]> git.proxmox.com Git - mirror_ubuntu-disco-kernel.git/blob - net/smc/smc_wr.c
sctp: avoid running the sctp state machine recursively
[mirror_ubuntu-disco-kernel.git] / net / smc / smc_wr.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Shared Memory Communications over RDMA (SMC-R) and RoCE
4 *
5 * Work Requests exploiting Infiniband API
6 *
7 * Work requests (WR) of type ib_post_send or ib_post_recv respectively
8 * are submitted to either RC SQ or RC RQ respectively
9 * (reliably connected send/receive queue)
10 * and become work queue entries (WQEs).
11 * While an SQ WR/WQE is pending, we track it until transmission completion.
12 * Through a send or receive completion queue (CQ) respectively,
13 * we get completion queue entries (CQEs) [aka work completions (WCs)].
14 * Since the CQ callback is called from IRQ context, we split work by using
15 * bottom halves implemented by tasklets.
16 *
17 * SMC uses this to exchange LLC (link layer control)
18 * and CDC (connection data control) messages.
19 *
20 * Copyright IBM Corp. 2016
21 *
22 * Author(s): Steffen Maier <maier@linux.vnet.ibm.com>
23 */
24
25 #include <linux/atomic.h>
26 #include <linux/hashtable.h>
27 #include <linux/wait.h>
28 #include <rdma/ib_verbs.h>
29 #include <asm/div64.h>
30
31 #include "smc.h"
32 #include "smc_wr.h"
33
34 #define SMC_WR_MAX_POLL_CQE 10 /* max. # of compl. queue elements in 1 poll */
35
36 #define SMC_WR_RX_HASH_BITS 4
37 static DEFINE_HASHTABLE(smc_wr_rx_hash, SMC_WR_RX_HASH_BITS);
38 static DEFINE_SPINLOCK(smc_wr_rx_hash_lock);
39
40 struct smc_wr_tx_pend { /* control data for a pending send request */
41 u64 wr_id; /* work request id sent */
42 smc_wr_tx_handler handler;
43 enum ib_wc_status wc_status; /* CQE status */
44 struct smc_link *link;
45 u32 idx;
46 struct smc_wr_tx_pend_priv priv;
47 };
48
49 /******************************** send queue *********************************/
50
51 /*------------------------------- completion --------------------------------*/
52
53 static inline int smc_wr_tx_find_pending_index(struct smc_link *link, u64 wr_id)
54 {
55 u32 i;
56
57 for (i = 0; i < link->wr_tx_cnt; i++) {
58 if (link->wr_tx_pends[i].wr_id == wr_id)
59 return i;
60 }
61 return link->wr_tx_cnt;
62 }
63
64 static inline void smc_wr_tx_process_cqe(struct ib_wc *wc)
65 {
66 struct smc_wr_tx_pend pnd_snd;
67 struct smc_link *link;
68 u32 pnd_snd_idx;
69 int i;
70
71 link = wc->qp->qp_context;
72
73 if (wc->opcode == IB_WC_REG_MR) {
74 if (wc->status)
75 link->wr_reg_state = FAILED;
76 else
77 link->wr_reg_state = CONFIRMED;
78 wake_up(&link->wr_reg_wait);
79 return;
80 }
81
82 pnd_snd_idx = smc_wr_tx_find_pending_index(link, wc->wr_id);
83 if (pnd_snd_idx == link->wr_tx_cnt)
84 return;
