]> git.proxmox.com Git - qemu.git/blob - op-i386.c
comment
[qemu.git] / op-i386.c
1 /*
2 * i386 micro operations
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 */
20 #include "exec-i386.h"
21
22 /* NOTE: data are not static to force relocation generation by GCC */
23
24 uint8_t parity_table[256] = {
25 CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
26 0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
27 0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
28 CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
29 0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
30 CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
31 CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
32 0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
33 0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
34 CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
35 CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
36 0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
37 CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
38 0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
39 0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
40 CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
41 0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
42 CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
43 CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
44 0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
45 CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
46 0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
47 0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
48 CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
49 CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
50 0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
51 0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
52 CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
53 0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
54 CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
55 CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
56 0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
57 };
58
59 /* modulo 17 table */
60 const uint8_t rclw_table[32] = {
61 0, 1, 2, 3, 4, 5, 6, 7,
62 8, 9,10,11,12,13,14,15,
63 16, 0, 1, 2, 3, 4, 5, 6,
64 7, 8, 9,10,11,12,13,14,
65 };
66
67 /* modulo 9 table */
68 const uint8_t rclb_table[32] = {
69 0, 1, 2, 3, 4, 5, 6, 7,
70 8, 0, 1, 2, 3, 4, 5, 6,
71 7, 8, 0, 1, 2, 3, 4, 5,
72 6, 7, 8, 0, 1, 2, 3, 4,
73 };
74
75 #ifdef USE_X86LDOUBLE
76 /* an array of Intel 80-bit FP constants, to be loaded via integer ops */
77 typedef unsigned short f15ld[5];
78 const f15ld f15rk[] =
79 {
80 /*0*/ {0x0000,0x0000,0x0000,0x0000,0x0000},
81 /*1*/ {0x0000,0x0000,0x0000,0x8000,0x3fff},
82 /*pi*/ {0xc235,0x2168,0xdaa2,0xc90f,0x4000},
83 /*lg2*/ {0xf799,0xfbcf,0x9a84,0x9a20,0x3ffd},
84 /*ln2*/ {0x79ac,0xd1cf,0x17f7,0xb172,0x3ffe},
85 /*l2e*/ {0xf0bc,0x5c17,0x3b29,0xb8aa,0x3fff},
86 /*l2t*/ {0x8afe,0xcd1b,0x784b,0xd49a,0x4000}
87 };
88 #else
89 /* the same, 64-bit version */
90 typedef unsigned short f15ld[4];
91 const f15ld f15rk[] =
92 {
93 #ifndef WORDS_BIGENDIAN
94 /*0*/ {0x0000,0x0000,0x0000,0x0000},
95 /*1*/ {0x0000,0x0000,0x0000,0x3ff0},
96 /*pi*/ {0x2d18,0x5444,0x21fb,0x4009},
97 /*lg2*/ {0x79ff,0x509f,0x4413,0x3fd3},
98 /*ln2*/ {0x39ef,0xfefa,0x2e42,0x3fe6},
99 /*l2e*/ {0x82fe,0x652b,0x1547,0x3ff7},
100 /*l2t*/ {0xa371,0x0979,0x934f,0x400a}
101 #else
102 /*0*/ {0x0000,0x0000,0x0000,0x0000},
103 /*1*/ {0x3ff0,0x0000,0x0000,0x0000},
104 /*pi*/ {0x4009,0x21fb,0x5444,0x2d18},
105 /*lg2*/ {0x3fd3,0x4413,0x509f,0x79ff},
106 /*ln2*/ {0x3fe6,0x2e42,0xfefa,0x39ef},
107 /*l2e*/ {0x3ff7,0x1547,0x652b,0x82fe},
108 /*l2t*/ {0x400a,0x934f,0x0979,0xa371}
109 #endif
110 };
111 #endif
112
113 /* n must be a constant to be efficient */
114 static inline int lshift(int x, int n)
115 {
116 if (n >= 0)
117 return x << n;
118 else
119 return x >> (-n);
120 }
121
122 /* we define the various pieces of code used by the JIT */
123
124 #define REG EAX
125 #define REGNAME _EAX
126 #include "opreg_template.h"
127 #undef REG
128 #undef REGNAME
129
130 #define REG ECX
131 #define REGNAME _ECX
132 #include "opreg_template.h"
133 #undef REG
134 #undef REGNAME
135
136 #define REG EDX
