid) &&
2738 KGID_TO_SGID(xip->i_gid) == KGID_TO_SGID(dxip->i_gid) &&
2739 zp->z_projid == dzp->z_projid)
2740 goto next;
2741
2742 tx = dmu_tx_create(os);
2743 if (!(zp->z_pflags & ZFS_PROJID))
2744 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
2745 else
2746 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
2747
2748 err = dmu_tx_assign(tx, TXG_WAIT);
2749 if (err)
2750 break;
2751
2752 mutex_enter(&dzp->z_lock);
2753
2754 if (KUID_TO_SUID(xip->i_uid) != KUID_TO_SUID(dxip->i_uid)) {
2755 xip->i_uid = dxip->i_uid;
2756 uid = zfs_uid_read(dxip);
2757 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL,
2758 &uid, sizeof (uid));
2759 }
2760
2761 if (KGID_TO_SGID(xip->i_gid) != KGID_TO_SGID(dxip->i_gid)) {
2762 xip->i_gid = dxip->i_gid;
2763 gid = zfs_gid_read(dxip);
2764 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs), NULL,
2765 &gid, sizeof (gid));
2766 }
2767
2768 if (zp->z_projid != dzp->z_projid) {
2769 if (!(zp->z_pflags & ZFS_PROJID)) {
2770 zp->z_pflags |= ZFS_PROJID;
2771 SA_ADD_BULK_ATTR(bulk, count,
2772 SA_ZPL_FLAGS(zfsvfs), NULL, &zp->z_pflags,
2773 sizeof (zp->z_pflags));
2774 }
2775
2776 zp->z_projid = dzp->z_projid;
2777 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_PROJID(zfsvfs),
2778 NULL, &zp->z_projid, sizeof (zp->z_projid));
2779 }
2780
2781 mutex_exit(&dzp->z_lock);
2782
2783 if (likely(count > 0)) {
2784 err = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
2785 dmu_tx_commit(tx);
2786 } else {
2787 dmu_tx_abort(tx);
2788 }
2789 tx = NULL;
2790 if (err != 0 && err != ENOENT)
2791 break;
2792
2793 next:
2794 if (xip) {
2795 iput(xip);
2796 xip = NULL;
2797 zfs_dirent_unlock(dl);
2798 }
2799 zap_cursor_advance(&zc);
2800 }
2801
2802 if (tx)
2803 dmu_tx_abort(tx);
2804 if (xip) {
2805 iput(xip);
2806 zfs_dirent_unlock(dl);
2807 }
2808 zap_cursor_fini(&zc);
2809
2810 return (err == ENOENT ? 0 : err);
2811 }
2812
2813 /*
2814 * Set the file attributes to the values contained in the
2815 * vattr structure.
2816 *
2817 * IN: ip - inode of file to be modified.
2818 * vap - new attribute values.
2819 * If ATTR_XVATTR set, then optional attrs are being set
2820 * flags - ATTR_UTIME set if non-default time values provided.
2821 * - ATTR_NOACLCHECK (CIFS context only).
2822 * cr - credentials of caller.
2823 *
2824 * RETURN: 0 if success
2825 * error code if failure
2826 *
2827 * Timestamps:
2828 * ip - ctime updated, mtime updated if size changed.
2829 */
2830 /* ARGSUSED */
2831 int
2832 zfs_setattr(struct inode *ip, vattr_t *vap, int flags, cred_t *cr)
2833 {
2834 znode_t *zp = ITOZ(ip);
2835 zfsvfs_t *zfsvfs = ITOZSB(ip);
2836 objset_t *os = zfsvfs->z_os;
2837 zilog_t *zilog;
2838 dmu_tx_t *tx;
2839 vattr_t oldva;
2840 xvattr_t *tmpxvattr;
2841 uint_t mask = vap->va_mask;
2842 uint_t saved_mask = 0;
2843 int trim_mask = 0;
2844 uint64_t new_mode;
2845 uint64_t new_kuid = 0, new_kgid = 0, new_uid, new_gid;
2846 uint64_t xattr_obj;
2847 uint64_t mtime[2], ctime[2], atime[2];
2848 uint64_t projid = ZFS_INVALID_PROJID;
2849 znode_t *attrzp;
2850 int need_policy = FALSE;
2851 int err, err2 = 0;
2852 zfs_fuid_info_t *fuidp = NULL;
2853 xvattr_t *xvap = (xvattr_t *)vap; /* vap may be an xvattr_t * */
2854 xoptattr_t *xoap;
2855 zfs_acl_t *aclp;
2856 boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
2857 boolean_t fuid_dirtied = B_FALSE;
2858 boolean_t handle_eadir = B_FALSE;
2859 sa_bulk_attr_t *bulk, *xattr_bulk;
2860 int count = 0, xattr_count = 0, bulks = 8;
2861
2862 if (mask == 0)
2863 return (0);
2864
2865 ZFS_ENTER(zfsvfs);
2866 ZFS_VERIFY_ZP(zp);
2867
2868 /*
2869 * If this is a xvattr_t, then get a pointer to the structure of
2870 * optional attributes. If this is NULL, then we have a vattr_t.
2871 */
2872 xoap = xva_getxoptattr(xvap);
2873 if (xoap != NULL && (mask & ATTR_XVATTR)) {
2874 if (XVA_ISSET_REQ(xvap, XAT_PROJID)) {
2875 if (!dmu_objset_projectquota_enabled(os) ||
2876 (!S_ISREG(ip->i_mode) && !S_ISDIR(ip->i_mode))) {
2877 ZFS_EXIT(zfsvfs);
2878 return (SET_ERROR(ENOTSUP));
2879 }
2880
2881 projid = xoap->xoa_projid;
2882 if (unlikely(projid == ZFS_INVALID_PROJID)) {
2883 ZFS_EXIT(zfsvfs);
2884 return (SET_ERROR(EINVAL));
2885 }
2886
2887 if (projid == zp->z_projid && zp->z_pflags & ZFS_PROJID)
2888 projid = ZFS_INVALID_PROJID;
2889 else
2890 need_policy = TRUE;
2891 }
2892
2893 if (XVA_ISSET_REQ(xvap, XAT_PROJINHERIT) &&
2894 (!dmu_objset_projectquota_enabled(os) ||
2895 (!S_ISREG(ip->i_mode) && !S_ISDIR(ip->i_mode)))) {
2896 ZFS_EXIT(zfsvfs);
2897 return (SET_ERROR(ENOTSUP));
2898 }
2899 }
2900
2901 zilog = zfsvfs->z_log;
2902
2903 /*
2904 * Make sure that if we have ephemeral uid/gid or xvattr specified
2905 * that file system is at proper version level
2906 */
2907
2908 if (zfsvfs->z_use_fuids == B_FALSE &&
2909 (((mask & ATTR_UID) && IS_EPHEMERAL(vap->va_uid)) ||
2910 ((mask & ATTR_GID) && IS_EPHEMERAL(vap->va_gid)) ||
2911 (mask & ATTR_XVATTR))) {
2912 ZFS_EXIT(zfsvfs);
2913 return (SET_ERROR(EINVAL));
2914 }
2915
2916 if (mask & ATTR_SIZE && S_ISDIR(ip->i_mode)) {
2917 ZFS_EXIT(zfsvfs);
2918 return (SET_ERROR(EISDIR));
2919 }
2920
2921 if (mask & ATTR_SIZE && !S_ISREG(ip->i_mode) && !S_ISFIFO(ip->i_mode)) {
2922 ZFS_EXIT(zfsvfs);
2923 return (SET_ERROR(EINVAL));
2924 }
2925
2926 tmpxvattr = kmem_alloc(sizeof (xvattr_t), KM_SLEEP);
2927 xva_init(tmpxvattr);
2928
2929 bulk = kmem_alloc(sizeof (sa_bulk_attr_t) * bulks, KM_SLEEP);
2930 xattr_bulk = kmem_alloc(sizeof (sa_bulk_attr_t) * bulks, KM_SLEEP);
2931
2932 /*
2933 * Immutable files can only alter immutable bit and atime
2934 */
2935 if ((zp->z_pflags & ZFS_IMMUTABLE) &&
2936 ((mask & (ATTR_SIZE|ATTR_UID|ATTR_GID|ATTR_MTIME|ATTR_MODE)) ||
2937 ((mask & ATTR_XVATTR) && XVA_ISSET_REQ(xvap, XAT_CREATETIME)))) {
2938 err = SET_ERROR(EPERM);
2939 goto out3;
2940 }
2941
2942 if ((mask & ATTR_SIZE) && (zp->z_pflags & ZFS_READONLY)) {
2943 err = SET_ERROR(EPERM);
2944 goto out3;
2945 }
2946
2947 /*
2948 * Verify timestamps doesn't overflow 32 bits.
2949 * ZFS can handle large timestamps, but 32bit syscalls can't
2950 * handle times greater than 2039. This check should be removed
2951 * once large timestamps are fully supported.
2952 */
2953 if (mask & (ATTR_ATIME | ATTR_MTIME)) {
2954 if (((mask & ATTR_ATIME) &&
2955 TIMESPEC_OVERFLOW(&vap->va_atime)) ||
2956 ((mask & ATTR_MTIME) &&
2957 TIMESPEC_OVERFLOW(&vap->va_mtime))) {
2958 err = SET_ERROR(EOVERFLOW);
2959 goto out3;
2960 }
2961 }
2962
2963 top:
2964 attrzp = NULL;
2965 aclp = NULL;
2966
2967 /* Can this be moved to before the top label? */
2968 if (zfs_is_readonly(zfsvfs)) {
2969 err = SET_ERROR(EROFS);
2970 goto out3;
2971 }
2972
2973 /*
2974 * First validate permissions
2975 */
2976
2977 if (mask & ATTR_SIZE) {
2978 err = zfs_zaccess(zp, ACE_WRITE_DATA, 0, skipaclchk, cr);
2979 if (err)
2980 goto out3;
2981
2982 /*
2983 * XXX - Note, we are not providing any open
2984 * mode flags here (like FNDELAY), so we may
2985 * block if there are locks present... this
2986 * should be addressed in openat().
2987 */
2988 /* XXX - would it be OK to generate a log record here? */
2989 err = zfs_freesp(zp, vap->va_size, 0, 0, FALSE);
2990 if (err)
2991 goto out3;
2992 }
2993
2994 if (mask & (ATTR_ATIME|ATTR_MTIME) ||
2995 ((mask & ATTR_XVATTR) && (XVA_ISSET_REQ(xvap, XAT_HIDDEN) ||
2996 XVA_ISSET_REQ(xvap, XAT_READONLY) ||
2997 XVA_ISSET_REQ(xvap, XAT_ARCHIVE) ||
2998 XVA_ISSET_REQ(xvap, XAT_OFFLINE) ||
2999 XVA_ISSET_REQ(xvap, XAT_SPARSE) ||
3000 XVA_ISSET_REQ(xvap, XAT_CREATETIME) ||
3001 XVA_ISSET_REQ(xvap, XAT_SYSTEM)))) {
3002 need_policy = zfs_zaccess(zp, ACE_WRITE_ATTRIBUTES, 0,
3003 skipaclchk, cr);
3004 }
3005
3006 if (mask & (ATTR_UID|ATTR_GID)) {
3007 int idmask = (mask & (ATTR_UID|ATTR_GID));
3008 int take_owner;
3009 int take_group;
3010
3011 /*
3012 * NOTE: even if a new mode is being set,
3013 * we may clear S_ISUID/S_ISGID bits.
3014 */
3015
3016 if (!(mask & ATTR_MODE))
3017 vap->va_mode = zp->z_mode;
3018
3019 /*
3020 * Take ownership or chgrp to group we are a member of
3021 */
3022
3023 take_owner = (mask & ATTR_UID) && (vap->va_uid == crgetuid(cr));
3024 take_group = (mask & ATTR_GID) &&
3025 zfs_groupmember(zfsvfs, vap->va_gid, cr);
3026
3027 /*
3028 * If both ATTR_UID and ATTR_GID are set then take_owner and
3029 * take_group must both be set in order to allow taking
3030 * ownership.