85 link->wr_tx_pends[pnd_snd_idx].wc_status = wc->status;
86 memcpy(&pnd_snd, &link->wr_tx_pends[pnd_snd_idx], sizeof(pnd_snd));
87 /* clear the full struct smc_wr_tx_pend including .priv */
88 memset(&link->wr_tx_pends[pnd_snd_idx], 0,
89 sizeof(link->wr_tx_pends[pnd_snd_idx]));
90 memset(&link->wr_tx_bufs[pnd_snd_idx], 0,
91 sizeof(link->wr_tx_bufs[pnd_snd_idx]));
92 if (!test_and_clear_bit(pnd_snd_idx, link->wr_tx_mask))
93 return;
94 if (wc->status) {
95 for_each_set_bit(i, link->wr_tx_mask, link->wr_tx_cnt) {
96 /* clear full struct smc_wr_tx_pend including .priv */
97 memset(&link->wr_tx_pends[i], 0,
98 sizeof(link->wr_tx_pends[i]));
99 memset(&link->wr_tx_bufs[i], 0,
100 sizeof(link->wr_tx_bufs[i]));
101 clear_bit(i, link->wr_tx_mask);
102 }
103 /* terminate connections of this link group abnormally */
104 smc_lgr_terminate(smc_get_lgr(link));
105 }
106 if (pnd_snd.handler)
107 pnd_snd.handler(&pnd_snd.priv, link, wc->status);
108 wake_up(&link->wr_tx_wait);
109 }
110
111 static void smc_wr_tx_tasklet_fn(unsigned long data)
112 {
113 struct smc_ib_device *dev = (struct smc_ib_device *)data;
114 struct ib_wc wc[SMC_WR_MAX_POLL_CQE];
115 int i = 0, rc;
116 int polled = 0;
117
118 again:
119 polled++;
120 do {
121 memset(&wc, 0, sizeof(wc));
122 rc = ib_poll_cq(dev->roce_cq_send, SMC_WR_MAX_POLL_CQE, wc);
123 if (polled == 1) {
124 ib_req_notify_cq(dev->roce_cq_send,
125 IB_CQ_NEXT_COMP |
126 IB_CQ_REPORT_MISSED_EVENTS);
127 }
128 if (!rc)
129 break;
130 for (i = 0; i < rc; i++)
131 smc_wr_tx_process_cqe(&wc[i]);
132 } while (rc > 0);
133 if (polled == 1)
134 goto again;
135 }
136
137 void smc_wr_tx_cq_handler(struct ib_cq *ib_cq, void *cq_context)
138 {
139 struct smc_ib_device *dev = (struct smc_ib_device *)cq_context;
140
141 tasklet_schedule(&dev->send_tasklet);
142 }
143
144 /*---------------------------- request submission ---------------------------*/
145
146 static inline int smc_wr_tx_get_free_slot_index(struct smc_link *link, u32 *idx)
147 {
148 *idx = link->wr_tx_cnt;
149 for_each_clear_bit(*idx, link->wr_tx_mask, link->wr_tx_cnt) {
150 if (!test_and_set_bit(*idx, link->wr_tx_mask))
151 return 0;
152 }
153 *idx = link->wr_tx_cnt;
154 return -EBUSY;
155 }
156
157 /**
158 * smc_wr_tx_get_free_slot() - returns buffer for message assembly,
159 * and sets info for pending transmit tracking
160 * @link: Pointer to smc_link used to later send the message.
161 * @handler: Send completion handler function pointer.
162 * @wr_buf: Out value returns pointer to message buffer.
163 * @wr_rdma_buf: Out value returns pointer to rdma work request.
164 * @wr_pend_priv: Out value returns pointer serving as handler context.
165 *
166 * Return: 0 on success, or -errno on error.
