]> git.proxmox.com Git - mirror_ubuntu-disco-kernel.git/blob - net/sctp/input.c
Merge tag 'docs-5.0-fix' of git://git.lwn.net/linux
[mirror_ubuntu-disco-kernel.git] / net / sctp / input.c
1 /* SCTP kernel implementation
2 * Copyright (c) 1999-2000 Cisco, Inc.
3 * Copyright (c) 1999-2001 Motorola, Inc.
4 * Copyright (c) 2001-2003 International Business Machines, Corp.
5 * Copyright (c) 2001 Intel Corp.
6 * Copyright (c) 2001 Nokia, Inc.
7 * Copyright (c) 2001 La Monte H.P. Yarroll
8 *
9 * This file is part of the SCTP kernel implementation
10 *
11 * These functions handle all input from the IP layer into SCTP.
12 *
13 * This SCTP implementation is free software;
14 * you can redistribute it and/or modify it under the terms of
15 * the GNU General Public License as published by
16 * the Free Software Foundation; either version 2, or (at your option)
17 * any later version.
18 *
19 * This SCTP implementation is distributed in the hope that it
20 * will be useful, but WITHOUT ANY WARRANTY; without even the implied
21 * ************************
22 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
23 * See the GNU General Public License for more details.
24 *
25 * You should have received a copy of the GNU General Public License
26 * along with GNU CC; see the file COPYING. If not, see
27 * <http://www.gnu.org/licenses/>.
28 *
29 * Please send any bug reports or fixes you make to the
30 * email address(es):
31 * lksctp developers <linux-sctp@vger.kernel.org>
32 *
33 * Written or modified by:
34 * La Monte H.P. Yarroll <piggy@acm.org>
35 * Karl Knutson <karl@athena.chicago.il.us>
36 * Xingang Guo <xingang.guo@intel.com>
37 * Jon Grimm <jgrimm@us.ibm.com>
38 * Hui Huang <hui.huang@nokia.com>
39 * Daisy Chang <daisyc@us.ibm.com>
40 * Sridhar Samudrala <sri@us.ibm.com>
41 * Ardelle Fan <ardelle.fan@intel.com>
42 */
43
44 #include <linux/types.h>
45 #include <linux/list.h> /* For struct list_head */
46 #include <linux/socket.h>
47 #include <linux/ip.h>
48 #include <linux/time.h> /* For struct timeval */
49 #include <linux/slab.h>
50 #include <net/ip.h>
51 #include <net/icmp.h>
52 #include <net/snmp.h>
53 #include <net/sock.h>
54 #include <net/xfrm.h>
55 #include <net/sctp/sctp.h>
56 #include <net/sctp/sm.h>
57 #include <net/sctp/checksum.h>
58 #include <net/net_namespace.h>
59 #include <linux/rhashtable.h>
60 #include <net/sock_reuseport.h>
61
62 /* Forward declarations for internal helpers. */
63 static int sctp_rcv_ootb(struct sk_buff *);
64 static struct sctp_association *__sctp_rcv_lookup(struct net *net,
65 struct sk_buff *skb,
66 const union sctp_addr *paddr,
67 const union sctp_addr *laddr,
68 struct sctp_transport **transportp);
69 static struct sctp_endpoint *__sctp_rcv_lookup_endpoint(
70 struct net *net, struct sk_buff *skb,
71 const union sctp_addr *laddr,
72 const union sctp_addr *daddr);
73 static struct sctp_association *__sctp_lookup_association(
74 struct net *net,
75 const union sctp_addr *local,
76 const union sctp_addr *peer,
77 struct sctp_transport **pt);
78
79 static int sctp_add_backlog(struct sock *sk, struct sk_buff *skb);
80
81
82 /* Calculate the SCTP checksum of an SCTP packet. */
83 static inline int sctp_rcv_checksum(struct net *net, struct sk_buff *skb)
84 {
85 struct sctphdr *sh = sctp_hdr(skb);
86 __le32 cmp = sh->checksum;
87 __le32 val = sctp_compute_cksum(skb, 0);
88
89 if (val != cmp) {
90 /* CRC failure, dump it. */
91 __SCTP_INC_STATS(net, SCTP_MIB_CHECKSUMERRORS);
92 return -1;
93 }
94 return 0;
95 }
96
97 /*
98 * This is the routine which IP calls when receiving an SCTP packet.
99 */
100 int sctp_rcv(struct sk_buff *skb)
101 {
102 struct sock *sk;
103 struct sctp_association *asoc;
104 struct sctp_endpoint *ep = NULL;
105 struct sctp_ep_common *rcvr;
106 struct sctp_transport *transport = NULL;
107 struct sctp_chunk *chunk;
108 union sctp_addr src;
109 union sctp_addr dest;
110 int family;
111 struct sctp_af *af;
112 struct net *net = dev_net(skb->dev);
113 bool is_gso = skb_is_gso(skb) && skb_is_gso_sctp(skb);
114
115 if (skb->pkt_type != PACKET_HOST)
116 goto discard_it;
117
118 __SCTP_INC_STATS(net, SCTP_MIB_INSCTPPACKS);
119
120 /* If packet is too small to contain a single chunk, let's not
121 * waste time on it anymore.
122 */
123 if (skb->len < sizeof(struct sctphdr) + sizeof(struct sctp_chunkhdr) +
124 skb_transport_offset(skb))
125 goto discard_it;
126
127 /* If the packet is fragmented and we need to do crc checking,
128 * it's better to just linearize it otherwise crc computing
129 * takes longer.
130 */
131 if ((!is_gso && skb_linearize(skb)) ||
132 !pskb_may_pull(skb, sizeof(struct sctphdr)))
133 goto discard_it;
134
135 /* Pull up the IP header. */
136 __skb_pull(skb, skb_transport_offset(skb));
137
138 skb->csum_valid = 0; /* Previous value not applicable */
139 if (skb_csum_unnecessary(skb))
140 __skb_decr_checksum_unnecessary(skb);
141 else if (!sctp_checksum_disable &&
142 !is_gso &&
143 sctp_rcv_checksum(net, skb) < 0)
144 goto discard_it;
145 skb->csum_valid = 1;
146
147 __skb_pull(skb, sizeof(struct sctphdr));
148
149 family = ipver2af(ip_hdr(skb)->version);
150 af = sctp_get_af_specific(family);
151 if (unlikely(!af))
152 goto discard_it;
153 SCTP_INPUT_CB(skb)->af = af;
154
155 /* Initialize local addresses for lookups. */
156 af->from_skb(&src, skb, 1);
157 af->from_skb(&dest, skb, 0);
158
159 /* If the packet is to or from a non-unicast address,
160 * silently discard the packet.
