]> git.proxmox.com Git - mirror_ubuntu-disco-kernel.git/blob - net/packet/af_packet.c
Merge tag 'for-linus-4.15-rc7-tag' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-disco-kernel.git] / net / packet / af_packet.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * PACKET - implements raw packet sockets.
7 *
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Alan Cox, <gw4pts@gw4pts.ampr.org>
11 *
12 * Fixes:
13 * Alan Cox : verify_area() now used correctly
14 * Alan Cox : new skbuff lists, look ma no backlogs!
15 * Alan Cox : tidied skbuff lists.
16 * Alan Cox : Now uses generic datagram routines I
17 * added. Also fixed the peek/read crash
18 * from all old Linux datagram code.
19 * Alan Cox : Uses the improved datagram code.
20 * Alan Cox : Added NULL's for socket options.
21 * Alan Cox : Re-commented the code.
22 * Alan Cox : Use new kernel side addressing
23 * Rob Janssen : Correct MTU usage.
24 * Dave Platt : Counter leaks caused by incorrect
25 * interrupt locking and some slightly
26 * dubious gcc output. Can you read
27 * compiler: it said _VOLATILE_
28 * Richard Kooijman : Timestamp fixes.
29 * Alan Cox : New buffers. Use sk->mac.raw.
30 * Alan Cox : sendmsg/recvmsg support.
31 * Alan Cox : Protocol setting support
32 * Alexey Kuznetsov : Untied from IPv4 stack.
33 * Cyrus Durgin : Fixed kerneld for kmod.
34 * Michal Ostrowski : Module initialization cleanup.
35 * Ulises Alonso : Frame number limit removal and
36 * packet_set_ring memory leak.
37 * Eric Biederman : Allow for > 8 byte hardware addresses.
38 * The convention is that longer addresses
39 * will simply extend the hardware address
40 * byte arrays at the end of sockaddr_ll
41 * and packet_mreq.
42 * Johann Baudy : Added TX RING.
43 * Chetan Loke : Implemented TPACKET_V3 block abstraction
44 * layer.
45 * Copyright (C) 2011, <lokec@ccs.neu.edu>
46 *
47 *
48 * This program is free software; you can redistribute it and/or
49 * modify it under the terms of the GNU General Public License
50 * as published by the Free Software Foundation; either version
51 * 2 of the License, or (at your option) any later version.
52 *
53 */
54
55 #include <linux/types.h>
56 #include <linux/mm.h>
57 #include <linux/capability.h>
58 #include <linux/fcntl.h>
59 #include <linux/socket.h>
60 #include <linux/in.h>
61 #include <linux/inet.h>
62 #include <linux/netdevice.h>
63 #include <linux/if_packet.h>
64 #include <linux/wireless.h>
65 #include <linux/kernel.h>
66 #include <linux/kmod.h>
67 #include <linux/slab.h>
68 #include <linux/vmalloc.h>
69 #include <net/net_namespace.h>
70 #include <net/ip.h>
71 #include <net/protocol.h>
72 #include <linux/skbuff.h>
73 #include <net/sock.h>
74 #include <linux/errno.h>
75 #include <linux/timer.h>
76 #include <linux/uaccess.h>
77 #include <asm/ioctls.h>
78 #include <asm/page.h>
79 #include <asm/cacheflush.h>
80 #include <asm/io.h>
81 #include <linux/proc_fs.h>
82 #include <linux/seq_file.h>
83 #include <linux/poll.h>
84 #include <linux/module.h>
85 #include <linux/init.h>
86 #include <linux/mutex.h>
87 #include <linux/if_vlan.h>
88 #include <linux/virtio_net.h>
89 #include <linux/errqueue.h>
90 #include <linux/net_tstamp.h>
91 #include <linux/percpu.h>
92 #ifdef CONFIG_INET
93 #include <net/inet_common.h>
94 #endif
95 #include <linux/bpf.h>
96 #include <net/compat.h>
97
98 #include "internal.h"
99
100 /*
101 Assumptions:
102 - if device has no dev->hard_header routine, it adds and removes ll header
103 inside itself. In this case ll header is invisible outside of device,
104 but higher levels still should reserve dev->hard_header_len.
105 Some devices are enough clever to reallocate skb, when header
106 will not fit to reserved space (tunnel), another ones are silly
107 (PPP).
108 - packet socket receives packets with pulled ll header,
109 so that SOCK_RAW should push it back.
110
111 On receive:
112 -----------
113
114 Incoming, dev->hard_header!=NULL
115 mac_header -> ll header
116 data -> data
117
118 Outgoing, dev->hard_header!=NULL
119 mac_header -> ll header
120 data -> ll header
121
122 Incoming, dev->hard_header==NULL
123 mac_header -> UNKNOWN position. It is very likely, that it points to ll
124 header. PPP makes it, that is wrong, because introduce
125 assymetry between rx and tx paths.
126 data -> data
127
128 Outgoing, dev->hard_header==NULL
129 mac_header -> data. ll header is still not built!
130 data -> data
131
132 Resume
133 If dev->hard_header==NULL we are unlikely to restore sensible ll header.
134
135
136 On transmit:
137 ------------
138
139 dev->hard_header != NULL
140 mac_header -> ll header
141 data -> ll header
142
143 dev->hard_header == NULL (ll header is added by device, we cannot control it)
144 mac_header -> data
145 data -> data
146
147 We should set nh.raw on output to correct posistion,
148 packet classifier depends on it.
149 */
150
151 /* Private packet socket structures. */
152
153 /* identical to struct packet_mreq except it has
154 * a longer address field.
155 */
156 struct packet_mreq_max {
157 int mr_ifindex;
158 unsigned short mr_type;
159 unsigned short mr_alen;
160 unsigned char mr_address[MAX_ADDR_LEN];
161 };
162
163 union tpacket_uhdr {
164 struct tpacket_hdr *h1;
165 struct tpacket2_hdr *h2;
166 struct tpacket3_hdr *h3;
167 void *raw;
168 };
169
170 static int packet_set_ring(struct sock *sk, union tpacket_req_u *req_u,
171 int closing, int tx_ring);
172
173 #define V3_ALIGNMENT (8)
174
175 #define BLK_HDR_LEN (ALIGN(sizeof(struct tpacket_block_desc), V3_ALIGNMENT))
176
177 #define BLK_PLUS_PRIV(sz_of_priv) \
178 (BLK_HDR_LEN + ALIGN((sz_of_priv), V3_ALIGNMENT))
179
180 #define BLOCK_STATUS(x) ((x)->hdr.bh1.block_status)
181 #define BLOCK_NUM_PKTS(x) ((x)->hdr.bh1.num_pkts)
182 #define BLOCK_O2FP(x) ((x)->hdr.bh1.offset_to_first_pkt)
183 #define BLOCK_LEN(x) ((x)->hdr.bh1.blk_len)
184 #define BLOCK_SNUM(x) ((x)->hdr.bh1.seq_num)
185 #define BLOCK_O2PRIV(x) ((x)->offset_to_priv)
186 #define BLOCK_PRIV(x) ((void *)((char *)(x) + BLOCK_O2PRIV(x)))
187
188 struct packet_sock;
189 static int tpacket_rcv(struct sk_buff *skb, struct net_device *dev,
190 struct packet_type *pt, struct net_device *orig_dev);
191
192 static void *packet_previous_frame(struct packet_sock *po,
193 struct packet_ring_buffer *rb,
194 int status);
195 static void packet_increment_head(struct packet_ring_buffer *buff);
196 static int prb_curr_blk_in_use(struct tpacket_block_desc *);
197 static void *prb_dispatch_next_block(struct tpacket_kbdq_core *,
198 struct packet_sock *);
199 static void prb_retire_current_block(struct tpacket_kbdq_core *,
200 struct packet_sock *, unsigned int status);
201 static int prb_queue_frozen(struct tpacket_kbdq_core *);
202 static void prb_open_block(struct tpacket_kbdq_core *,
203 struct tpacket_block_desc *);
204 static void prb_retire_rx_blk_timer_expired(struct timer_list *);
205 static void _prb_refresh_rx_retire_blk_timer(struct tpacket_kbdq_core *);
206 static void prb_fill_rxhash(struct tpacket_kbdq_core *, struct tpacket3_hdr *);
207 static void prb_clear_rxhash(struct tpacket_kbdq_core *,
208 struct tpacket3_hdr *);
209 static void prb_fill_vlan_info(struct tpacket_kbdq_core *,
210 struct tpacket3_hdr *);
211 static void packet_flush_mclist(struct sock *sk);
212 static void packet_pick_tx_queue(struct net_device *dev, struct sk_buff *skb);
213
214 struct packet_skb_cb {
215 union {
216 struct sockaddr_pkt pkt;
217 union {
218 /* Trick: alias skb original length with
219 * ll.sll_family and ll.protocol in order
220 * to save room.
221 */
222 unsigned int origlen;
223 struct sockaddr_ll ll;
224 };
225 } sa;
226 };
227
228 #define vio_le() virtio_legacy_is_little_endian()
229
230 #define PACKET_SKB_CB(__skb) ((struct packet_skb_cb *)((__skb)->cb))
231
232 #define GET_PBDQC_FROM_RB(x) ((struct tpacket_kbdq_core *)(&(x)->prb_bdqc))
233 #define GET_PBLOCK_DESC(x, bid) \
234 ((struct tpacket_block_desc *)((x)->pkbdq[(bid)].buffer))
235 #define GET_CURR_PBLOCK_DESC_FROM_CORE(x) \
236 ((struct tpacket_block_desc *)((x)->pkbdq[(x)->kactive_blk_num].buffer))
237 #define GET_NEXT_PRB_BLK_NUM(x) \
238 (((x)->kactive_blk_num < ((x)->knum_blocks-1)) ? \
239 ((x)->kactive_blk_num+1) : 0)
240
241 static void __fanout_unlink(struct sock *sk, struct packet_sock *po);
242 static void __fanout_link(struct sock *sk, struct packet_sock *po);
243
244 static int packet_direct_xmit(struct sk_buff *skb)
245 {
246 struct net_device *dev = skb->dev;
247 struct sk_buff *orig_skb = skb;
248 struct netdev_queue *txq;
249 int ret = NETDEV_TX_BUSY;
250
251 if (unlikely(!netif_running(dev) ||
252 !netif_carrier_ok(dev)))
253 goto drop;
254
255 skb = validate_xmit_skb_list(skb, dev);
256 if (skb != orig_skb)
257 goto drop;
258
259 packet_pick_tx_queue(dev, skb);
260 txq = skb_get_tx_queue(dev, skb);
261
262 local_bh_disable();
263
264 HARD_TX_LOCK(dev, txq, smp_processor_id());
265 if (!netif_xmit_frozen_or_drv_stopped(txq))
266 ret = netdev_start_xmit(skb, dev, txq, false);
267 HARD_TX_UNLOCK(dev, txq);
268
269 local_bh_enable();
270
271 if (!dev_xmit_complete(ret))
272 kfree_skb(skb);
273
274 return ret;
275 drop:
276 atomic_long_inc(&dev->tx_dropped);
277 kfree_skb_list(skb);
278 return NET_XMIT_DROP;
279 }
280
281 static struct net_device *packet_cached_dev_get(struct packet_sock *po)
282 {
283 struct net_device *dev;
284
285 rcu_read_lock();
286 dev = rcu_dereference(po->cached_dev);
287 if (likely(dev))
288 dev_hold(dev);
289 rcu_read_unlock();
290
291 return dev;
292 }
293
294 static void packet_cached_dev_assign(struct packet_sock *po,
295 struct net_device *dev)
296 {
297 rcu_assign_pointer(po->cached_dev, dev);
298 }
299
300 static void packet_cached_dev_reset(struct packet_sock *po)
301 {
302 RCU_INIT_POINTER(po->cached_dev, NULL);
303 }
304
305 static bool packet_use_direct_xmit(const struct packet_sock *po)
306 {
307 return po->xmit == packet_direct_xmit;
308 }
309
310 static u16 __packet_pick_tx_queue(struct net_device *dev, struct sk_buff *skb)
311 {
312 return (u16) raw_smp_processor_id() % dev->real_num_tx_queues;
313 }
314
315 static void packet_pick_tx_queue(struct net_device *dev, struct sk_buff *skb)
316 {
317 const struct net_device_ops *ops = dev->netdev_ops;
318 u16 queue_index;
319
320 if (ops->ndo_select_queue) {
321 queue_index = ops->ndo_select_queue(dev, skb, NULL,
322 __packet_pick_tx_queue);
323 queue_index = netdev_cap_txqueue(dev, queue_index);
324 } else {
325 queue_index = __packet_pick_tx_queue(dev, skb);
326 }
327
328 skb_set_queue_mapping(skb, queue_index);
329 }
330
331 /* register_prot_hook must be invoked with the po->bind_lock held,
332 * or from a context in which asynchronous accesses to the packet
333 * socket is not possible (packet_create()).
334 */
335 static void register_prot_hook(struct sock *sk)
336 {
337 struct packet_sock *po = pkt_sk(sk);
338
339 if (!po->running) {
340 if (po->fanout)
341 __fanout_link(sk, po);
342 else
343 dev_add_pack(&po->prot_hook);
344
345 sock_hold(sk);
346 po->running = 1;
347 }
348 }
349
350 /* {,__}unregister_prot_hook() must be invoked with the po->bind_lock
351 * held. If the sync parameter is true, we will temporarily drop
352 * the po->bind_lock and do a synchronize_net to make sure no
353 * asynchronous packet processing paths still refer to the elements
354 * of po->prot_hook. If the sync parameter is false, it is the
355 * callers responsibility to take care of this.
356 */
357 static void __unregister_prot_hook(struct sock *sk, bool sync)
358 {
359 struct packet_sock *po = pkt_sk(sk);
360
361 po->running = 0;
362
363 if (po->fanout)
364 __fanout_unlink(sk, po);
365 else
366 __dev_remove_pack(&po->prot_hook);
367
368 __sock_put(sk);
369
370 if (sync) {
371 spin_unlock(&po->bind_lock);
372 synchronize_net();
373 spin_lock(&po->bind_lock);
374 }
375 }
376
377 static void unregister_prot_hook(struct sock *sk, bool sync)
378 {
379 struct packet_sock *po = pkt_sk(sk);
380
381 if (po->running)
382 __unregister_prot_hook(sk, sync);
383 }
384
385 static inline struct page * __pure pgv_to_page(void *addr)
386 {
387 if (is_vmalloc_addr(addr))
388 return vmalloc_to_page(addr);
389 return virt_to_page(addr);
390 }
391
392 static void __packet_set_status(struct packet_sock *po, void *frame, int status)
393 {
394 union tpacket_uhdr h;
395
396 h.raw = frame;
397 switch (po->tp_version) {
398 case TPACKET_V1:
399 h.h1->tp_status = status;
400 flush_dcache_page(pgv_to_page(&h.h1->tp_status));
401 break;
402 case TPACKET_V2:
403 h.h2->tp_status = status;
404 flush_dcache_page(pgv_to_page(&h.h2->tp_status));
405 break;
406 case TPACKET_V3:
407 h.h3->tp_status = status;
408 flush_dcache_page(pgv_to_page(&h.h3->tp_status));
409 break;
410 default:
411 WARN(1, "TPACKET version not supported.\n");
412 BUG();
413 }
414
415 smp_wmb();
416 }
417
418 static int __packet_get_status(struct packet_sock *po, void *frame)
419 {
420 union tpacket_uhdr h;
421
422 smp_rmb();
423
424 h.raw = frame;
425 switch (po->tp_version) {
426 case TPACKET_V1:
427 flush_dcache_page(pgv_to_page(&h.h1->tp_status));
428 return h.h1->tp_status;
429 case TPACKET_V2:
430 flush_dcache_page(pgv_to_page(&h.h2->tp_status));
431 return h.h2->tp_status;
432 case TPACKET_V3:
433 flush_dcache_page(pgv_to_page(&h.h3->tp_status));
434 return h.h3->tp_status;
435 default:
436 WARN(1, "TPACKET version not supported.\n");
437 BUG();
438 return 0;
439 }
440 }
441
442 static __u32 tpacket_get_timestamp(struct sk_buff *skb, struct timespec *ts,
443 unsigned int flags)
444 {
445 struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
446
447 if (shhwtstamps &&
448 (flags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
449 ktime_to_timespec_cond(shhwtstamps->hwtstamp, ts))
450 return TP_STATUS_TS_RAW_HARDWARE;
451
452 if (ktime_to_timespec_cond(skb->tstamp, ts))
453 return TP_STATUS_TS_SOFTWARE;
454
455 return 0;
456 }
457
458 static __u32 __packet_set_timestamp(struct packet_sock *po, void *frame,
459 struct sk_buff *skb)
460 {
461 union tpacket_uhdr h;
462 struct timespec ts;
463 __u32 ts_status;
464
465 if (!(ts_status = tpacket_get_timestamp(skb, &ts, po->tp_tstamp)))
466 return 0;
467
468 h.raw = frame;
469 switch (po->tp_version) {
470 case TPACKET_V1:
471 h.h1->tp_sec = ts.tv_sec;
472 h.h1->tp_usec = ts.tv_nsec / NSEC_PER_USEC;
473 break;
474 case TPACKET_V2:
475 h.h2->tp_sec = ts.tv_sec;
476 h.h2->tp_nsec = ts.tv_nsec;
477 break;
478 case TPACKET_V3:
479 h.h3->tp_sec = ts.tv_sec;
480 h.h3->tp_nsec = ts.tv_nsec;
481 break;
482 default:
483 WARN(1, "TPACKET version not supported.\n");
484 BUG();
485 }
486
487 /* one flush is safe, as both fields always lie on the same cacheline */
488 flush_dcache_page(pgv_to_page(&h.h1->tp_sec));
489 smp_wmb();
490
491 return ts_status;
492 }
493
494 static void *packet_lookup_frame(struct packet_sock *po,
495 struct packet_ring_buffer *rb,
496 unsigned int position,
497 int status)
498 {
499 unsigned int pg_vec_pos, frame_offset;
500 union tpacket_uhdr h;
501
502 pg_vec_pos = position / rb->frames_per_block;
503 frame_offset = position % rb->frames_per_block;
504
505 h.raw = rb->pg_vec[pg_vec_pos].buffer +
506 (frame_offset * rb->frame_size);
507
508 if (status != __packet_get_status(po, h.raw))
509 return NULL;
510
511 return h.raw;
512 }
513
514 static void *packet_current_frame(struct packet_sock *po,
515 struct packet_ring_buffer *rb,
516 int status)
517 {
518 return packet_lookup_frame(po, rb, rb->head, status);
519 }
520
521 static void prb_del_retire_blk_timer(struct tpacket_kbdq_core *pkc)
522 {
523 del_timer_sync(&pkc->retire_blk_timer);
524 }
525
526 static void prb_shutdown_retire_blk_timer(struct packet_sock *po,
527 struct sk_buff_head *rb_queue)
528 {
529 struct tpacket_kbdq_core *pkc;
530
531 pkc = GET_PBDQC_FROM_RB(&po->rx_ring);
532
533 spin_lock_bh(&rb_queue->lock);
534 pkc->delete_blk_timer = 1;
535 spin_unlock_bh(&rb_queue->lock);
536
537 prb_del_retire_blk_timer(pkc);
538 }
539
540 static void prb_setup_retire_blk_timer(struct packet_sock *po)
541 {
542 struct tpacket_kbdq_core *pkc;
543
544 pkc = GET_PBDQC_FROM_RB(&po->rx_ring);
545 timer_setup(&pkc->retire_blk_timer, prb_retire_rx_blk_timer_expired,
546 0);
547 pkc->retire_blk_timer.expires = jiffies;
548 }
549
550 static int prb_calc_retire_blk_tmo(struct packet_sock *po,
551 int blk_size_in_bytes)
552 {
553 struct net_device *dev;
554 unsigned int mbits = 0, msec = 0, div = 0, tmo = 0;
555 struct ethtool_link_ksettings ecmd;
556 int err;
557
558 rtnl_lock();
559 dev = __dev_get_by_index(sock_net(&po->sk), po->ifindex);
560 if (unlikely(!dev)) {
561 rtnl_unlock();
562 return DEFAULT_PRB_RETIRE_TOV;
563 }
564 err = __ethtool_get_link_ksettings(dev, &ecmd);
565 rtnl_unlock();
566 if (!err) {
567 /*
568 * If the link speed is so slow you don't really
569 * need to worry about perf anyways
570 */
571 if (ecmd.base.speed < SPEED_1000 ||
572 ecmd.base.speed == SPEED_UNKNOWN) {
573 return DEFAULT_PRB_RETIRE_TOV;
574 } else {
575 msec = 1;
576 div = ecmd.base.speed / 1000;
577 }
578 }
579
580 mbits = (blk_size_in_bytes * 8) / (1024 * 1024);
581
582 if (div)
583 mbits /= div;
584
585 tmo = mbits * msec;
586
587 if (div)
588 return tmo+1;
589 return tmo;
590 }
591
592 static void prb_init_ft_ops(struct tpacket_kbdq_core *p1,
593 union tpacket_req_u *req_u)
594 {
595 p1->feature_req_word = req_u->req3.tp_feature_req_word;
596 }
597
598 static void init_prb_bdqc(struct packet_sock *po,
599 struct packet_ring_buffer *rb,
600 struct pgv *pg_vec,
601 union tpacket_req_u *req_u)
602 {
603 struct tpacket_kbdq_core *p1 = GET_PBDQC_FROM_RB(rb);
604 struct tpacket_block_desc *pbd;
605
606 memset(p1, 0x0, sizeof(*p1));
607
608 p1->knxt_seq_num = 1;
609 p1->pkbdq = pg_vec;
610 pbd = (struct tpacket_block_desc *)pg_vec[0].buffer;
611 p1->pkblk_start = pg_vec[0].buffer;
612 p1->kblk_size = req_u->req3.tp_block_size;
613 p1->knum_blocks = req_u->req3.tp_block_nr;
614 p1->hdrlen = po->tp_hdrlen;
615 p1->version = po->tp_version;
616 p1->last_kactive_blk_num = 0;
617 po->stats.stats3.tp_freeze_q_cnt = 0;
618 if (req_u->req3.tp_retire_blk_tov)
619 p1->retire_blk_tov = req_u->req3.tp_retire_blk_tov;
620 else
621 p1->retire_blk_tov = prb_calc_retire_blk_tmo(po,
622 req_u->req3.tp_block_size);
623 p1->tov_in_jiffies = msecs_to_jiffies(p1->retire_blk_tov);
624 p1->blk_sizeof_priv = req_u->req3.tp_sizeof_priv;
625
626 p1->max_frame_len = p1->kblk_size - BLK_PLUS_PRIV(p1->blk_sizeof_priv);
627 prb_init_ft_ops(p1, req_u);
628 prb_setup_retire_blk_timer(po);
629 prb_open_block(p1, pbd);
630 }
631
632 /* Do NOT update the last_blk_num first.