167 */
168 int smc_wr_tx_get_free_slot(struct smc_link *link,
169 smc_wr_tx_handler handler,
170 struct smc_wr_buf **wr_buf,
171 struct smc_rdma_wr **wr_rdma_buf,
172 struct smc_wr_tx_pend_priv **wr_pend_priv)
173 {
174 struct smc_wr_tx_pend *wr_pend;
175 u32 idx = link->wr_tx_cnt;
176 struct ib_send_wr *wr_ib;
177 u64 wr_id;
178 int rc;
179
180 *wr_buf = NULL;
181 *wr_pend_priv = NULL;
182 if (in_softirq()) {
183 rc = smc_wr_tx_get_free_slot_index(link, &idx);
184 if (rc)
185 return rc;
186 } else {
187 rc = wait_event_timeout(
188 link->wr_tx_wait,
189 link->state == SMC_LNK_INACTIVE ||
190 (smc_wr_tx_get_free_slot_index(link, &idx) != -EBUSY),
191 SMC_WR_TX_WAIT_FREE_SLOT_TIME);
192 if (!rc) {
193 /* timeout - terminate connections */
194 smc_lgr_terminate(smc_get_lgr(link));
195 return -EPIPE;
196 }
197 if (idx == link->wr_tx_cnt)
198 return -EPIPE;
199 }
200 wr_id = smc_wr_tx_get_next_wr_id(link);
201 wr_pend = &link->wr_tx_pends[idx];
202 wr_pend->wr_id = wr_id;
203 wr_pend->handler = handler;
204 wr_pend->link = link;
205 wr_pend->idx = idx;
206 wr_ib = &link->wr_tx_ibs[idx];
207 wr_ib->wr_id = wr_id;
208 *wr_buf = &link->wr_tx_bufs[idx];
209 if (wr_rdma_buf)
210 *wr_rdma_buf = &link->wr_tx_rdmas[idx];
211 *wr_pend_priv = &wr_pend->priv;
212 return 0;
213 }
214
215 int smc_wr_tx_put_slot(struct smc_link *link,
216 struct smc_wr_tx_pend_priv *wr_pend_priv)
217 {
218 struct smc_wr_tx_pend *pend;
219
220 pend = container_of(wr_pend_priv, struct smc_wr_tx_pend, priv);
221 if (pend->idx < link->wr_tx_cnt) {
222 u32 idx = pend->idx;
223
224 /* clear the full struct smc_wr_tx_pend including .priv */
225 memset(&link->wr_tx_pends[idx], 0,
226 sizeof(link->wr_tx_pends[idx]));
227 memset(&link->wr_tx_bufs[idx], 0,
228 sizeof(link->wr_tx_bufs[idx]));
229 test_and_clear_bit(idx, link->wr_tx_mask);
230 return 1;
231 }
232
233 return 0;
234 }
235
236 /* Send prepared WR slot via ib_post_send.
237 * @priv: pointer to smc_wr_tx_pend_priv identifying prepared message buffer
238 */
239 int smc_wr_tx_send(struct smc_link *link, struct smc_wr_tx_pend_priv *priv)
240 {
241 struct smc_wr_tx_pend *pend;
242 int rc;
243
244 ib_req_notify_cq(link->smcibdev->roce_cq_send,
245 IB_CQ_NEXT_COMP | IB_CQ_REPORT_MISSED_EVENTS);
246 pend = container_of(priv, struct smc_wr_tx_pend, priv);
247 rc = ib_post_send(link->roce_qp, &link->wr_tx_ibs[pend->idx], NULL);
248 if (rc) {
249 smc_wr_tx_put_slot(link, priv);
250 smc_lgr_terminate(smc_get_lgr(link));
251 }