3031 *
3032 * Otherwise, send the check through secpolicy_vnode_setattr()
3033 *
3034 */
3035
3036 if (((idmask == (ATTR_UID|ATTR_GID)) &&
3037 take_owner && take_group) ||
3038 ((idmask == ATTR_UID) && take_owner) ||
3039 ((idmask == ATTR_GID) && take_group)) {
3040 if (zfs_zaccess(zp, ACE_WRITE_OWNER, 0,
3041 skipaclchk, cr) == 0) {
3042 /*
3043 * Remove setuid/setgid for non-privileged users
3044 */
3045 (void) secpolicy_setid_clear(vap, cr);
3046 trim_mask = (mask & (ATTR_UID|ATTR_GID));
3047 } else {
3048 need_policy = TRUE;
3049 }
3050 } else {
3051 need_policy = TRUE;
3052 }
3053 }
3054
3055 mutex_enter(&zp->z_lock);
3056 oldva.va_mode = zp->z_mode;
3057 zfs_fuid_map_ids(zp, cr, &oldva.va_uid, &oldva.va_gid);
3058 if (mask & ATTR_XVATTR) {
3059 /*
3060 * Update xvattr mask to include only those attributes
3061 * that are actually changing.
3062 *
3063 * the bits will be restored prior to actually setting
3064 * the attributes so the caller thinks they were set.
3065 */
3066 if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) {
3067 if (xoap->xoa_appendonly !=
3068 ((zp->z_pflags & ZFS_APPENDONLY) != 0)) {
3069 need_policy = TRUE;
3070 } else {
3071 XVA_CLR_REQ(xvap, XAT_APPENDONLY);
3072 XVA_SET_REQ(tmpxvattr, XAT_APPENDONLY);
3073 }
3074 }
3075
3076 if (XVA_ISSET_REQ(xvap, XAT_PROJINHERIT)) {
3077 if (xoap->xoa_projinherit !=
3078 ((zp->z_pflags & ZFS_PROJINHERIT) != 0)) {
3079 need_policy = TRUE;
3080 } else {
3081 XVA_CLR_REQ(xvap, XAT_PROJINHERIT);
3082 XVA_SET_REQ(tmpxvattr, XAT_PROJINHERIT);
3083 }
3084 }
3085
3086 if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) {
3087 if (xoap->xoa_nounlink !=
3088 ((zp->z_pflags & ZFS_NOUNLINK) != 0)) {
3089 need_policy = TRUE;
3090 } else {
3091 XVA_CLR_REQ(xvap, XAT_NOUNLINK);
3092 XVA_SET_REQ(tmpxvattr, XAT_NOUNLINK);
3093 }
3094 }
3095
3096 if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) {
3097 if (xoap->xoa_immutable !=
3098 ((zp->z_pflags & ZFS_IMMUTABLE) != 0)) {
3099 need_policy = TRUE;
3100 } else {
3101 XVA_CLR_REQ(xvap, XAT_IMMUTABLE);
3102 XVA_SET_REQ(tmpxvattr, XAT_IMMUTABLE);
3103 }
3104 }
3105
3106 if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) {
3107 if (xoap->xoa_nodump !=
3108 ((zp->z_pflags & ZFS_NODUMP) != 0)) {
3109 need_policy = TRUE;
3110 } else {
3111 XVA_CLR_REQ(xvap, XAT_NODUMP);
3112 XVA_SET_REQ(tmpxvattr, XAT_NODUMP);
3113 }
3114 }
3115
3116 if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) {
3117 if (xoap->xoa_av_modified !=
3118 ((zp->z_pflags & ZFS_AV_MODIFIED) != 0)) {
3119 need_policy = TRUE;
3120 } else {
3121 XVA_CLR_REQ(xvap, XAT_AV_MODIFIED);
3122 XVA_SET_REQ(tmpxvattr, XAT_AV_MODIFIED);
3123 }
3124 }
3125
3126 if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) {
3127 if ((!S_ISREG(ip->i_mode) &&
3128 xoap->xoa_av_quarantined) ||
3129 xoap->xoa_av_quarantined !=
3130 ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0)) {
3131 need_policy = TRUE;
3132 } else {
3133 XVA_CLR_REQ(xvap, XAT_AV_QUARANTINED);
3134 XVA_SET_REQ(tmpxvattr, XAT_AV_QUARANTINED);
3135 }
3136 }
3137
3138 if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) {
3139 mutex_exit(&zp->z_lock);
3140 err = SET_ERROR(EPERM);
3141 goto out3;
3142 }
3143
3144 if (need_policy == FALSE &&
3145 (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) ||
3146 XVA_ISSET_REQ(xvap, XAT_OPAQUE))) {
3147 need_policy = TRUE;
3148 }
3149 }
3150
3151 mutex_exit(&zp->z_lock);
3152
3153 if (mask & ATTR_MODE) {
3154 if (zfs_zaccess(zp, ACE_WRITE_ACL, 0, skipaclchk, cr) == 0) {
3155 err = secpolicy_setid_setsticky_clear(ip, vap,
3156 &oldva, cr);
3157 if (err)
3158 goto out3;
3159
3160 trim_mask |= ATTR_MODE;
3161 } else {
3162 need_policy = TRUE;
3163 }
3164 }
3165
3166 if (need_policy) {
3167 /*
3168 * If trim_mask is set then take ownership
3169 * has been granted or write_acl is present and user
3170 * has the ability to modify mode. In that case remove
3171 * UID|GID and or MODE from mask so that
3172 * secpolicy_vnode_setattr() doesn't revoke it.
3173 */
3174
3175 if (trim_mask) {
3176 saved_mask = vap->va_mask;
3177 vap->va_mask &= ~trim_mask;
3178 }
3179 err = secpolicy_vnode_setattr(cr, ip, vap, &oldva, flags,
3180 (int (*)(void *, int, cred_t *))zfs_zaccess_unix, zp);
3181 if (err)
3182 goto out3;
3183
3184 if (trim_mask)
3185 vap->va_mask |= saved_mask;
3186 }
3187
3188 /*
3189 * secpolicy_vnode_setattr, or take ownership may have
3190 * changed va_mask
3191 */
3192 mask = vap->va_mask;
3193
3194 if ((mask & (ATTR_UID | ATTR_GID)) || projid != ZFS_INVALID_PROJID) {
3195 handle_eadir = B_TRUE;
3196 err = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
3197 &xattr_obj, sizeof (xattr_obj));
3198
3199 if (err == 0 && xattr_obj) {
3200 err = zfs_zget(ZTOZSB(zp), xattr_obj, &attrzp);
3201 if (err)
3202 goto out2;
3203 }
3204 if (mask & ATTR_UID) {
3205 new_kuid = zfs_fuid_create(zfsvfs,
3206 (uint64_t)vap->va_uid, cr, ZFS_OWNER, &fuidp);
3207 if (new_kuid != KUID_TO_SUID(ZTOI(zp)->i_uid) &&
3208 zfs_id_overquota(zfsvfs, DMU_USERUSED_OBJECT,
3209 new_kuid)) {
3210 if (attrzp)
3211 iput(ZTOI(attrzp));
3212 err = SET_ERROR(EDQUOT);
3213 goto out2;
3214 }
3215 }
3216
3217 if (mask & ATTR_GID) {
3218 new_kgid = zfs_fuid_create(zfsvfs,
3219 (uint64_t)vap->va_gid, cr, ZFS_GROUP, &fuidp);
3220 if (new_kgid != KGID_TO_SGID(ZTOI(zp)->i_gid) &&
3221 zfs_id_overquota(zfsvfs, DMU_GROUPUSED_OBJECT,
3222 new_kgid)) {
3223 if (attrzp)
3224 iput(ZTOI(attrzp));
3225 err = SET_ERROR(EDQUOT);
3226 goto out2;
3227 }
3228 }
3229
3230 if (projid != ZFS_INVALID_PROJID &&
3231 zfs_id_overquota(zfsvfs, DMU_PROJECTUSED_OBJECT, projid)) {
3232 if (attrzp)
3233 iput(ZTOI(attrzp));
3234 err = EDQUOT;
3235 goto out2;
3236 }
3237 }
3238 tx = dmu_tx_create(os);
3239
3240 if (mask & ATTR_MODE) {
3241 uint64_t pmode = zp->z_mode;
3242 uint64_t acl_obj;
3243 new_mode = (pmode & S_IFMT) | (vap->va_mode & ~S_IFMT);
3244
3245 zfs_acl_chmod_setattr(zp, &aclp, new_mode);
3246
3247 mutex_enter(&zp->z_lock);
3248 if (!zp->z_is_sa && ((acl_obj = zfs_external_acl(zp)) != 0)) {
3249 /*
3250 * Are we upgrading ACL from old V0 format
3251 * to V1 format?
3252 */
3253 if (zfsvfs->z_version >= ZPL_VERSION_FUID &&
3254 zfs_znode_acl_version(zp) ==
3255 ZFS_ACL_VERSION_INITIAL) {
3256 dmu_tx_hold_free(tx, acl_obj, 0,
3257 DMU_OBJECT_END);
3258 dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
3259 0, aclp->z_acl_bytes);
3260 } else {
3261 dmu_tx_hold_write(tx, acl_obj, 0,
3262 aclp->z_acl_bytes);
3263 }
3264 } else if (!zp->z_is_sa && aclp->z_acl_bytes > ZFS_ACE_SPACE) {
3265 dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
3266 0, aclp->z_acl_bytes);
3267 }
3268 mutex_exit(&zp->z_lock);
3269 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
3270 } else {
3271 if (((mask & ATTR_XVATTR) &&
3272 XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP)) ||
3273 (projid != ZFS_INVALID_PROJID &&
3274 !(zp->z_pflags & ZFS_PROJID)))
3275 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
3276 else
3277 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
3278 }
3279
3280 if (attrzp) {
3281 dmu_tx_hold_sa(tx, attrzp->z_sa_hdl, B_FALSE);
3282 }
3283
3284 fuid_dirtied = zfsvfs->z_fuid_dirty;
3285 if (fuid_dirtied)
3286 zfs_fuid_txhold(zfsvfs, tx);
3287
3288 zfs_sa_upgrade_txholds(tx, zp);
3289
3290 err = dmu_tx_assign(tx, TXG_WAIT);
3291 if (err)
3292 goto out;
3293
3294 count = 0;
3295 /*
3296 * Set each attribute requested.
3297 * We group settings according to the locks they need to acquire.
3298 *
3299 * Note: you cannot set ctime directly, although it will be
3300 * updated as a side-effect of calling this function.
3301 */
3302
3303 if (projid != ZFS_INVALID_PROJID && !(zp->z_pflags & ZFS_PROJID)) {
3304 /*
3305 * For the existed object that is upgraded from old system,
3306 * its on-disk layout has no slot for the project ID attribute.
3307 * But quota accounting logic needs to access related slots by
3308 * offset directly. So we need to adjust old objects' layout
3309 * to make the project ID to some unified and fixed offset.