633 * Assumes sk_buff_head lock is held.
634 */
635 static void _prb_refresh_rx_retire_blk_timer(struct tpacket_kbdq_core *pkc)
636 {
637 mod_timer(&pkc->retire_blk_timer,
638 jiffies + pkc->tov_in_jiffies);
639 pkc->last_kactive_blk_num = pkc->kactive_blk_num;
640 }
641
642 /*
643 * Timer logic:
644 * 1) We refresh the timer only when we open a block.
645 * By doing this we don't waste cycles refreshing the timer
646 * on packet-by-packet basis.
647 *
648 * With a 1MB block-size, on a 1Gbps line, it will take
649 * i) ~8 ms to fill a block + ii) memcpy etc.
650 * In this cut we are not accounting for the memcpy time.
651 *
652 * So, if the user sets the 'tmo' to 10ms then the timer
653 * will never fire while the block is still getting filled
654 * (which is what we want). However, the user could choose
655 * to close a block early and that's fine.
656 *
657 * But when the timer does fire, we check whether or not to refresh it.
658 * Since the tmo granularity is in msecs, it is not too expensive
659 * to refresh the timer, lets say every '8' msecs.
660 * Either the user can set the 'tmo' or we can derive it based on
661 * a) line-speed and b) block-size.
662 * prb_calc_retire_blk_tmo() calculates the tmo.
663 *
664 */
665 static void prb_retire_rx_blk_timer_expired(struct timer_list *t)
666 {
667 struct packet_sock *po =
668 from_timer(po, t, rx_ring.prb_bdqc.retire_blk_timer);
669 struct tpacket_kbdq_core *pkc = GET_PBDQC_FROM_RB(&po->rx_ring);
670 unsigned int frozen;
671 struct tpacket_block_desc *pbd;
672
673 spin_lock(&po->sk.sk_receive_queue.lock);
674
675 frozen = prb_queue_frozen(pkc);
676 pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc);
677
678 if (unlikely(pkc->delete_blk_timer))
679 goto out;
680
681 /* We only need to plug the race when the block is partially filled.
682 * tpacket_rcv:
683 * lock(); increment BLOCK_NUM_PKTS; unlock()
684 * copy_bits() is in progress ...
685 * timer fires on other cpu:
686 * we can't retire the current block because copy_bits
687 * is in progress.
688 *
689 */
690 if (BLOCK_NUM_PKTS(pbd)) {
691 while (atomic_read(&pkc->blk_fill_in_prog)) {
692 /* Waiting for skb_copy_bits to finish... */
693 cpu_relax();
694 }
695 }
696
697 if (pkc->last_kactive_blk_num == pkc->kactive_blk_num) {
698 if (!frozen) {
699 if (!BLOCK_NUM_PKTS(pbd)) {
700 /* An empty block. Just refresh the timer. */
701 goto refresh_timer;
702 }
703 prb_retire_current_block(pkc, po, TP_STATUS_BLK_TMO);
704 if (!prb_dispatch_next_block(pkc, po))
705 goto refresh_timer;
706 else
707 goto out;
708 } else {
709 /* Case 1. Queue was frozen because user-space was
710 * lagging behind.
711 */
712 if (prb_curr_blk_in_use(pbd)) {
713 /*
714 * Ok, user-space is still behind.
715 * So just refresh the timer.
716 */
717 goto refresh_timer;
718 } else {
719 /* Case 2. queue was frozen,user-space caught up,
720 * now the link went idle && the timer fired.
721 * We don't have a block to close.So we open this
722 * block and restart the timer.
723 * opening a block thaws the queue,restarts timer
724 * Thawing/timer-refresh is a side effect.
725 */
726 prb_open_block(pkc, pbd);
727 goto out;
728 }
729 }
730 }
731
732 refresh_timer:
733 _prb_refresh_rx_retire_blk_timer(pkc);
734
735 out:
736 spin_unlock(&po->sk.sk_receive_queue.lock);
737 }
738
739 static void prb_flush_block(struct tpacket_kbdq_core *pkc1,
740 struct tpacket_block_desc *pbd1, __u32 status)
741 {
742 /* Flush everything minus the block header */
743
744 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1
745 u8 *start, *end;
746
747 start = (u8 *)pbd1;
748
749 /* Skip the block header(we know header WILL fit in 4K) */
750 start += PAGE_SIZE;
751
752 end = (u8 *)PAGE_ALIGN((unsigned long)pkc1->pkblk_end);
753 for (; start < end; start += PAGE_SIZE)
754 flush_dcache_page(pgv_to_page(start));
755
756 smp_wmb();
757 #endif
758
759 /* Now update the block status. */
760
761 BLOCK_STATUS(pbd1) = status;
762
763 /* Flush the block header */
764
765 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1
766 start = (u8 *)pbd1;
767 flush_dcache_page(pgv_to_page(start));
768
769 smp_wmb();
770 #endif
771 }
772
773 /*
774 * Side effect:
775 *
776 * 1) flush the block
777 * 2) Increment active_blk_num
778 *
779 * Note:We DONT refresh the timer on purpose.
780 * Because almost always the next block will be opened.
781 */
782 static void prb_close_block(struct tpacket_kbdq_core *pkc1,
783 struct tpacket_block_desc *pbd1,
784 struct packet_sock *po, unsigned int stat)
785 {
786 __u32 status = TP_STATUS_USER | stat;
787
788 struct tpacket3_hdr *last_pkt;
789 struct tpacket_hdr_v1 *h1 = &pbd1->hdr.bh1;
790 struct sock *sk = &po->sk;
791
792 if (po->stats.stats3.tp_drops)
793 status |= TP_STATUS_LOSING;
794
795 last_pkt = (struct tpacket3_hdr *)pkc1->prev;
796 last_pkt->tp_next_offset = 0;
797
798 /* Get the ts of the last pkt */
799 if (BLOCK_NUM_PKTS(pbd1)) {
800 h1->ts_last_pkt.ts_sec = last_pkt->tp_sec;
801 h1->ts_last_pkt.ts_nsec = last_pkt->tp_nsec;
802 } else {
803 /* Ok, we tmo'd - so get the current time.
804 *
805 * It shouldn't really happen as we don't close empty
806 * blocks. See prb_retire_rx_blk_timer_expired().
807 */
808 struct timespec ts;
809 getnstimeofday(&ts);
810 h1->ts_last_pkt.ts_sec = ts.tv_sec;
811 h1->ts_last_pkt.ts_nsec = ts.tv_nsec;
812 }
813
814 smp_wmb();
815
816 /* Flush the block */
817 prb_flush_block(pkc1, pbd1, status);
818
819 sk->sk_data_ready(sk);
820
821 pkc1->kactive_blk_num = GET_NEXT_PRB_BLK_NUM(pkc1);
822 }
823
824 static void prb_thaw_queue(struct tpacket_kbdq_core *pkc)
825 {
826 pkc->reset_pending_on_curr_blk = 0;
827 }
828
829 /*
830 * Side effect of opening a block:
831 *
832 * 1) prb_queue is thawed.
833 * 2) retire_blk_timer is refreshed.
834 *
835 */
836 static void prb_open_block(struct tpacket_kbdq_core *pkc1,
837 struct tpacket_block_desc *pbd1)
838 {
839 struct timespec ts;
840 struct tpacket_hdr_v1 *h1 = &pbd1->hdr.bh1;
841
842 smp_rmb();
843
844 /* We could have just memset this but we will lose the
845 * flexibility of making the priv area sticky
846 */
847
848 BLOCK_SNUM(pbd1) = pkc1->knxt_seq_num++;
849 BLOCK_NUM_PKTS(pbd1) = 0;
850 BLOCK_LEN(pbd1) = BLK_PLUS_PRIV(pkc1->blk_sizeof_priv);
851
852 getnstimeofday(&ts);
853
854 h1->ts_first_pkt.ts_sec = ts.tv_sec;
855 h1->ts_first_pkt.ts_nsec = ts.tv_nsec;
856
857 pkc1->pkblk_start = (char *)pbd1;
858 pkc1->nxt_offset = pkc1->pkblk_start + BLK_PLUS_PRIV(pkc1->blk_sizeof_priv);
859
860 BLOCK_O2FP(pbd1) = (__u32)BLK_PLUS_PRIV(pkc1->blk_sizeof_priv);
861 BLOCK_O2PRIV(pbd1) = BLK_HDR_LEN;
862
863 pbd1->version = pkc1->version;
864 pkc1->prev = pkc1->nxt_offset;
865 pkc1->pkblk_end = pkc1->pkblk_start + pkc1->kblk_size;
866
867 prb_thaw_queue(pkc1);
868 _prb_refresh_rx_retire_blk_timer(pkc1);
869
870 smp_wmb();
871 }
872
873 /*
874 * Queue freeze logic:
875 * 1) Assume tp_block_nr = 8 blocks.
876 * 2) At time 't0', user opens Rx ring.
877 * 3) Some time past 't0', kernel starts filling blocks starting from 0 .. 7
878 * 4) user-space is either sleeping or processing block '0'.
879 * 5) tpacket_rcv is currently filling block '7', since there is no space left,
880 * it will close block-7,loop around and try to fill block '0'.
881 * call-flow:
882 * __packet_lookup_frame_in_block
883 * prb_retire_current_block()
884 * prb_dispatch_next_block()
885 * |->(BLOCK_STATUS == USER) evaluates to true
886 * 5.1) Since block-0 is currently in-use, we just freeze the queue.
887 * 6) Now there are two cases:
888 * 6.1) Link goes idle right after the queue is frozen.
889 * But remember, the last open_block() refreshed the timer.
890 * When this timer expires,it will refresh itself so that we can
891 * re-open block-0 in near future.
892 * 6.2) Link is busy and keeps on receiving packets. This is a simple
893 * case and __packet_lookup_frame_in_block will check if block-0
894 * is free and can now be re-used.
895 */
896 static void prb_freeze_queue(struct tpacket_kbdq_core *pkc,
897 struct packet_sock *po)
898 {
899 pkc->reset_pending_on_curr_blk = 1;
900 po->stats.stats3.tp_freeze_q_cnt++;
901 }
902
903 #define TOTAL_PKT_LEN_INCL_ALIGN(length) (ALIGN((length), V3_ALIGNMENT))
904
905 /*
906 * If the next block is free then we will dispatch it
907 * and return a good offset.
908 * Else, we will freeze the queue.
909 * So, caller must check the return value.
910 */
911 static void *prb_dispatch_next_block(struct tpacket_kbdq_core *pkc,
912 struct packet_sock *po)
913 {
914 struct tpacket_block_desc *pbd;
915
916 smp_rmb();
917
918 /* 1. Get current block num */
919 pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc);
920
921 /* 2. If this block is currently in_use then freeze the queue */
922 if (TP_STATUS_USER & BLOCK_STATUS(pbd)) {
923 prb_freeze_queue(pkc, po);
924 return NULL;
925 }
926
927 /*
928 * 3.
929 * open this block and return the offset where the first packet
930 * needs to get stored.
931 */
932 prb_open_block(pkc, pbd);
933 return (void *)pkc->nxt_offset;
934 }
935
936 static void prb_retire_current_block(struct tpacket_kbdq_core *pkc,
937 struct packet_sock *po, unsigned int status)
938 {
939 struct tpacket_block_desc *pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc);
940
941 /* retire/close the current block */
942 if (likely(TP_STATUS_KERNEL == BLOCK_STATUS(pbd))) {
943 /*
944 * Plug the case where copy_bits() is in progress on
945 * cpu-0 and tpacket_rcv() got invoked on cpu-1, didn't
946 * have space to copy the pkt in the current block and
947 * called prb_retire_current_block()
948 *
949 * We don't need to worry about the TMO case because
950 * the timer-handler already handled this case.
951 */
952 if (!(status & TP_STATUS_BLK_TMO)) {
953 while (atomic_read(&pkc->blk_fill_in_prog)) {
954 /* Waiting for skb_copy_bits to finish... */
955 cpu_relax();
956 }
957 }
958 prb_close_block(pkc, pbd, po, status);
959 return;
960 }
961 }
962
963 static int prb_curr_blk_in_use(struct tpacket_block_desc *pbd)
964 {
965 return TP_STATUS_USER & BLOCK_STATUS(pbd);
966 }
967
968 static int prb_queue_frozen(struct tpacket_kbdq_core *pkc)
969 {
970 return pkc->reset_pending_on_curr_blk;
971 }
972
973 static void prb_clear_blk_fill_status(struct packet_ring_buffer *rb)
974 {
975 struct tpacket_kbdq_core *pkc = GET_PBDQC_FROM_RB(rb);
976 atomic_dec(&pkc->blk_fill_in_prog);
977 }
978
979 static void prb_fill_rxhash(struct tpacket_kbdq_core *pkc,
980 struct tpacket3_hdr *ppd)
981 {
982 ppd->hv1.tp_rxhash = skb_get_hash(pkc->skb);
983 }
984
985 static void prb_clear_rxhash(struct tpacket_kbdq_core *pkc,
986 struct tpacket3_hdr *ppd)
987 {
988 ppd->hv1.tp_rxhash = 0;
989 }
990
991 static void prb_fill_vlan_info(struct tpacket_kbdq_core *pkc,
992 struct tpacket3_hdr *ppd)
993 {
994 if (skb_vlan_tag_present(pkc->skb)) {
995 ppd->hv1.tp_vlan_tci = skb_vlan_tag_get(pkc->skb);
996 ppd->hv1.tp_vlan_tpid = ntohs(pkc->skb->vlan_proto);
997 ppd->tp_status = TP_STATUS_VLAN_VALID | TP_STATUS_VLAN_TPID_VALID;
998 } else {
999 ppd->hv1.tp_vlan_tci = 0;
1000 ppd->hv1.tp_vlan_tpid = 0;
1001 ppd->tp_status = TP_STATUS_AVAILABLE;
1002 }
1003 }
1004
1005 static void prb_run_all_ft_ops(struct tpacket_kbdq_core *pkc,
1006 struct tpacket3_hdr *ppd)
1007 {
1008 ppd->hv1.tp_padding = 0;
1009 prb_fill_vlan_info(pkc, ppd);
1010
1011 if (pkc->feature_req_word & TP_FT_REQ_FILL_RXHASH)
1012 prb_fill_rxhash(pkc, ppd);
1013 else
1014 prb_clear_rxhash(pkc, ppd);
1015 }
1016
1017 static void prb_fill_curr_block(char *curr,
1018 struct tpacket_kbdq_core *pkc,
1019 struct tpacket_block_desc *pbd,
1020 unsigned int len)
1021 {
1022 struct tpacket3_hdr *ppd;
1023
1024 ppd = (struct tpacket3_hdr *)curr;
1025 ppd->tp_next_offset = TOTAL_PKT_LEN_INCL_ALIGN(len);
1026 pkc->prev = curr;
1027 pkc->nxt_offset += TOTAL_PKT_LEN_INCL_ALIGN(len);
1028 BLOCK_LEN(pbd) += TOTAL_PKT_LEN_INCL_ALIGN(len);
1029 BLOCK_NUM_PKTS(pbd) += 1;
1030 atomic_inc(&pkc->blk_fill_in_prog);
1031 prb_run_all_ft_ops(pkc, ppd);
1032 }
1033
1034 /* Assumes caller has the sk->rx_queue.lock */
1035 static void *__packet_lookup_frame_in_block(struct packet_sock *po,
1036 struct sk_buff *skb,
1037 int status,
1038 unsigned int len
1039 )
1040 {
1041 struct tpacket_kbdq_core *pkc;
1042 struct tpacket_block_desc *pbd;
1043 char *curr, *end;
1044
1045 pkc = GET_PBDQC_FROM_RB(&po->rx_ring);
1046 pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc);
1047
1048 /* Queue is frozen when user space is lagging behind */
1049 if (prb_queue_frozen(pkc)) {
1050 /*
1051 * Check if that last block which caused the queue to freeze,
1052 * is still in_use by user-space.
1053 */
1054 if (prb_curr_blk_in_use(pbd)) {
1055 /* Can't record this packet */
1056 return NULL;
1057 } else {
1058 /*
1059 * Ok, the block was released by user-space.
1060 * Now let's open that block.
1061 * opening a block also thaws the queue.
1062 * Thawing is a side effect.
1063 */
1064 prb_open_block(pkc, pbd);
1065 }
1066 }
1067
1068 smp_mb();
1069 curr = pkc->nxt_offset;
1070 pkc->skb = skb;
1071 end = (char *)pbd + pkc->kblk_size;
1072
1073 /* first try the current block */
1074 if (curr+TOTAL_PKT_LEN_INCL_ALIGN(len) < end) {
1075 prb_fill_curr_block(curr, pkc, pbd, len);
1076 return (void *)curr;
1077 }
1078
1079 /* Ok, close the current block */
1080 prb_retire_current_block(pkc, po, 0);
1081
1082 /* Now, try to dispatch the next block */
1083 curr = (char *)prb_dispatch_next_block(pkc, po);
1084 if (curr) {
1085 pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc);
1086 prb_fill_curr_block(curr, pkc, pbd, len);
1087 return (void *)curr;
1088 }
1089
1090 /*
1091 * No free blocks are available.user_space hasn't caught up yet.
1092 * Queue was just frozen and now this packet will get dropped.