161 *
162 * This is not clearly defined in the RFC except in section
163 * 8.4 - OOTB handling. However, based on the book "Stream Control
164 * Transmission Protocol" 2.1, "It is important to note that the
165 * IP address of an SCTP transport address must be a routable
166 * unicast address. In other words, IP multicast addresses and
167 * IP broadcast addresses cannot be used in an SCTP transport
168 * address."
169 */
170 if (!af->addr_valid(&src, NULL, skb) ||
171 !af->addr_valid(&dest, NULL, skb))
172 goto discard_it;
173
174 asoc = __sctp_rcv_lookup(net, skb, &src, &dest, &transport);
175
176 if (!asoc)
177 ep = __sctp_rcv_lookup_endpoint(net, skb, &dest, &src);
178
179 /* Retrieve the common input handling substructure. */
180 rcvr = asoc ? &asoc->base : &ep->base;
181 sk = rcvr->sk;
182
183 /*
184 * If a frame arrives on an interface and the receiving socket is
185 * bound to another interface, via SO_BINDTODEVICE, treat it as OOTB
186 */
187 if (sk->sk_bound_dev_if && (sk->sk_bound_dev_if != af->skb_iif(skb))) {
188 if (transport) {
189 sctp_transport_put(transport);
190 asoc = NULL;
191 transport = NULL;
192 } else {
193 sctp_endpoint_put(ep);
194 ep = NULL;
195 }
196 sk = net->sctp.ctl_sock;
197 ep = sctp_sk(sk)->ep;
198 sctp_endpoint_hold(ep);
199 rcvr = &ep->base;
200 }
201
202 /*
203 * RFC 2960, 8.4 - Handle "Out of the blue" Packets.
204 * An SCTP packet is called an "out of the blue" (OOTB)
205 * packet if it is correctly formed, i.e., passed the
206 * receiver's checksum check, but the receiver is not
207 * able to identify the association to which this
208 * packet belongs.
209 */
210 if (!asoc) {
211 if (sctp_rcv_ootb(skb)) {
212 __SCTP_INC_STATS(net, SCTP_MIB_OUTOFBLUES);
213 goto discard_release;
214 }
215 }
216
217 if (!xfrm_policy_check(sk, XFRM_POLICY_IN, skb, family))
218 goto discard_release;
219 nf_reset(skb);
220
221 if (sk_filter(sk, skb))
222 goto discard_release;
223
224 /* Create an SCTP packet structure. */
225 chunk = sctp_chunkify(skb, asoc, sk, GFP_ATOMIC);
226 if (!chunk)
227 goto discard_release;
228 SCTP_INPUT_CB(skb)->chunk = chunk;
229
230 /* Remember what endpoint is to handle this packet. */
231 chunk->rcvr = rcvr;
232
233 /* Remember the SCTP header. */
234 chunk->sctp_hdr = sctp_hdr(skb);
235
236 /* Set the source and destination addresses of the incoming chunk. */
237 sctp_init_addrs(chunk, &src, &dest);
238
239 /* Remember where we came from. */
240 chunk->transport = transport;
241
242 /* Acquire access to the sock lock. Note: We are safe from other
243 * bottom halves on this lock, but a user may be in the lock too,
244 * so check if it is busy.
245 */
246 bh_lock_sock(sk);
247
248 if (sk != rcvr->sk) {
249 /* Our cached sk is different from the rcvr->sk. This is
250 * because migrate()/accept() may have moved the association
251 * to a new socket and released all the sockets. So now we
252 * are holding a lock on the old socket while the user may
253 * be doing something with the new socket. Switch our veiw
254 * of the current sk.
255 */
256 bh_unlock_sock(sk);
257 sk = rcvr->sk;
258 bh_lock_sock(sk);
259 }
260
261 if (sock_owned_by_user(sk)) {
262 if (sctp_add_backlog(sk, skb)) {
263 bh_unlock_sock(sk);
264 sctp_chunk_free(chunk);
265 skb = NULL; /* sctp_chunk_free already freed the skb */
266 goto discard_release;
267 }
268 __SCTP_INC_STATS(net, SCTP_MIB_IN_PKT_BACKLOG);
269 } else {
270 __SCTP_INC_STATS(net, SCTP_MIB_IN_PKT_SOFTIRQ);
271 sctp_inq_push(&chunk->rcvr->inqueue, chunk);
272 }
273
274 bh_unlock_sock(sk);
275
276 /* Release the asoc/ep ref we took in the lookup calls. */
277 if (transport)
278 sctp_transport_put(transport);
279 else
280 sctp_endpoint_put(ep);
281
282 return 0;
283
284 discard_it:
285 __SCTP_INC_STATS(net, SCTP_MIB_IN_PKT_DISCARDS);
286 kfree_skb(skb);
287 return 0;
288
289 discard_release:
290 /* Release the asoc/ep ref we took in the lookup calls. */
291 if (transport)
292 sctp_transport_put(transport);
293 else
294 sctp_endpoint_put(ep);
295
296 goto discard_it;
297 }
298
299 /* Process the backlog queue of the socket. Every skb on
300 * the backlog holds a ref on an association or endpoint.
301 * We hold this ref throughout the state machine to make
302 * sure that the structure we need is still around.
303 */
304 int sctp_backlog_rcv(struct sock *sk, struct sk_buff *skb)
305 {
306 struct sctp_chunk *chunk = SCTP_INPUT_CB(skb)->chunk;
307 struct sctp_inq *inqueue = &chunk->rcvr->inqueue;
308 struct sctp_transport *t = chunk->transport;
309 struct sctp_ep_common *rcvr = NULL;
310 int backloged = 0;
311
312 rcvr = chunk->rcvr;
313
314 /* If the rcvr is dead then the association or endpoint
315 * has been deleted and we can safely drop the chunk
316 * and refs that we are holding.