3310 */
3311 if (attrzp)
3312 err = sa_add_projid(attrzp->z_sa_hdl, tx, projid);
3313 if (err == 0)
3314 err = sa_add_projid(zp->z_sa_hdl, tx, projid);
3315
3316 if (unlikely(err == EEXIST))
3317 err = 0;
3318 else if (err != 0)
3319 goto out;
3320 else
3321 projid = ZFS_INVALID_PROJID;
3322 }
3323
3324 if (mask & (ATTR_UID|ATTR_GID|ATTR_MODE))
3325 mutex_enter(&zp->z_acl_lock);
3326 mutex_enter(&zp->z_lock);
3327
3328 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
3329 &zp->z_pflags, sizeof (zp->z_pflags));
3330
3331 if (attrzp) {
3332 if (mask & (ATTR_UID|ATTR_GID|ATTR_MODE))
3333 mutex_enter(&attrzp->z_acl_lock);
3334 mutex_enter(&attrzp->z_lock);
3335 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3336 SA_ZPL_FLAGS(zfsvfs), NULL, &attrzp->z_pflags,
3337 sizeof (attrzp->z_pflags));
3338 if (projid != ZFS_INVALID_PROJID) {
3339 attrzp->z_projid = projid;
3340 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3341 SA_ZPL_PROJID(zfsvfs), NULL, &attrzp->z_projid,
3342 sizeof (attrzp->z_projid));
3343 }
3344 }
3345
3346 if (mask & (ATTR_UID|ATTR_GID)) {
3347
3348 if (mask & ATTR_UID) {
3349 ZTOI(zp)->i_uid = SUID_TO_KUID(new_kuid);
3350 new_uid = zfs_uid_read(ZTOI(zp));
3351 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL,
3352 &new_uid, sizeof (new_uid));
3353 if (attrzp) {
3354 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3355 SA_ZPL_UID(zfsvfs), NULL, &new_uid,
3356 sizeof (new_uid));
3357 ZTOI(attrzp)->i_uid = SUID_TO_KUID(new_uid);
3358 }
3359 }
3360
3361 if (mask & ATTR_GID) {
3362 ZTOI(zp)->i_gid = SGID_TO_KGID(new_kgid);
3363 new_gid = zfs_gid_read(ZTOI(zp));
3364 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs),
3365 NULL, &new_gid, sizeof (new_gid));
3366 if (attrzp) {
3367 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3368 SA_ZPL_GID(zfsvfs), NULL, &new_gid,
3369 sizeof (new_gid));
3370 ZTOI(attrzp)->i_gid = SGID_TO_KGID(new_kgid);
3371 }
3372 }
3373 if (!(mask & ATTR_MODE)) {
3374 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs),
3375 NULL, &new_mode, sizeof (new_mode));
3376 new_mode = zp->z_mode;
3377 }
3378 err = zfs_acl_chown_setattr(zp);
3379 ASSERT(err == 0);
3380 if (attrzp) {
3381 err = zfs_acl_chown_setattr(attrzp);
3382 ASSERT(err == 0);
3383 }
3384 }
3385
3386 if (mask & ATTR_MODE) {
3387 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), NULL,
3388 &new_mode, sizeof (new_mode));
3389 zp->z_mode = ZTOI(zp)->i_mode = new_mode;
3390 ASSERT3P(aclp, !=, NULL);
3391 err = zfs_aclset_common(zp, aclp, cr, tx);
3392 ASSERT0(err);
3393 if (zp->z_acl_cached)
3394 zfs_acl_free(zp->z_acl_cached);
3395 zp->z_acl_cached = aclp;
3396 aclp = NULL;
3397 }
3398
3399 if ((mask & ATTR_ATIME) || zp->z_atime_dirty) {
3400 zp->z_atime_dirty = 0;
3401 ZFS_TIME_ENCODE(&ip->i_atime, atime);
3402 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zfsvfs), NULL,
3403 &atime, sizeof (atime));
3404 }
3405
3406 if (mask & (ATTR_MTIME | ATTR_SIZE)) {
3407 ZFS_TIME_ENCODE(&vap->va_mtime, mtime);
3408 ZTOI(zp)->i_mtime = timespec_trunc(vap->va_mtime,
3409 ZTOI(zp)->i_sb->s_time_gran);
3410
3411 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL,
3412 mtime, sizeof (mtime));
3413 }
3414
3415 if (mask & (ATTR_CTIME | ATTR_SIZE)) {
3416 ZFS_TIME_ENCODE(&vap->va_ctime, ctime);
3417 ZTOI(zp)->i_ctime = timespec_trunc(vap->va_ctime,
3418 ZTOI(zp)->i_sb->s_time_gran);
3419 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
3420 ctime, sizeof (ctime));
3421 }
3422
3423 if (projid != ZFS_INVALID_PROJID) {
3424 zp->z_projid = projid;
3425 SA_ADD_BULK_ATTR(bulk, count,
3426 SA_ZPL_PROJID(zfsvfs), NULL, &zp->z_projid,
3427 sizeof (zp->z_projid));
3428 }
3429
3430 if (attrzp && mask) {
3431 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3432 SA_ZPL_CTIME(zfsvfs), NULL, &ctime,
3433 sizeof (ctime));
3434 }
3435
3436 /*
3437 * Do this after setting timestamps to prevent timestamp
3438 * update from toggling bit
3439 */
3440
3441 if (xoap && (mask & ATTR_XVATTR)) {
3442
3443 /*
3444 * restore trimmed off masks
3445 * so that return masks can be set for caller.
3446 */
3447
3448 if (XVA_ISSET_REQ(tmpxvattr, XAT_APPENDONLY)) {
3449 XVA_SET_REQ(xvap, XAT_APPENDONLY);
3450 }
3451 if (XVA_ISSET_REQ(tmpxvattr, XAT_NOUNLINK)) {
3452 XVA_SET_REQ(xvap, XAT_NOUNLINK);
3453 }
3454 if (XVA_ISSET_REQ(tmpxvattr, XAT_IMMUTABLE)) {
3455 XVA_SET_REQ(xvap, XAT_IMMUTABLE);
3456 }
3457 if (XVA_ISSET_REQ(tmpxvattr, XAT_NODUMP)) {
3458 XVA_SET_REQ(xvap, XAT_NODUMP);
3459 }
3460 if (XVA_ISSET_REQ(tmpxvattr, XAT_AV_MODIFIED)) {
3461 XVA_SET_REQ(xvap, XAT_AV_MODIFIED);
3462 }
3463 if (XVA_ISSET_REQ(tmpxvattr, XAT_AV_QUARANTINED)) {
3464 XVA_SET_REQ(xvap, XAT_AV_QUARANTINED);
3465 }
3466 if (XVA_ISSET_REQ(tmpxvattr, XAT_PROJINHERIT)) {
3467 XVA_SET_REQ(xvap, XAT_PROJINHERIT);
3468 }
3469
3470 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP))
3471 ASSERT(S_ISREG(ip->i_mode));
3472
3473 zfs_xvattr_set(zp, xvap, tx);
3474 }
3475
3476 if (fuid_dirtied)
3477 zfs_fuid_sync(zfsvfs, tx);
3478
3479 if (mask != 0)
3480 zfs_log_setattr(zilog, tx, TX_SETATTR, zp, vap, mask, fuidp);
3481
3482 mutex_exit(&zp->z_lock);
3483 if (mask & (ATTR_UID|ATTR_GID|ATTR_MODE))
3484 mutex_exit(&zp->z_acl_lock);
3485
3486 if (attrzp) {
3487 if (mask & (ATTR_UID|ATTR_GID|ATTR_MODE))
3488 mutex_exit(&attrzp->z_acl_lock);
3489 mutex_exit(&attrzp->z_lock);
3490 }
3491 out:
3492 if (err == 0 && xattr_count > 0) {
3493 err2 = sa_bulk_update(attrzp->z_sa_hdl, xattr_bulk,
3494 xattr_count, tx);
3495 ASSERT(err2 == 0);
3496 }
3497
3498 if (aclp)
3499 zfs_acl_free(aclp);
3500
3501 if (fuidp) {
3502 zfs_fuid_info_free(fuidp);
3503 fuidp = NULL;
3504 }
3505
3506 if (err) {
3507 dmu_tx_abort(tx);
3508 if (attrzp)
3509 iput(ZTOI(attrzp));
3510 if (err == ERESTART)
3511 goto top;
3512 } else {
3513 if (count > 0)
3514 err2 = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
3515 dmu_tx_commit(tx);
3516 if (attrzp) {
3517 if (err2 == 0 && handle_eadir)
3518 err2 = zfs_setattr_dir(attrzp);
3519 iput(ZTOI(attrzp));
3520 }
3521 zfs_inode_update(zp);
3522 }
3523
3524 out2:
3525 if (os->os_sync == ZFS_SYNC_ALWAYS)
3526 zil_commit(zilog, 0);
3527
3528 out3:
3529 kmem_free(xattr_bulk, sizeof (sa_bulk_attr_t) * bulks);
3530 kmem_free(bulk, sizeof (sa_bulk_attr_t) * bulks);
3531 kmem_free(tmpxvattr, sizeof (xvattr_t));
3532 ZFS_EXIT(zfsvfs);
3533 return (err);
3534 }
3535
3536 typedef struct zfs_zlock {
3537 krwlock_t *zl_rwlock; /* lock we acquired */
3538 znode_t *zl_znode; /* znode we held */
3539 struct zfs_zlock *zl_next; /* next in list */
3540 } zfs_zlock_t;
3541
3542 /*
3543 * Drop locks and release vnodes that were held by zfs_rename_lock().
3544 */
3545 static void
3546 zfs_rename_unlock(zfs_zlock_t **zlpp)
3547 {
3548 zfs_zlock_t *zl;
3549
3550 while ((zl = *zlpp) != NULL) {
3551 if (zl->zl_znode != NULL)
3552 zfs_iput_async(ZTOI(zl->zl_znode));
3553 rw_exit(zl->zl_rwlock);
3554 *zlpp = zl->zl_next;
3555 kmem_free(zl, sizeof (*zl));
3556 }
3557 }
3558
3559 /*
3560 * Search back through the directory tree, using the ".." entries.
3561 * Lock each directory in the chain to prevent concurrent renames.
3562 * Fail any attempt to move a directory into one of its own descendants.
3563 * XXX - z_parent_lock can overlap with map or grow locks
3564 */
3565 static int
3566 zfs_rename_lock(znode_t *szp, znode_t *tdzp, znode_t *sdzp, zfs_zlock_t **zlpp)
3567 {
3568 zfs_zlock_t *zl;
3569 znode_t *zp = tdzp;
3570 uint64_t rootid = ZTOZSB(zp)->z_root;
3571 uint64_t oidp = zp->z_id;
3572 krwlock_t *rwlp = &szp->z_parent_lock;
3573 krw_t rw = RW_WRITER;
3574
3575 /*
3576 * First pass write-locks szp and compares to zp->z_id.
3577 * Later passes read-lock zp and compare to zp->z_parent.
3578 */
3579 do {
3580 if (!rw_tryenter(rwlp, rw)) {
3581 /*
3582 * Another thread is renaming in this path.
3583 * Note that if we are a WRITER, we don't have any
3584 * parent_locks held yet.
3585 */
3586 if (rw == RW_READER && zp->z_id > szp->z_id) {
3587 /*
3588 * Drop our locks and restart
3589 */
3590 zfs_rename_unlock(&zl);
3591 *zlpp = NULL;
3592 zp = tdzp;
3593 oidp = zp->z_id;
3594 rwlp = &szp->z_parent_lock;
3595 rw = RW_WRITER;
3596 continue;
3597 } else {
3598 /*
3599 * Wait for other thread to drop its locks
3600 */
3601 rw_enter(rwlp, rw);
3602 }
3603 }
3604
3605 zl = kmem_alloc(sizeof (*zl), KM_SLEEP);
3606 zl->zl_rwlock = rwlp;
3607 zl->zl_znode = NULL;
3608 zl->zl_next = *zlpp;
3609 *zlpp = zl;
3610
3611 if (oidp == szp->z_id) /* We're a descendant of szp */
3612 return (SET_ERROR(EINVAL));
3613
3614 if (oidp == rootid) /* We've hit the top */
3615 return (0);
3616
3617 if (rw == RW_READER) { /* i.e. not the first pass */
3618 int error = zfs_zget(ZTOZSB(zp), oidp, &zp);
3619 if (error)
3620 return (error);
3621 zl->zl_znode = zp;
3622 }
3623 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(ZTOZSB(zp)),
3624 &oidp, sizeof (oidp));
3625 rwlp = &zp->z_parent_lock;
3626 rw = RW_READER;
3627
3628 } while (zp->z_id != sdzp->z_id);
3629
3630 return (0);
3631 }
3632
3633 /*
3634 * Move an entry from the provided source directory to the target
3635 * directory. Change the entry name as indicated.
3636 *
3637 * IN: sdip - Source directory containing the "old entry".
