]> git.proxmox.com Git - mirror_ubuntu-disco-kernel.git/blob - net/sctp/socket.c
Merge tag 'drm-fixes-2019-02-15-1' of git://anongit.freedesktop.org/drm/drm
[mirror_ubuntu-disco-kernel.git] / net / sctp / socket.c
1 /* SCTP kernel implementation
2 * (C) Copyright IBM Corp. 2001, 2004
3 * Copyright (c) 1999-2000 Cisco, Inc.
4 * Copyright (c) 1999-2001 Motorola, Inc.
5 * Copyright (c) 2001-2003 Intel Corp.
6 * Copyright (c) 2001-2002 Nokia, Inc.
7 * Copyright (c) 2001 La Monte H.P. Yarroll
8 *
9 * This file is part of the SCTP kernel implementation
10 *
11 * These functions interface with the sockets layer to implement the
12 * SCTP Extensions for the Sockets API.
13 *
14 * Note that the descriptions from the specification are USER level
15 * functions--this file is the functions which populate the struct proto
16 * for SCTP which is the BOTTOM of the sockets interface.
17 *
18 * This SCTP implementation is free software;
19 * you can redistribute it and/or modify it under the terms of
20 * the GNU General Public License as published by
21 * the Free Software Foundation; either version 2, or (at your option)
22 * any later version.
23 *
24 * This SCTP implementation is distributed in the hope that it
25 * will be useful, but WITHOUT ANY WARRANTY; without even the implied
26 * ************************
27 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
28 * See the GNU General Public License for more details.
29 *
30 * You should have received a copy of the GNU General Public License
31 * along with GNU CC; see the file COPYING. If not, see
32 * <http://www.gnu.org/licenses/>.
33 *
34 * Please send any bug reports or fixes you make to the
35 * email address(es):
36 * lksctp developers <linux-sctp@vger.kernel.org>
37 *
38 * Written or modified by:
39 * La Monte H.P. Yarroll <piggy@acm.org>
40 * Narasimha Budihal <narsi@refcode.org>
41 * Karl Knutson <karl@athena.chicago.il.us>
42 * Jon Grimm <jgrimm@us.ibm.com>
43 * Xingang Guo <xingang.guo@intel.com>
44 * Daisy Chang <daisyc@us.ibm.com>
45 * Sridhar Samudrala <samudrala@us.ibm.com>
46 * Inaky Perez-Gonzalez <inaky.gonzalez@intel.com>
47 * Ardelle Fan <ardelle.fan@intel.com>
48 * Ryan Layer <rmlayer@us.ibm.com>
49 * Anup Pemmaiah <pemmaiah@cc.usu.edu>
50 * Kevin Gao <kevin.gao@intel.com>
51 */
52
53 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
54
55 #include <crypto/hash.h>
56 #include <linux/types.h>
57 #include <linux/kernel.h>
58 #include <linux/wait.h>
59 #include <linux/time.h>
60 #include <linux/sched/signal.h>
61 #include <linux/ip.h>
62 #include <linux/capability.h>
63 #include <linux/fcntl.h>
64 #include <linux/poll.h>
65 #include <linux/init.h>
66 #include <linux/slab.h>
67 #include <linux/file.h>
68 #include <linux/compat.h>
69 #include <linux/rhashtable.h>
70
71 #include <net/ip.h>
72 #include <net/icmp.h>
73 #include <net/route.h>
74 #include <net/ipv6.h>
75 #include <net/inet_common.h>
76 #include <net/busy_poll.h>
77
78 #include <linux/socket.h> /* for sa_family_t */
79 #include <linux/export.h>
80 #include <net/sock.h>
81 #include <net/sctp/sctp.h>
82 #include <net/sctp/sm.h>
83 #include <net/sctp/stream_sched.h>
84
85 /* Forward declarations for internal helper functions. */
86 static bool sctp_writeable(struct sock *sk);
87 static void sctp_wfree(struct sk_buff *skb);
88 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p,
89 size_t msg_len);
90 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p);
91 static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p);
92 static int sctp_wait_for_accept(struct sock *sk, long timeo);
93 static void sctp_wait_for_close(struct sock *sk, long timeo);
94 static void sctp_destruct_sock(struct sock *sk);
95 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
96 union sctp_addr *addr, int len);
97 static int sctp_bindx_add(struct sock *, struct sockaddr *, int);
98 static int sctp_bindx_rem(struct sock *, struct sockaddr *, int);
99 static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int);
100 static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int);
101 static int sctp_send_asconf(struct sctp_association *asoc,
102 struct sctp_chunk *chunk);
103 static int sctp_do_bind(struct sock *, union sctp_addr *, int);
104 static int sctp_autobind(struct sock *sk);
105 static void sctp_sock_migrate(struct sock *oldsk, struct sock *newsk,
106 struct sctp_association *assoc,
107 enum sctp_socket_type type);
108
109 static unsigned long sctp_memory_pressure;
110 static atomic_long_t sctp_memory_allocated;
111 struct percpu_counter sctp_sockets_allocated;
112
113 static void sctp_enter_memory_pressure(struct sock *sk)
114 {
115 sctp_memory_pressure = 1;
116 }
117
118
119 /* Get the sndbuf space available at the time on the association. */
120 static inline int sctp_wspace(struct sctp_association *asoc)
121 {
122 struct sock *sk = asoc->base.sk;
123
124 return asoc->ep->sndbuf_policy ? sk->sk_sndbuf - asoc->sndbuf_used
125 : sk_stream_wspace(sk);
126 }
127
128 /* Increment the used sndbuf space count of the corresponding association by
129 * the size of the outgoing data chunk.
130 * Also, set the skb destructor for sndbuf accounting later.
131 *
132 * Since it is always 1-1 between chunk and skb, and also a new skb is always
133 * allocated for chunk bundling in sctp_packet_transmit(), we can use the
134 * destructor in the data chunk skb for the purpose of the sndbuf space
135 * tracking.
136 */
137 static inline void sctp_set_owner_w(struct sctp_chunk *chunk)
138 {
139 struct sctp_association *asoc = chunk->asoc;
140 struct sock *sk = asoc->base.sk;
141
142 /* The sndbuf space is tracked per association. */
143 sctp_association_hold(asoc);
144
145 if (chunk->shkey)
146 sctp_auth_shkey_hold(chunk->shkey);
147
148 skb_set_owner_w(chunk->skb, sk);
149
150 chunk->skb->destructor = sctp_wfree;
151 /* Save the chunk pointer in skb for sctp_wfree to use later. */
152 skb_shinfo(chunk->skb)->destructor_arg = chunk;
153
154 refcount_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
155 asoc->sndbuf_used += chunk->skb->truesize + sizeof(struct sctp_chunk);
156 sk->sk_wmem_queued += chunk->skb->truesize + sizeof(struct sctp_chunk);
157 sk_mem_charge(sk, chunk->skb->truesize);
158 }
159
160 static void sctp_clear_owner_w(struct sctp_chunk *chunk)
161 {
162 skb_orphan(chunk->skb);
163 }
164
165 static void sctp_for_each_tx_datachunk(struct sctp_association *asoc,
166 void (*cb)(struct sctp_chunk *))
167
168 {
169 struct sctp_outq *q = &asoc->outqueue;
170 struct sctp_transport *t;
171 struct sctp_chunk *chunk;
172
173 list_for_each_entry(t, &asoc->peer.transport_addr_list, transports)
174 list_for_each_entry(chunk, &t->transmitted, transmitted_list)
175 cb(chunk);
176
177 list_for_each_entry(chunk, &q->retransmit, transmitted_list)
178 cb(chunk);
179
180 list_for_each_entry(chunk, &q->sacked, transmitted_list)
181 cb(chunk);
182
183 list_for_each_entry(chunk, &q->abandoned, transmitted_list)
184 cb(chunk);
185
186 list_for_each_entry(chunk, &q->out_chunk_list, list)
187 cb(chunk);
188 }
189
190 static void sctp_for_each_rx_skb(struct sctp_association *asoc, struct sock *sk,
191 void (*cb)(struct sk_buff *, struct sock *))
192
193 {
194 struct sk_buff *skb, *tmp;
195
196 sctp_skb_for_each(skb, &asoc->ulpq.lobby, tmp)
197 cb(skb, sk);
198
199 sctp_skb_for_each(skb, &asoc->ulpq.reasm, tmp)
200 cb(skb, sk);
201
202 sctp_skb_for_each(skb, &asoc->ulpq.reasm_uo, tmp)
203 cb(skb, sk);
204 }
205
206 /* Verify that this is a valid address. */
207 static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr,
208 int len)
209 {
210 struct sctp_af *af;
211
212 /* Verify basic sockaddr. */
213 af = sctp_sockaddr_af(sctp_sk(sk), addr, len);
214 if (!af)
215 return -EINVAL;
216
217 /* Is this a valid SCTP address? */
218 if (!af->addr_valid(addr, sctp_sk(sk), NULL))
219 return -EINVAL;
220
221 if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr)))
222 return -EINVAL;
223
224 return 0;
225 }
226
227 /* Look up the association by its id. If this is not a UDP-style
228 * socket, the ID field is always ignored.
229 */
230 struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id)
231 {
232 struct sctp_association *asoc = NULL;
233
234 /* If this is not a UDP-style socket, assoc id should be ignored. */
235 if (!sctp_style(sk, UDP)) {
236 /* Return NULL if the socket state is not ESTABLISHED. It
237 * could be a TCP-style listening socket or a socket which
238 * hasn't yet called connect() to establish an association.
239 */
240 if (!sctp_sstate(sk, ESTABLISHED) && !sctp_sstate(sk, CLOSING))
241 return NULL;
242
243 /* Get the first and the only association from the list. */
244 if (!list_empty(&sctp_sk(sk)->ep->asocs))
245 asoc = list_entry(sctp_sk(sk)->ep->asocs.next,
246 struct sctp_association, asocs);
247 return asoc;
248 }
249
250 /* Otherwise this is a UDP-style socket. */
251 if (!id || (id == (sctp_assoc_t)-1))
252 return NULL;
253
254 spin_lock_bh(&sctp_assocs_id_lock);
255 asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id);
256 if (asoc && (asoc->base.sk != sk || asoc->base.dead))
257 asoc = NULL;
258 spin_unlock_bh(&sctp_assocs_id_lock);
259
260 return asoc;
261 }
262
263 /* Look up the transport from an address and an assoc id. If both address and
264 * id are specified, the associations matching the address and the id should be
265 * the same.
266 */
267 static struct sctp_transport *sctp_addr_id2transport(struct sock *sk,
268 struct sockaddr_storage *addr,
269 sctp_assoc_t id)
270 {
271 struct sctp_association *addr_asoc = NULL, *id_asoc = NULL;
272 struct sctp_af *af = sctp_get_af_specific(addr->ss_family);
273 union sctp_addr *laddr = (union sctp_addr *)addr;
274 struct sctp_transport *transport;
275
276 if (!af || sctp_verify_addr(sk, laddr, af->sockaddr_len))
277 return NULL;
278
279 addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep,
280 laddr,
281 &transport);
282
283 if (!addr_asoc)
284 return NULL;
285
286 id_asoc = sctp_id2assoc(sk, id);
287 if (id_asoc && (id_asoc != addr_asoc))
288 return NULL;
289
290 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk),
291 (union sctp_addr *)addr);
292
293 return transport;
294 }
295
296 /* API 3.1.2 bind() - UDP Style Syntax
297 * The syntax of bind() is,
298 *
299 * ret = bind(int sd, struct sockaddr *addr, int addrlen);
300 *
301 * sd - the socket descriptor returned by socket().
302 * addr - the address structure (struct sockaddr_in or struct
303 * sockaddr_in6 [RFC 2553]),
304 * addr_len - the size of the address structure.
305 */
306 static int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len)
307 {
308 int retval = 0;
309
310 lock_sock(sk);
311
312 pr_debug("%s: sk:%p, addr:%p, addr_len:%d\n", __func__, sk,
313 addr, addr_len);
314
315 /* Disallow binding twice. */
316 if (!sctp_sk(sk)->ep->base.bind_addr.port)
317 retval = sctp_do_bind(sk, (union sctp_addr *)addr,
318 addr_len);
319 else
320 retval = -EINVAL;
321
322 release_sock(sk);
323
324 return retval;
325 }
326
327 static long sctp_get_port_local(struct sock *, union sctp_addr *);
328
329 /* Verify this is a valid sockaddr. */
330 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
331 union sctp_addr *addr, int len)
332 {
333 struct sctp_af *af;
334
335 /* Check minimum size. */
336 if (len < sizeof (struct sockaddr))
337 return NULL;
338
339 if (!opt->pf->af_supported(addr->sa.sa_family, opt))
340 return NULL;
341
342 if (addr->sa.sa_family == AF_INET6) {
343 if (len < SIN6_LEN_RFC2133)
344 return NULL;
345 /* V4 mapped address are really of AF_INET family */
346 if (ipv6_addr_v4mapped(&addr->v6.sin6_addr) &&
347 !opt->pf->af_supported(AF_INET, opt))
348 return NULL;
349 }
350
351 /* If we get this far, af is valid. */
352 af = sctp_get_af_specific(addr->sa.sa_family);
353
354 if (len < af->sockaddr_len)
355 return NULL;
356
357 return af;
358 }
359
360 /* Bind a local address either to an endpoint or to an association. */
361 static int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len)
362 {
363 struct net *net = sock_net(sk);
364 struct sctp_sock *sp = sctp_sk(sk);
365 struct sctp_endpoint *ep = sp->ep;
366 struct sctp_bind_addr *bp = &ep->base.bind_addr;
367 struct sctp_af *af;
368 unsigned short snum;
369 int ret = 0;
370
371 /* Common sockaddr verification. */
372 af = sctp_sockaddr_af(sp, addr, len);
373 if (!af) {
374 pr_debug("%s: sk:%p, newaddr:%p, len:%d EINVAL\n",
375 __func__, sk, addr, len);
376 return -EINVAL;
377 }
378
379 snum = ntohs(addr->v4.sin_port);
380
381 pr_debug("%s: sk:%p, new addr:%pISc, port:%d, new port:%d, len:%d\n",
382 __func__, sk, &addr->sa, bp->port, snum, len);
383
384 /* PF specific bind() address verification. */
385 if (!sp->pf->bind_verify(sp, addr))
386 return -EADDRNOTAVAIL;
387
388 /* We must either be unbound, or bind to the same port.
389 * It's OK to allow 0 ports if we are already bound.
390 * We'll just inhert an already bound port in this case
391 */
392 if (bp->port) {
393 if (!snum)
394 snum = bp->port;
395 else if (snum != bp->port) {
396 pr_debug("%s: new port %d doesn't match existing port "
397 "%d\n", __func__, snum, bp->port);
398 return -EINVAL;
399 }
400 }
401
402 if (snum && snum < inet_prot_sock(net) &&
403 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE))
404 return -EACCES;
405
406 /* See if the address matches any of the addresses we may have
407 * already bound before checking against other endpoints.
408 */
409 if (sctp_bind_addr_match(bp, addr, sp))
410 return -EINVAL;
411
412 /* Make sure we are allowed to bind here.
413 * The function sctp_get_port_local() does duplicate address
414 * detection.
415 */
416 addr->v4.sin_port = htons(snum);
417 if ((ret = sctp_get_port_local(sk, addr))) {
418 return -EADDRINUSE;
419 }
420
421 /* Refresh ephemeral port. */
422 if (!bp->port)
423 bp->port = inet_sk(sk)->inet_num;
424
425 /* Add the address to the bind address list.
426 * Use GFP_ATOMIC since BHs will be disabled.
427 */
428 ret = sctp_add_bind_addr(bp, addr, af->sockaddr_len,
429 SCTP_ADDR_SRC, GFP_ATOMIC);
430
431 /* Copy back into socket for getsockname() use. */
432 if (!ret) {
433 inet_sk(sk)->inet_sport = htons(inet_sk(sk)->inet_num);
434 sp->pf->to_sk_saddr(addr, sk);
435 }
436
437 return ret;
438 }
439
440 /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks
441 *
442 * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged
443 * at any one time. If a sender, after sending an ASCONF chunk, decides
444 * it needs to transfer another ASCONF Chunk, it MUST wait until the
445 * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a
446 * subsequent ASCONF. Note this restriction binds each side, so at any
447 * time two ASCONF may be in-transit on any given association (one sent
448 * from each endpoint).
449 */
450 static int sctp_send_asconf(struct sctp_association *asoc,
451 struct sctp_chunk *chunk)
452 {
453 struct net *net = sock_net(asoc->base.sk);
454 int retval = 0;
455
456 /* If there is an outstanding ASCONF chunk, queue it for later
457 * transmission.
458 */
459 if (asoc->addip_last_asconf) {
460 list_add_tail(&chunk->list, &asoc->addip_chunk_list);
461 goto out;
462 }
463
464 /* Hold the chunk until an ASCONF_ACK is received. */
465 sctp_chunk_hold(chunk);
466 retval = sctp_primitive_ASCONF(net, asoc, chunk);
467 if (retval)
468 sctp_chunk_free(chunk);
469 else
470 asoc->addip_last_asconf = chunk;
471
472 out:
473 return retval;
474 }
475
476 /* Add a list of addresses as bind addresses to local endpoint or
477 * association.
478 *
479 * Basically run through each address specified in the addrs/addrcnt
480 * array/length pair, determine if it is IPv6 or IPv4 and call
481 * sctp_do_bind() on it.
482 *
483 * If any of them fails, then the operation will be reversed and the
484 * ones that were added will be removed.
485 *
486 * Only sctp_setsockopt_bindx() is supposed to call this function.
487 */
488 static int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt)
489 {
490 int cnt;
491 int retval = 0;
492 void *addr_buf;
493 struct sockaddr *sa_addr;
494 struct sctp_af *af;
495
496 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", __func__, sk,
497 addrs, addrcnt);
498
499 addr_buf = addrs;
500 for (cnt = 0; cnt < addrcnt; cnt++) {
501 /* The list may contain either IPv4 or IPv6 address;
502 * determine the address length for walking thru the list.
503 */
504 sa_addr = addr_buf;
505 af = sctp_get_af_specific(sa_addr->sa_family);
506 if (!af) {
507 retval = -EINVAL;
508 goto err_bindx_add;
509 }
510
511 retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr,
512 af->sockaddr_len);
513
514 addr_buf += af->sockaddr_len;
515
516 err_bindx_add:
517 if (retval < 0) {
518 /* Failed. Cleanup the ones that have been added */
519 if (cnt > 0)
520 sctp_bindx_rem(sk, addrs, cnt);
521 return retval;
522 }
523 }
524
525 return retval;
526 }
527
528 /* Send an ASCONF chunk with Add IP address parameters to all the peers of the
529 * associations that are part of the endpoint indicating that a list of local
530 * addresses are added to the endpoint.
531 *
532 * If any of the addresses is already in the bind address list of the
533 * association, we do not send the chunk for that association. But it will not
534 * affect other associations.
535 *
536 * Only sctp_setsockopt_bindx() is supposed to call this function.
537 */
538 static int sctp_send_asconf_add_ip(struct sock *sk,
539 struct sockaddr *addrs,
540 int addrcnt)
541 {
542 struct net *net = sock_net(sk);
543 struct sctp_sock *sp;
544 struct sctp_endpoint *ep;
545 struct sctp_association *asoc;
546 struct sctp_bind_addr *bp;
547 struct sctp_chunk *chunk;
548 struct sctp_sockaddr_entry *laddr;
549 union sctp_addr *addr;
550 union sctp_addr saveaddr;
551 void *addr_buf;
552 struct sctp_af *af;
553 struct list_head *p;
554 int i;
555 int retval = 0;
556
557 if (!net->sctp.addip_enable)
558 return retval;
559
560 sp = sctp_sk(sk);
561 ep = sp->ep;
562
563 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
564 __func__, sk, addrs, addrcnt);
565
566 list_for_each_entry(asoc, &ep->asocs, asocs) {
567 if (!asoc->peer.asconf_capable)
568 continue;
569
570 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP)
571 continue;
572
573 if (!sctp_state(asoc, ESTABLISHED))
574 continue;
575
576 /* Check if any address in the packed array of addresses is
577 * in the bind address list of the association. If so,
578 * do not send the asconf chunk to its peer, but continue with
579 * other associations.
580 */
581 addr_buf = addrs;
582 for (i = 0; i < addrcnt; i++) {
583 addr = addr_buf;
584 af = sctp_get_af_specific(addr->v4.sin_family);
585 if (!af) {
586 retval = -EINVAL;
587 goto out;
588 }
589
590 if (sctp_assoc_lookup_laddr(asoc, addr))
591 break;
592
593 addr_buf += af->sockaddr_len;
594 }
595 if (i < addrcnt)
596 continue;
597
598 /* Use the first valid address in bind addr list of
599 * association as Address Parameter of ASCONF CHUNK.
600 */
601 bp = &asoc->base.bind_addr;
602 p = bp->address_list.next;
603 laddr = list_entry(p, struct sctp_sockaddr_entry, list);
604 chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs,
605 addrcnt, SCTP_PARAM_ADD_IP);
606 if (!chunk) {
607 retval = -ENOMEM;
608 goto out;
609 }
610
611 /* Add the new addresses to the bind address list with
612 * use_as_src set to 0.
613 */
614 addr_buf = addrs;
615 for (i = 0; i < addrcnt; i++) {
616 addr = addr_buf;
617 af = sctp_get_af_specific(addr->v4.sin_family);
618 memcpy(&saveaddr, addr, af->sockaddr_len);
619 retval = sctp_add_bind_addr(bp, &saveaddr,
620 sizeof(saveaddr),
621 SCTP_ADDR_NEW, GFP_ATOMIC);
622 addr_buf += af->sockaddr_len;
623 }
624 if (asoc->src_out_of_asoc_ok) {
625 struct sctp_transport *trans;
626
627 list_for_each_entry(trans,
628 &asoc->peer.transport_addr_list, transports) {
629 trans->cwnd = min(4*asoc->pathmtu, max_t(__u32,
630 2*asoc->pathmtu, 4380));
631 trans->ssthresh = asoc->peer.i.a_rwnd;
632 trans->rto = asoc->rto_initial;
633 sctp_max_rto(asoc, trans);
634 trans->rtt = trans->srtt = trans->rttvar = 0;
635 /* Clear the source and route cache */
636 sctp_transport_route(trans, NULL,
637 sctp_sk(asoc->base.sk));
638 }
639 }
640 retval = sctp_send_asconf(asoc, chunk);
641 }
642
643 out:
644 return retval;
645 }
646
647 /* Remove a list of addresses from bind addresses list. Do not remove the
648 * last address.
649 *
650 * Basically run through each address specified in the addrs/addrcnt
651 * array/length pair, determine if it is IPv6 or IPv4 and call
652 * sctp_del_bind() on it.
653 *
654 * If any of them fails, then the operation will be reversed and the
655 * ones that were removed will be added back.
656 *
657 * At least one address has to be left; if only one address is
658 * available, the operation will return -EBUSY.
659 *
660 * Only sctp_setsockopt_bindx() is supposed to call this function.
661 */
662 static int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt)
663 {
664 struct sctp_sock *sp = sctp_sk(sk);
665 struct sctp_endpoint *ep = sp->ep;
666 int cnt;
667 struct sctp_bind_addr *bp = &ep->base.bind_addr;
668 int retval = 0;
669 void *addr_buf;
670 union sctp_addr *sa_addr;
671 struct sctp_af *af;
672
673 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
674 __func__, sk, addrs, addrcnt);
675
676 addr_buf = addrs;
677 for (cnt = 0; cnt < addrcnt; cnt++) {
678 /* If the bind address list is empty or if there is only one
679 * bind address, there is nothing more to be removed (we need
680 * at least one address here).
681 */
682 if (list_empty(&bp->address_list) ||
683 (sctp_list_single_entry(&bp->address_list))) {
684 retval = -EBUSY;
685 goto err_bindx_rem;
686 }
687
688 sa_addr = addr_buf;
689 af = sctp_get_af_specific(sa_addr->sa.sa_family);
690 if (!af) {
691 retval = -EINVAL;
692 goto err_bindx_rem;
693 }
694
695 if (!af->addr_valid(sa_addr, sp, NULL)) {
696 retval = -EADDRNOTAVAIL;
697 goto err_bindx_rem;
698 }
699
700 if (sa_addr->v4.sin_port &&
701 sa_addr->v4.sin_port != htons(bp->port)) {
702 retval = -EINVAL;
703 goto err_bindx_rem;
704 }
705
706 if (!sa_addr->v4.sin_port)
707 sa_addr->v4.sin_port = htons(bp->port);
708
709 /* FIXME - There is probably a need to check if sk->sk_saddr and
710 * sk->sk_rcv_addr are currently set to one of the addresses to
711 * be removed. This is something which needs to be looked into
712 * when we are fixing the outstanding issues with multi-homing
713 * socket routing and failover schemes. Refer to comments in
714 * sctp_do_bind(). -daisy
715 */
716 retval = sctp_del_bind_addr(bp, sa_addr);
717
718 addr_buf += af->sockaddr_len;
719 err_bindx_rem:
720 if (retval < 0) {
721 /* Failed. Add the ones that has been removed back */
722 if (cnt > 0)
723 sctp_bindx_add(sk, addrs, cnt);
724 return retval;
725 }
726 }
727
728 return retval;
729 }
730
731 /* Send an ASCONF chunk with Delete IP address parameters to all the peers of
732 * the associations that are part of the endpoint indicating that a list of
733 * local addresses are removed from the endpoint.
734 *
735 * If any of the addresses is already in the bind address list of the
736 * association, we do not send the chunk for that association. But it will not
737 * affect other associations.
738 *
739 * Only sctp_setsockopt_bindx() is supposed to call this function.
740 */
741 static int sctp_send_asconf_del_ip(struct sock *sk,
742 struct sockaddr *addrs,
743 int addrcnt)
744 {
745 struct net *net = sock_net(sk);
746 struct sctp_sock *sp;
747 struct sctp_endpoint *ep;
748 struct sctp_association *asoc;
749 struct sctp_transport *transport;
750 struct sctp_bind_addr *bp;
751 struct sctp_chunk *chunk;
752 union sctp_addr *laddr;
753 void *addr_buf;
754 struct sctp_af *af;
755 struct sctp_sockaddr_entry *saddr;
756 int i;
757 int retval = 0;
758 int stored = 0;
759
760 chunk = NULL;
761 if (!net->sctp.addip_enable)
762 return retval;
763
764 sp = sctp_sk(sk);
765 ep = sp->ep;
766
767 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
768 __func__, sk, addrs, addrcnt);
769
770 list_for_each_entry(asoc, &ep->asocs, asocs) {
771
772 if (!asoc->peer.asconf_capable)
773 continue;
774
775 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP)
776 continue;
777
778 if (!sctp_state(asoc, ESTABLISHED))
779 continue;
780
781 /* Check if any address in the packed array of addresses is
782 * not present in the bind address list of the association.
783 * If so, do not send the asconf chunk to its peer, but
784 * continue with other associations.
785 */
786 addr_buf = addrs;
787 for (i = 0; i < addrcnt; i++) {
788 laddr = addr_buf;
789 af = sctp_get_af_specific(laddr->v4.sin_family);
790 if (!af) {
791 retval = -EINVAL;
792 goto out;
793 }
794
795 if (!sctp_assoc_lookup_laddr(asoc, laddr))
796 break;
797
798 addr_buf += af->sockaddr_len;
799 }
800 if (i < addrcnt)
801 continue;
802
803 /* Find one address in the association's bind address list
804 * that is not in the packed array of addresses. This is to
805 * make sure that we do not delete all the addresses in the
806 * association.
807 */
808 bp = &asoc->base.bind_addr;
809 laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs,
810 addrcnt, sp);
811 if ((laddr == NULL) && (addrcnt == 1)) {
812 if (asoc->asconf_addr_del_pending)
813 continue;
814 asoc->asconf_addr_del_pending =
815 kzalloc(sizeof(union sctp_addr), GFP_ATOMIC);
816 if (asoc->asconf_addr_del_pending == NULL) {
817 retval = -ENOMEM;
818 goto out;
819 }
820 asoc->asconf_addr_del_pending->sa.sa_family =
821 addrs->sa_family;
822 asoc->asconf_addr_del_pending->v4.sin_port =
823 htons(bp->port);
824 if (addrs->sa_family == AF_INET) {
825 struct sockaddr_in *sin;
826
827 sin = (struct sockaddr_in *)addrs;
828 asoc->asconf_addr_del_pending->v4.sin_addr.s_addr = sin->sin_addr.s_addr;
829 } else if (addrs->sa_family == AF_INET6) {
830 struct sockaddr_in6 *sin6;
831
832 sin6 = (struct sockaddr_in6 *)addrs;
833 asoc->asconf_addr_del_pending->v6.sin6_addr = sin6->sin6_addr;
834 }
835
836 pr_debug("%s: keep the last address asoc:%p %pISc at %p\n",
837 __func__, asoc, &asoc->asconf_addr_del_pending->sa,
838 asoc->asconf_addr_del_pending);
839
840 asoc->src_out_of_asoc_ok = 1;
841 stored = 1;
842 goto skip_mkasconf;
843 }
844
845 if (laddr == NULL)
846 return -EINVAL;
847
848 /* We do not need RCU protection throughout this loop
849 * because this is done under a socket lock from the
850 * setsockopt call.
851 */
852 chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt,
853 SCTP_PARAM_DEL_IP);
854 if (!chunk) {
855 retval = -ENOMEM;
856 goto out;
857 }
858
859 skip_mkasconf:
860 /* Reset use_as_src flag for the addresses in the bind address
861 * list that are to be deleted.
862 */
863 addr_buf = addrs;
864 for (i = 0; i < addrcnt; i++) {
865 laddr = addr_buf;
866 af = sctp_get_af_specific(laddr->v4.sin_family);
867 list_for_each_entry(saddr, &bp->address_list, list) {
868 if (sctp_cmp_addr_exact(&saddr->a, laddr))
869 saddr->state = SCTP_ADDR_DEL;
870 }
871 addr_buf += af->sockaddr_len;
872 }
873
874 /* Update the route and saddr entries for all the transports
875 * as some of the addresses in the bind address list are
876 * about to be deleted and cannot be used as source addresses.
877 */
878 list_for_each_entry(transport, &asoc->peer.transport_addr_list,
879 transports) {
880 sctp_transport_route(transport, NULL,
881 sctp_sk(asoc->base.sk));
882 }
883
884 if (stored)
885 /* We don't need to transmit ASCONF */
886 continue;
887 retval = sctp_send_asconf(asoc, chunk);
888 }
889 out:
890 return retval;
891 }
892
893 /* set addr events to assocs in the endpoint. ep and addr_wq must be locked */
894 int sctp_asconf_mgmt(struct sctp_sock *sp, struct sctp_sockaddr_entry *addrw)
895 {
896 struct sock *sk = sctp_opt2sk(sp);
897 union sctp_addr *addr;
898 struct sctp_af *af;
899
900 /* It is safe to write port space in caller. */
901 addr = &addrw->a;
902 addr->v4.sin_port = htons(sp->ep->base.bind_addr.port);
903 af = sctp_get_af_specific(addr->sa.sa_family);
904 if (!af)
905 return -EINVAL;
906 if (sctp_verify_addr(sk, addr, af->sockaddr_len))
907 return -EINVAL;
908
909 if (addrw->state == SCTP_ADDR_NEW)
910 return sctp_send_asconf_add_ip(sk, (struct sockaddr *)addr, 1);
911 else
912 return sctp_send_asconf_del_ip(sk, (struct sockaddr *)addr, 1);
913 }
914
915 /* Helper for tunneling sctp_bindx() requests through sctp_setsockopt()
916 *
917 * API 8.1
918 * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt,
919 * int flags);
920 *
921 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
922 * If the sd is an IPv6 socket, the addresses passed can either be IPv4
923 * or IPv6 addresses.
924 *
925 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
926 * Section 3.1.2 for this usage.
927 *
928 * addrs is a pointer to an array of one or more socket addresses. Each
929 * address is contained in its appropriate structure (i.e. struct
930 * sockaddr_in or struct sockaddr_in6) the family of the address type
931 * must be used to distinguish the address length (note that this
932 * representation is termed a "packed array" of addresses). The caller
933 * specifies the number of addresses in the array with addrcnt.
934 *
935 * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns
936 * -1, and sets errno to the appropriate error code.
937 *
938 * For SCTP, the port given in each socket address must be the same, or
939 * sctp_bindx() will fail, setting errno to EINVAL.
940 *
941 * The flags parameter is formed from the bitwise OR of zero or more of
942 * the following currently defined flags:
943 *
944 * SCTP_BINDX_ADD_ADDR
945 *
946 * SCTP_BINDX_REM_ADDR
947 *
948 * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the
949 * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given
950 * addresses from the association. The two flags are mutually exclusive;
951 * if both are given, sctp_bindx() will fail with EINVAL. A caller may
952 * not remove all addresses from an association; sctp_bindx() will
953 * reject such an attempt with EINVAL.
954 *
955 * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate
956 * additional addresses with an endpoint after calling bind(). Or use
957 * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening
958 * socket is associated with so that no new association accepted will be
959 * associated with those addresses. If the endpoint supports dynamic
960 * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a
961 * endpoint to send the appropriate message to the peer to change the
962 * peers address lists.
963 *
964 * Adding and removing addresses from a connected association is
965 * optional functionality. Implementations that do not support this
966 * functionality should return EOPNOTSUPP.
967 *
968 * Basically do nothing but copying the addresses from user to kernel
969 * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk.
970 * This is used for tunneling the sctp_bindx() request through sctp_setsockopt()
971 * from userspace.
972 *
973 * On exit there is no need to do sockfd_put(), sys_setsockopt() does
974 * it.
975 *
976 * sk The sk of the socket
977 * addrs The pointer to the addresses in user land
978 * addrssize Size of the addrs buffer
979 * op Operation to perform (add or remove, see the flags of
980 * sctp_bindx)
981 *
982 * Returns 0 if ok, <0 errno code on error.
983 */
984 static int sctp_setsockopt_bindx(struct sock *sk,
985 struct sockaddr __user *addrs,
986 int addrs_size, int op)
987 {
988 struct sockaddr *kaddrs;
989 int err;
990 int addrcnt = 0;
991 int walk_size = 0;
992 struct sockaddr *sa_addr;
993 void *addr_buf;
994 struct sctp_af *af;
995
996 pr_debug("%s: sk:%p addrs:%p addrs_size:%d opt:%d\n",
997 __func__, sk, addrs, addrs_size, op);
998
999 if (unlikely(addrs_size <= 0))
1000 return -EINVAL;
1001
1002 kaddrs = vmemdup_user(addrs, addrs_size);
1003 if (unlikely(IS_ERR(kaddrs)))
1004 return PTR_ERR(kaddrs);
1005
1006 /* Walk through the addrs buffer and count the number of addresses. */
1007 addr_buf = kaddrs;
1008 while (walk_size < addrs_size) {
1009 if (walk_size + sizeof(sa_family_t) > addrs_size) {
1010 kvfree(kaddrs);
1011 return -EINVAL;
1012 }
1013
1014 sa_addr = addr_buf;
1015 af = sctp_get_af_specific(sa_addr->sa_family);
1016
1017 /* If the address family is not supported or if this address
1018 * causes the address buffer to overflow return EINVAL.
1019 */
1020 if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
1021 kvfree(kaddrs);
1022 return -EINVAL;
1023 }
1024 addrcnt++;
1025 addr_buf += af->sockaddr_len;
1026 walk_size += af->sockaddr_len;
1027 }
1028
1029 /* Do the work. */
1030 switch (op) {
1031 case SCTP_BINDX_ADD_ADDR:
1032 /* Allow security module to validate bindx addresses. */
1033 err = security_sctp_bind_connect(sk, SCTP_SOCKOPT_BINDX_ADD,
1034 (struct sockaddr *)kaddrs,
1035 addrs_size);
1036 if (err)
1037 goto out;
1038 err = sctp_bindx_add(sk, kaddrs, addrcnt);
1039 if (err)
1040 goto out;
1041 err = sctp_send_asconf_add_ip(sk, kaddrs, addrcnt);
1042 break;
1043
1044 case SCTP_BINDX_REM_ADDR:
1045 err = sctp_bindx_rem(sk, kaddrs, addrcnt);
1046 if (err)
1047 goto out;
1048 err = sctp_send_asconf_del_ip(sk, kaddrs, addrcnt);
1049 break;
1050
1051 default:
1052 err = -EINVAL;
1053 break;
1054 }
1055
1056 out:
1057 kvfree(kaddrs);
1058
1059 return err;
1060 }
1061
1062 /* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size)
1063 *
1064 * Common routine for handling connect() and sctp_connectx().
1065 * Connect will come in with just a single address.
1066 */
1067 static int __sctp_connect(struct sock *sk,
1068 struct sockaddr *kaddrs,
1069 int addrs_size, int flags,
1070 sctp_assoc_t *assoc_id)
1071 {
1072 struct net *net = sock_net(sk);
1073 struct sctp_sock *sp;
1074 struct sctp_endpoint *ep;
1075 struct sctp_association *asoc = NULL;
1076 struct sctp_association *asoc2;
1077 struct sctp_transport *transport;
1078 union sctp_addr to;
1079 enum sctp_scope scope;
1080 long timeo;
1081 int err = 0;
1082 int addrcnt = 0;
1083 int walk_size = 0;
1084 union sctp_addr *sa_addr = NULL;
1085 void *addr_buf;
1086 unsigned short port;
1087
1088 sp = sctp_sk(sk);
1089 ep = sp->ep;
1090
1091 /* connect() cannot be done on a socket that is already in ESTABLISHED
1092 * state - UDP-style peeled off socket or a TCP-style socket that
1093 * is already connected.
1094 * It cannot be done even on a TCP-style listening socket.
1095 */
1096 if (sctp_sstate(sk, ESTABLISHED) || sctp_sstate(sk, CLOSING) ||
1097 (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) {
1098 err = -EISCONN;
1099 goto out_free;
1100 }
1101
1102 /* Walk through the addrs buffer and count the number of addresses. */
1103 addr_buf = kaddrs;
1104 while (walk_size < addrs_size) {
1105 struct sctp_af *af;
1106
1107 if (walk_size + sizeof(sa_family_t) > addrs_size) {
1108 err = -EINVAL;
1109 goto out_free;
1110 }
1111
1112 sa_addr = addr_buf;
1113 af = sctp_get_af_specific(sa_addr->sa.sa_family);
1114
1115 /* If the address family is not supported or if this address
1116 * causes the address buffer to overflow return EINVAL.
1117 */
1118 if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
1119 err = -EINVAL;
1120 goto out_free;
1121 }
1122
1123 port = ntohs(sa_addr->v4.sin_port);
1124
1125 /* Save current address so we can work with it */
1126 memcpy(&to, sa_addr, af->sockaddr_len);
1127
1128 err = sctp_verify_addr(sk, &to, af->sockaddr_len);
1129 if (err)
1130 goto out_free;
1131
1132 /* Make sure the destination port is correctly set
1133 * in all addresses.
1134 */
1135 if (asoc && asoc->peer.port && asoc->peer.port != port) {
1136 err = -EINVAL;
1137 goto out_free;
1138 }
1139
1140 /* Check if there already is a matching association on the
1141 * endpoint (other than the one created here).
1142 */
1143 asoc2 = sctp_endpoint_lookup_assoc(ep, &to, &transport);
1144 if (asoc2 && asoc2 != asoc) {
1145 if (asoc2->state >= SCTP_STATE_ESTABLISHED)
1146 err = -EISCONN;
1147 else
1148 err = -EALREADY;
1149 goto out_free;
1150 }
1151
1152 /* If we could not find a matching association on the endpoint,
1153 * make sure that there is no peeled-off association matching
1154 * the peer address even on another socket.
1155 */
1156 if (sctp_endpoint_is_peeled_off(ep, &to)) {
1157 err = -EADDRNOTAVAIL;
1158 goto out_free;
1159 }
1160
1161 if (!asoc) {
1162 /* If a bind() or sctp_bindx() is not called prior to
1163 * an sctp_connectx() call, the system picks an
1164 * ephemeral port and will choose an address set
1165 * equivalent to binding with a wildcard address.
1166 */
1167 if (!ep->base.bind_addr.port) {
1168 if (sctp_autobind(sk)) {
1169 err = -EAGAIN;
1170 goto out_free;
1171 }
1172 } else {
1173 /*
1174 * If an unprivileged user inherits a 1-many
1175 * style socket with open associations on a
1176 * privileged port, it MAY be permitted to
1177 * accept new associations, but it SHOULD NOT
1178 * be permitted to open new associations.