137 #define REGNAME _EDX
138 #include "opreg_template.h"
139 #undef REG
140 #undef REGNAME
141
142 #define REG EBX
143 #define REGNAME _EBX
144 #include "opreg_template.h"
145 #undef REG
146 #undef REGNAME
147
148 #define REG ESP
149 #define REGNAME _ESP
150 #include "opreg_template.h"
151 #undef REG
152 #undef REGNAME
153
154 #define REG EBP
155 #define REGNAME _EBP
156 #include "opreg_template.h"
157 #undef REG
158 #undef REGNAME
159
160 #define REG ESI
161 #define REGNAME _ESI
162 #include "opreg_template.h"
163 #undef REG
164 #undef REGNAME
165
166 #define REG EDI
167 #define REGNAME _EDI
168 #include "opreg_template.h"
169 #undef REG
170 #undef REGNAME
171
172 /* operations with flags */
173
174 void OPPROTO op_addl_T0_T1_cc(void)
175 {
176 CC_SRC = T0;
177 T0 += T1;
178 CC_DST = T0;
179 }
180
181 void OPPROTO op_orl_T0_T1_cc(void)
182 {
183 T0 |= T1;
184 CC_DST = T0;
185 }
186
187 void OPPROTO op_andl_T0_T1_cc(void)
188 {
189 T0 &= T1;
190 CC_DST = T0;
191 }
192
193 void OPPROTO op_subl_T0_T1_cc(void)
194 {
195 CC_SRC = T0;
196 T0 -= T1;
197 CC_DST = T0;
198 }
199
200 void OPPROTO op_xorl_T0_T1_cc(void)
201 {
202 T0 ^= T1;
203 CC_DST = T0;
204 }
205
206 void OPPROTO op_cmpl_T0_T1_cc(void)
207 {
208 CC_SRC = T0;
209 CC_DST = T0 - T1;
210 }
211
212 void OPPROTO op_negl_T0_cc(void)
213 {
214 CC_SRC = 0;
215 T0 = -T0;
216 CC_DST = T0;
217 }
218
219 void OPPROTO op_incl_T0_cc(void)
220 {
221 CC_SRC = cc_table[CC_OP].compute_c();
222 T0++;
223 CC_DST = T0;
224 }
225
226 void OPPROTO op_decl_T0_cc(void)
227 {
228 CC_SRC = cc_table[CC_OP].compute_c();
229 T0--;
230 CC_DST = T0;
231 }
232
233 void OPPROTO op_testl_T0_T1_cc(void)
234 {
235 CC_DST = T0 & T1;
236 }
237
238 /* operations without flags */
239
240 void OPPROTO op_addl_T0_T1(void)
241 {
242 T0 += T1;
243 }
244
245 void OPPROTO op_orl_T0_T1(void)
246 {
247 T0 |= T1;
248 }
249
250 void OPPROTO op_andl_T0_T1(void)
251 {
252 T0 &= T1;
253 }
254
255 void OPPROTO op_subl_T0_T1(void)
256 {
257 T0 -= T1;
258 }
259
260 void OPPROTO op_xorl_T0_T1(void)
261 {
262 T0 ^= T1;
263 }
264
265 void OPPROTO op_negl_T0(void)
266 {
267 T0 = -T0;
268 }
269
270 void OPPROTO op_incl_T0(void)
271 {
272 T0++;
273 }
274
275 void OPPROTO op_decl_T0(void)
276 {
277 T0--;
278 }
279
280 void OPPROTO op_notl_T0(void)
281 {
282 T0 = ~T0;
283 }
284
285 void OPPROTO op_bswapl_T0(void)
286 {
287 T0 = bswap32(T0);
288 }
289
290 /* multiply/divide */
291 void OPPROTO op_mulb_AL_T0(void)
292 {
293 unsigned int res;
294 res = (uint8_t)EAX * (uint8_t)T0;
295 EAX = (EAX & 0xffff0000) | res;
296 CC_SRC = (res & 0xff00);
297 }
298
299 void OPPROTO op_imulb_AL_T0(void)
300 {
301 int res;
302 res = (int8_t)EAX * (int8_t)T0;
303 EAX = (EAX & 0xffff0000) | (res & 0xffff);
304 CC_SRC = (res != (int8_t)res);
305 }
306
307 void OPPROTO op_mulw_AX_T0(void)
308 {
309 unsigned int res;
310 res = (uint16_t)EAX * (uint16_t)T0;
311 EAX = (EAX & 0xffff0000) | (res & 0xffff);
312 EDX = (EDX & 0xffff0000) | ((res >> 16) & 0xffff);
313 CC_SRC = res >> 16;
314 }
315
316 void OPPROTO op_imulw_AX_T0(void)
317 {
318 int res;
319 res = (int16_t)EAX * (int16_t)T0;
320 EAX = (EAX & 0xffff0000) | (res & 0xffff);
321 EDX = (EDX & 0xffff0000) | ((res >> 16) & 0xffff);
322 CC_SRC = (res != (int16_t)res);
323 }
324
325 void OPPROTO op_mull_EAX_T0(void)
326 {
327 uint64_t res;
328 res = (uint64_t)((uint32_t)EAX) * (uint64_t)((uint32_t)T0);
329 EAX = res;
330 EDX = res >> 32;
331 CC_SRC = res >> 32;
332 }
333
334 void OPPROTO op_imull_EAX_T0(void)
335 {
336 int64_t res;
337 res = (int64_t)((int32_t)EAX) * (int64_t)((int32_t)T0);
338 EAX = res;
339 EDX = res >> 32;
340 CC_SRC = (res != (int32_t)res);
341 }
342
343 void OPPROTO op_imulw_T0_T1(void)
344 {
345 int res;
346 res = (int16_t)T0 * (int16_t)T1;
347 T0 = res;
348 CC_SRC = (res != (int16_t)res);
349 }
350
351 void OPPROTO op_imull_T0_T1(void)
352 {
353 int64_t res;
354 res = (int64_t)((int32_t)T0) * (int64_t)((int32_t)T1);
355 T0 = res;
356 CC_SRC = (res != (int32_t)res);
357 }
358
359 /* division, flags are undefined */
360 /* XXX: add exceptions for overflow */
361 void OPPROTO op_divb_AL_T0(void)
362 {
363 unsigned int num, den, q, r;
364
365 num = (EAX & 0xffff);
366 den = (T0 & 0xff);
367 if (den == 0)
368 raise_exception(EXCP00_DIVZ);
369 q = (num / den) & 0xff;