1093 */
1094 return NULL;
1095 }
1096
1097 static void *packet_current_rx_frame(struct packet_sock *po,
1098 struct sk_buff *skb,
1099 int status, unsigned int len)
1100 {
1101 char *curr = NULL;
1102 switch (po->tp_version) {
1103 case TPACKET_V1:
1104 case TPACKET_V2:
1105 curr = packet_lookup_frame(po, &po->rx_ring,
1106 po->rx_ring.head, status);
1107 return curr;
1108 case TPACKET_V3:
1109 return __packet_lookup_frame_in_block(po, skb, status, len);
1110 default:
1111 WARN(1, "TPACKET version not supported\n");
1112 BUG();
1113 return NULL;
1114 }
1115 }
1116
1117 static void *prb_lookup_block(struct packet_sock *po,
1118 struct packet_ring_buffer *rb,
1119 unsigned int idx,
1120 int status)
1121 {
1122 struct tpacket_kbdq_core *pkc = GET_PBDQC_FROM_RB(rb);
1123 struct tpacket_block_desc *pbd = GET_PBLOCK_DESC(pkc, idx);
1124
1125 if (status != BLOCK_STATUS(pbd))
1126 return NULL;
1127 return pbd;
1128 }
1129
1130 static int prb_previous_blk_num(struct packet_ring_buffer *rb)
1131 {
1132 unsigned int prev;
1133 if (rb->prb_bdqc.kactive_blk_num)
1134 prev = rb->prb_bdqc.kactive_blk_num-1;
1135 else
1136 prev = rb->prb_bdqc.knum_blocks-1;
1137 return prev;
1138 }
1139
1140 /* Assumes caller has held the rx_queue.lock */
1141 static void *__prb_previous_block(struct packet_sock *po,
1142 struct packet_ring_buffer *rb,
1143 int status)
1144 {
1145 unsigned int previous = prb_previous_blk_num(rb);
1146 return prb_lookup_block(po, rb, previous, status);
1147 }
1148
1149 static void *packet_previous_rx_frame(struct packet_sock *po,
1150 struct packet_ring_buffer *rb,
1151 int status)
1152 {
1153 if (po->tp_version <= TPACKET_V2)
1154 return packet_previous_frame(po, rb, status);
1155
1156 return __prb_previous_block(po, rb, status);
1157 }
1158
1159 static void packet_increment_rx_head(struct packet_sock *po,
1160 struct packet_ring_buffer *rb)
1161 {
1162 switch (po->tp_version) {
1163 case TPACKET_V1:
1164 case TPACKET_V2:
1165 return packet_increment_head(rb);
1166 case TPACKET_V3:
1167 default:
1168 WARN(1, "TPACKET version not supported.\n");
1169 BUG();
1170 return;
1171 }
1172 }
1173
1174 static void *packet_previous_frame(struct packet_sock *po,
1175 struct packet_ring_buffer *rb,
1176 int status)
1177 {
1178 unsigned int previous = rb->head ? rb->head - 1 : rb->frame_max;
1179 return packet_lookup_frame(po, rb, previous, status);
1180 }
1181
1182 static void packet_increment_head(struct packet_ring_buffer *buff)
1183 {
1184 buff->head = buff->head != buff->frame_max ? buff->head+1 : 0;
1185 }
1186
1187 static void packet_inc_pending(struct packet_ring_buffer *rb)
1188 {
1189 this_cpu_inc(*rb->pending_refcnt);
1190 }
1191
1192 static void packet_dec_pending(struct packet_ring_buffer *rb)
1193 {
1194 this_cpu_dec(*rb->pending_refcnt);
1195 }
1196
1197 static unsigned int packet_read_pending(const struct packet_ring_buffer *rb)
1198 {
1199 unsigned int refcnt = 0;
1200 int cpu;
1201
1202 /* We don't use pending refcount in rx_ring. */
1203 if (rb->pending_refcnt == NULL)
1204 return 0;
1205
1206 for_each_possible_cpu(cpu)
1207 refcnt += *per_cpu_ptr(rb->pending_refcnt, cpu);
1208
1209 return refcnt;
1210 }
1211
1212 static int packet_alloc_pending(struct packet_sock *po)
1213 {
1214 po->rx_ring.pending_refcnt = NULL;
1215
1216 po->tx_ring.pending_refcnt = alloc_percpu(unsigned int);
1217 if (unlikely(po->tx_ring.pending_refcnt == NULL))
1218 return -ENOBUFS;
1219
1220 return 0;
1221 }
1222
1223 static void packet_free_pending(struct packet_sock *po)
1224 {
1225 free_percpu(po->tx_ring.pending_refcnt);
1226 }
1227
1228 #define ROOM_POW_OFF 2
1229 #define ROOM_NONE 0x0
1230 #define ROOM_LOW 0x1
1231 #define ROOM_NORMAL 0x2
1232
1233 static bool __tpacket_has_room(struct packet_sock *po, int pow_off)
1234 {
1235 int idx, len;
1236
1237 len = po->rx_ring.frame_max + 1;
1238 idx = po->rx_ring.head;
1239 if (pow_off)
1240 idx += len >> pow_off;
1241 if (idx >= len)
1242 idx -= len;
1243 return packet_lookup_frame(po, &po->rx_ring, idx, TP_STATUS_KERNEL);
1244 }
1245
1246 static bool __tpacket_v3_has_room(struct packet_sock *po, int pow_off)
1247 {
1248 int idx, len;
1249
1250 len = po->rx_ring.prb_bdqc.knum_blocks;
1251 idx = po->rx_ring.prb_bdqc.kactive_blk_num;
1252 if (pow_off)
1253 idx += len >> pow_off;
1254 if (idx >= len)
1255 idx -= len;
1256 return prb_lookup_block(po, &po->rx_ring, idx, TP_STATUS_KERNEL);
1257 }
1258
1259 static int __packet_rcv_has_room(struct packet_sock *po, struct sk_buff *skb)
1260 {
1261 struct sock *sk = &po->sk;
1262 int ret = ROOM_NONE;
1263
1264 if (po->prot_hook.func != tpacket_rcv) {
1265 int avail = sk->sk_rcvbuf - atomic_read(&sk->sk_rmem_alloc)
1266 - (skb ? skb->truesize : 0);
1267 if (avail > (sk->sk_rcvbuf >> ROOM_POW_OFF))
1268 return ROOM_NORMAL;
1269 else if (avail > 0)
1270 return ROOM_LOW;
1271 else
1272 return ROOM_NONE;
1273 }
1274
1275 if (po->tp_version == TPACKET_V3) {
1276 if (__tpacket_v3_has_room(po, ROOM_POW_OFF))
1277 ret = ROOM_NORMAL;
1278 else if (__tpacket_v3_has_room(po, 0))
1279 ret = ROOM_LOW;
1280 } else {
1281 if (__tpacket_has_room(po, ROOM_POW_OFF))
1282 ret = ROOM_NORMAL;
1283 else if (__tpacket_has_room(po, 0))
1284 ret = ROOM_LOW;
1285 }
1286
1287 return ret;
1288 }
1289
1290 static int packet_rcv_has_room(struct packet_sock *po, struct sk_buff *skb)
1291 {
1292 int ret;
1293 bool has_room;
1294
1295 spin_lock_bh(&po->sk.sk_receive_queue.lock);
1296 ret = __packet_rcv_has_room(po, skb);
1297 has_room = ret == ROOM_NORMAL;
1298 if (po->pressure == has_room)
1299 po->pressure = !has_room;
1300 spin_unlock_bh(&po->sk.sk_receive_queue.lock);
1301
1302 return ret;
1303 }
1304
1305 static void packet_sock_destruct(struct sock *sk)
1306 {
1307 skb_queue_purge(&sk->sk_error_queue);
1308
1309 WARN_ON(atomic_read(&sk->sk_rmem_alloc));
1310 WARN_ON(refcount_read(&sk->sk_wmem_alloc));
1311
1312 if (!sock_flag(sk, SOCK_DEAD)) {
1313 pr_err("Attempt to release alive packet socket: %p\n", sk);
1314 return;
1315 }
1316
1317 sk_refcnt_debug_dec(sk);
1318 }
1319
1320 static bool fanout_flow_is_huge(struct packet_sock *po, struct sk_buff *skb)
1321 {
1322 u32 rxhash;
1323 int i, count = 0;
1324
1325 rxhash = skb_get_hash(skb);
1326 for (i = 0; i < ROLLOVER_HLEN; i++)
1327 if (po->rollover->history[i] == rxhash)
1328 count++;
1329
1330 po->rollover->history[prandom_u32() % ROLLOVER_HLEN] = rxhash;
1331 return count > (ROLLOVER_HLEN >> 1);
1332 }
1333
1334 static unsigned int fanout_demux_hash(struct packet_fanout *f,
1335 struct sk_buff *skb,
1336 unsigned int num)
1337 {
1338 return reciprocal_scale(__skb_get_hash_symmetric(skb), num);
1339 }
1340
1341 static unsigned int fanout_demux_lb(struct packet_fanout *f,
1342 struct sk_buff *skb,
1343 unsigned int num)
1344 {
1345 unsigned int val = atomic_inc_return(&f->rr_cur);
1346
1347 return val % num;
1348 }
1349
1350 static unsigned int fanout_demux_cpu(struct packet_fanout *f,
1351 struct sk_buff *skb,
1352 unsigned int num)
1353 {
1354 return smp_processor_id() % num;
1355 }
1356
1357 static unsigned int fanout_demux_rnd(struct packet_fanout *f,
1358 struct sk_buff *skb,
1359 unsigned int num)
1360 {
1361 return prandom_u32_max(num);
1362 }
1363
1364 static unsigned int fanout_demux_rollover(struct packet_fanout *f,
1365 struct sk_buff *skb,
1366 unsigned int idx, bool try_self,
1367 unsigned int num)
1368 {
1369 struct packet_sock *po, *po_next, *po_skip = NULL;
1370 unsigned int i, j, room = ROOM_NONE;
1371
1372 po = pkt_sk(f->arr[idx]);
1373
1374 if (try_self) {
1375 room = packet_rcv_has_room(po, skb);
1376 if (room == ROOM_NORMAL ||
1377 (room == ROOM_LOW && !fanout_flow_is_huge(po, skb)))
1378 return idx;
1379 po_skip = po;
1380 }
1381
1382 i = j = min_t(int, po->rollover->sock, num - 1);
1383 do {
1384 po_next = pkt_sk(f->arr[i]);
1385 if (po_next != po_skip && !po_next->pressure &&
1386 packet_rcv_has_room(po_next, skb) == ROOM_NORMAL) {
1387 if (i != j)
1388 po->rollover->sock = i;
1389 atomic_long_inc(&po->rollover->num);
1390 if (room == ROOM_LOW)
1391 atomic_long_inc(&po->rollover->num_huge);
1392 return i;
1393 }
1394
1395 if (++i == num)
1396 i = 0;
1397 } while (i != j);
1398
1399 atomic_long_inc(&po->rollover->num_failed);
1400 return idx;
1401 }
1402
1403 static unsigned int fanout_demux_qm(struct packet_fanout *f,
1404 struct sk_buff *skb,
1405 unsigned int num)
1406 {
1407 return skb_get_queue_mapping(skb) % num;
1408 }
1409
1410 static unsigned int fanout_demux_bpf(struct packet_fanout *f,
1411 struct sk_buff *skb,
1412 unsigned int num)
1413 {
1414 struct bpf_prog *prog;
1415 unsigned int ret = 0;
1416
1417 rcu_read_lock();
1418 prog = rcu_dereference(f->bpf_prog);
1419 if (prog)
1420 ret = bpf_prog_run_clear_cb(prog, skb) % num;
1421 rcu_read_unlock();
1422
1423 return ret;
1424 }
1425
1426 static bool fanout_has_flag(struct packet_fanout *f, u16 flag)
1427 {
1428 return f->flags & (flag >> 8);
1429 }
1430
1431 static int packet_rcv_fanout(struct sk_buff *skb, struct net_device *dev,
1432 struct packet_type *pt, struct net_device *orig_dev)
1433 {
1434 struct packet_fanout *f = pt->af_packet_priv;
1435 unsigned int num = READ_ONCE(f->num_members);
1436 struct net *net = read_pnet(&f->net);
1437 struct packet_sock *po;
1438 unsigned int idx;
1439
1440 if (!net_eq(dev_net(dev), net) || !num) {
1441 kfree_skb(skb);
1442 return 0;
1443 }
1444
1445 if (fanout_has_flag(f, PACKET_FANOUT_FLAG_DEFRAG)) {
1446 skb = ip_check_defrag(net, skb, IP_DEFRAG_AF_PACKET);
1447 if (!skb)
1448 return 0;
1449 }
1450 switch (f->type) {
1451 case PACKET_FANOUT_HASH:
1452 default:
1453 idx = fanout_demux_hash(f, skb, num);
1454 break;
1455 case PACKET_FANOUT_LB:
1456 idx = fanout_demux_lb(f, skb, num);
1457 break;
1458 case PACKET_FANOUT_CPU:
1459 idx = fanout_demux_cpu(f, skb, num);
1460 break;
1461 case PACKET_FANOUT_RND:
1462 idx = fanout_demux_rnd(f, skb, num);
1463 break;
1464 case PACKET_FANOUT_QM:
1465 idx = fanout_demux_qm(f, skb, num);
1466 break;
1467 case PACKET_FANOUT_ROLLOVER:
1468 idx = fanout_demux_rollover(f, skb, 0, false, num);
1469 break;
1470 case PACKET_FANOUT_CBPF:
1471 case PACKET_FANOUT_EBPF:
1472 idx = fanout_demux_bpf(f, skb, num);
1473 break;
1474 }
1475
1476 if (fanout_has_flag(f, PACKET_FANOUT_FLAG_ROLLOVER))
1477 idx = fanout_demux_rollover(f, skb, idx, true, num);
1478
1479 po = pkt_sk(f->arr[idx]);
1480 return po->prot_hook.func(skb, dev, &po->prot_hook, orig_dev);
1481 }
1482
1483 DEFINE_MUTEX(fanout_mutex);
1484 EXPORT_SYMBOL_GPL(fanout_mutex);
1485 static LIST_HEAD(fanout_list);
1486 static u16 fanout_next_id;
1487
1488 static void __fanout_link(struct sock *sk, struct packet_sock *po)
1489 {
1490 struct packet_fanout *f = po->fanout;
1491
1492 spin_lock(&f->lock);
1493 f->arr[f->num_members] = sk;
1494 smp_wmb();
1495 f->num_members++;
1496 if (f->num_members == 1)
1497 dev_add_pack(&f->prot_hook);
1498 spin_unlock(&f->lock);
1499 }
1500
1501 static void __fanout_unlink(struct sock *sk, struct packet_sock *po)
1502 {
1503 struct packet_fanout *f = po->fanout;
1504 int i;
1505
1506 spin_lock(&f->lock);
1507 for (i = 0; i < f->num_members; i++) {
1508 if (f->arr[i] == sk)
1509 break;
1510 }
1511 BUG_ON(i >= f->num_members);
1512 f->arr[i] = f->arr[f->num_members - 1];
1513 f->num_members--;
1514 if (f->num_members == 0)
1515 __dev_remove_pack(&f->prot_hook);
1516 spin_unlock(&f->lock);
1517 }
1518
1519 static bool match_fanout_group(struct packet_type *ptype, struct sock *sk)
1520 {
1521 if (sk->sk_family != PF_PACKET)
1522 return false;
1523
1524 return ptype->af_packet_priv == pkt_sk(sk)->fanout;
1525 }
1526
1527 static void fanout_init_data(struct packet_fanout *f)
1528 {
1529 switch (f->type) {
1530 case PACKET_FANOUT_LB:
1531 atomic_set(&f->rr_cur, 0);
1532 break;
1533 case PACKET_FANOUT_CBPF:
1534 case PACKET_FANOUT_EBPF:
1535 RCU_INIT_POINTER(f->bpf_prog, NULL);
1536 break;
1537 }
1538 }
1539
1540 static void __fanout_set_data_bpf(struct packet_fanout *f, struct bpf_prog *new)
1541 {
1542 struct bpf_prog *old;
1543
1544 spin_lock(&f->lock);
1545 old = rcu_dereference_protected(f->bpf_prog, lockdep_is_held(&f->lock));
1546 rcu_assign_pointer(f->bpf_prog, new);
1547 spin_unlock(&f->lock);
1548
1549 if (old) {
1550 synchronize_net();
1551 bpf_prog_destroy(old);
1552 }
1553 }
1554
1555 static int fanout_set_data_cbpf(struct packet_sock *po, char __user *data,
1556 unsigned int len)
1557 {
1558 struct bpf_prog *new;
1559 struct sock_fprog fprog;
1560 int ret;
1561
1562 if (sock_flag(&po->sk, SOCK_FILTER_LOCKED))
1563 return -EPERM;
1564 if (len != sizeof(fprog))
1565 return -EINVAL;
1566 if (copy_from_user(&fprog, data, len))
1567 return -EFAULT;
1568
1569 ret = bpf_prog_create_from_user(&new, &fprog, NULL, false);
1570 if (ret)
1571 return ret;
1572
1573 __fanout_set_data_bpf(po->fanout, new);
1574 return 0;
1575 }
1576
1577 static int fanout_set_data_ebpf(struct packet_sock *po, char __user *data,
1578 unsigned int len)
1579 {
1580 struct bpf_prog *new;
1581 u32 fd;
1582
1583 if (sock_flag(&po->sk, SOCK_FILTER_LOCKED))
1584 return -EPERM;
1585 if (len != sizeof(fd))
1586 return -EINVAL;
1587 if (copy_from_user(&fd, data, len))
1588 return -EFAULT;
1589
1590 new = bpf_prog_get_type(fd, BPF_PROG_TYPE_SOCKET_FILTER);
1591 if (IS_ERR(new))
1592 return PTR_ERR(new);
1593
1594 __fanout_set_data_bpf(po->fanout, new);
1595 return 0;
1596 }
1597
1598 static int fanout_set_data(struct packet_sock *po, char __user *data,
1599 unsigned int len)
1600 {
1601 switch (po->fanout->type) {
1602 case PACKET_FANOUT_CBPF:
1603 return fanout_set_data_cbpf(po, data, len);
1604 case PACKET_FANOUT_EBPF:
1605 return fanout_set_data_ebpf(po, data, len);
1606 default:
1607 return -EINVAL;
1608 };
1609 }
1610
1611 static void fanout_release_data(struct packet_fanout *f)
1612 {
1613 switch (f->type) {
1614 case PACKET_FANOUT_CBPF:
1615 case PACKET_FANOUT_EBPF:
1616 __fanout_set_data_bpf(f, NULL);
1617 };
1618 }
1619
1620 static bool __fanout_id_is_free(struct sock *sk, u16 candidate_id)
1621 {
1622 struct packet_fanout *f;
1623
1624 list_for_each_entry(f, &fanout_list, list) {
1625 if (f->id == candidate_id &&
1626 read_pnet(&f->net) == sock_net(sk)) {
1627 return false;
1628 }
1629 }
1630 return true;
1631 }
1632
1633 static bool fanout_find_new_id(struct sock *sk, u16 *new_id)
1634 {
1635 u16 id = fanout_next_id;
1636
1637 do {
1638 if (__fanout_id_is_free(sk, id)) {
1639 *new_id = id;
1640 fanout_next_id = id + 1;
1641 return true;
1642 }
1643
1644 id++;
1645 } while (id != fanout_next_id);
1646
1647 return false;
1648 }
1649
1650 static int fanout_add(struct sock *sk, u16 id, u16 type_flags)
1651 {
1652 struct packet_rollover *rollover = NULL;
1653 struct packet_sock *po = pkt_sk(sk);
1654 struct packet_fanout *f, *match;
1655 u8 type = type_flags & 0xff;
1656 u8 flags = type_flags >> 8;
1657 int err;
1658
1659 switch (type) {
1660 case PACKET_FANOUT_ROLLOVER:
1661 if (type_flags & PACKET_FANOUT_FLAG_ROLLOVER)
1662 return -EINVAL;
1663 case PACKET_FANOUT_HASH:
1664 case PACKET_FANOUT_LB:
1665 case PACKET_FANOUT_CPU:
1666 case PACKET_FANOUT_RND:
1667 case PACKET_FANOUT_QM:
1668 case PACKET_FANOUT_CBPF:
1669 case PACKET_FANOUT_EBPF:
1670 break;
1671 default:
1672 return -EINVAL;
1673 }
1674
1675 mutex_lock(&fanout_mutex);
1676
1677 err = -EALREADY;
1678 if (po->fanout)
1679 goto out;
1680
1681 if (type == PACKET_FANOUT_ROLLOVER ||
1682 (type_flags & PACKET_FANOUT_FLAG_ROLLOVER)) {
1683 err = -ENOMEM;
1684 rollover = kzalloc(sizeof(*rollover), GFP_KERNEL);
1685 if (!rollover)
1686 goto out;
1687 atomic_long_set(&rollover->num, 0);
1688 atomic_long_set(&rollover->num_huge, 0);
1689 atomic_long_set(&rollover->num_failed, 0);
1690 }
1691
1692 if (type_flags & PACKET_FANOUT_FLAG_UNIQUEID) {
1693 if (id != 0) {
1694 err = -EINVAL;
1695 goto out;
1696 }
1697 if (!fanout_find_new_id(sk, &id)) {
1698 err = -ENOMEM;
1699 goto out;
1700 }
1701 /* ephemeral flag for the first socket in the group: drop it */
1702 flags &= ~(PACKET_FANOUT_FLAG_UNIQUEID >> 8);
1703 }
1704
1705 match = NULL;
1706 list_for_each_entry(f, &fanout_list, list) {
1707 if (f->id == id &&
1708 read_pnet(&f->net) == sock_net(sk)) {
1709 match = f;
1710 break;
1711 }
1712 }
1713 err = -EINVAL;
1714 if (match && match->flags != flags)
1715 goto out;
1716 if (!match) {
1717 err = -ENOMEM;
1718 match = kzalloc(sizeof(*match), GFP_KERNEL);
1719 if (!match)
1720 goto out;
1721 write_pnet(&match->net, sock_net(sk));
1722 match->id = id;
1723 match->type = type;
1724 match->flags = flags;
1725 INIT_LIST_HEAD(&match->list);
1726 spin_lock_init(&match->lock);
1727 refcount_set(&match->sk_ref, 0);
1728 fanout_init_data(match);
1729 match->prot_hook.type = po->prot_hook.type;
1730 match->prot_hook.dev = po->prot_hook.dev;
1731 match->prot_hook.func = packet_rcv_fanout;
1732 match->prot_hook.af_packet_priv = match;
1733 match->prot_hook.id_match = match_fanout_group;
1734 list_add(&match->list, &fanout_list);
1735 }
1736 err = -EINVAL;
1737
1738 spin_lock(&po->bind_lock);
1739 if (po->running &&
1740 match->type == type &&
1741 match->prot_hook.type == po->prot_hook.type &&
1742 match->prot_hook.dev == po->prot_hook.dev) {
1743 err = -ENOSPC;
1744 if (refcount_read(&match->sk_ref) < PACKET_FANOUT_MAX) {
1745 __dev_remove_pack(&po->prot_hook);
1746 po->fanout = match;
1747 po->rollover = rollover;
1748 rollover = NULL;
1749 refcount_set(&match->sk_ref, refcount_read(&match->sk_ref) + 1);
1750 __fanout_link(sk, po);
1751 err = 0;
1752 }
1753 }
1754 spin_unlock(&po->bind_lock);
1755
1756 if (err && !refcount_read(&match->sk_ref)) {
1757 list_del(&match->list);
1758 kfree(match);
1759 }
1760
1761 out:
1762 kfree(rollover);
1763 mutex_unlock(&fanout_mutex);
1764 return err;
1765 }
1766
1767 /* If pkt_sk(sk)->fanout->sk_ref is zero, this function removes
1768 * pkt_sk(sk)->fanout from fanout_list and returns pkt_sk(sk)->fanout.