1179 */
1180 if (ep->base.bind_addr.port <
1181 inet_prot_sock(net) &&
1182 !ns_capable(net->user_ns,
1183 CAP_NET_BIND_SERVICE)) {
1184 err = -EACCES;
1185 goto out_free;
1186 }
1187 }
1188
1189 scope = sctp_scope(&to);
1190 asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1191 if (!asoc) {
1192 err = -ENOMEM;
1193 goto out_free;
1194 }
1195
1196 err = sctp_assoc_set_bind_addr_from_ep(asoc, scope,
1197 GFP_KERNEL);
1198 if (err < 0) {
1199 goto out_free;
1200 }
1201
1202 }
1203
1204 /* Prime the peer's transport structures. */
1205 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL,
1206 SCTP_UNKNOWN);
1207 if (!transport) {
1208 err = -ENOMEM;
1209 goto out_free;
1210 }
1211
1212 addrcnt++;
1213 addr_buf += af->sockaddr_len;
1214 walk_size += af->sockaddr_len;
1215 }
1216
1217 /* In case the user of sctp_connectx() wants an association
1218 * id back, assign one now.
1219 */
1220 if (assoc_id) {
1221 err = sctp_assoc_set_id(asoc, GFP_KERNEL);
1222 if (err < 0)
1223 goto out_free;
1224 }
1225
1226 err = sctp_primitive_ASSOCIATE(net, asoc, NULL);
1227 if (err < 0) {
1228 goto out_free;
1229 }
1230
1231 /* Initialize sk's dport and daddr for getpeername() */
1232 inet_sk(sk)->inet_dport = htons(asoc->peer.port);
1233 sp->pf->to_sk_daddr(sa_addr, sk);
1234 sk->sk_err = 0;
1235
1236 timeo = sock_sndtimeo(sk, flags & O_NONBLOCK);
1237
1238 if (assoc_id)
1239 *assoc_id = asoc->assoc_id;
1240
1241 err = sctp_wait_for_connect(asoc, &timeo);
1242 /* Note: the asoc may be freed after the return of
1243 * sctp_wait_for_connect.
1244 */
1245
1246 /* Don't free association on exit. */
1247 asoc = NULL;
1248
1249 out_free:
1250 pr_debug("%s: took out_free path with asoc:%p kaddrs:%p err:%d\n",
1251 __func__, asoc, kaddrs, err);
1252
1253 if (asoc) {
1254 /* sctp_primitive_ASSOCIATE may have added this association
1255 * To the hash table, try to unhash it, just in case, its a noop
1256 * if it wasn't hashed so we're safe
1257 */
1258 sctp_association_free(asoc);
1259 }
1260 return err;
1261 }
1262
1263 /* Helper for tunneling sctp_connectx() requests through sctp_setsockopt()
1264 *
1265 * API 8.9
1266 * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt,
1267 * sctp_assoc_t *asoc);
1268 *
1269 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
1270 * If the sd is an IPv6 socket, the addresses passed can either be IPv4
1271 * or IPv6 addresses.
1272 *
1273 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
1274 * Section 3.1.2 for this usage.
1275 *
1276 * addrs is a pointer to an array of one or more socket addresses. Each
1277 * address is contained in its appropriate structure (i.e. struct
1278 * sockaddr_in or struct sockaddr_in6) the family of the address type
1279 * must be used to distengish the address length (note that this
1280 * representation is termed a "packed array" of addresses). The caller
1281 * specifies the number of addresses in the array with addrcnt.
1282 *
1283 * On success, sctp_connectx() returns 0. It also sets the assoc_id to
1284 * the association id of the new association. On failure, sctp_connectx()
1285 * returns -1, and sets errno to the appropriate error code. The assoc_id
1286 * is not touched by the kernel.
1287 *
1288 * For SCTP, the port given in each socket address must be the same, or
1289 * sctp_connectx() will fail, setting errno to EINVAL.
1290 *
1291 * An application can use sctp_connectx to initiate an association with
1292 * an endpoint that is multi-homed. Much like sctp_bindx() this call
1293 * allows a caller to specify multiple addresses at which a peer can be
1294 * reached. The way the SCTP stack uses the list of addresses to set up
1295 * the association is implementation dependent. This function only
1296 * specifies that the stack will try to make use of all the addresses in
1297 * the list when needed.
1298 *
1299 * Note that the list of addresses passed in is only used for setting up
1300 * the association. It does not necessarily equal the set of addresses
1301 * the peer uses for the resulting association. If the caller wants to
1302 * find out the set of peer addresses, it must use sctp_getpaddrs() to
1303 * retrieve them after the association has been set up.
1304 *
1305 * Basically do nothing but copying the addresses from user to kernel
1306 * land and invoking either sctp_connectx(). This is used for tunneling
1307 * the sctp_connectx() request through sctp_setsockopt() from userspace.
1308 *
1309 * On exit there is no need to do sockfd_put(), sys_setsockopt() does
1310 * it.
1311 *
1312 * sk The sk of the socket
1313 * addrs The pointer to the addresses in user land
1314 * addrssize Size of the addrs buffer
1315 *
1316 * Returns >=0 if ok, <0 errno code on error.
1317 */
1318 static int __sctp_setsockopt_connectx(struct sock *sk,
1319 struct sockaddr __user *addrs,
1320 int addrs_size,
1321 sctp_assoc_t *assoc_id)
1322 {
1323 struct sockaddr *kaddrs;
1324 int err = 0, flags = 0;
1325
1326 pr_debug("%s: sk:%p addrs:%p addrs_size:%d\n",
1327 __func__, sk, addrs, addrs_size);
1328
1329 if (unlikely(addrs_size <= 0))
1330 return -EINVAL;
1331
1332 kaddrs = vmemdup_user(addrs, addrs_size);
1333 if (unlikely(IS_ERR(kaddrs)))
1334 return PTR_ERR(kaddrs);
1335
1336 /* Allow security module to validate connectx addresses. */
1337 err = security_sctp_bind_connect(sk, SCTP_SOCKOPT_CONNECTX,
1338 (struct sockaddr *)kaddrs,
1339 addrs_size);
1340 if (err)
1341 goto out_free;
1342
1343 /* in-kernel sockets don't generally have a file allocated to them
1344 * if all they do is call sock_create_kern().
1345 */
1346 if (sk->sk_socket->file)
1347 flags = sk->sk_socket->file->f_flags;
1348
1349 err = __sctp_connect(sk, kaddrs, addrs_size, flags, assoc_id);
1350
1351 out_free:
1352 kvfree(kaddrs);
1353
1354 return err;
1355 }
1356
1357 /*
1358 * This is an older interface. It's kept for backward compatibility
1359 * to the option that doesn't provide association id.
1360 */
1361 static int sctp_setsockopt_connectx_old(struct sock *sk,
1362 struct sockaddr __user *addrs,
1363 int addrs_size)
1364 {
1365 return __sctp_setsockopt_connectx(sk, addrs, addrs_size, NULL);
1366 }
1367
1368 /*
1369 * New interface for the API. The since the API is done with a socket
1370 * option, to make it simple we feed back the association id is as a return
1371 * indication to the call. Error is always negative and association id is
1372 * always positive.
1373 */
1374 static int sctp_setsockopt_connectx(struct sock *sk,
1375 struct sockaddr __user *addrs,
1376 int addrs_size)
1377 {
1378 sctp_assoc_t assoc_id = 0;
1379 int err = 0;
1380
1381 err = __sctp_setsockopt_connectx(sk, addrs, addrs_size, &assoc_id);
1382
1383 if (err)
1384 return err;
1385 else
1386 return assoc_id;
1387 }
1388
1389 /*
1390 * New (hopefully final) interface for the API.
1391 * We use the sctp_getaddrs_old structure so that use-space library
1392 * can avoid any unnecessary allocations. The only different part
1393 * is that we store the actual length of the address buffer into the
1394 * addrs_num structure member. That way we can re-use the existing
1395 * code.
1396 */
1397 #ifdef CONFIG_COMPAT
1398 struct compat_sctp_getaddrs_old {
1399 sctp_assoc_t assoc_id;
1400 s32 addr_num;
1401 compat_uptr_t addrs; /* struct sockaddr * */
1402 };
1403 #endif
1404
1405 static int sctp_getsockopt_connectx3(struct sock *sk, int len,
1406 char __user *optval,
1407 int __user *optlen)
1408 {
1409 struct sctp_getaddrs_old param;
1410 sctp_assoc_t assoc_id = 0;
1411 int err = 0;
1412
1413 #ifdef CONFIG_COMPAT
1414 if (in_compat_syscall()) {
1415 struct compat_sctp_getaddrs_old param32;
1416
1417 if (len < sizeof(param32))
1418 return -EINVAL;
1419 if (copy_from_user(&param32, optval, sizeof(param32)))
1420 return -EFAULT;
1421
1422 param.assoc_id = param32.assoc_id;
1423 param.addr_num = param32.addr_num;
1424 param.addrs = compat_ptr(param32.addrs);
1425 } else
1426 #endif
1427 {
1428 if (len < sizeof(param))
1429 return -EINVAL;
1430 if (copy_from_user(&param, optval, sizeof(param)))
1431 return -EFAULT;
1432 }
1433
1434 err = __sctp_setsockopt_connectx(sk, (struct sockaddr __user *)
1435 param.addrs, param.addr_num,
1436 &assoc_id);
1437 if (err == 0 || err == -EINPROGRESS) {
1438 if (copy_to_user(optval, &assoc_id, sizeof(assoc_id)))
1439 return -EFAULT;
1440 if (put_user(sizeof(assoc_id), optlen))
1441 return -EFAULT;
1442 }
1443
1444 return err;
1445 }
1446
1447 /* API 3.1.4 close() - UDP Style Syntax
1448 * Applications use close() to perform graceful shutdown (as described in
1449 * Section 10.1 of [SCTP]) on ALL the associations currently represented
1450 * by a UDP-style socket.
1451 *
1452 * The syntax is
1453 *
1454 * ret = close(int sd);
1455 *
1456 * sd - the socket descriptor of the associations to be closed.
1457 *
1458 * To gracefully shutdown a specific association represented by the
1459 * UDP-style socket, an application should use the sendmsg() call,
1460 * passing no user data, but including the appropriate flag in the
1461 * ancillary data (see Section xxxx).
1462 *
1463 * If sd in the close() call is a branched-off socket representing only
1464 * one association, the shutdown is performed on that association only.
1465 *
1466 * 4.1.6 close() - TCP Style Syntax
1467 *
1468 * Applications use close() to gracefully close down an association.
1469 *
1470 * The syntax is:
1471 *
1472 * int close(int sd);
1473 *
1474 * sd - the socket descriptor of the association to be closed.
1475 *
1476 * After an application calls close() on a socket descriptor, no further
1477 * socket operations will succeed on that descriptor.
1478 *
1479 * API 7.1.4 SO_LINGER
1480 *
1481 * An application using the TCP-style socket can use this option to
1482 * perform the SCTP ABORT primitive. The linger option structure is:
1483 *
1484 * struct linger {
1485 * int l_onoff; // option on/off
1486 * int l_linger; // linger time
1487 * };
1488 *
1489 * To enable the option, set l_onoff to 1. If the l_linger value is set
1490 * to 0, calling close() is the same as the ABORT primitive. If the
1491 * value is set to a negative value, the setsockopt() call will return
1492 * an error. If the value is set to a positive value linger_time, the
1493 * close() can be blocked for at most linger_time ms. If the graceful
1494 * shutdown phase does not finish during this period, close() will
1495 * return but the graceful shutdown phase continues in the system.
1496 */
1497 static void sctp_close(struct sock *sk, long timeout)
1498 {
1499 struct net *net = sock_net(sk);
1500 struct sctp_endpoint *ep;
1501 struct sctp_association *asoc;
1502 struct list_head *pos, *temp;
1503 unsigned int data_was_unread;
1504
1505 pr_debug("%s: sk:%p, timeout:%ld\n", __func__, sk, timeout);
1506
1507 lock_sock_nested(sk, SINGLE_DEPTH_NESTING);
1508 sk->sk_shutdown = SHUTDOWN_MASK;
1509 inet_sk_set_state(sk, SCTP_SS_CLOSING);
1510
1511 ep = sctp_sk(sk)->ep;
1512
1513 /* Clean up any skbs sitting on the receive queue. */
1514 data_was_unread = sctp_queue_purge_ulpevents(&sk->sk_receive_queue);
1515 data_was_unread += sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby);
1516
1517 /* Walk all associations on an endpoint. */
1518 list_for_each_safe(pos, temp, &ep->asocs) {
1519 asoc = list_entry(pos, struct sctp_association, asocs);
1520
1521 if (sctp_style(sk, TCP)) {
1522 /* A closed association can still be in the list if
1523 * it belongs to a TCP-style listening socket that is
1524 * not yet accepted. If so, free it. If not, send an
1525 * ABORT or SHUTDOWN based on the linger options.
1526 */
1527 if (sctp_state(asoc, CLOSED)) {
1528 sctp_association_free(asoc);
1529 continue;
1530 }
1531 }
1532
1533 if (data_was_unread || !skb_queue_empty(&asoc->ulpq.lobby) ||
1534 !skb_queue_empty(&asoc->ulpq.reasm) ||
1535 !skb_queue_empty(&asoc->ulpq.reasm_uo) ||
1536 (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime)) {
1537 struct sctp_chunk *chunk;
1538
1539 chunk = sctp_make_abort_user(asoc, NULL, 0);
1540 sctp_primitive_ABORT(net, asoc, chunk);
1541 } else
1542 sctp_primitive_SHUTDOWN(net, asoc, NULL);
1543 }
1544
1545 /* On a TCP-style socket, block for at most linger_time if set. */
1546 if (sctp_style(sk, TCP) && timeout)
1547 sctp_wait_for_close(sk, timeout);
1548
1549 /* This will run the backlog queue. */
1550 release_sock(sk);
1551
1552 /* Supposedly, no process has access to the socket, but
1553 * the net layers still may.
1554 * Also, sctp_destroy_sock() needs to be called with addr_wq_lock
1555 * held and that should be grabbed before socket lock.
1556 */
1557 spin_lock_bh(&net->sctp.addr_wq_lock);
1558 bh_lock_sock_nested(sk);
1559
1560 /* Hold the sock, since sk_common_release() will put sock_put()
1561 * and we have just a little more cleanup.
1562 */
1563 sock_hold(sk);
1564 sk_common_release(sk);
1565
1566 bh_unlock_sock(sk);
1567 spin_unlock_bh(&net->sctp.addr_wq_lock);
1568
1569 sock_put(sk);
1570
1571 SCTP_DBG_OBJCNT_DEC(sock);
1572 }
1573
1574 /* Handle EPIPE error. */
1575 static int sctp_error(struct sock *sk, int flags, int err)
1576 {
1577 if (err == -EPIPE)
1578 err = sock_error(sk) ? : -EPIPE;
1579 if (err == -EPIPE && !(flags & MSG_NOSIGNAL))
1580 send_sig(SIGPIPE, current, 0);
1581 return err;
1582 }
1583
1584 /* API 3.1.3 sendmsg() - UDP Style Syntax
1585 *
1586 * An application uses sendmsg() and recvmsg() calls to transmit data to
1587 * and receive data from its peer.
1588 *
1589 * ssize_t sendmsg(int socket, const struct msghdr *message,
1590 * int flags);
1591 *
1592 * socket - the socket descriptor of the endpoint.
1593 * message - pointer to the msghdr structure which contains a single
1594 * user message and possibly some ancillary data.
1595 *
1596 * See Section 5 for complete description of the data
1597 * structures.
1598 *
1599 * flags - flags sent or received with the user message, see Section
1600 * 5 for complete description of the flags.
1601 *
1602 * Note: This function could use a rewrite especially when explicit
1603 * connect support comes in.
1604 */
1605 /* BUG: We do not implement the equivalent of sk_stream_wait_memory(). */
1606
1607 static int sctp_msghdr_parse(const struct msghdr *msg,
1608 struct sctp_cmsgs *cmsgs);
1609
1610 static int sctp_sendmsg_parse(struct sock *sk, struct sctp_cmsgs *cmsgs,
1611 struct sctp_sndrcvinfo *srinfo,
1612 const struct msghdr *msg, size_t msg_len)
1613 {
1614 __u16 sflags;
1615 int err;
1616
1617 if (sctp_sstate(sk, LISTENING) && sctp_style(sk, TCP))
1618 return -EPIPE;
1619
1620 if (msg_len > sk->sk_sndbuf)
1621 return -EMSGSIZE;
1622
1623 memset(cmsgs, 0, sizeof(*cmsgs));
1624 err = sctp_msghdr_parse(msg, cmsgs);
1625 if (err) {
1626 pr_debug("%s: msghdr parse err:%x\n", __func__, err);
1627 return err;
1628 }
1629
1630 memset(srinfo, 0, sizeof(*srinfo));
1631 if (cmsgs->srinfo) {
1632 srinfo->sinfo_stream = cmsgs->srinfo->sinfo_stream;
1633 srinfo->sinfo_flags = cmsgs->srinfo->sinfo_flags;
1634 srinfo->sinfo_ppid = cmsgs->srinfo->sinfo_ppid;
1635 srinfo->sinfo_context = cmsgs->srinfo->sinfo_context;
1636 srinfo->sinfo_assoc_id = cmsgs->srinfo->sinfo_assoc_id;
1637 srinfo->sinfo_timetolive = cmsgs->srinfo->sinfo_timetolive;
1638 }
1639
1640 if (cmsgs->sinfo) {
1641 srinfo->sinfo_stream = cmsgs->sinfo->snd_sid;
1642 srinfo->sinfo_flags = cmsgs->sinfo->snd_flags;
1643 srinfo->sinfo_ppid = cmsgs->sinfo->snd_ppid;
1644 srinfo->sinfo_context = cmsgs->sinfo->snd_context;
1645 srinfo->sinfo_assoc_id = cmsgs->sinfo->snd_assoc_id;
1646 }
1647
1648 if (cmsgs->prinfo) {
1649 srinfo->sinfo_timetolive = cmsgs->prinfo->pr_value;
1650 SCTP_PR_SET_POLICY(srinfo->sinfo_flags,
1651 cmsgs->prinfo->pr_policy);
1652 }
1653
1654 sflags = srinfo->sinfo_flags;
1655 if (!sflags && msg_len)
1656 return 0;
1657
1658 if (sctp_style(sk, TCP) && (sflags & (SCTP_EOF | SCTP_ABORT)))
1659 return -EINVAL;
1660
1661 if (((sflags & SCTP_EOF) && msg_len > 0) ||
1662 (!(sflags & (SCTP_EOF | SCTP_ABORT)) && msg_len == 0))
1663 return -EINVAL;
1664
1665 if ((sflags & SCTP_ADDR_OVER) && !msg->msg_name)
1666 return -EINVAL;
1667
1668 return 0;
1669 }
1670
1671 static int sctp_sendmsg_new_asoc(struct sock *sk, __u16 sflags,
1672 struct sctp_cmsgs *cmsgs,
1673 union sctp_addr *daddr,
1674 struct sctp_transport **tp)
1675 {
1676 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
1677 struct net *net = sock_net(sk);
1678 struct sctp_association *asoc;
1679 enum sctp_scope scope;
1680 struct cmsghdr *cmsg;
1681 __be32 flowinfo = 0;
1682 struct sctp_af *af;
1683 int err;
1684
1685 *tp = NULL;
1686
1687 if (sflags & (SCTP_EOF | SCTP_ABORT))
1688 return -EINVAL;
1689
1690 if (sctp_style(sk, TCP) && (sctp_sstate(sk, ESTABLISHED) ||
1691 sctp_sstate(sk, CLOSING)))
1692 return -EADDRNOTAVAIL;
1693
1694 if (sctp_endpoint_is_peeled_off(ep, daddr))
1695 return -EADDRNOTAVAIL;
1696
1697 if (!ep->base.bind_addr.port) {
1698 if (sctp_autobind(sk))
1699 return -EAGAIN;
1700 } else {
1701 if (ep->base.bind_addr.port < inet_prot_sock(net) &&
1702 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE))
1703 return -EACCES;
1704 }
1705
1706 scope = sctp_scope(daddr);
1707
1708 /* Label connection socket for first association 1-to-many
1709 * style for client sequence socket()->sendmsg(). This
1710 * needs to be done before sctp_assoc_add_peer() as that will
1711 * set up the initial packet that needs to account for any
1712 * security ip options (CIPSO/CALIPSO) added to the packet.
1713 */
1714 af = sctp_get_af_specific(daddr->sa.sa_family);
1715 if (!af)
1716 return -EINVAL;
1717 err = security_sctp_bind_connect(sk, SCTP_SENDMSG_CONNECT,
1718 (struct sockaddr *)daddr,
1719 af->sockaddr_len);
1720 if (err < 0)
1721 return err;
1722
1723 asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1724 if (!asoc)
1725 return -ENOMEM;
1726
1727 if (sctp_assoc_set_bind_addr_from_ep(asoc, scope, GFP_KERNEL) < 0) {
1728 err = -ENOMEM;
1729 goto free;
1730 }
1731
1732 if (cmsgs->init) {
1733 struct sctp_initmsg *init = cmsgs->init;
1734
1735 if (init->sinit_num_ostreams) {
1736 __u16 outcnt = init->sinit_num_ostreams;
1737
1738 asoc->c.sinit_num_ostreams = outcnt;
1739 /* outcnt has been changed, need to re-init stream */
1740 err = sctp_stream_init(&asoc->stream, outcnt, 0,
1741 GFP_KERNEL);
1742 if (err)
1743 goto free;
1744 }
1745
1746 if (init->sinit_max_instreams)
1747 asoc->c.sinit_max_instreams = init->sinit_max_instreams;
1748
1749 if (init->sinit_max_attempts)
1750 asoc->max_init_attempts = init->sinit_max_attempts;
1751
1752 if (init->sinit_max_init_timeo)
1753 asoc->max_init_timeo =
1754 msecs_to_jiffies(init->sinit_max_init_timeo);
1755 }
1756
1757 *tp = sctp_assoc_add_peer(asoc, daddr, GFP_KERNEL, SCTP_UNKNOWN);
1758 if (!*tp) {
1759 err = -ENOMEM;
1760 goto free;
1761 }
1762
1763 if (!cmsgs->addrs_msg)
1764 return 0;
1765
1766 if (daddr->sa.sa_family == AF_INET6)
1767 flowinfo = daddr->v6.sin6_flowinfo;
1768
1769 /* sendv addr list parse */
1770 for_each_cmsghdr(cmsg, cmsgs->addrs_msg) {
1771 struct sctp_transport *transport;
1772 struct sctp_association *old;
1773 union sctp_addr _daddr;
1774 int dlen;
1775
1776 if (cmsg->cmsg_level != IPPROTO_SCTP ||
1777 (cmsg->cmsg_type != SCTP_DSTADDRV4 &&
1778 cmsg->cmsg_type != SCTP_DSTADDRV6))
1779 continue;
1780
1781 daddr = &_daddr;
1782 memset(daddr, 0, sizeof(*daddr));
1783 dlen = cmsg->cmsg_len - sizeof(struct cmsghdr);
1784 if (cmsg->cmsg_type == SCTP_DSTADDRV4) {
1785 if (dlen < sizeof(struct in_addr)) {
1786 err = -EINVAL;
1787 goto free;
1788 }
1789
1790 dlen = sizeof(struct in_addr);
1791 daddr->v4.sin_family = AF_INET;
1792 daddr->v4.sin_port = htons(asoc->peer.port);
1793 memcpy(&daddr->v4.sin_addr, CMSG_DATA(cmsg), dlen);
1794 } else {
1795 if (dlen < sizeof(struct in6_addr)) {
1796 err = -EINVAL;
1797 goto free;
1798 }
1799
1800 dlen = sizeof(struct in6_addr);
1801 daddr->v6.sin6_flowinfo = flowinfo;
1802 daddr->v6.sin6_family = AF_INET6;
1803 daddr->v6.sin6_port = htons(asoc->peer.port);
1804 memcpy(&daddr->v6.sin6_addr, CMSG_DATA(cmsg), dlen);
1805 }
1806 err = sctp_verify_addr(sk, daddr, sizeof(*daddr));
1807 if (err)
1808 goto free;
1809
1810 old = sctp_endpoint_lookup_assoc(ep, daddr, &transport);
1811 if (old && old != asoc) {
1812 if (old->state >= SCTP_STATE_ESTABLISHED)
1813 err = -EISCONN;
1814 else
1815 err = -EALREADY;
1816 goto free;
1817 }
1818
1819 if (sctp_endpoint_is_peeled_off(ep, daddr)) {
1820 err = -EADDRNOTAVAIL;
1821 goto free;
1822 }
1823
1824 transport = sctp_assoc_add_peer(asoc, daddr, GFP_KERNEL,
1825 SCTP_UNKNOWN);
1826 if (!transport) {
1827 err = -ENOMEM;
1828 goto free;
1829 }
1830 }
1831
1832 return 0;
1833
1834 free:
1835 sctp_association_free(asoc);
1836 return err;
1837 }
1838
1839 static int sctp_sendmsg_check_sflags(struct sctp_association *asoc,
1840 __u16 sflags, struct msghdr *msg,
1841 size_t msg_len)
1842 {
1843 struct sock *sk = asoc->base.sk;
1844 struct net *net = sock_net(sk);
1845
1846 if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP))
1847 return -EPIPE;
1848
1849 if ((sflags & SCTP_SENDALL) && sctp_style(sk, UDP) &&
1850 !sctp_state(asoc, ESTABLISHED))
1851 return 0;
1852
1853 if (sflags & SCTP_EOF) {
1854 pr_debug("%s: shutting down association:%p\n", __func__, asoc);
1855 sctp_primitive_SHUTDOWN(net, asoc, NULL);
1856
1857 return 0;
1858 }
1859
1860 if (sflags & SCTP_ABORT) {
1861 struct sctp_chunk *chunk;
1862
1863 chunk = sctp_make_abort_user(asoc, msg, msg_len);
1864 if (!chunk)
1865 return -ENOMEM;
1866
1867 pr_debug("%s: aborting association:%p\n", __func__, asoc);
1868 sctp_primitive_ABORT(net, asoc, chunk);
1869
1870 return 0;
1871 }
1872
1873 return 1;
1874 }
1875
1876 static int sctp_sendmsg_to_asoc(struct sctp_association *asoc,
1877 struct msghdr *msg, size_t msg_len,
1878 struct sctp_transport *transport,
1879 struct sctp_sndrcvinfo *sinfo)
1880 {
1881 struct sock *sk = asoc->base.sk;
1882 struct sctp_sock *sp = sctp_sk(sk);
1883 struct net *net = sock_net(sk);
1884 struct sctp_datamsg *datamsg;
1885 bool wait_connect = false;
1886 struct sctp_chunk *chunk;
1887 long timeo;
1888 int err;
1889
1890 if (sinfo->sinfo_stream >= asoc->stream.outcnt) {
1891 err = -EINVAL;
1892 goto err;
1893 }
1894
1895 if (unlikely(!SCTP_SO(&asoc->stream, sinfo->sinfo_stream)->ext)) {
1896 err = sctp_stream_init_ext(&asoc->stream, sinfo->sinfo_stream);
1897 if (err)
1898 goto err;
1899 }
1900
1901 if (sp->disable_fragments && msg_len > asoc->frag_point) {
1902 err = -EMSGSIZE;
1903 goto err;
1904 }
1905
1906 if (asoc->pmtu_pending) {
1907 if (sp->param_flags & SPP_PMTUD_ENABLE)
1908 sctp_assoc_sync_pmtu(asoc);
1909 asoc->pmtu_pending = 0;
1910 }
1911
1912 if (sctp_wspace(asoc) < (int)msg_len)
1913 sctp_prsctp_prune(asoc, sinfo, msg_len - sctp_wspace(asoc));
1914
1915 if (sctp_wspace(asoc) <= 0) {
1916 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1917 err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len);
1918 if (err)
1919 goto err;
1920 }
1921
1922 if (sctp_state(asoc, CLOSED)) {
1923 err = sctp_primitive_ASSOCIATE(net, asoc, NULL);
1924 if (err)
1925 goto err;
1926
1927 if (sp->strm_interleave) {
1928 timeo = sock_sndtimeo(sk, 0);
1929 err = sctp_wait_for_connect(asoc, &timeo);
1930 if (err) {
1931 err = -ESRCH;
1932 goto err;
1933 }
1934 } else {
1935 wait_connect = true;
1936 }
1937
1938 pr_debug("%s: we associated primitively\n", __func__);
1939 }
1940
1941 datamsg = sctp_datamsg_from_user(asoc, sinfo, &msg->msg_iter);
1942 if (IS_ERR(datamsg)) {
1943 err = PTR_ERR(datamsg);
1944 goto err;
1945 }
1946
1947 asoc->force_delay = !!(msg->msg_flags & MSG_MORE);
1948
1949 list_for_each_entry(chunk, &datamsg->chunks, frag_list) {
1950 sctp_chunk_hold(chunk);
1951 sctp_set_owner_w(chunk);
1952 chunk->transport = transport;
1953 }
1954
1955 err = sctp_primitive_SEND(net, asoc, datamsg);
1956 if (err) {
1957 sctp_datamsg_free(datamsg);
1958 goto err;
1959 }
1960
1961 pr_debug("%s: we sent primitively\n", __func__);
1962
1963 sctp_datamsg_put(datamsg);
1964
1965 if (unlikely(wait_connect)) {
1966 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1967 sctp_wait_for_connect(asoc, &timeo);
1968 }
1969
1970 err = msg_len;
1971
1972 err:
1973 return err;
1974 }
1975
1976 static union sctp_addr *sctp_sendmsg_get_daddr(struct sock *sk,
1977 const struct msghdr *msg,
1978 struct sctp_cmsgs *cmsgs)
1979 {
1980 union sctp_addr *daddr = NULL;
1981 int err;
1982
1983 if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) {
1984 int len = msg->msg_namelen;
1985
1986 if (len > sizeof(*daddr))
1987 len = sizeof(*daddr);
1988
1989 daddr = (union sctp_addr *)msg->msg_name;
1990
1991 err = sctp_verify_addr(sk, daddr, len);
1992 if (err)
1993 return ERR_PTR(err);
1994 }
1995
1996 return daddr;
1997 }
1998
1999 static void sctp_sendmsg_update_sinfo(struct sctp_association *asoc,
2000 struct sctp_sndrcvinfo *sinfo,
2001 struct sctp_cmsgs *cmsgs)
2002 {
2003 if (!cmsgs->srinfo && !cmsgs->sinfo) {
2004 sinfo->sinfo_stream = asoc->default_stream;
2005 sinfo->sinfo_ppid = asoc->default_ppid;
2006 sinfo->sinfo_context = asoc->default_context;
2007 sinfo->sinfo_assoc_id = sctp_assoc2id(asoc);
2008
2009 if (!cmsgs->prinfo)
2010 sinfo->sinfo_flags = asoc->default_flags;
2011 }
2012
2013 if (!cmsgs->srinfo && !cmsgs->prinfo)
2014 sinfo->sinfo_timetolive = asoc->default_timetolive;
2015
2016 if (cmsgs->authinfo) {
2017 /* Reuse sinfo_tsn to indicate that authinfo was set and
2018 * sinfo_ssn to save the keyid on tx path.
2019 */
2020 sinfo->sinfo_tsn = 1;
2021 sinfo->sinfo_ssn = cmsgs->authinfo->auth_keynumber;
2022 }
2023 }
2024
2025 static int sctp_sendmsg(struct sock *sk, struct msghdr *msg, size_t msg_len)
2026 {
2027 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
2028 struct sctp_transport *transport = NULL;
2029 struct sctp_sndrcvinfo _sinfo, *sinfo;
2030 struct sctp_association *asoc, *tmp;
2031 struct sctp_cmsgs cmsgs;
2032 union sctp_addr *daddr;
2033 bool new = false;
2034 __u16 sflags;
2035 int err;
2036
2037 /* Parse and get snd_info */
2038 err = sctp_sendmsg_parse(sk, &cmsgs, &_sinfo, msg, msg_len);
2039 if (err)
2040 goto out;
2041
2042 sinfo = &_sinfo;
2043 sflags = sinfo->sinfo_flags;
2044
2045 /* Get daddr from msg */
2046 daddr = sctp_sendmsg_get_daddr(sk, msg, &cmsgs);
2047 if (IS_ERR(daddr)) {
2048 err = PTR_ERR(daddr);
2049 goto out;
2050 }
2051
2052 lock_sock(sk);
2053
2054 /* SCTP_SENDALL process */
2055 if ((sflags & SCTP_SENDALL) && sctp_style(sk, UDP)) {
2056 list_for_each_entry_safe(asoc, tmp, &ep->asocs, asocs) {
2057 err = sctp_sendmsg_check_sflags(asoc, sflags, msg,
2058 msg_len);
2059 if (err == 0)
2060 continue;
2061 if (err < 0)
2062 goto out_unlock;
2063
2064 sctp_sendmsg_update_sinfo(asoc, sinfo, &cmsgs);
2065
2066 err = sctp_sendmsg_to_asoc(asoc, msg, msg_len,
2067 NULL, sinfo);
2068 if (err < 0)
2069 goto out_unlock;
2070
2071 iov_iter_revert(&msg->msg_iter, err);
2072 }
2073
2074 goto out_unlock;
2075 }
2076
2077 /* Get and check or create asoc */
2078 if (daddr) {
2079 asoc = sctp_endpoint_lookup_assoc(ep, daddr, &transport);
2080 if (asoc) {
2081 err = sctp_sendmsg_check_sflags(asoc, sflags, msg,
2082 msg_len);
2083 if (err <= 0)
2084 goto out_unlock;
2085 } else {
2086 err = sctp_sendmsg_new_asoc(sk, sflags, &cmsgs, daddr,
2087 &transport);
2088 if (err)
2089 goto out_unlock;
2090
2091 asoc = transport->asoc;
2092 new = true;
2093 }
2094
2095 if (!sctp_style(sk, TCP) && !(sflags & SCTP_ADDR_OVER))
2096 transport = NULL;
2097 } else {
2098 asoc = sctp_id2assoc(sk, sinfo->sinfo_assoc_id);
2099 if (!asoc) {
2100 err = -EPIPE;
2101 goto out_unlock;
2102 }
2103
2104 err = sctp_sendmsg_check_sflags(asoc, sflags, msg, msg_len);
2105 if (err <= 0)
2106 goto out_unlock;
2107 }
2108
2109 /* Update snd_info with the asoc */
2110 sctp_sendmsg_update_sinfo(asoc, sinfo, &cmsgs);
2111
2112 /* Send msg to the asoc */
2113 err = sctp_sendmsg_to_asoc(asoc, msg, msg_len, transport, sinfo);
2114 if (err < 0 && err != -ESRCH && new)
2115 sctp_association_free(asoc);
2116
2117 out_unlock:
2118 release_sock(sk);
2119 out:
2120 return sctp_error(sk, msg->msg_flags, err);
2121 }
2122
2123 /* This is an extended version of skb_pull() that removes the data from the
2124 * start of a skb even when data is spread across the list of skb's in the
2125 * frag_list. len specifies the total amount of data that needs to be removed.
2126 * when 'len' bytes could be removed from the skb, it returns 0.
2127 * If 'len' exceeds the total skb length, it returns the no. of bytes that
2128 * could not be removed.
2129 */
2130 static int sctp_skb_pull(struct sk_buff *skb, int len)
2131 {
2132 struct sk_buff *list;
2133 int skb_len = skb_headlen(skb);
2134 int rlen;
2135
2136 if (len <= skb_len) {
2137 __skb_pull(skb, len);
2138 return 0;
2139 }
2140 len -= skb_len;
2141 __skb_pull(skb, skb_len);
2142
2143 skb_walk_frags(skb, list) {
2144 rlen = sctp_skb_pull(list, len);
2145 skb->len -= (len-rlen);
2146 skb->data_len -= (len-rlen);
2147
2148 if (!rlen)
2149 return 0;
2150
2151 len = rlen;
2152 }
2153
2154 return len;
2155 }
2156
2157 /* API 3.1.3 recvmsg() - UDP Style Syntax
2158 *
2159 * ssize_t recvmsg(int socket, struct msghdr *message,
2160 * int flags);
2161 *
2162 * socket - the socket descriptor of the endpoint.
2163 * message - pointer to the msghdr structure which contains a single
2164 * user message and possibly some ancillary data.
2165 *
2166 * See Section 5 for complete description of the data
2167 * structures.
2168 *
2169 * flags - flags sent or received with the user message, see Section
2170 * 5 for complete description of the flags.
2171 */
2172 static int sctp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
2173 int noblock, int flags, int *addr_len)
2174 {
2175 struct sctp_ulpevent *event = NULL;
2176 struct sctp_sock *sp = sctp_sk(sk);
2177 struct sk_buff *skb, *head_skb;
2178 int copied;
2179 int err = 0;
2180 int skb_len;
2181
2182 pr_debug("%s: sk:%p, msghdr:%p, len:%zd, noblock:%d, flags:0x%x, "
2183 "addr_len:%p)\n", __func__, sk, msg, len, noblock, flags,
2184 addr_len);
2185
2186 lock_sock(sk);
2187
2188 if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED) &&
2189 !sctp_sstate(sk, CLOSING) && !sctp_sstate(sk, CLOSED)) {
2190 err = -ENOTCONN;
2191 goto out;
2192 }
2193
2194 skb = sctp_skb_recv_datagram(sk, flags, noblock, &err);
2195 if (!skb)
2196 goto out;
2197
2198 /* Get the total length of the skb including any skb's in the
2199 * frag_list.
2200 */
2201 skb_len = skb->len;
2202
2203 copied = skb_len;
2204 if (copied > len)
2205 copied = len;
2206
2207 err = skb_copy_datagram_msg(skb, 0, msg, copied);
2208
2209 event = sctp_skb2event(skb);
2210
2211 if (err)
2212 goto out_free;
2213
2214 if (event->chunk && event->chunk->head_skb)
2215 head_skb = event->chunk->head_skb;
2216 else
2217 head_skb = skb;
2218 sock_recv_ts_and_drops(msg, sk, head_skb);
2219 if (sctp_ulpevent_is_notification(event)) {
2220 msg->msg_flags |= MSG_NOTIFICATION;
2221 sp->pf->event_msgname(event, msg->msg_name, addr_len);
2222 } else {
2223 sp->pf->skb_msgname(head_skb, msg->msg_name, addr_len);
2224 }
2225
2226 /* Check if we allow SCTP_NXTINFO. */
2227 if (sp->recvnxtinfo)
2228 sctp_ulpevent_read_nxtinfo(event, msg, sk);
2229 /* Check if we allow SCTP_RCVINFO. */
2230 if (sp->recvrcvinfo)
2231 sctp_ulpevent_read_rcvinfo(event, msg);
2232 /* Check if we allow SCTP_SNDRCVINFO. */
2233 if (sctp_ulpevent_type_enabled(sp->subscribe, SCTP_DATA_IO_EVENT))
2234 sctp_ulpevent_read_sndrcvinfo(event, msg);
2235
2236 err = copied;
2237
2238 /* If skb's length exceeds the user's buffer, update the skb and
2239 * push it back to the receive_queue so that the next call to
2240 * recvmsg() will return the remaining data. Don't set MSG_EOR.
2241 */
2242 if (skb_len > copied) {
2243 msg->msg_flags &= ~MSG_EOR;
2244 if (flags & MSG_PEEK)
2245 goto out_free;
2246 sctp_skb_pull(skb, copied);
2247 skb_queue_head(&sk->sk_receive_queue, skb);
2248
2249 /* When only partial message is copied to the user, increase
2250 * rwnd by that amount. If all the data in the skb is read,
2251 * rwnd is updated when the event is freed.
2252 */
2253 if (!sctp_ulpevent_is_notification(event))
2254 sctp_assoc_rwnd_increase(event->asoc, copied);
2255 goto out;
2256 } else if ((event->msg_flags & MSG_NOTIFICATION) ||
2257 (event->msg_flags & MSG_EOR))
2258 msg->msg_flags |= MSG_EOR;
2259 else
2260 msg->msg_flags &= ~MSG_EOR;
2261
2262 out_free:
2263 if (flags & MSG_PEEK) {
2264 /* Release the skb reference acquired after peeking the skb in
2265 * sctp_skb_recv_datagram().
2266 */
2267 kfree_skb(skb);
2268 } else {
2269 /* Free the event which includes releasing the reference to
2270 * the owner of the skb, freeing the skb and updating the
2271 * rwnd.
2272 */
2273 sctp_ulpevent_free(event);
2274 }
2275 out:
2276 release_sock(sk);
2277 return err;
2278 }
2279
2280 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
2281 *
2282 * This option is a on/off flag. If enabled no SCTP message
2283 * fragmentation will be performed. Instead if a message being sent
2284 * exceeds the current PMTU size, the message will NOT be sent and
2285 * instead a error will be indicated to the user.