3638 * snm - Old entry name.
3639 * tdip - Target directory to contain the "new entry".
3640 * tnm - New entry name.
3641 * cr - credentials of caller.
3642 * flags - case flags
3643 *
3644 * RETURN: 0 on success, error code on failure.
3645 *
3646 * Timestamps:
3647 * sdip,tdip - ctime|mtime updated
3648 */
3649 /*ARGSUSED*/
3650 int
3651 zfs_rename(struct inode *sdip, char *snm, struct inode *tdip, char *tnm,
3652 cred_t *cr, int flags)
3653 {
3654 znode_t *tdzp, *szp, *tzp;
3655 znode_t *sdzp = ITOZ(sdip);
3656 zfsvfs_t *zfsvfs = ITOZSB(sdip);
3657 zilog_t *zilog;
3658 zfs_dirlock_t *sdl, *tdl;
3659 dmu_tx_t *tx;
3660 zfs_zlock_t *zl;
3661 int cmp, serr, terr;
3662 int error = 0;
3663 int zflg = 0;
3664 boolean_t waited = B_FALSE;
3665
3666 if (snm == NULL || tnm == NULL)
3667 return (SET_ERROR(EINVAL));
3668
3669 ZFS_ENTER(zfsvfs);
3670 ZFS_VERIFY_ZP(sdzp);
3671 zilog = zfsvfs->z_log;
3672
3673 tdzp = ITOZ(tdip);
3674 ZFS_VERIFY_ZP(tdzp);
3675
3676 /*
3677 * We check i_sb because snapshots and the ctldir must have different
3678 * super blocks.
3679 */
3680 if (tdip->i_sb != sdip->i_sb || zfsctl_is_node(tdip)) {
3681 ZFS_EXIT(zfsvfs);
3682 return (SET_ERROR(EXDEV));
3683 }
3684
3685 if (zfsvfs->z_utf8 && u8_validate(tnm,
3686 strlen(tnm), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
3687 ZFS_EXIT(zfsvfs);
3688 return (SET_ERROR(EILSEQ));
3689 }
3690
3691 if (flags & FIGNORECASE)
3692 zflg |= ZCILOOK;
3693
3694 top:
3695 szp = NULL;
3696 tzp = NULL;
3697 zl = NULL;
3698
3699 /*
3700 * This is to prevent the creation of links into attribute space
3701 * by renaming a linked file into/outof an attribute directory.
3702 * See the comment in zfs_link() for why this is considered bad.
3703 */
3704 if ((tdzp->z_pflags & ZFS_XATTR) != (sdzp->z_pflags & ZFS_XATTR)) {
3705 ZFS_EXIT(zfsvfs);
3706 return (SET_ERROR(EINVAL));
3707 }
3708
3709 /*
3710 * Lock source and target directory entries. To prevent deadlock,
3711 * a lock ordering must be defined. We lock the directory with
3712 * the smallest object id first, or if it's a tie, the one with
3713 * the lexically first name.
3714 */
3715 if (sdzp->z_id < tdzp->z_id) {
3716 cmp = -1;
3717 } else if (sdzp->z_id > tdzp->z_id) {
3718 cmp = 1;
3719 } else {
3720 /*
3721 * First compare the two name arguments without
3722 * considering any case folding.
3723 */
3724 int nofold = (zfsvfs->z_norm & ~U8_TEXTPREP_TOUPPER);
3725
3726 cmp = u8_strcmp(snm, tnm, 0, nofold, U8_UNICODE_LATEST, &error);
3727 ASSERT(error == 0 || !zfsvfs->z_utf8);
3728 if (cmp == 0) {
3729 /*
3730 * POSIX: "If the old argument and the new argument
3731 * both refer to links to the same existing file,
3732 * the rename() function shall return successfully
3733 * and perform no other action."
3734 */
3735 ZFS_EXIT(zfsvfs);
3736 return (0);
3737 }
3738 /*
3739 * If the file system is case-folding, then we may
3740 * have some more checking to do. A case-folding file
3741 * system is either supporting mixed case sensitivity
3742 * access or is completely case-insensitive. Note
3743 * that the file system is always case preserving.
3744 *
3745 * In mixed sensitivity mode case sensitive behavior
3746 * is the default. FIGNORECASE must be used to
3747 * explicitly request case insensitive behavior.
3748 *
3749 * If the source and target names provided differ only
3750 * by case (e.g., a request to rename 'tim' to 'Tim'),
3751 * we will treat this as a special case in the
3752 * case-insensitive mode: as long as the source name
3753 * is an exact match, we will allow this to proceed as
3754 * a name-change request.
3755 */
3756 if ((zfsvfs->z_case == ZFS_CASE_INSENSITIVE ||
3757 (zfsvfs->z_case == ZFS_CASE_MIXED &&
3758 flags & FIGNORECASE)) &&
3759 u8_strcmp(snm, tnm, 0, zfsvfs->z_norm, U8_UNICODE_LATEST,
3760 &error) == 0) {
3761 /*
3762 * case preserving rename request, require exact
3763 * name matches
3764 */
3765 zflg |= ZCIEXACT;
3766 zflg &= ~ZCILOOK;
3767 }
3768 }
3769
3770 /*
3771 * If the source and destination directories are the same, we should
3772 * grab the z_name_lock of that directory only once.
3773 */
3774 if (sdzp == tdzp) {
3775 zflg |= ZHAVELOCK;
3776 rw_enter(&sdzp->z_name_lock, RW_READER);
3777 }
3778
3779 if (cmp < 0) {
3780 serr = zfs_dirent_lock(&sdl, sdzp, snm, &szp,
3781 ZEXISTS | zflg, NULL, NULL);
3782 terr = zfs_dirent_lock(&tdl,
3783 tdzp, tnm, &tzp, ZRENAMING | zflg, NULL, NULL);
3784 } else {
3785 terr = zfs_dirent_lock(&tdl,
3786 tdzp, tnm, &tzp, zflg, NULL, NULL);
3787 serr = zfs_dirent_lock(&sdl,
3788 sdzp, snm, &szp, ZEXISTS | ZRENAMING | zflg,
3789 NULL, NULL);
3790 }
3791
3792 if (serr) {
3793 /*
3794 * Source entry invalid or not there.
3795 */
3796 if (!terr) {
3797 zfs_dirent_unlock(tdl);
3798 if (tzp)
3799 iput(ZTOI(tzp));
3800 }
3801
3802 if (sdzp == tdzp)
3803 rw_exit(&sdzp->z_name_lock);
3804
3805 if (strcmp(snm, "..") == 0)
3806 serr = EINVAL;
3807 ZFS_EXIT(zfsvfs);
3808 return (serr);
3809 }
3810 if (terr) {
3811 zfs_dirent_unlock(sdl);
3812 iput(ZTOI(szp));
3813
3814 if (sdzp == tdzp)
3815 rw_exit(&sdzp->z_name_lock);
3816
3817 if (strcmp(tnm, "..") == 0)
3818 terr = EINVAL;
3819 ZFS_EXIT(zfsvfs);
3820 return (terr);
3821 }
3822
3823 /*
3824 * If we are using project inheritance, means if the directory has
3825 * ZFS_PROJINHERIT set, then its descendant directories will inherit
3826 * not only the project ID, but also the ZFS_PROJINHERIT flag. Under
3827 * such case, we only allow renames into our tree when the project
3828 * IDs are the same.
3829 */
3830 if (tdzp->z_pflags & ZFS_PROJINHERIT &&
3831 tdzp->z_projid != szp->z_projid) {
3832 error = SET_ERROR(EXDEV);
3833 goto out;
3834 }
3835
3836 /*
3837 * Must have write access at the source to remove the old entry
3838 * and write access at the target to create the new entry.
3839 * Note that if target and source are the same, this can be
3840 * done in a single check.
3841 */
3842
3843 if ((error = zfs_zaccess_rename(sdzp, szp, tdzp, tzp, cr)))
3844 goto out;
3845
3846 if (S_ISDIR(ZTOI(szp)->i_mode)) {
3847 /*
3848 * Check to make sure rename is valid.
3849 * Can't do a move like this: /usr/a/b to /usr/a/b/c/d
3850 */
3851 if ((error = zfs_rename_lock(szp, tdzp, sdzp, &zl)))
3852 goto out;
3853 }
3854
3855 /*
3856 * Does target exist?
3857 */
3858 if (tzp) {
3859 /*
3860 * Source and target must be the same type.
3861 */
3862 if (S_ISDIR(ZTOI(szp)->i_mode)) {
3863 if (!S_ISDIR(ZTOI(tzp)->i_mode)) {
3864 error = SET_ERROR(ENOTDIR);
3865 goto out;
3866 }
3867 } else {
3868 if (S_ISDIR(ZTOI(tzp)->i_mode)) {
3869 error = SET_ERROR(EISDIR);
3870 goto out;
3871 }
3872 }
3873 /*
3874 * POSIX dictates that when the source and target
3875 * entries refer to the same file object, rename
3876 * must do nothing and exit without error.
3877 */
3878 if (szp->z_id == tzp->z_id) {
3879 error = 0;
3880 goto out;
3881 }
3882 }
3883
3884 tx = dmu_tx_create(zfsvfs->z_os);
3885 dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE);
3886 dmu_tx_hold_sa(tx, sdzp->z_sa_hdl, B_FALSE);
3887 dmu_tx_hold_zap(tx, sdzp->z_id, FALSE, snm);
3888 dmu_tx_hold_zap(tx, tdzp->z_id, TRUE, tnm);
3889 if (sdzp != tdzp) {
3890 dmu_tx_hold_sa(tx, tdzp->z_sa_hdl, B_FALSE);
3891 zfs_sa_upgrade_txholds(tx, tdzp);
3892 }
3893 if (tzp) {
3894 dmu_tx_hold_sa(tx, tzp->z_sa_hdl, B_FALSE);
3895 zfs_sa_upgrade_txholds(tx, tzp);
3896 }
3897
3898 zfs_sa_upgrade_txholds(tx, szp);
3899 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
3900 error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
3901 if (error) {
3902 if (zl != NULL)
3903 zfs_rename_unlock(&zl);
3904 zfs_dirent_unlock(sdl);
3905 zfs_dirent_unlock(tdl);
3906
3907 if (sdzp == tdzp)
3908 rw_exit(&sdzp->z_name_lock);
3909
3910 if (error == ERESTART) {
3911 waited = B_TRUE;
3912 dmu_tx_wait(tx);
3913 dmu_tx_abort(tx);
3914 iput(ZTOI(szp));
3915 if (tzp)
3916 iput(ZTOI(tzp));
3917 goto top;
3918 }
3919 dmu_tx_abort(tx);
3920 iput(ZTOI(szp));
3921 if (tzp)
3922 iput(ZTOI(tzp));
3923 ZFS_EXIT(zfsvfs);
3924 return (error);
3925 }
3926
3927 if (tzp) /* Attempt to remove the existing target */
3928 error = zfs_link_destroy(tdl, tzp, tx, zflg, NULL);
3929
3930 if (error == 0) {
3931 error = zfs_link_create(tdl, szp, tx, ZRENAMING);
3932 if (error == 0) {
3933 szp->z_pflags |= ZFS_AV_MODIFIED;
3934 if (tdzp->z_pflags & ZFS_PROJINHERIT)
3935 szp->z_pflags |= ZFS_PROJINHERIT;
3936
3937 error = sa_update(szp->z_sa_hdl, SA_ZPL_FLAGS(zfsvfs),
3938 (void *)&szp->z_pflags, sizeof (uint64_t), tx);
3939 ASSERT0(error);
3940
3941 error = zfs_link_destroy(sdl, szp, tx, ZRENAMING, NULL);
3942 if (error == 0) {
3943 zfs_log_rename(zilog, tx, TX_RENAME |
3944 (flags & FIGNORECASE ? TX_CI : 0), sdzp,
3945 sdl->dl_name, tdzp, tdl->dl_name, szp);
3946 } else {
3947 /*
3948 * At this point, we have successfully created
3949 * the target name, but have failed to remove
3950 * the source name. Since the create was done
3951 * with the ZRENAMING flag, there are
3952 * complications; for one, the link count is
3953 * wrong. The easiest way to deal with this
3954 * is to remove the newly created target, and
3955 * return the original error. This must
3956 * succeed; fortunately, it is very unlikely to
3957 * fail, since we just created it.