317 */
318 if (rcvr->dead) {
319 sctp_chunk_free(chunk);
320 goto done;
321 }
322
323 if (unlikely(rcvr->sk != sk)) {
324 /* In this case, the association moved from one socket to
325 * another. We are currently sitting on the backlog of the
326 * old socket, so we need to move.
327 * However, since we are here in the process context we
328 * need to take make sure that the user doesn't own
329 * the new socket when we process the packet.
330 * If the new socket is user-owned, queue the chunk to the
331 * backlog of the new socket without dropping any refs.
332 * Otherwise, we can safely push the chunk on the inqueue.
333 */
334
335 sk = rcvr->sk;
336 local_bh_disable();
337 bh_lock_sock(sk);
338
339 if (sock_owned_by_user(sk)) {
340 if (sk_add_backlog(sk, skb, sk->sk_rcvbuf))
341 sctp_chunk_free(chunk);
342 else
343 backloged = 1;
344 } else
345 sctp_inq_push(inqueue, chunk);
346
347 bh_unlock_sock(sk);
348 local_bh_enable();
349
350 /* If the chunk was backloged again, don't drop refs */
351 if (backloged)
352 return 0;
353 } else {
354 sctp_inq_push(inqueue, chunk);
355 }
356
357 done:
358 /* Release the refs we took in sctp_add_backlog */
359 if (SCTP_EP_TYPE_ASSOCIATION == rcvr->type)
360 sctp_transport_put(t);
361 else if (SCTP_EP_TYPE_SOCKET == rcvr->type)
362 sctp_endpoint_put(sctp_ep(rcvr));
363 else
364 BUG();
365
366 return 0;
367 }
368
369 static int sctp_add_backlog(struct sock *sk, struct sk_buff *skb)
370 {
371 struct sctp_chunk *chunk = SCTP_INPUT_CB(skb)->chunk;
372 struct sctp_transport *t = chunk->transport;
373 struct sctp_ep_common *rcvr = chunk->rcvr;
374 int ret;
375
376 ret = sk_add_backlog(sk, skb, sk->sk_rcvbuf);
377 if (!ret) {
378 /* Hold the assoc/ep while hanging on the backlog queue.
379 * This way, we know structures we need will not disappear
380 * from us
381 */
382 if (SCTP_EP_TYPE_ASSOCIATION == rcvr->type)
383 sctp_transport_hold(t);
384 else if (SCTP_EP_TYPE_SOCKET == rcvr->type)
385 sctp_endpoint_hold(sctp_ep(rcvr));
386 else
387 BUG();
388 }
389 return ret;
390
391 }
392
393 /* Handle icmp frag needed error. */
394 void sctp_icmp_frag_needed(struct sock *sk, struct sctp_association *asoc,
395 struct sctp_transport *t, __u32 pmtu)
396 {
397 if (!t || (t->pathmtu <= pmtu))
398 return;
399
400 if (sock_owned_by_user(sk)) {
401 atomic_set(&t->mtu_info, pmtu);
402 asoc->pmtu_pending = 1;
403 t->pmtu_pending = 1;
404 return;
405 }
406
407 if (!(t->param_flags & SPP_PMTUD_ENABLE))
408 /* We can't allow retransmitting in such case, as the
409 * retransmission would be sized just as before, and thus we
410 * would get another icmp, and retransmit again.
411 */
412 return;
413
414 /* Update transports view of the MTU. Return if no update was needed.
415 * If an update wasn't needed/possible, it also doesn't make sense to
416 * try to retransmit now.
417 */
418 if (!sctp_transport_update_pmtu(t, pmtu))
419 return;
420
421 /* Update association pmtu. */
422 sctp_assoc_sync_pmtu(asoc);
423
424 /* Retransmit with the new pmtu setting. */
425 sctp_retransmit(&asoc->outqueue, t, SCTP_RTXR_PMTUD);
426 }
427
428 void sctp_icmp_redirect(struct sock *sk, struct sctp_transport *t,
429 struct sk_buff *skb)
430 {
431 struct dst_entry *dst;
432
433 if (sock_owned_by_user(sk) || !t)
434 return;
435 dst = sctp_transport_dst_check(t);
436 if (dst)
437 dst->ops->redirect(dst, sk, skb);
438 }
439
440 /*
441 * SCTP Implementer's Guide, 2.37 ICMP handling procedures
442 *
443 * ICMP8) If the ICMP code is a "Unrecognized next header type encountered"
444 * or a "Protocol Unreachable" treat this message as an abort
445 * with the T bit set.
446 *
447 * This function sends an event to the state machine, which will abort the
448 * association.
449 *
450 */
451 void sctp_icmp_proto_unreachable(struct sock *sk,
452 struct sctp_association *asoc,
453 struct sctp_transport *t)
454 {
455 if (sock_owned_by_user(sk)) {
456 if (timer_pending(&t->proto_unreach_timer))
457 return;
458 else {
459 if (!mod_timer(&t->proto_unreach_timer,
460 jiffies + (HZ/20)))
461 sctp_association_hold(asoc);
462 }
463 } else {
464 struct net *net = sock_net(sk);
465
466 pr_debug("%s: unrecognized next header type "
467 "encountered!\n", __func__);
468
469 if (del_timer(&t->proto_unreach_timer))
470 sctp_association_put(asoc);
471
472 sctp_do_sm(net, SCTP_EVENT_T_OTHER,
473 SCTP_ST_OTHER(SCTP_EVENT_ICMP_PROTO_UNREACH),
474 asoc->state, asoc->ep, asoc, t,
475 GFP_ATOMIC);
476 }
477 }
478
479 /* Common lookup code for icmp/icmpv6 error handler. */
480 struct sock *sctp_err_lookup(struct net *net, int family, struct sk_buff *skb,
481 struct sctphdr *sctphdr,
482 struct sctp_association **app,
483 struct sctp_transport **tpp)
484 {
485 struct sctp_init_chunk *chunkhdr, _chunkhdr;
486 union sctp_addr saddr;
487 union sctp_addr daddr;
488 struct sctp_af *af;
489 struct sock *sk = NULL;
490 struct sctp_association *asoc;
491 struct sctp_transport *transport = NULL;
492 __u32 vtag = ntohl(sctphdr->vtag);
493
494 *app = NULL; *tpp = NULL;
495
496 af = sctp_get_af_specific(family);
497 if (unlikely(!af)) {
498 return NULL;
499 }
500
501 /* Initialize local addresses for lookups. */
502 af->from_skb(&saddr, skb, 1);
503 af->from_skb(&daddr, skb, 0);
504
505 /* Look for an association that matches the incoming ICMP error
506 * packet.