370 r = (num % den) & 0xff;
371 EAX = (EAX & 0xffff0000) | (r << 8) | q;
372 }
373
374 void OPPROTO op_idivb_AL_T0(void)
375 {
376 int num, den, q, r;
377
378 num = (int16_t)EAX;
379 den = (int8_t)T0;
380 if (den == 0)
381 raise_exception(EXCP00_DIVZ);
382 q = (num / den) & 0xff;
383 r = (num % den) & 0xff;
384 EAX = (EAX & 0xffff0000) | (r << 8) | q;
385 }
386
387 void OPPROTO op_divw_AX_T0(void)
388 {
389 unsigned int num, den, q, r;
390
391 num = (EAX & 0xffff) | ((EDX & 0xffff) << 16);
392 den = (T0 & 0xffff);
393 if (den == 0)
394 raise_exception(EXCP00_DIVZ);
395 q = (num / den) & 0xffff;
396 r = (num % den) & 0xffff;
397 EAX = (EAX & 0xffff0000) | q;
398 EDX = (EDX & 0xffff0000) | r;
399 }
400
401 void OPPROTO op_idivw_AX_T0(void)
402 {
403 int num, den, q, r;
404
405 num = (EAX & 0xffff) | ((EDX & 0xffff) << 16);
406 den = (int16_t)T0;
407 if (den == 0)
408 raise_exception(EXCP00_DIVZ);
409 q = (num / den) & 0xffff;
410 r = (num % den) & 0xffff;
411 EAX = (EAX & 0xffff0000) | q;
412 EDX = (EDX & 0xffff0000) | r;
413 }
414
415 #ifdef BUGGY_GCC_DIV64
416 /* gcc 2.95.4 on PowerPC does not seem to like using __udivdi3, so we
417 call it from another function */
418 uint32_t div64(uint32_t *q_ptr, uint64_t num, uint32_t den)
419 {
420 *q_ptr = num / den;
421 return num % den;
422 }
423
424 int32_t idiv64(int32_t *q_ptr, int64_t num, int32_t den)
425 {
426 *q_ptr = num / den;
427 return num % den;
428 }
429 #endif
430
431 void OPPROTO op_divl_EAX_T0(void)
432 {
433 unsigned int den, q, r;
434 uint64_t num;
435
436 num = EAX | ((uint64_t)EDX << 32);
437 den = T0;
438 if (den == 0)
439 raise_exception(EXCP00_DIVZ);
440 #ifdef BUGGY_GCC_DIV64
441 r = div64(&q, num, den);
442 #else
443 q = (num / den);
444 r = (num % den);
445 #endif
446 EAX = q;
447 EDX = r;
448 }
449
450 void OPPROTO op_idivl_EAX_T0(void)
451 {
452 int den, q, r;
453 int64_t num;
454
455 num = EAX | ((uint64_t)EDX << 32);
456 den = T0;
457 if (den == 0)
458 raise_exception(EXCP00_DIVZ);
459 #ifdef BUGGY_GCC_DIV64
460 r = idiv64(&q, num, den);
461 #else
462 q = (num / den);
463 r = (num % den);
464 #endif
465 EAX = q;
466 EDX = r;
467 }
468
469 /* constant load & misc op */
470
471 void OPPROTO op_movl_T0_im(void)
472 {
473 T0 = PARAM1;
474 }
475
476 void OPPROTO op_addl_T0_im(void)
477 {
478 T0 += PARAM1;
479 }
480
481 void OPPROTO op_andl_T0_ffff(void)
482 {
483 T0 = T0 & 0xffff;
484 }
485
486 void OPPROTO op_movl_T0_T1(void)
487 {
488 T0 = T1;
489 }
490
491 void OPPROTO op_movl_T1_im(void)
492 {
493 T1 = PARAM1;
494 }
495
496 void OPPROTO op_addl_T1_im(void)
497 {
498 T1 += PARAM1;
499 }
500
501 void OPPROTO op_movl_T1_A0(void)
502 {
503 T1 = A0;
504 }
505
506 void OPPROTO op_movl_A0_im(void)
507 {
508 A0 = PARAM1;
509 }
510
511 void OPPROTO op_addl_A0_im(void)
512 {
513 A0 += PARAM1;
514 }
515
516 void OPPROTO op_addl_A0_AL(void)
517 {
518 A0 += (EAX & 0xff);
519 }
520
521 void OPPROTO op_andl_A0_ffff(void)
522 {
523 A0 = A0 & 0xffff;
524 }
525
526 /* memory access */
527
528 void OPPROTO op_ldub_T0_A0(void)
529 {
530 T0 = ldub((uint8_t *)A0);
531 }
532
533 void OPPROTO op_ldsb_T0_A0(void)
534 {
535 T0 = ldsb((int8_t *)A0);
536 }
537
538 void OPPROTO op_lduw_T0_A0(void)
539 {
540 T0 = lduw((uint8_t *)A0);
541 }
542
543 void OPPROTO op_ldsw_T0_A0(void)
544 {
545 T0 = ldsw((int8_t *)A0);
546 }
547
548 void OPPROTO op_ldl_T0_A0(void)
549 {
550 T0 = ldl((uint8_t *)A0);
551 }
552
553 void OPPROTO op_ldub_T1_A0(void)
554 {
555 T1 = ldub((uint8_t *)A0);
556 }
557
558 void OPPROTO op_ldsb_T1_A0(void)
559 {
560 T1 = ldsb((int8_t *)A0);
561 }
562
563 void OPPROTO op_lduw_T1_A0(void)
564 {
565 T1 = lduw((uint8_t *)A0);
566 }
567
568 void OPPROTO op_ldsw_T1_A0(void)
569 {
570 T1 = ldsw((int8_t *)A0);
571 }
572
573 void OPPROTO op_ldl_T1_A0(void)
574 {
575 T1 = ldl((uint8_t *)A0);
576 }
577
578 void OPPROTO op_stb_T0_A0(void)
579 {
580 stb((uint8_t *)A0, T0);
581 }
582
583 void OPPROTO op_stw_T0_A0(void)
584 {
585 stw((uint8_t *)A0, T0);
586 }
587
588 void OPPROTO op_stl_T0_A0(void)
589 {
590 stl((uint8_t *)A0, T0);
591 }
592
593 /* used for bit operations */
594
595 void OPPROTO op_add_bitw_A0_T1(void)
596 {
597 A0 += ((int32_t)T1 >> 4) << 1;
598 }
599
600 void OPPROTO op_add_bitl_A0_T1(void)
601 {
602 A0 += ((int32_t)T1 >> 5) << 2;
603 }
604