2286 */
2287 static int sctp_setsockopt_disable_fragments(struct sock *sk,
2288 char __user *optval,
2289 unsigned int optlen)
2290 {
2291 int val;
2292
2293 if (optlen < sizeof(int))
2294 return -EINVAL;
2295
2296 if (get_user(val, (int __user *)optval))
2297 return -EFAULT;
2298
2299 sctp_sk(sk)->disable_fragments = (val == 0) ? 0 : 1;
2300
2301 return 0;
2302 }
2303
2304 static int sctp_setsockopt_events(struct sock *sk, char __user *optval,
2305 unsigned int optlen)
2306 {
2307 struct sctp_event_subscribe subscribe;
2308 __u8 *sn_type = (__u8 *)&subscribe;
2309 struct sctp_sock *sp = sctp_sk(sk);
2310 struct sctp_association *asoc;
2311 int i;
2312
2313 if (optlen > sizeof(struct sctp_event_subscribe))
2314 return -EINVAL;
2315
2316 if (copy_from_user(&subscribe, optval, optlen))
2317 return -EFAULT;
2318
2319 for (i = 0; i < optlen; i++)
2320 sctp_ulpevent_type_set(&sp->subscribe, SCTP_SN_TYPE_BASE + i,
2321 sn_type[i]);
2322
2323 list_for_each_entry(asoc, &sp->ep->asocs, asocs)
2324 asoc->subscribe = sctp_sk(sk)->subscribe;
2325
2326 /* At the time when a user app subscribes to SCTP_SENDER_DRY_EVENT,
2327 * if there is no data to be sent or retransmit, the stack will
2328 * immediately send up this notification.
2329 */
2330 if (sctp_ulpevent_type_enabled(sp->subscribe, SCTP_SENDER_DRY_EVENT)) {
2331 struct sctp_ulpevent *event;
2332
2333 asoc = sctp_id2assoc(sk, 0);
2334 if (asoc && sctp_outq_is_empty(&asoc->outqueue)) {
2335 event = sctp_ulpevent_make_sender_dry_event(asoc,
2336 GFP_USER | __GFP_NOWARN);
2337 if (!event)
2338 return -ENOMEM;
2339
2340 asoc->stream.si->enqueue_event(&asoc->ulpq, event);
2341 }
2342 }
2343
2344 return 0;
2345 }
2346
2347 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
2348 *
2349 * This socket option is applicable to the UDP-style socket only. When
2350 * set it will cause associations that are idle for more than the
2351 * specified number of seconds to automatically close. An association
2352 * being idle is defined an association that has NOT sent or received
2353 * user data. The special value of '0' indicates that no automatic
2354 * close of any associations should be performed. The option expects an
2355 * integer defining the number of seconds of idle time before an
2356 * association is closed.
2357 */
2358 static int sctp_setsockopt_autoclose(struct sock *sk, char __user *optval,
2359 unsigned int optlen)
2360 {
2361 struct sctp_sock *sp = sctp_sk(sk);
2362 struct net *net = sock_net(sk);
2363
2364 /* Applicable to UDP-style socket only */
2365 if (sctp_style(sk, TCP))
2366 return -EOPNOTSUPP;
2367 if (optlen != sizeof(int))
2368 return -EINVAL;
2369 if (copy_from_user(&sp->autoclose, optval, optlen))
2370 return -EFAULT;
2371
2372 if (sp->autoclose > net->sctp.max_autoclose)
2373 sp->autoclose = net->sctp.max_autoclose;
2374
2375 return 0;
2376 }
2377
2378 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
2379 *
2380 * Applications can enable or disable heartbeats for any peer address of
2381 * an association, modify an address's heartbeat interval, force a
2382 * heartbeat to be sent immediately, and adjust the address's maximum
2383 * number of retransmissions sent before an address is considered
2384 * unreachable. The following structure is used to access and modify an
2385 * address's parameters:
2386 *
2387 * struct sctp_paddrparams {
2388 * sctp_assoc_t spp_assoc_id;
2389 * struct sockaddr_storage spp_address;
2390 * uint32_t spp_hbinterval;
2391 * uint16_t spp_pathmaxrxt;
2392 * uint32_t spp_pathmtu;
2393 * uint32_t spp_sackdelay;
2394 * uint32_t spp_flags;
2395 * uint32_t spp_ipv6_flowlabel;
2396 * uint8_t spp_dscp;
2397 * };
2398 *
2399 * spp_assoc_id - (one-to-many style socket) This is filled in the
2400 * application, and identifies the association for
2401 * this query.
2402 * spp_address - This specifies which address is of interest.
2403 * spp_hbinterval - This contains the value of the heartbeat interval,
2404 * in milliseconds. If a value of zero
2405 * is present in this field then no changes are to
2406 * be made to this parameter.
2407 * spp_pathmaxrxt - This contains the maximum number of
2408 * retransmissions before this address shall be
2409 * considered unreachable. If a value of zero
2410 * is present in this field then no changes are to
2411 * be made to this parameter.
2412 * spp_pathmtu - When Path MTU discovery is disabled the value
2413 * specified here will be the "fixed" path mtu.
2414 * Note that if the spp_address field is empty
2415 * then all associations on this address will
2416 * have this fixed path mtu set upon them.
2417 *
2418 * spp_sackdelay - When delayed sack is enabled, this value specifies
2419 * the number of milliseconds that sacks will be delayed
2420 * for. This value will apply to all addresses of an
2421 * association if the spp_address field is empty. Note
2422 * also, that if delayed sack is enabled and this
2423 * value is set to 0, no change is made to the last
2424 * recorded delayed sack timer value.
2425 *
2426 * spp_flags - These flags are used to control various features
2427 * on an association. The flag field may contain
2428 * zero or more of the following options.
2429 *
2430 * SPP_HB_ENABLE - Enable heartbeats on the
2431 * specified address. Note that if the address
2432 * field is empty all addresses for the association
2433 * have heartbeats enabled upon them.
2434 *
2435 * SPP_HB_DISABLE - Disable heartbeats on the
2436 * speicifed address. Note that if the address
2437 * field is empty all addresses for the association
2438 * will have their heartbeats disabled. Note also
2439 * that SPP_HB_ENABLE and SPP_HB_DISABLE are
2440 * mutually exclusive, only one of these two should
2441 * be specified. Enabling both fields will have
2442 * undetermined results.
2443 *
2444 * SPP_HB_DEMAND - Request a user initiated heartbeat
2445 * to be made immediately.
2446 *
2447 * SPP_HB_TIME_IS_ZERO - Specify's that the time for
2448 * heartbeat delayis to be set to the value of 0
2449 * milliseconds.
2450 *
2451 * SPP_PMTUD_ENABLE - This field will enable PMTU
2452 * discovery upon the specified address. Note that
2453 * if the address feild is empty then all addresses
2454 * on the association are effected.
2455 *
2456 * SPP_PMTUD_DISABLE - This field will disable PMTU
2457 * discovery upon the specified address. Note that
2458 * if the address feild is empty then all addresses
2459 * on the association are effected. Not also that
2460 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
2461 * exclusive. Enabling both will have undetermined
2462 * results.
2463 *
2464 * SPP_SACKDELAY_ENABLE - Setting this flag turns
2465 * on delayed sack. The time specified in spp_sackdelay
2466 * is used to specify the sack delay for this address. Note
2467 * that if spp_address is empty then all addresses will
2468 * enable delayed sack and take on the sack delay
2469 * value specified in spp_sackdelay.
2470 * SPP_SACKDELAY_DISABLE - Setting this flag turns
2471 * off delayed sack. If the spp_address field is blank then
2472 * delayed sack is disabled for the entire association. Note
2473 * also that this field is mutually exclusive to
2474 * SPP_SACKDELAY_ENABLE, setting both will have undefined
2475 * results.
2476 *
2477 * SPP_IPV6_FLOWLABEL: Setting this flag enables the
2478 * setting of the IPV6 flow label value. The value is
2479 * contained in the spp_ipv6_flowlabel field.
2480 * Upon retrieval, this flag will be set to indicate that
2481 * the spp_ipv6_flowlabel field has a valid value returned.
2482 * If a specific destination address is set (in the
2483 * spp_address field), then the value returned is that of
2484 * the address. If just an association is specified (and
2485 * no address), then the association's default flow label
2486 * is returned. If neither an association nor a destination
2487 * is specified, then the socket's default flow label is
2488 * returned. For non-IPv6 sockets, this flag will be left
2489 * cleared.
2490 *
2491 * SPP_DSCP: Setting this flag enables the setting of the
2492 * Differentiated Services Code Point (DSCP) value
2493 * associated with either the association or a specific
2494 * address. The value is obtained in the spp_dscp field.
2495 * Upon retrieval, this flag will be set to indicate that
2496 * the spp_dscp field has a valid value returned. If a
2497 * specific destination address is set when called (in the
2498 * spp_address field), then that specific destination
2499 * address's DSCP value is returned. If just an association
2500 * is specified, then the association's default DSCP is
2501 * returned. If neither an association nor a destination is
2502 * specified, then the socket's default DSCP is returned.
2503 *
2504 * spp_ipv6_flowlabel
2505 * - This field is used in conjunction with the
2506 * SPP_IPV6_FLOWLABEL flag and contains the IPv6 flow label.
2507 * The 20 least significant bits are used for the flow
2508 * label. This setting has precedence over any IPv6-layer
2509 * setting.
2510 *
2511 * spp_dscp - This field is used in conjunction with the SPP_DSCP flag
2512 * and contains the DSCP. The 6 most significant bits are
2513 * used for the DSCP. This setting has precedence over any
2514 * IPv4- or IPv6- layer setting.
2515 */
2516 static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params,
2517 struct sctp_transport *trans,
2518 struct sctp_association *asoc,
2519 struct sctp_sock *sp,
2520 int hb_change,
2521 int pmtud_change,
2522 int sackdelay_change)
2523 {
2524 int error;
2525
2526 if (params->spp_flags & SPP_HB_DEMAND && trans) {
2527 struct net *net = sock_net(trans->asoc->base.sk);
2528
2529 error = sctp_primitive_REQUESTHEARTBEAT(net, trans->asoc, trans);
2530 if (error)
2531 return error;
2532 }
2533
2534 /* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of
2535 * this field is ignored. Note also that a value of zero indicates
2536 * the current setting should be left unchanged.
2537 */
2538 if (params->spp_flags & SPP_HB_ENABLE) {
2539
2540 /* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is
2541 * set. This lets us use 0 value when this flag
2542 * is set.
2543 */
2544 if (params->spp_flags & SPP_HB_TIME_IS_ZERO)
2545 params->spp_hbinterval = 0;
2546
2547 if (params->spp_hbinterval ||
2548 (params->spp_flags & SPP_HB_TIME_IS_ZERO)) {
2549 if (trans) {
2550 trans->hbinterval =
2551 msecs_to_jiffies(params->spp_hbinterval);
2552 } else if (asoc) {
2553 asoc->hbinterval =
2554 msecs_to_jiffies(params->spp_hbinterval);
2555 } else {
2556 sp->hbinterval = params->spp_hbinterval;
2557 }
2558 }
2559 }
2560
2561 if (hb_change) {
2562 if (trans) {
2563 trans->param_flags =
2564 (trans->param_flags & ~SPP_HB) | hb_change;
2565 } else if (asoc) {
2566 asoc->param_flags =
2567 (asoc->param_flags & ~SPP_HB) | hb_change;
2568 } else {
2569 sp->param_flags =
2570 (sp->param_flags & ~SPP_HB) | hb_change;
2571 }
2572 }
2573
2574 /* When Path MTU discovery is disabled the value specified here will
2575 * be the "fixed" path mtu (i.e. the value of the spp_flags field must
2576 * include the flag SPP_PMTUD_DISABLE for this field to have any
2577 * effect).
2578 */
2579 if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) {
2580 if (trans) {
2581 trans->pathmtu = params->spp_pathmtu;
2582 sctp_assoc_sync_pmtu(asoc);
2583 } else if (asoc) {
2584 sctp_assoc_set_pmtu(asoc, params->spp_pathmtu);
2585 } else {
2586 sp->pathmtu = params->spp_pathmtu;
2587 }
2588 }
2589
2590 if (pmtud_change) {
2591 if (trans) {
2592 int update = (trans->param_flags & SPP_PMTUD_DISABLE) &&
2593 (params->spp_flags & SPP_PMTUD_ENABLE);
2594 trans->param_flags =
2595 (trans->param_flags & ~SPP_PMTUD) | pmtud_change;
2596 if (update) {
2597 sctp_transport_pmtu(trans, sctp_opt2sk(sp));
2598 sctp_assoc_sync_pmtu(asoc);
2599 }
2600 } else if (asoc) {
2601 asoc->param_flags =
2602 (asoc->param_flags & ~SPP_PMTUD) | pmtud_change;
2603 } else {
2604 sp->param_flags =
2605 (sp->param_flags & ~SPP_PMTUD) | pmtud_change;
2606 }
2607 }
2608
2609 /* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the
2610 * value of this field is ignored. Note also that a value of zero
2611 * indicates the current setting should be left unchanged.
2612 */
2613 if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) {
2614 if (trans) {
2615 trans->sackdelay =
2616 msecs_to_jiffies(params->spp_sackdelay);
2617 } else if (asoc) {
2618 asoc->sackdelay =
2619 msecs_to_jiffies(params->spp_sackdelay);
2620 } else {
2621 sp->sackdelay = params->spp_sackdelay;
2622 }
2623 }
2624
2625 if (sackdelay_change) {
2626 if (trans) {
2627 trans->param_flags =
2628 (trans->param_flags & ~SPP_SACKDELAY) |
2629 sackdelay_change;
2630 } else if (asoc) {
2631 asoc->param_flags =
2632 (asoc->param_flags & ~SPP_SACKDELAY) |
2633 sackdelay_change;
2634 } else {
2635 sp->param_flags =
2636 (sp->param_flags & ~SPP_SACKDELAY) |
2637 sackdelay_change;
2638 }
2639 }
2640
2641 /* Note that a value of zero indicates the current setting should be
2642 left unchanged.
2643 */
2644 if (params->spp_pathmaxrxt) {
2645 if (trans) {
2646 trans->pathmaxrxt = params->spp_pathmaxrxt;
2647 } else if (asoc) {
2648 asoc->pathmaxrxt = params->spp_pathmaxrxt;
2649 } else {
2650 sp->pathmaxrxt = params->spp_pathmaxrxt;
2651 }
2652 }
2653
2654 if (params->spp_flags & SPP_IPV6_FLOWLABEL) {
2655 if (trans) {
2656 if (trans->ipaddr.sa.sa_family == AF_INET6) {
2657 trans->flowlabel = params->spp_ipv6_flowlabel &
2658 SCTP_FLOWLABEL_VAL_MASK;
2659 trans->flowlabel |= SCTP_FLOWLABEL_SET_MASK;
2660 }
2661 } else if (asoc) {
2662 struct sctp_transport *t;
2663
2664 list_for_each_entry(t, &asoc->peer.transport_addr_list,
2665 transports) {
2666 if (t->ipaddr.sa.sa_family != AF_INET6)
2667 continue;
2668 t->flowlabel = params->spp_ipv6_flowlabel &
2669 SCTP_FLOWLABEL_VAL_MASK;
2670 t->flowlabel |= SCTP_FLOWLABEL_SET_MASK;
2671 }
2672 asoc->flowlabel = params->spp_ipv6_flowlabel &
2673 SCTP_FLOWLABEL_VAL_MASK;
2674 asoc->flowlabel |= SCTP_FLOWLABEL_SET_MASK;
2675 } else if (sctp_opt2sk(sp)->sk_family == AF_INET6) {
2676 sp->flowlabel = params->spp_ipv6_flowlabel &
2677 SCTP_FLOWLABEL_VAL_MASK;
2678 sp->flowlabel |= SCTP_FLOWLABEL_SET_MASK;
2679 }
2680 }
2681
2682 if (params->spp_flags & SPP_DSCP) {
2683 if (trans) {
2684 trans->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK;
2685 trans->dscp |= SCTP_DSCP_SET_MASK;
2686 } else if (asoc) {
2687 struct sctp_transport *t;
2688
2689 list_for_each_entry(t, &asoc->peer.transport_addr_list,
2690 transports) {
2691 t->dscp = params->spp_dscp &
2692 SCTP_DSCP_VAL_MASK;
2693 t->dscp |= SCTP_DSCP_SET_MASK;
2694 }
2695 asoc->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK;
2696 asoc->dscp |= SCTP_DSCP_SET_MASK;
2697 } else {
2698 sp->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK;
2699 sp->dscp |= SCTP_DSCP_SET_MASK;
2700 }
2701 }
2702
2703 return 0;
2704 }
2705
2706 static int sctp_setsockopt_peer_addr_params(struct sock *sk,
2707 char __user *optval,
2708 unsigned int optlen)
2709 {
2710 struct sctp_paddrparams params;
2711 struct sctp_transport *trans = NULL;
2712 struct sctp_association *asoc = NULL;
2713 struct sctp_sock *sp = sctp_sk(sk);
2714 int error;
2715 int hb_change, pmtud_change, sackdelay_change;
2716
2717 if (optlen == sizeof(params)) {
2718 if (copy_from_user(&params, optval, optlen))
2719 return -EFAULT;
2720 } else if (optlen == ALIGN(offsetof(struct sctp_paddrparams,
2721 spp_ipv6_flowlabel), 4)) {
2722 if (copy_from_user(&params, optval, optlen))
2723 return -EFAULT;
2724 if (params.spp_flags & (SPP_DSCP | SPP_IPV6_FLOWLABEL))
2725 return -EINVAL;
2726 } else {
2727 return -EINVAL;
2728 }
2729
2730 /* Validate flags and value parameters. */
2731 hb_change = params.spp_flags & SPP_HB;
2732 pmtud_change = params.spp_flags & SPP_PMTUD;
2733 sackdelay_change = params.spp_flags & SPP_SACKDELAY;
2734
2735 if (hb_change == SPP_HB ||
2736 pmtud_change == SPP_PMTUD ||
2737 sackdelay_change == SPP_SACKDELAY ||
2738 params.spp_sackdelay > 500 ||
2739 (params.spp_pathmtu &&
2740 params.spp_pathmtu < SCTP_DEFAULT_MINSEGMENT))
2741 return -EINVAL;
2742
2743 /* If an address other than INADDR_ANY is specified, and
2744 * no transport is found, then the request is invalid.
2745 */
2746 if (!sctp_is_any(sk, (union sctp_addr *)&params.spp_address)) {
2747 trans = sctp_addr_id2transport(sk, &params.spp_address,
2748 params.spp_assoc_id);
2749 if (!trans)
2750 return -EINVAL;
2751 }
2752
2753 /* Get association, if assoc_id != 0 and the socket is a one
2754 * to many style socket, and an association was not found, then
2755 * the id was invalid.
2756 */
2757 asoc = sctp_id2assoc(sk, params.spp_assoc_id);
2758 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP))
2759 return -EINVAL;
2760
2761 /* Heartbeat demand can only be sent on a transport or
2762 * association, but not a socket.
2763 */
2764 if (params.spp_flags & SPP_HB_DEMAND && !trans && !asoc)
2765 return -EINVAL;
2766
2767 /* Process parameters. */
2768 error = sctp_apply_peer_addr_params(&params, trans, asoc, sp,
2769 hb_change, pmtud_change,
2770 sackdelay_change);
2771
2772 if (error)
2773 return error;
2774
2775 /* If changes are for association, also apply parameters to each
2776 * transport.
2777 */
2778 if (!trans && asoc) {
2779 list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2780 transports) {
2781 sctp_apply_peer_addr_params(&params, trans, asoc, sp,
2782 hb_change, pmtud_change,
2783 sackdelay_change);
2784 }
2785 }
2786
2787 return 0;
2788 }
2789
2790 static inline __u32 sctp_spp_sackdelay_enable(__u32 param_flags)
2791 {
2792 return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_ENABLE;
2793 }
2794
2795 static inline __u32 sctp_spp_sackdelay_disable(__u32 param_flags)
2796 {
2797 return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_DISABLE;
2798 }
2799
2800 /*
2801 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK)
2802 *
2803 * This option will effect the way delayed acks are performed. This
2804 * option allows you to get or set the delayed ack time, in
2805 * milliseconds. It also allows changing the delayed ack frequency.
2806 * Changing the frequency to 1 disables the delayed sack algorithm. If
2807 * the assoc_id is 0, then this sets or gets the endpoints default
2808 * values. If the assoc_id field is non-zero, then the set or get
2809 * effects the specified association for the one to many model (the
2810 * assoc_id field is ignored by the one to one model). Note that if
2811 * sack_delay or sack_freq are 0 when setting this option, then the
2812 * current values will remain unchanged.
2813 *
2814 * struct sctp_sack_info {
2815 * sctp_assoc_t sack_assoc_id;
2816 * uint32_t sack_delay;
2817 * uint32_t sack_freq;
2818 * };
2819 *
2820 * sack_assoc_id - This parameter, indicates which association the user
2821 * is performing an action upon. Note that if this field's value is
2822 * zero then the endpoints default value is changed (effecting future
2823 * associations only).
2824 *
2825 * sack_delay - This parameter contains the number of milliseconds that
2826 * the user is requesting the delayed ACK timer be set to. Note that
2827 * this value is defined in the standard to be between 200 and 500
2828 * milliseconds.
2829 *
2830 * sack_freq - This parameter contains the number of packets that must
2831 * be received before a sack is sent without waiting for the delay
2832 * timer to expire. The default value for this is 2, setting this
2833 * value to 1 will disable the delayed sack algorithm.
2834 */
2835
2836 static int sctp_setsockopt_delayed_ack(struct sock *sk,
2837 char __user *optval, unsigned int optlen)
2838 {
2839 struct sctp_sack_info params;
2840 struct sctp_transport *trans = NULL;
2841 struct sctp_association *asoc = NULL;
2842 struct sctp_sock *sp = sctp_sk(sk);
2843
2844 if (optlen == sizeof(struct sctp_sack_info)) {
2845 if (copy_from_user(&params, optval, optlen))
2846 return -EFAULT;
2847
2848 if (params.sack_delay == 0 && params.sack_freq == 0)
2849 return 0;
2850 } else if (optlen == sizeof(struct sctp_assoc_value)) {
2851 pr_warn_ratelimited(DEPRECATED
2852 "%s (pid %d) "
2853 "Use of struct sctp_assoc_value in delayed_ack socket option.\n"
2854 "Use struct sctp_sack_info instead\n",
2855 current->comm, task_pid_nr(current));
2856 if (copy_from_user(&params, optval, optlen))
2857 return -EFAULT;
2858
2859 if (params.sack_delay == 0)
2860 params.sack_freq = 1;
2861 else
2862 params.sack_freq = 0;
2863 } else
2864 return -EINVAL;
2865
2866 /* Validate value parameter. */
2867 if (params.sack_delay > 500)
2868 return -EINVAL;
2869
2870 /* Get association, if sack_assoc_id != 0 and the socket is a one
2871 * to many style socket, and an association was not found, then
2872 * the id was invalid.
2873 */
2874 asoc = sctp_id2assoc(sk, params.sack_assoc_id);
2875 if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP))
2876 return -EINVAL;
2877
2878 if (params.sack_delay) {
2879 if (asoc) {
2880 asoc->sackdelay =
2881 msecs_to_jiffies(params.sack_delay);
2882 asoc->param_flags =
2883 sctp_spp_sackdelay_enable(asoc->param_flags);
2884 } else {
2885 sp->sackdelay = params.sack_delay;
2886 sp->param_flags =
2887 sctp_spp_sackdelay_enable(sp->param_flags);
2888 }
2889 }
2890
2891 if (params.sack_freq == 1) {
2892 if (asoc) {
2893 asoc->param_flags =
2894 sctp_spp_sackdelay_disable(asoc->param_flags);
2895 } else {
2896 sp->param_flags =
2897 sctp_spp_sackdelay_disable(sp->param_flags);
2898 }
2899 } else if (params.sack_freq > 1) {
2900 if (asoc) {
2901 asoc->sackfreq = params.sack_freq;
2902 asoc->param_flags =
2903 sctp_spp_sackdelay_enable(asoc->param_flags);
2904 } else {
2905 sp->sackfreq = params.sack_freq;
2906 sp->param_flags =
2907 sctp_spp_sackdelay_enable(sp->param_flags);
2908 }
2909 }
2910
2911 /* If change is for association, also apply to each transport. */
2912 if (asoc) {
2913 list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2914 transports) {
2915 if (params.sack_delay) {
2916 trans->sackdelay =
2917 msecs_to_jiffies(params.sack_delay);
2918 trans->param_flags =
2919 sctp_spp_sackdelay_enable(trans->param_flags);
2920 }
2921 if (params.sack_freq == 1) {
2922 trans->param_flags =
2923 sctp_spp_sackdelay_disable(trans->param_flags);
2924 } else if (params.sack_freq > 1) {
2925 trans->sackfreq = params.sack_freq;
2926 trans->param_flags =
2927 sctp_spp_sackdelay_enable(trans->param_flags);
2928 }
2929 }
2930 }
2931
2932 return 0;
2933 }
2934
2935 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
2936 *
2937 * Applications can specify protocol parameters for the default association
2938 * initialization. The option name argument to setsockopt() and getsockopt()
2939 * is SCTP_INITMSG.
2940 *
2941 * Setting initialization parameters is effective only on an unconnected
2942 * socket (for UDP-style sockets only future associations are effected
2943 * by the change). With TCP-style sockets, this option is inherited by
2944 * sockets derived from a listener socket.
2945 */
2946 static int sctp_setsockopt_initmsg(struct sock *sk, char __user *optval, unsigned int optlen)
2947 {
2948 struct sctp_initmsg sinit;
2949 struct sctp_sock *sp = sctp_sk(sk);
2950
2951 if (optlen != sizeof(struct sctp_initmsg))
2952 return -EINVAL;
2953 if (copy_from_user(&sinit, optval, optlen))
2954 return -EFAULT;
2955
2956 if (sinit.sinit_num_ostreams)
2957 sp->initmsg.sinit_num_ostreams = sinit.sinit_num_ostreams;
2958 if (sinit.sinit_max_instreams)
2959 sp->initmsg.sinit_max_instreams = sinit.sinit_max_instreams;
2960 if (sinit.sinit_max_attempts)
2961 sp->initmsg.sinit_max_attempts = sinit.sinit_max_attempts;
2962 if (sinit.sinit_max_init_timeo)
2963 sp->initmsg.sinit_max_init_timeo = sinit.sinit_max_init_timeo;
2964
2965 return 0;
2966 }
2967
2968 /*
2969 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
2970 *
2971 * Applications that wish to use the sendto() system call may wish to
2972 * specify a default set of parameters that would normally be supplied
2973 * through the inclusion of ancillary data. This socket option allows
2974 * such an application to set the default sctp_sndrcvinfo structure.
2975 * The application that wishes to use this socket option simply passes
2976 * in to this call the sctp_sndrcvinfo structure defined in Section
2977 * 5.2.2) The input parameters accepted by this call include
2978 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
2979 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in
2980 * to this call if the caller is using the UDP model.
2981 */
2982 static int sctp_setsockopt_default_send_param(struct sock *sk,
2983 char __user *optval,
2984 unsigned int optlen)
2985 {
2986 struct sctp_sock *sp = sctp_sk(sk);
2987 struct sctp_association *asoc;
2988 struct sctp_sndrcvinfo info;
2989
2990 if (optlen != sizeof(info))
2991 return -EINVAL;
2992 if (copy_from_user(&info, optval, optlen))
2993 return -EFAULT;
2994 if (info.sinfo_flags &
2995 ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
2996 SCTP_ABORT | SCTP_EOF))
2997 return -EINVAL;
2998
2999 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
3000 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
3001 return -EINVAL;
3002 if (asoc) {
3003 asoc->default_stream = info.sinfo_stream;
3004 asoc->default_flags = info.sinfo_flags;
3005 asoc->default_ppid = info.sinfo_ppid;
3006 asoc->default_context = info.sinfo_context;
3007 asoc->default_timetolive = info.sinfo_timetolive;
3008 } else {
3009 sp->default_stream = info.sinfo_stream;
3010 sp->default_flags = info.sinfo_flags;
3011 sp->default_ppid = info.sinfo_ppid;
3012 sp->default_context = info.sinfo_context;
3013 sp->default_timetolive = info.sinfo_timetolive;
3014 }
3015
3016 return 0;
3017 }
3018
3019 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters
3020 * (SCTP_DEFAULT_SNDINFO)
3021 */
3022 static int sctp_setsockopt_default_sndinfo(struct sock *sk,
3023 char __user *optval,
3024 unsigned int optlen)
3025 {
3026 struct sctp_sock *sp = sctp_sk(sk);
3027 struct sctp_association *asoc;
3028 struct sctp_sndinfo info;
3029
3030 if (optlen != sizeof(info))
3031 return -EINVAL;
3032 if (copy_from_user(&info, optval, optlen))
3033 return -EFAULT;
3034 if (info.snd_flags &
3035 ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
3036 SCTP_ABORT | SCTP_EOF))
3037 return -EINVAL;
3038
3039 asoc = sctp_id2assoc(sk, info.snd_assoc_id);
3040 if (!asoc && info.snd_assoc_id && sctp_style(sk, UDP))
3041 return -EINVAL;
3042 if (asoc) {
3043 asoc->default_stream = info.snd_sid;
3044 asoc->default_flags = info.snd_flags;
3045 asoc->default_ppid = info.snd_ppid;
3046 asoc->default_context = info.snd_context;
3047 } else {
3048 sp->default_stream = info.snd_sid;
3049 sp->default_flags = info.snd_flags;
3050 sp->default_ppid = info.snd_ppid;
3051 sp->default_context = info.snd_context;
3052 }
3053
3054 return 0;
3055 }
3056
3057 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
3058 *
3059 * Requests that the local SCTP stack use the enclosed peer address as
3060 * the association primary. The enclosed address must be one of the
3061 * association peer's addresses.
3062 */
3063 static int sctp_setsockopt_primary_addr(struct sock *sk, char __user *optval,
3064 unsigned int optlen)
3065 {
3066 struct sctp_prim prim;
3067 struct sctp_transport *trans;
3068 struct sctp_af *af;
3069 int err;
3070
3071 if (optlen != sizeof(struct sctp_prim))
3072 return -EINVAL;
3073
3074 if (copy_from_user(&prim, optval, sizeof(struct sctp_prim)))
3075 return -EFAULT;
3076
3077 /* Allow security module to validate address but need address len. */
3078 af = sctp_get_af_specific(prim.ssp_addr.ss_family);
3079 if (!af)
3080 return -EINVAL;
3081
3082 err = security_sctp_bind_connect(sk, SCTP_PRIMARY_ADDR,
3083 (struct sockaddr *)&prim.ssp_addr,
3084 af->sockaddr_len);
3085 if (err)
3086 return err;
3087
3088 trans = sctp_addr_id2transport(sk, &prim.ssp_addr, prim.ssp_assoc_id);
3089 if (!trans)
3090 return -EINVAL;
3091
3092 sctp_assoc_set_primary(trans->asoc, trans);
3093
3094 return 0;
3095 }
3096
3097 /*
3098 * 7.1.5 SCTP_NODELAY
3099 *
3100 * Turn on/off any Nagle-like algorithm. This means that packets are
3101 * generally sent as soon as possible and no unnecessary delays are
3102 * introduced, at the cost of more packets in the network. Expects an
3103 * integer boolean flag.
3104 */
3105 static int sctp_setsockopt_nodelay(struct sock *sk, char __user *optval,
3106 unsigned int optlen)
3107 {
3108 int val;
3109
3110 if (optlen < sizeof(int))
3111 return -EINVAL;
3112 if (get_user(val, (int __user *)optval))
3113 return -EFAULT;
3114
3115 sctp_sk(sk)->nodelay = (val == 0) ? 0 : 1;
3116 return 0;
3117 }
3118
3119 /*
3120 *
3121 * 7.1.1 SCTP_RTOINFO
3122 *
3123 * The protocol parameters used to initialize and bound retransmission
3124 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
3125 * and modify these parameters.
3126 * All parameters are time values, in milliseconds. A value of 0, when
3127 * modifying the parameters, indicates that the current value should not
3128 * be changed.
3129 *
3130 */
3131 static int sctp_setsockopt_rtoinfo(struct sock *sk, char __user *optval, unsigned int optlen)
3132 {
3133 struct sctp_rtoinfo rtoinfo;
3134 struct sctp_association *asoc;
3135 unsigned long rto_min, rto_max;
3136 struct sctp_sock *sp = sctp_sk(sk);
3137
3138 if (optlen != sizeof (struct sctp_rtoinfo))
3139 return -EINVAL;
3140
3141 if (copy_from_user(&rtoinfo, optval, optlen))
3142 return -EFAULT;
3143
3144 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
3145
3146 /* Set the values to the specific association */
3147 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
3148 return -EINVAL;
3149
3150 rto_max = rtoinfo.srto_max;
3151 rto_min = rtoinfo.srto_min;
3152
3153 if (rto_max)
3154 rto_max = asoc ? msecs_to_jiffies(rto_max) : rto_max;
3155 else
3156 rto_max = asoc ? asoc->rto_max : sp->rtoinfo.srto_max;
3157
3158 if (rto_min)
3159 rto_min = asoc ? msecs_to_jiffies(rto_min) : rto_min;
3160 else
3161 rto_min = asoc ? asoc->rto_min : sp->rtoinfo.srto_min;
3162
3163 if (rto_min > rto_max)
3164 return -EINVAL;
3165
3166 if (asoc) {
3167 if (rtoinfo.srto_initial != 0)
3168 asoc->rto_initial =
3169 msecs_to_jiffies(rtoinfo.srto_initial);
3170 asoc->rto_max = rto_max;
3171 asoc->rto_min = rto_min;
3172 } else {
3173 /* If there is no association or the association-id = 0
3174 * set the values to the endpoint.
3175 */
3176 if (rtoinfo.srto_initial != 0)
3177 sp->rtoinfo.srto_initial = rtoinfo.srto_initial;
3178 sp->rtoinfo.srto_max = rto_max;
3179 sp->rtoinfo.srto_min = rto_min;
3180 }
3181
3182 return 0;
3183 }
3184
3185 /*
3186 *
3187 * 7.1.2 SCTP_ASSOCINFO
3188 *
3189 * This option is used to tune the maximum retransmission attempts
3190 * of the association.
3191 * Returns an error if the new association retransmission value is
3192 * greater than the sum of the retransmission value of the peer.
3193 * See [SCTP] for more information.
3194 *
3195 */
3196 static int sctp_setsockopt_associnfo(struct sock *sk, char __user *optval, unsigned int optlen)
3197 {
3198
3199 struct sctp_assocparams assocparams;
3200 struct sctp_association *asoc;
3201
3202 if (optlen != sizeof(struct sctp_assocparams))
3203 return -EINVAL;
3204 if (copy_from_user(&assocparams, optval, optlen))
3205 return -EFAULT;
3206
3207 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
3208
3209 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
3210 return -EINVAL;
3211
3212 /* Set the values to the specific association */
3213 if (asoc) {
3214 if (assocparams.sasoc_asocmaxrxt != 0) {
3215 __u32 path_sum = 0;
3216 int paths = 0;
3217 struct sctp_transport *peer_addr;
3218
3219 list_for_each_entry(peer_addr, &asoc->peer.transport_addr_list,
3220 transports) {
3221 path_sum += peer_addr->pathmaxrxt;
3222 paths++;
3223 }
3224
3225 /* Only validate asocmaxrxt if we have more than
3226 * one path/transport. We do this because path
3227 * retransmissions are only counted when we have more
3228 * then one path.
3229 */
3230 if (paths > 1 &&
3231 assocparams.sasoc_asocmaxrxt > path_sum)
3232 return -EINVAL;
3233
3234 asoc->max_retrans = assocparams.sasoc_asocmaxrxt;
3235 }
3236
3237 if (assocparams.sasoc_cookie_life != 0)
3238 asoc->cookie_life = ms_to_ktime(assocparams.sasoc_cookie_life);
3239 } else {
3240 /* Set the values to the endpoint */
3241 struct sctp_sock *sp = sctp_sk(sk);
3242
3243 if (assocparams.sasoc_asocmaxrxt != 0)
3244 sp->assocparams.sasoc_asocmaxrxt =
3245 assocparams.sasoc_asocmaxrxt;
3246 if (assocparams.sasoc_cookie_life != 0)
3247 sp->assocparams.sasoc_cookie_life =
3248 assocparams.sasoc_cookie_life;
3249 }
3250 return 0;
3251 }
3252
3253 /*
3254 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
3255 *
3256 * This socket option is a boolean flag which turns on or off mapped V4
3257 * addresses. If this option is turned on and the socket is type
3258 * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
3259 * If this option is turned off, then no mapping will be done of V4
3260 * addresses and a user will receive both PF_INET6 and PF_INET type
3261 * addresses on the socket.
3262 */
3263 static int sctp_setsockopt_mappedv4(struct sock *sk, char __user *optval, unsigned int optlen)
3264 {
3265 int val;
3266 struct sctp_sock *sp = sctp_sk(sk);
3267
3268 if (optlen < sizeof(int))
3269 return -EINVAL;
3270 if (get_user(val, (int __user *)optval))
3271 return -EFAULT;
3272 if (val)
3273 sp->v4mapped = 1;
3274 else
3275 sp->v4mapped = 0;
3276
3277 return 0;
3278 }
3279
3280 /*
3281 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG)
3282 * This option will get or set the maximum size to put in any outgoing
3283 * SCTP DATA chunk. If a message is larger than this size it will be
3284 * fragmented by SCTP into the specified size. Note that the underlying
3285 * SCTP implementation may fragment into smaller sized chunks when the
3286 * PMTU of the underlying association is smaller than the value set by
3287 * the user. The default value for this option is '0' which indicates
3288 * the user is NOT limiting fragmentation and only the PMTU will effect
3289 * SCTP's choice of DATA chunk size. Note also that values set larger
3290 * than the maximum size of an IP datagram will effectively let SCTP
3291 * control fragmentation (i.e. the same as setting this option to 0).
3292 *
3293 * The following structure is used to access and modify this parameter:
3294 *
3295 * struct sctp_assoc_value {
3296 * sctp_assoc_t assoc_id;
3297 * uint32_t assoc_value;
3298 * };
3299 *
3300 * assoc_id: This parameter is ignored for one-to-one style sockets.
3301 * For one-to-many style sockets this parameter indicates which
3302 * association the user is performing an action upon. Note that if
3303 * this field's value is zero then the endpoints default value is
3304 * changed (effecting future associations only).
3305 * assoc_value: This parameter specifies the maximum size in bytes.
3306 */
3307 static int sctp_setsockopt_maxseg(struct sock *sk, char __user *optval, unsigned int optlen)
3308 {
3309 struct sctp_sock *sp = sctp_sk(sk);
3310 struct sctp_assoc_value params;
3311 struct sctp_association *asoc;
3312 int val;
3313
3314 if (optlen == sizeof(int)) {
3315 pr_warn_ratelimited(DEPRECATED
3316 "%s (pid %d) "
3317 "Use of int in maxseg socket option.\n"
3318 "Use struct sctp_assoc_value instead\n",
3319 current->comm, task_pid_nr(current));
3320 if (copy_from_user(&val, optval, optlen))
3321 return -EFAULT;
3322 params.assoc_id = 0;
3323 } else if (optlen == sizeof(struct sctp_assoc_value)) {
3324 if (copy_from_user(&params, optval, optlen))
3325 return -EFAULT;
3326 val = params.assoc_value;
3327 } else {
3328 return -EINVAL;
3329 }
3330
3331 asoc = sctp_id2assoc(sk, params.assoc_id);
3332
3333 if (val) {
3334 int min_len, max_len;
3335 __u16 datasize = asoc ? sctp_datachk_len(&asoc->stream) :
3336 sizeof(struct sctp_data_chunk);
3337
3338 min_len = sctp_min_frag_point(sp, datasize);
3339 max_len = SCTP_MAX_CHUNK_LEN - datasize;
3340
3341 if (val < min_len || val > max_len)
3342 return -EINVAL;
3343 }
3344
3345 if (asoc) {
3346 asoc->user_frag = val;
3347 sctp_assoc_update_frag_point(asoc);
3348 } else {
3349 if (params.assoc_id && sctp_style(sk, UDP))
3350 return -EINVAL;
3351 sp->user_frag = val;
3352 }
3353
3354 return 0;
3355 }
3356
3357
3358 /*
3359 * 7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR)
3360 *
3361 * Requests that the peer mark the enclosed address as the association
3362 * primary. The enclosed address must be one of the association's
3363 * locally bound addresses. The following structure is used to make a
3364 * set primary request:
3365 */
3366 static int sctp_setsockopt_peer_primary_addr(struct sock *sk, char __user *optval,
3367 unsigned int optlen)
3368 {
3369 struct net *net = sock_net(sk);
3370 struct sctp_sock *sp;
3371 struct sctp_association *asoc = NULL;
3372 struct sctp_setpeerprim prim;
3373 struct sctp_chunk *chunk;
3374 struct sctp_af *af;
3375 int err;
3376
3377 sp = sctp_sk(sk);
3378
3379 if (!net->sctp.addip_enable)
3380 return -EPERM;
3381
3382 if (optlen != sizeof(struct sctp_setpeerprim))
3383 return -EINVAL;
3384
3385 if (copy_from_user(&prim, optval, optlen))
3386 return -EFAULT;
3387
3388 asoc = sctp_id2assoc(sk, prim.sspp_assoc_id);
3389 if (!asoc)
3390 return -EINVAL;
3391
3392 if (!asoc->peer.asconf_capable)
3393 return -EPERM;
3394
3395 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY)
3396 return -EPERM;
3397
3398 if (!sctp_state(asoc, ESTABLISHED))
3399 return -ENOTCONN;
3400
3401 af = sctp_get_af_specific(prim.sspp_addr.ss_family);
3402 if (!af)
3403 return -EINVAL;
3404
3405 if (!af->addr_valid((union sctp_addr *)&prim.sspp_addr, sp, NULL))
3406 return -EADDRNOTAVAIL;
3407
3408 if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim.sspp_addr))
3409 return -EADDRNOTAVAIL;
3410
3411 /* Allow security module to validate address. */
3412 err = security_sctp_bind_connect(sk, SCTP_SET_PEER_PRIMARY_ADDR,
3413 (struct sockaddr *)&prim.sspp_addr,
3414 af->sockaddr_len);
3415 if (err)
3416 return err;
3417
3418 /* Create an ASCONF chunk with SET_PRIMARY parameter */
3419 chunk = sctp_make_asconf_set_prim(asoc,
3420 (union sctp_addr *)&prim.sspp_addr);
3421 if (!chunk)
3422 return -ENOMEM;
3423
3424 err = sctp_send_asconf(asoc, chunk);
3425
3426 pr_debug("%s: we set peer primary addr primitively\n", __func__);
3427
3428 return err;
3429 }
3430
3431 static int sctp_setsockopt_adaptation_layer(struct sock *sk, char __user *optval,
3432 unsigned int optlen)
3433 {
3434 struct sctp_setadaptation adaptation;
3435
3436 if (optlen != sizeof(struct sctp_setadaptation))
3437 return -EINVAL;
3438 if (copy_from_user(&adaptation, optval, optlen))
3439 return -EFAULT;
3440
3441 sctp_sk(sk)->adaptation_ind = adaptation.ssb_adaptation_ind;
3442
3443 return 0;
3444 }
3445
3446 /*
3447 * 7.1.29. Set or Get the default context (SCTP_CONTEXT)
3448 *
3449 * The context field in the sctp_sndrcvinfo structure is normally only
3450 * used when a failed message is retrieved holding the value that was
3451 * sent down on the actual send call. This option allows the setting of
3452 * a default context on an association basis that will be received on
3453 * reading messages from the peer. This is especially helpful in the
3454 * one-2-many model for an application to keep some reference to an
3455 * internal state machine that is processing messages on the
3456 * association. Note that the setting of this value only effects
3457 * received messages from the peer and does not effect the value that is
3458 * saved with outbound messages.