507 */
508 asoc = __sctp_lookup_association(net, &saddr, &daddr, &transport);
509 if (!asoc)
510 return NULL;
511
512 sk = asoc->base.sk;
513
514 /* RFC 4960, Appendix C. ICMP Handling
515 *
516 * ICMP6) An implementation MUST validate that the Verification Tag
517 * contained in the ICMP message matches the Verification Tag of
518 * the peer. If the Verification Tag is not 0 and does NOT
519 * match, discard the ICMP message. If it is 0 and the ICMP
520 * message contains enough bytes to verify that the chunk type is
521 * an INIT chunk and that the Initiate Tag matches the tag of the
522 * peer, continue with ICMP7. If the ICMP message is too short
523 * or the chunk type or the Initiate Tag does not match, silently
524 * discard the packet.
525 */
526 if (vtag == 0) {
527 /* chunk header + first 4 octects of init header */
528 chunkhdr = skb_header_pointer(skb, skb_transport_offset(skb) +
529 sizeof(struct sctphdr),
530 sizeof(struct sctp_chunkhdr) +
531 sizeof(__be32), &_chunkhdr);
532 if (!chunkhdr ||
533 chunkhdr->chunk_hdr.type != SCTP_CID_INIT ||
534 ntohl(chunkhdr->init_hdr.init_tag) != asoc->c.my_vtag)
535 goto out;
536
537 } else if (vtag != asoc->c.peer_vtag) {
538 goto out;
539 }
540
541 bh_lock_sock(sk);
542
543 /* If too many ICMPs get dropped on busy
544 * servers this needs to be solved differently.
545 */
546 if (sock_owned_by_user(sk))
547 __NET_INC_STATS(net, LINUX_MIB_LOCKDROPPEDICMPS);
548
549 *app = asoc;
550 *tpp = transport;
551 return sk;
552
553 out:
554 sctp_transport_put(transport);
555 return NULL;
556 }
557
558 /* Common cleanup code for icmp/icmpv6 error handler. */
559 void sctp_err_finish(struct sock *sk, struct sctp_transport *t)
560 {
561 bh_unlock_sock(sk);
562 sctp_transport_put(t);
563 }
564
565 /*
566 * This routine is called by the ICMP module when it gets some
567 * sort of error condition. If err < 0 then the socket should
568 * be closed and the error returned to the user. If err > 0
569 * it's just the icmp type << 8 | icmp code. After adjustment
570 * header points to the first 8 bytes of the sctp header. We need
571 * to find the appropriate port.
572 *
573 * The locking strategy used here is very "optimistic". When
574 * someone else accesses the socket the ICMP is just dropped
575 * and for some paths there is no check at all.
576 * A more general error queue to queue errors for later handling
577 * is probably better.
578 *
579 */
580 int sctp_v4_err(struct sk_buff *skb, __u32 info)
581 {
582 const struct iphdr *iph = (const struct iphdr *)skb->data;
583 const int ihlen = iph->ihl * 4;
584 const int type = icmp_hdr(skb)->type;
585 const int code = icmp_hdr(skb)->code;
586 struct sock *sk;
587 struct sctp_association *asoc = NULL;
588 struct sctp_transport *transport;
589 struct inet_sock *inet;
590 __u16 saveip, savesctp;
591 int err;
592 struct net *net = dev_net(skb->dev);
593
594 /* Fix up skb to look at the embedded net header. */
595 saveip = skb->network_header;
596 savesctp = skb->transport_header;
597 skb_reset_network_header(skb);
598 skb_set_transport_header(skb, ihlen);
599 sk = sctp_err_lookup(net, AF_INET, skb, sctp_hdr(skb), &asoc, &transport);
600 /* Put back, the original values. */
601 skb->network_header = saveip;
602 skb->transport_header = savesctp;
603 if (!sk) {
604 __ICMP_INC_STATS(net, ICMP_MIB_INERRORS);
605 return -ENOENT;
606 }
607 /* Warning: The sock lock is held. Remember to call
608 * sctp_err_finish!
609 */
610
611 switch (type) {
612 case ICMP_PARAMETERPROB:
613 err = EPROTO;
614 break;
615 case ICMP_DEST_UNREACH:
616 if (code > NR_ICMP_UNREACH)
617 goto out_unlock;
618
619 /* PMTU discovery (RFC1191) */
620 if (ICMP_FRAG_NEEDED == code) {
621 sctp_icmp_frag_needed(sk, asoc, transport,
622 SCTP_TRUNC4(info));
623 goto out_unlock;
624 } else {
625 if (ICMP_PROT_UNREACH == code) {
626 sctp_icmp_proto_unreachable(sk, asoc,
627 transport);
628 goto out_unlock;
629 }
630 }
631 err = icmp_err_convert[code].errno;
632 break;
633 case ICMP_TIME_EXCEEDED:
634 /* Ignore any time exceeded errors due to fragment reassembly
635 * timeouts.
636 */
637 if (ICMP_EXC_FRAGTIME == code)
638 goto out_unlock;
639
640 err = EHOSTUNREACH;
641 break;
642 case ICMP_REDIRECT:
643 sctp_icmp_redirect(sk, transport, skb);
644 /* Fall through to out_unlock. */
645 default:
646 goto out_unlock;
647 }
648
649 inet = inet_sk(sk);
650 if (!sock_owned_by_user(sk) && inet->recverr) {
651 sk->sk_err = err;
652 sk->sk_error_report(sk);
653 } else { /* Only an error on timeout */
654 sk->sk_err_soft = err;
655 }
656
657 out_unlock:
658 sctp_err_finish(sk, transport);
659 return 0;
660 }
661
662 /*
663 * RFC 2960, 8.4 - Handle "Out of the blue" Packets.