605 /* indirect jump */
606
607 void OPPROTO op_jmp_T0(void)
608 {
609 EIP = T0;
610 }
611
612 void OPPROTO op_jmp_im(void)
613 {
614 EIP = PARAM1;
615 }
616
617 void OPPROTO op_int_im(void)
618 {
619 EIP = PARAM1;
620 raise_exception(EXCP0D_GPF);
621 }
622
623 void OPPROTO op_int3(void)
624 {
625 EIP = PARAM1;
626 raise_exception(EXCP03_INT3);
627 }
628
629 void OPPROTO op_into(void)
630 {
631 int eflags;
632 eflags = cc_table[CC_OP].compute_all();
633 if (eflags & CC_O) {
634 raise_exception(EXCP04_INTO);
635 }
636 }
637
638 /* XXX: add IOPL/CPL tests */
639 void OPPROTO op_cli(void)
640 {
641 raise_exception(EXCP0D_GPF);
642 }
643
644 /* XXX: add IOPL/CPL tests */
645 void OPPROTO op_sti(void)
646 {
647 raise_exception(EXCP0D_GPF);
648 }
649
650 /* vm86plus instructions */
651
652 void OPPROTO op_cli_vm(void)
653 {
654 env->eflags &= ~VIF_MASK;
655 }
656
657 void OPPROTO op_sti_vm(void)
658 {
659 env->eflags |= VIF_MASK;
660 if (env->eflags & VIP_MASK) {
661 EIP = PARAM1;
662 raise_exception(EXCP0D_GPF);
663 }
664 FORCE_RET();
665 }
666
667 void OPPROTO op_boundw(void)
668 {
669 int low, high, v;
670 low = ldsw((uint8_t *)A0);
671 high = ldsw((uint8_t *)A0 + 2);
672 v = (int16_t)T0;
673 if (v < low || v > high)
674 raise_exception(EXCP05_BOUND);
675 FORCE_RET();
676 }
677
678 void OPPROTO op_boundl(void)
679 {
680 int low, high, v;
681 low = ldl((uint8_t *)A0);
682 high = ldl((uint8_t *)A0 + 4);
683 v = T0;
684 if (v < low || v > high)
685 raise_exception(EXCP05_BOUND);
686 FORCE_RET();
687 }
688
689 void OPPROTO op_cmpxchg8b(void)
690 {
691 uint64_t d;
692 int eflags;
693
694 eflags = cc_table[CC_OP].compute_all();
695 d = ldq((uint8_t *)A0);
696 if (d == (((uint64_t)EDX << 32) | EAX)) {
697 stq((uint8_t *)A0, ((uint64_t)ECX << 32) | EBX);
698 eflags |= CC_Z;
699 } else {
700 EDX = d >> 32;
701 EAX = d;
702 eflags &= ~CC_Z;
703 }
704 CC_SRC = eflags;
705 FORCE_RET();
706 }
707
708 /* string ops */
709
710 #define ldul ldl
711
712 #define SHIFT 0
713 #include "ops_template.h"
714 #undef SHIFT
715
716 #define SHIFT 1
717 #include "ops_template.h"
718 #undef SHIFT
719
720 #define SHIFT 2
721 #include "ops_template.h"
722 #undef SHIFT
723
724 /* sign extend */
725
726 void OPPROTO op_movsbl_T0_T0(void)
727 {
728 T0 = (int8_t)T0;
729 }
730
731 void OPPROTO op_movzbl_T0_T0(void)
732 {
733 T0 = (uint8_t)T0;
734 }
735
736 void OPPROTO op_movswl_T0_T0(void)
737 {
738 T0 = (int16_t)T0;
739 }
740
741 void OPPROTO op_movzwl_T0_T0(void)
742 {
743 T0 = (uint16_t)T0;
744 }
745
746 void OPPROTO op_movswl_EAX_AX(void)
747 {
748 EAX = (int16_t)EAX;
749 }
750
751 void OPPROTO op_movsbw_AX_AL(void)
752 {
753 EAX = (EAX & 0xffff0000) | ((int8_t)EAX & 0xffff);
754 }
755
756 void OPPROTO op_movslq_EDX_EAX(void)
757 {
758 EDX = (int32_t)EAX >> 31;
759 }
760
761 void OPPROTO op_movswl_DX_AX(void)
762 {
763 EDX = (EDX & 0xffff0000) | (((int16_t)EAX >> 15) & 0xffff);
764 }
765
766 /* push/pop */
767
768 void op_pushl_T0(void)
769 {
770 uint32_t offset;
771 offset = ESP - 4;
772 stl((void *)offset, T0);
773 /* modify ESP after to handle exceptions correctly */
774 ESP = offset;
775 }
776
777 void op_pushw_T0(void)
778 {
779 uint32_t offset;
780 offset = ESP - 2;
781 stw((void *)offset, T0);
782 /* modify ESP after to handle exceptions correctly */
783 ESP = offset;
784 }
785
786 void op_pushl_ss32_T0(void)
787 {
788 uint32_t offset;
789 offset = ESP - 4;
790 stl(env->seg_cache[R_SS].base + offset, T0);
791 /* modify ESP after to handle exceptions correctly */
792 ESP = offset;
793 }
794
795 void op_pushw_ss32_T0(void)
796 {
797 uint32_t offset;
798 offset = ESP - 2;
799 stw(env->seg_cache[R_SS].base + offset, T0);
800 /* modify ESP after to handle exceptions correctly */
801 ESP = offset;
802 }
803
804 void op_pushl_ss16_T0(void)
805 {
806 uint32_t offset;
807 offset = (ESP - 4) & 0xffff;
808 stl(env->seg_cache[R_SS].base + offset, T0);
809 /* modify ESP after to handle exceptions correctly */
810 ESP = (ESP & ~0xffff) | offset;
811 }
812
813 void op_pushw_ss16_T0(void)
814 {
815 uint32_t offset;
816 offset = (ESP - 2) & 0xffff;
817 stw(env->seg_cache[R_SS].base + offset, T0);
818 /* modify ESP after to handle exceptions correctly */
819 ESP = (ESP & ~0xffff) | offset;
820 }
821
822 /* NOTE: ESP update is done after */
823 void op_popl_T0(void)