3459 */
3460 static int sctp_setsockopt_context(struct sock *sk, char __user *optval,
3461 unsigned int optlen)
3462 {
3463 struct sctp_assoc_value params;
3464 struct sctp_sock *sp;
3465 struct sctp_association *asoc;
3466
3467 if (optlen != sizeof(struct sctp_assoc_value))
3468 return -EINVAL;
3469 if (copy_from_user(&params, optval, optlen))
3470 return -EFAULT;
3471
3472 sp = sctp_sk(sk);
3473
3474 if (params.assoc_id != 0) {
3475 asoc = sctp_id2assoc(sk, params.assoc_id);
3476 if (!asoc)
3477 return -EINVAL;
3478 asoc->default_rcv_context = params.assoc_value;
3479 } else {
3480 sp->default_rcv_context = params.assoc_value;
3481 }
3482
3483 return 0;
3484 }
3485
3486 /*
3487 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
3488 *
3489 * This options will at a minimum specify if the implementation is doing
3490 * fragmented interleave. Fragmented interleave, for a one to many
3491 * socket, is when subsequent calls to receive a message may return
3492 * parts of messages from different associations. Some implementations
3493 * may allow you to turn this value on or off. If so, when turned off,
3494 * no fragment interleave will occur (which will cause a head of line
3495 * blocking amongst multiple associations sharing the same one to many
3496 * socket). When this option is turned on, then each receive call may
3497 * come from a different association (thus the user must receive data
3498 * with the extended calls (e.g. sctp_recvmsg) to keep track of which
3499 * association each receive belongs to.
3500 *
3501 * This option takes a boolean value. A non-zero value indicates that
3502 * fragmented interleave is on. A value of zero indicates that
3503 * fragmented interleave is off.
3504 *
3505 * Note that it is important that an implementation that allows this
3506 * option to be turned on, have it off by default. Otherwise an unaware
3507 * application using the one to many model may become confused and act
3508 * incorrectly.
3509 */
3510 static int sctp_setsockopt_fragment_interleave(struct sock *sk,
3511 char __user *optval,
3512 unsigned int optlen)
3513 {
3514 int val;
3515
3516 if (optlen != sizeof(int))
3517 return -EINVAL;
3518 if (get_user(val, (int __user *)optval))
3519 return -EFAULT;
3520
3521 sctp_sk(sk)->frag_interleave = !!val;
3522
3523 if (!sctp_sk(sk)->frag_interleave)
3524 sctp_sk(sk)->strm_interleave = 0;
3525
3526 return 0;
3527 }
3528
3529 /*
3530 * 8.1.21. Set or Get the SCTP Partial Delivery Point
3531 * (SCTP_PARTIAL_DELIVERY_POINT)
3532 *
3533 * This option will set or get the SCTP partial delivery point. This
3534 * point is the size of a message where the partial delivery API will be
3535 * invoked to help free up rwnd space for the peer. Setting this to a
3536 * lower value will cause partial deliveries to happen more often. The
3537 * calls argument is an integer that sets or gets the partial delivery
3538 * point. Note also that the call will fail if the user attempts to set
3539 * this value larger than the socket receive buffer size.
3540 *
3541 * Note that any single message having a length smaller than or equal to
3542 * the SCTP partial delivery point will be delivered in one single read
3543 * call as long as the user provided buffer is large enough to hold the
3544 * message.
3545 */
3546 static int sctp_setsockopt_partial_delivery_point(struct sock *sk,
3547 char __user *optval,
3548 unsigned int optlen)
3549 {
3550 u32 val;
3551
3552 if (optlen != sizeof(u32))
3553 return -EINVAL;
3554 if (get_user(val, (int __user *)optval))
3555 return -EFAULT;
3556
3557 /* Note: We double the receive buffer from what the user sets
3558 * it to be, also initial rwnd is based on rcvbuf/2.
3559 */
3560 if (val > (sk->sk_rcvbuf >> 1))
3561 return -EINVAL;
3562
3563 sctp_sk(sk)->pd_point = val;
3564
3565 return 0; /* is this the right error code? */
3566 }
3567
3568 /*
3569 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST)
3570 *
3571 * This option will allow a user to change the maximum burst of packets
3572 * that can be emitted by this association. Note that the default value
3573 * is 4, and some implementations may restrict this setting so that it
3574 * can only be lowered.
3575 *
3576 * NOTE: This text doesn't seem right. Do this on a socket basis with
3577 * future associations inheriting the socket value.
3578 */
3579 static int sctp_setsockopt_maxburst(struct sock *sk,
3580 char __user *optval,
3581 unsigned int optlen)
3582 {
3583 struct sctp_assoc_value params;
3584 struct sctp_sock *sp;
3585 struct sctp_association *asoc;
3586 int val;
3587 int assoc_id = 0;
3588
3589 if (optlen == sizeof(int)) {
3590 pr_warn_ratelimited(DEPRECATED
3591 "%s (pid %d) "
3592 "Use of int in max_burst socket option deprecated.\n"
3593 "Use struct sctp_assoc_value instead\n",
3594 current->comm, task_pid_nr(current));
3595 if (copy_from_user(&val, optval, optlen))
3596 return -EFAULT;
3597 } else if (optlen == sizeof(struct sctp_assoc_value)) {
3598 if (copy_from_user(&params, optval, optlen))
3599 return -EFAULT;
3600 val = params.assoc_value;
3601 assoc_id = params.assoc_id;
3602 } else
3603 return -EINVAL;
3604
3605 sp = sctp_sk(sk);
3606
3607 if (assoc_id != 0) {
3608 asoc = sctp_id2assoc(sk, assoc_id);
3609 if (!asoc)
3610 return -EINVAL;
3611 asoc->max_burst = val;
3612 } else
3613 sp->max_burst = val;
3614
3615 return 0;
3616 }
3617
3618 /*
3619 * 7.1.18. Add a chunk that must be authenticated (SCTP_AUTH_CHUNK)
3620 *
3621 * This set option adds a chunk type that the user is requesting to be
3622 * received only in an authenticated way. Changes to the list of chunks
3623 * will only effect future associations on the socket.
3624 */
3625 static int sctp_setsockopt_auth_chunk(struct sock *sk,
3626 char __user *optval,
3627 unsigned int optlen)
3628 {
3629 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3630 struct sctp_authchunk val;
3631
3632 if (!ep->auth_enable)
3633 return -EACCES;
3634
3635 if (optlen != sizeof(struct sctp_authchunk))
3636 return -EINVAL;
3637 if (copy_from_user(&val, optval, optlen))
3638 return -EFAULT;
3639
3640 switch (val.sauth_chunk) {
3641 case SCTP_CID_INIT:
3642 case SCTP_CID_INIT_ACK:
3643 case SCTP_CID_SHUTDOWN_COMPLETE:
3644 case SCTP_CID_AUTH:
3645 return -EINVAL;
3646 }
3647
3648 /* add this chunk id to the endpoint */
3649 return sctp_auth_ep_add_chunkid(ep, val.sauth_chunk);
3650 }
3651
3652 /*
3653 * 7.1.19. Get or set the list of supported HMAC Identifiers (SCTP_HMAC_IDENT)
3654 *
3655 * This option gets or sets the list of HMAC algorithms that the local
3656 * endpoint requires the peer to use.
3657 */
3658 static int sctp_setsockopt_hmac_ident(struct sock *sk,
3659 char __user *optval,
3660 unsigned int optlen)
3661 {
3662 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3663 struct sctp_hmacalgo *hmacs;
3664 u32 idents;
3665 int err;
3666
3667 if (!ep->auth_enable)
3668 return -EACCES;
3669
3670 if (optlen < sizeof(struct sctp_hmacalgo))
3671 return -EINVAL;
3672 optlen = min_t(unsigned int, optlen, sizeof(struct sctp_hmacalgo) +
3673 SCTP_AUTH_NUM_HMACS * sizeof(u16));
3674
3675 hmacs = memdup_user(optval, optlen);
3676 if (IS_ERR(hmacs))
3677 return PTR_ERR(hmacs);
3678
3679 idents = hmacs->shmac_num_idents;
3680 if (idents == 0 || idents > SCTP_AUTH_NUM_HMACS ||
3681 (idents * sizeof(u16)) > (optlen - sizeof(struct sctp_hmacalgo))) {
3682 err = -EINVAL;
3683 goto out;
3684 }
3685
3686 err = sctp_auth_ep_set_hmacs(ep, hmacs);
3687 out:
3688 kfree(hmacs);
3689 return err;
3690 }
3691
3692 /*
3693 * 7.1.20. Set a shared key (SCTP_AUTH_KEY)
3694 *
3695 * This option will set a shared secret key which is used to build an
3696 * association shared key.
3697 */
3698 static int sctp_setsockopt_auth_key(struct sock *sk,
3699 char __user *optval,
3700 unsigned int optlen)
3701 {
3702 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3703 struct sctp_authkey *authkey;
3704 struct sctp_association *asoc;
3705 int ret;
3706
3707 if (!ep->auth_enable)
3708 return -EACCES;
3709
3710 if (optlen <= sizeof(struct sctp_authkey))
3711 return -EINVAL;
3712 /* authkey->sca_keylength is u16, so optlen can't be bigger than
3713 * this.
3714 */
3715 optlen = min_t(unsigned int, optlen, USHRT_MAX +
3716 sizeof(struct sctp_authkey));
3717
3718 authkey = memdup_user(optval, optlen);
3719 if (IS_ERR(authkey))
3720 return PTR_ERR(authkey);
3721
3722 if (authkey->sca_keylength > optlen - sizeof(struct sctp_authkey)) {
3723 ret = -EINVAL;
3724 goto out;
3725 }
3726
3727 asoc = sctp_id2assoc(sk, authkey->sca_assoc_id);
3728 if (!asoc && authkey->sca_assoc_id && sctp_style(sk, UDP)) {
3729 ret = -EINVAL;
3730 goto out;
3731 }
3732
3733 ret = sctp_auth_set_key(ep, asoc, authkey);
3734 out:
3735 kzfree(authkey);
3736 return ret;
3737 }
3738
3739 /*
3740 * 7.1.21. Get or set the active shared key (SCTP_AUTH_ACTIVE_KEY)
3741 *
3742 * This option will get or set the active shared key to be used to build
3743 * the association shared key.
3744 */
3745 static int sctp_setsockopt_active_key(struct sock *sk,
3746 char __user *optval,
3747 unsigned int optlen)
3748 {
3749 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3750 struct sctp_authkeyid val;
3751 struct sctp_association *asoc;
3752
3753 if (!ep->auth_enable)
3754 return -EACCES;
3755
3756 if (optlen != sizeof(struct sctp_authkeyid))
3757 return -EINVAL;
3758 if (copy_from_user(&val, optval, optlen))
3759 return -EFAULT;
3760
3761 asoc = sctp_id2assoc(sk, val.scact_assoc_id);
3762 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
3763 return -EINVAL;
3764
3765 return sctp_auth_set_active_key(ep, asoc, val.scact_keynumber);
3766 }
3767
3768 /*
3769 * 7.1.22. Delete a shared key (SCTP_AUTH_DELETE_KEY)
3770 *
3771 * This set option will delete a shared secret key from use.
3772 */
3773 static int sctp_setsockopt_del_key(struct sock *sk,
3774 char __user *optval,
3775 unsigned int optlen)
3776 {
3777 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3778 struct sctp_authkeyid val;
3779 struct sctp_association *asoc;
3780
3781 if (!ep->auth_enable)
3782 return -EACCES;
3783
3784 if (optlen != sizeof(struct sctp_authkeyid))
3785 return -EINVAL;
3786 if (copy_from_user(&val, optval, optlen))
3787 return -EFAULT;
3788
3789 asoc = sctp_id2assoc(sk, val.scact_assoc_id);
3790 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
3791 return -EINVAL;
3792
3793 return sctp_auth_del_key_id(ep, asoc, val.scact_keynumber);
3794
3795 }
3796
3797 /*
3798 * 8.3.4 Deactivate a Shared Key (SCTP_AUTH_DEACTIVATE_KEY)
3799 *
3800 * This set option will deactivate a shared secret key.
3801 */
3802 static int sctp_setsockopt_deactivate_key(struct sock *sk, char __user *optval,
3803 unsigned int optlen)
3804 {
3805 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3806 struct sctp_authkeyid val;
3807 struct sctp_association *asoc;
3808
3809 if (!ep->auth_enable)
3810 return -EACCES;
3811
3812 if (optlen != sizeof(struct sctp_authkeyid))
3813 return -EINVAL;
3814 if (copy_from_user(&val, optval, optlen))
3815 return -EFAULT;
3816
3817 asoc = sctp_id2assoc(sk, val.scact_assoc_id);
3818 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
3819 return -EINVAL;
3820
3821 return sctp_auth_deact_key_id(ep, asoc, val.scact_keynumber);
3822 }
3823
3824 /*
3825 * 8.1.23 SCTP_AUTO_ASCONF
3826 *
3827 * This option will enable or disable the use of the automatic generation of
3828 * ASCONF chunks to add and delete addresses to an existing association. Note
3829 * that this option has two caveats namely: a) it only affects sockets that
3830 * are bound to all addresses available to the SCTP stack, and b) the system
3831 * administrator may have an overriding control that turns the ASCONF feature
3832 * off no matter what setting the socket option may have.
3833 * This option expects an integer boolean flag, where a non-zero value turns on
3834 * the option, and a zero value turns off the option.
3835 * Note. In this implementation, socket operation overrides default parameter
3836 * being set by sysctl as well as FreeBSD implementation
3837 */
3838 static int sctp_setsockopt_auto_asconf(struct sock *sk, char __user *optval,
3839 unsigned int optlen)
3840 {
3841 int val;
3842 struct sctp_sock *sp = sctp_sk(sk);
3843
3844 if (optlen < sizeof(int))
3845 return -EINVAL;
3846 if (get_user(val, (int __user *)optval))
3847 return -EFAULT;
3848 if (!sctp_is_ep_boundall(sk) && val)
3849 return -EINVAL;
3850 if ((val && sp->do_auto_asconf) || (!val && !sp->do_auto_asconf))
3851 return 0;
3852
3853 spin_lock_bh(&sock_net(sk)->sctp.addr_wq_lock);
3854 if (val == 0 && sp->do_auto_asconf) {
3855 list_del(&sp->auto_asconf_list);
3856 sp->do_auto_asconf = 0;
3857 } else if (val && !sp->do_auto_asconf) {
3858 list_add_tail(&sp->auto_asconf_list,
3859 &sock_net(sk)->sctp.auto_asconf_splist);
3860 sp->do_auto_asconf = 1;
3861 }
3862 spin_unlock_bh(&sock_net(sk)->sctp.addr_wq_lock);
3863 return 0;
3864 }
3865
3866 /*
3867 * SCTP_PEER_ADDR_THLDS
3868 *
3869 * This option allows us to alter the partially failed threshold for one or all
3870 * transports in an association. See Section 6.1 of:
3871 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt
3872 */
3873 static int sctp_setsockopt_paddr_thresholds(struct sock *sk,
3874 char __user *optval,
3875 unsigned int optlen)
3876 {
3877 struct sctp_paddrthlds val;
3878 struct sctp_transport *trans;
3879 struct sctp_association *asoc;
3880
3881 if (optlen < sizeof(struct sctp_paddrthlds))
3882 return -EINVAL;
3883 if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval,
3884 sizeof(struct sctp_paddrthlds)))
3885 return -EFAULT;
3886
3887
3888 if (sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) {
3889 asoc = sctp_id2assoc(sk, val.spt_assoc_id);
3890 if (!asoc)
3891 return -ENOENT;
3892 list_for_each_entry(trans, &asoc->peer.transport_addr_list,
3893 transports) {
3894 if (val.spt_pathmaxrxt)
3895 trans->pathmaxrxt = val.spt_pathmaxrxt;
3896 trans->pf_retrans = val.spt_pathpfthld;
3897 }
3898
3899 if (val.spt_pathmaxrxt)
3900 asoc->pathmaxrxt = val.spt_pathmaxrxt;
3901 asoc->pf_retrans = val.spt_pathpfthld;
3902 } else {
3903 trans = sctp_addr_id2transport(sk, &val.spt_address,
3904 val.spt_assoc_id);
3905 if (!trans)
3906 return -ENOENT;
3907
3908 if (val.spt_pathmaxrxt)
3909 trans->pathmaxrxt = val.spt_pathmaxrxt;
3910 trans->pf_retrans = val.spt_pathpfthld;
3911 }
3912
3913 return 0;
3914 }
3915
3916 static int sctp_setsockopt_recvrcvinfo(struct sock *sk,
3917 char __user *optval,
3918 unsigned int optlen)
3919 {
3920 int val;
3921
3922 if (optlen < sizeof(int))
3923 return -EINVAL;
3924 if (get_user(val, (int __user *) optval))
3925 return -EFAULT;
3926
3927 sctp_sk(sk)->recvrcvinfo = (val == 0) ? 0 : 1;
3928
3929 return 0;
3930 }
3931
3932 static int sctp_setsockopt_recvnxtinfo(struct sock *sk,
3933 char __user *optval,
3934 unsigned int optlen)
3935 {
3936 int val;
3937
3938 if (optlen < sizeof(int))
3939 return -EINVAL;
3940 if (get_user(val, (int __user *) optval))
3941 return -EFAULT;
3942
3943 sctp_sk(sk)->recvnxtinfo = (val == 0) ? 0 : 1;
3944
3945 return 0;
3946 }
3947
3948 static int sctp_setsockopt_pr_supported(struct sock *sk,
3949 char __user *optval,
3950 unsigned int optlen)
3951 {
3952 struct sctp_assoc_value params;
3953
3954 if (optlen != sizeof(params))
3955 return -EINVAL;
3956
3957 if (copy_from_user(&params, optval, optlen))
3958 return -EFAULT;
3959
3960 sctp_sk(sk)->ep->prsctp_enable = !!params.assoc_value;
3961
3962 return 0;
3963 }
3964
3965 static int sctp_setsockopt_default_prinfo(struct sock *sk,
3966 char __user *optval,
3967 unsigned int optlen)
3968 {
3969 struct sctp_default_prinfo info;
3970 struct sctp_association *asoc;
3971 int retval = -EINVAL;
3972
3973 if (optlen != sizeof(info))
3974 goto out;
3975
3976 if (copy_from_user(&info, optval, sizeof(info))) {
3977 retval = -EFAULT;
3978 goto out;
3979 }
3980
3981 if (info.pr_policy & ~SCTP_PR_SCTP_MASK)
3982 goto out;
3983
3984 if (info.pr_policy == SCTP_PR_SCTP_NONE)
3985 info.pr_value = 0;
3986
3987 asoc = sctp_id2assoc(sk, info.pr_assoc_id);
3988 if (asoc) {
3989 SCTP_PR_SET_POLICY(asoc->default_flags, info.pr_policy);
3990 asoc->default_timetolive = info.pr_value;
3991 } else if (!info.pr_assoc_id) {
3992 struct sctp_sock *sp = sctp_sk(sk);
3993
3994 SCTP_PR_SET_POLICY(sp->default_flags, info.pr_policy);
3995 sp->default_timetolive = info.pr_value;
3996 } else {
3997 goto out;
3998 }
3999
4000 retval = 0;
4001
4002 out:
4003 return retval;
4004 }
4005
4006 static int sctp_setsockopt_reconfig_supported(struct sock *sk,
4007 char __user *optval,
4008 unsigned int optlen)
4009 {
4010 struct sctp_assoc_value params;
4011 struct sctp_association *asoc;
4012 int retval = -EINVAL;
4013
4014 if (optlen != sizeof(params))
4015 goto out;
4016
4017 if (copy_from_user(&params, optval, optlen)) {
4018 retval = -EFAULT;
4019 goto out;
4020 }
4021
4022 asoc = sctp_id2assoc(sk, params.assoc_id);
4023 if (asoc) {
4024 asoc->reconf_enable = !!params.assoc_value;
4025 } else if (!params.assoc_id) {
4026 struct sctp_sock *sp = sctp_sk(sk);
4027
4028 sp->ep->reconf_enable = !!params.assoc_value;
4029 } else {
4030 goto out;
4031 }
4032
4033 retval = 0;
4034
4035 out:
4036 return retval;
4037 }
4038
4039 static int sctp_setsockopt_enable_strreset(struct sock *sk,
4040 char __user *optval,
4041 unsigned int optlen)
4042 {
4043 struct sctp_assoc_value params;
4044 struct sctp_association *asoc;
4045 int retval = -EINVAL;
4046
4047 if (optlen != sizeof(params))
4048 goto out;
4049
4050 if (copy_from_user(&params, optval, optlen)) {
4051 retval = -EFAULT;
4052 goto out;
4053 }
4054
4055 if (params.assoc_value & (~SCTP_ENABLE_STRRESET_MASK))
4056 goto out;
4057
4058 asoc = sctp_id2assoc(sk, params.assoc_id);
4059 if (asoc) {
4060 asoc->strreset_enable = params.assoc_value;
4061 } else if (!params.assoc_id) {
4062 struct sctp_sock *sp = sctp_sk(sk);
4063
4064 sp->ep->strreset_enable = params.assoc_value;
4065 } else {
4066 goto out;
4067 }
4068
4069 retval = 0;
4070
4071 out:
4072 return retval;
4073 }
4074
4075 static int sctp_setsockopt_reset_streams(struct sock *sk,
4076 char __user *optval,
4077 unsigned int optlen)
4078 {
4079 struct sctp_reset_streams *params;
4080 struct sctp_association *asoc;
4081 int retval = -EINVAL;
4082
4083 if (optlen < sizeof(*params))
4084 return -EINVAL;
4085 /* srs_number_streams is u16, so optlen can't be bigger than this. */
4086 optlen = min_t(unsigned int, optlen, USHRT_MAX +
4087 sizeof(__u16) * sizeof(*params));
4088
4089 params = memdup_user(optval, optlen);
4090 if (IS_ERR(params))
4091 return PTR_ERR(params);
4092
4093 if (params->srs_number_streams * sizeof(__u16) >
4094 optlen - sizeof(*params))
4095 goto out;
4096
4097 asoc = sctp_id2assoc(sk, params->srs_assoc_id);
4098 if (!asoc)
4099 goto out;
4100
4101 retval = sctp_send_reset_streams(asoc, params);
4102
4103 out:
4104 kfree(params);
4105 return retval;
4106 }
4107
4108 static int sctp_setsockopt_reset_assoc(struct sock *sk,
4109 char __user *optval,
4110 unsigned int optlen)
4111 {
4112 struct sctp_association *asoc;
4113 sctp_assoc_t associd;
4114 int retval = -EINVAL;
4115
4116 if (optlen != sizeof(associd))
4117 goto out;
4118
4119 if (copy_from_user(&associd, optval, optlen)) {
4120 retval = -EFAULT;
4121 goto out;
4122 }
4123
4124 asoc = sctp_id2assoc(sk, associd);
4125 if (!asoc)
4126 goto out;
4127
4128 retval = sctp_send_reset_assoc(asoc);
4129
4130 out:
4131 return retval;
4132 }
4133
4134 static int sctp_setsockopt_add_streams(struct sock *sk,
4135 char __user *optval,
4136 unsigned int optlen)
4137 {
4138 struct sctp_association *asoc;
4139 struct sctp_add_streams params;
4140 int retval = -EINVAL;
4141
4142 if (optlen != sizeof(params))
4143 goto out;
4144
4145 if (copy_from_user(&params, optval, optlen)) {
4146 retval = -EFAULT;
4147 goto out;
4148 }
4149
4150 asoc = sctp_id2assoc(sk, params.sas_assoc_id);
4151 if (!asoc)
4152 goto out;
4153
4154 retval = sctp_send_add_streams(asoc, &params);
4155
4156 out:
4157 return retval;
4158 }
4159
4160 static int sctp_setsockopt_scheduler(struct sock *sk,
4161 char __user *optval,
4162 unsigned int optlen)
4163 {
4164 struct sctp_association *asoc;
4165 struct sctp_assoc_value params;
4166 int retval = -EINVAL;
4167
4168 if (optlen < sizeof(params))
4169 goto out;
4170
4171 optlen = sizeof(params);
4172 if (copy_from_user(&params, optval, optlen)) {
4173 retval = -EFAULT;
4174 goto out;
4175 }
4176
4177 if (params.assoc_value > SCTP_SS_MAX)
4178 goto out;
4179
4180 asoc = sctp_id2assoc(sk, params.assoc_id);
4181 if (!asoc)
4182 goto out;
4183
4184 retval = sctp_sched_set_sched(asoc, params.assoc_value);
4185
4186 out:
4187 return retval;
4188 }
4189
4190 static int sctp_setsockopt_scheduler_value(struct sock *sk,
4191 char __user *optval,
4192 unsigned int optlen)
4193 {
4194 struct sctp_association *asoc;
4195 struct sctp_stream_value params;
4196 int retval = -EINVAL;
4197
4198 if (optlen < sizeof(params))
4199 goto out;
4200
4201 optlen = sizeof(params);
4202 if (copy_from_user(&params, optval, optlen)) {
4203 retval = -EFAULT;
4204 goto out;
4205 }
4206
4207 asoc = sctp_id2assoc(sk, params.assoc_id);
4208 if (!asoc)
4209 goto out;
4210
4211 retval = sctp_sched_set_value(asoc, params.stream_id,
4212 params.stream_value, GFP_KERNEL);
4213
4214 out:
4215 return retval;
4216 }
4217
4218 static int sctp_setsockopt_interleaving_supported(struct sock *sk,
4219 char __user *optval,
4220 unsigned int optlen)
4221 {
4222 struct sctp_sock *sp = sctp_sk(sk);
4223 struct net *net = sock_net(sk);
4224 struct sctp_assoc_value params;
4225 int retval = -EINVAL;
4226
4227 if (optlen < sizeof(params))
4228 goto out;
4229
4230 optlen = sizeof(params);
4231 if (copy_from_user(&params, optval, optlen)) {
4232 retval = -EFAULT;
4233 goto out;
4234 }
4235
4236 if (params.assoc_id)
4237 goto out;
4238
4239 if (!net->sctp.intl_enable || !sp->frag_interleave) {
4240 retval = -EPERM;
4241 goto out;
4242 }
4243
4244 sp->strm_interleave = !!params.assoc_value;
4245
4246 retval = 0;
4247
4248 out:
4249 return retval;
4250 }
4251
4252 static int sctp_setsockopt_reuse_port(struct sock *sk, char __user *optval,
4253 unsigned int optlen)
4254 {
4255 int val;
4256
4257 if (!sctp_style(sk, TCP))
4258 return -EOPNOTSUPP;
4259
4260 if (sctp_sk(sk)->ep->base.bind_addr.port)
4261 return -EFAULT;
4262
4263 if (optlen < sizeof(int))
4264 return -EINVAL;
4265
4266 if (get_user(val, (int __user *)optval))
4267 return -EFAULT;
4268
4269 sctp_sk(sk)->reuse = !!val;
4270
4271 return 0;
4272 }
4273
4274 static int sctp_setsockopt_event(struct sock *sk, char __user *optval,
4275 unsigned int optlen)
4276 {
4277 struct sctp_association *asoc;
4278 struct sctp_ulpevent *event;
4279 struct sctp_event param;
4280 int retval = 0;
4281
4282 if (optlen < sizeof(param)) {
4283 retval = -EINVAL;
4284 goto out;
4285 }
4286
4287 optlen = sizeof(param);
4288 if (copy_from_user(&param, optval, optlen)) {
4289 retval = -EFAULT;
4290 goto out;
4291 }
4292
4293 if (param.se_type < SCTP_SN_TYPE_BASE ||
4294 param.se_type > SCTP_SN_TYPE_MAX) {
4295 retval = -EINVAL;
4296 goto out;
4297 }
4298
4299 asoc = sctp_id2assoc(sk, param.se_assoc_id);
4300 if (!asoc) {
4301 sctp_ulpevent_type_set(&sctp_sk(sk)->subscribe,
4302 param.se_type, param.se_on);
4303 goto out;
4304 }
4305
4306 sctp_ulpevent_type_set(&asoc->subscribe, param.se_type, param.se_on);
4307
4308 if (param.se_type == SCTP_SENDER_DRY_EVENT && param.se_on) {
4309 if (sctp_outq_is_empty(&asoc->outqueue)) {
4310 event = sctp_ulpevent_make_sender_dry_event(asoc,
4311 GFP_USER | __GFP_NOWARN);
4312 if (!event) {
4313 retval = -ENOMEM;
4314 goto out;
4315 }
4316
4317 asoc->stream.si->enqueue_event(&asoc->ulpq, event);
4318 }
4319 }
4320
4321 out:
4322 return retval;
4323 }
4324
4325 /* API 6.2 setsockopt(), getsockopt()
4326 *
4327 * Applications use setsockopt() and getsockopt() to set or retrieve
4328 * socket options. Socket options are used to change the default
4329 * behavior of sockets calls. They are described in Section 7.
4330 *
4331 * The syntax is:
4332 *
4333 * ret = getsockopt(int sd, int level, int optname, void __user *optval,
4334 * int __user *optlen);
4335 * ret = setsockopt(int sd, int level, int optname, const void __user *optval,
4336 * int optlen);
4337 *
4338 * sd - the socket descript.
4339 * level - set to IPPROTO_SCTP for all SCTP options.
4340 * optname - the option name.
4341 * optval - the buffer to store the value of the option.
4342 * optlen - the size of the buffer.
4343 */
4344 static int sctp_setsockopt(struct sock *sk, int level, int optname,
4345 char __user *optval, unsigned int optlen)
4346 {
4347 int retval = 0;
4348
4349 pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname);
4350
4351 /* I can hardly begin to describe how wrong this is. This is
4352 * so broken as to be worse than useless. The API draft
4353 * REALLY is NOT helpful here... I am not convinced that the
4354 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP
4355 * are at all well-founded.
4356 */
4357 if (level != SOL_SCTP) {
4358 struct sctp_af *af = sctp_sk(sk)->pf->af;
4359 retval = af->setsockopt(sk, level, optname, optval, optlen);
4360 goto out_nounlock;
4361 }
4362
4363 lock_sock(sk);
4364
4365 switch (optname) {
4366 case SCTP_SOCKOPT_BINDX_ADD:
4367 /* 'optlen' is the size of the addresses buffer. */
4368 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
4369 optlen, SCTP_BINDX_ADD_ADDR);
4370 break;
4371
4372 case SCTP_SOCKOPT_BINDX_REM:
4373 /* 'optlen' is the size of the addresses buffer. */
4374 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
4375 optlen, SCTP_BINDX_REM_ADDR);
4376 break;
4377
4378 case SCTP_SOCKOPT_CONNECTX_OLD:
4379 /* 'optlen' is the size of the addresses buffer. */
4380 retval = sctp_setsockopt_connectx_old(sk,
4381 (struct sockaddr __user *)optval,
4382 optlen);
4383 break;
4384
4385 case SCTP_SOCKOPT_CONNECTX:
4386 /* 'optlen' is the size of the addresses buffer. */
4387 retval = sctp_setsockopt_connectx(sk,
4388 (struct sockaddr __user *)optval,
4389 optlen);
4390 break;
4391
4392 case SCTP_DISABLE_FRAGMENTS:
4393 retval = sctp_setsockopt_disable_fragments(sk, optval, optlen);
4394 break;
4395
4396 case SCTP_EVENTS:
4397 retval = sctp_setsockopt_events(sk, optval, optlen);
4398 break;
4399
4400 case SCTP_AUTOCLOSE:
4401 retval = sctp_setsockopt_autoclose(sk, optval, optlen);
4402 break;
4403
4404 case SCTP_PEER_ADDR_PARAMS:
4405 retval = sctp_setsockopt_peer_addr_params(sk, optval, optlen);
4406 break;
4407
4408 case SCTP_DELAYED_SACK:
4409 retval = sctp_setsockopt_delayed_ack(sk, optval, optlen);
4410 break;
4411 case SCTP_PARTIAL_DELIVERY_POINT:
4412 retval = sctp_setsockopt_partial_delivery_point(sk, optval, optlen);
4413 break;
4414
4415 case SCTP_INITMSG:
4416 retval = sctp_setsockopt_initmsg(sk, optval, optlen);
4417 break;
4418 case SCTP_DEFAULT_SEND_PARAM:
4419 retval = sctp_setsockopt_default_send_param(sk, optval,
4420 optlen);
4421 break;
4422 case SCTP_DEFAULT_SNDINFO:
4423 retval = sctp_setsockopt_default_sndinfo(sk, optval, optlen);
4424 break;
4425 case SCTP_PRIMARY_ADDR:
4426 retval = sctp_setsockopt_primary_addr(sk, optval, optlen);
4427 break;
4428 case SCTP_SET_PEER_PRIMARY_ADDR:
4429 retval = sctp_setsockopt_peer_primary_addr(sk, optval, optlen);
4430 break;
4431 case SCTP_NODELAY:
4432 retval = sctp_setsockopt_nodelay(sk, optval, optlen);
4433 break;
4434 case SCTP_RTOINFO:
4435 retval = sctp_setsockopt_rtoinfo(sk, optval, optlen);
4436 break;
4437 case SCTP_ASSOCINFO:
4438 retval = sctp_setsockopt_associnfo(sk, optval, optlen);
4439 break;
4440 case SCTP_I_WANT_MAPPED_V4_ADDR:
4441 retval = sctp_setsockopt_mappedv4(sk, optval, optlen);
4442 break;
4443 case SCTP_MAXSEG:
4444 retval = sctp_setsockopt_maxseg(sk, optval, optlen);
4445 break;
4446 case SCTP_ADAPTATION_LAYER:
4447 retval = sctp_setsockopt_adaptation_layer(sk, optval, optlen);
4448 break;
4449 case SCTP_CONTEXT:
4450 retval = sctp_setsockopt_context(sk, optval, optlen);
4451 break;
4452 case SCTP_FRAGMENT_INTERLEAVE:
4453 retval = sctp_setsockopt_fragment_interleave(sk, optval, optlen);
4454 break;
4455 case SCTP_MAX_BURST:
4456 retval = sctp_setsockopt_maxburst(sk, optval, optlen);
4457 break;
4458 case SCTP_AUTH_CHUNK:
4459 retval = sctp_setsockopt_auth_chunk(sk, optval, optlen);
4460 break;
4461 case SCTP_HMAC_IDENT:
4462 retval = sctp_setsockopt_hmac_ident(sk, optval, optlen);
4463 break;
4464 case SCTP_AUTH_KEY:
4465 retval = sctp_setsockopt_auth_key(sk, optval, optlen);
4466 break;
4467 case SCTP_AUTH_ACTIVE_KEY:
4468 retval = sctp_setsockopt_active_key(sk, optval, optlen);
4469 break;
4470 case SCTP_AUTH_DELETE_KEY:
4471 retval = sctp_setsockopt_del_key(sk, optval, optlen);
4472 break;
4473 case SCTP_AUTH_DEACTIVATE_KEY:
4474 retval = sctp_setsockopt_deactivate_key(sk, optval, optlen);
4475 break;
4476 case SCTP_AUTO_ASCONF:
4477 retval = sctp_setsockopt_auto_asconf(sk, optval, optlen);
4478 break;
4479 case SCTP_PEER_ADDR_THLDS:
4480 retval = sctp_setsockopt_paddr_thresholds(sk, optval, optlen);
4481 break;
4482 case SCTP_RECVRCVINFO:
4483 retval = sctp_setsockopt_recvrcvinfo(sk, optval, optlen);
4484 break;
4485 case SCTP_RECVNXTINFO:
4486 retval = sctp_setsockopt_recvnxtinfo(sk, optval, optlen);
4487 break;
4488 case SCTP_PR_SUPPORTED:
4489 retval = sctp_setsockopt_pr_supported(sk, optval, optlen);
4490 break;
4491 case SCTP_DEFAULT_PRINFO:
4492 retval = sctp_setsockopt_default_prinfo(sk, optval, optlen);
4493 break;
4494 case SCTP_RECONFIG_SUPPORTED:
4495 retval = sctp_setsockopt_reconfig_supported(sk, optval, optlen);
4496 break;
4497 case SCTP_ENABLE_STREAM_RESET:
4498 retval = sctp_setsockopt_enable_strreset(sk, optval, optlen);
4499 break;
4500 case SCTP_RESET_STREAMS:
4501 retval = sctp_setsockopt_reset_streams(sk, optval, optlen);
4502 break;
4503 case SCTP_RESET_ASSOC:
4504 retval = sctp_setsockopt_reset_assoc(sk, optval, optlen);
4505 break;
4506 case SCTP_ADD_STREAMS:
4507 retval = sctp_setsockopt_add_streams(sk, optval, optlen);
4508 break;
4509 case SCTP_STREAM_SCHEDULER:
4510 retval = sctp_setsockopt_scheduler(sk, optval, optlen);
4511 break;
4512 case SCTP_STREAM_SCHEDULER_VALUE:
4513 retval = sctp_setsockopt_scheduler_value(sk, optval, optlen);
4514 break;
4515 case SCTP_INTERLEAVING_SUPPORTED:
4516 retval = sctp_setsockopt_interleaving_supported(sk, optval,
4517 optlen);
4518 break;
4519 case SCTP_REUSE_PORT:
4520 retval = sctp_setsockopt_reuse_port(sk, optval, optlen);
4521 break;
4522 case SCTP_EVENT:
4523 retval = sctp_setsockopt_event(sk, optval, optlen);
4524 break;
4525 default:
4526 retval = -ENOPROTOOPT;
4527 break;
4528 }
4529
4530 release_sock(sk);
4531
4532 out_nounlock:
4533 return retval;
4534 }
4535
4536 /* API 3.1.6 connect() - UDP Style Syntax
4537 *
4538 * An application may use the connect() call in the UDP model to initiate an
4539 * association without sending data.
4540 *
4541 * The syntax is:
4542 *
4543 * ret = connect(int sd, const struct sockaddr *nam, socklen_t len);
4544 *
4545 * sd: the socket descriptor to have a new association added to.
4546 *
4547 * nam: the address structure (either struct sockaddr_in or struct
4548 * sockaddr_in6 defined in RFC2553 [7]).
4549 *
4550 * len: the size of the address.