664 *
665 * This function scans all the chunks in the OOTB packet to determine if
666 * the packet should be discarded right away. If a response might be needed
667 * for this packet, or, if further processing is possible, the packet will
668 * be queued to a proper inqueue for the next phase of handling.
669 *
670 * Output:
671 * Return 0 - If further processing is needed.
672 * Return 1 - If the packet can be discarded right away.
673 */
674 static int sctp_rcv_ootb(struct sk_buff *skb)
675 {
676 struct sctp_chunkhdr *ch, _ch;
677 int ch_end, offset = 0;
678
679 /* Scan through all the chunks in the packet. */
680 do {
681 /* Make sure we have at least the header there */
682 if (offset + sizeof(_ch) > skb->len)
683 break;
684
685 ch = skb_header_pointer(skb, offset, sizeof(*ch), &_ch);
686
687 /* Break out if chunk length is less then minimal. */
688 if (ntohs(ch->length) < sizeof(_ch))
689 break;
690
691 ch_end = offset + SCTP_PAD4(ntohs(ch->length));
692 if (ch_end > skb->len)
693 break;
694
695 /* RFC 8.4, 2) If the OOTB packet contains an ABORT chunk, the
696 * receiver MUST silently discard the OOTB packet and take no
697 * further action.
698 */
699 if (SCTP_CID_ABORT == ch->type)
700 goto discard;
701
702 /* RFC 8.4, 6) If the packet contains a SHUTDOWN COMPLETE
703 * chunk, the receiver should silently discard the packet
704 * and take no further action.
705 */
706 if (SCTP_CID_SHUTDOWN_COMPLETE == ch->type)
707 goto discard;
708
709 /* RFC 4460, 2.11.2
710 * This will discard packets with INIT chunk bundled as
711 * subsequent chunks in the packet. When INIT is first,
712 * the normal INIT processing will discard the chunk.
713 */
714 if (SCTP_CID_INIT == ch->type && (void *)ch != skb->data)
715 goto discard;
716
717 offset = ch_end;
718 } while (ch_end < skb->len);
719
720 return 0;
721
722 discard:
723 return 1;
724 }
725
726 /* Insert endpoint into the hash table. */
727 static int __sctp_hash_endpoint(struct sctp_endpoint *ep)
728 {
729 struct sock *sk = ep->base.sk;
730 struct net *net = sock_net(sk);
731 struct sctp_hashbucket *head;
732 struct sctp_ep_common *epb;
733
734 epb = &ep->base;
735 epb->hashent = sctp_ep_hashfn(net, epb->bind_addr.port);
736 head = &sctp_ep_hashtable[epb->hashent];
737
738 if (sk->sk_reuseport) {
739 bool any = sctp_is_ep_boundall(sk);
740 struct sctp_ep_common *epb2;
741 struct list_head *list;
742 int cnt = 0, err = 1;
743
744 list_for_each(list, &ep->base.bind_addr.address_list)
745 cnt++;
746
747 sctp_for_each_hentry(epb2, &head->chain) {
748 struct sock *sk2 = epb2->sk;
749
750 if (!net_eq(sock_net(sk2), net) || sk2 == sk ||
751 !uid_eq(sock_i_uid(sk2), sock_i_uid(sk)) ||
752 !sk2->sk_reuseport)
753 continue;
754
755 err = sctp_bind_addrs_check(sctp_sk(sk2),
756 sctp_sk(sk), cnt);
757 if (!err) {
758 err = reuseport_add_sock(sk, sk2, any);
759 if (err)
760 return err;
761 break;
762 } else if (err < 0) {
763 return err;
764 }
765 }
766
767 if (err) {
768 err = reuseport_alloc(sk, any);
769 if (err)
770 return err;
771 }
772 }
773
774 write_lock(&head->lock);
775 hlist_add_head(&epb->node, &head->chain);
776 write_unlock(&head->lock);
777 return 0;
778 }
779
780 /* Add an endpoint to the hash. Local BH-safe. */
781 int sctp_hash_endpoint(struct sctp_endpoint *ep)
782 {
783 int err;
784
785 local_bh_disable();
786 err = __sctp_hash_endpoint(ep);
787 local_bh_enable();
788
789 return err;
790 }
791
792 /* Remove endpoint from the hash table. */
793 static void __sctp_unhash_endpoint(struct sctp_endpoint *ep)
794 {
795 struct sock *sk = ep->base.sk;
796 struct sctp_hashbucket *head;
797 struct sctp_ep_common *epb;
798
799 epb = &ep->base;
800
801 epb->hashent = sctp_ep_hashfn(sock_net(sk), epb->bind_addr.port);
802
803 head = &sctp_ep_hashtable[epb->hashent];
804
805 if (rcu_access_pointer(sk->sk_reuseport_cb))
806 reuseport_detach_sock(sk);
807
808 write_lock(&head->lock);
809 hlist_del_init(&epb->node);
810 write_unlock(&head->lock);
811 }
812
813 /* Remove endpoint from the hash. Local BH-safe. */
814 void sctp_unhash_endpoint(struct sctp_endpoint *ep)
815 {
816 local_bh_disable();
817 __sctp_unhash_endpoint(ep);
818 local_bh_enable();
819 }
820
821 static inline __u32 sctp_hashfn(const struct net *net, __be16 lport,
822 const union sctp_addr *paddr, __u32 seed)
823 {
824 __u32 addr;
825
826 if (paddr->sa.sa_family == AF_INET6)
827 addr = jhash(&paddr->v6.sin6_addr, 16, seed);
828 else
829 addr = (__force __u32)paddr->v4.sin_addr.s_addr;
830
831 return jhash_3words(addr, ((__force __u32)paddr->v4.sin_port) << 16 |
832 (__force __u32)lport, net_hash_mix(net), seed);
833 }
834
835 /* Look up an endpoint. */
836 static struct sctp_endpoint *__sctp_rcv_lookup_endpoint(
837 struct net *net, struct sk_buff *skb,
838 const union sctp_addr *laddr,
839 const union sctp_addr *paddr)
840 {
841 struct sctp_hashbucket *head;
842 struct sctp_ep_common *epb;
843 struct sctp_endpoint *ep;
844 struct sock *sk;
845 __be16 lport;
846 int hash;
847
848 lport = laddr->v4.sin_port;
849 hash = sctp_ep_hashfn(net, ntohs(lport));