824 {
825 T0 = ldl((void *)ESP);
826 }
827
828 void op_popw_T0(void)
829 {
830 T0 = lduw((void *)ESP);
831 }
832
833 void op_popl_ss32_T0(void)
834 {
835 T0 = ldl(env->seg_cache[R_SS].base + ESP);
836 }
837
838 void op_popw_ss32_T0(void)
839 {
840 T0 = lduw(env->seg_cache[R_SS].base + ESP);
841 }
842
843 void op_popl_ss16_T0(void)
844 {
845 T0 = ldl(env->seg_cache[R_SS].base + (ESP & 0xffff));
846 }
847
848 void op_popw_ss16_T0(void)
849 {
850 T0 = lduw(env->seg_cache[R_SS].base + (ESP & 0xffff));
851 }
852
853 void op_addl_ESP_4(void)
854 {
855 ESP += 4;
856 }
857
858 void op_addl_ESP_2(void)
859 {
860 ESP += 2;
861 }
862
863 void op_addw_ESP_4(void)
864 {
865 ESP = (ESP & ~0xffff) | ((ESP + 4) & 0xffff);
866 }
867
868 void op_addw_ESP_2(void)
869 {
870 ESP = (ESP & ~0xffff) | ((ESP + 2) & 0xffff);
871 }
872
873 void op_addl_ESP_im(void)
874 {
875 ESP += PARAM1;
876 }
877
878 void op_addw_ESP_im(void)
879 {
880 ESP = (ESP & ~0xffff) | ((ESP + PARAM1) & 0xffff);
881 }
882
883 /* rdtsc */
884 #ifndef __i386__
885 uint64_t emu_time;
886 #endif
887
888 void OPPROTO op_rdtsc(void)
889 {
890 uint64_t val;
891 #ifdef __i386__
892 asm("rdtsc" : "=A" (val));
893 #else
894 /* better than nothing: the time increases */
895 val = emu_time++;
896 #endif
897 EAX = val;
898 EDX = val >> 32;
899 }
900
901 /* We simulate a pre-MMX pentium as in valgrind */
902 #define CPUID_FP87 (1 << 0)
903 #define CPUID_VME (1 << 1)
904 #define CPUID_DE (1 << 2)
905 #define CPUID_PSE (1 << 3)
906 #define CPUID_TSC (1 << 4)
907 #define CPUID_MSR (1 << 5)
908 #define CPUID_PAE (1 << 6)
909 #define CPUID_MCE (1 << 7)
910 #define CPUID_CX8 (1 << 8)
911 #define CPUID_APIC (1 << 9)
912 #define CPUID_SEP (1 << 11) /* sysenter/sysexit */
913 #define CPUID_MTRR (1 << 12)
914 #define CPUID_PGE (1 << 13)
915 #define CPUID_MCA (1 << 14)
916 #define CPUID_CMOV (1 << 15)
917 /* ... */
918 #define CPUID_MMX (1 << 23)
919 #define CPUID_FXSR (1 << 24)
920 #define CPUID_SSE (1 << 25)
921 #define CPUID_SSE2 (1 << 26)
922
923 void helper_cpuid(void)
924 {
925 if (EAX == 0) {
926 EAX = 1; /* max EAX index supported */
927 EBX = 0x756e6547;
928 ECX = 0x6c65746e;
929 EDX = 0x49656e69;
930 } else {
931 /* EAX = 1 info */
932 EAX = 0x52b;
933 EBX = 0;
934 ECX = 0;
935 EDX = CPUID_FP87 | CPUID_VME | CPUID_DE | CPUID_PSE |
936 CPUID_TSC | CPUID_MSR | CPUID_MCE |
937 CPUID_CX8;
938 }
939 }
940
941 void OPPROTO op_cpuid(void)
942 {
943 helper_cpuid();
944 }
945
946 /* bcd */
947
948 /* XXX: exception */
949 void OPPROTO op_aam(void)
950 {
951 int base = PARAM1;
952 int al, ah;
953 al = EAX & 0xff;
954 ah = al / base;
955 al = al % base;
956 EAX = (EAX & ~0xffff) | al | (ah << 8);
957 CC_DST = al;
958 }
959
960 void OPPROTO op_aad(void)
961 {
962 int base = PARAM1;
963 int al, ah;
964 al = EAX & 0xff;
965 ah = (EAX >> 8) & 0xff;
966 al = ((ah * base) + al) & 0xff;
967 EAX = (EAX & ~0xffff) | al;
968 CC_DST = al;
969 }
970
971 void OPPROTO op_aaa(void)
972 {
973 int icarry;
974 int al, ah, af;
975 int eflags;
976
977 eflags = cc_table[CC_OP].compute_all();
978 af = eflags & CC_A;
979 al = EAX & 0xff;
980 ah = (EAX >> 8) & 0xff;
981
982 icarry = (al > 0xf9);
983 if (((al & 0x0f) > 9 ) || af) {
984 al = (al + 6) & 0x0f;
985 ah = (ah + 1 + icarry) & 0xff;
986 eflags |= CC_C | CC_A;
987 } else {
988 eflags &= ~(CC_C | CC_A);
989 al &= 0x0f;
990 }
991 EAX = (EAX & ~0xffff) | al | (ah << 8);
992 CC_SRC = eflags;
993 }
994
995 void OPPROTO op_aas(void)
996 {
997 int icarry;
998 int al, ah, af;
999 int eflags;
1000
1001 eflags = cc_table[CC_OP].compute_all();
1002 af = eflags & CC_A;
1003 al = EAX & 0xff;
1004 ah = (EAX >> 8) & 0xff;
1005
1006 icarry = (al < 6);
1007 if (((al & 0x0f) > 9 ) || af) {
1008 al = (al - 6) & 0x0f;
1009 ah = (ah - 1 - icarry) & 0xff;
1010 eflags |= CC_C | CC_A;
1011 } else {
1012 eflags &= ~(CC_C | CC_A);
1013 al &= 0x0f;
1014 }
1015 EAX = (EAX & ~0xffff) | al | (ah << 8);
1016 CC_SRC = eflags;
1017 }
1018
1019 void OPPROTO op_daa(void)
1020 {
1021 int al, af, cf;
1022 int eflags;
1023
1024 eflags = cc_table[CC_OP].compute_all();
1025 cf = eflags & CC_C;
1026 af = eflags & CC_A;
1027 al = EAX & 0xff;
1028
1029 eflags = 0;
1030 if (((al & 0x0f) > 9 ) || af) {
1031 al = (al + 6) & 0xff;
1032 eflags |= CC_A;
1033 }
1034 if ((al > 0x9f) || cf) {