4551 */
4552 static int sctp_connect(struct sock *sk, struct sockaddr *addr,
4553 int addr_len, int flags)
4554 {
4555 struct inet_sock *inet = inet_sk(sk);
4556 struct sctp_af *af;
4557 int err = 0;
4558
4559 lock_sock(sk);
4560
4561 pr_debug("%s: sk:%p, sockaddr:%p, addr_len:%d\n", __func__, sk,
4562 addr, addr_len);
4563
4564 /* We may need to bind the socket. */
4565 if (!inet->inet_num) {
4566 if (sk->sk_prot->get_port(sk, 0)) {
4567 release_sock(sk);
4568 return -EAGAIN;
4569 }
4570 inet->inet_sport = htons(inet->inet_num);
4571 }
4572
4573 /* Validate addr_len before calling common connect/connectx routine. */
4574 af = sctp_get_af_specific(addr->sa_family);
4575 if (!af || addr_len < af->sockaddr_len) {
4576 err = -EINVAL;
4577 } else {
4578 /* Pass correct addr len to common routine (so it knows there
4579 * is only one address being passed.
4580 */
4581 err = __sctp_connect(sk, addr, af->sockaddr_len, flags, NULL);
4582 }
4583
4584 release_sock(sk);
4585 return err;
4586 }
4587
4588 int sctp_inet_connect(struct socket *sock, struct sockaddr *uaddr,
4589 int addr_len, int flags)
4590 {
4591 if (addr_len < sizeof(uaddr->sa_family))
4592 return -EINVAL;
4593
4594 if (uaddr->sa_family == AF_UNSPEC)
4595 return -EOPNOTSUPP;
4596
4597 return sctp_connect(sock->sk, uaddr, addr_len, flags);
4598 }
4599
4600 /* FIXME: Write comments. */
4601 static int sctp_disconnect(struct sock *sk, int flags)
4602 {
4603 return -EOPNOTSUPP; /* STUB */
4604 }
4605
4606 /* 4.1.4 accept() - TCP Style Syntax
4607 *
4608 * Applications use accept() call to remove an established SCTP
4609 * association from the accept queue of the endpoint. A new socket
4610 * descriptor will be returned from accept() to represent the newly
4611 * formed association.
4612 */
4613 static struct sock *sctp_accept(struct sock *sk, int flags, int *err, bool kern)
4614 {
4615 struct sctp_sock *sp;
4616 struct sctp_endpoint *ep;
4617 struct sock *newsk = NULL;
4618 struct sctp_association *asoc;
4619 long timeo;
4620 int error = 0;
4621
4622 lock_sock(sk);
4623
4624 sp = sctp_sk(sk);
4625 ep = sp->ep;
4626
4627 if (!sctp_style(sk, TCP)) {
4628 error = -EOPNOTSUPP;
4629 goto out;
4630 }
4631
4632 if (!sctp_sstate(sk, LISTENING)) {
4633 error = -EINVAL;
4634 goto out;
4635 }
4636
4637 timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
4638
4639 error = sctp_wait_for_accept(sk, timeo);
4640 if (error)
4641 goto out;
4642
4643 /* We treat the list of associations on the endpoint as the accept
4644 * queue and pick the first association on the list.
4645 */
4646 asoc = list_entry(ep->asocs.next, struct sctp_association, asocs);
4647
4648 newsk = sp->pf->create_accept_sk(sk, asoc, kern);
4649 if (!newsk) {
4650 error = -ENOMEM;
4651 goto out;
4652 }
4653
4654 /* Populate the fields of the newsk from the oldsk and migrate the
4655 * asoc to the newsk.
4656 */
4657 sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP);
4658
4659 out:
4660 release_sock(sk);
4661 *err = error;
4662 return newsk;
4663 }
4664
4665 /* The SCTP ioctl handler. */
4666 static int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg)
4667 {
4668 int rc = -ENOTCONN;
4669
4670 lock_sock(sk);
4671
4672 /*
4673 * SEQPACKET-style sockets in LISTENING state are valid, for
4674 * SCTP, so only discard TCP-style sockets in LISTENING state.
4675 */
4676 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
4677 goto out;
4678
4679 switch (cmd) {
4680 case SIOCINQ: {
4681 struct sk_buff *skb;
4682 unsigned int amount = 0;
4683
4684 skb = skb_peek(&sk->sk_receive_queue);
4685 if (skb != NULL) {
4686 /*
4687 * We will only return the amount of this packet since
4688 * that is all that will be read.
4689 */
4690 amount = skb->len;
4691 }
4692 rc = put_user(amount, (int __user *)arg);
4693 break;
4694 }
4695 default:
4696 rc = -ENOIOCTLCMD;
4697 break;
4698 }
4699 out:
4700 release_sock(sk);
4701 return rc;
4702 }
4703
4704 /* This is the function which gets called during socket creation to
4705 * initialized the SCTP-specific portion of the sock.
4706 * The sock structure should already be zero-filled memory.
4707 */
4708 static int sctp_init_sock(struct sock *sk)
4709 {
4710 struct net *net = sock_net(sk);
4711 struct sctp_sock *sp;
4712
4713 pr_debug("%s: sk:%p\n", __func__, sk);
4714
4715 sp = sctp_sk(sk);
4716
4717 /* Initialize the SCTP per socket area. */
4718 switch (sk->sk_type) {
4719 case SOCK_SEQPACKET:
4720 sp->type = SCTP_SOCKET_UDP;
4721 break;
4722 case SOCK_STREAM:
4723 sp->type = SCTP_SOCKET_TCP;
4724 break;
4725 default:
4726 return -ESOCKTNOSUPPORT;
4727 }
4728
4729 sk->sk_gso_type = SKB_GSO_SCTP;
4730
4731 /* Initialize default send parameters. These parameters can be
4732 * modified with the SCTP_DEFAULT_SEND_PARAM socket option.
4733 */
4734 sp->default_stream = 0;
4735 sp->default_ppid = 0;
4736 sp->default_flags = 0;
4737 sp->default_context = 0;
4738 sp->default_timetolive = 0;
4739
4740 sp->default_rcv_context = 0;
4741 sp->max_burst = net->sctp.max_burst;
4742
4743 sp->sctp_hmac_alg = net->sctp.sctp_hmac_alg;
4744
4745 /* Initialize default setup parameters. These parameters
4746 * can be modified with the SCTP_INITMSG socket option or
4747 * overridden by the SCTP_INIT CMSG.
4748 */
4749 sp->initmsg.sinit_num_ostreams = sctp_max_outstreams;
4750 sp->initmsg.sinit_max_instreams = sctp_max_instreams;
4751 sp->initmsg.sinit_max_attempts = net->sctp.max_retrans_init;
4752 sp->initmsg.sinit_max_init_timeo = net->sctp.rto_max;
4753
4754 /* Initialize default RTO related parameters. These parameters can
4755 * be modified for with the SCTP_RTOINFO socket option.
4756 */
4757 sp->rtoinfo.srto_initial = net->sctp.rto_initial;
4758 sp->rtoinfo.srto_max = net->sctp.rto_max;
4759 sp->rtoinfo.srto_min = net->sctp.rto_min;
4760
4761 /* Initialize default association related parameters. These parameters
4762 * can be modified with the SCTP_ASSOCINFO socket option.
4763 */
4764 sp->assocparams.sasoc_asocmaxrxt = net->sctp.max_retrans_association;
4765 sp->assocparams.sasoc_number_peer_destinations = 0;
4766 sp->assocparams.sasoc_peer_rwnd = 0;
4767 sp->assocparams.sasoc_local_rwnd = 0;
4768 sp->assocparams.sasoc_cookie_life = net->sctp.valid_cookie_life;
4769
4770 /* Initialize default event subscriptions. By default, all the
4771 * options are off.
4772 */
4773 sp->subscribe = 0;
4774
4775 /* Default Peer Address Parameters. These defaults can
4776 * be modified via SCTP_PEER_ADDR_PARAMS
4777 */
4778 sp->hbinterval = net->sctp.hb_interval;
4779 sp->pathmaxrxt = net->sctp.max_retrans_path;
4780 sp->pathmtu = 0; /* allow default discovery */
4781 sp->sackdelay = net->sctp.sack_timeout;
4782 sp->sackfreq = 2;
4783 sp->param_flags = SPP_HB_ENABLE |
4784 SPP_PMTUD_ENABLE |
4785 SPP_SACKDELAY_ENABLE;
4786
4787 /* If enabled no SCTP message fragmentation will be performed.
4788 * Configure through SCTP_DISABLE_FRAGMENTS socket option.
4789 */
4790 sp->disable_fragments = 0;
4791
4792 /* Enable Nagle algorithm by default. */
4793 sp->nodelay = 0;
4794
4795 sp->recvrcvinfo = 0;
4796 sp->recvnxtinfo = 0;
4797
4798 /* Enable by default. */
4799 sp->v4mapped = 1;
4800
4801 /* Auto-close idle associations after the configured
4802 * number of seconds. A value of 0 disables this
4803 * feature. Configure through the SCTP_AUTOCLOSE socket option,
4804 * for UDP-style sockets only.
4805 */
4806 sp->autoclose = 0;
4807
4808 /* User specified fragmentation limit. */
4809 sp->user_frag = 0;
4810
4811 sp->adaptation_ind = 0;
4812
4813 sp->pf = sctp_get_pf_specific(sk->sk_family);
4814
4815 /* Control variables for partial data delivery. */
4816 atomic_set(&sp->pd_mode, 0);
4817 skb_queue_head_init(&sp->pd_lobby);
4818 sp->frag_interleave = 0;
4819
4820 /* Create a per socket endpoint structure. Even if we
4821 * change the data structure relationships, this may still
4822 * be useful for storing pre-connect address information.
4823 */
4824 sp->ep = sctp_endpoint_new(sk, GFP_KERNEL);
4825 if (!sp->ep)
4826 return -ENOMEM;
4827
4828 sp->hmac = NULL;
4829
4830 sk->sk_destruct = sctp_destruct_sock;
4831
4832 SCTP_DBG_OBJCNT_INC(sock);
4833
4834 local_bh_disable();
4835 sk_sockets_allocated_inc(sk);
4836 sock_prot_inuse_add(net, sk->sk_prot, 1);
4837
4838 /* Nothing can fail after this block, otherwise
4839 * sctp_destroy_sock() will be called without addr_wq_lock held
4840 */
4841 if (net->sctp.default_auto_asconf) {
4842 spin_lock(&sock_net(sk)->sctp.addr_wq_lock);
4843 list_add_tail(&sp->auto_asconf_list,
4844 &net->sctp.auto_asconf_splist);
4845 sp->do_auto_asconf = 1;
4846 spin_unlock(&sock_net(sk)->sctp.addr_wq_lock);
4847 } else {
4848 sp->do_auto_asconf = 0;
4849 }
4850
4851 local_bh_enable();
4852
4853 return 0;
4854 }
4855
4856 /* Cleanup any SCTP per socket resources. Must be called with
4857 * sock_net(sk)->sctp.addr_wq_lock held if sp->do_auto_asconf is true
4858 */
4859 static void sctp_destroy_sock(struct sock *sk)
4860 {
4861 struct sctp_sock *sp;
4862
4863 pr_debug("%s: sk:%p\n", __func__, sk);
4864
4865 /* Release our hold on the endpoint. */
4866 sp = sctp_sk(sk);
4867 /* This could happen during socket init, thus we bail out
4868 * early, since the rest of the below is not setup either.
4869 */
4870 if (sp->ep == NULL)
4871 return;
4872
4873 if (sp->do_auto_asconf) {
4874 sp->do_auto_asconf = 0;
4875 list_del(&sp->auto_asconf_list);
4876 }
4877 sctp_endpoint_free(sp->ep);
4878 local_bh_disable();
4879 sk_sockets_allocated_dec(sk);
4880 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
4881 local_bh_enable();
4882 }
4883
4884 /* Triggered when there are no references on the socket anymore */
4885 static void sctp_destruct_sock(struct sock *sk)
4886 {
4887 struct sctp_sock *sp = sctp_sk(sk);
4888
4889 /* Free up the HMAC transform. */
4890 crypto_free_shash(sp->hmac);
4891
4892 inet_sock_destruct(sk);
4893 }
4894
4895 /* API 4.1.7 shutdown() - TCP Style Syntax
4896 * int shutdown(int socket, int how);
4897 *
4898 * sd - the socket descriptor of the association to be closed.
4899 * how - Specifies the type of shutdown. The values are
4900 * as follows:
4901 * SHUT_RD
4902 * Disables further receive operations. No SCTP
4903 * protocol action is taken.
4904 * SHUT_WR
4905 * Disables further send operations, and initiates
4906 * the SCTP shutdown sequence.
4907 * SHUT_RDWR
4908 * Disables further send and receive operations
4909 * and initiates the SCTP shutdown sequence.
4910 */
4911 static void sctp_shutdown(struct sock *sk, int how)
4912 {
4913 struct net *net = sock_net(sk);
4914 struct sctp_endpoint *ep;
4915
4916 if (!sctp_style(sk, TCP))
4917 return;
4918
4919 ep = sctp_sk(sk)->ep;
4920 if (how & SEND_SHUTDOWN && !list_empty(&ep->asocs)) {
4921 struct sctp_association *asoc;
4922
4923 inet_sk_set_state(sk, SCTP_SS_CLOSING);
4924 asoc = list_entry(ep->asocs.next,
4925 struct sctp_association, asocs);
4926 sctp_primitive_SHUTDOWN(net, asoc, NULL);
4927 }
4928 }
4929
4930 int sctp_get_sctp_info(struct sock *sk, struct sctp_association *asoc,
4931 struct sctp_info *info)
4932 {
4933 struct sctp_transport *prim;
4934 struct list_head *pos;
4935 int mask;
4936
4937 memset(info, 0, sizeof(*info));
4938 if (!asoc) {
4939 struct sctp_sock *sp = sctp_sk(sk);
4940
4941 info->sctpi_s_autoclose = sp->autoclose;
4942 info->sctpi_s_adaptation_ind = sp->adaptation_ind;
4943 info->sctpi_s_pd_point = sp->pd_point;
4944 info->sctpi_s_nodelay = sp->nodelay;
4945 info->sctpi_s_disable_fragments = sp->disable_fragments;
4946 info->sctpi_s_v4mapped = sp->v4mapped;
4947 info->sctpi_s_frag_interleave = sp->frag_interleave;
4948 info->sctpi_s_type = sp->type;
4949
4950 return 0;
4951 }
4952
4953 info->sctpi_tag = asoc->c.my_vtag;
4954 info->sctpi_state = asoc->state;
4955 info->sctpi_rwnd = asoc->a_rwnd;
4956 info->sctpi_unackdata = asoc->unack_data;
4957 info->sctpi_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map);
4958 info->sctpi_instrms = asoc->stream.incnt;
4959 info->sctpi_outstrms = asoc->stream.outcnt;
4960 list_for_each(pos, &asoc->base.inqueue.in_chunk_list)
4961 info->sctpi_inqueue++;
4962 list_for_each(pos, &asoc->outqueue.out_chunk_list)
4963 info->sctpi_outqueue++;
4964 info->sctpi_overall_error = asoc->overall_error_count;
4965 info->sctpi_max_burst = asoc->max_burst;
4966 info->sctpi_maxseg = asoc->frag_point;
4967 info->sctpi_peer_rwnd = asoc->peer.rwnd;
4968 info->sctpi_peer_tag = asoc->c.peer_vtag;
4969
4970 mask = asoc->peer.ecn_capable << 1;
4971 mask = (mask | asoc->peer.ipv4_address) << 1;
4972 mask = (mask | asoc->peer.ipv6_address) << 1;
4973 mask = (mask | asoc->peer.hostname_address) << 1;
4974 mask = (mask | asoc->peer.asconf_capable) << 1;
4975 mask = (mask | asoc->peer.prsctp_capable) << 1;
4976 mask = (mask | asoc->peer.auth_capable);
4977 info->sctpi_peer_capable = mask;
4978 mask = asoc->peer.sack_needed << 1;
4979 mask = (mask | asoc->peer.sack_generation) << 1;
4980 mask = (mask | asoc->peer.zero_window_announced);
4981 info->sctpi_peer_sack = mask;
4982
4983 info->sctpi_isacks = asoc->stats.isacks;
4984 info->sctpi_osacks = asoc->stats.osacks;
4985 info->sctpi_opackets = asoc->stats.opackets;
4986 info->sctpi_ipackets = asoc->stats.ipackets;
4987 info->sctpi_rtxchunks = asoc->stats.rtxchunks;
4988 info->sctpi_outofseqtsns = asoc->stats.outofseqtsns;
4989 info->sctpi_idupchunks = asoc->stats.idupchunks;
4990 info->sctpi_gapcnt = asoc->stats.gapcnt;
4991 info->sctpi_ouodchunks = asoc->stats.ouodchunks;
4992 info->sctpi_iuodchunks = asoc->stats.iuodchunks;
4993 info->sctpi_oodchunks = asoc->stats.oodchunks;
4994 info->sctpi_iodchunks = asoc->stats.iodchunks;
4995 info->sctpi_octrlchunks = asoc->stats.octrlchunks;
4996 info->sctpi_ictrlchunks = asoc->stats.ictrlchunks;
4997
4998 prim = asoc->peer.primary_path;
4999 memcpy(&info->sctpi_p_address, &prim->ipaddr, sizeof(prim->ipaddr));
5000 info->sctpi_p_state = prim->state;
5001 info->sctpi_p_cwnd = prim->cwnd;
5002 info->sctpi_p_srtt = prim->srtt;
5003 info->sctpi_p_rto = jiffies_to_msecs(prim->rto);
5004 info->sctpi_p_hbinterval = prim->hbinterval;
5005 info->sctpi_p_pathmaxrxt = prim->pathmaxrxt;
5006 info->sctpi_p_sackdelay = jiffies_to_msecs(prim->sackdelay);
5007 info->sctpi_p_ssthresh = prim->ssthresh;
5008 info->sctpi_p_partial_bytes_acked = prim->partial_bytes_acked;
5009 info->sctpi_p_flight_size = prim->flight_size;
5010 info->sctpi_p_error = prim->error_count;
5011
5012 return 0;
5013 }
5014 EXPORT_SYMBOL_GPL(sctp_get_sctp_info);
5015
5016 /* use callback to avoid exporting the core structure */
5017 void sctp_transport_walk_start(struct rhashtable_iter *iter)
5018 {
5019 rhltable_walk_enter(&sctp_transport_hashtable, iter);
5020
5021 rhashtable_walk_start(iter);
5022 }
5023
5024 void sctp_transport_walk_stop(struct rhashtable_iter *iter)
5025 {
5026 rhashtable_walk_stop(iter);
5027 rhashtable_walk_exit(iter);
5028 }
5029
5030 struct sctp_transport *sctp_transport_get_next(struct net *net,
5031 struct rhashtable_iter *iter)
5032 {
5033 struct sctp_transport *t;
5034
5035 t = rhashtable_walk_next(iter);
5036 for (; t; t = rhashtable_walk_next(iter)) {
5037 if (IS_ERR(t)) {
5038 if (PTR_ERR(t) == -EAGAIN)
5039 continue;
5040 break;
5041 }
5042
5043 if (!sctp_transport_hold(t))
5044 continue;
5045
5046 if (net_eq(sock_net(t->asoc->base.sk), net) &&
5047 t->asoc->peer.primary_path == t)
5048 break;
5049
5050 sctp_transport_put(t);
5051 }
5052
5053 return t;
5054 }
5055
5056 struct sctp_transport *sctp_transport_get_idx(struct net *net,
5057 struct rhashtable_iter *iter,
5058 int pos)
5059 {
5060 struct sctp_transport *t;
5061
5062 if (!pos)
5063 return SEQ_START_TOKEN;
5064
5065 while ((t = sctp_transport_get_next(net, iter)) && !IS_ERR(t)) {
5066 if (!--pos)
5067 break;
5068 sctp_transport_put(t);
5069 }
5070
5071 return t;
5072 }
5073
5074 int sctp_for_each_endpoint(int (*cb)(struct sctp_endpoint *, void *),
5075 void *p) {
5076 int err = 0;
5077 int hash = 0;
5078 struct sctp_ep_common *epb;
5079 struct sctp_hashbucket *head;
5080
5081 for (head = sctp_ep_hashtable; hash < sctp_ep_hashsize;
5082 hash++, head++) {
5083 read_lock_bh(&head->lock);
5084 sctp_for_each_hentry(epb, &head->chain) {
5085 err = cb(sctp_ep(epb), p);
5086 if (err)
5087 break;
5088 }
5089 read_unlock_bh(&head->lock);
5090 }
5091
5092 return err;
5093 }
5094 EXPORT_SYMBOL_GPL(sctp_for_each_endpoint);
5095
5096 int sctp_transport_lookup_process(int (*cb)(struct sctp_transport *, void *),
5097 struct net *net,
5098 const union sctp_addr *laddr,
5099 const union sctp_addr *paddr, void *p)
5100 {
5101 struct sctp_transport *transport;
5102 int err;
5103
5104 rcu_read_lock();
5105 transport = sctp_addrs_lookup_transport(net, laddr, paddr);
5106 rcu_read_unlock();
5107 if (!transport)
5108 return -ENOENT;
5109
5110 err = cb(transport, p);
5111 sctp_transport_put(transport);
5112
5113 return err;
5114 }
5115 EXPORT_SYMBOL_GPL(sctp_transport_lookup_process);
5116
5117 int sctp_for_each_transport(int (*cb)(struct sctp_transport *, void *),
5118 int (*cb_done)(struct sctp_transport *, void *),
5119 struct net *net, int *pos, void *p) {
5120 struct rhashtable_iter hti;
5121 struct sctp_transport *tsp;
5122 int ret;
5123
5124 again:
5125 ret = 0;
5126 sctp_transport_walk_start(&hti);
5127
5128 tsp = sctp_transport_get_idx(net, &hti, *pos + 1);
5129 for (; !IS_ERR_OR_NULL(tsp); tsp = sctp_transport_get_next(net, &hti)) {
5130 ret = cb(tsp, p);
5131 if (ret)
5132 break;
5133 (*pos)++;
5134 sctp_transport_put(tsp);
5135 }
5136 sctp_transport_walk_stop(&hti);
5137
5138 if (ret) {
5139 if (cb_done && !cb_done(tsp, p)) {
5140 (*pos)++;
5141 sctp_transport_put(tsp);
5142 goto again;
5143 }
5144 sctp_transport_put(tsp);
5145 }
5146
5147 return ret;
5148 }
5149 EXPORT_SYMBOL_GPL(sctp_for_each_transport);
5150
5151 /* 7.2.1 Association Status (SCTP_STATUS)
5152
5153 * Applications can retrieve current status information about an
5154 * association, including association state, peer receiver window size,
5155 * number of unacked data chunks, and number of data chunks pending
5156 * receipt. This information is read-only.
5157 */
5158 static int sctp_getsockopt_sctp_status(struct sock *sk, int len,
5159 char __user *optval,
5160 int __user *optlen)
5161 {
5162 struct sctp_status status;
5163 struct sctp_association *asoc = NULL;
5164 struct sctp_transport *transport;
5165 sctp_assoc_t associd;
5166 int retval = 0;
5167
5168 if (len < sizeof(status)) {
5169 retval = -EINVAL;
5170 goto out;
5171 }
5172
5173 len = sizeof(status);
5174 if (copy_from_user(&status, optval, len)) {
5175 retval = -EFAULT;
5176 goto out;
5177 }
5178
5179 associd = status.sstat_assoc_id;
5180 asoc = sctp_id2assoc(sk, associd);
5181 if (!asoc) {
5182 retval = -EINVAL;
5183 goto out;
5184 }
5185
5186 transport = asoc->peer.primary_path;
5187
5188 status.sstat_assoc_id = sctp_assoc2id(asoc);
5189 status.sstat_state = sctp_assoc_to_state(asoc);
5190 status.sstat_rwnd = asoc->peer.rwnd;
5191 status.sstat_unackdata = asoc->unack_data;
5192
5193 status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map);
5194 status.sstat_instrms = asoc->stream.incnt;
5195 status.sstat_outstrms = asoc->stream.outcnt;
5196 status.sstat_fragmentation_point = asoc->frag_point;
5197 status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
5198 memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr,
5199 transport->af_specific->sockaddr_len);
5200 /* Map ipv4 address into v4-mapped-on-v6 address. */
5201 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk),
5202 (union sctp_addr *)&status.sstat_primary.spinfo_address);
5203 status.sstat_primary.spinfo_state = transport->state;
5204 status.sstat_primary.spinfo_cwnd = transport->cwnd;
5205 status.sstat_primary.spinfo_srtt = transport->srtt;
5206 status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto);
5207 status.sstat_primary.spinfo_mtu = transport->pathmtu;
5208
5209 if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN)
5210 status.sstat_primary.spinfo_state = SCTP_ACTIVE;
5211
5212 if (put_user(len, optlen)) {
5213 retval = -EFAULT;
5214 goto out;
5215 }
5216
5217 pr_debug("%s: len:%d, state:%d, rwnd:%d, assoc_id:%d\n",
5218 __func__, len, status.sstat_state, status.sstat_rwnd,
5219 status.sstat_assoc_id);
5220
5221 if (copy_to_user(optval, &status, len)) {
5222 retval = -EFAULT;
5223 goto out;
5224 }
5225
5226 out:
5227 return retval;
5228 }
5229
5230
5231 /* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO)
5232 *
5233 * Applications can retrieve information about a specific peer address
5234 * of an association, including its reachability state, congestion
5235 * window, and retransmission timer values. This information is
5236 * read-only.
5237 */
5238 static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len,
5239 char __user *optval,
5240 int __user *optlen)
5241 {
5242 struct sctp_paddrinfo pinfo;
5243 struct sctp_transport *transport;
5244 int retval = 0;
5245
5246 if (len < sizeof(pinfo)) {
5247 retval = -EINVAL;
5248 goto out;
5249 }
5250
5251 len = sizeof(pinfo);
5252 if (copy_from_user(&pinfo, optval, len)) {
5253 retval = -EFAULT;
5254 goto out;
5255 }
5256
5257 transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address,
5258 pinfo.spinfo_assoc_id);
5259 if (!transport)
5260 return -EINVAL;
5261
5262 pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
5263 pinfo.spinfo_state = transport->state;
5264 pinfo.spinfo_cwnd = transport->cwnd;
5265 pinfo.spinfo_srtt = transport->srtt;
5266 pinfo.spinfo_rto = jiffies_to_msecs(transport->rto);
5267 pinfo.spinfo_mtu = transport->pathmtu;
5268
5269 if (pinfo.spinfo_state == SCTP_UNKNOWN)
5270 pinfo.spinfo_state = SCTP_ACTIVE;
5271
5272 if (put_user(len, optlen)) {
5273 retval = -EFAULT;
5274 goto out;
5275 }
5276
5277 if (copy_to_user(optval, &pinfo, len)) {
5278 retval = -EFAULT;
5279 goto out;
5280 }
5281
5282 out:
5283 return retval;
5284 }
5285
5286 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
5287 *
5288 * This option is a on/off flag. If enabled no SCTP message
5289 * fragmentation will be performed. Instead if a message being sent
5290 * exceeds the current PMTU size, the message will NOT be sent and
5291 * instead a error will be indicated to the user.
5292 */
5293 static int sctp_getsockopt_disable_fragments(struct sock *sk, int len,
5294 char __user *optval, int __user *optlen)
5295 {
5296 int val;
5297
5298 if (len < sizeof(int))
5299 return -EINVAL;
5300
5301 len = sizeof(int);
5302 val = (sctp_sk(sk)->disable_fragments == 1);
5303 if (put_user(len, optlen))
5304 return -EFAULT;
5305 if (copy_to_user(optval, &val, len))
5306 return -EFAULT;
5307 return 0;
5308 }
5309
5310 /* 7.1.15 Set notification and ancillary events (SCTP_EVENTS)
5311 *
5312 * This socket option is used to specify various notifications and
5313 * ancillary data the user wishes to receive.
5314 */
5315 static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval,
5316 int __user *optlen)
5317 {
5318 struct sctp_event_subscribe subscribe;
5319 __u8 *sn_type = (__u8 *)&subscribe;
5320 int i;
5321
5322 if (len == 0)
5323 return -EINVAL;
5324 if (len > sizeof(struct sctp_event_subscribe))
5325 len = sizeof(struct sctp_event_subscribe);
5326 if (put_user(len, optlen))
5327 return -EFAULT;
5328
5329 for (i = 0; i < len; i++)
5330 sn_type[i] = sctp_ulpevent_type_enabled(sctp_sk(sk)->subscribe,
5331 SCTP_SN_TYPE_BASE + i);
5332
5333 if (copy_to_user(optval, &subscribe, len))
5334 return -EFAULT;
5335
5336 return 0;
5337 }
5338
5339 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
5340 *
5341 * This socket option is applicable to the UDP-style socket only. When
5342 * set it will cause associations that are idle for more than the
5343 * specified number of seconds to automatically close. An association
5344 * being idle is defined an association that has NOT sent or received
5345 * user data. The special value of '0' indicates that no automatic
5346 * close of any associations should be performed. The option expects an
5347 * integer defining the number of seconds of idle time before an
5348 * association is closed.
5349 */
5350 static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen)
5351 {
5352 /* Applicable to UDP-style socket only */
5353 if (sctp_style(sk, TCP))
5354 return -EOPNOTSUPP;
5355 if (len < sizeof(int))
5356 return -EINVAL;
5357 len = sizeof(int);
5358 if (put_user(len, optlen))
5359 return -EFAULT;
5360 if (put_user(sctp_sk(sk)->autoclose, (int __user *)optval))
5361 return -EFAULT;
5362 return 0;
5363 }
5364
5365 /* Helper routine to branch off an association to a new socket. */
5366 int sctp_do_peeloff(struct sock *sk, sctp_assoc_t id, struct socket **sockp)
5367 {
5368 struct sctp_association *asoc = sctp_id2assoc(sk, id);
5369 struct sctp_sock *sp = sctp_sk(sk);
5370 struct socket *sock;
5371 int err = 0;
5372
5373 /* Do not peel off from one netns to another one. */
5374 if (!net_eq(current->nsproxy->net_ns, sock_net(sk)))
5375 return -EINVAL;
5376
5377 if (!asoc)
5378 return -EINVAL;
5379
5380 /* An association cannot be branched off from an already peeled-off
5381 * socket, nor is this supported for tcp style sockets.
5382 */
5383 if (!sctp_style(sk, UDP))
5384 return -EINVAL;
5385
5386 /* Create a new socket. */
5387 err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock);
5388 if (err < 0)
5389 return err;
5390
5391 sctp_copy_sock(sock->sk, sk, asoc);
5392
5393 /* Make peeled-off sockets more like 1-1 accepted sockets.
5394 * Set the daddr and initialize id to something more random and also
5395 * copy over any ip options.
5396 */
5397 sp->pf->to_sk_daddr(&asoc->peer.primary_addr, sk);
5398 sp->pf->copy_ip_options(sk, sock->sk);
5399
5400 /* Populate the fields of the newsk from the oldsk and migrate the
5401 * asoc to the newsk.
5402 */
5403 sctp_sock_migrate(sk, sock->sk, asoc, SCTP_SOCKET_UDP_HIGH_BANDWIDTH);
5404
5405 *sockp = sock;
5406
5407 return err;
5408 }
5409 EXPORT_SYMBOL(sctp_do_peeloff);
5410
5411 static int sctp_getsockopt_peeloff_common(struct sock *sk, sctp_peeloff_arg_t *peeloff,
5412 struct file **newfile, unsigned flags)
5413 {
5414 struct socket *newsock;
5415 int retval;
5416
5417 retval = sctp_do_peeloff(sk, peeloff->associd, &newsock);
5418 if (retval < 0)
5419 goto out;
5420
5421 /* Map the socket to an unused fd that can be returned to the user. */
5422 retval = get_unused_fd_flags(flags & SOCK_CLOEXEC);
5423 if (retval < 0) {
5424 sock_release(newsock);
5425 goto out;
5426 }
5427
5428 *newfile = sock_alloc_file(newsock, 0, NULL);
5429 if (IS_ERR(*newfile)) {
5430 put_unused_fd(retval);
5431 retval = PTR_ERR(*newfile);
5432 *newfile = NULL;
5433 return retval;
5434 }
5435
5436 pr_debug("%s: sk:%p, newsk:%p, sd:%d\n", __func__, sk, newsock->sk,
5437 retval);
5438
5439 peeloff->sd = retval;
5440
5441 if (flags & SOCK_NONBLOCK)
5442 (*newfile)->f_flags |= O_NONBLOCK;
5443 out:
5444 return retval;
5445 }
5446
5447 static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen)
5448 {
5449 sctp_peeloff_arg_t peeloff;
5450 struct file *newfile = NULL;
5451 int retval = 0;
5452
5453 if (len < sizeof(sctp_peeloff_arg_t))
5454 return -EINVAL;
5455 len = sizeof(sctp_peeloff_arg_t);
5456 if (copy_from_user(&peeloff, optval, len))
5457 return -EFAULT;
5458
5459 retval = sctp_getsockopt_peeloff_common(sk, &peeloff, &newfile, 0);
5460 if (retval < 0)
5461 goto out;
5462
5463 /* Return the fd mapped to the new socket. */
5464 if (put_user(len, optlen)) {
5465 fput(newfile);
5466 put_unused_fd(retval);
5467 return -EFAULT;
5468 }
5469
5470 if (copy_to_user(optval, &peeloff, len)) {
5471 fput(newfile);
5472 put_unused_fd(retval);
5473 return -EFAULT;
5474 }
5475 fd_install(retval, newfile);
5476 out:
5477 return retval;
5478 }
5479
5480 static int sctp_getsockopt_peeloff_flags(struct sock *sk, int len,
5481 char __user *optval, int __user *optlen)
5482 {
5483 sctp_peeloff_flags_arg_t peeloff;
5484 struct file *newfile = NULL;
5485 int retval = 0;
5486
5487 if (len < sizeof(sctp_peeloff_flags_arg_t))
5488 return -EINVAL;
5489 len = sizeof(sctp_peeloff_flags_arg_t);
5490 if (copy_from_user(&peeloff, optval, len))
5491 return -EFAULT;
5492
5493 retval = sctp_getsockopt_peeloff_common(sk, &peeloff.p_arg,
5494 &newfile, peeloff.flags);
5495 if (retval < 0)
5496 goto out;
5497
5498 /* Return the fd mapped to the new socket. */
5499 if (put_user(len, optlen)) {
5500 fput(newfile);
5501 put_unused_fd(retval);
5502 return -EFAULT;
5503 }
5504
5505 if (copy_to_user(optval, &peeloff, len)) {
5506 fput(newfile);
5507 put_unused_fd(retval);
5508 return -EFAULT;
5509 }
5510 fd_install(retval, newfile);
5511 out:
5512 return retval;
5513 }
5514
5515 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
5516 *
5517 * Applications can enable or disable heartbeats for any peer address of
5518 * an association, modify an address's heartbeat interval, force a
5519 * heartbeat to be sent immediately, and adjust the address's maximum
5520 * number of retransmissions sent before an address is considered
5521 * unreachable. The following structure is used to access and modify an
5522 * address's parameters:
5523 *
5524 * struct sctp_paddrparams {
5525 * sctp_assoc_t spp_assoc_id;
5526 * struct sockaddr_storage spp_address;
5527 * uint32_t spp_hbinterval;
5528 * uint16_t spp_pathmaxrxt;
5529 * uint32_t spp_pathmtu;
5530 * uint32_t spp_sackdelay;
5531 * uint32_t spp_flags;
5532 * };
5533 *
5534 * spp_assoc_id - (one-to-many style socket) This is filled in the
5535 * application, and identifies the association for
5536 * this query.
5537 * spp_address - This specifies which address is of interest.
5538 * spp_hbinterval - This contains the value of the heartbeat interval,
5539 * in milliseconds. If a value of zero
5540 * is present in this field then no changes are to
5541 * be made to this parameter.
5542 * spp_pathmaxrxt - This contains the maximum number of
5543 * retransmissions before this address shall be
5544 * considered unreachable. If a value of zero
5545 * is present in this field then no changes are to
5546 * be made to this parameter.
5547 * spp_pathmtu - When Path MTU discovery is disabled the value
5548 * specified here will be the "fixed" path mtu.
5549 * Note that if the spp_address field is empty
5550 * then all associations on this address will
5551 * have this fixed path mtu set upon them.
5552 *
5553 * spp_sackdelay - When delayed sack is enabled, this value specifies
5554 * the number of milliseconds that sacks will be delayed
5555 * for. This value will apply to all addresses of an
5556 * association if the spp_address field is empty. Note
5557 * also, that if delayed sack is enabled and this
5558 * value is set to 0, no change is made to the last
5559 * recorded delayed sack timer value.
5560 *
5561 * spp_flags - These flags are used to control various features
5562 * on an association. The flag field may contain
5563 * zero or more of the following options.
5564 *
5565 * SPP_HB_ENABLE - Enable heartbeats on the
5566 * specified address. Note that if the address
5567 * field is empty all addresses for the association
5568 * have heartbeats enabled upon them.
5569 *
5570 * SPP_HB_DISABLE - Disable heartbeats on the
5571 * speicifed address. Note that if the address
5572 * field is empty all addresses for the association
5573 * will have their heartbeats disabled. Note also
5574 * that SPP_HB_ENABLE and SPP_HB_DISABLE are
5575 * mutually exclusive, only one of these two should
5576 * be specified. Enabling both fields will have
5577 * undetermined results.
5578 *
5579 * SPP_HB_DEMAND - Request a user initiated heartbeat
5580 * to be made immediately.
5581 *
5582 * SPP_PMTUD_ENABLE - This field will enable PMTU
5583 * discovery upon the specified address. Note that
5584 * if the address feild is empty then all addresses
5585 * on the association are effected.
5586 *
5587 * SPP_PMTUD_DISABLE - This field will disable PMTU
5588 * discovery upon the specified address. Note that
5589 * if the address feild is empty then all addresses
5590 * on the association are effected. Not also that
5591 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
5592 * exclusive. Enabling both will have undetermined
5593 * results.
5594 *
5595 * SPP_SACKDELAY_ENABLE - Setting this flag turns
5596 * on delayed sack. The time specified in spp_sackdelay
5597 * is used to specify the sack delay for this address. Note
5598 * that if spp_address is empty then all addresses will
5599 * enable delayed sack and take on the sack delay
5600 * value specified in spp_sackdelay.
5601 * SPP_SACKDELAY_DISABLE - Setting this flag turns
5602 * off delayed sack. If the spp_address field is blank then
5603 * delayed sack is disabled for the entire association. Note
5604 * also that this field is mutually exclusive to
5605 * SPP_SACKDELAY_ENABLE, setting both will have undefined
5606 * results.
5607 *
5608 * SPP_IPV6_FLOWLABEL: Setting this flag enables the
5609 * setting of the IPV6 flow label value. The value is
5610 * contained in the spp_ipv6_flowlabel field.
5611 * Upon retrieval, this flag will be set to indicate that
5612 * the spp_ipv6_flowlabel field has a valid value returned.
5613 * If a specific destination address is set (in the
5614 * spp_address field), then the value returned is that of
5615 * the address. If just an association is specified (and
5616 * no address), then the association's default flow label
5617 * is returned. If neither an association nor a destination
5618 * is specified, then the socket's default flow label is
5619 * returned. For non-IPv6 sockets, this flag will be left
5620 * cleared.
5621 *
5622 * SPP_DSCP: Setting this flag enables the setting of the
5623 * Differentiated Services Code Point (DSCP) value
5624 * associated with either the association or a specific
5625 * address. The value is obtained in the spp_dscp field.
5626 * Upon retrieval, this flag will be set to indicate that
5627 * the spp_dscp field has a valid value returned. If a
5628 * specific destination address is set when called (in the
5629 * spp_address field), then that specific destination
5630 * address's DSCP value is returned. If just an association
5631 * is specified, then the association's default DSCP is
5632 * returned. If neither an association nor a destination is
5633 * specified, then the socket's default DSCP is returned.
5634 *
5635 * spp_ipv6_flowlabel
5636 * - This field is used in conjunction with the
5637 * SPP_IPV6_FLOWLABEL flag and contains the IPv6 flow label.
5638 * The 20 least significant bits are used for the flow
5639 * label. This setting has precedence over any IPv6-layer
5640 * setting.
5641 *
5642 * spp_dscp - This field is used in conjunction with the SPP_DSCP flag
5643 * and contains the DSCP. The 6 most significant bits are
5644 * used for the DSCP. This setting has precedence over any
5645 * IPv4- or IPv6- layer setting.
5646 */
5647 static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len,
5648 char __user *optval, int __user *optlen)
5649 {
5650 struct sctp_paddrparams params;
5651 struct sctp_transport *trans = NULL;
5652 struct sctp_association *asoc = NULL;
5653 struct sctp_sock *sp = sctp_sk(sk);
5654
5655 if (len >= sizeof(params))
5656 len = sizeof(params);
5657 else if (len >= ALIGN(offsetof(struct sctp_paddrparams,
5658 spp_ipv6_flowlabel), 4))
5659 len = ALIGN(offsetof(struct sctp_paddrparams,
5660 spp_ipv6_flowlabel), 4);
5661 else
5662 return -EINVAL;
5663
5664 if (copy_from_user(&params, optval, len))
5665 return -EFAULT;
5666
5667 /* If an address other than INADDR_ANY is specified, and
5668 * no transport is found, then the request is invalid.