1769 * It is the responsibility of the caller to call fanout_release_data() and
1770 * free the returned packet_fanout (after synchronize_net())
1771 */
1772 static struct packet_fanout *fanout_release(struct sock *sk)
1773 {
1774 struct packet_sock *po = pkt_sk(sk);
1775 struct packet_fanout *f;
1776
1777 mutex_lock(&fanout_mutex);
1778 f = po->fanout;
1779 if (f) {
1780 po->fanout = NULL;
1781
1782 if (refcount_dec_and_test(&f->sk_ref))
1783 list_del(&f->list);
1784 else
1785 f = NULL;
1786 }
1787 mutex_unlock(&fanout_mutex);
1788
1789 return f;
1790 }
1791
1792 static bool packet_extra_vlan_len_allowed(const struct net_device *dev,
1793 struct sk_buff *skb)
1794 {
1795 /* Earlier code assumed this would be a VLAN pkt, double-check
1796 * this now that we have the actual packet in hand. We can only
1797 * do this check on Ethernet devices.
1798 */
1799 if (unlikely(dev->type != ARPHRD_ETHER))
1800 return false;
1801
1802 skb_reset_mac_header(skb);
1803 return likely(eth_hdr(skb)->h_proto == htons(ETH_P_8021Q));
1804 }
1805
1806 static const struct proto_ops packet_ops;
1807
1808 static const struct proto_ops packet_ops_spkt;
1809
1810 static int packet_rcv_spkt(struct sk_buff *skb, struct net_device *dev,
1811 struct packet_type *pt, struct net_device *orig_dev)
1812 {
1813 struct sock *sk;
1814 struct sockaddr_pkt *spkt;
1815
1816 /*
1817 * When we registered the protocol we saved the socket in the data
1818 * field for just this event.
1819 */
1820
1821 sk = pt->af_packet_priv;
1822
1823 /*
1824 * Yank back the headers [hope the device set this
1825 * right or kerboom...]
1826 *
1827 * Incoming packets have ll header pulled,
1828 * push it back.
1829 *
1830 * For outgoing ones skb->data == skb_mac_header(skb)
1831 * so that this procedure is noop.
1832 */
1833
1834 if (skb->pkt_type == PACKET_LOOPBACK)
1835 goto out;
1836
1837 if (!net_eq(dev_net(dev), sock_net(sk)))
1838 goto out;
1839
1840 skb = skb_share_check(skb, GFP_ATOMIC);
1841 if (skb == NULL)
1842 goto oom;
1843
1844 /* drop any routing info */
1845 skb_dst_drop(skb);
1846
1847 /* drop conntrack reference */
1848 nf_reset(skb);
1849
1850 spkt = &PACKET_SKB_CB(skb)->sa.pkt;
1851
1852 skb_push(skb, skb->data - skb_mac_header(skb));
1853
1854 /*
1855 * The SOCK_PACKET socket receives _all_ frames.
1856 */
1857
1858 spkt->spkt_family = dev->type;
1859 strlcpy(spkt->spkt_device, dev->name, sizeof(spkt->spkt_device));
1860 spkt->spkt_protocol = skb->protocol;
1861
1862 /*
1863 * Charge the memory to the socket. This is done specifically
1864 * to prevent sockets using all the memory up.
1865 */
1866
1867 if (sock_queue_rcv_skb(sk, skb) == 0)
1868 return 0;
1869
1870 out:
1871 kfree_skb(skb);
1872 oom:
1873 return 0;
1874 }
1875
1876
1877 /*
1878 * Output a raw packet to a device layer. This bypasses all the other
1879 * protocol layers and you must therefore supply it with a complete frame
1880 */
1881
1882 static int packet_sendmsg_spkt(struct socket *sock, struct msghdr *msg,
1883 size_t len)
1884 {
1885 struct sock *sk = sock->sk;
1886 DECLARE_SOCKADDR(struct sockaddr_pkt *, saddr, msg->msg_name);
1887 struct sk_buff *skb = NULL;
1888 struct net_device *dev;
1889 struct sockcm_cookie sockc;
1890 __be16 proto = 0;
1891 int err;
1892 int extra_len = 0;
1893
1894 /*
1895 * Get and verify the address.
1896 */
1897
1898 if (saddr) {
1899 if (msg->msg_namelen < sizeof(struct sockaddr))
1900 return -EINVAL;
1901 if (msg->msg_namelen == sizeof(struct sockaddr_pkt))
1902 proto = saddr->spkt_protocol;
1903 } else
1904 return -ENOTCONN; /* SOCK_PACKET must be sent giving an address */
1905
1906 /*
1907 * Find the device first to size check it
1908 */
1909
1910 saddr->spkt_device[sizeof(saddr->spkt_device) - 1] = 0;
1911 retry:
1912 rcu_read_lock();
1913 dev = dev_get_by_name_rcu(sock_net(sk), saddr->spkt_device);
1914 err = -ENODEV;
1915 if (dev == NULL)
1916 goto out_unlock;
1917
1918 err = -ENETDOWN;
1919 if (!(dev->flags & IFF_UP))
1920 goto out_unlock;
1921
1922 /*
1923 * You may not queue a frame bigger than the mtu. This is the lowest level
1924 * raw protocol and you must do your own fragmentation at this level.
1925 */
1926
1927 if (unlikely(sock_flag(sk, SOCK_NOFCS))) {
1928 if (!netif_supports_nofcs(dev)) {
1929 err = -EPROTONOSUPPORT;
1930 goto out_unlock;
1931 }
1932 extra_len = 4; /* We're doing our own CRC */
1933 }
1934
1935 err = -EMSGSIZE;
1936 if (len > dev->mtu + dev->hard_header_len + VLAN_HLEN + extra_len)
1937 goto out_unlock;
1938
1939 if (!skb) {
1940 size_t reserved = LL_RESERVED_SPACE(dev);
1941 int tlen = dev->needed_tailroom;
1942 unsigned int hhlen = dev->header_ops ? dev->hard_header_len : 0;
1943
1944 rcu_read_unlock();
1945 skb = sock_wmalloc(sk, len + reserved + tlen, 0, GFP_KERNEL);
1946 if (skb == NULL)
1947 return -ENOBUFS;
1948 /* FIXME: Save some space for broken drivers that write a hard
1949 * header at transmission time by themselves. PPP is the notable
1950 * one here. This should really be fixed at the driver level.
1951 */
1952 skb_reserve(skb, reserved);
1953 skb_reset_network_header(skb);
1954
1955 /* Try to align data part correctly */
1956 if (hhlen) {
1957 skb->data -= hhlen;
1958 skb->tail -= hhlen;
1959 if (len < hhlen)
1960 skb_reset_network_header(skb);
1961 }
1962 err = memcpy_from_msg(skb_put(skb, len), msg, len);
1963 if (err)
1964 goto out_free;
1965 goto retry;
1966 }
1967
1968 if (!dev_validate_header(dev, skb->data, len)) {
1969 err = -EINVAL;
1970 goto out_unlock;
1971 }
1972 if (len > (dev->mtu + dev->hard_header_len + extra_len) &&
1973 !packet_extra_vlan_len_allowed(dev, skb)) {
1974 err = -EMSGSIZE;
1975 goto out_unlock;
1976 }
1977
1978 sockc.tsflags = sk->sk_tsflags;
1979 if (msg->msg_controllen) {
1980 err = sock_cmsg_send(sk, msg, &sockc);
1981 if (unlikely(err))
1982 goto out_unlock;
1983 }
1984
1985 skb->protocol = proto;
1986 skb->dev = dev;
1987 skb->priority = sk->sk_priority;
1988 skb->mark = sk->sk_mark;
1989
1990 sock_tx_timestamp(sk, sockc.tsflags, &skb_shinfo(skb)->tx_flags);
1991
1992 if (unlikely(extra_len == 4))
1993 skb->no_fcs = 1;
1994
1995 skb_probe_transport_header(skb, 0);
1996
1997 dev_queue_xmit(skb);
1998 rcu_read_unlock();
1999 return len;
2000
2001 out_unlock:
2002 rcu_read_unlock();
2003 out_free:
2004 kfree_skb(skb);
2005 return err;
2006 }
2007
2008 static unsigned int run_filter(struct sk_buff *skb,
2009 const struct sock *sk,
2010 unsigned int res)
2011 {
2012 struct sk_filter *filter;
2013
2014 rcu_read_lock();
2015 filter = rcu_dereference(sk->sk_filter);
2016 if (filter != NULL)
2017 res = bpf_prog_run_clear_cb(filter->prog, skb);
2018 rcu_read_unlock();
2019
2020 return res;
2021 }
2022
2023 static int packet_rcv_vnet(struct msghdr *msg, const struct sk_buff *skb,
2024 size_t *len)
2025 {
2026 struct virtio_net_hdr vnet_hdr;
2027
2028 if (*len < sizeof(vnet_hdr))
2029 return -EINVAL;
2030 *len -= sizeof(vnet_hdr);
2031
2032 if (virtio_net_hdr_from_skb(skb, &vnet_hdr, vio_le(), true))
2033 return -EINVAL;
2034
2035 return memcpy_to_msg(msg, (void *)&vnet_hdr, sizeof(vnet_hdr));
2036 }
2037
2038 /*
2039 * This function makes lazy skb cloning in hope that most of packets
2040 * are discarded by BPF.
2041 *
2042 * Note tricky part: we DO mangle shared skb! skb->data, skb->len
2043 * and skb->cb are mangled. It works because (and until) packets
2044 * falling here are owned by current CPU. Output packets are cloned
2045 * by dev_queue_xmit_nit(), input packets are processed by net_bh
2046 * sequencially, so that if we return skb to original state on exit,
2047 * we will not harm anyone.
2048 */
2049
2050 static int packet_rcv(struct sk_buff *skb, struct net_device *dev,
2051 struct packet_type *pt, struct net_device *orig_dev)
2052 {
2053 struct sock *sk;
2054 struct sockaddr_ll *sll;
2055 struct packet_sock *po;
2056 u8 *skb_head = skb->data;
2057 int skb_len = skb->len;
2058 unsigned int snaplen, res;
2059 bool is_drop_n_account = false;
2060
2061 if (skb->pkt_type == PACKET_LOOPBACK)
2062 goto drop;
2063
2064 sk = pt->af_packet_priv;
2065 po = pkt_sk(sk);
2066
2067 if (!net_eq(dev_net(dev), sock_net(sk)))
2068 goto drop;
2069
2070 skb->dev = dev;
2071
2072 if (dev->header_ops) {
2073 /* The device has an explicit notion of ll header,
2074 * exported to higher levels.
2075 *
2076 * Otherwise, the device hides details of its frame
2077 * structure, so that corresponding packet head is
2078 * never delivered to user.
2079 */
2080 if (sk->sk_type != SOCK_DGRAM)
2081 skb_push(skb, skb->data - skb_mac_header(skb));
2082 else if (skb->pkt_type == PACKET_OUTGOING) {
2083 /* Special case: outgoing packets have ll header at head */
2084 skb_pull(skb, skb_network_offset(skb));
2085 }
2086 }
2087
2088 snaplen = skb->len;
2089
2090 res = run_filter(skb, sk, snaplen);
2091 if (!res)
2092 goto drop_n_restore;
2093 if (snaplen > res)
2094 snaplen = res;
2095
2096 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
2097 goto drop_n_acct;
2098
2099 if (skb_shared(skb)) {
2100 struct sk_buff *nskb = skb_clone(skb, GFP_ATOMIC);
2101 if (nskb == NULL)
2102 goto drop_n_acct;
2103
2104 if (skb_head != skb->data) {
2105 skb->data = skb_head;
2106 skb->len = skb_len;
2107 }
2108 consume_skb(skb);
2109 skb = nskb;
2110 }
2111
2112 sock_skb_cb_check_size(sizeof(*PACKET_SKB_CB(skb)) + MAX_ADDR_LEN - 8);
2113
2114 sll = &PACKET_SKB_CB(skb)->sa.ll;
2115 sll->sll_hatype = dev->type;
2116 sll->sll_pkttype = skb->pkt_type;
2117 if (unlikely(po->origdev))
2118 sll->sll_ifindex = orig_dev->ifindex;
2119 else
2120 sll->sll_ifindex = dev->ifindex;
2121
2122 sll->sll_halen = dev_parse_header(skb, sll->sll_addr);
2123
2124 /* sll->sll_family and sll->sll_protocol are set in packet_recvmsg().
2125 * Use their space for storing the original skb length.
2126 */
2127 PACKET_SKB_CB(skb)->sa.origlen = skb->len;
2128
2129 if (pskb_trim(skb, snaplen))
2130 goto drop_n_acct;
2131
2132 skb_set_owner_r(skb, sk);
2133 skb->dev = NULL;
2134 skb_dst_drop(skb);
2135
2136 /* drop conntrack reference */
2137 nf_reset(skb);
2138
2139 spin_lock(&sk->sk_receive_queue.lock);
2140 po->stats.stats1.tp_packets++;
2141 sock_skb_set_dropcount(sk, skb);
2142 __skb_queue_tail(&sk->sk_receive_queue, skb);
2143 spin_unlock(&sk->sk_receive_queue.lock);
2144 sk->sk_data_ready(sk);
2145 return 0;
2146
2147 drop_n_acct:
2148 is_drop_n_account = true;
2149 spin_lock(&sk->sk_receive_queue.lock);
2150 po->stats.stats1.tp_drops++;
2151 atomic_inc(&sk->sk_drops);
2152 spin_unlock(&sk->sk_receive_queue.lock);
2153
2154 drop_n_restore:
2155 if (skb_head != skb->data && skb_shared(skb)) {
2156 skb->data = skb_head;
2157 skb->len = skb_len;
2158 }
2159 drop:
2160 if (!is_drop_n_account)
2161 consume_skb(skb);
2162 else
2163 kfree_skb(skb);
2164 return 0;
2165 }
2166
2167 static int tpacket_rcv(struct sk_buff *skb, struct net_device *dev,
2168 struct packet_type *pt, struct net_device *orig_dev)
2169 {
2170 struct sock *sk;
2171 struct packet_sock *po;
2172 struct sockaddr_ll *sll;
2173 union tpacket_uhdr h;
2174 u8 *skb_head = skb->data;
2175 int skb_len = skb->len;
2176 unsigned int snaplen, res;
2177 unsigned long status = TP_STATUS_USER;
2178 unsigned short macoff, netoff, hdrlen;
2179 struct sk_buff *copy_skb = NULL;
2180 struct timespec ts;
2181 __u32 ts_status;
2182 bool is_drop_n_account = false;
2183 bool do_vnet = false;
2184
2185 /* struct tpacket{2,3}_hdr is aligned to a multiple of TPACKET_ALIGNMENT.
2186 * We may add members to them until current aligned size without forcing
2187 * userspace to call getsockopt(..., PACKET_HDRLEN, ...).
2188 */
2189 BUILD_BUG_ON(TPACKET_ALIGN(sizeof(*h.h2)) != 32);
2190 BUILD_BUG_ON(TPACKET_ALIGN(sizeof(*h.h3)) != 48);
2191
2192 if (skb->pkt_type == PACKET_LOOPBACK)
2193 goto drop;
2194
2195 sk = pt->af_packet_priv;
2196 po = pkt_sk(sk);
2197
2198 if (!net_eq(dev_net(dev), sock_net(sk)))
2199 goto drop;
2200
2201 if (dev->header_ops) {
2202 if (sk->sk_type != SOCK_DGRAM)
2203 skb_push(skb, skb->data - skb_mac_header(skb));
2204 else if (skb->pkt_type == PACKET_OUTGOING) {
2205 /* Special case: outgoing packets have ll header at head */
2206 skb_pull(skb, skb_network_offset(skb));
2207 }
2208 }
2209
2210 snaplen = skb->len;
2211
2212 res = run_filter(skb, sk, snaplen);
2213 if (!res)
2214 goto drop_n_restore;
2215
2216 if (skb->ip_summed == CHECKSUM_PARTIAL)
2217 status |= TP_STATUS_CSUMNOTREADY;
2218 else if (skb->pkt_type != PACKET_OUTGOING &&
2219 (skb->ip_summed == CHECKSUM_COMPLETE ||
2220 skb_csum_unnecessary(skb)))
2221 status |= TP_STATUS_CSUM_VALID;
2222
2223 if (snaplen > res)
2224 snaplen = res;
2225
2226 if (sk->sk_type == SOCK_DGRAM) {
2227 macoff = netoff = TPACKET_ALIGN(po->tp_hdrlen) + 16 +
2228 po->tp_reserve;
2229 } else {
2230 unsigned int maclen = skb_network_offset(skb);
2231 netoff = TPACKET_ALIGN(po->tp_hdrlen +
2232 (maclen < 16 ? 16 : maclen)) +
2233 po->tp_reserve;
2234 if (po->has_vnet_hdr) {
2235 netoff += sizeof(struct virtio_net_hdr);
2236 do_vnet = true;
2237 }
2238 macoff = netoff - maclen;
2239 }
2240 if (po->tp_version <= TPACKET_V2) {
2241 if (macoff + snaplen > po->rx_ring.frame_size) {
2242 if (po->copy_thresh &&
2243 atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf) {
2244 if (skb_shared(skb)) {
2245 copy_skb = skb_clone(skb, GFP_ATOMIC);
2246 } else {
2247 copy_skb = skb_get(skb);
2248 skb_head = skb->data;
2249 }
2250 if (copy_skb)
2251 skb_set_owner_r(copy_skb, sk);
2252 }
2253 snaplen = po->rx_ring.frame_size - macoff;
2254 if ((int)snaplen < 0) {
2255 snaplen = 0;
2256 do_vnet = false;
2257 }
2258 }
2259 } else if (unlikely(macoff + snaplen >
2260 GET_PBDQC_FROM_RB(&po->rx_ring)->max_frame_len)) {
2261 u32 nval;
2262
2263 nval = GET_PBDQC_FROM_RB(&po->rx_ring)->max_frame_len - macoff;
2264 pr_err_once("tpacket_rcv: packet too big, clamped from %u to %u. macoff=%u\n",
2265 snaplen, nval, macoff);
2266 snaplen = nval;
2267 if (unlikely((int)snaplen < 0)) {
2268 snaplen = 0;
2269 macoff = GET_PBDQC_FROM_RB(&po->rx_ring)->max_frame_len;
2270 do_vnet = false;
2271 }
2272 }
2273 spin_lock(&sk->sk_receive_queue.lock);
2274 h.raw = packet_current_rx_frame(po, skb,
2275 TP_STATUS_KERNEL, (macoff+snaplen));
2276 if (!h.raw)
2277 goto drop_n_account;
2278 if (po->tp_version <= TPACKET_V2) {
2279 packet_increment_rx_head(po, &po->rx_ring);
2280 /*
2281 * LOSING will be reported till you read the stats,
2282 * because it's COR - Clear On Read.