1035 al = (al + 0x60) & 0xff;
1036 eflags |= CC_C;
1037 }
1038 EAX = (EAX & ~0xff) | al;
1039 /* well, speed is not an issue here, so we compute the flags by hand */
1040 eflags |= (al == 0) << 6; /* zf */
1041 eflags |= parity_table[al]; /* pf */
1042 eflags |= (al & 0x80); /* sf */
1043 CC_SRC = eflags;
1044 }
1045
1046 void OPPROTO op_das(void)
1047 {
1048 int al, al1, af, cf;
1049 int eflags;
1050
1051 eflags = cc_table[CC_OP].compute_all();
1052 cf = eflags & CC_C;
1053 af = eflags & CC_A;
1054 al = EAX & 0xff;
1055
1056 eflags = 0;
1057 al1 = al;
1058 if (((al & 0x0f) > 9 ) || af) {
1059 eflags |= CC_A;
1060 if (al < 6 || cf)
1061 eflags |= CC_C;
1062 al = (al - 6) & 0xff;
1063 }
1064 if ((al1 > 0x99) || cf) {
1065 al = (al - 0x60) & 0xff;
1066 eflags |= CC_C;
1067 }
1068 EAX = (EAX & ~0xff) | al;
1069 /* well, speed is not an issue here, so we compute the flags by hand */
1070 eflags |= (al == 0) << 6; /* zf */
1071 eflags |= parity_table[al]; /* pf */
1072 eflags |= (al & 0x80); /* sf */
1073 CC_SRC = eflags;
1074 }
1075
1076 /* segment handling */
1077
1078 /* XXX: use static VM86 information */
1079 void load_seg(int seg_reg, int selector)
1080 {
1081 SegmentCache *sc;
1082 SegmentDescriptorTable *dt;
1083 int index;
1084 uint32_t e1, e2;
1085 uint8_t *ptr;
1086
1087 env->segs[seg_reg] = selector;
1088 sc = &env->seg_cache[seg_reg];
1089 if (env->eflags & VM_MASK) {
1090 sc->base = (void *)(selector << 4);
1091 sc->limit = 0xffff;
1092 sc->seg_32bit = 0;
1093 } else {
1094 if (selector & 0x4)
1095 dt = &env->ldt;
1096 else
1097 dt = &env->gdt;
1098 index = selector & ~7;
1099 if ((index + 7) > dt->limit)
1100 raise_exception(EXCP0D_GPF);
1101 ptr = dt->base + index;
1102 e1 = ldl(ptr);
1103 e2 = ldl(ptr + 4);
1104 sc->base = (void *)((e1 >> 16) | ((e2 & 0xff) << 16) | (e2 & 0xff000000));
1105 sc->limit = (e1 & 0xffff) | (e2 & 0x000f0000);
1106 if (e2 & (1 << 23))
1107 sc->limit = (sc->limit << 12) | 0xfff;
1108 sc->seg_32bit = (e2 >> 22) & 1;
1109 #if 0
1110 fprintf(logfile, "load_seg: sel=0x%04x base=0x%08lx limit=0x%08lx seg_32bit=%d\n",
1111 selector, (unsigned long)sc->base, sc->limit, sc->seg_32bit);
1112 #endif
1113 }
1114 }
1115
1116 void OPPROTO op_movl_seg_T0(void)
1117 {
1118 load_seg(PARAM1, T0 & 0xffff);
1119 }
1120
1121 void OPPROTO op_movl_T0_seg(void)
1122 {
1123 T0 = env->segs[PARAM1];
1124 }
1125
1126 void OPPROTO op_movl_A0_seg(void)
1127 {
1128 A0 = *(unsigned long *)((char *)env + PARAM1);
1129 }
1130
1131 void OPPROTO op_addl_A0_seg(void)
1132 {
1133 A0 += *(unsigned long *)((char *)env + PARAM1);
1134 }
1135
1136 /* flags handling */
1137
1138 /* slow jumps cases (compute x86 flags) */
1139 void OPPROTO op_jo_cc(void)
1140 {
1141 int eflags;
1142 eflags = cc_table[CC_OP].compute_all();
1143 if (eflags & CC_O)
1144 EIP = PARAM1;
1145 else
1146 EIP = PARAM2;
1147 FORCE_RET();
1148 }
1149
1150 void OPPROTO op_jb_cc(void)
1151 {
1152 if (cc_table[CC_OP].compute_c())
1153 EIP = PARAM1;
1154 else
1155 EIP = PARAM2;
1156 FORCE_RET();
1157 }
1158
1159 void OPPROTO op_jz_cc(void)
1160 {
1161 int eflags;
1162 eflags = cc_table[CC_OP].compute_all();
1163 if (eflags & CC_Z)
1164 EIP = PARAM1;
1165 else
1166 EIP = PARAM2;
1167 FORCE_RET();
1168 }
1169
1170 void OPPROTO op_jbe_cc(void)
1171 {
1172 int eflags;
1173 eflags = cc_table[CC_OP].compute_all();
1174 if (eflags & (CC_Z | CC_C))
1175 EIP = PARAM1;
1176 else
1177 EIP = PARAM2;
1178 FORCE_RET();
1179 }
1180
1181 void OPPROTO op_js_cc(void)
1182 {
1183 int eflags;
1184 eflags = cc_table[CC_OP].compute_all();
1185 if (eflags & CC_S)
1186 EIP = PARAM1;
1187 else
1188 EIP = PARAM2;
1189 FORCE_RET();
1190 }
1191
1192 void OPPROTO op_jp_cc(void)
1193 {
1194 int eflags;
1195 eflags = cc_table[CC_OP].compute_all();
1196 if (eflags & CC_P)
1197 EIP = PARAM1;
1198 else
1199 EIP = PARAM2;
1200 FORCE_RET();
1201 }
1202
1203 void OPPROTO op_jl_cc(void)
1204 {
1205 int eflags;
1206 eflags = cc_table[CC_OP].compute_all();
1207 if ((eflags ^ (eflags >> 4)) & 0x80)
1208 EIP = PARAM1;
1209 else
1210 EIP = PARAM2;
1211 FORCE_RET();
1212 }
1213
1214 void OPPROTO op_jle_cc(void)
1215 {
1216 int eflags;
1217 eflags = cc_table[CC_OP].compute_all();
1218 if (((eflags ^ (eflags >> 4)) & 0x80) || (eflags & CC_Z))
1219 EIP = PARAM1;
1220 else
1221 EIP = PARAM2;