252 return rc;
253 }
254
255 /* Register a memory region and wait for result. */
256 int smc_wr_reg_send(struct smc_link *link, struct ib_mr *mr)
257 {
258 int rc;
259
260 ib_req_notify_cq(link->smcibdev->roce_cq_send,
261 IB_CQ_NEXT_COMP | IB_CQ_REPORT_MISSED_EVENTS);
262 link->wr_reg_state = POSTED;
263 link->wr_reg.wr.wr_id = (u64)(uintptr_t)mr;
264 link->wr_reg.mr = mr;
265 link->wr_reg.key = mr->rkey;
266 rc = ib_post_send(link->roce_qp, &link->wr_reg.wr, NULL);
267 if (rc)
268 return rc;
269
270 rc = wait_event_interruptible_timeout(link->wr_reg_wait,
271 (link->wr_reg_state != POSTED),
272 SMC_WR_REG_MR_WAIT_TIME);
273 if (!rc) {
274 /* timeout - terminate connections */
275 smc_lgr_terminate(smc_get_lgr(link));
276 return -EPIPE;
277 }
278 if (rc == -ERESTARTSYS)
279 return -EINTR;
280 switch (link->wr_reg_state) {
281 case CONFIRMED:
282 rc = 0;
283 break;
284 case FAILED:
285 rc = -EIO;
286 break;
287 case POSTED:
288 rc = -EPIPE;
289 break;
290 }
291 return rc;
292 }
293
294 void smc_wr_tx_dismiss_slots(struct smc_link *link, u8 wr_tx_hdr_type,
295 smc_wr_tx_filter filter,
296 smc_wr_tx_dismisser dismisser,
297 unsigned long data)
298 {
299 struct smc_wr_tx_pend_priv *tx_pend;
300 struct smc_wr_rx_hdr *wr_tx;
301 int i;
302
303 for_each_set_bit(i, link->wr_tx_mask, link->wr_tx_cnt) {
304 wr_tx = (struct smc_wr_rx_hdr *)&link->wr_tx_bufs[i];
305 if (wr_tx->type != wr_tx_hdr_type)
306 continue;
307 tx_pend = &link->wr_tx_pends[i].priv;
308 if (filter(tx_pend, data))
309 dismisser(tx_pend);
310 }
311 }
312
313 /****************************** receive queue ********************************/
314
315 int smc_wr_rx_register_handler(struct smc_wr_rx_handler *handler)
316 {
317 struct smc_wr_rx_handler *h_iter;
318 int rc = 0;
319
320 spin_lock(&smc_wr_rx_hash_lock);
321 hash_for_each_possible(smc_wr_rx_hash, h_iter, list, handler->type) {
322 if (h_iter->type == handler->type) {
323 rc = -EEXIST;
324 goto out_unlock;
325 }
326 }
327 hash_add(smc_wr_rx_hash, &handler->list, handler->type);
328 out_unlock:
329 spin_unlock(&smc_wr_rx_hash_lock);
330 return rc;
331 }
332
333 /* Demultiplex a received work request based on the message type to its handler.
334 * Relies on smc_wr_rx_hash having been completely filled before any IB WRs,
335 * and not being modified any more afterwards so we don't need to lock it.
336 */
337 static inline void smc_wr_rx_demultiplex(struct ib_wc *wc)
338 {
339 struct smc_link *link = (struct smc_link *)wc->qp->qp_context;