3958 */
3959 VERIFY3U(zfs_link_destroy(tdl, szp, tx,
3960 ZRENAMING, NULL), ==, 0);
3961 }
3962 } else {
3963 /*
3964 * If we had removed the existing target, subsequent
3965 * call to zfs_link_create() to add back the same entry
3966 * but, the new dnode (szp) should not fail.
3967 */
3968 ASSERT(tzp == NULL);
3969 }
3970 }
3971
3972 dmu_tx_commit(tx);
3973 out:
3974 if (zl != NULL)
3975 zfs_rename_unlock(&zl);
3976
3977 zfs_dirent_unlock(sdl);
3978 zfs_dirent_unlock(tdl);
3979
3980 zfs_inode_update(sdzp);
3981 if (sdzp == tdzp)
3982 rw_exit(&sdzp->z_name_lock);
3983
3984 if (sdzp != tdzp)
3985 zfs_inode_update(tdzp);
3986
3987 zfs_inode_update(szp);
3988 iput(ZTOI(szp));
3989 if (tzp) {
3990 zfs_inode_update(tzp);
3991 iput(ZTOI(tzp));
3992 }
3993
3994 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
3995 zil_commit(zilog, 0);
3996
3997 ZFS_EXIT(zfsvfs);
3998 return (error);
3999 }
4000
4001 /*
4002 * Insert the indicated symbolic reference entry into the directory.
4003 *
4004 * IN: dip - Directory to contain new symbolic link.
4005 * link - Name for new symlink entry.
4006 * vap - Attributes of new entry.
4007 * target - Target path of new symlink.
4008 *
4009 * cr - credentials of caller.
4010 * flags - case flags
4011 *
4012 * RETURN: 0 on success, error code on failure.
4013 *
4014 * Timestamps:
4015 * dip - ctime|mtime updated
4016 */
4017 /*ARGSUSED*/
4018 int
4019 zfs_symlink(struct inode *dip, char *name, vattr_t *vap, char *link,
4020 struct inode **ipp, cred_t *cr, int flags)
4021 {
4022 znode_t *zp, *dzp = ITOZ(dip);
4023 zfs_dirlock_t *dl;
4024 dmu_tx_t *tx;
4025 zfsvfs_t *zfsvfs = ITOZSB(dip);
4026 zilog_t *zilog;
4027 uint64_t len = strlen(link);
4028 int error;
4029 int zflg = ZNEW;
4030 zfs_acl_ids_t acl_ids;
4031 boolean_t fuid_dirtied;
4032 uint64_t txtype = TX_SYMLINK;
4033 boolean_t waited = B_FALSE;
4034
4035 ASSERT(S_ISLNK(vap->va_mode));
4036
4037 if (name == NULL)
4038 return (SET_ERROR(EINVAL));
4039
4040 ZFS_ENTER(zfsvfs);
4041 ZFS_VERIFY_ZP(dzp);
4042 zilog = zfsvfs->z_log;
4043
4044 if (zfsvfs->z_utf8 && u8_validate(name, strlen(name),
4045 NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
4046 ZFS_EXIT(zfsvfs);
4047 return (SET_ERROR(EILSEQ));
4048 }
4049 if (flags & FIGNORECASE)
4050 zflg |= ZCILOOK;
4051
4052 if (len > MAXPATHLEN) {
4053 ZFS_EXIT(zfsvfs);
4054 return (SET_ERROR(ENAMETOOLONG));
4055 }
4056
4057 if ((error = zfs_acl_ids_create(dzp, 0,
4058 vap, cr, NULL, &acl_ids)) != 0) {
4059 ZFS_EXIT(zfsvfs);
4060 return (error);
4061 }
4062 top:
4063 *ipp = NULL;
4064
4065 /*
4066 * Attempt to lock directory; fail if entry already exists.
4067 */
4068 error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, NULL, NULL);
4069 if (error) {
4070 zfs_acl_ids_free(&acl_ids);
4071 ZFS_EXIT(zfsvfs);
4072 return (error);
4073 }
4074
4075 if ((error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr))) {
4076 zfs_acl_ids_free(&acl_ids);
4077 zfs_dirent_unlock(dl);
4078 ZFS_EXIT(zfsvfs);
4079 return (error);
4080 }
4081
4082 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids, ZFS_DEFAULT_PROJID)) {
4083 zfs_acl_ids_free(&acl_ids);
4084 zfs_dirent_unlock(dl);
4085 ZFS_EXIT(zfsvfs);
4086 return (SET_ERROR(EDQUOT));
4087 }
4088 tx = dmu_tx_create(zfsvfs->z_os);
4089 fuid_dirtied = zfsvfs->z_fuid_dirty;
4090 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, MAX(1, len));
4091 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
4092 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
4093 ZFS_SA_BASE_ATTR_SIZE + len);
4094 dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE);
4095 if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
4096 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
4097 acl_ids.z_aclp->z_acl_bytes);
4098 }
4099 if (fuid_dirtied)
4100 zfs_fuid_txhold(zfsvfs, tx);
4101 error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
4102 if (error) {
4103 zfs_dirent_unlock(dl);
4104 if (error == ERESTART) {
4105 waited = B_TRUE;
4106 dmu_tx_wait(tx);
4107 dmu_tx_abort(tx);
4108 goto top;
4109 }
4110 zfs_acl_ids_free(&acl_ids);
4111 dmu_tx_abort(tx);
4112 ZFS_EXIT(zfsvfs);
4113 return (error);
4114 }
4115
4116 /*
4117 * Create a new object for the symlink.
4118 * for version 4 ZPL datsets the symlink will be an SA attribute
4119 */
4120 zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
4121
4122 if (fuid_dirtied)
4123 zfs_fuid_sync(zfsvfs, tx);
4124
4125 mutex_enter(&zp->z_lock);
4126 if (zp->z_is_sa)
4127 error = sa_update(zp->z_sa_hdl, SA_ZPL_SYMLINK(zfsvfs),
4128 link, len, tx);
4129 else
4130 zfs_sa_symlink(zp, link, len, tx);
4131 mutex_exit(&zp->z_lock);
4132
4133 zp->z_size = len;
4134 (void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs),
4135 &zp->z_size, sizeof (zp->z_size), tx);
4136 /*
4137 * Insert the new object into the directory.
4138 */
4139 error = zfs_link_create(dl, zp, tx, ZNEW);
4140 if (error != 0) {
4141 zfs_znode_delete(zp, tx);
4142 remove_inode_hash(ZTOI(zp));
4143 } else {
4144 if (flags & FIGNORECASE)
4145 txtype |= TX_CI;
4146 zfs_log_symlink(zilog, tx, txtype, dzp, zp, name, link);
4147
4148 zfs_inode_update(dzp);
4149 zfs_inode_update(zp);
4150 }
4151
4152 zfs_acl_ids_free(&acl_ids);
4153
4154 dmu_tx_commit(tx);
4155
4156 zfs_dirent_unlock(dl);
4157
4158 if (error == 0) {
4159 *ipp = ZTOI(zp);
4160
4161 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
4162 zil_commit(zilog, 0);
4163 } else {
4164 iput(ZTOI(zp));
4165 }
4166
4167 ZFS_EXIT(zfsvfs);
4168 return (error);
4169 }
4170
4171 /*
4172 * Return, in the buffer contained in the provided uio structure,
4173 * the symbolic path referred to by ip.
4174 *
4175 * IN: ip - inode of symbolic link
4176 * uio - structure to contain the link path.
4177 * cr - credentials of caller.
4178 *
4179 * RETURN: 0 if success
4180 * error code if failure
4181 *
4182 * Timestamps:
4183 * ip - atime updated
4184 */
4185 /* ARGSUSED */
4186 int
4187 zfs_readlink(struct inode *ip, uio_t *uio, cred_t *cr)
4188 {
4189 znode_t *zp = ITOZ(ip);
4190 zfsvfs_t *zfsvfs = ITOZSB(ip);
4191 int error;
4192
4193 ZFS_ENTER(zfsvfs);
4194 ZFS_VERIFY_ZP(zp);
4195
4196 mutex_enter(&zp->z_lock);
4197 if (zp->z_is_sa)
4198 error = sa_lookup_uio(zp->z_sa_hdl,
4199 SA_ZPL_SYMLINK(zfsvfs), uio);
4200 else
4201 error = zfs_sa_readlink(zp, uio);
4202 mutex_exit(&zp->z_lock);
4203
4204 ZFS_EXIT(zfsvfs);
4205 return (error);
4206 }
4207
4208 /*
4209 * Insert a new entry into directory tdip referencing sip.
4210 *
4211 * IN: tdip - Directory to contain new entry.
4212 * sip - inode of new entry.
4213 * name - name of new entry.
4214 * cr - credentials of caller.
4215 *
4216 * RETURN: 0 if success
4217 * error code if failure
4218 *
4219 * Timestamps:
4220 * tdip - ctime|mtime updated
4221 * sip - ctime updated
4222 */
4223 /* ARGSUSED */
4224 int
4225 zfs_link(struct inode *tdip, struct inode *sip, char *name, cred_t *cr,
4226 int flags)
4227 {
4228 znode_t *dzp = ITOZ(tdip);
4229 znode_t *tzp, *szp;
4230 zfsvfs_t *zfsvfs = ITOZSB(tdip);
4231 zilog_t *zilog;
4232 zfs_dirlock_t *dl;
4233 dmu_tx_t *tx;
4234 int error;
4235 int zf = ZNEW;
4236 uint64_t parent;
4237 uid_t owner;
4238 boolean_t waited = B_FALSE;
4239 boolean_t is_tmpfile = 0;
4240 uint64_t txg;
4241 #ifdef HAVE_TMPFILE
4242 is_tmpfile = (sip->i_nlink == 0 && (sip->i_state & I_LINKABLE));
4243 #endif
4244 ASSERT(S_ISDIR(tdip->i_mode));
4245
4246 if (name == NULL)
4247 return (SET_ERROR(EINVAL));
4248
4249 ZFS_ENTER(zfsvfs);
4250 ZFS_VERIFY_ZP(dzp);
4251 zilog = zfsvfs->z_log;
4252
4253 /*
4254 * POSIX dictates that we return EPERM here.
4255 * Better choices include ENOTSUP or EISDIR.
4256 */
4257 if (S_ISDIR(sip->i_mode)) {
4258 ZFS_EXIT(zfsvfs);
4259 return (SET_ERROR(EPERM));
4260 }
4261
4262 szp = ITOZ(sip);
4263 ZFS_VERIFY_ZP(szp);
4264
4265 /*
4266 * If we are using project inheritance, means if the directory has
4267 * ZFS_PROJINHERIT set, then its descendant directories will inherit
4268 * not only the project ID, but also the ZFS_PROJINHERIT flag. Under
4269 * such case, we only allow hard link creation in our tree when the
4270 * project IDs are the same.
4271 */
4272 if (dzp->z_pflags & ZFS_PROJINHERIT && dzp->z_projid != szp->z_projid) {
4273 ZFS_EXIT(zfsvfs);
4274 return (SET_ERROR(EXDEV));
4275 }
4276
4277 /*
4278 * We check i_sb because snapshots and the ctldir must have different
4279 * super blocks.