1222 FORCE_RET();
1223 }
1224
1225 /* slow set cases (compute x86 flags) */
1226 void OPPROTO op_seto_T0_cc(void)
1227 {
1228 int eflags;
1229 eflags = cc_table[CC_OP].compute_all();
1230 T0 = (eflags >> 11) & 1;
1231 }
1232
1233 void OPPROTO op_setb_T0_cc(void)
1234 {
1235 T0 = cc_table[CC_OP].compute_c();
1236 }
1237
1238 void OPPROTO op_setz_T0_cc(void)
1239 {
1240 int eflags;
1241 eflags = cc_table[CC_OP].compute_all();
1242 T0 = (eflags >> 6) & 1;
1243 }
1244
1245 void OPPROTO op_setbe_T0_cc(void)
1246 {
1247 int eflags;
1248 eflags = cc_table[CC_OP].compute_all();
1249 T0 = (eflags & (CC_Z | CC_C)) != 0;
1250 }
1251
1252 void OPPROTO op_sets_T0_cc(void)
1253 {
1254 int eflags;
1255 eflags = cc_table[CC_OP].compute_all();
1256 T0 = (eflags >> 7) & 1;
1257 }
1258
1259 void OPPROTO op_setp_T0_cc(void)
1260 {
1261 int eflags;
1262 eflags = cc_table[CC_OP].compute_all();
1263 T0 = (eflags >> 2) & 1;
1264 }
1265
1266 void OPPROTO op_setl_T0_cc(void)
1267 {
1268 int eflags;
1269 eflags = cc_table[CC_OP].compute_all();
1270 T0 = ((eflags ^ (eflags >> 4)) >> 7) & 1;
1271 }
1272
1273 void OPPROTO op_setle_T0_cc(void)
1274 {
1275 int eflags;
1276 eflags = cc_table[CC_OP].compute_all();
1277 T0 = (((eflags ^ (eflags >> 4)) & 0x80) || (eflags & CC_Z)) != 0;
1278 }
1279
1280 void OPPROTO op_xor_T0_1(void)
1281 {
1282 T0 ^= 1;
1283 }
1284
1285 void OPPROTO op_set_cc_op(void)
1286 {
1287 CC_OP = PARAM1;
1288 }
1289
1290 #define FL_UPDATE_MASK32 (TF_MASK | AC_MASK | ID_MASK)
1291 #define FL_UPDATE_MASK16 (TF_MASK)
1292
1293 void OPPROTO op_movl_eflags_T0(void)
1294 {
1295 int eflags;
1296 eflags = T0;
1297 CC_SRC = eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
1298 DF = 1 - (2 * ((eflags >> 10) & 1));
1299 /* we also update some system flags as in user mode */
1300 env->eflags = (env->eflags & ~FL_UPDATE_MASK32) | (eflags & FL_UPDATE_MASK32);
1301 }
1302
1303 void OPPROTO op_movw_eflags_T0(void)
1304 {
1305 int eflags;
1306 eflags = T0;
1307 CC_SRC = eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
1308 DF = 1 - (2 * ((eflags >> 10) & 1));
1309 /* we also update some system flags as in user mode */
1310 env->eflags = (env->eflags & ~FL_UPDATE_MASK16) | (eflags & FL_UPDATE_MASK16);
1311 }
1312
1313 /* vm86 version */
1314 void OPPROTO op_movw_eflags_T0_vm(void)
1315 {
1316 int eflags;
1317 eflags = T0;
1318 CC_SRC = eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
1319 DF = 1 - (2 * ((eflags >> 10) & 1));
1320 /* we also update some system flags as in user mode */
1321 env->eflags = (env->eflags & ~(FL_UPDATE_MASK16 | VIF_MASK)) |
1322 (eflags & FL_UPDATE_MASK16);
1323 if (eflags & IF_MASK) {
1324 env->eflags |= VIF_MASK;
1325 if (env->eflags & VIP_MASK) {
1326 EIP = PARAM1;
1327 raise_exception(EXCP0D_GPF);
1328 }
1329 }
1330 FORCE_RET();
1331 }
1332
1333 void OPPROTO op_movl_eflags_T0_vm(void)
1334 {
1335 int eflags;
1336 eflags = T0;
1337 CC_SRC = eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
1338 DF = 1 - (2 * ((eflags >> 10) & 1));
1339 /* we also update some system flags as in user mode */
1340 env->eflags = (env->eflags & ~(FL_UPDATE_MASK32 | VIF_MASK)) |
1341 (eflags & FL_UPDATE_MASK32);
1342 if (eflags & IF_MASK) {
1343 env->eflags |= VIF_MASK;
1344 if (env->eflags & VIP_MASK) {
1345 EIP = PARAM1;
1346 raise_exception(EXCP0D_GPF);
1347 }
1348 }
1349 FORCE_RET();
1350 }
1351
1352 /* XXX: compute only O flag */
1353 void OPPROTO op_movb_eflags_T0(void)
1354 {
1355 int of;
1356 of = cc_table[CC_OP].compute_all() & CC_O;
1357 CC_SRC = (T0 & (CC_S | CC_Z | CC_A | CC_P | CC_C)) | of;
1358 }
1359
1360 void OPPROTO op_movl_T0_eflags(void)
1361 {
1362 int eflags;
1363 eflags = cc_table[CC_OP].compute_all();
1364 eflags |= (DF & DF_MASK);
1365 eflags |= env->eflags & ~(VM_MASK | RF_MASK);
1366 T0 = eflags;
1367 }
1368
1369 /* vm86 version */
1370 void OPPROTO op_movl_T0_eflags_vm(void)
1371 {
1372 int eflags;
1373 eflags = cc_table[CC_OP].compute_all();
1374 eflags |= (DF & DF_MASK);
1375 eflags |= env->eflags & ~(VM_MASK | RF_MASK | IF_MASK);
1376 if (env->eflags & VIF_MASK)
1377 eflags |= IF_MASK;
1378 T0 = eflags;
1379 }
1380
1381 void OPPROTO op_cld(void)
1382 {
1383 DF = 1;
1384 }
1385
1386 void OPPROTO op_std(void)
1387 {
1388 DF = -1;
1389 }
1390
1391 void OPPROTO op_clc(void)
1392 {