340 struct smc_wr_rx_handler *handler;
341 struct smc_wr_rx_hdr *wr_rx;
342 u64 temp_wr_id;
343 u32 index;
344
345 if (wc->byte_len < sizeof(*wr_rx))
346 return; /* short message */
347 temp_wr_id = wc->wr_id;
348 index = do_div(temp_wr_id, link->wr_rx_cnt);
349 wr_rx = (struct smc_wr_rx_hdr *)&link->wr_rx_bufs[index];
350 hash_for_each_possible(smc_wr_rx_hash, handler, list, wr_rx->type) {
351 if (handler->type == wr_rx->type)
352 handler->handler(wc, wr_rx);
353 }
354 }
355
356 static inline void smc_wr_rx_process_cqes(struct ib_wc wc[], int num)
357 {
358 struct smc_link *link;
359 int i;
360
361 for (i = 0; i < num; i++) {
362 link = wc[i].qp->qp_context;
363 if (wc[i].status == IB_WC_SUCCESS) {
364 link->wr_rx_tstamp = jiffies;
365 smc_wr_rx_demultiplex(&wc[i]);
366 smc_wr_rx_post(link); /* refill WR RX */
367 } else {
368 /* handle status errors */
369 switch (wc[i].status) {
370 case IB_WC_RETRY_EXC_ERR:
371 case IB_WC_RNR_RETRY_EXC_ERR:
372 case IB_WC_WR_FLUSH_ERR:
373 /* terminate connections of this link group
374 * abnormally
375 */
376 smc_lgr_terminate(smc_get_lgr(link));
377 break;
378 default:
379 smc_wr_rx_post(link); /* refill WR RX */
380 break;
381 }
382 }
383 }
384 }
385
386 static void smc_wr_rx_tasklet_fn(unsigned long data)
387 {
388 struct smc_ib_device *dev = (struct smc_ib_device *)data;
389 struct ib_wc wc[SMC_WR_MAX_POLL_CQE];
390 int polled = 0;
391 int rc;
392
393 again:
394 polled++;
395 do {
396 memset(&wc, 0, sizeof(wc));
397 rc = ib_poll_cq(dev->roce_cq_recv, SMC_WR_MAX_POLL_CQE, wc);
398 if (polled == 1) {
399 ib_req_notify_cq(dev->roce_cq_recv,
400 IB_CQ_SOLICITED_MASK
401 | IB_CQ_REPORT_MISSED_EVENTS);
402 }
403 if (!rc)
404 break;
405 smc_wr_rx_process_cqes(&wc[0], rc);
406 } while (rc > 0);
407 if (polled == 1)
408 goto again;
409 }
410
411 void smc_wr_rx_cq_handler(struct ib_cq *ib_cq, void *cq_context)
412 {
413 struct smc_ib_device *dev = (struct smc_ib_device *)cq_context;
414
415 tasklet_schedule(&dev->recv_tasklet);
416 }
417
418 int smc_wr_rx_post_init(struct smc_link *link)
419 {
420 u32 i;
421 int rc = 0;
422
423 for (i = 0; i < link->wr_rx_cnt; i++)
424 rc = smc_wr_rx_post(link);
425 return rc;
426 }
427
428 /***************************** init, exit, misc ******************************/
429
430 void smc_wr_remember_qp_attr(struct smc_link *lnk)
431 {
432 struct ib_qp_attr *attr = &lnk->qp_attr;
433 struct ib_qp_init_attr init_attr;
434
435 memset(attr, 0, sizeof(*attr));