850 head = &sctp_ep_hashtable[hash];
851 read_lock(&head->lock);
852 sctp_for_each_hentry(epb, &head->chain) {
853 ep = sctp_ep(epb);
854 if (sctp_endpoint_is_match(ep, net, laddr))
855 goto hit;
856 }
857
858 ep = sctp_sk(net->sctp.ctl_sock)->ep;
859
860 hit:
861 sk = ep->base.sk;
862 if (sk->sk_reuseport) {
863 __u32 phash = sctp_hashfn(net, lport, paddr, 0);
864
865 sk = reuseport_select_sock(sk, phash, skb,
866 sizeof(struct sctphdr));
867 if (sk)
868 ep = sctp_sk(sk)->ep;
869 }
870 sctp_endpoint_hold(ep);
871 read_unlock(&head->lock);
872 return ep;
873 }
874
875 /* rhashtable for transport */
876 struct sctp_hash_cmp_arg {
877 const union sctp_addr *paddr;
878 const struct net *net;
879 __be16 lport;
880 };
881
882 static inline int sctp_hash_cmp(struct rhashtable_compare_arg *arg,
883 const void *ptr)
884 {
885 struct sctp_transport *t = (struct sctp_transport *)ptr;
886 const struct sctp_hash_cmp_arg *x = arg->key;
887 int err = 1;
888
889 if (!sctp_cmp_addr_exact(&t->ipaddr, x->paddr))
890 return err;
891 if (!sctp_transport_hold(t))
892 return err;
893
894 if (!net_eq(sock_net(t->asoc->base.sk), x->net))
895 goto out;
896 if (x->lport != htons(t->asoc->base.bind_addr.port))
897 goto out;
898
899 err = 0;
900 out:
901 sctp_transport_put(t);
902 return err;
903 }
904
905 static inline __u32 sctp_hash_obj(const void *data, u32 len, u32 seed)
906 {
907 const struct sctp_transport *t = data;
908
909 return sctp_hashfn(sock_net(t->asoc->base.sk),
910 htons(t->asoc->base.bind_addr.port),
911 &t->ipaddr, seed);
912 }
913
914 static inline __u32 sctp_hash_key(const void *data, u32 len, u32 seed)
915 {
916 const struct sctp_hash_cmp_arg *x = data;
917
918 return sctp_hashfn(x->net, x->lport, x->paddr, seed);
919 }
920
921 static const struct rhashtable_params sctp_hash_params = {
922 .head_offset = offsetof(struct sctp_transport, node),
923 .hashfn = sctp_hash_key,
924 .obj_hashfn = sctp_hash_obj,
925 .obj_cmpfn = sctp_hash_cmp,
926 .automatic_shrinking = true,
927 };
928
929 int sctp_transport_hashtable_init(void)
930 {
931 return rhltable_init(&sctp_transport_hashtable, &sctp_hash_params);
932 }
933
934 void sctp_transport_hashtable_destroy(void)
935 {
936 rhltable_destroy(&sctp_transport_hashtable);
937 }
938
939 int sctp_hash_transport(struct sctp_transport *t)
940 {
941 struct sctp_transport *transport;
942 struct rhlist_head *tmp, *list;
943 struct sctp_hash_cmp_arg arg;
944 int err;
945
946 if (t->asoc->temp)
947 return 0;
948
949 arg.net = sock_net(t->asoc->base.sk);
950 arg.paddr = &t->ipaddr;
951 arg.lport = htons(t->asoc->base.bind_addr.port);
952
953 rcu_read_lock();
954 list = rhltable_lookup(&sctp_transport_hashtable, &arg,
955 sctp_hash_params);
956
957 rhl_for_each_entry_rcu(transport, tmp, list, node)
958 if (transport->asoc->ep == t->asoc->ep) {
959 rcu_read_unlock();
960 return -EEXIST;
961 }
962 rcu_read_unlock();
963
964 err = rhltable_insert_key(&sctp_transport_hashtable, &arg,
965 &t->node, sctp_hash_params);
966 if (err)
967 pr_err_once("insert transport fail, errno %d\n", err);
968
969 return err;
970 }
971
972 void sctp_unhash_transport(struct sctp_transport *t)
973 {
974 if (t->asoc->temp)
975 return;
976
977 rhltable_remove(&sctp_transport_hashtable, &t->node,
978 sctp_hash_params);
979 }
980
981 /* return a transport with holding it */
982 struct sctp_transport *sctp_addrs_lookup_transport(
983 struct net *net,
984 const union sctp_addr *laddr,
985 const union sctp_addr *paddr)
986 {
987 struct rhlist_head *tmp, *list;
988 struct sctp_transport *t;
989 struct sctp_hash_cmp_arg arg = {
990 .paddr = paddr,
991 .net = net,
992 .lport = laddr->v4.sin_port,
993 };
994
995 list = rhltable_lookup(&sctp_transport_hashtable, &arg,
996 sctp_hash_params);
997
998 rhl_for_each_entry_rcu(t, tmp, list, node) {
999 if (!sctp_transport_hold(t))
1000 continue;
1001
1002 if (sctp_bind_addr_match(&t->asoc->base.bind_addr,
1003 laddr, sctp_sk(t->asoc->base.sk)))
1004 return t;
1005 sctp_transport_put(t);
1006 }
1007
1008 return NULL;
1009 }
1010
1011 /* return a transport without holding it, as it's only used under sock lock */
1012 struct sctp_transport *sctp_epaddr_lookup_transport(
1013 const struct sctp_endpoint *ep,
1014 const union sctp_addr *paddr)
1015 {
1016 struct net *net = sock_net(ep->base.sk);
1017 struct rhlist_head *tmp, *list;
1018 struct sctp_transport *t;
1019 struct sctp_hash_cmp_arg arg = {
1020 .paddr = paddr,
1021 .net = net,
1022 .lport = htons(ep->base.bind_addr.port),
1023 };
1024
1025 list = rhltable_lookup(&sctp_transport_hashtable, &arg,
1026 sctp_hash_params);
1027
1028 rhl_for_each_entry_rcu(t, tmp, list, node)
1029 if (ep == t->asoc->ep)
1030 return t;
1031
1032 return NULL;
1033 }
1034
1035 /* Look up an association. */
1036 static struct sctp_association *__sctp_lookup_association(
1037 struct net *net,
1038 const union sctp_addr *local,
1039 const union sctp_addr *peer,
1040 struct sctp_transport **pt)
1041 {
1042 struct sctp_transport *t;
1043 struct sctp_association *asoc = NULL;
1044