4280 */
4281 if (sip->i_sb != tdip->i_sb || zfsctl_is_node(sip)) {
4282 ZFS_EXIT(zfsvfs);
4283 return (SET_ERROR(EXDEV));
4284 }
4285
4286 /* Prevent links to .zfs/shares files */
4287
4288 if ((error = sa_lookup(szp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs),
4289 &parent, sizeof (uint64_t))) != 0) {
4290 ZFS_EXIT(zfsvfs);
4291 return (error);
4292 }
4293 if (parent == zfsvfs->z_shares_dir) {
4294 ZFS_EXIT(zfsvfs);
4295 return (SET_ERROR(EPERM));
4296 }
4297
4298 if (zfsvfs->z_utf8 && u8_validate(name,
4299 strlen(name), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
4300 ZFS_EXIT(zfsvfs);
4301 return (SET_ERROR(EILSEQ));
4302 }
4303 if (flags & FIGNORECASE)
4304 zf |= ZCILOOK;
4305
4306 /*
4307 * We do not support links between attributes and non-attributes
4308 * because of the potential security risk of creating links
4309 * into "normal" file space in order to circumvent restrictions
4310 * imposed in attribute space.
4311 */
4312 if ((szp->z_pflags & ZFS_XATTR) != (dzp->z_pflags & ZFS_XATTR)) {
4313 ZFS_EXIT(zfsvfs);
4314 return (SET_ERROR(EINVAL));
4315 }
4316
4317 owner = zfs_fuid_map_id(zfsvfs, KUID_TO_SUID(sip->i_uid),
4318 cr, ZFS_OWNER);
4319 if (owner != crgetuid(cr) && secpolicy_basic_link(cr) != 0) {
4320 ZFS_EXIT(zfsvfs);
4321 return (SET_ERROR(EPERM));
4322 }
4323
4324 if ((error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr))) {
4325 ZFS_EXIT(zfsvfs);
4326 return (error);
4327 }
4328
4329 top:
4330 /*
4331 * Attempt to lock directory; fail if entry already exists.
4332 */
4333 error = zfs_dirent_lock(&dl, dzp, name, &tzp, zf, NULL, NULL);
4334 if (error) {
4335 ZFS_EXIT(zfsvfs);
4336 return (error);
4337 }
4338
4339 tx = dmu_tx_create(zfsvfs->z_os);
4340 dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE);
4341 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
4342 if (is_tmpfile)
4343 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
4344
4345 zfs_sa_upgrade_txholds(tx, szp);
4346 zfs_sa_upgrade_txholds(tx, dzp);
4347 error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
4348 if (error) {
4349 zfs_dirent_unlock(dl);
4350 if (error == ERESTART) {
4351 waited = B_TRUE;
4352 dmu_tx_wait(tx);
4353 dmu_tx_abort(tx);
4354 goto top;
4355 }
4356 dmu_tx_abort(tx);
4357 ZFS_EXIT(zfsvfs);
4358 return (error);
4359 }
4360 /* unmark z_unlinked so zfs_link_create will not reject */
4361 if (is_tmpfile)
4362 szp->z_unlinked = 0;
4363 error = zfs_link_create(dl, szp, tx, 0);
4364
4365 if (error == 0) {
4366 uint64_t txtype = TX_LINK;
4367 /*
4368 * tmpfile is created to be in z_unlinkedobj, so remove it.
4369 * Also, we don't log in ZIL, be cause all previous file
4370 * operation on the tmpfile are ignored by ZIL. Instead we
4371 * always wait for txg to sync to make sure all previous
4372 * operation are sync safe.
4373 */
4374 if (is_tmpfile) {
4375 VERIFY(zap_remove_int(zfsvfs->z_os,
4376 zfsvfs->z_unlinkedobj, szp->z_id, tx) == 0);
4377 } else {
4378 if (flags & FIGNORECASE)
4379 txtype |= TX_CI;
4380 zfs_log_link(zilog, tx, txtype, dzp, szp, name);
4381 }
4382 } else if (is_tmpfile) {
4383 /* restore z_unlinked since when linking failed */
4384 szp->z_unlinked = 1;
4385 }
4386 txg = dmu_tx_get_txg(tx);
4387 dmu_tx_commit(tx);
4388
4389 zfs_dirent_unlock(dl);
4390
4391 if (!is_tmpfile && zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
4392 zil_commit(zilog, 0);
4393
4394 if (is_tmpfile)
4395 txg_wait_synced(dmu_objset_pool(zfsvfs->z_os), txg);
4396
4397 zfs_inode_update(dzp);
4398 zfs_inode_update(szp);
4399 ZFS_EXIT(zfsvfs);
4400 return (error);
4401 }
4402
4403 static void
4404 zfs_putpage_commit_cb(void *arg)
4405 {
4406 struct page *pp = arg;
4407
4408 ClearPageError(pp);
4409 end_page_writeback(pp);
4410 }
4411
4412 /*
4413 * Push a page out to disk, once the page is on stable storage the
4414 * registered commit callback will be run as notification of completion.
4415 *
4416 * IN: ip - page mapped for inode.
4417 * pp - page to push (page is locked)
4418 * wbc - writeback control data
4419 *
4420 * RETURN: 0 if success
4421 * error code if failure
4422 *
4423 * Timestamps:
4424 * ip - ctime|mtime updated
4425 */
4426 /* ARGSUSED */
4427 int
4428 zfs_putpage(struct inode *ip, struct page *pp, struct writeback_control *wbc)
4429 {
4430 znode_t *zp = ITOZ(ip);
4431 zfsvfs_t *zfsvfs = ITOZSB(ip);
4432 loff_t offset;
4433 loff_t pgoff;
4434 unsigned int pglen;
4435 rl_t *rl;
4436 dmu_tx_t *tx;
4437 caddr_t va;
4438 int err = 0;
4439 uint64_t mtime[2], ctime[2];
4440 sa_bulk_attr_t bulk[3];
4441 int cnt = 0;
4442 struct address_space *mapping;
4443
4444 ZFS_ENTER(zfsvfs);
4445 ZFS_VERIFY_ZP(zp);
4446
4447 ASSERT(PageLocked(pp));
4448
4449 pgoff = page_offset(pp); /* Page byte-offset in file */
4450 offset = i_size_read(ip); /* File length in bytes */
4451 pglen = MIN(PAGE_SIZE, /* Page length in bytes */
4452 P2ROUNDUP(offset, PAGE_SIZE)-pgoff);
4453
4454 /* Page is beyond end of file */
4455 if (pgoff >= offset) {
4456 unlock_page(pp);
4457 ZFS_EXIT(zfsvfs);
4458 return (0);
4459 }
4460
4461 /* Truncate page length to end of file */
4462 if (pgoff + pglen > offset)
4463 pglen = offset - pgoff;
4464
4465 #if 0
4466 /*
4467 * FIXME: Allow mmap writes past its quota. The correct fix
4468 * is to register a page_mkwrite() handler to count the page
4469 * against its quota when it is about to be dirtied.
4470 */
4471 if (zfs_id_overblockquota(zfsvfs, DMU_USERUSED_OBJECT,
4472 KUID_TO_SUID(ip->i_uid)) ||
4473 zfs_id_overblockquota(zfsvfs, DMU_GROUPUSED_OBJECT,
4474 KGID_TO_SGID(ip->i_gid)) ||
4475 (zp->z_projid != ZFS_DEFAULT_PROJID &&
4476 zfs_id_overblockquota(zfsvfs, DMU_PROJECTUSED_OBJECT,
4477 zp->z_projid))) {
4478 err = EDQUOT;
4479 }
4480 #endif
4481
4482 /*
4483 * The ordering here is critical and must adhere to the following
4484 * rules in order to avoid deadlocking in either zfs_read() or
4485 * zfs_free_range() due to a lock inversion.
4486 *
4487 * 1) The page must be unlocked prior to acquiring the range lock.
4488 * This is critical because zfs_read() calls find_lock_page()
4489 * which may block on the page lock while holding the range lock.
4490 *
4491 * 2) Before setting or clearing write back on a page the range lock
4492 * must be held in order to prevent a lock inversion with the
4493 * zfs_free_range() function.
4494 *
4495 * This presents a problem because upon entering this function the
4496 * page lock is already held. To safely acquire the range lock the
4497 * page lock must be dropped. This creates a window where another
4498 * process could truncate, invalidate, dirty, or write out the page.
4499 *
4500 * Therefore, after successfully reacquiring the range and page locks
4501 * the current page state is checked. In the common case everything
4502 * will be as is expected and it can be written out. However, if
4503 * the page state has changed it must be handled accordingly.
4504 */
4505 mapping = pp->mapping;
4506 redirty_page_for_writepage(wbc, pp);
4507 unlock_page(pp);
4508
4509 rl = zfs_range_lock(&zp->z_range_lock, pgoff, pglen, RL_WRITER);
4510 lock_page(pp);
4511
4512 /* Page mapping changed or it was no longer dirty, we're done */
4513 if (unlikely((mapping != pp->mapping) || !PageDirty(pp))) {
4514 unlock_page(pp);
4515 zfs_range_unlock(rl);
4516 ZFS_EXIT(zfsvfs);
4517 return (0);
4518 }
4519
4520 /* Another process started write block if required */
4521 if (PageWriteback(pp)) {
4522 unlock_page(pp);
4523 zfs_range_unlock(rl);
4524
4525 if (wbc->sync_mode != WB_SYNC_NONE)
4526 wait_on_page_writeback(pp);
4527
4528 ZFS_EXIT(zfsvfs);
4529 return (0);
4530 }
4531
4532 /* Clear the dirty flag the required locks are held */
4533 if (!clear_page_dirty_for_io(pp)) {
4534 unlock_page(pp);
4535 zfs_range_unlock(rl);
4536 ZFS_EXIT(zfsvfs);
4537 return (0);
4538 }
4539
4540 /*
4541 * Counterpart for redirty_page_for_writepage() above. This page
4542 * was in fact not skipped and should not be counted as if it were.
4543 */
4544 wbc->pages_skipped--;
4545 set_page_writeback(pp);
4546 unlock_page(pp);
4547
4548 tx = dmu_tx_create(zfsvfs->z_os);
4549 dmu_tx_hold_write(tx, zp->z_id, pgoff, pglen);
4550 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
4551 zfs_sa_upgrade_txholds(tx, zp);
4552
4553 err = dmu_tx_assign(tx, TXG_NOWAIT);
4554 if (err != 0) {
4555 if (err == ERESTART)
4556 dmu_tx_wait(tx);
4557
4558 dmu_tx_abort(tx);
4559 __set_page_dirty_nobuffers(pp);
4560 ClearPageError(pp);
4561 end_page_writeback(pp);
4562 zfs_range_unlock(rl);
4563 ZFS_EXIT(zfsvfs);
4564 return (err);
4565 }
4566
4567 va = kmap(pp);
4568 ASSERT3U(pglen, <=, PAGE_SIZE);
4569 dmu_write(zfsvfs->z_os, zp->z_id, pgoff, pglen, va, tx);
4570 kunmap(pp);
4571
4572 SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
4573 SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
4574 SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_FLAGS(zfsvfs), NULL,
4575 &zp->z_pflags, 8);
4576
4577 /* Preserve the mtime and ctime provided by the inode */
4578 ZFS_TIME_ENCODE(&ip->i_mtime, mtime);
4579 ZFS_TIME_ENCODE(&ip->i_ctime, ctime);
4580 zp->z_atime_dirty = 0;
4581 zp->z_seq++;
4582
4583 err = sa_bulk_update(zp->z_sa_hdl, bulk, cnt, tx);
4584
4585 zfs_log_write(zfsvfs->z_log, tx, TX_WRITE, zp, pgoff, pglen, 0,
4586 zfs_putpage_commit_cb, pp);
4587 dmu_tx_commit(tx);
4588
4589 zfs_range_unlock(rl);
4590
4591 if (wbc->sync_mode != WB_SYNC_NONE) {
4592 /*
4593 * Note that this is rarely called under writepages(), because
4594 * writepages() normally handles the entire commit for
4595 * performance reasons.
4596 */
4597 zil_commit(zfsvfs->z_log, zp->z_id);
4598 }
4599
4600 ZFS_EXIT(zfsvfs);
4601 return (err);
4602 }
4603
4604 /*
4605 * Update the system attributes when the inode has been dirtied. For the
4606 * moment we only update the mode, atime, mtime, and ctime.