436 memset(&init_attr, 0, sizeof(init_attr));
437 ib_query_qp(lnk->roce_qp, attr,
438 IB_QP_STATE |
439 IB_QP_CUR_STATE |
440 IB_QP_PKEY_INDEX |
441 IB_QP_PORT |
442 IB_QP_QKEY |
443 IB_QP_AV |
444 IB_QP_PATH_MTU |
445 IB_QP_TIMEOUT |
446 IB_QP_RETRY_CNT |
447 IB_QP_RNR_RETRY |
448 IB_QP_RQ_PSN |
449 IB_QP_ALT_PATH |
450 IB_QP_MIN_RNR_TIMER |
451 IB_QP_SQ_PSN |
452 IB_QP_PATH_MIG_STATE |
453 IB_QP_CAP |
454 IB_QP_DEST_QPN,
455 &init_attr);
456
457 lnk->wr_tx_cnt = min_t(size_t, SMC_WR_BUF_CNT,
458 lnk->qp_attr.cap.max_send_wr);
459 lnk->wr_rx_cnt = min_t(size_t, SMC_WR_BUF_CNT * 3,
460 lnk->qp_attr.cap.max_recv_wr);
461 }
462
463 static void smc_wr_init_sge(struct smc_link *lnk)
464 {
465 u32 i;
466
467 for (i = 0; i < lnk->wr_tx_cnt; i++) {
468 lnk->wr_tx_sges[i].addr =
469 lnk->wr_tx_dma_addr + i * SMC_WR_BUF_SIZE;
470 lnk->wr_tx_sges[i].length = SMC_WR_TX_SIZE;
471 lnk->wr_tx_sges[i].lkey = lnk->roce_pd->local_dma_lkey;
472 lnk->wr_tx_rdma_sges[i].tx_rdma_sge[0].wr_tx_rdma_sge[0].lkey =
473 lnk->roce_pd->local_dma_lkey;
474 lnk->wr_tx_rdma_sges[i].tx_rdma_sge[0].wr_tx_rdma_sge[1].lkey =
475 lnk->roce_pd->local_dma_lkey;
476 lnk->wr_tx_rdma_sges[i].tx_rdma_sge[1].wr_tx_rdma_sge[0].lkey =
477 lnk->roce_pd->local_dma_lkey;
478 lnk->wr_tx_rdma_sges[i].tx_rdma_sge[1].wr_tx_rdma_sge[1].lkey =
479 lnk->roce_pd->local_dma_lkey;
480 lnk->wr_tx_ibs[i].next = NULL;
481 lnk->wr_tx_ibs[i].sg_list = &lnk->wr_tx_sges[i];
482 lnk->wr_tx_ibs[i].num_sge = 1;
483 lnk->wr_tx_ibs[i].opcode = IB_WR_SEND;
484 lnk->wr_tx_ibs[i].send_flags =
485 IB_SEND_SIGNALED | IB_SEND_SOLICITED;
486 lnk->wr_tx_rdmas[i].wr_tx_rdma[0].wr.opcode = IB_WR_RDMA_WRITE;
487 lnk->wr_tx_rdmas[i].wr_tx_rdma[1].wr.opcode = IB_WR_RDMA_WRITE;
488 lnk->wr_tx_rdmas[i].wr_tx_rdma[0].wr.sg_list =
489 lnk->wr_tx_rdma_sges[i].tx_rdma_sge[0].wr_tx_rdma_sge;
490 lnk->wr_tx_rdmas[i].wr_tx_rdma[1].wr.sg_list =
491 lnk->wr_tx_rdma_sges[i].tx_rdma_sge[1].wr_tx_rdma_sge;
492 }
493 for (i = 0; i < lnk->wr_rx_cnt; i++) {
494 lnk->wr_rx_sges[i].addr =
495 lnk->wr_rx_dma_addr + i * SMC_WR_BUF_SIZE;
496 lnk->wr_rx_sges[i].length = SMC_WR_BUF_SIZE;
497 lnk->wr_rx_sges[i].lkey = lnk->roce_pd->local_dma_lkey;
498 lnk->wr_rx_ibs[i].next = NULL;
499 lnk->wr_rx_ibs[i].sg_list = &lnk->wr_rx_sges[i];
500 lnk->wr_rx_ibs[i].num_sge = 1;
501 }
502 lnk->wr_reg.wr.next = NULL;
503 lnk->wr_reg.wr.num_sge = 0;
504 lnk->wr_reg.wr.send_flags = IB_SEND_SIGNALED;
505 lnk->wr_reg.wr.opcode = IB_WR_REG_MR;