2283 * Anyways, moving it for V1/V2 only as V3 doesn't need this
2284 * at packet level.
2285 */
2286 if (po->stats.stats1.tp_drops)
2287 status |= TP_STATUS_LOSING;
2288 }
2289 po->stats.stats1.tp_packets++;
2290 if (copy_skb) {
2291 status |= TP_STATUS_COPY;
2292 __skb_queue_tail(&sk->sk_receive_queue, copy_skb);
2293 }
2294 spin_unlock(&sk->sk_receive_queue.lock);
2295
2296 if (do_vnet) {
2297 if (virtio_net_hdr_from_skb(skb, h.raw + macoff -
2298 sizeof(struct virtio_net_hdr),
2299 vio_le(), true)) {
2300 spin_lock(&sk->sk_receive_queue.lock);
2301 goto drop_n_account;
2302 }
2303 }
2304
2305 skb_copy_bits(skb, 0, h.raw + macoff, snaplen);
2306
2307 if (!(ts_status = tpacket_get_timestamp(skb, &ts, po->tp_tstamp)))
2308 getnstimeofday(&ts);
2309
2310 status |= ts_status;
2311
2312 switch (po->tp_version) {
2313 case TPACKET_V1:
2314 h.h1->tp_len = skb->len;
2315 h.h1->tp_snaplen = snaplen;
2316 h.h1->tp_mac = macoff;
2317 h.h1->tp_net = netoff;
2318 h.h1->tp_sec = ts.tv_sec;
2319 h.h1->tp_usec = ts.tv_nsec / NSEC_PER_USEC;
2320 hdrlen = sizeof(*h.h1);
2321 break;
2322 case TPACKET_V2:
2323 h.h2->tp_len = skb->len;
2324 h.h2->tp_snaplen = snaplen;
2325 h.h2->tp_mac = macoff;
2326 h.h2->tp_net = netoff;
2327 h.h2->tp_sec = ts.tv_sec;
2328 h.h2->tp_nsec = ts.tv_nsec;
2329 if (skb_vlan_tag_present(skb)) {
2330 h.h2->tp_vlan_tci = skb_vlan_tag_get(skb);
2331 h.h2->tp_vlan_tpid = ntohs(skb->vlan_proto);
2332 status |= TP_STATUS_VLAN_VALID | TP_STATUS_VLAN_TPID_VALID;
2333 } else {
2334 h.h2->tp_vlan_tci = 0;
2335 h.h2->tp_vlan_tpid = 0;
2336 }
2337 memset(h.h2->tp_padding, 0, sizeof(h.h2->tp_padding));
2338 hdrlen = sizeof(*h.h2);
2339 break;
2340 case TPACKET_V3:
2341 /* tp_nxt_offset,vlan are already populated above.
2342 * So DONT clear those fields here
2343 */
2344 h.h3->tp_status |= status;
2345 h.h3->tp_len = skb->len;
2346 h.h3->tp_snaplen = snaplen;
2347 h.h3->tp_mac = macoff;
2348 h.h3->tp_net = netoff;
2349 h.h3->tp_sec = ts.tv_sec;
2350 h.h3->tp_nsec = ts.tv_nsec;
2351 memset(h.h3->tp_padding, 0, sizeof(h.h3->tp_padding));
2352 hdrlen = sizeof(*h.h3);
2353 break;
2354 default:
2355 BUG();
2356 }
2357
2358 sll = h.raw + TPACKET_ALIGN(hdrlen);
2359 sll->sll_halen = dev_parse_header(skb, sll->sll_addr);
2360 sll->sll_family = AF_PACKET;
2361 sll->sll_hatype = dev->type;
2362 sll->sll_protocol = skb->protocol;
2363 sll->sll_pkttype = skb->pkt_type;
2364 if (unlikely(po->origdev))
2365 sll->sll_ifindex = orig_dev->ifindex;
2366 else
2367 sll->sll_ifindex = dev->ifindex;
2368
2369 smp_mb();
2370
2371 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1
2372 if (po->tp_version <= TPACKET_V2) {
2373 u8 *start, *end;
2374
2375 end = (u8 *) PAGE_ALIGN((unsigned long) h.raw +
2376 macoff + snaplen);
2377
2378 for (start = h.raw; start < end; start += PAGE_SIZE)
2379 flush_dcache_page(pgv_to_page(start));
2380 }
2381 smp_wmb();
2382 #endif
2383
2384 if (po->tp_version <= TPACKET_V2) {
2385 __packet_set_status(po, h.raw, status);
2386 sk->sk_data_ready(sk);
2387 } else {
2388 prb_clear_blk_fill_status(&po->rx_ring);
2389 }
2390
2391 drop_n_restore:
2392 if (skb_head != skb->data && skb_shared(skb)) {
2393 skb->data = skb_head;
2394 skb->len = skb_len;
2395 }
2396 drop:
2397 if (!is_drop_n_account)
2398 consume_skb(skb);
2399 else
2400 kfree_skb(skb);
2401 return 0;
2402
2403 drop_n_account:
2404 is_drop_n_account = true;
2405 po->stats.stats1.tp_drops++;
2406 spin_unlock(&sk->sk_receive_queue.lock);
2407
2408 sk->sk_data_ready(sk);
2409 kfree_skb(copy_skb);
2410 goto drop_n_restore;
2411 }
2412
2413 static void tpacket_destruct_skb(struct sk_buff *skb)
2414 {
2415 struct packet_sock *po = pkt_sk(skb->sk);
2416
2417 if (likely(po->tx_ring.pg_vec)) {
2418 void *ph;
2419 __u32 ts;
2420
2421 ph = skb_shinfo(skb)->destructor_arg;
2422 packet_dec_pending(&po->tx_ring);
2423
2424 ts = __packet_set_timestamp(po, ph, skb);
2425 __packet_set_status(po, ph, TP_STATUS_AVAILABLE | ts);
2426 }
2427
2428 sock_wfree(skb);
2429 }
2430
2431 static void tpacket_set_protocol(const struct net_device *dev,
2432 struct sk_buff *skb)
2433 {
2434 if (dev->type == ARPHRD_ETHER) {
2435 skb_reset_mac_header(skb);
2436 skb->protocol = eth_hdr(skb)->h_proto;
2437 }
2438 }
2439
2440 static int __packet_snd_vnet_parse(struct virtio_net_hdr *vnet_hdr, size_t len)
2441 {
2442 if ((vnet_hdr->flags & VIRTIO_NET_HDR_F_NEEDS_CSUM) &&
2443 (__virtio16_to_cpu(vio_le(), vnet_hdr->csum_start) +
2444 __virtio16_to_cpu(vio_le(), vnet_hdr->csum_offset) + 2 >
2445 __virtio16_to_cpu(vio_le(), vnet_hdr->hdr_len)))
2446 vnet_hdr->hdr_len = __cpu_to_virtio16(vio_le(),
2447 __virtio16_to_cpu(vio_le(), vnet_hdr->csum_start) +
2448 __virtio16_to_cpu(vio_le(), vnet_hdr->csum_offset) + 2);
2449
2450 if (__virtio16_to_cpu(vio_le(), vnet_hdr->hdr_len) > len)
2451 return -EINVAL;
2452
2453 return 0;
2454 }
2455
2456 static int packet_snd_vnet_parse(struct msghdr *msg, size_t *len,
2457 struct virtio_net_hdr *vnet_hdr)
2458 {
2459 if (*len < sizeof(*vnet_hdr))
2460 return -EINVAL;
2461 *len -= sizeof(*vnet_hdr);
2462
2463 if (!copy_from_iter_full(vnet_hdr, sizeof(*vnet_hdr), &msg->msg_iter))
2464 return -EFAULT;
2465
2466 return __packet_snd_vnet_parse(vnet_hdr, *len);
2467 }
2468
2469 static int tpacket_fill_skb(struct packet_sock *po, struct sk_buff *skb,
2470 void *frame, struct net_device *dev, void *data, int tp_len,
2471 __be16 proto, unsigned char *addr, int hlen, int copylen,
2472 const struct sockcm_cookie *sockc)
2473 {
2474 union tpacket_uhdr ph;
2475 int to_write, offset, len, nr_frags, len_max;
2476 struct socket *sock = po->sk.sk_socket;
2477 struct page *page;
2478 int err;
2479
2480 ph.raw = frame;
2481
2482 skb->protocol = proto;
2483 skb->dev = dev;
2484 skb->priority = po->sk.sk_priority;
2485 skb->mark = po->sk.sk_mark;
2486 sock_tx_timestamp(&po->sk, sockc->tsflags, &skb_shinfo(skb)->tx_flags);
2487 skb_shinfo(skb)->destructor_arg = ph.raw;
2488
2489 skb_reserve(skb, hlen);
2490 skb_reset_network_header(skb);
2491
2492 to_write = tp_len;
2493
2494 if (sock->type == SOCK_DGRAM) {
2495 err = dev_hard_header(skb, dev, ntohs(proto), addr,
2496 NULL, tp_len);
2497 if (unlikely(err < 0))
2498 return -EINVAL;
2499 } else if (copylen) {
2500 int hdrlen = min_t(int, copylen, tp_len);
2501
2502 skb_push(skb, dev->hard_header_len);
2503 skb_put(skb, copylen - dev->hard_header_len);
2504 err = skb_store_bits(skb, 0, data, hdrlen);
2505 if (unlikely(err))
2506 return err;
2507 if (!dev_validate_header(dev, skb->data, hdrlen))
2508 return -EINVAL;
2509 if (!skb->protocol)
2510 tpacket_set_protocol(dev, skb);
2511
2512 data += hdrlen;
2513 to_write -= hdrlen;
2514 }
2515
2516 offset = offset_in_page(data);
2517 len_max = PAGE_SIZE - offset;
2518 len = ((to_write > len_max) ? len_max : to_write);
2519
2520 skb->data_len = to_write;
2521 skb->len += to_write;
2522 skb->truesize += to_write;
2523 refcount_add(to_write, &po->sk.sk_wmem_alloc);
2524
2525 while (likely(to_write)) {
2526 nr_frags = skb_shinfo(skb)->nr_frags;
2527
2528 if (unlikely(nr_frags >= MAX_SKB_FRAGS)) {
2529 pr_err("Packet exceed the number of skb frags(%lu)\n",
2530 MAX_SKB_FRAGS);
2531 return -EFAULT;
2532 }
2533
2534 page = pgv_to_page(data);
2535 data += len;
2536 flush_dcache_page(page);
2537 get_page(page);
2538 skb_fill_page_desc(skb, nr_frags, page, offset, len);
2539 to_write -= len;
2540 offset = 0;
2541 len_max = PAGE_SIZE;
2542 len = ((to_write > len_max) ? len_max : to_write);
2543 }
2544
2545 skb_probe_transport_header(skb, 0);
2546
2547 return tp_len;
2548 }
2549
2550 static int tpacket_parse_header(struct packet_sock *po, void *frame,
2551 int size_max, void **data)
2552 {
2553 union tpacket_uhdr ph;
2554 int tp_len, off;
2555
2556 ph.raw = frame;
2557
2558 switch (po->tp_version) {
2559 case TPACKET_V3:
2560 if (ph.h3->tp_next_offset != 0) {
2561 pr_warn_once("variable sized slot not supported");
2562 return -EINVAL;
2563 }
2564 tp_len = ph.h3->tp_len;
2565 break;
2566 case TPACKET_V2:
2567 tp_len = ph.h2->tp_len;
2568 break;
2569 default:
2570 tp_len = ph.h1->tp_len;
2571 break;
2572 }
2573 if (unlikely(tp_len > size_max)) {
2574 pr_err("packet size is too long (%d > %d)\n", tp_len, size_max);
2575 return -EMSGSIZE;
2576 }
2577
2578 if (unlikely(po->tp_tx_has_off)) {
2579 int off_min, off_max;
2580
2581 off_min = po->tp_hdrlen - sizeof(struct sockaddr_ll);
2582 off_max = po->tx_ring.frame_size - tp_len;
2583 if (po->sk.sk_type == SOCK_DGRAM) {
2584 switch (po->tp_version) {
2585 case TPACKET_V3:
2586 off = ph.h3->tp_net;
2587 break;
2588 case TPACKET_V2:
2589 off = ph.h2->tp_net;
2590 break;
2591 default:
2592 off = ph.h1->tp_net;
2593 break;
2594 }
2595 } else {
2596 switch (po->tp_version) {
2597 case TPACKET_V3:
2598 off = ph.h3->tp_mac;
2599 break;
2600 case TPACKET_V2:
2601 off = ph.h2->tp_mac;
2602 break;
2603 default:
2604 off = ph.h1->tp_mac;
2605 break;
2606 }
2607 }
2608 if (unlikely((off < off_min) || (off_max < off)))
2609 return -EINVAL;
2610 } else {
2611 off = po->tp_hdrlen - sizeof(struct sockaddr_ll);
2612 }
2613
2614 *data = frame + off;
2615 return tp_len;
2616 }
2617
2618 static int tpacket_snd(struct packet_sock *po, struct msghdr *msg)
2619 {
2620 struct sk_buff *skb;
2621 struct net_device *dev;
2622 struct virtio_net_hdr *vnet_hdr = NULL;
2623 struct sockcm_cookie sockc;
2624 __be16 proto;
2625 int err, reserve = 0;
2626 void *ph;
2627 DECLARE_SOCKADDR(struct sockaddr_ll *, saddr, msg->msg_name);
2628 bool need_wait = !(msg->msg_flags & MSG_DONTWAIT);
2629 int tp_len, size_max;
2630 unsigned char *addr;
2631 void *data;
2632 int len_sum = 0;
2633 int status = TP_STATUS_AVAILABLE;
2634 int hlen, tlen, copylen = 0;
2635
2636 mutex_lock(&po->pg_vec_lock);
2637
2638 if (likely(saddr == NULL)) {
2639 dev = packet_cached_dev_get(po);
2640 proto = po->num;
2641 addr = NULL;
2642 } else {
2643 err = -EINVAL;
2644 if (msg->msg_namelen < sizeof(struct sockaddr_ll))
2645 goto out;
2646 if (msg->msg_namelen < (saddr->sll_halen
2647 + offsetof(struct sockaddr_ll,
2648 sll_addr)))
2649 goto out;
2650 proto = saddr->sll_protocol;
2651 addr = saddr->sll_addr;
2652 dev = dev_get_by_index(sock_net(&po->sk), saddr->sll_ifindex);
2653 }
2654
2655 err = -ENXIO;
2656 if (unlikely(dev == NULL))
2657 goto out;
2658 err = -ENETDOWN;
2659 if (unlikely(!(dev->flags & IFF_UP)))
2660 goto out_put;
2661
2662 sockc.tsflags = po->sk.sk_tsflags;
2663 if (msg->msg_controllen) {
2664 err = sock_cmsg_send(&po->sk, msg, &sockc);
2665 if (unlikely(err))
2666 goto out_put;
2667 }
2668
2669 if (po->sk.sk_socket->type == SOCK_RAW)
2670 reserve = dev->hard_header_len;
2671 size_max = po->tx_ring.frame_size
2672 - (po->tp_hdrlen - sizeof(struct sockaddr_ll));
2673
2674 if ((size_max > dev->mtu + reserve + VLAN_HLEN) && !po->has_vnet_hdr)
2675 size_max = dev->mtu + reserve + VLAN_HLEN;
2676
2677 do {
2678 ph = packet_current_frame(po, &po->tx_ring,
2679 TP_STATUS_SEND_REQUEST);
2680 if (unlikely(ph == NULL)) {
2681 if (need_wait && need_resched())
2682 schedule();
2683 continue;
2684 }
2685
2686 skb = NULL;
2687 tp_len = tpacket_parse_header(po, ph, size_max, &data);
2688 if (tp_len < 0)
2689 goto tpacket_error;
2690
2691 status = TP_STATUS_SEND_REQUEST;
2692 hlen = LL_RESERVED_SPACE(dev);
2693 tlen = dev->needed_tailroom;
2694 if (po->has_vnet_hdr) {
2695 vnet_hdr = data;
2696 data += sizeof(*vnet_hdr);
2697 tp_len -= sizeof(*vnet_hdr);
2698 if (tp_len < 0 ||
2699 __packet_snd_vnet_parse(vnet_hdr, tp_len)) {
2700 tp_len = -EINVAL;
2701 goto tpacket_error;
2702 }
2703 copylen = __virtio16_to_cpu(vio_le(),
2704 vnet_hdr->hdr_len);
2705 }
2706 copylen = max_t(int, copylen, dev->hard_header_len);
2707 skb = sock_alloc_send_skb(&po->sk,
2708 hlen + tlen + sizeof(struct sockaddr_ll) +
2709 (copylen - dev->hard_header_len),
2710 !need_wait, &err);
2711
2712 if (unlikely(skb == NULL)) {
2713 /* we assume the socket was initially writeable ... */
2714 if (likely(len_sum > 0))
2715 err = len_sum;
2716 goto out_status;
2717 }
2718 tp_len = tpacket_fill_skb(po, skb, ph, dev, data, tp_len, proto,
2719 addr, hlen, copylen, &sockc);
2720 if (likely(tp_len >= 0) &&
2721 tp_len > dev->mtu + reserve &&
2722 !po->has_vnet_hdr &&
2723 !packet_extra_vlan_len_allowed(dev, skb))
2724 tp_len = -EMSGSIZE;
2725
2726 if (unlikely(tp_len < 0)) {
2727 tpacket_error:
2728 if (po->tp_loss) {
2729 __packet_set_status(po, ph,
2730 TP_STATUS_AVAILABLE);
2731 packet_increment_head(&po->tx_ring);
2732 kfree_skb(skb);
2733 continue;
2734 } else {
2735 status = TP_STATUS_WRONG_FORMAT;
2736 err = tp_len;
2737 goto out_status;
2738 }
2739 }
2740
2741 if (po->has_vnet_hdr && virtio_net_hdr_to_skb(skb, vnet_hdr,
2742 vio_le())) {
2743 tp_len = -EINVAL;
2744 goto tpacket_error;
2745 }
2746
2747 skb->destructor = tpacket_destruct_skb;
2748 __packet_set_status(po, ph, TP_STATUS_SENDING);
2749 packet_inc_pending(&po->tx_ring);
2750
2751 status = TP_STATUS_SEND_REQUEST;
2752 err = po->xmit(skb);
2753 if (unlikely(err > 0)) {
2754 err = net_xmit_errno(err);
2755 if (err && __packet_get_status(po, ph) ==
2756 TP_STATUS_AVAILABLE) {
2757 /* skb was destructed already */
2758 skb = NULL;
2759 goto out_status;
2760 }
2761 /*
2762 * skb was dropped but not destructed yet;
2763 * let's treat it like congestion or err < 0
2764 */
2765 err = 0;
2766 }
2767 packet_increment_head(&po->tx_ring);
2768 len_sum += tp_len;
2769 } while (likely((ph != NULL) ||
2770 /* Note: packet_read_pending() might be slow if we have
2771 * to call it as it's per_cpu variable, but in fast-path
2772 * we already short-circuit the loop with the first
2773 * condition, and luckily don't have to go that path
2774 * anyway.