4607 */
4608 int
4609 zfs_dirty_inode(struct inode *ip, int flags)
4610 {
4611 znode_t *zp = ITOZ(ip);
4612 zfsvfs_t *zfsvfs = ITOZSB(ip);
4613 dmu_tx_t *tx;
4614 uint64_t mode, atime[2], mtime[2], ctime[2];
4615 sa_bulk_attr_t bulk[4];
4616 int error = 0;
4617 int cnt = 0;
4618
4619 if (zfs_is_readonly(zfsvfs) || dmu_objset_is_snapshot(zfsvfs->z_os))
4620 return (0);
4621
4622 ZFS_ENTER(zfsvfs);
4623 ZFS_VERIFY_ZP(zp);
4624
4625 #ifdef I_DIRTY_TIME
4626 /*
4627 * This is the lazytime semantic indroduced in Linux 4.0
4628 * This flag will only be called from update_time when lazytime is set.
4629 * (Note, I_DIRTY_SYNC will also set if not lazytime)
4630 * Fortunately mtime and ctime are managed within ZFS itself, so we
4631 * only need to dirty atime.
4632 */
4633 if (flags == I_DIRTY_TIME) {
4634 zp->z_atime_dirty = 1;
4635 goto out;
4636 }
4637 #endif
4638
4639 tx = dmu_tx_create(zfsvfs->z_os);
4640
4641 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
4642 zfs_sa_upgrade_txholds(tx, zp);
4643
4644 error = dmu_tx_assign(tx, TXG_WAIT);
4645 if (error) {
4646 dmu_tx_abort(tx);
4647 goto out;
4648 }
4649
4650 mutex_enter(&zp->z_lock);
4651 zp->z_atime_dirty = 0;
4652
4653 SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_MODE(zfsvfs), NULL, &mode, 8);
4654 SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_ATIME(zfsvfs), NULL, &atime, 16);
4655 SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
4656 SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
4657
4658 /* Preserve the mode, mtime and ctime provided by the inode */
4659 ZFS_TIME_ENCODE(&ip->i_atime, atime);
4660 ZFS_TIME_ENCODE(&ip->i_mtime, mtime);
4661 ZFS_TIME_ENCODE(&ip->i_ctime, ctime);
4662 mode = ip->i_mode;
4663
4664 zp->z_mode = mode;
4665
4666 error = sa_bulk_update(zp->z_sa_hdl, bulk, cnt, tx);
4667 mutex_exit(&zp->z_lock);
4668
4669 dmu_tx_commit(tx);
4670 out:
4671 ZFS_EXIT(zfsvfs);
4672 return (error);
4673 }
4674
4675 /*ARGSUSED*/
4676 void
4677 zfs_inactive(struct inode *ip)
4678 {
4679 znode_t *zp = ITOZ(ip);
4680 zfsvfs_t *zfsvfs = ITOZSB(ip);
4681 uint64_t atime[2];
4682 int error;
4683 int need_unlock = 0;
4684
4685 /* Only read lock if we haven't already write locked, e.g. rollback */
4686 if (!RW_WRITE_HELD(&zfsvfs->z_teardown_inactive_lock)) {
4687 need_unlock = 1;
4688 rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_READER);
4689 }
4690 if (zp->z_sa_hdl == NULL) {
4691 if (need_unlock)
4692 rw_exit(&zfsvfs->z_teardown_inactive_lock);
4693 return;
4694 }
4695
4696 if (zp->z_atime_dirty && zp->z_unlinked == 0) {
4697 dmu_tx_t *tx = dmu_tx_create(zfsvfs->z_os);
4698
4699 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
4700 zfs_sa_upgrade_txholds(tx, zp);
4701 error = dmu_tx_assign(tx, TXG_WAIT);
4702 if (error) {
4703 dmu_tx_abort(tx);
4704 } else {
4705 ZFS_TIME_ENCODE(&ip->i_atime, atime);
4706 mutex_enter(&zp->z_lock);
4707 (void) sa_update(zp->z_sa_hdl, SA_ZPL_ATIME(zfsvfs),
4708 (void *)&atime, sizeof (atime), tx);
4709 zp->z_atime_dirty = 0;
4710 mutex_exit(&zp->z_lock);
4711 dmu_tx_commit(tx);
4712 }
4713 }
4714
4715 zfs_zinactive(zp);
4716 if (need_unlock)
4717 rw_exit(&zfsvfs->z_teardown_inactive_lock);
4718 }
4719
4720 /*
4721 * Bounds-check the seek operation.
4722 *
4723 * IN: ip - inode seeking within
4724 * ooff - old file offset
4725 * noffp - pointer to new file offset
4726 * ct - caller context
4727 *
4728 * RETURN: 0 if success
4729 * EINVAL if new offset invalid
4730 */
4731 /* ARGSUSED */
4732 int
4733 zfs_seek(struct inode *ip, offset_t ooff, offset_t *noffp)
4734 {
4735 if (S_ISDIR(ip->i_mode))
4736 return (0);
4737 return ((*noffp < 0 || *noffp > MAXOFFSET_T) ? EINVAL : 0);
4738 }
4739
4740 /*
4741 * Fill pages with data from the disk.
4742 */
4743 static int
4744 zfs_fillpage(struct inode *ip, struct page *pl[], int nr_pages)
4745 {
4746 znode_t *zp = ITOZ(ip);
4747 zfsvfs_t *zfsvfs = ITOZSB(ip);
4748 objset_t *os;
4749 struct page *cur_pp;
4750 u_offset_t io_off, total;
4751 size_t io_len;
4752 loff_t i_size;
4753 unsigned page_idx;
4754 int err;
4755
4756 os = zfsvfs->z_os;
4757 io_len = nr_pages << PAGE_SHIFT;
4758 i_size = i_size_read(ip);
4759 io_off = page_offset(pl[0]);
4760
4761 if (io_off + io_len > i_size)
4762 io_len = i_size - io_off;
4763
4764 /*
4765 * Iterate over list of pages and read each page individually.
4766 */
4767 page_idx = 0;
4768 for (total = io_off + io_len; io_off < total; io_off += PAGESIZE) {
4769 caddr_t va;
4770
4771 cur_pp = pl[page_idx++];
4772 va = kmap(cur_pp);
4773 err = dmu_read(os, zp->z_id, io_off, PAGESIZE, va,
4774 DMU_READ_PREFETCH);
4775 kunmap(cur_pp);
4776 if (err) {
4777 /* convert checksum errors into IO errors */
4778 if (err == ECKSUM)
4779 err = SET_ERROR(EIO);
4780 return (err);
4781 }
4782 }
4783
4784 return (0);
4785 }
4786
4787 /*
4788 * Uses zfs_fillpage to read data from the file and fill the pages.
4789 *
4790 * IN: ip - inode of file to get data from.
4791 * pl - list of pages to read
4792 * nr_pages - number of pages to read
4793 *
4794 * RETURN: 0 on success, error code on failure.
4795 *
4796 * Timestamps:
4797 * vp - atime updated
4798 */
4799 /* ARGSUSED */
4800 int
4801 zfs_getpage(struct inode *ip, struct page *pl[], int nr_pages)
4802 {
4803 znode_t *zp = ITOZ(ip);
4804 zfsvfs_t *zfsvfs = ITOZSB(ip);
4805 int err;
4806
4807 if (pl == NULL)
4808 return (0);
4809
4810 ZFS_ENTER(zfsvfs);
4811 ZFS_VERIFY_ZP(zp);
4812
4813 err = zfs_fillpage(ip, pl, nr_pages);
4814
4815 ZFS_EXIT(zfsvfs);
4816 return (err);
4817 }
4818
4819 /*
4820 * Check ZFS specific permissions to memory map a section of a file.
4821 *
4822 * IN: ip - inode of the file to mmap
4823 * off - file offset
4824 * addrp - start address in memory region
4825 * len - length of memory region
4826 * vm_flags- address flags
4827 *
4828 * RETURN: 0 if success
4829 * error code if failure
4830 */
4831 /*ARGSUSED*/
4832 int
4833 zfs_map(struct inode *ip, offset_t off, caddr_t *addrp, size_t len,
4834 unsigned long vm_flags)
4835 {
4836 znode_t *zp = ITOZ(ip);
4837 zfsvfs_t *zfsvfs = ITOZSB(ip);
4838
4839 ZFS_ENTER(zfsvfs);
4840 ZFS_VERIFY_ZP(zp);
4841
4842 if ((vm_flags & VM_WRITE) && (zp->z_pflags &
4843 (ZFS_IMMUTABLE | ZFS_READONLY | ZFS_APPENDONLY))) {
4844 ZFS_EXIT(zfsvfs);
4845 return (SET_ERROR(EPERM));
4846 }
4847
4848 if ((vm_flags & (VM_READ | VM_EXEC)) &&
4849 (zp->z_pflags & ZFS_AV_QUARANTINED)) {
4850 ZFS_EXIT(zfsvfs);
4851 return (SET_ERROR(EACCES));
4852 }
4853
4854 if (off < 0 || len > MAXOFFSET_T - off) {
4855 ZFS_EXIT(zfsvfs);
4856 return (SET_ERROR(ENXIO));
4857 }
4858
4859 ZFS_EXIT(zfsvfs);
4860 return (0);
4861 }
4862
4863 /*
4864 * convoff - converts the given data (start, whence) to the
4865 * given whence.
4866 */
4867 int
4868 convoff(struct inode *ip, flock64_t *lckdat, int whence, offset_t offset)
4869 {
4870 vattr_t vap;
4871 int error;
4872
4873 if ((lckdat->l_whence == 2) || (whence == 2)) {
4874 if ((error = zfs_getattr(ip, &vap, 0, CRED())))
4875 return (error);
4876 }
4877
4878 switch (lckdat->l_whence) {
4879 case 1:
4880 lckdat->l_start += offset;
4881 break;
4882 case 2:
4883 lckdat->l_start += vap.va_size;
4884 /* FALLTHRU */
4885 case 0:
4886 break;
4887 default:
4888 return (SET_ERROR(EINVAL));
4889 }
4890
4891 if (lckdat->l_start < 0)
4892 return (SET_ERROR(EINVAL));
4893
4894 switch (whence) {
4895 case 1:
4896 lckdat->l_start -= offset;
4897 break;
4898 case 2:
4899 lckdat->l_start -= vap.va_size;
4900 /* FALLTHRU */
4901 case 0:
4902 break;
4903 default:
4904 return (SET_ERROR(EINVAL));
4905 }
4906
4907 lckdat->l_whence = (short)whence;
4908 return (0);
4909 }
4910
4911 /*
4912 * Free or allocate space in a file. Currently, this function only
4913 * supports the `F_FREESP' command. However, this command is somewhat
4914 * misnamed, as its functionality includes the ability to allocate as
4915 * well as free space.
4916 *
4917 * IN: ip - inode of file to free data in.
4918 * cmd - action to take (only F_FREESP supported).
4919 * bfp - section of file to free/alloc.
4920 * flag - current file open mode flags.
4921 * offset - current file offset.
4922 * cr - credentials of caller [UNUSED].
4923 *
4924 * RETURN: 0 on success, error code on failure.
4925 *
4926 * Timestamps:
4927 * ip - ctime|mtime updated
4928 */
4929 /* ARGSUSED */
4930 int
4931 zfs_space(struct inode *ip, int cmd, flock64_t *bfp, int flag,
4932 offset_t offset, cred_t *cr)
4933 {
4934 znode_t *zp = ITOZ(ip);
4935 zfsvfs_t *zfsvfs = ITOZSB(ip);
4936 uint64_t off, len;
4937 int error;
4938
4939 ZFS_ENTER(zfsvfs);
4940 ZFS_VERIFY_ZP(zp);
4941
4942 if (cmd != F_FREESP) {
4943 ZFS_EXIT(zfsvfs);
4944 return (SET_ERROR(EINVAL));
4945 }
4946
4947 /*
4948 * Callers might not be able to detect properly that we are read-only,
4949 * so check it explicitly here.