506 lnk->wr_reg.access = IB_ACCESS_LOCAL_WRITE | IB_ACCESS_REMOTE_WRITE;
507 }
508
509 void smc_wr_free_link(struct smc_link *lnk)
510 {
511 struct ib_device *ibdev;
512
513 memset(lnk->wr_tx_mask, 0,
514 BITS_TO_LONGS(SMC_WR_BUF_CNT) * sizeof(*lnk->wr_tx_mask));
515
516 if (!lnk->smcibdev)
517 return;
518 ibdev = lnk->smcibdev->ibdev;
519
520 if (lnk->wr_rx_dma_addr) {
521 ib_dma_unmap_single(ibdev, lnk->wr_rx_dma_addr,
522 SMC_WR_BUF_SIZE * lnk->wr_rx_cnt,
523 DMA_FROM_DEVICE);
524 lnk->wr_rx_dma_addr = 0;
525 }
526 if (lnk->wr_tx_dma_addr) {
527 ib_dma_unmap_single(ibdev, lnk->wr_tx_dma_addr,
528 SMC_WR_BUF_SIZE * lnk->wr_tx_cnt,
529 DMA_TO_DEVICE);
530 lnk->wr_tx_dma_addr = 0;
531 }
532 }
533
534 void smc_wr_free_link_mem(struct smc_link *lnk)
535 {
536 kfree(lnk->wr_tx_pends);
537 lnk->wr_tx_pends = NULL;
538 kfree(lnk->wr_tx_mask);
539 lnk->wr_tx_mask = NULL;
540 kfree(lnk->wr_tx_sges);
541 lnk->wr_tx_sges = NULL;
542 kfree(lnk->wr_tx_rdma_sges);
543 lnk->wr_tx_rdma_sges = NULL;
544 kfree(lnk->wr_rx_sges);
545 lnk->wr_rx_sges = NULL;
546 kfree(lnk->wr_tx_rdmas);
547 lnk->wr_tx_rdmas = NULL;
548 kfree(lnk->wr_rx_ibs);
549 lnk->wr_rx_ibs = NULL;
550 kfree(lnk->wr_tx_ibs);
551 lnk->wr_tx_ibs = NULL;
552 kfree(lnk->wr_tx_bufs);
553 lnk->wr_tx_bufs = NULL;
554 kfree(lnk->wr_rx_bufs);
555 lnk->wr_rx_bufs = NULL;
556 }
557
558 int smc_wr_alloc_link_mem(struct smc_link *link)
559 {
560 /* allocate link related memory */
561 link->wr_tx_bufs = kcalloc(SMC_WR_BUF_CNT, SMC_WR_BUF_SIZE, GFP_KERNEL);
562 if (!link->wr_tx_bufs)
563 goto no_mem;
564 link->wr_rx_bufs = kcalloc(SMC_WR_BUF_CNT * 3, SMC_WR_BUF_SIZE,
565 GFP_KERNEL);
566 if (!link->wr_rx_bufs)
567 goto no_mem_wr_tx_bufs;
568 link->wr_tx_ibs = kcalloc(SMC_WR_BUF_CNT, sizeof(link->wr_tx_ibs[0]),
569 GFP_KERNEL);
570 if (!link->wr_tx_ibs)
571 goto no_mem_wr_rx_bufs;
572 link->wr_rx_ibs = kcalloc(SMC_WR_BUF_CNT * 3,
573 sizeof(link->wr_rx_ibs[0]),
574 GFP_KERNEL);
575 if (!link->wr_rx_ibs)
576 goto no_mem_wr_tx_ibs;
577 link->wr_tx_rdmas = kcalloc(SMC_WR_BUF_CNT,
578 sizeof(link->wr_tx_rdmas[0]),
579 GFP_KERNEL);
580 if (!link->wr_tx_rdmas)
581 goto no_mem_wr_rx_ibs;
582 link->wr_tx_rdma_sges = kcalloc(SMC_WR_BUF_CNT,
583 sizeof(link->wr_tx_rdma_sges[0]),
584 GFP_KERNEL);
585 if (!link->wr_tx_rdma_sges)
586 goto no_mem_wr_tx_rdmas;
587 link->wr_tx_sges = kcalloc(SMC_WR_BUF_CNT, sizeof(link->wr_tx_sges[0]),
588 GFP_KERNEL);
589 if (!link->wr_tx_sges)
590 goto no_mem_wr_tx_rdma_sges;
591 link->wr_rx_sges = kcalloc(SMC_WR_BUF_CNT * 3,