1045 t = sctp_addrs_lookup_transport(net, local, peer);
1046 if (!t)
1047 goto out;
1048
1049 asoc = t->asoc;
1050 *pt = t;
1051
1052 out:
1053 return asoc;
1054 }
1055
1056 /* Look up an association. protected by RCU read lock */
1057 static
1058 struct sctp_association *sctp_lookup_association(struct net *net,
1059 const union sctp_addr *laddr,
1060 const union sctp_addr *paddr,
1061 struct sctp_transport **transportp)
1062 {
1063 struct sctp_association *asoc;
1064
1065 rcu_read_lock();
1066 asoc = __sctp_lookup_association(net, laddr, paddr, transportp);
1067 rcu_read_unlock();
1068
1069 return asoc;
1070 }
1071
1072 /* Is there an association matching the given local and peer addresses? */
1073 bool sctp_has_association(struct net *net,
1074 const union sctp_addr *laddr,
1075 const union sctp_addr *paddr)
1076 {
1077 struct sctp_transport *transport;
1078
1079 if (sctp_lookup_association(net, laddr, paddr, &transport)) {
1080 sctp_transport_put(transport);
1081 return true;
1082 }
1083
1084 return false;
1085 }
1086
1087 /*
1088 * SCTP Implementors Guide, 2.18 Handling of address
1089 * parameters within the INIT or INIT-ACK.
1090 *
1091 * D) When searching for a matching TCB upon reception of an INIT
1092 * or INIT-ACK chunk the receiver SHOULD use not only the
1093 * source address of the packet (containing the INIT or
1094 * INIT-ACK) but the receiver SHOULD also use all valid
1095 * address parameters contained within the chunk.
1096 *
1097 * 2.18.3 Solution description
1098 *
1099 * This new text clearly specifies to an implementor the need
1100 * to look within the INIT or INIT-ACK. Any implementation that
1101 * does not do this, may not be able to establish associations
1102 * in certain circumstances.
1103 *
1104 */
1105 static struct sctp_association *__sctp_rcv_init_lookup(struct net *net,
1106 struct sk_buff *skb,
1107 const union sctp_addr *laddr, struct sctp_transport **transportp)
1108 {
1109 struct sctp_association *asoc;
1110 union sctp_addr addr;
1111 union sctp_addr *paddr = &addr;
1112 struct sctphdr *sh = sctp_hdr(skb);
1113 union sctp_params params;
1114 struct sctp_init_chunk *init;
1115 struct sctp_af *af;
1116
1117 /*
1118 * This code will NOT touch anything inside the chunk--it is
1119 * strictly READ-ONLY.
1120 *
1121 * RFC 2960 3 SCTP packet Format
1122 *
1123 * Multiple chunks can be bundled into one SCTP packet up to
1124 * the MTU size, except for the INIT, INIT ACK, and SHUTDOWN
1125 * COMPLETE chunks. These chunks MUST NOT be bundled with any
1126 * other chunk in a packet. See Section 6.10 for more details
1127 * on chunk bundling.
1128 */
1129
1130 /* Find the start of the TLVs and the end of the chunk. This is
1131 * the region we search for address parameters.
1132 */
1133 init = (struct sctp_init_chunk *)skb->data;
1134
1135 /* Walk the parameters looking for embedded addresses. */
1136 sctp_walk_params(params, init, init_hdr.params) {
1137
1138 /* Note: Ignoring hostname addresses. */
1139 af = sctp_get_af_specific(param_type2af(params.p->type));
1140 if (!af)
1141 continue;
1142
1143 af->from_addr_param(paddr, params.addr, sh->source, 0);
1144
1145 asoc = __sctp_lookup_association(net, laddr, paddr, transportp);
1146 if (asoc)
1147 return asoc;
1148 }
1149
1150 return NULL;
1151 }
1152
1153 /* ADD-IP, Section 5.2
1154 * When an endpoint receives an ASCONF Chunk from the remote peer
1155 * special procedures may be needed to identify the association the
1156 * ASCONF Chunk is associated with. To properly find the association
1157 * the following procedures SHOULD be followed:
1158 *
1159 * D2) If the association is not found, use the address found in the
1160 * Address Parameter TLV combined with the port number found in the
1161 * SCTP common header. If found proceed to rule D4.
1162 *
1163 * D2-ext) If more than one ASCONF Chunks are packed together, use the
1164 * address found in the ASCONF Address Parameter TLV of each of the
1165 * subsequent ASCONF Chunks. If found, proceed to rule D4.
1166 */
1167 static struct sctp_association *__sctp_rcv_asconf_lookup(
1168 struct net *net,
1169 struct sctp_chunkhdr *ch,
1170 const union sctp_addr *laddr,
1171 __be16 peer_port,
1172 struct sctp_transport **transportp)
1173 {
1174 struct sctp_addip_chunk *asconf = (struct sctp_addip_chunk *)ch;
1175 struct sctp_af *af;
1176 union sctp_addr_param *param;
1177 union sctp_addr paddr;
1178
1179 /* Skip over the ADDIP header and find the Address parameter */
1180 param = (union sctp_addr_param *)(asconf + 1);
1181
1182 af = sctp_get_af_specific(param_type2af(param->p.type));
1183 if (unlikely(!af))
1184 return NULL;
1185
1186 af->from_addr_param(&paddr, param, peer_port, 0);
1187
1188 return __sctp_lookup_association(net, laddr, &paddr, transportp);
1189 }
1190
1191
1192 /* SCTP-AUTH, Section 6.3:
1193 * If the receiver does not find a STCB for a packet containing an AUTH
1194 * chunk as the first chunk and not a COOKIE-ECHO chunk as the second
1195 * chunk, it MUST use the chunks after the AUTH chunk to look up an existing
1196 * association.