4950 */
4951 if (zfs_is_readonly(zfsvfs)) {
4952 ZFS_EXIT(zfsvfs);
4953 return (SET_ERROR(EROFS));
4954 }
4955
4956 if ((error = convoff(ip, bfp, 0, offset))) {
4957 ZFS_EXIT(zfsvfs);
4958 return (error);
4959 }
4960
4961 if (bfp->l_len < 0) {
4962 ZFS_EXIT(zfsvfs);
4963 return (SET_ERROR(EINVAL));
4964 }
4965
4966 /*
4967 * Permissions aren't checked on Solaris because on this OS
4968 * zfs_space() can only be called with an opened file handle.
4969 * On Linux we can get here through truncate_range() which
4970 * operates directly on inodes, so we need to check access rights.
4971 */
4972 if ((error = zfs_zaccess(zp, ACE_WRITE_DATA, 0, B_FALSE, cr))) {
4973 ZFS_EXIT(zfsvfs);
4974 return (error);
4975 }
4976
4977 off = bfp->l_start;
4978 len = bfp->l_len; /* 0 means from off to end of file */
4979
4980 error = zfs_freesp(zp, off, len, flag, TRUE);
4981
4982 ZFS_EXIT(zfsvfs);
4983 return (error);
4984 }
4985
4986 /*ARGSUSED*/
4987 int
4988 zfs_fid(struct inode *ip, fid_t *fidp)
4989 {
4990 znode_t *zp = ITOZ(ip);
4991 zfsvfs_t *zfsvfs = ITOZSB(ip);
4992 uint32_t gen;
4993 uint64_t gen64;
4994 uint64_t object = zp->z_id;
4995 zfid_short_t *zfid;
4996 int size, i, error;
4997
4998 ZFS_ENTER(zfsvfs);
4999 ZFS_VERIFY_ZP(zp);
5000
5001 if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs),
5002 &gen64, sizeof (uint64_t))) != 0) {
5003 ZFS_EXIT(zfsvfs);
5004 return (error);
5005 }
5006
5007 gen = (uint32_t)gen64;
5008
5009 size = SHORT_FID_LEN;
5010
5011 zfid = (zfid_short_t *)fidp;
5012
5013 zfid->zf_len = size;
5014
5015 for (i = 0; i < sizeof (zfid->zf_object); i++)
5016 zfid->zf_object[i] = (uint8_t)(object >> (8 * i));
5017
5018 /* Must have a non-zero generation number to distinguish from .zfs */
5019 if (gen == 0)
5020 gen = 1;
5021 for (i = 0; i < sizeof (zfid->zf_gen); i++)
5022 zfid->zf_gen[i] = (uint8_t)(gen >> (8 * i));
5023
5024 ZFS_EXIT(zfsvfs);
5025 return (0);
5026 }
5027
5028 /*ARGSUSED*/
5029 int
5030 zfs_getsecattr(struct inode *ip, vsecattr_t *vsecp, int flag, cred_t *cr)
5031 {
5032 znode_t *zp = ITOZ(ip);
5033 zfsvfs_t *zfsvfs = ITOZSB(ip);
5034 int error;
5035 boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
5036
5037 ZFS_ENTER(zfsvfs);
5038 ZFS_VERIFY_ZP(zp);
5039 error = zfs_getacl(zp, vsecp, skipaclchk, cr);
5040 ZFS_EXIT(zfsvfs);
5041
5042 return (error);
5043 }
5044
5045 /*ARGSUSED*/
5046 int
5047 zfs_setsecattr(struct inode *ip, vsecattr_t *vsecp, int flag, cred_t *cr)
5048 {
5049 znode_t *zp = ITOZ(ip);
5050 zfsvfs_t *zfsvfs = ITOZSB(ip);
5051 int error;
5052 boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
5053 zilog_t *zilog = zfsvfs->z_log;
5054
5055 ZFS_ENTER(zfsvfs);
5056 ZFS_VERIFY_ZP(zp);
5057
5058 error = zfs_setacl(zp, vsecp, skipaclchk, cr);
5059
5060 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
5061 zil_commit(zilog, 0);
5062
5063 ZFS_EXIT(zfsvfs);
5064 return (error);
5065 }
5066
5067 #ifdef HAVE_UIO_ZEROCOPY
5068 /*
5069 * Tunable, both must be a power of 2.
5070 *
5071 * zcr_blksz_min: the smallest read we may consider to loan out an arcbuf
5072 * zcr_blksz_max: if set to less than the file block size, allow loaning out of
5073 * an arcbuf for a partial block read
5074 */
5075 int zcr_blksz_min = (1 << 10); /* 1K */
5076 int zcr_blksz_max = (1 << 17); /* 128K */
5077
5078 /*ARGSUSED*/
5079 static int
5080 zfs_reqzcbuf(struct inode *ip, enum uio_rw ioflag, xuio_t *xuio, cred_t *cr)
5081 {
5082 znode_t *zp = ITOZ(ip);
5083 zfsvfs_t *zfsvfs = ITOZSB(ip);
5084 int max_blksz = zfsvfs->z_max_blksz;
5085 uio_t *uio = &xuio->xu_uio;
5086 ssize_t size = uio->uio_resid;
5087 offset_t offset = uio->uio_loffset;
5088 int blksz;
5089 int fullblk, i;
5090 arc_buf_t *abuf;
5091 ssize_t maxsize;
5092 int preamble, postamble;
5093
5094 if (xuio->xu_type != UIOTYPE_ZEROCOPY)
5095 return (SET_ERROR(EINVAL));
5096
5097 ZFS_ENTER(zfsvfs);
5098 ZFS_VERIFY_ZP(zp);
5099 switch (ioflag) {
5100 case UIO_WRITE:
5101 /*
5102 * Loan out an arc_buf for write if write size is bigger than
5103 * max_blksz, and the file's block size is also max_blksz.
5104 */
5105 blksz = max_blksz;
5106 if (size < blksz || zp->z_blksz != blksz) {
5107 ZFS_EXIT(zfsvfs);
5108 return (SET_ERROR(EINVAL));
5109 }
5110 /*
5111 * Caller requests buffers for write before knowing where the
5112 * write offset might be (e.g. NFS TCP write).
5113 */
5114 if (offset == -1) {
5115 preamble = 0;
5116 } else {
5117 preamble = P2PHASE(offset, blksz);
5118 if (preamble) {
5119 preamble = blksz - preamble;
5120 size -= preamble;
5121 }
5122 }
5123
5124 postamble = P2PHASE(size, blksz);
5125 size -= postamble;
5126
5127 fullblk = size / blksz;
5128 (void) dmu_xuio_init(xuio,
5129 (preamble != 0) + fullblk + (postamble != 0));
5130
5131 /*
5132 * Have to fix iov base/len for partial buffers. They
5133 * currently represent full arc_buf's.
5134 */
5135 if (preamble) {
5136 /* data begins in the middle of the arc_buf */
5137 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
5138 blksz);
5139 ASSERT(abuf);
5140 (void) dmu_xuio_add(xuio, abuf,
5141 blksz - preamble, preamble);
5142 }
5143
5144 for (i = 0; i < fullblk; i++) {
5145 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
5146 blksz);
5147 ASSERT(abuf);
5148 (void) dmu_xuio_add(xuio, abuf, 0, blksz);
5149 }
5150
5151 if (postamble) {
5152 /* data ends in the middle of the arc_buf */
5153 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
5154 blksz);
5155 ASSERT(abuf);
5156 (void) dmu_xuio_add(xuio, abuf, 0, postamble);
5157 }
5158 break;
5159 case UIO_READ:
5160 /*
5161 * Loan out an arc_buf for read if the read size is larger than
5162 * the current file block size. Block alignment is not
5163 * considered. Partial arc_buf will be loaned out for read.
5164 */
5165 blksz = zp->z_blksz;
5166 if (blksz < zcr_blksz_min)
5167 blksz = zcr_blksz_min;
5168 if (blksz > zcr_blksz_max)
5169 blksz = zcr_blksz_max;
5170 /* avoid potential complexity of dealing with it */
5171 if (blksz > max_blksz) {
5172 ZFS_EXIT(zfsvfs);
5173 return (SET_ERROR(EINVAL));
5174 }
5175
5176 maxsize = zp->z_size - uio->uio_loffset;
5177 if (size > maxsize)
5178 size = maxsize;
5179
5180 if (size < blksz) {
5181 ZFS_EXIT(zfsvfs);
5182 return (SET_ERROR(EINVAL));
5183 }
5184 break;
5185 default:
5186 ZFS_EXIT(zfsvfs);
5187 return (SET_ERROR(EINVAL));
5188 }
5189
5190 uio->uio_extflg = UIO_XUIO;
5191 XUIO_XUZC_RW(xuio) = ioflag;
5192 ZFS_EXIT(zfsvfs);
5193 return (0);
5194 }
5195
5196 /*ARGSUSED*/
5197 static int
5198 zfs_retzcbuf(struct inode *ip, xuio_t *xuio, cred_t *cr)
5199 {
5200 int i;
5201 arc_buf_t *abuf;
5202 int ioflag = XUIO_XUZC_RW(xuio);
5203
5204 ASSERT(xuio->xu_type == UIOTYPE_ZEROCOPY);
5205
5206 i = dmu_xuio_cnt(xuio);
5207 while (i-- > 0) {
5208 abuf = dmu_xuio_arcbuf(xuio, i);
5209 /*
5210 * if abuf == NULL, it must be a write buffer
5211 * that has been returned in zfs_write().
5212 */
5213 if (abuf)
5214 dmu_return_arcbuf(abuf);
5215 ASSERT(abuf || ioflag == UIO_WRITE);
5216 }
5217
5218 dmu_xuio_fini(xuio);
5219 return (0);
5220 }
5221 #endif /* HAVE_UIO_ZEROCOPY */
5222
5223 #if defined(_KERNEL) && defined(HAVE_SPL)
5224 EXPORT_SYMBOL(zfs_open);
5225 EXPORT_SYMBOL(zfs_close);
5226 EXPORT_SYMBOL(zfs_read);
5227 EXPORT_SYMBOL(zfs_write);
5228 EXPORT_SYMBOL(zfs_access);
5229 EXPORT_SYMBOL(zfs_lookup);
5230 EXPORT_SYMBOL(zfs_create);
5231 EXPORT_SYMBOL(zfs_tmpfile);
5232 EXPORT_SYMBOL(zfs_remove);
5233 EXPORT_SYMBOL(zfs_mkdir);
5234 EXPORT_SYMBOL(zfs_rmdir);
5235 EXPORT_SYMBOL(zfs_readdir);
5236 EXPORT_SYMBOL(zfs_fsync);
5237 EXPORT_SYMBOL(zfs_getattr);
5238 EXPORT_SYMBOL(zfs_getattr_fast);
5239 EXPORT_SYMBOL(zfs_setattr);
5240 EXPORT_SYMBOL(zfs_rename);
5241 EXPORT_SYMBOL(zfs_symlink);
5242 EXPORT_SYMBOL(zfs_readlink);
5243 EXPORT_SYMBOL(zfs_link);
5244 EXPORT_SYMBOL(zfs_inactive);
5245 EXPORT_SYMBOL(zfs_space);
5246 EXPORT_SYMBOL(zfs_fid);
5247 EXPORT_SYMBOL(zfs_getsecattr);
5248 EXPORT_SYMBOL(zfs_setsecattr);
5249 EXPORT_SYMBOL(zfs_getpage);
5250 EXPORT_SYMBOL(zfs_putpage);
5251 EXPORT_SYMBOL(zfs_dirty_inode);
5252 EXPORT_SYMBOL(zfs_map);
5253
5254 /* CSTYLED */
5255 module_param(zfs_delete_blocks, ulong, 0644);
5256 MODULE_PARM_DESC(zfs_delete_blocks, "Delete files larger than N blocks async");
5257 module_param(zfs_read_chunk_size, long, 0644);
5258 MODULE_PARM_DESC(zfs_read_chunk_size, "Bytes to read per chunk");
5259 #endif