592 sizeof(link->wr_rx_sges[0]),
593 GFP_KERNEL);
594 if (!link->wr_rx_sges)
595 goto no_mem_wr_tx_sges;
596 link->wr_tx_mask = kcalloc(BITS_TO_LONGS(SMC_WR_BUF_CNT),
597 sizeof(*link->wr_tx_mask),
598 GFP_KERNEL);
599 if (!link->wr_tx_mask)
600 goto no_mem_wr_rx_sges;
601 link->wr_tx_pends = kcalloc(SMC_WR_BUF_CNT,
602 sizeof(link->wr_tx_pends[0]),
603 GFP_KERNEL);
604 if (!link->wr_tx_pends)
605 goto no_mem_wr_tx_mask;
606 return 0;
607
608 no_mem_wr_tx_mask:
609 kfree(link->wr_tx_mask);
610 no_mem_wr_rx_sges:
611 kfree(link->wr_rx_sges);
612 no_mem_wr_tx_sges:
613 kfree(link->wr_tx_sges);
614 no_mem_wr_tx_rdma_sges:
615 kfree(link->wr_tx_rdma_sges);
616 no_mem_wr_tx_rdmas:
617 kfree(link->wr_tx_rdmas);
618 no_mem_wr_rx_ibs:
619 kfree(link->wr_rx_ibs);
620 no_mem_wr_tx_ibs:
621 kfree(link->wr_tx_ibs);
622 no_mem_wr_rx_bufs:
623 kfree(link->wr_rx_bufs);
624 no_mem_wr_tx_bufs:
625 kfree(link->wr_tx_bufs);
626 no_mem:
627 return -ENOMEM;
628 }
629
630 void smc_wr_remove_dev(struct smc_ib_device *smcibdev)
631 {
632 tasklet_kill(&smcibdev->recv_tasklet);
633 tasklet_kill(&smcibdev->send_tasklet);
634 }
635
636 void smc_wr_add_dev(struct smc_ib_device *smcibdev)
637 {
638 tasklet_init(&smcibdev->recv_tasklet, smc_wr_rx_tasklet_fn,
639 (unsigned long)smcibdev);
640 tasklet_init(&smcibdev->send_tasklet, smc_wr_tx_tasklet_fn,
641 (unsigned long)smcibdev);
642 }
643
644 int smc_wr_create_link(struct smc_link *lnk)
645 {
646 struct ib_device *ibdev = lnk->smcibdev->ibdev;
647 int rc = 0;
648
649 smc_wr_tx_set_wr_id(&lnk->wr_tx_id, 0);
650 lnk->wr_rx_id = 0;
651 lnk->wr_rx_dma_addr = ib_dma_map_single(
652 ibdev, lnk->wr_rx_bufs, SMC_WR_BUF_SIZE * lnk->wr_rx_cnt,
653 DMA_FROM_DEVICE);
654 if (ib_dma_mapping_error(ibdev, lnk->wr_rx_dma_addr)) {
655 lnk->wr_rx_dma_addr = 0;
656 rc = -EIO;
657 goto out;
658 }
659 lnk->wr_tx_dma_addr = ib_dma_map_single(
660 ibdev, lnk->wr_tx_bufs, SMC_WR_BUF_SIZE * lnk->wr_tx_cnt,
661 DMA_TO_DEVICE);
662 if (ib_dma_mapping_error(ibdev, lnk->wr_tx_dma_addr)) {
663 rc = -EIO;
664 goto dma_unmap;
665 }
666 smc_wr_init_sge(lnk);
667 memset(lnk->wr_tx_mask, 0,
668 BITS_TO_LONGS(SMC_WR_BUF_CNT) * sizeof(*lnk->wr_tx_mask));
669 init_waitqueue_head(&lnk->wr_tx_wait);
670 init_waitqueue_head(&lnk->wr_reg_wait);
671 return rc;
672
673 dma_unmap:
674 ib_dma_unmap_single(ibdev, lnk->wr_rx_dma_addr,
675 SMC_WR_BUF_SIZE * lnk->wr_rx_cnt,
676 DMA_FROM_DEVICE);
677 lnk->wr_rx_dma_addr = 0;
678 out:
679 return rc;
680 }