1197 *
1198 * This means that any chunks that can help us identify the association need
1199 * to be looked at to find this association.
1200 */
1201 static struct sctp_association *__sctp_rcv_walk_lookup(struct net *net,
1202 struct sk_buff *skb,
1203 const union sctp_addr *laddr,
1204 struct sctp_transport **transportp)
1205 {
1206 struct sctp_association *asoc = NULL;
1207 struct sctp_chunkhdr *ch;
1208 int have_auth = 0;
1209 unsigned int chunk_num = 1;
1210 __u8 *ch_end;
1211
1212 /* Walk through the chunks looking for AUTH or ASCONF chunks
1213 * to help us find the association.
1214 */
1215 ch = (struct sctp_chunkhdr *)skb->data;
1216 do {
1217 /* Break out if chunk length is less then minimal. */
1218 if (ntohs(ch->length) < sizeof(*ch))
1219 break;
1220
1221 ch_end = ((__u8 *)ch) + SCTP_PAD4(ntohs(ch->length));
1222 if (ch_end > skb_tail_pointer(skb))
1223 break;
1224
1225 switch (ch->type) {
1226 case SCTP_CID_AUTH:
1227 have_auth = chunk_num;
1228 break;
1229
1230 case SCTP_CID_COOKIE_ECHO:
1231 /* If a packet arrives containing an AUTH chunk as
1232 * a first chunk, a COOKIE-ECHO chunk as the second
1233 * chunk, and possibly more chunks after them, and
1234 * the receiver does not have an STCB for that
1235 * packet, then authentication is based on
1236 * the contents of the COOKIE- ECHO chunk.
1237 */
1238 if (have_auth == 1 && chunk_num == 2)
1239 return NULL;
1240 break;
1241
1242 case SCTP_CID_ASCONF:
1243 if (have_auth || net->sctp.addip_noauth)
1244 asoc = __sctp_rcv_asconf_lookup(
1245 net, ch, laddr,
1246 sctp_hdr(skb)->source,
1247 transportp);
1248 default:
1249 break;
1250 }
1251
1252 if (asoc)
1253 break;
1254
1255 ch = (struct sctp_chunkhdr *)ch_end;
1256 chunk_num++;
1257 } while (ch_end < skb_tail_pointer(skb));
1258
1259 return asoc;
1260 }
1261
1262 /*
1263 * There are circumstances when we need to look inside the SCTP packet
1264 * for information to help us find the association. Examples
1265 * include looking inside of INIT/INIT-ACK chunks or after the AUTH
1266 * chunks.
1267 */
1268 static struct sctp_association *__sctp_rcv_lookup_harder(struct net *net,
1269 struct sk_buff *skb,
1270 const union sctp_addr *laddr,
1271 struct sctp_transport **transportp)
1272 {
1273 struct sctp_chunkhdr *ch;
1274
1275 /* We do not allow GSO frames here as we need to linearize and
1276 * then cannot guarantee frame boundaries. This shouldn't be an
1277 * issue as packets hitting this are mostly INIT or INIT-ACK and
1278 * those cannot be on GSO-style anyway.
1279 */
1280 if (skb_is_gso(skb) && skb_is_gso_sctp(skb))
1281 return NULL;
1282
1283 ch = (struct sctp_chunkhdr *)skb->data;
1284
1285 /* The code below will attempt to walk the chunk and extract
1286 * parameter information. Before we do that, we need to verify
1287 * that the chunk length doesn't cause overflow. Otherwise, we'll
1288 * walk off the end.
1289 */
1290 if (SCTP_PAD4(ntohs(ch->length)) > skb->len)
1291 return NULL;
1292
1293 /* If this is INIT/INIT-ACK look inside the chunk too. */
1294 if (ch->type == SCTP_CID_INIT || ch->type == SCTP_CID_INIT_ACK)
1295 return __sctp_rcv_init_lookup(net, skb, laddr, transportp);
1296
1297 return __sctp_rcv_walk_lookup(net, skb, laddr, transportp);
1298 }
1299
1300 /* Lookup an association for an inbound skb. */
1301 static struct sctp_association *__sctp_rcv_lookup(struct net *net,
1302 struct sk_buff *skb,
1303 const union sctp_addr *paddr,
1304 const union sctp_addr *laddr,
1305 struct sctp_transport **transportp)
1306 {
1307 struct sctp_association *asoc;
1308
1309 asoc = __sctp_lookup_association(net, laddr, paddr, transportp);
1310 if (asoc)
1311 goto out;
1312
1313 /* Further lookup for INIT/INIT-ACK packets.
1314 * SCTP Implementors Guide, 2.18 Handling of address
1315 * parameters within the INIT or INIT-ACK.
1316 */
1317 asoc = __sctp_rcv_lookup_harder(net, skb, laddr, transportp);
1318 if (asoc)
1319 goto out;
1320
1321 if (paddr->sa.sa_family == AF_INET)
1322 pr_debug("sctp: asoc not found for src:%pI4:%d dst:%pI4:%d\n",
1323 &laddr->v4.sin_addr, ntohs(laddr->v4.sin_port),
1324 &paddr->v4.sin_addr, ntohs(paddr->v4.sin_port));
1325 else
1326 pr_debug("sctp: asoc not found for src:%pI6:%d dst:%pI6:%d\n",
1327 &laddr->v6.sin6_addr, ntohs(laddr->v6.sin6_port),
1328 &paddr->v6.sin6_addr, ntohs(paddr->v6.sin6_port));
1329
1330 out:
1331 return asoc;
1332 }