5669 */
5670 if (!sctp_is_any(sk, (union sctp_addr *)&params.spp_address)) {
5671 trans = sctp_addr_id2transport(sk, &params.spp_address,
5672 params.spp_assoc_id);
5673 if (!trans) {
5674 pr_debug("%s: failed no transport\n", __func__);
5675 return -EINVAL;
5676 }
5677 }
5678
5679 /* Get association, if assoc_id != 0 and the socket is a one
5680 * to many style socket, and an association was not found, then
5681 * the id was invalid.
5682 */
5683 asoc = sctp_id2assoc(sk, params.spp_assoc_id);
5684 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) {
5685 pr_debug("%s: failed no association\n", __func__);
5686 return -EINVAL;
5687 }
5688
5689 if (trans) {
5690 /* Fetch transport values. */
5691 params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval);
5692 params.spp_pathmtu = trans->pathmtu;
5693 params.spp_pathmaxrxt = trans->pathmaxrxt;
5694 params.spp_sackdelay = jiffies_to_msecs(trans->sackdelay);
5695
5696 /*draft-11 doesn't say what to return in spp_flags*/
5697 params.spp_flags = trans->param_flags;
5698 if (trans->flowlabel & SCTP_FLOWLABEL_SET_MASK) {
5699 params.spp_ipv6_flowlabel = trans->flowlabel &
5700 SCTP_FLOWLABEL_VAL_MASK;
5701 params.spp_flags |= SPP_IPV6_FLOWLABEL;
5702 }
5703 if (trans->dscp & SCTP_DSCP_SET_MASK) {
5704 params.spp_dscp = trans->dscp & SCTP_DSCP_VAL_MASK;
5705 params.spp_flags |= SPP_DSCP;
5706 }
5707 } else if (asoc) {
5708 /* Fetch association values. */
5709 params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval);
5710 params.spp_pathmtu = asoc->pathmtu;
5711 params.spp_pathmaxrxt = asoc->pathmaxrxt;
5712 params.spp_sackdelay = jiffies_to_msecs(asoc->sackdelay);
5713
5714 /*draft-11 doesn't say what to return in spp_flags*/
5715 params.spp_flags = asoc->param_flags;
5716 if (asoc->flowlabel & SCTP_FLOWLABEL_SET_MASK) {
5717 params.spp_ipv6_flowlabel = asoc->flowlabel &
5718 SCTP_FLOWLABEL_VAL_MASK;
5719 params.spp_flags |= SPP_IPV6_FLOWLABEL;
5720 }
5721 if (asoc->dscp & SCTP_DSCP_SET_MASK) {
5722 params.spp_dscp = asoc->dscp & SCTP_DSCP_VAL_MASK;
5723 params.spp_flags |= SPP_DSCP;
5724 }
5725 } else {
5726 /* Fetch socket values. */
5727 params.spp_hbinterval = sp->hbinterval;
5728 params.spp_pathmtu = sp->pathmtu;
5729 params.spp_sackdelay = sp->sackdelay;
5730 params.spp_pathmaxrxt = sp->pathmaxrxt;
5731
5732 /*draft-11 doesn't say what to return in spp_flags*/
5733 params.spp_flags = sp->param_flags;
5734 if (sp->flowlabel & SCTP_FLOWLABEL_SET_MASK) {
5735 params.spp_ipv6_flowlabel = sp->flowlabel &
5736 SCTP_FLOWLABEL_VAL_MASK;
5737 params.spp_flags |= SPP_IPV6_FLOWLABEL;
5738 }
5739 if (sp->dscp & SCTP_DSCP_SET_MASK) {
5740 params.spp_dscp = sp->dscp & SCTP_DSCP_VAL_MASK;
5741 params.spp_flags |= SPP_DSCP;
5742 }
5743 }
5744
5745 if (copy_to_user(optval, &params, len))
5746 return -EFAULT;
5747
5748 if (put_user(len, optlen))
5749 return -EFAULT;
5750
5751 return 0;
5752 }
5753
5754 /*
5755 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK)
5756 *
5757 * This option will effect the way delayed acks are performed. This
5758 * option allows you to get or set the delayed ack time, in
5759 * milliseconds. It also allows changing the delayed ack frequency.
5760 * Changing the frequency to 1 disables the delayed sack algorithm. If
5761 * the assoc_id is 0, then this sets or gets the endpoints default
5762 * values. If the assoc_id field is non-zero, then the set or get
5763 * effects the specified association for the one to many model (the
5764 * assoc_id field is ignored by the one to one model). Note that if
5765 * sack_delay or sack_freq are 0 when setting this option, then the
5766 * current values will remain unchanged.
5767 *
5768 * struct sctp_sack_info {
5769 * sctp_assoc_t sack_assoc_id;
5770 * uint32_t sack_delay;
5771 * uint32_t sack_freq;
5772 * };
5773 *
5774 * sack_assoc_id - This parameter, indicates which association the user
5775 * is performing an action upon. Note that if this field's value is
5776 * zero then the endpoints default value is changed (effecting future
5777 * associations only).
5778 *
5779 * sack_delay - This parameter contains the number of milliseconds that
5780 * the user is requesting the delayed ACK timer be set to. Note that
5781 * this value is defined in the standard to be between 200 and 500
5782 * milliseconds.
5783 *
5784 * sack_freq - This parameter contains the number of packets that must
5785 * be received before a sack is sent without waiting for the delay
5786 * timer to expire. The default value for this is 2, setting this
5787 * value to 1 will disable the delayed sack algorithm.
5788 */
5789 static int sctp_getsockopt_delayed_ack(struct sock *sk, int len,
5790 char __user *optval,
5791 int __user *optlen)
5792 {
5793 struct sctp_sack_info params;
5794 struct sctp_association *asoc = NULL;
5795 struct sctp_sock *sp = sctp_sk(sk);
5796
5797 if (len >= sizeof(struct sctp_sack_info)) {
5798 len = sizeof(struct sctp_sack_info);
5799
5800 if (copy_from_user(&params, optval, len))
5801 return -EFAULT;
5802 } else if (len == sizeof(struct sctp_assoc_value)) {
5803 pr_warn_ratelimited(DEPRECATED
5804 "%s (pid %d) "
5805 "Use of struct sctp_assoc_value in delayed_ack socket option.\n"
5806 "Use struct sctp_sack_info instead\n",
5807 current->comm, task_pid_nr(current));
5808 if (copy_from_user(&params, optval, len))
5809 return -EFAULT;
5810 } else
5811 return -EINVAL;
5812
5813 /* Get association, if sack_assoc_id != 0 and the socket is a one
5814 * to many style socket, and an association was not found, then
5815 * the id was invalid.
5816 */
5817 asoc = sctp_id2assoc(sk, params.sack_assoc_id);
5818 if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP))
5819 return -EINVAL;
5820
5821 if (asoc) {
5822 /* Fetch association values. */
5823 if (asoc->param_flags & SPP_SACKDELAY_ENABLE) {
5824 params.sack_delay = jiffies_to_msecs(
5825 asoc->sackdelay);
5826 params.sack_freq = asoc->sackfreq;
5827
5828 } else {
5829 params.sack_delay = 0;
5830 params.sack_freq = 1;
5831 }
5832 } else {
5833 /* Fetch socket values. */
5834 if (sp->param_flags & SPP_SACKDELAY_ENABLE) {
5835 params.sack_delay = sp->sackdelay;
5836 params.sack_freq = sp->sackfreq;
5837 } else {
5838 params.sack_delay = 0;
5839 params.sack_freq = 1;
5840 }
5841 }
5842
5843 if (copy_to_user(optval, &params, len))
5844 return -EFAULT;
5845
5846 if (put_user(len, optlen))
5847 return -EFAULT;
5848
5849 return 0;
5850 }
5851
5852 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
5853 *
5854 * Applications can specify protocol parameters for the default association
5855 * initialization. The option name argument to setsockopt() and getsockopt()
5856 * is SCTP_INITMSG.
5857 *
5858 * Setting initialization parameters is effective only on an unconnected
5859 * socket (for UDP-style sockets only future associations are effected
5860 * by the change). With TCP-style sockets, this option is inherited by
5861 * sockets derived from a listener socket.
5862 */
5863 static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen)
5864 {
5865 if (len < sizeof(struct sctp_initmsg))
5866 return -EINVAL;
5867 len = sizeof(struct sctp_initmsg);
5868 if (put_user(len, optlen))
5869 return -EFAULT;
5870 if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len))
5871 return -EFAULT;
5872 return 0;
5873 }
5874
5875
5876 static int sctp_getsockopt_peer_addrs(struct sock *sk, int len,
5877 char __user *optval, int __user *optlen)
5878 {
5879 struct sctp_association *asoc;
5880 int cnt = 0;
5881 struct sctp_getaddrs getaddrs;
5882 struct sctp_transport *from;
5883 void __user *to;
5884 union sctp_addr temp;
5885 struct sctp_sock *sp = sctp_sk(sk);
5886 int addrlen;
5887 size_t space_left;
5888 int bytes_copied;
5889
5890 if (len < sizeof(struct sctp_getaddrs))
5891 return -EINVAL;
5892
5893 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
5894 return -EFAULT;
5895
5896 /* For UDP-style sockets, id specifies the association to query. */
5897 asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
5898 if (!asoc)
5899 return -EINVAL;
5900
5901 to = optval + offsetof(struct sctp_getaddrs, addrs);
5902 space_left = len - offsetof(struct sctp_getaddrs, addrs);
5903
5904 list_for_each_entry(from, &asoc->peer.transport_addr_list,
5905 transports) {
5906 memcpy(&temp, &from->ipaddr, sizeof(temp));
5907 addrlen = sctp_get_pf_specific(sk->sk_family)
5908 ->addr_to_user(sp, &temp);
5909 if (space_left < addrlen)
5910 return -ENOMEM;
5911 if (copy_to_user(to, &temp, addrlen))
5912 return -EFAULT;
5913 to += addrlen;
5914 cnt++;
5915 space_left -= addrlen;
5916 }
5917
5918 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num))
5919 return -EFAULT;
5920 bytes_copied = ((char __user *)to) - optval;
5921 if (put_user(bytes_copied, optlen))
5922 return -EFAULT;
5923
5924 return 0;
5925 }
5926
5927 static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to,
5928 size_t space_left, int *bytes_copied)
5929 {
5930 struct sctp_sockaddr_entry *addr;
5931 union sctp_addr temp;
5932 int cnt = 0;
5933 int addrlen;
5934 struct net *net = sock_net(sk);
5935
5936 rcu_read_lock();
5937 list_for_each_entry_rcu(addr, &net->sctp.local_addr_list, list) {
5938 if (!addr->valid)
5939 continue;
5940
5941 if ((PF_INET == sk->sk_family) &&
5942 (AF_INET6 == addr->a.sa.sa_family))
5943 continue;
5944 if ((PF_INET6 == sk->sk_family) &&
5945 inet_v6_ipv6only(sk) &&
5946 (AF_INET == addr->a.sa.sa_family))
5947 continue;
5948 memcpy(&temp, &addr->a, sizeof(temp));
5949 if (!temp.v4.sin_port)
5950 temp.v4.sin_port = htons(port);
5951
5952 addrlen = sctp_get_pf_specific(sk->sk_family)
5953 ->addr_to_user(sctp_sk(sk), &temp);
5954
5955 if (space_left < addrlen) {
5956 cnt = -ENOMEM;
5957 break;
5958 }
5959 memcpy(to, &temp, addrlen);
5960
5961 to += addrlen;
5962 cnt++;
5963 space_left -= addrlen;
5964 *bytes_copied += addrlen;
5965 }
5966 rcu_read_unlock();
5967
5968 return cnt;
5969 }
5970
5971
5972 static int sctp_getsockopt_local_addrs(struct sock *sk, int len,
5973 char __user *optval, int __user *optlen)
5974 {
5975 struct sctp_bind_addr *bp;
5976 struct sctp_association *asoc;
5977 int cnt = 0;
5978 struct sctp_getaddrs getaddrs;
5979 struct sctp_sockaddr_entry *addr;
5980 void __user *to;
5981 union sctp_addr temp;
5982 struct sctp_sock *sp = sctp_sk(sk);
5983 int addrlen;
5984 int err = 0;
5985 size_t space_left;
5986 int bytes_copied = 0;
5987 void *addrs;
5988 void *buf;
5989
5990 if (len < sizeof(struct sctp_getaddrs))
5991 return -EINVAL;
5992
5993 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
5994 return -EFAULT;
5995
5996 /*
5997 * For UDP-style sockets, id specifies the association to query.
5998 * If the id field is set to the value '0' then the locally bound
5999 * addresses are returned without regard to any particular
6000 * association.
6001 */
6002 if (0 == getaddrs.assoc_id) {
6003 bp = &sctp_sk(sk)->ep->base.bind_addr;
6004 } else {
6005 asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
6006 if (!asoc)
6007 return -EINVAL;
6008 bp = &asoc->base.bind_addr;
6009 }
6010
6011 to = optval + offsetof(struct sctp_getaddrs, addrs);
6012 space_left = len - offsetof(struct sctp_getaddrs, addrs);
6013
6014 addrs = kmalloc(space_left, GFP_USER | __GFP_NOWARN);
6015 if (!addrs)
6016 return -ENOMEM;
6017
6018 /* If the endpoint is bound to 0.0.0.0 or ::0, get the valid
6019 * addresses from the global local address list.
6020 */
6021 if (sctp_list_single_entry(&bp->address_list)) {
6022 addr = list_entry(bp->address_list.next,
6023 struct sctp_sockaddr_entry, list);
6024 if (sctp_is_any(sk, &addr->a)) {
6025 cnt = sctp_copy_laddrs(sk, bp->port, addrs,
6026 space_left, &bytes_copied);
6027 if (cnt < 0) {
6028 err = cnt;
6029 goto out;
6030 }
6031 goto copy_getaddrs;
6032 }
6033 }
6034
6035 buf = addrs;
6036 /* Protection on the bound address list is not needed since
6037 * in the socket option context we hold a socket lock and
6038 * thus the bound address list can't change.
6039 */
6040 list_for_each_entry(addr, &bp->address_list, list) {
6041 memcpy(&temp, &addr->a, sizeof(temp));
6042 addrlen = sctp_get_pf_specific(sk->sk_family)
6043 ->addr_to_user(sp, &temp);
6044 if (space_left < addrlen) {
6045 err = -ENOMEM; /*fixme: right error?*/
6046 goto out;
6047 }
6048 memcpy(buf, &temp, addrlen);
6049 buf += addrlen;
6050 bytes_copied += addrlen;
6051 cnt++;
6052 space_left -= addrlen;
6053 }
6054
6055 copy_getaddrs:
6056 if (copy_to_user(to, addrs, bytes_copied)) {
6057 err = -EFAULT;
6058 goto out;
6059 }
6060 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) {
6061 err = -EFAULT;
6062 goto out;
6063 }
6064 /* XXX: We should have accounted for sizeof(struct sctp_getaddrs) too,
6065 * but we can't change it anymore.
6066 */
6067 if (put_user(bytes_copied, optlen))
6068 err = -EFAULT;
6069 out:
6070 kfree(addrs);
6071 return err;
6072 }
6073
6074 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
6075 *
6076 * Requests that the local SCTP stack use the enclosed peer address as
6077 * the association primary. The enclosed address must be one of the
6078 * association peer's addresses.
6079 */
6080 static int sctp_getsockopt_primary_addr(struct sock *sk, int len,
6081 char __user *optval, int __user *optlen)
6082 {
6083 struct sctp_prim prim;
6084 struct sctp_association *asoc;
6085 struct sctp_sock *sp = sctp_sk(sk);
6086
6087 if (len < sizeof(struct sctp_prim))
6088 return -EINVAL;
6089
6090 len = sizeof(struct sctp_prim);
6091
6092 if (copy_from_user(&prim, optval, len))
6093 return -EFAULT;
6094
6095 asoc = sctp_id2assoc(sk, prim.ssp_assoc_id);
6096 if (!asoc)
6097 return -EINVAL;
6098
6099 if (!asoc->peer.primary_path)
6100 return -ENOTCONN;
6101
6102 memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr,
6103 asoc->peer.primary_path->af_specific->sockaddr_len);
6104
6105 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sp,
6106 (union sctp_addr *)&prim.ssp_addr);
6107
6108 if (put_user(len, optlen))
6109 return -EFAULT;
6110 if (copy_to_user(optval, &prim, len))
6111 return -EFAULT;
6112
6113 return 0;
6114 }
6115
6116 /*
6117 * 7.1.11 Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER)
6118 *
6119 * Requests that the local endpoint set the specified Adaptation Layer
6120 * Indication parameter for all future INIT and INIT-ACK exchanges.
6121 */
6122 static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len,
6123 char __user *optval, int __user *optlen)
6124 {
6125 struct sctp_setadaptation adaptation;
6126
6127 if (len < sizeof(struct sctp_setadaptation))
6128 return -EINVAL;
6129
6130 len = sizeof(struct sctp_setadaptation);
6131
6132 adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind;
6133
6134 if (put_user(len, optlen))
6135 return -EFAULT;
6136 if (copy_to_user(optval, &adaptation, len))
6137 return -EFAULT;
6138
6139 return 0;
6140 }
6141
6142 /*
6143 *
6144 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
6145 *
6146 * Applications that wish to use the sendto() system call may wish to
6147 * specify a default set of parameters that would normally be supplied
6148 * through the inclusion of ancillary data. This socket option allows
6149 * such an application to set the default sctp_sndrcvinfo structure.
6150
6151
6152 * The application that wishes to use this socket option simply passes
6153 * in to this call the sctp_sndrcvinfo structure defined in Section
6154 * 5.2.2) The input parameters accepted by this call include
6155 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
6156 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in
6157 * to this call if the caller is using the UDP model.
6158 *
6159 * For getsockopt, it get the default sctp_sndrcvinfo structure.
6160 */
6161 static int sctp_getsockopt_default_send_param(struct sock *sk,
6162 int len, char __user *optval,
6163 int __user *optlen)
6164 {
6165 struct sctp_sock *sp = sctp_sk(sk);
6166 struct sctp_association *asoc;
6167 struct sctp_sndrcvinfo info;
6168
6169 if (len < sizeof(info))
6170 return -EINVAL;
6171
6172 len = sizeof(info);
6173
6174 if (copy_from_user(&info, optval, len))
6175 return -EFAULT;
6176
6177 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
6178 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
6179 return -EINVAL;
6180 if (asoc) {
6181 info.sinfo_stream = asoc->default_stream;
6182 info.sinfo_flags = asoc->default_flags;
6183 info.sinfo_ppid = asoc->default_ppid;
6184 info.sinfo_context = asoc->default_context;
6185 info.sinfo_timetolive = asoc->default_timetolive;
6186 } else {
6187 info.sinfo_stream = sp->default_stream;
6188 info.sinfo_flags = sp->default_flags;
6189 info.sinfo_ppid = sp->default_ppid;
6190 info.sinfo_context = sp->default_context;
6191 info.sinfo_timetolive = sp->default_timetolive;
6192 }
6193
6194 if (put_user(len, optlen))
6195 return -EFAULT;
6196 if (copy_to_user(optval, &info, len))
6197 return -EFAULT;
6198
6199 return 0;
6200 }
6201
6202 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters
6203 * (SCTP_DEFAULT_SNDINFO)
6204 */
6205 static int sctp_getsockopt_default_sndinfo(struct sock *sk, int len,
6206 char __user *optval,
6207 int __user *optlen)
6208 {
6209 struct sctp_sock *sp = sctp_sk(sk);
6210 struct sctp_association *asoc;
6211 struct sctp_sndinfo info;
6212
6213 if (len < sizeof(info))
6214 return -EINVAL;
6215
6216 len = sizeof(info);
6217
6218 if (copy_from_user(&info, optval, len))
6219 return -EFAULT;
6220
6221 asoc = sctp_id2assoc(sk, info.snd_assoc_id);
6222 if (!asoc && info.snd_assoc_id && sctp_style(sk, UDP))
6223 return -EINVAL;
6224 if (asoc) {
6225 info.snd_sid = asoc->default_stream;
6226 info.snd_flags = asoc->default_flags;
6227 info.snd_ppid = asoc->default_ppid;
6228 info.snd_context = asoc->default_context;
6229 } else {
6230 info.snd_sid = sp->default_stream;
6231 info.snd_flags = sp->default_flags;
6232 info.snd_ppid = sp->default_ppid;
6233 info.snd_context = sp->default_context;
6234 }
6235
6236 if (put_user(len, optlen))
6237 return -EFAULT;
6238 if (copy_to_user(optval, &info, len))
6239 return -EFAULT;
6240
6241 return 0;
6242 }
6243
6244 /*
6245 *
6246 * 7.1.5 SCTP_NODELAY
6247 *
6248 * Turn on/off any Nagle-like algorithm. This means that packets are
6249 * generally sent as soon as possible and no unnecessary delays are
6250 * introduced, at the cost of more packets in the network. Expects an
6251 * integer boolean flag.
6252 */
6253
6254 static int sctp_getsockopt_nodelay(struct sock *sk, int len,
6255 char __user *optval, int __user *optlen)
6256 {
6257 int val;
6258
6259 if (len < sizeof(int))
6260 return -EINVAL;
6261
6262 len = sizeof(int);
6263 val = (sctp_sk(sk)->nodelay == 1);
6264 if (put_user(len, optlen))
6265 return -EFAULT;
6266 if (copy_to_user(optval, &val, len))
6267 return -EFAULT;
6268 return 0;
6269 }
6270
6271 /*
6272 *
6273 * 7.1.1 SCTP_RTOINFO
6274 *
6275 * The protocol parameters used to initialize and bound retransmission
6276 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
6277 * and modify these parameters.
6278 * All parameters are time values, in milliseconds. A value of 0, when
6279 * modifying the parameters, indicates that the current value should not
6280 * be changed.
6281 *
6282 */
6283 static int sctp_getsockopt_rtoinfo(struct sock *sk, int len,
6284 char __user *optval,
6285 int __user *optlen) {
6286 struct sctp_rtoinfo rtoinfo;
6287 struct sctp_association *asoc;
6288
6289 if (len < sizeof (struct sctp_rtoinfo))
6290 return -EINVAL;
6291
6292 len = sizeof(struct sctp_rtoinfo);
6293
6294 if (copy_from_user(&rtoinfo, optval, len))
6295 return -EFAULT;
6296
6297 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
6298
6299 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
6300 return -EINVAL;
6301
6302 /* Values corresponding to the specific association. */
6303 if (asoc) {
6304 rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial);
6305 rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max);
6306 rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min);
6307 } else {
6308 /* Values corresponding to the endpoint. */
6309 struct sctp_sock *sp = sctp_sk(sk);
6310
6311 rtoinfo.srto_initial = sp->rtoinfo.srto_initial;
6312 rtoinfo.srto_max = sp->rtoinfo.srto_max;
6313 rtoinfo.srto_min = sp->rtoinfo.srto_min;
6314 }
6315
6316 if (put_user(len, optlen))
6317 return -EFAULT;
6318
6319 if (copy_to_user(optval, &rtoinfo, len))
6320 return -EFAULT;
6321
6322 return 0;
6323 }
6324
6325 /*
6326 *
6327 * 7.1.2 SCTP_ASSOCINFO
6328 *
6329 * This option is used to tune the maximum retransmission attempts
6330 * of the association.
6331 * Returns an error if the new association retransmission value is
6332 * greater than the sum of the retransmission value of the peer.
6333 * See [SCTP] for more information.
6334 *
6335 */
6336 static int sctp_getsockopt_associnfo(struct sock *sk, int len,
6337 char __user *optval,
6338 int __user *optlen)
6339 {
6340
6341 struct sctp_assocparams assocparams;
6342 struct sctp_association *asoc;
6343 struct list_head *pos;
6344 int cnt = 0;
6345
6346 if (len < sizeof (struct sctp_assocparams))
6347 return -EINVAL;
6348
6349 len = sizeof(struct sctp_assocparams);
6350
6351 if (copy_from_user(&assocparams, optval, len))
6352 return -EFAULT;
6353
6354 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
6355
6356 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
6357 return -EINVAL;
6358
6359 /* Values correspoinding to the specific association */
6360 if (asoc) {
6361 assocparams.sasoc_asocmaxrxt = asoc->max_retrans;
6362 assocparams.sasoc_peer_rwnd = asoc->peer.rwnd;
6363 assocparams.sasoc_local_rwnd = asoc->a_rwnd;
6364 assocparams.sasoc_cookie_life = ktime_to_ms(asoc->cookie_life);
6365
6366 list_for_each(pos, &asoc->peer.transport_addr_list) {
6367 cnt++;
6368 }
6369
6370 assocparams.sasoc_number_peer_destinations = cnt;
6371 } else {
6372 /* Values corresponding to the endpoint */
6373 struct sctp_sock *sp = sctp_sk(sk);
6374
6375 assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt;
6376 assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd;
6377 assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd;
6378 assocparams.sasoc_cookie_life =
6379 sp->assocparams.sasoc_cookie_life;
6380 assocparams.sasoc_number_peer_destinations =
6381 sp->assocparams.
6382 sasoc_number_peer_destinations;
6383 }
6384
6385 if (put_user(len, optlen))
6386 return -EFAULT;
6387
6388 if (copy_to_user(optval, &assocparams, len))
6389 return -EFAULT;
6390
6391 return 0;
6392 }
6393
6394 /*
6395 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
6396 *
6397 * This socket option is a boolean flag which turns on or off mapped V4
6398 * addresses. If this option is turned on and the socket is type
6399 * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
6400 * If this option is turned off, then no mapping will be done of V4
6401 * addresses and a user will receive both PF_INET6 and PF_INET type
6402 * addresses on the socket.
6403 */
6404 static int sctp_getsockopt_mappedv4(struct sock *sk, int len,
6405 char __user *optval, int __user *optlen)
6406 {
6407 int val;
6408 struct sctp_sock *sp = sctp_sk(sk);
6409
6410 if (len < sizeof(int))
6411 return -EINVAL;
6412
6413 len = sizeof(int);
6414 val = sp->v4mapped;
6415 if (put_user(len, optlen))
6416 return -EFAULT;
6417 if (copy_to_user(optval, &val, len))
6418 return -EFAULT;
6419
6420 return 0;
6421 }
6422
6423 /*
6424 * 7.1.29. Set or Get the default context (SCTP_CONTEXT)
6425 * (chapter and verse is quoted at sctp_setsockopt_context())
6426 */
6427 static int sctp_getsockopt_context(struct sock *sk, int len,
6428 char __user *optval, int __user *optlen)
6429 {
6430 struct sctp_assoc_value params;
6431 struct sctp_sock *sp;
6432 struct sctp_association *asoc;
6433
6434 if (len < sizeof(struct sctp_assoc_value))
6435 return -EINVAL;
6436
6437 len = sizeof(struct sctp_assoc_value);
6438
6439 if (copy_from_user(&params, optval, len))
6440 return -EFAULT;
6441
6442 sp = sctp_sk(sk);
6443
6444 if (params.assoc_id != 0) {
6445 asoc = sctp_id2assoc(sk, params.assoc_id);
6446 if (!asoc)
6447 return -EINVAL;
6448 params.assoc_value = asoc->default_rcv_context;
6449 } else {
6450 params.assoc_value = sp->default_rcv_context;
6451 }
6452
6453 if (put_user(len, optlen))
6454 return -EFAULT;
6455 if (copy_to_user(optval, &params, len))
6456 return -EFAULT;
6457
6458 return 0;
6459 }
6460
6461 /*
6462 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG)
6463 * This option will get or set the maximum size to put in any outgoing
6464 * SCTP DATA chunk. If a message is larger than this size it will be
6465 * fragmented by SCTP into the specified size. Note that the underlying
6466 * SCTP implementation may fragment into smaller sized chunks when the
6467 * PMTU of the underlying association is smaller than the value set by
6468 * the user. The default value for this option is '0' which indicates
6469 * the user is NOT limiting fragmentation and only the PMTU will effect
6470 * SCTP's choice of DATA chunk size. Note also that values set larger
6471 * than the maximum size of an IP datagram will effectively let SCTP
6472 * control fragmentation (i.e. the same as setting this option to 0).
6473 *
6474 * The following structure is used to access and modify this parameter:
6475 *
6476 * struct sctp_assoc_value {
6477 * sctp_assoc_t assoc_id;
6478 * uint32_t assoc_value;
6479 * };
6480 *
6481 * assoc_id: This parameter is ignored for one-to-one style sockets.
6482 * For one-to-many style sockets this parameter indicates which
6483 * association the user is performing an action upon. Note that if
6484 * this field's value is zero then the endpoints default value is
6485 * changed (effecting future associations only).
6486 * assoc_value: This parameter specifies the maximum size in bytes.
6487 */
6488 static int sctp_getsockopt_maxseg(struct sock *sk, int len,
6489 char __user *optval, int __user *optlen)
6490 {
6491 struct sctp_assoc_value params;
6492 struct sctp_association *asoc;
6493
6494 if (len == sizeof(int)) {
6495 pr_warn_ratelimited(DEPRECATED
6496 "%s (pid %d) "
6497 "Use of int in maxseg socket option.\n"
6498 "Use struct sctp_assoc_value instead\n",
6499 current->comm, task_pid_nr(current));
6500 params.assoc_id = 0;
6501 } else if (len >= sizeof(struct sctp_assoc_value)) {
6502 len = sizeof(struct sctp_assoc_value);
6503 if (copy_from_user(&params, optval, len))
6504 return -EFAULT;
6505 } else
6506 return -EINVAL;
6507
6508 asoc = sctp_id2assoc(sk, params.assoc_id);
6509 if (!asoc && params.assoc_id && sctp_style(sk, UDP))
6510 return -EINVAL;
6511
6512 if (asoc)
6513 params.assoc_value = asoc->frag_point;
6514 else
6515 params.assoc_value = sctp_sk(sk)->user_frag;
6516
6517 if (put_user(len, optlen))
6518 return -EFAULT;
6519 if (len == sizeof(int)) {
6520 if (copy_to_user(optval, &params.assoc_value, len))
6521 return -EFAULT;
6522 } else {
6523 if (copy_to_user(optval, &params, len))
6524 return -EFAULT;
6525 }
6526
6527 return 0;
6528 }
6529
6530 /*
6531 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
6532 * (chapter and verse is quoted at sctp_setsockopt_fragment_interleave())
6533 */
6534 static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len,
6535 char __user *optval, int __user *optlen)
6536 {
6537 int val;
6538
6539 if (len < sizeof(int))
6540 return -EINVAL;
6541
6542 len = sizeof(int);
6543
6544 val = sctp_sk(sk)->frag_interleave;
6545 if (put_user(len, optlen))
6546 return -EFAULT;
6547 if (copy_to_user(optval, &val, len))
6548 return -EFAULT;
6549
6550 return 0;
6551 }
6552
6553 /*
6554 * 7.1.25. Set or Get the sctp partial delivery point
6555 * (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point())
6556 */
6557 static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len,
6558 char __user *optval,
6559 int __user *optlen)
6560 {
6561 u32 val;
6562
6563 if (len < sizeof(u32))
6564 return -EINVAL;
6565
6566 len = sizeof(u32);
6567
6568 val = sctp_sk(sk)->pd_point;
6569 if (put_user(len, optlen))
6570 return -EFAULT;
6571 if (copy_to_user(optval, &val, len))
6572 return -EFAULT;
6573
6574 return 0;
6575 }
6576
6577 /*
6578 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST)
6579 * (chapter and verse is quoted at sctp_setsockopt_maxburst())
6580 */
6581 static int sctp_getsockopt_maxburst(struct sock *sk, int len,
6582 char __user *optval,
6583 int __user *optlen)
6584 {
6585 struct sctp_assoc_value params;
6586 struct sctp_sock *sp;
6587 struct sctp_association *asoc;
6588
6589 if (len == sizeof(int)) {
6590 pr_warn_ratelimited(DEPRECATED
6591 "%s (pid %d) "
6592 "Use of int in max_burst socket option.\n"
6593 "Use struct sctp_assoc_value instead\n",
6594 current->comm, task_pid_nr(current));
6595 params.assoc_id = 0;
6596 } else if (len >= sizeof(struct sctp_assoc_value)) {
6597 len = sizeof(struct sctp_assoc_value);
6598 if (copy_from_user(&params, optval, len))
6599 return -EFAULT;
6600 } else
6601 return -EINVAL;
6602
6603 sp = sctp_sk(sk);
6604
6605 if (params.assoc_id != 0) {
6606 asoc = sctp_id2assoc(sk, params.assoc_id);
6607 if (!asoc)
6608 return -EINVAL;
6609 params.assoc_value = asoc->max_burst;
6610 } else
6611 params.assoc_value = sp->max_burst;
6612
6613 if (len == sizeof(int)) {
6614 if (copy_to_user(optval, &params.assoc_value, len))
6615 return -EFAULT;
6616 } else {
6617 if (copy_to_user(optval, &params, len))
6618 return -EFAULT;
6619 }
6620
6621 return 0;
6622
6623 }
6624
6625 static int sctp_getsockopt_hmac_ident(struct sock *sk, int len,
6626 char __user *optval, int __user *optlen)
6627 {
6628 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
6629 struct sctp_hmacalgo __user *p = (void __user *)optval;
6630 struct sctp_hmac_algo_param *hmacs;
6631 __u16 data_len = 0;
6632 u32 num_idents;
6633 int i;
6634
6635 if (!ep->auth_enable)
6636 return -EACCES;
6637
6638 hmacs = ep->auth_hmacs_list;
6639 data_len = ntohs(hmacs->param_hdr.length) -
6640 sizeof(struct sctp_paramhdr);
6641
6642 if (len < sizeof(struct sctp_hmacalgo) + data_len)
6643 return -EINVAL;
6644
6645 len = sizeof(struct sctp_hmacalgo) + data_len;
6646 num_idents = data_len / sizeof(u16);
6647
6648 if (put_user(len, optlen))
6649 return -EFAULT;
6650 if (put_user(num_idents, &p->shmac_num_idents))
6651 return -EFAULT;
6652 for (i = 0; i < num_idents; i++) {
6653 __u16 hmacid = ntohs(hmacs->hmac_ids[i]);
6654
6655 if (copy_to_user(&p->shmac_idents[i], &hmacid, sizeof(__u16)))
6656 return -EFAULT;
6657 }
6658 return 0;
6659 }
6660
6661 static int sctp_getsockopt_active_key(struct sock *sk, int len,
6662 char __user *optval, int __user *optlen)
6663 {
6664 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
6665 struct sctp_authkeyid val;
6666 struct sctp_association *asoc;
6667
6668 if (!ep->auth_enable)
6669 return -EACCES;
6670
6671 if (len < sizeof(struct sctp_authkeyid))
6672 return -EINVAL;
6673
6674 len = sizeof(struct sctp_authkeyid);
6675 if (copy_from_user(&val, optval, len))
6676 return -EFAULT;
6677
6678 asoc = sctp_id2assoc(sk, val.scact_assoc_id);
6679 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
6680 return -EINVAL;
6681
6682 if (asoc)
6683 val.scact_keynumber = asoc->active_key_id;
6684 else
6685 val.scact_keynumber = ep->active_key_id;
6686
6687 if (put_user(len, optlen))
6688 return -EFAULT;
6689 if (copy_to_user(optval, &val, len))
6690 return -EFAULT;
6691
6692 return 0;
6693 }
6694
6695 static int sctp_getsockopt_peer_auth_chunks(struct sock *sk, int len,
6696 char __user *optval, int __user *optlen)
6697 {
6698 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
6699 struct sctp_authchunks __user *p = (void __user *)optval;
6700 struct sctp_authchunks val;
6701 struct sctp_association *asoc;
6702 struct sctp_chunks_param *ch;
6703 u32 num_chunks = 0;
6704 char __user *to;
6705
6706 if (!ep->auth_enable)
6707 return -EACCES;
6708
6709 if (len < sizeof(struct sctp_authchunks))
6710 return -EINVAL;
6711
6712 if (copy_from_user(&val, optval, sizeof(val)))
6713 return -EFAULT;
6714
6715 to = p->gauth_chunks;
6716 asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
6717 if (!asoc)
6718 return -EINVAL;
6719
6720 ch = asoc->peer.peer_chunks;
6721 if (!ch)
6722 goto num;
6723
6724 /* See if the user provided enough room for all the data */
6725 num_chunks = ntohs(ch->param_hdr.length) - sizeof(struct sctp_paramhdr);
6726 if (len < num_chunks)
6727 return -EINVAL;
6728
6729 if (copy_to_user(to, ch->chunks, num_chunks))
6730 return -EFAULT;
6731 num:
6732 len = sizeof(struct sctp_authchunks) + num_chunks;
6733 if (put_user(len, optlen))
6734 return -EFAULT;
6735 if (put_user(num_chunks, &p->gauth_number_of_chunks))
6736 return -EFAULT;
6737 return 0;
6738 }
6739
6740 static int sctp_getsockopt_local_auth_chunks(struct sock *sk, int len,
6741 char __user *optval, int __user *optlen)
6742 {
6743 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
6744 struct sctp_authchunks __user *p = (void __user *)optval;
6745 struct sctp_authchunks val;
6746 struct sctp_association *asoc;
6747 struct sctp_chunks_param *ch;
6748 u32 num_chunks = 0;
6749 char __user *to;
6750
6751 if (!ep->auth_enable)
6752 return -EACCES;
6753
6754 if (len < sizeof(struct sctp_authchunks))
6755 return -EINVAL;
6756
6757 if (copy_from_user(&val, optval, sizeof(val)))
6758 return -EFAULT;
6759
6760 to = p->gauth_chunks;
6761 asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
6762 if (!asoc && val.gauth_assoc_id && sctp_style(sk, UDP))
6763 return -EINVAL;
6764
6765 if (asoc)
6766 ch = (struct sctp_chunks_param *)asoc->c.auth_chunks;
6767 else
6768 ch = ep->auth_chunk_list;
6769
6770 if (!ch)
6771 goto num;
6772
6773 num_chunks = ntohs(ch->param_hdr.length) - sizeof(struct sctp_paramhdr);
6774 if (len < sizeof(struct sctp_authchunks) + num_chunks)
6775 return -EINVAL;
6776
6777 if (copy_to_user(to, ch->chunks, num_chunks))
6778 return -EFAULT;
6779 num:
6780 len = sizeof(struct sctp_authchunks) + num_chunks;
6781 if (put_user(len, optlen))
6782 return -EFAULT;
6783 if (put_user(num_chunks, &p->gauth_number_of_chunks))
6784 return -EFAULT;
6785
6786 return 0;
6787 }
6788
6789 /*
6790 * 8.2.5. Get the Current Number of Associations (SCTP_GET_ASSOC_NUMBER)
6791 * This option gets the current number of associations that are attached
6792 * to a one-to-many style socket. The option value is an uint32_t.
6793 */
6794 static int sctp_getsockopt_assoc_number(struct sock *sk, int len,
6795 char __user *optval, int __user *optlen)
6796 {
6797 struct sctp_sock *sp = sctp_sk(sk);
6798 struct sctp_association *asoc;
6799 u32 val = 0;
6800
6801 if (sctp_style(sk, TCP))
6802 return -EOPNOTSUPP;
6803
6804 if (len < sizeof(u32))
6805 return -EINVAL;
6806
6807 len = sizeof(u32);
6808
6809 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
6810 val++;
6811 }
6812
6813 if (put_user(len, optlen))
6814 return -EFAULT;
6815 if (copy_to_user(optval, &val, len))
6816 return -EFAULT;
6817
6818 return 0;
6819 }
6820
6821 /*
6822 * 8.1.23 SCTP_AUTO_ASCONF
6823 * See the corresponding setsockopt entry as description
6824 */
6825 static int sctp_getsockopt_auto_asconf(struct sock *sk, int len,
6826 char __user *optval, int __user *optlen)
6827 {
6828 int val = 0;
6829
6830 if (len < sizeof(int))
6831 return -EINVAL;
6832
6833 len = sizeof(int);
6834 if (sctp_sk(sk)->do_auto_asconf && sctp_is_ep_boundall(sk))
6835 val = 1;
6836 if (put_user(len, optlen))
6837 return -EFAULT;
6838 if (copy_to_user(optval, &val, len))
6839 return -EFAULT;
6840 return 0;
6841 }
6842
6843 /*
6844 * 8.2.6. Get the Current Identifiers of Associations
6845 * (SCTP_GET_ASSOC_ID_LIST)
6846 *
6847 * This option gets the current list of SCTP association identifiers of
6848 * the SCTP associations handled by a one-to-many style socket.