2775 */
2776 (need_wait && packet_read_pending(&po->tx_ring))));
2777
2778 err = len_sum;
2779 goto out_put;
2780
2781 out_status:
2782 __packet_set_status(po, ph, status);
2783 kfree_skb(skb);
2784 out_put:
2785 dev_put(dev);
2786 out:
2787 mutex_unlock(&po->pg_vec_lock);
2788 return err;
2789 }
2790
2791 static struct sk_buff *packet_alloc_skb(struct sock *sk, size_t prepad,
2792 size_t reserve, size_t len,
2793 size_t linear, int noblock,
2794 int *err)
2795 {
2796 struct sk_buff *skb;
2797
2798 /* Under a page? Don't bother with paged skb. */
2799 if (prepad + len < PAGE_SIZE || !linear)
2800 linear = len;
2801
2802 skb = sock_alloc_send_pskb(sk, prepad + linear, len - linear, noblock,
2803 err, 0);
2804 if (!skb)
2805 return NULL;
2806
2807 skb_reserve(skb, reserve);
2808 skb_put(skb, linear);
2809 skb->data_len = len - linear;
2810 skb->len += len - linear;
2811
2812 return skb;
2813 }
2814
2815 static int packet_snd(struct socket *sock, struct msghdr *msg, size_t len)
2816 {
2817 struct sock *sk = sock->sk;
2818 DECLARE_SOCKADDR(struct sockaddr_ll *, saddr, msg->msg_name);
2819 struct sk_buff *skb;
2820 struct net_device *dev;
2821 __be16 proto;
2822 unsigned char *addr;
2823 int err, reserve = 0;
2824 struct sockcm_cookie sockc;
2825 struct virtio_net_hdr vnet_hdr = { 0 };
2826 int offset = 0;
2827 struct packet_sock *po = pkt_sk(sk);
2828 bool has_vnet_hdr = false;
2829 int hlen, tlen, linear;
2830 int extra_len = 0;
2831
2832 /*
2833 * Get and verify the address.
2834 */
2835
2836 if (likely(saddr == NULL)) {
2837 dev = packet_cached_dev_get(po);
2838 proto = po->num;
2839 addr = NULL;
2840 } else {
2841 err = -EINVAL;
2842 if (msg->msg_namelen < sizeof(struct sockaddr_ll))
2843 goto out;
2844 if (msg->msg_namelen < (saddr->sll_halen + offsetof(struct sockaddr_ll, sll_addr)))
2845 goto out;
2846 proto = saddr->sll_protocol;
2847 addr = saddr->sll_addr;
2848 dev = dev_get_by_index(sock_net(sk), saddr->sll_ifindex);
2849 }
2850
2851 err = -ENXIO;
2852 if (unlikely(dev == NULL))
2853 goto out_unlock;
2854 err = -ENETDOWN;
2855 if (unlikely(!(dev->flags & IFF_UP)))
2856 goto out_unlock;
2857
2858 sockc.tsflags = sk->sk_tsflags;
2859 sockc.mark = sk->sk_mark;
2860 if (msg->msg_controllen) {
2861 err = sock_cmsg_send(sk, msg, &sockc);
2862 if (unlikely(err))
2863 goto out_unlock;
2864 }
2865
2866 if (sock->type == SOCK_RAW)
2867 reserve = dev->hard_header_len;
2868 if (po->has_vnet_hdr) {
2869 err = packet_snd_vnet_parse(msg, &len, &vnet_hdr);
2870 if (err)
2871 goto out_unlock;
2872 has_vnet_hdr = true;
2873 }
2874
2875 if (unlikely(sock_flag(sk, SOCK_NOFCS))) {
2876 if (!netif_supports_nofcs(dev)) {
2877 err = -EPROTONOSUPPORT;
2878 goto out_unlock;
2879 }
2880 extra_len = 4; /* We're doing our own CRC */
2881 }
2882
2883 err = -EMSGSIZE;
2884 if (!vnet_hdr.gso_type &&
2885 (len > dev->mtu + reserve + VLAN_HLEN + extra_len))
2886 goto out_unlock;
2887
2888 err = -ENOBUFS;
2889 hlen = LL_RESERVED_SPACE(dev);
2890 tlen = dev->needed_tailroom;
2891 linear = __virtio16_to_cpu(vio_le(), vnet_hdr.hdr_len);
2892 linear = max(linear, min_t(int, len, dev->hard_header_len));
2893 skb = packet_alloc_skb(sk, hlen + tlen, hlen, len, linear,
2894 msg->msg_flags & MSG_DONTWAIT, &err);
2895 if (skb == NULL)
2896 goto out_unlock;
2897
2898 skb_set_network_header(skb, reserve);
2899
2900 err = -EINVAL;
2901 if (sock->type == SOCK_DGRAM) {
2902 offset = dev_hard_header(skb, dev, ntohs(proto), addr, NULL, len);
2903 if (unlikely(offset < 0))
2904 goto out_free;
2905 }
2906
2907 /* Returns -EFAULT on error */
2908 err = skb_copy_datagram_from_iter(skb, offset, &msg->msg_iter, len);
2909 if (err)
2910 goto out_free;
2911
2912 if (sock->type == SOCK_RAW &&
2913 !dev_validate_header(dev, skb->data, len)) {
2914 err = -EINVAL;
2915 goto out_free;
2916 }
2917
2918 sock_tx_timestamp(sk, sockc.tsflags, &skb_shinfo(skb)->tx_flags);
2919
2920 if (!vnet_hdr.gso_type && (len > dev->mtu + reserve + extra_len) &&
2921 !packet_extra_vlan_len_allowed(dev, skb)) {
2922 err = -EMSGSIZE;
2923 goto out_free;
2924 }
2925
2926 skb->protocol = proto;
2927 skb->dev = dev;
2928 skb->priority = sk->sk_priority;
2929 skb->mark = sockc.mark;
2930
2931 if (has_vnet_hdr) {
2932 err = virtio_net_hdr_to_skb(skb, &vnet_hdr, vio_le());
2933 if (err)
2934 goto out_free;
2935 len += sizeof(vnet_hdr);
2936 }
2937
2938 skb_probe_transport_header(skb, reserve);
2939
2940 if (unlikely(extra_len == 4))
2941 skb->no_fcs = 1;
2942
2943 err = po->xmit(skb);
2944 if (err > 0 && (err = net_xmit_errno(err)) != 0)
2945 goto out_unlock;
2946
2947 dev_put(dev);
2948
2949 return len;
2950
2951 out_free:
2952 kfree_skb(skb);
2953 out_unlock:
2954 if (dev)
2955 dev_put(dev);
2956 out:
2957 return err;
2958 }
2959
2960 static int packet_sendmsg(struct socket *sock, struct msghdr *msg, size_t len)
2961 {
2962 struct sock *sk = sock->sk;
2963 struct packet_sock *po = pkt_sk(sk);
2964
2965 if (po->tx_ring.pg_vec)
2966 return tpacket_snd(po, msg);
2967 else
2968 return packet_snd(sock, msg, len);
2969 }
2970
2971 /*
2972 * Close a PACKET socket. This is fairly simple. We immediately go
2973 * to 'closed' state and remove our protocol entry in the device list.
2974 */
2975
2976 static int packet_release(struct socket *sock)
2977 {
2978 struct sock *sk = sock->sk;
2979 struct packet_sock *po;
2980 struct packet_fanout *f;
2981 struct net *net;
2982 union tpacket_req_u req_u;
2983
2984 if (!sk)
2985 return 0;
2986
2987 net = sock_net(sk);
2988 po = pkt_sk(sk);
2989
2990 mutex_lock(&net->packet.sklist_lock);
2991 sk_del_node_init_rcu(sk);
2992 mutex_unlock(&net->packet.sklist_lock);
2993
2994 preempt_disable();
2995 sock_prot_inuse_add(net, sk->sk_prot, -1);
2996 preempt_enable();
2997
2998 spin_lock(&po->bind_lock);
2999 unregister_prot_hook(sk, false);
3000 packet_cached_dev_reset(po);
3001
3002 if (po->prot_hook.dev) {
3003 dev_put(po->prot_hook.dev);
3004 po->prot_hook.dev = NULL;
3005 }
3006 spin_unlock(&po->bind_lock);
3007
3008 packet_flush_mclist(sk);
3009
3010 if (po->rx_ring.pg_vec) {
3011 memset(&req_u, 0, sizeof(req_u));
3012 packet_set_ring(sk, &req_u, 1, 0);
3013 }
3014
3015 if (po->tx_ring.pg_vec) {
3016 memset(&req_u, 0, sizeof(req_u));
3017 packet_set_ring(sk, &req_u, 1, 1);
3018 }
3019
3020 f = fanout_release(sk);
3021
3022 synchronize_net();
3023
3024 if (f) {
3025 kfree(po->rollover);
3026 fanout_release_data(f);
3027 kfree(f);
3028 }
3029 /*
3030 * Now the socket is dead. No more input will appear.
3031 */
3032 sock_orphan(sk);
3033 sock->sk = NULL;
3034
3035 /* Purge queues */
3036
3037 skb_queue_purge(&sk->sk_receive_queue);
3038 packet_free_pending(po);
3039 sk_refcnt_debug_release(sk);
3040
3041 sock_put(sk);
3042 return 0;
3043 }
3044
3045 /*
3046 * Attach a packet hook.
3047 */
3048
3049 static int packet_do_bind(struct sock *sk, const char *name, int ifindex,
3050 __be16 proto)
3051 {
3052 struct packet_sock *po = pkt_sk(sk);
3053 struct net_device *dev_curr;
3054 __be16 proto_curr;
3055 bool need_rehook;
3056 struct net_device *dev = NULL;
3057 int ret = 0;
3058 bool unlisted = false;
3059
3060 lock_sock(sk);
3061 spin_lock(&po->bind_lock);
3062 rcu_read_lock();
3063
3064 if (po->fanout) {
3065 ret = -EINVAL;
3066 goto out_unlock;
3067 }
3068
3069 if (name) {
3070 dev = dev_get_by_name_rcu(sock_net(sk), name);
3071 if (!dev) {
3072 ret = -ENODEV;
3073 goto out_unlock;
3074 }
3075 } else if (ifindex) {
3076 dev = dev_get_by_index_rcu(sock_net(sk), ifindex);
3077 if (!dev) {
3078 ret = -ENODEV;
3079 goto out_unlock;
3080 }
3081 }
3082
3083 if (dev)
3084 dev_hold(dev);
3085
3086 proto_curr = po->prot_hook.type;
3087 dev_curr = po->prot_hook.dev;
3088
3089 need_rehook = proto_curr != proto || dev_curr != dev;
3090
3091 if (need_rehook) {
3092 if (po->running) {
3093 rcu_read_unlock();
3094 /* prevents packet_notifier() from calling
3095 * register_prot_hook()
3096 */
3097 po->num = 0;
3098 __unregister_prot_hook(sk, true);
3099 rcu_read_lock();
3100 dev_curr = po->prot_hook.dev;
3101 if (dev)
3102 unlisted = !dev_get_by_index_rcu(sock_net(sk),
3103 dev->ifindex);
3104 }
3105
3106 BUG_ON(po->running);
3107 po->num = proto;
3108 po->prot_hook.type = proto;
3109
3110 if (unlikely(unlisted)) {
3111 dev_put(dev);
3112 po->prot_hook.dev = NULL;
3113 po->ifindex = -1;
3114 packet_cached_dev_reset(po);
3115 } else {
3116 po->prot_hook.dev = dev;
3117 po->ifindex = dev ? dev->ifindex : 0;
3118 packet_cached_dev_assign(po, dev);
3119 }
3120 }
3121 if (dev_curr)
3122 dev_put(dev_curr);
3123
3124 if (proto == 0 || !need_rehook)
3125 goto out_unlock;
3126
3127 if (!unlisted && (!dev || (dev->flags & IFF_UP))) {
3128 register_prot_hook(sk);
3129 } else {
3130 sk->sk_err = ENETDOWN;
3131 if (!sock_flag(sk, SOCK_DEAD))
3132 sk->sk_error_report(sk);
3133 }
3134
3135 out_unlock:
3136 rcu_read_unlock();
3137 spin_unlock(&po->bind_lock);
3138 release_sock(sk);
3139 return ret;
3140 }
3141
3142 /*
3143 * Bind a packet socket to a device
3144 */
3145
3146 static int packet_bind_spkt(struct socket *sock, struct sockaddr *uaddr,
3147 int addr_len)
3148 {
3149 struct sock *sk = sock->sk;
3150 char name[sizeof(uaddr->sa_data) + 1];
3151
3152 /*
3153 * Check legality
3154 */
3155
3156 if (addr_len != sizeof(struct sockaddr))
3157 return -EINVAL;
3158 /* uaddr->sa_data comes from the userspace, it's not guaranteed to be
3159 * zero-terminated.
3160 */
3161 memcpy(name, uaddr->sa_data, sizeof(uaddr->sa_data));
3162 name[sizeof(uaddr->sa_data)] = 0;
3163
3164 return packet_do_bind(sk, name, 0, pkt_sk(sk)->num);
3165 }
3166
3167 static int packet_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len)
3168 {
3169 struct sockaddr_ll *sll = (struct sockaddr_ll *)uaddr;
3170 struct sock *sk = sock->sk;
3171
3172 /*
3173 * Check legality
3174 */
3175
3176 if (addr_len < sizeof(struct sockaddr_ll))
3177 return -EINVAL;
3178 if (sll->sll_family != AF_PACKET)
3179 return -EINVAL;
3180
3181 return packet_do_bind(sk, NULL, sll->sll_ifindex,
3182 sll->sll_protocol ? : pkt_sk(sk)->num);
3183 }
3184
3185 static struct proto packet_proto = {
3186 .name = "PACKET",
3187 .owner = THIS_MODULE,
3188 .obj_size = sizeof(struct packet_sock),
3189 };
3190
3191 /*
3192 * Create a packet of type SOCK_PACKET.
3193 */
3194
3195 static int packet_create(struct net *net, struct socket *sock, int protocol,
3196 int kern)
3197 {
3198 struct sock *sk;
3199 struct packet_sock *po;
3200 __be16 proto = (__force __be16)protocol; /* weird, but documented */
3201 int err;
3202
3203 if (!ns_capable(net->user_ns, CAP_NET_RAW))
3204 return -EPERM;
3205 if (sock->type != SOCK_DGRAM && sock->type != SOCK_RAW &&
3206 sock->type != SOCK_PACKET)
3207 return -ESOCKTNOSUPPORT;
3208
3209 sock->state = SS_UNCONNECTED;
3210
3211 err = -ENOBUFS;
3212 sk = sk_alloc(net, PF_PACKET, GFP_KERNEL, &packet_proto, kern);
3213 if (sk == NULL)
3214 goto out;
3215
3216 sock->ops = &packet_ops;
3217 if (sock->type == SOCK_PACKET)
3218 sock->ops = &packet_ops_spkt;
3219
3220 sock_init_data(sock, sk);
3221
3222 po = pkt_sk(sk);
3223 sk->sk_family = PF_PACKET;
3224 po->num = proto;
3225 po->xmit = dev_queue_xmit;
3226
3227 err = packet_alloc_pending(po);
3228 if (err)
3229 goto out2;
3230
3231 packet_cached_dev_reset(po);
3232
3233 sk->sk_destruct = packet_sock_destruct;
3234 sk_refcnt_debug_inc(sk);
3235
3236 /*
3237 * Attach a protocol block
3238 */
3239
3240 spin_lock_init(&po->bind_lock);
3241 mutex_init(&po->pg_vec_lock);
3242 po->rollover = NULL;
3243 po->prot_hook.func = packet_rcv;
3244
3245 if (sock->type == SOCK_PACKET)
3246 po->prot_hook.func = packet_rcv_spkt;
3247
3248 po->prot_hook.af_packet_priv = sk;
3249
3250 if (proto) {
3251 po->prot_hook.type = proto;
3252 register_prot_hook(sk);
3253 }
3254
3255 mutex_lock(&net->packet.sklist_lock);
3256 sk_add_node_rcu(sk, &net->packet.sklist);
3257 mutex_unlock(&net->packet.sklist_lock);
3258
3259 preempt_disable();
3260 sock_prot_inuse_add(net, &packet_proto, 1);
3261 preempt_enable();
3262
3263 return 0;
3264 out2:
3265 sk_free(sk);
3266 out:
3267 return err;
3268 }
3269
3270 /*
3271 * Pull a packet from our receive queue and hand it to the user.
3272 * If necessary we block.
3273 */
3274
3275 static int packet_recvmsg(struct socket *sock, struct msghdr *msg, size_t len,
3276 int flags)
3277 {
3278 struct sock *sk = sock->sk;
3279 struct sk_buff *skb;
3280 int copied, err;
3281 int vnet_hdr_len = 0;
3282 unsigned int origlen = 0;
3283
3284 err = -EINVAL;
3285 if (flags & ~(MSG_PEEK|MSG_DONTWAIT|MSG_TRUNC|MSG_CMSG_COMPAT|MSG_ERRQUEUE))
3286 goto out;
3287
3288 #if 0
3289 /* What error should we return now? EUNATTACH? */
3290 if (pkt_sk(sk)->ifindex < 0)
3291 return -ENODEV;
3292 #endif
3293
3294 if (flags & MSG_ERRQUEUE) {
3295 err = sock_recv_errqueue(sk, msg, len,
3296 SOL_PACKET, PACKET_TX_TIMESTAMP);
3297 goto out;
3298 }
3299
3300 /*
3301 * Call the generic datagram receiver. This handles all sorts
3302 * of horrible races and re-entrancy so we can forget about it
3303 * in the protocol layers.
3304 *
3305 * Now it will return ENETDOWN, if device have just gone down,
3306 * but then it will block.
3307 */
3308
3309 skb = skb_recv_datagram(sk, flags, flags & MSG_DONTWAIT, &err);
3310
3311 /*
3312 * An error occurred so return it. Because skb_recv_datagram()
3313 * handles the blocking we don't see and worry about blocking
3314 * retries.
3315 */
3316
3317 if (skb == NULL)
3318 goto out;
3319
3320 if (pkt_sk(sk)->pressure)
3321 packet_rcv_has_room(pkt_sk(sk), NULL);
3322
3323 if (pkt_sk(sk)->has_vnet_hdr) {
3324 err = packet_rcv_vnet(msg, skb, &len);
3325 if (err)
3326 goto out_free;
3327 vnet_hdr_len = sizeof(struct virtio_net_hdr);
3328 }
3329
3330 /* You lose any data beyond the buffer you gave. If it worries
3331 * a user program they can ask the device for its MTU
3332 * anyway.
3333 */
3334 copied = skb->len;
3335 if (copied > len) {
3336 copied = len;
3337 msg->msg_flags |= MSG_TRUNC;
3338 }
3339
3340 err = skb_copy_datagram_msg(skb, 0, msg, copied);
3341 if (err)
3342 goto out_free;
3343
3344 if (sock->type != SOCK_PACKET) {
3345 struct sockaddr_ll *sll = &PACKET_SKB_CB(skb)->sa.ll;
3346
3347 /* Original length was stored in sockaddr_ll fields */
3348 origlen = PACKET_SKB_CB(skb)->sa.origlen;
3349 sll->sll_family = AF_PACKET;
3350 sll->sll_protocol = skb->protocol;
3351 }
3352
3353 sock_recv_ts_and_drops(msg, sk, skb);
3354
3355 if (msg->msg_name) {
3356 /* If the address length field is there to be filled
3357 * in, we fill it in now.
3358 */
3359 if (sock->type == SOCK_PACKET) {
3360 __sockaddr_check_size(sizeof(struct sockaddr_pkt));
3361 msg->msg_namelen = sizeof(struct sockaddr_pkt);
3362 } else {
3363 struct sockaddr_ll *sll = &PACKET_SKB_CB(skb)->sa.ll;
3364
3365 msg->msg_namelen = sll->sll_halen +
3366 offsetof(struct sockaddr_ll, sll_addr);
3367 }
3368 memcpy(msg->msg_name, &PACKET_SKB_CB(skb)->sa,
3369 msg->msg_namelen);
3370 }
3371
3372 if (pkt_sk(sk)->auxdata) {
3373 struct tpacket_auxdata aux;
3374
3375 aux.tp_status = TP_STATUS_USER;
3376 if (skb->ip_summed == CHECKSUM_PARTIAL)
3377 aux.tp_status |= TP_STATUS_CSUMNOTREADY;
3378 else if (skb->pkt_type != PACKET_OUTGOING &&
3379 (skb->ip_summed == CHECKSUM_COMPLETE ||
3380 skb_csum_unnecessary(skb)))
3381 aux.tp_status |= TP_STATUS_CSUM_VALID;
3382
3383 aux.tp_len = origlen;
3384 aux.tp_snaplen = skb->len;
3385 aux.tp_mac = 0;
3386 aux.tp_net = skb_network_offset(skb);
3387 if (skb_vlan_tag_present(skb)) {
3388 aux.tp_vlan_tci = skb_vlan_tag_get(skb);
3389 aux.tp_vlan_tpid = ntohs(skb->vlan_proto);
3390 aux.tp_status |= TP_STATUS_VLAN_VALID | TP_STATUS_VLAN_TPID_VALID;
3391 } else {
3392 aux.tp_vlan_tci = 0;
3393 aux.tp_vlan_tpid = 0;
3394 }
3395 put_cmsg(msg, SOL_PACKET, PACKET_AUXDATA, sizeof(aux), &aux);
3396 }
3397
3398 /*
3399 * Free or return the buffer as appropriate. Again this
3400 * hides all the races and re-entrancy issues from us.
3401 */
3402 err = vnet_hdr_len + ((flags&MSG_TRUNC) ? skb->len : copied);
3403
3404 out_free:
3405 skb_free_datagram(sk, skb);
3406 out:
3407 return err;
3408 }
3409
3410 static int packet_getname_spkt(struct socket *sock, struct sockaddr *uaddr,
3411 int *uaddr_len, int peer)
3412 {
3413 struct net_device *dev;
3414 struct sock *sk = sock->sk;
3415
3416 if (peer)
3417 return -EOPNOTSUPP;
3418
3419 uaddr->sa_family = AF_PACKET;
3420 memset(uaddr->sa_data, 0, sizeof(uaddr->sa_data));
3421 rcu_read_lock();
3422 dev = dev_get_by_index_rcu(sock_net(sk), pkt_sk(sk)->ifindex);
3423 if (dev)
3424 strlcpy(uaddr->sa_data, dev->name, sizeof(uaddr->sa_data));
3425 rcu_read_unlock();
3426 *uaddr_len = sizeof(*uaddr);
3427
3428 return 0;
3429 }
3430
3431 static int packet_getname(struct socket *sock, struct sockaddr *uaddr,
3432 int *uaddr_len, int peer)
3433 {
3434 struct net_device *dev;
3435 struct sock *sk = sock->sk;
3436 struct packet_sock *po = pkt_sk(sk);
3437 DECLARE_SOCKADDR(struct sockaddr_ll *, sll, uaddr);
3438
3439 if (peer)
3440 return -EOPNOTSUPP;
3441
3442 sll->sll_family = AF_PACKET;
3443 sll->sll_ifindex = po->ifindex;
3444 sll->sll_protocol = po->num;
3445 sll->sll_pkttype = 0;
3446 rcu_read_lock();
3447 dev = dev_get_by_index_rcu(sock_net(sk), po->ifindex);
3448 if (dev) {
3449 sll->sll_hatype = dev->type;
3450 sll->sll_halen = dev->addr_len;
3451 memcpy(sll->sll_addr, dev->dev_addr, dev->addr_len);
3452 } else {
3453 sll->sll_hatype = 0; /* Bad: we have no ARPHRD_UNSPEC */
3454 sll->sll_halen = 0;
3455 }
3456 rcu_read_unlock();
3457 *uaddr_len = offsetof(struct sockaddr_ll, sll_addr) + sll->sll_halen;
3458
3459 return 0;
3460 }
3461
3462 static int packet_dev_mc(struct net_device *dev, struct packet_mclist *i,
3463 int what)
3464 {
3465 switch (i->type) {
3466 case PACKET_MR_MULTICAST:
3467 if (i->alen != dev->addr_len)
3468 return -EINVAL;
3469 if (what > 0)
3470 return dev_mc_add(dev, i->addr);
3471 else
3472 return dev_mc_del(dev, i->addr);
3473 break;
3474 case PACKET_MR_PROMISC:
3475 return dev_set_promiscuity(dev, what);
3476 case PACKET_MR_ALLMULTI:
3477 return dev_set_allmulti(dev, what);
3478 case PACKET_MR_UNICAST:
3479 if (i->alen != dev->addr_len)
3480 return -EINVAL;
3481 if (what > 0)
3482 return dev_uc_add(dev, i->addr);
3483 else
3484 return dev_uc_del(dev, i->addr);
3485 break;
3486 default:
3487 break;
3488 }
3489 return 0;
3490 }
3491
3492 static void packet_dev_mclist_delete(struct net_device *dev,
3493 struct packet_mclist **mlp)
3494 {
3495 struct packet_mclist *ml;
3496
3497 while ((ml = *mlp) != NULL) {
3498 if (ml->ifindex == dev->ifindex) {
3499 packet_dev_mc(dev, ml, -1);
3500 *mlp = ml->next;
3501 kfree(ml);
3502 } else
3503 mlp = &ml->next;
3504 }
3505 }
3506
3507 static int packet_mc_add(struct sock *sk, struct packet_mreq_max *mreq)
3508 {
3509 struct packet_sock *po = pkt_sk(sk);
3510 struct packet_mclist *ml, *i;
3511 struct net_device *dev;
3512 int err;
3513
3514 rtnl_lock();
3515
3516 err = -ENODEV;
3517 dev = __dev_get_by_index(sock_net(sk), mreq->mr_ifindex);
3518 if (!dev)
3519 goto done;
3520
3521 err = -EINVAL;
3522 if (mreq->mr_alen > dev->addr_len)
3523 goto done;
3524
3525 err = -ENOBUFS;
3526 i = kmalloc(sizeof(*i), GFP_KERNEL);
3527 if (i == NULL)
3528 goto done;
3529
3530 err = 0;
3531 for (ml = po->mclist; ml; ml = ml->next) {
3532 if (ml->ifindex == mreq->mr_ifindex &&
3533 ml->type == mreq->mr_type &&
3534 ml->alen == mreq->mr_alen &&
3535 memcmp(ml->addr, mreq->mr_address, ml->alen) == 0) {
3536 ml->count++;
3537 /* Free the new element ... */
3538 kfree(i);
3539 goto done;
3540 }
3541 }
3542
3543 i->type = mreq->mr_type;
3544 i->ifindex = mreq->mr_ifindex;
3545 i->alen = mreq->mr_alen;
3546 memcpy(i->addr, mreq->mr_address, i->alen);
3547 memset(i->addr + i->alen, 0, sizeof(i->addr) - i->alen);
3548 i->count = 1;
3549 i->next = po->mclist;
3550 po->mclist = i;
3551 err = packet_dev_mc(dev, i, 1);
3552 if (err) {
3553 po->mclist = i->next;
3554 kfree(i);
3555 }
3556
3557 done:
3558 rtnl_unlock();
3559 return err;
3560 }
3561
3562 static int packet_mc_drop(struct sock *sk, struct packet_mreq_max *mreq)
3563 {
3564 struct packet_mclist *ml, **mlp;
3565
3566 rtnl_lock();
3567
3568 for (mlp = &pkt_sk(sk)->mclist; (ml = *mlp) != NULL; mlp = &ml->next) {
3569 if (ml->ifindex == mreq->mr_ifindex &&
3570 ml->type == mreq->mr_type &&
3571 ml->alen == mreq->mr_alen &&
3572 memcmp(ml->addr, mreq->mr_address, ml->alen) == 0) {
3573 if (--ml->count == 0) {
3574 struct net_device *dev;
3575 *mlp = ml->next;
3576 dev = __dev_get_by_index(sock_net(sk), ml->ifindex);
3577 if (dev)
3578 packet_dev_mc(dev, ml, -1);
3579 kfree(ml);
3580 }
3581 break;
3582 }
3583 }
3584 rtnl_unlock();
3585 return 0;
3586 }
3587
3588 static void packet_flush_mclist(struct sock *sk)
3589 {
3590 struct packet_sock *po = pkt_sk(sk);
3591 struct packet_mclist *ml;
3592
3593 if (!po->mclist)
3594 return;
3595
3596 rtnl_lock();
3597 while ((ml = po->mclist) != NULL) {
3598 struct net_device *dev;
3599
3600 po->mclist = ml->next;
3601 dev = __dev_get_by_index(sock_net(sk), ml->ifindex);
3602 if (dev != NULL)
3603 packet_dev_mc(dev, ml, -1);
3604 kfree(ml);
3605 }
3606 rtnl_unlock();
3607 }
3608
3609 static int
3610 packet_setsockopt(struct socket *sock, int level, int optname, char __user *optval, unsigned int optlen)
3611 {
3612 struct sock *sk = sock->sk;
3613 struct packet_sock *po = pkt_sk(sk);
3614 int ret;
3615
3616 if (level != SOL_PACKET)
3617 return -ENOPROTOOPT;
3618
3619 switch (optname) {
3620 case PACKET_ADD_MEMBERSHIP:
3621 case PACKET_DROP_MEMBERSHIP:
3622 {
3623 struct packet_mreq_max mreq;
3624 int len = optlen;
3625 memset(&mreq, 0, sizeof(mreq));
3626 if (len < sizeof(struct packet_mreq))
3627 return -EINVAL;
3628 if (len > sizeof(mreq))
3629 len = sizeof(mreq);
3630 if (copy_from_user(&mreq, optval, len))
3631 return -EFAULT;
3632 if (len < (mreq.mr_alen + offsetof(struct packet_mreq, mr_address)))
3633 return -EINVAL;
3634 if (optname == PACKET_ADD_MEMBERSHIP)
3635 ret = packet_mc_add(sk, &mreq);
3636 else
3637 ret = packet_mc_drop(sk, &mreq);
3638 return ret;
3639 }
3640
3641 case PACKET_RX_RING:
3642 case PACKET_TX_RING:
3643 {
3644 union tpacket_req_u req_u;
3645 int len;
3646
3647 switch (po->tp_version) {
3648 case TPACKET_V1:
3649 case TPACKET_V2:
3650 len = sizeof(req_u.req);
3651 break;
3652 case TPACKET_V3:
3653 default:
3654 len = sizeof(req_u.req3);
3655 break;
3656 }
3657 if (optlen < len)
3658 return -EINVAL;
3659 if (copy_from_user(&req_u.req, optval, len))
3660 return -EFAULT;
3661 return packet_set_ring(sk, &req_u, 0,
3662 optname == PACKET_TX_RING);
3663 }
3664 case PACKET_COPY_THRESH:
3665 {
3666 int val;
3667
3668 if (optlen != sizeof(val))
3669 return -EINVAL;
3670 if (copy_from_user(&val, optval, sizeof(val)))
3671 return -EFAULT;
3672
3673 pkt_sk(sk)->copy_thresh = val;
3674 return 0;
3675 }
3676 case PACKET_VERSION:
3677 {
3678 int val;
3679
3680 if (optlen != sizeof(val))
3681 return -EINVAL;
3682 if (copy_from_user(&val, optval, sizeof(val)))
3683 return -EFAULT;
3684 switch (val) {
3685 case TPACKET_V1:
3686 case TPACKET_V2:
3687 case TPACKET_V3:
3688 break;
3689 default:
3690 return -EINVAL;
3691 }
3692 lock_sock(sk);
3693 if (po->rx_ring.pg_vec || po->tx_ring.pg_vec) {
3694 ret = -EBUSY;
3695 } else {
3696 po->tp_version = val;
3697 ret = 0;
3698 }
3699 release_sock(sk);
3700 return ret;
3701 }
3702 case PACKET_RESERVE:
3703 {
3704 unsigned int val;
3705
3706 if (optlen != sizeof(val))
3707 return -EINVAL;
3708 if (copy_from_user(&val, optval, sizeof(val)))
3709 return -EFAULT;
3710 if (val > INT_MAX)
3711 return -EINVAL;
3712 lock_sock(sk);
3713 if (po->rx_ring.pg_vec || po->tx_ring.pg_vec) {
3714 ret = -EBUSY;
3715 } else {
3716 po->tp_reserve = val;
3717 ret = 0;
3718 }
3719 release_sock(sk);
3720 return ret;
3721 }
3722 case PACKET_LOSS:
3723 {
3724 unsigned int val;
3725
3726 if (optlen != sizeof(val))
3727 return -EINVAL;
3728 if (po->rx_ring.pg_vec || po->tx_ring.pg_vec)
3729 return -EBUSY;
3730 if (copy_from_user(&val, optval, sizeof(val)))
3731 return -EFAULT;
3732 po->tp_loss = !!val;
3733 return 0;
3734 }
3735 case PACKET_AUXDATA:
3736 {
3737 int val;
3738
3739 if (optlen < sizeof(val))
3740 return -EINVAL;
3741 if (copy_from_user(&val, optval, sizeof(val)))
3742 return -EFAULT;
3743
3744 po->auxdata = !!val;
3745 return 0;
3746 }
3747 case PACKET_ORIGDEV:
3748 {
3749 int val;
3750
3751 if (optlen < sizeof(val))
3752 return -EINVAL;
3753 if (copy_from_user(&val, optval, sizeof(val)))
3754 return -EFAULT;
3755
3756 po->origdev = !!val;
3757 return 0;
3758 }
3759 case PACKET_VNET_HDR:
3760 {
3761 int val;
3762
3763 if (sock->type != SOCK_RAW)
3764 return -EINVAL;
3765 if (po->rx_ring.pg_vec || po->tx_ring.pg_vec)
3766 return -EBUSY;
3767 if (optlen < sizeof(val))
3768 return -EINVAL;
3769 if (copy_from_user(&val, optval, sizeof(val)))
3770 return -EFAULT;
3771
3772 po->has_vnet_hdr = !!val;
3773 return 0;
3774 }
3775 case PACKET_TIMESTAMP:
3776 {
3777 int val;
3778
3779 if (optlen != sizeof(val))
3780 return -EINVAL;
3781 if (copy_from_user(&val, optval, sizeof(val)))
3782 return -EFAULT;
3783
3784 po->tp_tstamp = val;
3785 return 0;
3786 }
3787 case PACKET_FANOUT:
3788 {
3789 int val;
3790
3791 if (optlen != sizeof(val))
3792 return -EINVAL;
3793 if (copy_from_user(&val, optval, sizeof(val)))
3794 return -EFAULT;
3795
3796 return fanout_add(sk, val & 0xffff, val >> 16);
3797 }
3798 case PACKET_FANOUT_DATA:
3799 {
3800 if (!po->fanout)
3801 return -EINVAL;
3802
3803 return fanout_set_data(po, optval, optlen);
3804 }
3805 case PACKET_TX_HAS_OFF:
3806 {
3807 unsigned int val;
3808
3809 if (optlen != sizeof(val))
3810 return -EINVAL;
3811 if (po->rx_ring.pg_vec || po->tx_ring.pg_vec)
3812 return -EBUSY;
3813 if (copy_from_user(&val, optval, sizeof(val)))
3814 return -EFAULT;
3815 po->tp_tx_has_off = !!val;
3816 return 0;
3817 }
3818 case PACKET_QDISC_BYPASS:
3819 {
3820 int val;
3821
3822 if (optlen != sizeof(val))
3823 return -EINVAL;
3824 if (copy_from_user(&val, optval, sizeof(val)))
3825 return -EFAULT;
3826
3827 po->xmit = val ? packet_direct_xmit : dev_queue_xmit;
3828 return 0;
3829 }
3830 default:
3831 return -ENOPROTOOPT;
3832 }
3833 }
3834
3835 static int packet_getsockopt(struct socket *sock, int level, int optname,
3836 char __user *optval, int __user *optlen)
3837 {
3838 int len;
3839 int val, lv = sizeof(val);
3840 struct sock *sk = sock->sk;
3841 struct packet_sock *po = pkt_sk(sk);
3842 void *data = &val;
3843 union tpacket_stats_u st;
3844 struct tpacket_rollover_stats rstats;
3845
3846 if (level != SOL_PACKET)
3847 return -ENOPROTOOPT;
3848
3849 if (get_user(len, optlen))
3850 return -EFAULT;
3851
3852 if (len < 0)
3853 return -EINVAL;
3854
3855 switch (optname) {
3856 case PACKET_STATISTICS:
3857 spin_lock_bh(&sk->sk_receive_queue.lock);
3858 memcpy(&st, &po->stats, sizeof(st));
3859 memset(&po->stats, 0, sizeof(po->stats));
3860 spin_unlock_bh(&sk->sk_receive_queue.lock);
3861
3862 if (po->tp_version == TPACKET_V3) {
3863 lv = sizeof(struct tpacket_stats_v3);
3864 st.stats3.tp_packets += st.stats3.tp_drops;
3865 data = &st.stats3;
3866 } else {
3867 lv = sizeof(struct tpacket_stats);
3868 st.stats1.tp_packets += st.stats1.tp_drops;
3869 data = &st.stats1;
3870 }
3871
3872 break;
3873 case PACKET_AUXDATA:
3874 val = po->auxdata;
3875 break;
3876 case PACKET_ORIGDEV:
3877 val = po->origdev;
3878 break;
3879 case PACKET_VNET_HDR:
3880 val = po->has_vnet_hdr;
3881 break;
3882 case PACKET_VERSION:
3883 val = po->tp_version;
3884 break;
3885 case PACKET_HDRLEN:
3886 if (len > sizeof(int))
3887 len = sizeof(int);
3888 if (len < sizeof(int))
3889 return -EINVAL;
3890 if (copy_from_user(&val, optval, len))
3891 return -EFAULT;
3892 switch (val) {
3893 case TPACKET_V1:
3894 val = sizeof(struct tpacket_hdr);
3895 break;
3896 case TPACKET_V2:
3897 val = sizeof(struct tpacket2_hdr);
3898 break;
3899 case TPACKET_V3:
3900 val = sizeof(struct tpacket3_hdr);
3901 break;
3902 default:
3903 return -EINVAL;
3904 }
3905 break;
3906 case PACKET_RESERVE:
3907 val = po->tp_reserve;
3908 break;
3909 case PACKET_LOSS:
3910 val = po->tp_loss;
3911 break;
3912 case PACKET_TIMESTAMP:
3913 val = po->tp_tstamp;
3914 break;
3915 case PACKET_FANOUT:
3916 val = (po->fanout ?