6849 */
6850 static int sctp_getsockopt_assoc_ids(struct sock *sk, int len,
6851 char __user *optval, int __user *optlen)
6852 {
6853 struct sctp_sock *sp = sctp_sk(sk);
6854 struct sctp_association *asoc;
6855 struct sctp_assoc_ids *ids;
6856 u32 num = 0;
6857
6858 if (sctp_style(sk, TCP))
6859 return -EOPNOTSUPP;
6860
6861 if (len < sizeof(struct sctp_assoc_ids))
6862 return -EINVAL;
6863
6864 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
6865 num++;
6866 }
6867
6868 if (len < sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num)
6869 return -EINVAL;
6870
6871 len = sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num;
6872
6873 ids = kmalloc(len, GFP_USER | __GFP_NOWARN);
6874 if (unlikely(!ids))
6875 return -ENOMEM;
6876
6877 ids->gaids_number_of_ids = num;
6878 num = 0;
6879 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
6880 ids->gaids_assoc_id[num++] = asoc->assoc_id;
6881 }
6882
6883 if (put_user(len, optlen) || copy_to_user(optval, ids, len)) {
6884 kfree(ids);
6885 return -EFAULT;
6886 }
6887
6888 kfree(ids);
6889 return 0;
6890 }
6891
6892 /*
6893 * SCTP_PEER_ADDR_THLDS
6894 *
6895 * This option allows us to fetch the partially failed threshold for one or all
6896 * transports in an association. See Section 6.1 of:
6897 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt
6898 */
6899 static int sctp_getsockopt_paddr_thresholds(struct sock *sk,
6900 char __user *optval,
6901 int len,
6902 int __user *optlen)
6903 {
6904 struct sctp_paddrthlds val;
6905 struct sctp_transport *trans;
6906 struct sctp_association *asoc;
6907
6908 if (len < sizeof(struct sctp_paddrthlds))
6909 return -EINVAL;
6910 len = sizeof(struct sctp_paddrthlds);
6911 if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval, len))
6912 return -EFAULT;
6913
6914 if (sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) {
6915 asoc = sctp_id2assoc(sk, val.spt_assoc_id);
6916 if (!asoc)
6917 return -ENOENT;
6918
6919 val.spt_pathpfthld = asoc->pf_retrans;
6920 val.spt_pathmaxrxt = asoc->pathmaxrxt;
6921 } else {
6922 trans = sctp_addr_id2transport(sk, &val.spt_address,
6923 val.spt_assoc_id);
6924 if (!trans)
6925 return -ENOENT;
6926
6927 val.spt_pathmaxrxt = trans->pathmaxrxt;
6928 val.spt_pathpfthld = trans->pf_retrans;
6929 }
6930
6931 if (put_user(len, optlen) || copy_to_user(optval, &val, len))
6932 return -EFAULT;
6933
6934 return 0;
6935 }
6936
6937 /*
6938 * SCTP_GET_ASSOC_STATS
6939 *
6940 * This option retrieves local per endpoint statistics. It is modeled
6941 * after OpenSolaris' implementation
6942 */
6943 static int sctp_getsockopt_assoc_stats(struct sock *sk, int len,
6944 char __user *optval,
6945 int __user *optlen)
6946 {
6947 struct sctp_assoc_stats sas;
6948 struct sctp_association *asoc = NULL;
6949
6950 /* User must provide at least the assoc id */
6951 if (len < sizeof(sctp_assoc_t))
6952 return -EINVAL;
6953
6954 /* Allow the struct to grow and fill in as much as possible */
6955 len = min_t(size_t, len, sizeof(sas));
6956
6957 if (copy_from_user(&sas, optval, len))
6958 return -EFAULT;
6959
6960 asoc = sctp_id2assoc(sk, sas.sas_assoc_id);
6961 if (!asoc)
6962 return -EINVAL;
6963
6964 sas.sas_rtxchunks = asoc->stats.rtxchunks;
6965 sas.sas_gapcnt = asoc->stats.gapcnt;
6966 sas.sas_outofseqtsns = asoc->stats.outofseqtsns;
6967 sas.sas_osacks = asoc->stats.osacks;
6968 sas.sas_isacks = asoc->stats.isacks;
6969 sas.sas_octrlchunks = asoc->stats.octrlchunks;
6970 sas.sas_ictrlchunks = asoc->stats.ictrlchunks;
6971 sas.sas_oodchunks = asoc->stats.oodchunks;
6972 sas.sas_iodchunks = asoc->stats.iodchunks;
6973 sas.sas_ouodchunks = asoc->stats.ouodchunks;
6974 sas.sas_iuodchunks = asoc->stats.iuodchunks;
6975 sas.sas_idupchunks = asoc->stats.idupchunks;
6976 sas.sas_opackets = asoc->stats.opackets;
6977 sas.sas_ipackets = asoc->stats.ipackets;
6978
6979 /* New high max rto observed, will return 0 if not a single
6980 * RTO update took place. obs_rto_ipaddr will be bogus
6981 * in such a case
6982 */
6983 sas.sas_maxrto = asoc->stats.max_obs_rto;
6984 memcpy(&sas.sas_obs_rto_ipaddr, &asoc->stats.obs_rto_ipaddr,
6985 sizeof(struct sockaddr_storage));
6986
6987 /* Mark beginning of a new observation period */
6988 asoc->stats.max_obs_rto = asoc->rto_min;
6989
6990 if (put_user(len, optlen))
6991 return -EFAULT;
6992
6993 pr_debug("%s: len:%d, assoc_id:%d\n", __func__, len, sas.sas_assoc_id);
6994
6995 if (copy_to_user(optval, &sas, len))
6996 return -EFAULT;
6997
6998 return 0;
6999 }
7000
7001 static int sctp_getsockopt_recvrcvinfo(struct sock *sk, int len,
7002 char __user *optval,
7003 int __user *optlen)
7004 {
7005 int val = 0;
7006
7007 if (len < sizeof(int))
7008 return -EINVAL;
7009
7010 len = sizeof(int);
7011 if (sctp_sk(sk)->recvrcvinfo)
7012 val = 1;
7013 if (put_user(len, optlen))
7014 return -EFAULT;
7015 if (copy_to_user(optval, &val, len))
7016 return -EFAULT;
7017
7018 return 0;
7019 }
7020
7021 static int sctp_getsockopt_recvnxtinfo(struct sock *sk, int len,
7022 char __user *optval,
7023 int __user *optlen)
7024 {
7025 int val = 0;
7026
7027 if (len < sizeof(int))
7028 return -EINVAL;
7029
7030 len = sizeof(int);
7031 if (sctp_sk(sk)->recvnxtinfo)
7032 val = 1;
7033 if (put_user(len, optlen))
7034 return -EFAULT;
7035 if (copy_to_user(optval, &val, len))
7036 return -EFAULT;
7037
7038 return 0;
7039 }
7040
7041 static int sctp_getsockopt_pr_supported(struct sock *sk, int len,
7042 char __user *optval,
7043 int __user *optlen)
7044 {
7045 struct sctp_assoc_value params;
7046 struct sctp_association *asoc;
7047 int retval = -EFAULT;
7048
7049 if (len < sizeof(params)) {
7050 retval = -EINVAL;
7051 goto out;
7052 }
7053
7054 len = sizeof(params);
7055 if (copy_from_user(&params, optval, len))
7056 goto out;
7057
7058 asoc = sctp_id2assoc(sk, params.assoc_id);
7059 if (asoc) {
7060 params.assoc_value = asoc->prsctp_enable;
7061 } else if (!params.assoc_id) {
7062 struct sctp_sock *sp = sctp_sk(sk);
7063
7064 params.assoc_value = sp->ep->prsctp_enable;
7065 } else {
7066 retval = -EINVAL;
7067 goto out;
7068 }
7069
7070 if (put_user(len, optlen))
7071 goto out;
7072
7073 if (copy_to_user(optval, &params, len))
7074 goto out;
7075
7076 retval = 0;
7077
7078 out:
7079 return retval;
7080 }
7081
7082 static int sctp_getsockopt_default_prinfo(struct sock *sk, int len,
7083 char __user *optval,
7084 int __user *optlen)
7085 {
7086 struct sctp_default_prinfo info;
7087 struct sctp_association *asoc;
7088 int retval = -EFAULT;
7089
7090 if (len < sizeof(info)) {
7091 retval = -EINVAL;
7092 goto out;
7093 }
7094
7095 len = sizeof(info);
7096 if (copy_from_user(&info, optval, len))
7097 goto out;
7098
7099 asoc = sctp_id2assoc(sk, info.pr_assoc_id);
7100 if (asoc) {
7101 info.pr_policy = SCTP_PR_POLICY(asoc->default_flags);
7102 info.pr_value = asoc->default_timetolive;
7103 } else if (!info.pr_assoc_id) {
7104 struct sctp_sock *sp = sctp_sk(sk);
7105
7106 info.pr_policy = SCTP_PR_POLICY(sp->default_flags);
7107 info.pr_value = sp->default_timetolive;
7108 } else {
7109 retval = -EINVAL;
7110 goto out;
7111 }
7112
7113 if (put_user(len, optlen))
7114 goto out;
7115
7116 if (copy_to_user(optval, &info, len))
7117 goto out;
7118
7119 retval = 0;
7120
7121 out:
7122 return retval;
7123 }
7124
7125 static int sctp_getsockopt_pr_assocstatus(struct sock *sk, int len,
7126 char __user *optval,
7127 int __user *optlen)
7128 {
7129 struct sctp_prstatus params;
7130 struct sctp_association *asoc;
7131 int policy;
7132 int retval = -EINVAL;
7133
7134 if (len < sizeof(params))
7135 goto out;
7136
7137 len = sizeof(params);
7138 if (copy_from_user(&params, optval, len)) {
7139 retval = -EFAULT;
7140 goto out;
7141 }
7142
7143 policy = params.sprstat_policy;
7144 if (!policy || (policy & ~(SCTP_PR_SCTP_MASK | SCTP_PR_SCTP_ALL)) ||
7145 ((policy & SCTP_PR_SCTP_ALL) && (policy & SCTP_PR_SCTP_MASK)))
7146 goto out;
7147
7148 asoc = sctp_id2assoc(sk, params.sprstat_assoc_id);
7149 if (!asoc)
7150 goto out;
7151
7152 if (policy == SCTP_PR_SCTP_ALL) {
7153 params.sprstat_abandoned_unsent = 0;
7154 params.sprstat_abandoned_sent = 0;
7155 for (policy = 0; policy <= SCTP_PR_INDEX(MAX); policy++) {
7156 params.sprstat_abandoned_unsent +=
7157 asoc->abandoned_unsent[policy];
7158 params.sprstat_abandoned_sent +=
7159 asoc->abandoned_sent[policy];
7160 }
7161 } else {
7162 params.sprstat_abandoned_unsent =
7163 asoc->abandoned_unsent[__SCTP_PR_INDEX(policy)];
7164 params.sprstat_abandoned_sent =
7165 asoc->abandoned_sent[__SCTP_PR_INDEX(policy)];
7166 }
7167
7168 if (put_user(len, optlen)) {
7169 retval = -EFAULT;
7170 goto out;
7171 }
7172
7173 if (copy_to_user(optval, &params, len)) {
7174 retval = -EFAULT;
7175 goto out;
7176 }
7177
7178 retval = 0;
7179
7180 out:
7181 return retval;
7182 }
7183
7184 static int sctp_getsockopt_pr_streamstatus(struct sock *sk, int len,
7185 char __user *optval,
7186 int __user *optlen)
7187 {
7188 struct sctp_stream_out_ext *streamoute;
7189 struct sctp_association *asoc;
7190 struct sctp_prstatus params;
7191 int retval = -EINVAL;
7192 int policy;
7193
7194 if (len < sizeof(params))
7195 goto out;
7196
7197 len = sizeof(params);
7198 if (copy_from_user(&params, optval, len)) {
7199 retval = -EFAULT;
7200 goto out;
7201 }
7202
7203 policy = params.sprstat_policy;
7204 if (!policy || (policy & ~(SCTP_PR_SCTP_MASK | SCTP_PR_SCTP_ALL)) ||
7205 ((policy & SCTP_PR_SCTP_ALL) && (policy & SCTP_PR_SCTP_MASK)))
7206 goto out;
7207
7208 asoc = sctp_id2assoc(sk, params.sprstat_assoc_id);
7209 if (!asoc || params.sprstat_sid >= asoc->stream.outcnt)
7210 goto out;
7211
7212 streamoute = SCTP_SO(&asoc->stream, params.sprstat_sid)->ext;
7213 if (!streamoute) {
7214 /* Not allocated yet, means all stats are 0 */
7215 params.sprstat_abandoned_unsent = 0;
7216 params.sprstat_abandoned_sent = 0;
7217 retval = 0;
7218 goto out;
7219 }
7220
7221 if (policy == SCTP_PR_SCTP_ALL) {
7222 params.sprstat_abandoned_unsent = 0;
7223 params.sprstat_abandoned_sent = 0;
7224 for (policy = 0; policy <= SCTP_PR_INDEX(MAX); policy++) {
7225 params.sprstat_abandoned_unsent +=
7226 streamoute->abandoned_unsent[policy];
7227 params.sprstat_abandoned_sent +=
7228 streamoute->abandoned_sent[policy];
7229 }
7230 } else {
7231 params.sprstat_abandoned_unsent =
7232 streamoute->abandoned_unsent[__SCTP_PR_INDEX(policy)];
7233 params.sprstat_abandoned_sent =
7234 streamoute->abandoned_sent[__SCTP_PR_INDEX(policy)];
7235 }
7236
7237 if (put_user(len, optlen) || copy_to_user(optval, &params, len)) {
7238 retval = -EFAULT;
7239 goto out;
7240 }
7241
7242 retval = 0;
7243
7244 out:
7245 return retval;
7246 }
7247
7248 static int sctp_getsockopt_reconfig_supported(struct sock *sk, int len,
7249 char __user *optval,
7250 int __user *optlen)
7251 {
7252 struct sctp_assoc_value params;
7253 struct sctp_association *asoc;
7254 int retval = -EFAULT;
7255
7256 if (len < sizeof(params)) {
7257 retval = -EINVAL;
7258 goto out;
7259 }
7260
7261 len = sizeof(params);
7262 if (copy_from_user(&params, optval, len))
7263 goto out;
7264
7265 asoc = sctp_id2assoc(sk, params.assoc_id);
7266 if (asoc) {
7267 params.assoc_value = asoc->reconf_enable;
7268 } else if (!params.assoc_id) {
7269 struct sctp_sock *sp = sctp_sk(sk);
7270
7271 params.assoc_value = sp->ep->reconf_enable;
7272 } else {
7273 retval = -EINVAL;
7274 goto out;
7275 }
7276
7277 if (put_user(len, optlen))
7278 goto out;
7279
7280 if (copy_to_user(optval, &params, len))
7281 goto out;
7282
7283 retval = 0;
7284
7285 out:
7286 return retval;
7287 }
7288
7289 static int sctp_getsockopt_enable_strreset(struct sock *sk, int len,
7290 char __user *optval,
7291 int __user *optlen)
7292 {
7293 struct sctp_assoc_value params;
7294 struct sctp_association *asoc;
7295 int retval = -EFAULT;
7296
7297 if (len < sizeof(params)) {
7298 retval = -EINVAL;
7299 goto out;
7300 }
7301
7302 len = sizeof(params);
7303 if (copy_from_user(&params, optval, len))
7304 goto out;
7305
7306 asoc = sctp_id2assoc(sk, params.assoc_id);
7307 if (asoc) {
7308 params.assoc_value = asoc->strreset_enable;
7309 } else if (!params.assoc_id) {
7310 struct sctp_sock *sp = sctp_sk(sk);
7311
7312 params.assoc_value = sp->ep->strreset_enable;
7313 } else {
7314 retval = -EINVAL;
7315 goto out;
7316 }
7317
7318 if (put_user(len, optlen))
7319 goto out;
7320
7321 if (copy_to_user(optval, &params, len))
7322 goto out;
7323
7324 retval = 0;
7325
7326 out:
7327 return retval;
7328 }
7329
7330 static int sctp_getsockopt_scheduler(struct sock *sk, int len,
7331 char __user *optval,
7332 int __user *optlen)
7333 {
7334 struct sctp_assoc_value params;
7335 struct sctp_association *asoc;
7336 int retval = -EFAULT;
7337
7338 if (len < sizeof(params)) {
7339 retval = -EINVAL;
7340 goto out;
7341 }
7342
7343 len = sizeof(params);
7344 if (copy_from_user(&params, optval, len))
7345 goto out;
7346
7347 asoc = sctp_id2assoc(sk, params.assoc_id);
7348 if (!asoc) {
7349 retval = -EINVAL;
7350 goto out;
7351 }
7352
7353 params.assoc_value = sctp_sched_get_sched(asoc);
7354
7355 if (put_user(len, optlen))
7356 goto out;
7357
7358 if (copy_to_user(optval, &params, len))
7359 goto out;
7360
7361 retval = 0;
7362
7363 out:
7364 return retval;
7365 }
7366
7367 static int sctp_getsockopt_scheduler_value(struct sock *sk, int len,
7368 char __user *optval,
7369 int __user *optlen)
7370 {
7371 struct sctp_stream_value params;
7372 struct sctp_association *asoc;
7373 int retval = -EFAULT;
7374
7375 if (len < sizeof(params)) {
7376 retval = -EINVAL;
7377 goto out;
7378 }
7379
7380 len = sizeof(params);
7381 if (copy_from_user(&params, optval, len))
7382 goto out;
7383
7384 asoc = sctp_id2assoc(sk, params.assoc_id);
7385 if (!asoc) {
7386 retval = -EINVAL;
7387 goto out;
7388 }
7389
7390 retval = sctp_sched_get_value(asoc, params.stream_id,
7391 &params.stream_value);
7392 if (retval)
7393 goto out;
7394
7395 if (put_user(len, optlen)) {
7396 retval = -EFAULT;
7397 goto out;
7398 }
7399
7400 if (copy_to_user(optval, &params, len)) {
7401 retval = -EFAULT;
7402 goto out;
7403 }
7404
7405 out:
7406 return retval;
7407 }
7408
7409 static int sctp_getsockopt_interleaving_supported(struct sock *sk, int len,
7410 char __user *optval,
7411 int __user *optlen)
7412 {
7413 struct sctp_assoc_value params;
7414 struct sctp_association *asoc;
7415 int retval = -EFAULT;
7416
7417 if (len < sizeof(params)) {
7418 retval = -EINVAL;
7419 goto out;
7420 }
7421
7422 len = sizeof(params);
7423 if (copy_from_user(&params, optval, len))
7424 goto out;
7425
7426 asoc = sctp_id2assoc(sk, params.assoc_id);
7427 if (asoc) {
7428 params.assoc_value = asoc->intl_enable;
7429 } else if (!params.assoc_id) {
7430 struct sctp_sock *sp = sctp_sk(sk);
7431
7432 params.assoc_value = sp->strm_interleave;
7433 } else {
7434 retval = -EINVAL;
7435 goto out;
7436 }
7437
7438 if (put_user(len, optlen))
7439 goto out;
7440
7441 if (copy_to_user(optval, &params, len))
7442 goto out;
7443
7444 retval = 0;
7445
7446 out:
7447 return retval;
7448 }
7449
7450 static int sctp_getsockopt_reuse_port(struct sock *sk, int len,
7451 char __user *optval,
7452 int __user *optlen)
7453 {
7454 int val;
7455
7456 if (len < sizeof(int))
7457 return -EINVAL;
7458
7459 len = sizeof(int);
7460 val = sctp_sk(sk)->reuse;
7461 if (put_user(len, optlen))
7462 return -EFAULT;
7463
7464 if (copy_to_user(optval, &val, len))
7465 return -EFAULT;
7466
7467 return 0;
7468 }
7469
7470 static int sctp_getsockopt_event(struct sock *sk, int len, char __user *optval,
7471 int __user *optlen)
7472 {
7473 struct sctp_association *asoc;
7474 struct sctp_event param;
7475 __u16 subscribe;
7476
7477 if (len < sizeof(param))
7478 return -EINVAL;
7479
7480 len = sizeof(param);
7481 if (copy_from_user(&param, optval, len))
7482 return -EFAULT;
7483
7484 if (param.se_type < SCTP_SN_TYPE_BASE ||
7485 param.se_type > SCTP_SN_TYPE_MAX)
7486 return -EINVAL;
7487
7488 asoc = sctp_id2assoc(sk, param.se_assoc_id);
7489 subscribe = asoc ? asoc->subscribe : sctp_sk(sk)->subscribe;
7490 param.se_on = sctp_ulpevent_type_enabled(subscribe, param.se_type);
7491
7492 if (put_user(len, optlen))
7493 return -EFAULT;
7494
7495 if (copy_to_user(optval, &param, len))
7496 return -EFAULT;
7497
7498 return 0;
7499 }
7500
7501 static int sctp_getsockopt(struct sock *sk, int level, int optname,
7502 char __user *optval, int __user *optlen)
7503 {
7504 int retval = 0;
7505 int len;
7506
7507 pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname);
7508
7509 /* I can hardly begin to describe how wrong this is. This is
7510 * so broken as to be worse than useless. The API draft
7511 * REALLY is NOT helpful here... I am not convinced that the
7512 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP
7513 * are at all well-founded.
7514 */
7515 if (level != SOL_SCTP) {
7516 struct sctp_af *af = sctp_sk(sk)->pf->af;
7517
7518 retval = af->getsockopt(sk, level, optname, optval, optlen);
7519 return retval;
7520 }
7521
7522 if (get_user(len, optlen))
7523 return -EFAULT;
7524
7525 if (len < 0)
7526 return -EINVAL;
7527
7528 lock_sock(sk);
7529
7530 switch (optname) {
7531 case SCTP_STATUS:
7532 retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen);
7533 break;
7534 case SCTP_DISABLE_FRAGMENTS:
7535 retval = sctp_getsockopt_disable_fragments(sk, len, optval,
7536 optlen);
7537 break;
7538 case SCTP_EVENTS:
7539 retval = sctp_getsockopt_events(sk, len, optval, optlen);
7540 break;
7541 case SCTP_AUTOCLOSE:
7542 retval = sctp_getsockopt_autoclose(sk, len, optval, optlen);
7543 break;
7544 case SCTP_SOCKOPT_PEELOFF:
7545 retval = sctp_getsockopt_peeloff(sk, len, optval, optlen);
7546 break;
7547 case SCTP_SOCKOPT_PEELOFF_FLAGS:
7548 retval = sctp_getsockopt_peeloff_flags(sk, len, optval, optlen);
7549 break;
7550 case SCTP_PEER_ADDR_PARAMS:
7551 retval = sctp_getsockopt_peer_addr_params(sk, len, optval,
7552 optlen);
7553 break;
7554 case SCTP_DELAYED_SACK:
7555 retval = sctp_getsockopt_delayed_ack(sk, len, optval,
7556 optlen);
7557 break;
7558 case SCTP_INITMSG:
7559 retval = sctp_getsockopt_initmsg(sk, len, optval, optlen);
7560 break;
7561 case SCTP_GET_PEER_ADDRS:
7562 retval = sctp_getsockopt_peer_addrs(sk, len, optval,
7563 optlen);
7564 break;
7565 case SCTP_GET_LOCAL_ADDRS:
7566 retval = sctp_getsockopt_local_addrs(sk, len, optval,
7567 optlen);
7568 break;
7569 case SCTP_SOCKOPT_CONNECTX3:
7570 retval = sctp_getsockopt_connectx3(sk, len, optval, optlen);
7571 break;
7572 case SCTP_DEFAULT_SEND_PARAM:
7573 retval = sctp_getsockopt_default_send_param(sk, len,
7574 optval, optlen);
7575 break;
7576 case SCTP_DEFAULT_SNDINFO:
7577 retval = sctp_getsockopt_default_sndinfo(sk, len,
7578 optval, optlen);
7579 break;
7580 case SCTP_PRIMARY_ADDR:
7581 retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen);
7582 break;
7583 case SCTP_NODELAY:
7584 retval = sctp_getsockopt_nodelay(sk, len, optval, optlen);
7585 break;
7586 case SCTP_RTOINFO:
7587 retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen);
7588 break;
7589 case SCTP_ASSOCINFO:
7590 retval = sctp_getsockopt_associnfo(sk, len, optval, optlen);
7591 break;
7592 case SCTP_I_WANT_MAPPED_V4_ADDR:
7593 retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen);
7594 break;
7595 case SCTP_MAXSEG:
7596 retval = sctp_getsockopt_maxseg(sk, len, optval, optlen);
7597 break;
7598 case SCTP_GET_PEER_ADDR_INFO:
7599 retval = sctp_getsockopt_peer_addr_info(sk, len, optval,
7600 optlen);
7601 break;
7602 case SCTP_ADAPTATION_LAYER:
7603 retval = sctp_getsockopt_adaptation_layer(sk, len, optval,
7604 optlen);
7605 break;
7606 case SCTP_CONTEXT:
7607 retval = sctp_getsockopt_context(sk, len, optval, optlen);
7608 break;
7609 case SCTP_FRAGMENT_INTERLEAVE:
7610 retval = sctp_getsockopt_fragment_interleave(sk, len, optval,
7611 optlen);
7612 break;
7613 case SCTP_PARTIAL_DELIVERY_POINT:
7614 retval = sctp_getsockopt_partial_delivery_point(sk, len, optval,
7615 optlen);
7616 break;
7617 case SCTP_MAX_BURST:
7618 retval = sctp_getsockopt_maxburst(sk, len, optval, optlen);
7619 break;
7620 case SCTP_AUTH_KEY:
7621 case SCTP_AUTH_CHUNK:
7622 case SCTP_AUTH_DELETE_KEY:
7623 case SCTP_AUTH_DEACTIVATE_KEY:
7624 retval = -EOPNOTSUPP;
7625 break;
7626 case SCTP_HMAC_IDENT:
7627 retval = sctp_getsockopt_hmac_ident(sk, len, optval, optlen);
7628 break;
7629 case SCTP_AUTH_ACTIVE_KEY:
7630 retval = sctp_getsockopt_active_key(sk, len, optval, optlen);
7631 break;
7632 case SCTP_PEER_AUTH_CHUNKS:
7633 retval = sctp_getsockopt_peer_auth_chunks(sk, len, optval,
7634 optlen);
7635 break;
7636 case SCTP_LOCAL_AUTH_CHUNKS:
7637 retval = sctp_getsockopt_local_auth_chunks(sk, len, optval,
7638 optlen);
7639 break;
7640 case SCTP_GET_ASSOC_NUMBER:
7641 retval = sctp_getsockopt_assoc_number(sk, len, optval, optlen);
7642 break;
7643 case SCTP_GET_ASSOC_ID_LIST:
7644 retval = sctp_getsockopt_assoc_ids(sk, len, optval, optlen);
7645 break;
7646 case SCTP_AUTO_ASCONF:
7647 retval = sctp_getsockopt_auto_asconf(sk, len, optval, optlen);
7648 break;
7649 case SCTP_PEER_ADDR_THLDS:
7650 retval = sctp_getsockopt_paddr_thresholds(sk, optval, len, optlen);
7651 break;
7652 case SCTP_GET_ASSOC_STATS:
7653 retval = sctp_getsockopt_assoc_stats(sk, len, optval, optlen);
7654 break;
7655 case SCTP_RECVRCVINFO:
7656 retval = sctp_getsockopt_recvrcvinfo(sk, len, optval, optlen);
7657 break;
7658 case SCTP_RECVNXTINFO:
7659 retval = sctp_getsockopt_recvnxtinfo(sk, len, optval, optlen);
7660 break;
7661 case SCTP_PR_SUPPORTED:
7662 retval = sctp_getsockopt_pr_supported(sk, len, optval, optlen);
7663 break;
7664 case SCTP_DEFAULT_PRINFO:
7665 retval = sctp_getsockopt_default_prinfo(sk, len, optval,
7666 optlen);
7667 break;
7668 case SCTP_PR_ASSOC_STATUS:
7669 retval = sctp_getsockopt_pr_assocstatus(sk, len, optval,
7670 optlen);
7671 break;
7672 case SCTP_PR_STREAM_STATUS:
7673 retval = sctp_getsockopt_pr_streamstatus(sk, len, optval,
7674 optlen);
7675 break;
7676 case SCTP_RECONFIG_SUPPORTED:
7677 retval = sctp_getsockopt_reconfig_supported(sk, len, optval,
7678 optlen);
7679 break;
7680 case SCTP_ENABLE_STREAM_RESET:
7681 retval = sctp_getsockopt_enable_strreset(sk, len, optval,
7682 optlen);
7683 break;
7684 case SCTP_STREAM_SCHEDULER:
7685 retval = sctp_getsockopt_scheduler(sk, len, optval,
7686 optlen);
7687 break;
7688 case SCTP_STREAM_SCHEDULER_VALUE:
7689 retval = sctp_getsockopt_scheduler_value(sk, len, optval,
7690 optlen);
7691 break;
7692 case SCTP_INTERLEAVING_SUPPORTED:
7693 retval = sctp_getsockopt_interleaving_supported(sk, len, optval,
7694 optlen);
7695 break;
7696 case SCTP_REUSE_PORT:
7697 retval = sctp_getsockopt_reuse_port(sk, len, optval, optlen);
7698 break;
7699 case SCTP_EVENT:
7700 retval = sctp_getsockopt_event(sk, len, optval, optlen);
7701 break;
7702 default:
7703 retval = -ENOPROTOOPT;
7704 break;
7705 }
7706
7707 release_sock(sk);
7708 return retval;
7709 }
7710
7711 static int sctp_hash(struct sock *sk)
7712 {
7713 /* STUB */
7714 return 0;
7715 }
7716
7717 static void sctp_unhash(struct sock *sk)
7718 {
7719 /* STUB */
7720 }
7721
7722 /* Check if port is acceptable. Possibly find first available port.
7723 *
7724 * The port hash table (contained in the 'global' SCTP protocol storage
7725 * returned by struct sctp_protocol *sctp_get_protocol()). The hash
7726 * table is an array of 4096 lists (sctp_bind_hashbucket). Each
7727 * list (the list number is the port number hashed out, so as you
7728 * would expect from a hash function, all the ports in a given list have
7729 * such a number that hashes out to the same list number; you were
7730 * expecting that, right?); so each list has a set of ports, with a
7731 * link to the socket (struct sock) that uses it, the port number and
7732 * a fastreuse flag (FIXME: NPI ipg).
7733 */
7734 static struct sctp_bind_bucket *sctp_bucket_create(
7735 struct sctp_bind_hashbucket *head, struct net *, unsigned short snum);
7736
7737 static long sctp_get_port_local(struct sock *sk, union sctp_addr *addr)
7738 {
7739 struct sctp_sock *sp = sctp_sk(sk);
7740 bool reuse = (sk->sk_reuse || sp->reuse);
7741 struct sctp_bind_hashbucket *head; /* hash list */
7742 kuid_t uid = sock_i_uid(sk);
7743 struct sctp_bind_bucket *pp;
7744 unsigned short snum;
7745 int ret;
7746
7747 snum = ntohs(addr->v4.sin_port);
7748
7749 pr_debug("%s: begins, snum:%d\n", __func__, snum);
7750
7751 local_bh_disable();
7752
7753 if (snum == 0) {
7754 /* Search for an available port. */
7755 int low, high, remaining, index;
7756 unsigned int rover;
7757 struct net *net = sock_net(sk);
7758
7759 inet_get_local_port_range(net, &low, &high);
7760 remaining = (high - low) + 1;
7761 rover = prandom_u32() % remaining + low;
7762
7763 do {
7764 rover++;
7765 if ((rover < low) || (rover > high))
7766 rover = low;
7767 if (inet_is_local_reserved_port(net, rover))
7768 continue;
7769 index = sctp_phashfn(sock_net(sk), rover);
7770 head = &sctp_port_hashtable[index];
7771 spin_lock(&head->lock);
7772 sctp_for_each_hentry(pp, &head->chain)
7773 if ((pp->port == rover) &&
7774 net_eq(sock_net(sk), pp->net))
7775 goto next;
7776 break;
7777 next:
7778 spin_unlock(&head->lock);
7779 } while (--remaining > 0);
7780
7781 /* Exhausted local port range during search? */
7782 ret = 1;
7783 if (remaining <= 0)
7784 goto fail;
7785
7786 /* OK, here is the one we will use. HEAD (the port
7787 * hash table list entry) is non-NULL and we hold it's
7788 * mutex.
7789 */
7790 snum = rover;
7791 } else {
7792 /* We are given an specific port number; we verify
7793 * that it is not being used. If it is used, we will
7794 * exahust the search in the hash list corresponding
7795 * to the port number (snum) - we detect that with the
7796 * port iterator, pp being NULL.
7797 */
7798 head = &sctp_port_hashtable[sctp_phashfn(sock_net(sk), snum)];
7799 spin_lock(&head->lock);
7800 sctp_for_each_hentry(pp, &head->chain) {
7801 if ((pp->port == snum) && net_eq(pp->net, sock_net(sk)))
7802 goto pp_found;
7803 }
7804 }
7805 pp = NULL;
7806 goto pp_not_found;
7807 pp_found:
7808 if (!hlist_empty(&pp->owner)) {
7809 /* We had a port hash table hit - there is an
7810 * available port (pp != NULL) and it is being
7811 * used by other socket (pp->owner not empty); that other
7812 * socket is going to be sk2.
7813 */
7814 struct sock *sk2;
7815
7816 pr_debug("%s: found a possible match\n", __func__);
7817
7818 if ((pp->fastreuse && reuse &&
7819 sk->sk_state != SCTP_SS_LISTENING) ||
7820 (pp->fastreuseport && sk->sk_reuseport &&
7821 uid_eq(pp->fastuid, uid)))
7822 goto success;
7823
7824 /* Run through the list of sockets bound to the port
7825 * (pp->port) [via the pointers bind_next and
7826 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one,
7827 * we get the endpoint they describe and run through
7828 * the endpoint's list of IP (v4 or v6) addresses,
7829 * comparing each of the addresses with the address of
7830 * the socket sk. If we find a match, then that means
7831 * that this port/socket (sk) combination are already
7832 * in an endpoint.
7833 */
7834 sk_for_each_bound(sk2, &pp->owner) {
7835 struct sctp_sock *sp2 = sctp_sk(sk2);
7836 struct sctp_endpoint *ep2 = sp2->ep;
7837
7838 if (sk == sk2 ||
7839 (reuse && (sk2->sk_reuse || sp2->reuse) &&
7840 sk2->sk_state != SCTP_SS_LISTENING) ||
7841 (sk->sk_reuseport && sk2->sk_reuseport &&
7842 uid_eq(uid, sock_i_uid(sk2))))
7843 continue;
7844
7845 if (sctp_bind_addr_conflict(&ep2->base.bind_addr,
7846 addr, sp2, sp)) {
7847 ret = (long)sk2;
7848 goto fail_unlock;
7849 }
7850 }
7851
7852 pr_debug("%s: found a match\n", __func__);
7853 }
7854 pp_not_found:
7855 /* If there was a hash table miss, create a new port. */
7856 ret = 1;
7857 if (!pp && !(pp = sctp_bucket_create(head, sock_net(sk), snum)))
7858 goto fail_unlock;
7859
7860 /* In either case (hit or miss), make sure fastreuse is 1 only
7861 * if sk->sk_reuse is too (that is, if the caller requested
7862 * SO_REUSEADDR on this socket -sk-).
7863 */
7864 if (hlist_empty(&pp->owner)) {
7865 if (reuse && sk->sk_state != SCTP_SS_LISTENING)
7866 pp->fastreuse = 1;
7867 else
7868 pp->fastreuse = 0;
7869
7870 if (sk->sk_reuseport) {
7871 pp->fastreuseport = 1;
7872 pp->fastuid = uid;
7873 } else {
7874 pp->fastreuseport = 0;
7875 }
7876 } else {
7877 if (pp->fastreuse &&
7878 (!reuse || sk->sk_state == SCTP_SS_LISTENING))
7879 pp->fastreuse = 0;
7880
7881 if (pp->fastreuseport &&
7882 (!sk->sk_reuseport || !uid_eq(pp->fastuid, uid)))
7883 pp->fastreuseport = 0;
7884 }
7885
7886 /* We are set, so fill up all the data in the hash table
7887 * entry, tie the socket list information with the rest of the
7888 * sockets FIXME: Blurry, NPI (ipg).
7889 */
7890 success:
7891 if (!sp->bind_hash) {
7892 inet_sk(sk)->inet_num = snum;
7893 sk_add_bind_node(sk, &pp->owner);
7894 sp->bind_hash = pp;
7895 }
7896 ret = 0;
7897
7898 fail_unlock:
7899 spin_unlock(&head->lock);
7900
7901 fail:
7902 local_bh_enable();
7903 return ret;
7904 }
7905
7906 /* Assign a 'snum' port to the socket. If snum == 0, an ephemeral
7907 * port is requested.
7908 */
7909 static int sctp_get_port(struct sock *sk, unsigned short snum)
7910 {
7911 union sctp_addr addr;
7912 struct sctp_af *af = sctp_sk(sk)->pf->af;
7913
7914 /* Set up a dummy address struct from the sk. */
7915 af->from_sk(&addr, sk);
7916 addr.v4.sin_port = htons(snum);
7917
7918 /* Note: sk->sk_num gets filled in if ephemeral port request. */
7919 return !!sctp_get_port_local(sk, &addr);
7920 }
7921
7922 /*
7923 * Move a socket to LISTENING state.
7924 */
7925 static int sctp_listen_start(struct sock *sk, int backlog)
7926 {
7927 struct sctp_sock *sp = sctp_sk(sk);
7928 struct sctp_endpoint *ep = sp->ep;
7929 struct crypto_shash *tfm = NULL;
7930 char alg[32];
7931
7932 /* Allocate HMAC for generating cookie. */
7933 if (!sp->hmac && sp->sctp_hmac_alg) {
7934 sprintf(alg, "hmac(%s)", sp->sctp_hmac_alg);
7935 tfm = crypto_alloc_shash(alg, 0, 0);
7936 if (IS_ERR(tfm)) {
7937 net_info_ratelimited("failed to load transform for %s: %ld\n",
7938 sp->sctp_hmac_alg, PTR_ERR(tfm));
7939 return -ENOSYS;
7940 }
7941 sctp_sk(sk)->hmac = tfm;
7942 }
7943
7944 /*
7945 * If a bind() or sctp_bindx() is not called prior to a listen()
7946 * call that allows new associations to be accepted, the system
7947 * picks an ephemeral port and will choose an address set equivalent
7948 * to binding with a wildcard address.
7949 *
7950 * This is not currently spelled out in the SCTP sockets
7951 * extensions draft, but follows the practice as seen in TCP
7952 * sockets.
7953 *
7954 */
7955 inet_sk_set_state(sk, SCTP_SS_LISTENING);
7956 if (!ep->base.bind_addr.port) {
7957 if (sctp_autobind(sk))
7958 return -EAGAIN;
7959 } else {
7960 if (sctp_get_port(sk, inet_sk(sk)->inet_num)) {
7961 inet_sk_set_state(sk, SCTP_SS_CLOSED);
7962 return -EADDRINUSE;
7963 }
7964 }
7965
7966 sk->sk_max_ack_backlog = backlog;
7967 return sctp_hash_endpoint(ep);
7968 }
7969
7970 /*
7971 * 4.1.3 / 5.1.3 listen()
7972 *
7973 * By default, new associations are not accepted for UDP style sockets.
7974 * An application uses listen() to mark a socket as being able to
7975 * accept new associations.
7976 *
7977 * On TCP style sockets, applications use listen() to ready the SCTP
7978 * endpoint for accepting inbound associations.
7979 *
7980 * On both types of endpoints a backlog of '0' disables listening.
7981 *
7982 * Move a socket to LISTENING state.
7983 */
7984 int sctp_inet_listen(struct socket *sock, int backlog)
7985 {
7986 struct sock *sk = sock->sk;
7987 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
7988 int err = -EINVAL;
7989
7990 if (unlikely(backlog < 0))
7991 return err;
7992
7993 lock_sock(sk);
7994
7995 /* Peeled-off sockets are not allowed to listen(). */
7996 if (sctp_style(sk, UDP_HIGH_BANDWIDTH))
7997 goto out;
7998
7999 if (sock->state != SS_UNCONNECTED)
8000 goto out;
8001
8002 if (!sctp_sstate(sk, LISTENING) && !sctp_sstate(sk, CLOSED))
8003 goto out;
8004
8005 /* If backlog is zero, disable listening. */
8006 if (!backlog) {
8007 if (sctp_sstate(sk, CLOSED))
8008 goto out;
8009
8010 err = 0;
8011 sctp_unhash_endpoint(ep);
8012 sk->sk_state = SCTP_SS_CLOSED;
8013 if (sk->sk_reuse || sctp_sk(sk)->reuse)
8014 sctp_sk(sk)->bind_hash->fastreuse = 1;
8015 goto out;
8016 }
8017
8018 /* If we are already listening, just update the backlog */
8019 if (sctp_sstate(sk, LISTENING))
8020 sk->sk_max_ack_backlog = backlog;
8021 else {
8022 err = sctp_listen_start(sk, backlog);
8023 if (err)
8024 goto out;
8025 }
8026
8027 err = 0;
8028 out:
8029 release_sock(sk);
8030 return err;
8031 }
8032
8033 /*
8034 * This function is done by modeling the current datagram_poll() and the
8035 * tcp_poll(). Note that, based on these implementations, we don't
8036 * lock the socket in this function, even though it seems that,
8037 * ideally, locking or some other mechanisms can be used to ensure
8038 * the integrity of the counters (sndbuf and wmem_alloc) used
8039 * in this place. We assume that we don't need locks either until proven
8040 * otherwise.
8041 *
8042 * Another thing to note is that we include the Async I/O support
8043 * here, again, by modeling the current TCP/UDP code. We don't have
8044 * a good way to test with it yet.
8045 */
8046 __poll_t sctp_poll(struct file *file, struct socket *sock, poll_table *wait)
8047 {
8048 struct sock *sk = sock->sk;
8049 struct sctp_sock *sp = sctp_sk(sk);
8050 __poll_t mask;
8051
8052 poll_wait(file, sk_sleep(sk), wait);
8053
8054 sock_rps_record_flow(sk);
8055
8056 /* A TCP-style listening socket becomes readable when the accept queue
8057 * is not empty.
8058 */
8059 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
8060 return (!list_empty(&sp->ep->asocs)) ?
8061 (EPOLLIN | EPOLLRDNORM) : 0;
8062
8063 mask = 0;
8064
8065 /* Is there any exceptional events? */
8066 if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
8067 mask |= EPOLLERR |
8068 (sock_flag(sk, SOCK_SELECT_ERR_QUEUE) ? EPOLLPRI : 0);
8069 if (sk->sk_shutdown & RCV_SHUTDOWN)
8070 mask |= EPOLLRDHUP | EPOLLIN | EPOLLRDNORM;
8071 if (sk->sk_shutdown == SHUTDOWN_MASK)
8072 mask |= EPOLLHUP;
8073
8074 /* Is it readable? Reconsider this code with TCP-style support. */
8075 if (!skb_queue_empty(&sk->sk_receive_queue))
8076 mask |= EPOLLIN | EPOLLRDNORM;
8077
8078 /* The association is either gone or not ready. */
8079 if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED))
8080 return mask;
8081
8082 /* Is it writable? */
8083 if (sctp_writeable(sk)) {
8084 mask |= EPOLLOUT | EPOLLWRNORM;
8085 } else {
8086 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
8087 /*
8088 * Since the socket is not locked, the buffer
8089 * might be made available after the writeable check and
8090 * before the bit is set. This could cause a lost I/O
8091 * signal. tcp_poll() has a race breaker for this race
8092 * condition. Based on their implementation, we put
8093 * in the following code to cover it as well.
8094 */
8095 if (sctp_writeable(sk))
8096 mask |= EPOLLOUT | EPOLLWRNORM;
8097 }
8098 return mask;
8099 }
8100
8101 /********************************************************************
8102 * 2nd Level Abstractions
8103 ********************************************************************/
8104
8105 static struct sctp_bind_bucket *sctp_bucket_create(
8106 struct sctp_bind_hashbucket *head, struct net *net, unsigned short snum)
8107 {
8108 struct sctp_bind_bucket *pp;
8109
8110 pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC);
8111 if (pp) {
8112 SCTP_DBG_OBJCNT_INC(bind_bucket);
8113 pp->port = snum;
8114 pp->fastreuse = 0;
8115 INIT_HLIST_HEAD(&pp->owner);
8116 pp->net = net;
8117 hlist_add_head(&pp->node, &head->chain);
8118 }
8119 return pp;
8120 }
8121
8122 /* Caller must hold hashbucket lock for this tb with local BH disabled */
8123 static void sctp_bucket_destroy(struct sctp_bind_bucket *pp)
8124 {
8125 if (pp && hlist_empty(&pp->owner)) {
8126 __hlist_del(&pp->node);
8127 kmem_cache_free(sctp_bucket_cachep, pp);
8128 SCTP_DBG_OBJCNT_DEC(bind_bucket);
8129 }
8130 }
8131
8132 /* Release this socket's reference to a local port. */
8133 static inline void __sctp_put_port(struct sock *sk)
8134 {
8135 struct sctp_bind_hashbucket *head =
8136 &sctp_port_hashtable[sctp_phashfn(sock_net(sk),
8137 inet_sk(sk)->inet_num)];
8138 struct sctp_bind_bucket *pp;
8139
8140 spin_lock(&head->lock);
8141 pp = sctp_sk(sk)->bind_hash;
8142 __sk_del_bind_node(sk);
8143 sctp_sk(sk)->bind_hash = NULL;
8144 inet_sk(sk)->inet_num = 0;
8145 sctp_bucket_destroy(pp);
8146 spin_unlock(&head->lock);
8147 }
8148
8149 void sctp_put_port(struct sock *sk)
8150 {
8151 local_bh_disable();
8152 __sctp_put_port(sk);
8153 local_bh_enable();
8154 }
8155
8156 /*
8157 * The system picks an ephemeral port and choose an address set equivalent
8158 * to binding with a wildcard address.
8159 * One of those addresses will be the primary address for the association.
8160 * This automatically enables the multihoming capability of SCTP.
8161 */
8162 static int sctp_autobind(struct sock *sk)
8163 {
8164 union sctp_addr autoaddr;
8165 struct sctp_af *af;
8166 __be16 port;
8167
8168 /* Initialize a local sockaddr structure to INADDR_ANY. */
8169 af = sctp_sk(sk)->pf->af;
8170
8171 port = htons(inet_sk(sk)->inet_num);
8172 af->inaddr_any(&autoaddr, port);
8173
8174 return sctp_do_bind(sk, &autoaddr, af->sockaddr_len);
8175 }
8176
8177 /* Parse out IPPROTO_SCTP CMSG headers. Perform only minimal validation.
8178 *
8179 * From RFC 2292
8180 * 4.2 The cmsghdr Structure *
8181 *
8182 * When ancillary data is sent or received, any number of ancillary data
8183 * objects can be specified by the msg_control and msg_controllen members of
8184 * the msghdr structure, because each object is preceded by
8185 * a cmsghdr structure defining the object's length (the cmsg_len member).
8186 * Historically Berkeley-derived implementations have passed only one object
8187 * at a time, but this API allows multiple objects to be
8188 * passed in a single call to sendmsg() or recvmsg(). The following example
8189 * shows two ancillary data objects in a control buffer.
8190 *
8191 * |<--------------------------- msg_controllen -------------------------->|
8192 * | |
8193 *
8194 * |<----- ancillary data object ----->|<----- ancillary data object ----->|
8195 *
8196 * |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->|
8197 * | | |
8198 *
8199 * |<---------- cmsg_len ---------->| |<--------- cmsg_len ----------->| |
8200 *
8201 * |<--------- CMSG_LEN() --------->| |<-------- CMSG_LEN() ---------->| |
8202 * | | | | |
8203 *
8204 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
8205 * |cmsg_|cmsg_|cmsg_|XX| |XX|cmsg_|cmsg_|cmsg_|XX| |XX|
8206 *
8207 * |len |level|type |XX|cmsg_data[]|XX|len |level|type |XX|cmsg_data[]|XX|
8208 *
8209 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
8210 * ^
8211 * |
8212 *
8213 * msg_control
8214 * points here
8215 */
8216 static int sctp_msghdr_parse(const struct msghdr *msg, struct sctp_cmsgs *cmsgs)
8217 {
8218 struct msghdr *my_msg = (struct msghdr *)msg;
8219 struct cmsghdr *cmsg;
8220
8221 for_each_cmsghdr(cmsg, my_msg) {
8222 if (!CMSG_OK(my_msg, cmsg))
8223 return -EINVAL;
8224
8225 /* Should we parse this header or ignore? */
8226 if (cmsg->cmsg_level != IPPROTO_SCTP)
8227 continue;
8228
8229 /* Strictly check lengths following example in SCM code. */
8230 switch (cmsg->cmsg_type) {
8231 case SCTP_INIT:
8232 /* SCTP Socket API Extension
8233 * 5.3.1 SCTP Initiation Structure (SCTP_INIT)
8234 *
8235 * This cmsghdr structure provides information for
8236 * initializing new SCTP associations with sendmsg().
8237 * The SCTP_INITMSG socket option uses this same data
8238 * structure. This structure is not used for
8239 * recvmsg().
8240 *
8241 * cmsg_level cmsg_type cmsg_data[]
8242 * ------------ ------------ ----------------------
8243 * IPPROTO_SCTP SCTP_INIT struct sctp_initmsg
8244 */
8245 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_initmsg)))
8246 return -EINVAL;
8247
8248 cmsgs->init = CMSG_DATA(cmsg);
8249 break;
8250
8251 case SCTP_SNDRCV:
8252 /* SCTP Socket API Extension
8253 * 5.3.2 SCTP Header Information Structure(SCTP_SNDRCV)
8254 *
8255 * This cmsghdr structure specifies SCTP options for
8256 * sendmsg() and describes SCTP header information
8257 * about a received message through recvmsg().
8258 *
8259 * cmsg_level cmsg_type cmsg_data[]
8260 * ------------ ------------ ----------------------
8261 * IPPROTO_SCTP SCTP_SNDRCV struct sctp_sndrcvinfo
8262 */
8263 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndrcvinfo)))
8264 return -EINVAL;
8265
8266 cmsgs->srinfo = CMSG_DATA(cmsg);
8267
8268 if (cmsgs->srinfo->sinfo_flags &
8269 ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
8270 SCTP_SACK_IMMEDIATELY | SCTP_SENDALL |
8271 SCTP_PR_SCTP_MASK | SCTP_ABORT | SCTP_EOF))
8272 return -EINVAL;
8273 break;
8274
8275 case SCTP_SNDINFO:
8276 /* SCTP Socket API Extension
8277 * 5.3.4 SCTP Send Information Structure (SCTP_SNDINFO)
8278 *
8279 * This cmsghdr structure specifies SCTP options for
8280 * sendmsg(). This structure and SCTP_RCVINFO replaces
8281 * SCTP_SNDRCV which has been deprecated.
8282 *
8283 * cmsg_level cmsg_type cmsg_data[]
8284 * ------------ ------------ ---------------------
8285 * IPPROTO_SCTP SCTP_SNDINFO struct sctp_sndinfo
8286 */
8287 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndinfo)))
8288 return -EINVAL;
8289
8290 cmsgs->sinfo = CMSG_DATA(cmsg);
8291
8292 if (cmsgs->sinfo->snd_flags &
8293 ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
8294 SCTP_SACK_IMMEDIATELY | SCTP_SENDALL |
8295 SCTP_PR_SCTP_MASK | SCTP_ABORT | SCTP_EOF))
8296 return -EINVAL;
8297 break;
8298 case SCTP_PRINFO:
8299 /* SCTP Socket API Extension
8300 * 5.3.7 SCTP PR-SCTP Information Structure (SCTP_PRINFO)
8301 *
8302 * This cmsghdr structure specifies SCTP options for sendmsg().
8303 *
8304 * cmsg_level cmsg_type cmsg_data[]
8305 * ------------ ------------ ---------------------
8306 * IPPROTO_SCTP SCTP_PRINFO struct sctp_prinfo
8307 */
8308 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_prinfo)))
8309 return -EINVAL;
8310
8311 cmsgs->prinfo = CMSG_DATA(cmsg);
8312 if (cmsgs->prinfo->pr_policy & ~SCTP_PR_SCTP_MASK)
8313 return -EINVAL;
8314
8315 if (cmsgs->prinfo->pr_policy == SCTP_PR_SCTP_NONE)
8316 cmsgs->prinfo->pr_value = 0;
8317 break;
8318 case SCTP_AUTHINFO:
8319 /* SCTP Socket API Extension
8320 * 5.3.8 SCTP AUTH Information Structure (SCTP_AUTHINFO)
8321 *
8322 * This cmsghdr structure specifies SCTP options for sendmsg().
8323 *
8324 * cmsg_level cmsg_type cmsg_data[]
8325 * ------------ ------------ ---------------------
8326 * IPPROTO_SCTP SCTP_AUTHINFO struct sctp_authinfo
8327 */
8328 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_authinfo)))
8329 return -EINVAL;
8330
8331 cmsgs->authinfo = CMSG_DATA(cmsg);
8332 break;
8333 case SCTP_DSTADDRV4:
8334 case SCTP_DSTADDRV6:
8335 /* SCTP Socket API Extension
8336 * 5.3.9/10 SCTP Destination IPv4/6 Address Structure (SCTP_DSTADDRV4/6)
8337 *
8338 * This cmsghdr structure specifies SCTP options for sendmsg().
8339 *
8340 * cmsg_level cmsg_type cmsg_data[]
8341 * ------------ ------------ ---------------------
8342 * IPPROTO_SCTP SCTP_DSTADDRV4 struct in_addr
8343 * ------------ ------------ ---------------------
8344 * IPPROTO_SCTP SCTP_DSTADDRV6 struct in6_addr
8345 */
8346 cmsgs->addrs_msg = my_msg;
8347 break;
8348 default:
8349 return -EINVAL;
8350 }
8351 }
8352
8353 return 0;
8354 }
8355
8356 /*
8357 * Wait for a packet..
8358 * Note: This function is the same function as in core/datagram.c
8359 * with a few modifications to make lksctp work.
8360 */
8361 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p)
8362 {
8363 int error;
8364 DEFINE_WAIT(wait);
8365
8366 prepare_to_wait_exclusive(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
8367
8368 /* Socket errors? */
8369 error = sock_error(sk);
8370 if (error)
8371 goto out;
8372
8373 if (!skb_queue_empty(&sk->sk_receive_queue))
8374 goto ready;
8375
8376 /* Socket shut down? */
8377 if (sk->sk_shutdown & RCV_SHUTDOWN)
8378 goto out;
8379
8380 /* Sequenced packets can come disconnected. If so we report the
8381 * problem.
8382 */
8383 error = -ENOTCONN;
8384
8385 /* Is there a good reason to think that we may receive some data? */
8386 if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING))
8387 goto out;
8388
8389 /* Handle signals. */
8390 if (signal_pending(current))
8391 goto interrupted;
8392
8393 /* Let another process have a go. Since we are going to sleep
8394 * anyway. Note: This may cause odd behaviors if the message
8395 * does not fit in the user's buffer, but this seems to be the
8396 * only way to honor MSG_DONTWAIT realistically.
8397 */
8398 release_sock(sk);
8399 *timeo_p = schedule_timeout(*timeo_p);
8400 lock_sock(sk);
8401
8402 ready:
8403 finish_wait(sk_sleep(sk), &wait);
8404 return 0;
8405
8406 interrupted:
8407 error = sock_intr_errno(*timeo_p);
8408
8409 out:
8410 finish_wait(sk_sleep(sk), &wait);
8411 *err = error;
8412 return error;
8413 }
8414
8415 /* Receive a datagram.
8416 * Note: This is pretty much the same routine as in core/datagram.c
8417 * with a few changes to make lksctp work.
8418 */
8419 struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags,
8420 int noblock, int *err)
8421 {
8422 int error;
8423 struct sk_buff *skb;
8424 long timeo;
8425
8426 timeo = sock_rcvtimeo(sk, noblock);
8427
8428 pr_debug("%s: timeo:%ld, max:%ld\n", __func__, timeo,
8429 MAX_SCHEDULE_TIMEOUT);
8430
8431 do {
8432 /* Again only user level code calls this function,
8433 * so nothing interrupt level
8434 * will suddenly eat the receive_queue.
8435 *
8436 * Look at current nfs client by the way...
8437 * However, this function was correct in any case. 8)
8438 */
8439 if (flags & MSG_PEEK) {
8440 skb = skb_peek(&sk->sk_receive_queue);
8441 if (skb)
8442 refcount_inc(&skb->users);
8443 } else {
8444 skb = __skb_dequeue(&sk->sk_receive_queue);
8445 }
8446
8447 if (skb)
8448 return skb;
8449
8450 /* Caller is allowed not to check sk->sk_err before calling. */
8451 error = sock_error(sk);
8452 if (error)
8453 goto no_packet;
8454
8455 if (sk->sk_shutdown & RCV_SHUTDOWN)
8456 break;
8457
8458 if (sk_can_busy_loop(sk)) {
8459 sk_busy_loop(sk, noblock);
8460
8461 if (!skb_queue_empty(&sk->sk_receive_queue))
8462 continue;
8463 }
8464
8465 /* User doesn't want to wait. */
8466 error = -EAGAIN;
8467 if (!timeo)
8468 goto no_packet;
8469 } while (sctp_wait_for_packet(sk, err, &timeo) == 0);
8470
8471 return NULL;
8472
8473 no_packet:
8474 *err = error;
8475 return NULL;
8476 }
8477
8478 /* If sndbuf has changed, wake up per association sndbuf waiters. */
8479 static void __sctp_write_space(struct sctp_association *asoc)
8480 {
8481 struct sock *sk = asoc->base.sk;
8482
8483 if (sctp_wspace(asoc) <= 0)
8484 return;
8485
8486 if (waitqueue_active(&asoc->wait))
8487 wake_up_interruptible(&asoc->wait);
8488
8489 if (sctp_writeable(sk)) {
8490 struct socket_wq *wq;
8491
8492 rcu_read_lock();
8493 wq = rcu_dereference(sk->sk_wq);
8494 if (wq) {
8495 if (waitqueue_active(&wq->wait))
8496 wake_up_interruptible(&wq->wait);
8497
8498 /* Note that we try to include the Async I/O support
8499 * here by modeling from the current TCP/UDP code.
8500 * We have not tested with it yet.
8501 */
8502 if (!(sk->sk_shutdown & SEND_SHUTDOWN))
8503 sock_wake_async(wq, SOCK_WAKE_SPACE, POLL_OUT);
8504 }
8505 rcu_read_unlock();
8506 }
8507 }
8508
8509 static void sctp_wake_up_waiters(struct sock *sk,
8510 struct sctp_association *asoc)
8511 {
8512 struct sctp_association *tmp = asoc;
8513
8514 /* We do accounting for the sndbuf space per association,
8515 * so we only need to wake our own association.
8516 */
8517 if (asoc->ep->sndbuf_policy)
8518 return __sctp_write_space(asoc);
8519
8520 /* If association goes down and is just flushing its
8521 * outq, then just normally notify others.
8522 */
8523 if (asoc->base.dead)
8524 return sctp_write_space(sk);
8525
8526 /* Accounting for the sndbuf space is per socket, so we
8527 * need to wake up others, try to be fair and in case of
8528 * other associations, let them have a go first instead
8529 * of just doing a sctp_write_space() call.
8530 *
8531 * Note that we reach sctp_wake_up_waiters() only when
8532 * associations free up queued chunks, thus we are under
8533 * lock and the list of associations on a socket is
8534 * guaranteed not to change.
8535 */
8536 for (tmp = list_next_entry(tmp, asocs); 1;
8537 tmp = list_next_entry(tmp, asocs)) {
8538 /* Manually skip the head element. */
8539 if (&tmp->asocs == &((sctp_sk(sk))->ep->asocs))
8540 continue;
8541 /* Wake up association. */
8542 __sctp_write_space(tmp);
8543 /* We've reached the end. */
8544 if (tmp == asoc)
8545 break;
8546 }
8547 }
8548
8549 /* Do accounting for the sndbuf space.
8550 * Decrement the used sndbuf space of the corresponding association by the
8551 * data size which was just transmitted(freed).
8552 */
8553 static void sctp_wfree(struct sk_buff *skb)
8554 {
8555 struct sctp_chunk *chunk = skb_shinfo(skb)->destructor_arg;
8556 struct sctp_association *asoc = chunk->asoc;
8557 struct sock *sk = asoc->base.sk;
8558
8559 sk_mem_uncharge(sk, skb->truesize);
8560 sk->sk_wmem_queued -= skb->truesize + sizeof(struct sctp_chunk);
8561 asoc->sndbuf_used -= skb->truesize + sizeof(struct sctp_chunk);
8562 WARN_ON(refcount_sub_and_test(sizeof(struct sctp_chunk),
8563 &sk->sk_wmem_alloc));
8564
8565 if (chunk->shkey) {
8566 struct sctp_shared_key *shkey = chunk->shkey;
8567
8568 /* refcnt == 2 and !list_empty mean after this release, it's
8569 * not being used anywhere, and it's time to notify userland
8570 * that this shkey can be freed if it's been deactivated.
8571 */
8572 if (shkey->deactivated && !list_empty(&shkey->key_list) &&
8573 refcount_read(&shkey->refcnt) == 2) {
8574 struct sctp_ulpevent *ev;
8575
8576 ev = sctp_ulpevent_make_authkey(asoc, shkey->key_id,
8577 SCTP_AUTH_FREE_KEY,
8578 GFP_KERNEL);
8579 if (ev)
8580 asoc->stream.si->enqueue_event(&asoc->ulpq, ev);
8581 }
8582 sctp_auth_shkey_release(chunk->shkey);
8583 }
8584
8585 sock_wfree(skb);
8586 sctp_wake_up_waiters(sk, asoc);
8587
8588 sctp_association_put(asoc);
8589 }
8590
8591 /* Do accounting for the receive space on the socket.
8592 * Accounting for the association is done in ulpevent.c
8593 * We set this as a destructor for the cloned data skbs so that
8594 * accounting is done at the correct time.
8595 */
8596 void sctp_sock_rfree(struct sk_buff *skb)
8597 {
8598 struct sock *sk = skb->sk;
8599 struct sctp_ulpevent *event = sctp_skb2event(skb);
8600
8601 atomic_sub(event->rmem_len, &sk->sk_rmem_alloc);
8602
8603 /*
8604 * Mimic the behavior of sock_rfree
8605 */
8606 sk_mem_uncharge(sk, event->rmem_len);
8607 }
8608
8609
8610 /* Helper function to wait for space in the sndbuf. */
8611 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p,
8612 size_t msg_len)
8613 {
8614 struct sock *sk = asoc->base.sk;
8615 long current_timeo = *timeo_p;
8616 DEFINE_WAIT(wait);
8617 int err = 0;
8618
8619 pr_debug("%s: asoc:%p, timeo:%ld, msg_len:%zu\n", __func__, asoc,
8620 *timeo_p, msg_len);
8621
8622 /* Increment the association's refcnt. */
8623 sctp_association_hold(asoc);
8624
8625 /* Wait on the association specific sndbuf space. */
8626 for (;;) {
8627 prepare_to_wait_exclusive(&asoc->wait, &wait,
8628 TASK_INTERRUPTIBLE);
8629 if (asoc->base.dead)
8630 goto do_dead;
8631 if (!*timeo_p)
8632 goto do_nonblock;
8633 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING)
8634 goto do_error;
8635 if (signal_pending(current))
8636 goto do_interrupted;
8637 if ((int)msg_len <= sctp_wspace(asoc))
8638 break;
8639
8640 /* Let another process have a go. Since we are going
8641 * to sleep anyway.
8642 */
8643 release_sock(sk);
8644 current_timeo = schedule_timeout(current_timeo);
8645 lock_sock(sk);
8646 if (sk != asoc->base.sk)
8647 goto do_error;
8648
8649 *timeo_p = current_timeo;
8650 }
8651
8652 out:
8653 finish_wait(&asoc->wait, &wait);
8654
8655 /* Release the association's refcnt. */
8656 sctp_association_put(asoc);
8657
8658 return err;
8659
8660 do_dead:
8661 err = -ESRCH;
8662 goto out;
8663
8664 do_error:
8665 err = -EPIPE;
8666 goto out;
8667
8668 do_interrupted:
8669 err = sock_intr_errno(*timeo_p);
8670 goto out;
8671
8672 do_nonblock:
8673 err = -EAGAIN;
8674 goto out;
8675 }
8676
8677 void sctp_data_ready(struct sock *sk)
8678 {
8679 struct socket_wq *wq;
8680
8681 rcu_read_lock();
8682 wq = rcu_dereference(sk->sk_wq);
8683 if (skwq_has_sleeper(wq))
8684 wake_up_interruptible_sync_poll(&wq->wait, EPOLLIN |
8685 EPOLLRDNORM | EPOLLRDBAND);
8686 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
8687 rcu_read_unlock();
8688 }
8689
8690 /* If socket sndbuf has changed, wake up all per association waiters. */
8691 void sctp_write_space(struct sock *sk)
8692 {
8693 struct sctp_association *asoc;
8694
8695 /* Wake up the tasks in each wait queue. */
8696 list_for_each_entry(asoc, &((sctp_sk(sk))->ep->asocs), asocs) {
8697 __sctp_write_space(asoc);
8698 }
8699 }
8700
8701 /* Is there any sndbuf space available on the socket?
8702 *
8703 * Note that sk_wmem_alloc is the sum of the send buffers on all of the
8704 * associations on the same socket. For a UDP-style socket with
8705 * multiple associations, it is possible for it to be "unwriteable"
8706 * prematurely. I assume that this is acceptable because
8707 * a premature "unwriteable" is better than an accidental "writeable" which
8708 * would cause an unwanted block under certain circumstances. For the 1-1
8709 * UDP-style sockets or TCP-style sockets, this code should work.
8710 * - Daisy
8711 */
8712 static bool sctp_writeable(struct sock *sk)
8713 {
8714 return sk->sk_sndbuf > sk->sk_wmem_queued;
8715 }
8716
8717 /* Wait for an association to go into ESTABLISHED state. If timeout is 0,
8718 * returns immediately with EINPROGRESS.
8719 */
8720 static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p)
8721 {
8722 struct sock *sk = asoc->base.sk;
8723 int err = 0;
8724 long current_timeo = *timeo_p;
8725 DEFINE_WAIT(wait);
8726
8727 pr_debug("%s: asoc:%p, timeo:%ld\n", __func__, asoc, *timeo_p);
8728
8729 /* Increment the association's refcnt. */
8730 sctp_association_hold(asoc);
8731
8732 for (;;) {
8733 prepare_to_wait_exclusive(&asoc->wait, &wait,
8734 TASK_INTERRUPTIBLE);
8735 if (!*timeo_p)
8736 goto do_nonblock;
8737 if (sk->sk_shutdown & RCV_SHUTDOWN)
8738 break;
8739 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
8740 asoc->base.dead)
8741 goto do_error;
8742 if (signal_pending(current))
8743 goto do_interrupted;
8744
8745 if (sctp_state(asoc, ESTABLISHED))
8746 break;
8747
8748 /* Let another process have a go. Since we are going
8749 * to sleep anyway.
8750 */
8751 release_sock(sk);
8752 current_timeo = schedule_timeout(current_timeo);
8753 lock_sock(sk);
8754
8755 *timeo_p = current_timeo;
8756 }
8757
8758 out:
8759 finish_wait(&asoc->wait, &wait);
8760
8761 /* Release the association's refcnt. */
8762 sctp_association_put(asoc);
8763
8764 return err;
8765
8766 do_error:
8767 if (asoc->init_err_counter + 1 > asoc->max_init_attempts)
8768 err = -ETIMEDOUT;
8769 else
8770 err = -ECONNREFUSED;
8771 goto out;
8772
8773 do_interrupted:
8774 err = sock_intr_errno(*timeo_p);
8775 goto out;
8776
8777 do_nonblock:
8778 err = -EINPROGRESS;
8779 goto out;
8780 }
8781
8782 static int sctp_wait_for_accept(struct sock *sk, long timeo)
8783 {
8784 struct sctp_endpoint *ep;
8785 int err = 0;
8786 DEFINE_WAIT(wait);
8787
8788 ep = sctp_sk(sk)->ep;
8789
8790
8791 for (;;) {
8792 prepare_to_wait_exclusive(sk_sleep(sk), &wait,
8793 TASK_INTERRUPTIBLE);
8794
8795 if (list_empty(&ep->asocs)) {
8796 release_sock(sk);
8797 timeo = schedule_timeout(timeo);
8798 lock_sock(sk);
8799 }
8800
8801 err = -EINVAL;
8802 if (!sctp_sstate(sk, LISTENING))
8803 break;
8804
8805 err = 0;
8806 if (!list_empty(&ep->asocs))
8807 break;
8808
8809 err = sock_intr_errno(timeo);
8810 if (signal_pending(current))
8811 break;
8812
8813 err = -EAGAIN;
8814 if (!timeo)
8815 break;
8816 }
8817
8818 finish_wait(sk_sleep(sk), &wait);
8819
8820 return err;
8821 }
8822
8823 static void sctp_wait_for_close(struct sock *sk, long timeout)
8824 {
8825 DEFINE_WAIT(wait);
8826
8827 do {
8828 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
8829 if (list_empty(&sctp_sk(sk)->ep->asocs))
8830 break;
8831 release_sock(sk);
8832 timeout = schedule_timeout(timeout);
8833 lock_sock(sk);
8834 } while (!signal_pending(current) && timeout);
8835
8836 finish_wait(sk_sleep(sk), &wait);
8837 }
8838
8839 static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk)
8840 {
8841 struct sk_buff *frag;
8842
8843 if (!skb->data_len)
8844 goto done;
8845
8846 /* Don't forget the fragments. */
8847 skb_walk_frags(skb, frag)
8848 sctp_skb_set_owner_r_frag(frag, sk);
8849
8850 done:
8851 sctp_skb_set_owner_r(skb, sk);
8852 }
8853
8854 void sctp_copy_sock(struct sock *newsk, struct sock *sk,
8855 struct sctp_association *asoc)
8856 {
8857 struct inet_sock *inet = inet_sk(sk);
8858 struct inet_sock *newinet;
8859 struct sctp_sock *sp = sctp_sk(sk);
8860 struct sctp_endpoint *ep = sp->ep;
8861
8862 newsk->sk_type = sk->sk_type;
8863 newsk->sk_bound_dev_if = sk->sk_bound_dev_if;
8864 newsk->sk_flags = sk->sk_flags;
8865 newsk->sk_tsflags = sk->sk_tsflags;
8866 newsk->sk_no_check_tx = sk->sk_no_check_tx;
8867 newsk->sk_no_check_rx = sk->sk_no_check_rx;
8868 newsk->sk_reuse = sk->sk_reuse;
8869 sctp_sk(newsk)->reuse = sp->reuse;
8870
8871 newsk->sk_shutdown = sk->sk_shutdown;
8872 newsk->sk_destruct = sctp_destruct_sock;
8873 newsk->sk_family = sk->sk_family;
8874 newsk->sk_protocol = IPPROTO_SCTP;
8875 newsk->sk_backlog_rcv = sk->sk_prot->backlog_rcv;
8876 newsk->sk_sndbuf = sk->sk_sndbuf;
8877 newsk->sk_rcvbuf = sk->sk_rcvbuf;
8878 newsk->sk_lingertime = sk->sk_lingertime;
8879 newsk->sk_rcvtimeo = sk->sk_rcvtimeo;
8880 newsk->sk_sndtimeo = sk->sk_sndtimeo;
8881 newsk->sk_rxhash = sk->sk_rxhash;
8882
8883 newinet = inet_sk(newsk);
8884
8885 /* Initialize sk's sport, dport, rcv_saddr and daddr for
8886 * getsockname() and getpeername()
8887 */
8888 newinet->inet_sport = inet->inet_sport;
8889 newinet->inet_saddr = inet->inet_saddr;
8890 newinet->inet_rcv_saddr = inet->inet_rcv_saddr;
8891 newinet->inet_dport = htons(asoc->peer.port);
8892 newinet->pmtudisc = inet->pmtudisc;
8893 newinet->inet_id = asoc->next_tsn ^ jiffies;
8894
8895 newinet->uc_ttl = inet->uc_ttl;
8896 newinet->mc_loop = 1;
8897 newinet->mc_ttl = 1;
8898 newinet->mc_index = 0;
8899 newinet->mc_list = NULL;
8900
8901 if (newsk->sk_flags & SK_FLAGS_TIMESTAMP)
8902 net_enable_timestamp();
8903
8904 /* Set newsk security attributes from orginal sk and connection
8905 * security attribute from ep.
8906 */
8907 security_sctp_sk_clone(ep, sk, newsk);
8908 }
8909
8910 static inline void sctp_copy_descendant(struct sock *sk_to,
8911 const struct sock *sk_from)
8912 {
8913 int ancestor_size = sizeof(struct inet_sock) +
8914 sizeof(struct sctp_sock) -
8915 offsetof(struct sctp_sock, auto_asconf_list);
8916
8917 if (sk_from->sk_family == PF_INET6)
8918 ancestor_size += sizeof(struct ipv6_pinfo);
8919
8920 __inet_sk_copy_descendant(sk_to, sk_from, ancestor_size);
8921 }
8922
8923 /* Populate the fields of the newsk from the oldsk and migrate the assoc
8924 * and its messages to the newsk.
8925 */
8926 static void sctp_sock_migrate(struct sock *oldsk, struct sock *newsk,
8927 struct sctp_association *assoc,
8928 enum sctp_socket_type type)
8929 {
8930 struct sctp_sock *oldsp = sctp_sk(oldsk);
8931 struct sctp_sock *newsp = sctp_sk(newsk);
8932 struct sctp_bind_bucket *pp; /* hash list port iterator */
8933 struct sctp_endpoint *newep = newsp->ep;
8934 struct sk_buff *skb, *tmp;
8935 struct sctp_ulpevent *event;
8936 struct sctp_bind_hashbucket *head;
8937
8938 /* Migrate socket buffer sizes and all the socket level options to the
8939 * new socket.
8940 */
8941 newsk->sk_sndbuf = oldsk->sk_sndbuf;
8942 newsk->sk_rcvbuf = oldsk->sk_rcvbuf;
8943 /* Brute force copy old sctp opt. */
8944 sctp_copy_descendant(newsk, oldsk);
8945
8946 /* Restore the ep value that was overwritten with the above structure
8947 * copy.
8948 */
8949 newsp->ep = newep;
8950 newsp->hmac = NULL;
8951
8952 /* Hook this new socket in to the bind_hash list. */
8953 head = &sctp_port_hashtable[sctp_phashfn(sock_net(oldsk),
8954 inet_sk(oldsk)->inet_num)];
8955 spin_lock_bh(&head->lock);
8956 pp = sctp_sk(oldsk)->bind_hash;
8957 sk_add_bind_node(newsk, &pp->owner);
8958 sctp_sk(newsk)->bind_hash = pp;
8959 inet_sk(newsk)->inet_num = inet_sk(oldsk)->inet_num;
8960 spin_unlock_bh(&head->lock);
8961
8962 /* Copy the bind_addr list from the original endpoint to the new
8963 * endpoint so that we can handle restarts properly
8964 */
8965 sctp_bind_addr_dup(&newsp->ep->base.bind_addr,
8966 &oldsp->ep->base.bind_addr, GFP_KERNEL);
8967
8968 /* Move any messages in the old socket's receive queue that are for the
8969 * peeled off association to the new socket's receive queue.
8970 */
8971 sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) {
8972 event = sctp_skb2event(skb);
8973 if (event->asoc == assoc) {
8974 __skb_unlink(skb, &oldsk->sk_receive_queue);
8975 __skb_queue_tail(&newsk->sk_receive_queue, skb);
8976 sctp_skb_set_owner_r_frag(skb, newsk);
8977 }
8978 }
8979
8980 /* Clean up any messages pending delivery due to partial
8981 * delivery. Three cases:
8982 * 1) No partial deliver; no work.
8983 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby.
8984 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue.
8985 */
8986 skb_queue_head_init(&newsp->pd_lobby);
8987 atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode);
8988
8989 if (atomic_read(&sctp_sk(oldsk)->pd_mode)) {
8990 struct sk_buff_head *queue;
8991
8992 /* Decide which queue to move pd_lobby skbs to. */
8993 if (assoc->ulpq.pd_mode) {
8994 queue = &newsp->pd_lobby;
8995 } else
8996 queue = &newsk->sk_receive_queue;
8997
8998 /* Walk through the pd_lobby, looking for skbs that
8999 * need moved to the new socket.
9000 */
9001 sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) {
9002 event = sctp_skb2event(skb);
9003 if (event->asoc == assoc) {
9004 __skb_unlink(skb, &oldsp->pd_lobby);
9005 __skb_queue_tail(queue, skb);
9006 sctp_skb_set_owner_r_frag(skb, newsk);
9007 }
9008 }
9009
9010 /* Clear up any skbs waiting for the partial
9011 * delivery to finish.
9012 */
9013 if (assoc->ulpq.pd_mode)
9014 sctp_clear_pd(oldsk, NULL);
9015
9016 }
9017
9018 sctp_for_each_rx_skb(assoc, newsk, sctp_skb_set_owner_r_frag);
9019
9020 /* Set the type of socket to indicate that it is peeled off from the
9021 * original UDP-style socket or created with the accept() call on a
9022 * TCP-style socket..
9023 */
9024 newsp->type = type;
9025
9026 /* Mark the new socket "in-use" by the user so that any packets
9027 * that may arrive on the association after we've moved it are
9028 * queued to the backlog. This prevents a potential race between
9029 * backlog processing on the old socket and new-packet processing
9030 * on the new socket.
9031 *
9032 * The caller has just allocated newsk so we can guarantee that other
9033 * paths won't try to lock it and then oldsk.
9034 */
9035 lock_sock_nested(newsk, SINGLE_DEPTH_NESTING);
9036 sctp_for_each_tx_datachunk(assoc, sctp_clear_owner_w);
9037 sctp_assoc_migrate(assoc, newsk);
9038 sctp_for_each_tx_datachunk(assoc, sctp_set_owner_w);
9039
9040 /* If the association on the newsk is already closed before accept()
9041 * is called, set RCV_SHUTDOWN flag.
9042 */
9043 if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP)) {
9044 inet_sk_set_state(newsk, SCTP_SS_CLOSED);
9045 newsk->sk_shutdown |= RCV_SHUTDOWN;
9046 } else {
9047 inet_sk_set_state(newsk, SCTP_SS_ESTABLISHED);
9048 }
9049
9050 release_sock(newsk);
9051 }
9052
9053
9054 /* This proto struct describes the ULP interface for SCTP. */
9055 struct proto sctp_prot = {
9056 .name = "SCTP",
9057 .owner = THIS_MODULE,
9058 .close = sctp_close,
9059 .disconnect = sctp_disconnect,
9060 .accept = sctp_accept,
9061 .ioctl = sctp_ioctl,
9062 .init = sctp_init_sock,
9063 .destroy = sctp_destroy_sock,
9064 .shutdown = sctp_shutdown,
9065 .setsockopt = sctp_setsockopt,
9066 .getsockopt = sctp_getsockopt,
9067 .sendmsg = sctp_sendmsg,
9068 .recvmsg = sctp_recvmsg,
9069 .bind = sctp_bind,
9070 .backlog_rcv = sctp_backlog_rcv,
9071 .hash = sctp_hash,
9072 .unhash = sctp_unhash,
9073 .get_port = sctp_get_port,
9074 .obj_size = sizeof(struct sctp_sock),
9075 .useroffset = offsetof(struct sctp_sock, subscribe),
9076 .usersize = offsetof(struct sctp_sock, initmsg) -
9077 offsetof(struct sctp_sock, subscribe) +
9078 sizeof_field(struct sctp_sock, initmsg),
9079 .sysctl_mem = sysctl_sctp_mem,
9080 .sysctl_rmem = sysctl_sctp_rmem,
9081 .sysctl_wmem = sysctl_sctp_wmem,
9082 .memory_pressure = &sctp_memory_pressure,
9083 .enter_memory_pressure = sctp_enter_memory_pressure,
9084 .memory_allocated = &sctp_memory_allocated,
9085 .sockets_allocated = &sctp_sockets_allocated,
9086 };
9087
9088 #if IS_ENABLED(CONFIG_IPV6)
9089
9090 #include <net/transp_v6.h>
9091 static void sctp_v6_destroy_sock(struct sock *sk)
9092 {
9093 sctp_destroy_sock(sk);
9094 inet6_destroy_sock(sk);
9095 }
9096
9097 struct proto sctpv6_prot = {
9098 .name = "SCTPv6",
9099 .owner = THIS_MODULE,
9100 .close = sctp_close,
9101 .disconnect = sctp_disconnect,
9102 .accept = sctp_accept,
9103 .ioctl = sctp_ioctl,
9104 .init = sctp_init_sock,
9105 .destroy = sctp_v6_destroy_sock,
9106 .shutdown = sctp_shutdown,
9107 .setsockopt = sctp_setsockopt,
9108 .getsockopt = sctp_getsockopt,
9109 .sendmsg = sctp_sendmsg,
9110 .recvmsg = sctp_recvmsg,
9111 .bind = sctp_bind,
9112 .backlog_rcv = sctp_backlog_rcv,
9113 .hash = sctp_hash,
9114 .unhash = sctp_unhash,
9115 .get_port = sctp_get_port,
9116 .obj_size = sizeof(struct sctp6_sock),
9117 .useroffset = offsetof(struct sctp6_sock, sctp.subscribe),
9118 .usersize = offsetof(struct sctp6_sock, sctp.initmsg) -
9119 offsetof(struct sctp6_sock, sctp.subscribe) +
9120 sizeof_field(struct sctp6_sock, sctp.initmsg),
9121 .sysctl_mem = sysctl_sctp_mem,
9122 .sysctl_rmem = sysctl_sctp_rmem,
9123 .sysctl_wmem = sysctl_sctp_wmem,
9124 .memory_pressure = &sctp_memory_pressure,
9125 .enter_memory_pressure = sctp_enter_memory_pressure,
9126 .memory_allocated = &sctp_memory_allocated,
9127 .sockets_allocated = &sctp_sockets_allocated,
9128 };
9129 #endif /* IS_ENABLED(CONFIG_IPV6) */