3917 ((u32)po->fanout->id |
3918 ((u32)po->fanout->type << 16) |
3919 ((u32)po->fanout->flags << 24)) :
3920 0);
3921 break;
3922 case PACKET_ROLLOVER_STATS:
3923 if (!po->rollover)
3924 return -EINVAL;
3925 rstats.tp_all = atomic_long_read(&po->rollover->num);
3926 rstats.tp_huge = atomic_long_read(&po->rollover->num_huge);
3927 rstats.tp_failed = atomic_long_read(&po->rollover->num_failed);
3928 data = &rstats;
3929 lv = sizeof(rstats);
3930 break;
3931 case PACKET_TX_HAS_OFF:
3932 val = po->tp_tx_has_off;
3933 break;
3934 case PACKET_QDISC_BYPASS:
3935 val = packet_use_direct_xmit(po);
3936 break;
3937 default:
3938 return -ENOPROTOOPT;
3939 }
3940
3941 if (len > lv)
3942 len = lv;
3943 if (put_user(len, optlen))
3944 return -EFAULT;
3945 if (copy_to_user(optval, data, len))
3946 return -EFAULT;
3947 return 0;
3948 }
3949
3950
3951 #ifdef CONFIG_COMPAT
3952 static int compat_packet_setsockopt(struct socket *sock, int level, int optname,
3953 char __user *optval, unsigned int optlen)
3954 {
3955 struct packet_sock *po = pkt_sk(sock->sk);
3956
3957 if (level != SOL_PACKET)
3958 return -ENOPROTOOPT;
3959
3960 if (optname == PACKET_FANOUT_DATA &&
3961 po->fanout && po->fanout->type == PACKET_FANOUT_CBPF) {
3962 optval = (char __user *)get_compat_bpf_fprog(optval);
3963 if (!optval)
3964 return -EFAULT;
3965 optlen = sizeof(struct sock_fprog);
3966 }
3967
3968 return packet_setsockopt(sock, level, optname, optval, optlen);
3969 }
3970 #endif
3971
3972 static int packet_notifier(struct notifier_block *this,
3973 unsigned long msg, void *ptr)
3974 {
3975 struct sock *sk;
3976 struct net_device *dev = netdev_notifier_info_to_dev(ptr);
3977 struct net *net = dev_net(dev);
3978
3979 rcu_read_lock();
3980 sk_for_each_rcu(sk, &net->packet.sklist) {
3981 struct packet_sock *po = pkt_sk(sk);
3982
3983 switch (msg) {
3984 case NETDEV_UNREGISTER:
3985 if (po->mclist)
3986 packet_dev_mclist_delete(dev, &po->mclist);
3987 /* fallthrough */
3988
3989 case NETDEV_DOWN:
3990 if (dev->ifindex == po->ifindex) {
3991 spin_lock(&po->bind_lock);
3992 if (po->running) {
3993 __unregister_prot_hook(sk, false);
3994 sk->sk_err = ENETDOWN;
3995 if (!sock_flag(sk, SOCK_DEAD))
3996 sk->sk_error_report(sk);
3997 }
3998 if (msg == NETDEV_UNREGISTER) {
3999 packet_cached_dev_reset(po);
4000 po->ifindex = -1;
4001 if (po->prot_hook.dev)
4002 dev_put(po->prot_hook.dev);
4003 po->prot_hook.dev = NULL;
4004 }
4005 spin_unlock(&po->bind_lock);
4006 }
4007 break;
4008 case NETDEV_UP:
4009 if (dev->ifindex == po->ifindex) {
4010 spin_lock(&po->bind_lock);
4011 if (po->num)
4012 register_prot_hook(sk);
4013 spin_unlock(&po->bind_lock);
4014 }
4015 break;
4016 }
4017 }
4018 rcu_read_unlock();
4019 return NOTIFY_DONE;
4020 }
4021
4022
4023 static int packet_ioctl(struct socket *sock, unsigned int cmd,
4024 unsigned long arg)
4025 {
4026 struct sock *sk = sock->sk;
4027
4028 switch (cmd) {
4029 case SIOCOUTQ:
4030 {
4031 int amount = sk_wmem_alloc_get(sk);
4032
4033 return put_user(amount, (int __user *)arg);
4034 }
4035 case SIOCINQ:
4036 {
4037 struct sk_buff *skb;
4038 int amount = 0;
4039
4040 spin_lock_bh(&sk->sk_receive_queue.lock);
4041 skb = skb_peek(&sk->sk_receive_queue);
4042 if (skb)
4043 amount = skb->len;
4044 spin_unlock_bh(&sk->sk_receive_queue.lock);
4045 return put_user(amount, (int __user *)arg);
4046 }
4047 case SIOCGSTAMP:
4048 return sock_get_timestamp(sk, (struct timeval __user *)arg);
4049 case SIOCGSTAMPNS:
4050 return sock_get_timestampns(sk, (struct timespec __user *)arg);
4051
4052 #ifdef CONFIG_INET
4053 case SIOCADDRT:
4054 case SIOCDELRT:
4055 case SIOCDARP:
4056 case SIOCGARP:
4057 case SIOCSARP:
4058 case SIOCGIFADDR:
4059 case SIOCSIFADDR:
4060 case SIOCGIFBRDADDR:
4061 case SIOCSIFBRDADDR:
4062 case SIOCGIFNETMASK:
4063 case SIOCSIFNETMASK:
4064 case SIOCGIFDSTADDR:
4065 case SIOCSIFDSTADDR:
4066 case SIOCSIFFLAGS:
4067 return inet_dgram_ops.ioctl(sock, cmd, arg);
4068 #endif
4069
4070 default:
4071 return -ENOIOCTLCMD;
4072 }
4073 return 0;
4074 }
4075
4076 static unsigned int packet_poll(struct file *file, struct socket *sock,
4077 poll_table *wait)
4078 {
4079 struct sock *sk = sock->sk;
4080 struct packet_sock *po = pkt_sk(sk);
4081 unsigned int mask = datagram_poll(file, sock, wait);
4082
4083 spin_lock_bh(&sk->sk_receive_queue.lock);
4084 if (po->rx_ring.pg_vec) {
4085 if (!packet_previous_rx_frame(po, &po->rx_ring,
4086 TP_STATUS_KERNEL))
4087 mask |= POLLIN | POLLRDNORM;
4088 }
4089 if (po->pressure && __packet_rcv_has_room(po, NULL) == ROOM_NORMAL)
4090 po->pressure = 0;
4091 spin_unlock_bh(&sk->sk_receive_queue.lock);
4092 spin_lock_bh(&sk->sk_write_queue.lock);
4093 if (po->tx_ring.pg_vec) {
4094 if (packet_current_frame(po, &po->tx_ring, TP_STATUS_AVAILABLE))
4095 mask |= POLLOUT | POLLWRNORM;
4096 }
4097 spin_unlock_bh(&sk->sk_write_queue.lock);
4098 return mask;
4099 }
4100
4101
4102 /* Dirty? Well, I still did not learn better way to account
4103 * for user mmaps.
4104 */
4105
4106 static void packet_mm_open(struct vm_area_struct *vma)
4107 {
4108 struct file *file = vma->vm_file;
4109 struct socket *sock = file->private_data;
4110 struct sock *sk = sock->sk;
4111
4112 if (sk)
4113 atomic_inc(&pkt_sk(sk)->mapped);
4114 }
4115
4116 static void packet_mm_close(struct vm_area_struct *vma)
4117 {
4118 struct file *file = vma->vm_file;
4119 struct socket *sock = file->private_data;
4120 struct sock *sk = sock->sk;
4121
4122 if (sk)
4123 atomic_dec(&pkt_sk(sk)->mapped);
4124 }
4125
4126 static const struct vm_operations_struct packet_mmap_ops = {
4127 .open = packet_mm_open,
4128 .close = packet_mm_close,
4129 };
4130
4131 static void free_pg_vec(struct pgv *pg_vec, unsigned int order,
4132 unsigned int len)
4133 {
4134 int i;
4135
4136 for (i = 0; i < len; i++) {
4137 if (likely(pg_vec[i].buffer)) {
4138 if (is_vmalloc_addr(pg_vec[i].buffer))
4139 vfree(pg_vec[i].buffer);
4140 else
4141 free_pages((unsigned long)pg_vec[i].buffer,
4142 order);
4143 pg_vec[i].buffer = NULL;
4144 }
4145 }
4146 kfree(pg_vec);
4147 }
4148
4149 static char *alloc_one_pg_vec_page(unsigned long order)
4150 {
4151 char *buffer;
4152 gfp_t gfp_flags = GFP_KERNEL | __GFP_COMP |
4153 __GFP_ZERO | __GFP_NOWARN | __GFP_NORETRY;
4154
4155 buffer = (char *) __get_free_pages(gfp_flags, order);
4156 if (buffer)
4157 return buffer;
4158
4159 /* __get_free_pages failed, fall back to vmalloc */
4160 buffer = vzalloc((1 << order) * PAGE_SIZE);
4161 if (buffer)
4162 return buffer;
4163
4164 /* vmalloc failed, lets dig into swap here */
4165 gfp_flags &= ~__GFP_NORETRY;
4166 buffer = (char *) __get_free_pages(gfp_flags, order);
4167 if (buffer)
4168 return buffer;
4169
4170 /* complete and utter failure */
4171 return NULL;
4172 }
4173
4174 static struct pgv *alloc_pg_vec(struct tpacket_req *req, int order)
4175 {
4176 unsigned int block_nr = req->tp_block_nr;
4177 struct pgv *pg_vec;
4178 int i;
4179
4180 pg_vec = kcalloc(block_nr, sizeof(struct pgv), GFP_KERNEL);
4181 if (unlikely(!pg_vec))
4182 goto out;
4183
4184 for (i = 0; i < block_nr; i++) {
4185 pg_vec[i].buffer = alloc_one_pg_vec_page(order);
4186 if (unlikely(!pg_vec[i].buffer))
4187 goto out_free_pgvec;
4188 }
4189
4190 out:
4191 return pg_vec;
4192
4193 out_free_pgvec:
4194 free_pg_vec(pg_vec, order, block_nr);
4195 pg_vec = NULL;
4196 goto out;
4197 }
4198
4199 static int packet_set_ring(struct sock *sk, union tpacket_req_u *req_u,
4200 int closing, int tx_ring)
4201 {
4202 struct pgv *pg_vec = NULL;
4203 struct packet_sock *po = pkt_sk(sk);
4204 int was_running, order = 0;
4205 struct packet_ring_buffer *rb;
4206 struct sk_buff_head *rb_queue;
4207 __be16 num;
4208 int err = -EINVAL;
4209 /* Added to avoid minimal code churn */
4210 struct tpacket_req *req = &req_u->req;
4211
4212 lock_sock(sk);
4213
4214 rb = tx_ring ? &po->tx_ring : &po->rx_ring;
4215 rb_queue = tx_ring ? &sk->sk_write_queue : &sk->sk_receive_queue;
4216
4217 err = -EBUSY;
4218 if (!closing) {
4219 if (atomic_read(&po->mapped))
4220 goto out;
4221 if (packet_read_pending(rb))
4222 goto out;
4223 }
4224
4225 if (req->tp_block_nr) {
4226 /* Sanity tests and some calculations */
4227 err = -EBUSY;
4228 if (unlikely(rb->pg_vec))
4229 goto out;
4230
4231 switch (po->tp_version) {
4232 case TPACKET_V1:
4233 po->tp_hdrlen = TPACKET_HDRLEN;
4234 break;
4235 case TPACKET_V2:
4236 po->tp_hdrlen = TPACKET2_HDRLEN;
4237 break;
4238 case TPACKET_V3:
4239 po->tp_hdrlen = TPACKET3_HDRLEN;
4240 break;
4241 }
4242
4243 err = -EINVAL;
4244 if (unlikely((int)req->tp_block_size <= 0))
4245 goto out;
4246 if (unlikely(!PAGE_ALIGNED(req->tp_block_size)))
4247 goto out;
4248 if (po->tp_version >= TPACKET_V3 &&
4249 req->tp_block_size <=
4250 BLK_PLUS_PRIV((u64)req_u->req3.tp_sizeof_priv))
4251 goto out;
4252 if (unlikely(req->tp_frame_size < po->tp_hdrlen +
4253 po->tp_reserve))
4254 goto out;
4255 if (unlikely(req->tp_frame_size & (TPACKET_ALIGNMENT - 1)))
4256 goto out;
4257
4258 rb->frames_per_block = req->tp_block_size / req->tp_frame_size;
4259 if (unlikely(rb->frames_per_block == 0))
4260 goto out;
4261 if (unlikely(req->tp_block_size > UINT_MAX / req->tp_block_nr))
4262 goto out;
4263 if (unlikely((rb->frames_per_block * req->tp_block_nr) !=
4264 req->tp_frame_nr))
4265 goto out;
4266
4267 err = -ENOMEM;
4268 order = get_order(req->tp_block_size);
4269 pg_vec = alloc_pg_vec(req, order);
4270 if (unlikely(!pg_vec))
4271 goto out;
4272 switch (po->tp_version) {
4273 case TPACKET_V3:
4274 /* Block transmit is not supported yet */
4275 if (!tx_ring) {
4276 init_prb_bdqc(po, rb, pg_vec, req_u);
4277 } else {
4278 struct tpacket_req3 *req3 = &req_u->req3;
4279
4280 if (req3->tp_retire_blk_tov ||
4281 req3->tp_sizeof_priv ||
4282 req3->tp_feature_req_word) {
4283 err = -EINVAL;
4284 goto out;
4285 }
4286 }
4287 break;
4288 default:
4289 break;
4290 }
4291 }
4292 /* Done */
4293 else {
4294 err = -EINVAL;
4295 if (unlikely(req->tp_frame_nr))
4296 goto out;
4297 }
4298
4299
4300 /* Detach socket from network */
4301 spin_lock(&po->bind_lock);
4302 was_running = po->running;
4303 num = po->num;
4304 if (was_running) {
4305 po->num = 0;
4306 __unregister_prot_hook(sk, false);
4307 }
4308 spin_unlock(&po->bind_lock);
4309
4310 synchronize_net();
4311
4312 err = -EBUSY;
4313 mutex_lock(&po->pg_vec_lock);
4314 if (closing || atomic_read(&po->mapped) == 0) {
4315 err = 0;
4316 spin_lock_bh(&rb_queue->lock);
4317 swap(rb->pg_vec, pg_vec);
4318 rb->frame_max = (req->tp_frame_nr - 1);
4319 rb->head = 0;
4320 rb->frame_size = req->tp_frame_size;
4321 spin_unlock_bh(&rb_queue->lock);
4322
4323 swap(rb->pg_vec_order, order);
4324 swap(rb->pg_vec_len, req->tp_block_nr);
4325
4326 rb->pg_vec_pages = req->tp_block_size/PAGE_SIZE;
4327 po->prot_hook.func = (po->rx_ring.pg_vec) ?
4328 tpacket_rcv : packet_rcv;
4329 skb_queue_purge(rb_queue);
4330 if (atomic_read(&po->mapped))
4331 pr_err("packet_mmap: vma is busy: %d\n",
4332 atomic_read(&po->mapped));
4333 }
4334 mutex_unlock(&po->pg_vec_lock);
4335
4336 spin_lock(&po->bind_lock);
4337 if (was_running) {
4338 po->num = num;
4339 register_prot_hook(sk);
4340 }
4341 spin_unlock(&po->bind_lock);
4342 if (pg_vec && (po->tp_version > TPACKET_V2)) {
4343 /* Because we don't support block-based V3 on tx-ring */
4344 if (!tx_ring)
4345 prb_shutdown_retire_blk_timer(po, rb_queue);
4346 }
4347
4348 if (pg_vec)
4349 free_pg_vec(pg_vec, order, req->tp_block_nr);
4350 out:
4351 release_sock(sk);
4352 return err;
4353 }
4354
4355 static int packet_mmap(struct file *file, struct socket *sock,
4356 struct vm_area_struct *vma)
4357 {
4358 struct sock *sk = sock->sk;
4359 struct packet_sock *po = pkt_sk(sk);
4360 unsigned long size, expected_size;
4361 struct packet_ring_buffer *rb;
4362 unsigned long start;
4363 int err = -EINVAL;
4364 int i;
4365
4366 if (vma->vm_pgoff)
4367 return -EINVAL;
4368
4369 mutex_lock(&po->pg_vec_lock);
4370
4371 expected_size = 0;
4372 for (rb = &po->rx_ring; rb <= &po->tx_ring; rb++) {
4373 if (rb->pg_vec) {
4374 expected_size += rb->pg_vec_len
4375 * rb->pg_vec_pages
4376 * PAGE_SIZE;
4377 }
4378 }
4379
4380 if (expected_size == 0)
4381 goto out;
4382
4383 size = vma->vm_end - vma->vm_start;
4384 if (size != expected_size)
4385 goto out;
4386
4387 start = vma->vm_start;
4388 for (rb = &po->rx_ring; rb <= &po->tx_ring; rb++) {
4389 if (rb->pg_vec == NULL)
4390 continue;
4391
4392 for (i = 0; i < rb->pg_vec_len; i++) {
4393 struct page *page;
4394 void *kaddr = rb->pg_vec[i].buffer;
4395 int pg_num;
4396
4397 for (pg_num = 0; pg_num < rb->pg_vec_pages; pg_num++) {
4398 page = pgv_to_page(kaddr);
4399 err = vm_insert_page(vma, start, page);
4400 if (unlikely(err))
4401 goto out;
4402 start += PAGE_SIZE;
4403 kaddr += PAGE_SIZE;
4404 }
4405 }
4406 }
4407
4408 atomic_inc(&po->mapped);
4409 vma->vm_ops = &packet_mmap_ops;
4410 err = 0;
4411
4412 out:
4413 mutex_unlock(&po->pg_vec_lock);
4414 return err;
4415 }
4416
4417 static const struct proto_ops packet_ops_spkt = {
4418 .family = PF_PACKET,
4419 .owner = THIS_MODULE,
4420 .release = packet_release,
4421 .bind = packet_bind_spkt,
4422 .connect = sock_no_connect,
4423 .socketpair = sock_no_socketpair,
4424 .accept = sock_no_accept,
4425 .getname = packet_getname_spkt,
4426 .poll = datagram_poll,
4427 .ioctl = packet_ioctl,
4428 .listen = sock_no_listen,
4429 .shutdown = sock_no_shutdown,
4430 .setsockopt = sock_no_setsockopt,
4431 .getsockopt = sock_no_getsockopt,
4432 .sendmsg = packet_sendmsg_spkt,
4433 .recvmsg = packet_recvmsg,
4434 .mmap = sock_no_mmap,
4435 .sendpage = sock_no_sendpage,
4436 };
4437
4438 static const struct proto_ops packet_ops = {
4439 .family = PF_PACKET,
4440 .owner = THIS_MODULE,
4441 .release = packet_release,
4442 .bind = packet_bind,
4443 .connect = sock_no_connect,
4444 .socketpair = sock_no_socketpair,
4445 .accept = sock_no_accept,
4446 .getname = packet_getname,
4447 .poll = packet_poll,
4448 .ioctl = packet_ioctl,
4449 .listen = sock_no_listen,
4450 .shutdown = sock_no_shutdown,
4451 .setsockopt = packet_setsockopt,
4452 .getsockopt = packet_getsockopt,
4453 #ifdef CONFIG_COMPAT
4454 .compat_setsockopt = compat_packet_setsockopt,
4455 #endif
4456 .sendmsg = packet_sendmsg,
4457 .recvmsg = packet_recvmsg,
4458 .mmap = packet_mmap,
4459 .sendpage = sock_no_sendpage,
4460 };
4461
4462 static const struct net_proto_family packet_family_ops = {
4463 .family = PF_PACKET,
4464 .create = packet_create,
4465 .owner = THIS_MODULE,
4466 };
4467
4468 static struct notifier_block packet_netdev_notifier = {
4469 .notifier_call = packet_notifier,
4470 };
4471
4472 #ifdef CONFIG_PROC_FS
4473
4474 static void *packet_seq_start(struct seq_file *seq, loff_t *pos)
4475 __acquires(RCU)
4476 {
4477 struct net *net = seq_file_net(seq);
4478
4479 rcu_read_lock();
4480 return seq_hlist_start_head_rcu(&net->packet.sklist, *pos);
4481 }
4482
4483 static void *packet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4484 {
4485 struct net *net = seq_file_net(seq);
4486 return seq_hlist_next_rcu(v, &net->packet.sklist, pos);
4487 }
4488
4489 static void packet_seq_stop(struct seq_file *seq, void *v)
4490 __releases(RCU)
4491 {
4492 rcu_read_unlock();
4493 }
4494
4495 static int packet_seq_show(struct seq_file *seq, void *v)
4496 {
4497 if (v == SEQ_START_TOKEN)
4498 seq_puts(seq, "sk RefCnt Type Proto Iface R Rmem User Inode\n");
4499 else {
4500 struct sock *s = sk_entry(v);
4501 const struct packet_sock *po = pkt_sk(s);
4502
4503 seq_printf(seq,
4504 "%pK %-6d %-4d %04x %-5d %1d %-6u %-6u %-6lu\n",
4505 s,
4506 refcount_read(&s->sk_refcnt),
4507 s->sk_type,
4508 ntohs(po->num),
4509 po->ifindex,
4510 po->running,
4511 atomic_read(&s->sk_rmem_alloc),
4512 from_kuid_munged(seq_user_ns(seq), sock_i_uid(s)),
4513 sock_i_ino(s));
4514 }
4515
4516 return 0;
4517 }
4518
4519 static const struct seq_operations packet_seq_ops = {
4520 .start = packet_seq_start,
4521 .next = packet_seq_next,
4522 .stop = packet_seq_stop,
4523 .show = packet_seq_show,
4524 };
4525
4526 static int packet_seq_open(struct inode *inode, struct file *file)
4527 {
4528 return seq_open_net(inode, file, &packet_seq_ops,
4529 sizeof(struct seq_net_private));
4530 }
4531
4532 static const struct file_operations packet_seq_fops = {
4533 .owner = THIS_MODULE,
4534 .open = packet_seq_open,
4535 .read = seq_read,
4536 .llseek = seq_lseek,
4537 .release = seq_release_net,
4538 };
4539
4540 #endif
4541
4542 static int __net_init packet_net_init(struct net *net)
4543 {
4544 mutex_init(&net->packet.sklist_lock);
4545 INIT_HLIST_HEAD(&net->packet.sklist);
4546
4547 if (!proc_create("packet", 0, net->proc_net, &packet_seq_fops))
4548 return -ENOMEM;
4549
4550 return 0;
4551 }
4552
4553 static void __net_exit packet_net_exit(struct net *net)
4554 {
4555 remove_proc_entry("packet", net->proc_net);
4556 WARN_ON_ONCE(!hlist_empty(&net->packet.sklist));
4557 }
4558
4559 static struct pernet_operations packet_net_ops = {
4560 .init = packet_net_init,
4561 .exit = packet_net_exit,
4562 };
4563
4564
4565 static void __exit packet_exit(void)
4566 {
4567 unregister_netdevice_notifier(&packet_netdev_notifier);
4568 unregister_pernet_subsys(&packet_net_ops);
4569 sock_unregister(PF_PACKET);
4570 proto_unregister(&packet_proto);
4571 }
4572
4573 static int __init packet_init(void)
4574 {
4575 int rc = proto_register(&packet_proto, 0);
4576
4577 if (rc != 0)
4578 goto out;
4579
4580 sock_register(&packet_family_ops);
4581 register_pernet_subsys(&packet_net_ops);
4582 register_netdevice_notifier(&packet_netdev_notifier);
4583 out:
4584 return rc;
4585 }
4586
4587 module_init(packet_init);
4588 module_exit(packet_exit);
4589 MODULE_LICENSE("GPL");
4590 MODULE_ALIAS_NETPROTO(PF_PACKET);