1393 int eflags;
1394 eflags = cc_table[CC_OP].compute_all();
1395 eflags &= ~CC_C;
1396 CC_SRC = eflags;
1397 }
1398
1399 void OPPROTO op_stc(void)
1400 {
1401 int eflags;
1402 eflags = cc_table[CC_OP].compute_all();
1403 eflags |= CC_C;
1404 CC_SRC = eflags;
1405 }
1406
1407 void OPPROTO op_cmc(void)
1408 {
1409 int eflags;
1410 eflags = cc_table[CC_OP].compute_all();
1411 eflags ^= CC_C;
1412 CC_SRC = eflags;
1413 }
1414
1415 void OPPROTO op_salc(void)
1416 {
1417 int cf;
1418 cf = cc_table[CC_OP].compute_c();
1419 EAX = (EAX & ~0xff) | ((-cf) & 0xff);
1420 }
1421
1422 static int compute_all_eflags(void)
1423 {
1424 return CC_SRC;
1425 }
1426
1427 static int compute_c_eflags(void)
1428 {
1429 return CC_SRC & CC_C;
1430 }
1431
1432 static int compute_c_mul(void)
1433 {
1434 int cf;
1435 cf = (CC_SRC != 0);
1436 return cf;
1437 }
1438
1439 static int compute_all_mul(void)
1440 {
1441 int cf, pf, af, zf, sf, of;
1442 cf = (CC_SRC != 0);
1443 pf = 0; /* undefined */
1444 af = 0; /* undefined */
1445 zf = 0; /* undefined */
1446 sf = 0; /* undefined */
1447 of = cf << 11;
1448 return cf | pf | af | zf | sf | of;
1449 }
1450
1451 CCTable cc_table[CC_OP_NB] = {
1452 [CC_OP_DYNAMIC] = { /* should never happen */ },
1453
1454 [CC_OP_EFLAGS] = { compute_all_eflags, compute_c_eflags },
1455
1456 [CC_OP_MUL] = { compute_all_mul, compute_c_mul },
1457
1458 [CC_OP_ADDB] = { compute_all_addb, compute_c_addb },
1459 [CC_OP_ADDW] = { compute_all_addw, compute_c_addw },
1460 [CC_OP_ADDL] = { compute_all_addl, compute_c_addl },
1461
1462 [CC_OP_ADCB] = { compute_all_adcb, compute_c_adcb },
1463 [CC_OP_ADCW] = { compute_all_adcw, compute_c_adcw },
1464 [CC_OP_ADCL] = { compute_all_adcl, compute_c_adcl },
1465
1466 [CC_OP_SUBB] = { compute_all_subb, compute_c_subb },
1467 [CC_OP_SUBW] = { compute_all_subw, compute_c_subw },
1468 [CC_OP_SUBL] = { compute_all_subl, compute_c_subl },
1469
1470 [CC_OP_SBBB] = { compute_all_sbbb, compute_c_sbbb },
1471 [CC_OP_SBBW] = { compute_all_sbbw, compute_c_sbbw },
1472 [CC_OP_SBBL] = { compute_all_sbbl, compute_c_sbbl },
1473
1474 [CC_OP_LOGICB] = { compute_all_logicb, compute_c_logicb },
1475 [CC_OP_LOGICW] = { compute_all_logicw, compute_c_logicw },
1476 [CC_OP_LOGICL] = { compute_all_logicl, compute_c_logicl },
1477
1478 [CC_OP_INCB] = { compute_all_incb, compute_c_incl },
1479 [CC_OP_INCW] = { compute_all_incw, compute_c_incl },
1480 [CC_OP_INCL] = { compute_all_incl, compute_c_incl },
1481
1482 [CC_OP_DECB] = { compute_all_decb, compute_c_incl },
1483 [CC_OP_DECW] = { compute_all_decw, compute_c_incl },
1484 [CC_OP_DECL] = { compute_all_decl, compute_c_incl },
1485
1486 [CC_OP_SHLB] = { compute_all_shlb, compute_c_shll },
1487 [CC_OP_SHLW] = { compute_all_shlw, compute_c_shll },
1488 [CC_OP_SHLL] = { compute_all_shll, compute_c_shll },
1489
1490 [CC_OP_SARB] = { compute_all_sarb, compute_c_shll },
1491 [CC_OP_SARW] = { compute_all_sarw, compute_c_shll },
1492 [CC_OP_SARL] = { compute_all_sarl, compute_c_shll },
1493 };
1494
1495 /* floating point support. Some of the code for complicated x87
1496 functions comes from the LGPL'ed x86 emulator found in the Willows
1497 TWIN windows emulator. */
1498
1499 #ifdef USE_X86LDOUBLE
1500 /* use long double functions */
1501 #define lrint lrintl
1502 #define llrint llrintl
1503 #define fabs fabsl
1504 #define sin sinl
1505 #define cos cosl
1506 #define sqrt sqrtl
1507 #define pow powl
1508 #define log logl
1509 #define tan tanl
1510 #define atan2 atan2l
1511 #define floor floorl
1512 #define ceil ceill
1513 #define rint rintl
1514 #endif
1515
1516 extern int lrint(CPU86_LDouble x);
1517 extern int64_t llrint(CPU86_LDouble x);
1518 extern CPU86_LDouble fabs(CPU86_LDouble x);
1519 extern CPU86_LDouble sin(CPU86_LDouble x);
1520 extern CPU86_LDouble cos(CPU86_LDouble x);
1521 extern CPU86_LDouble sqrt(CPU86_LDouble x);
1522 extern CPU86_LDouble pow(CPU86_LDouble, CPU86_LDouble);
1523 extern CPU86_LDouble log(CPU86_LDouble x);
1524 extern CPU86_LDouble tan(CPU86_LDouble x);
1525 extern CPU86_LDouble atan2(CPU86_LDouble, CPU86_LDouble);
1526 extern CPU86_LDouble floor(CPU86_LDouble x);
1527 extern CPU86_LDouble ceil(CPU86_LDouble x);
1528 extern CPU86_LDouble rint(CPU86_LDouble x);
1529
1530 #if defined(__powerpc__)
1531 extern CPU86_LDouble copysign(CPU86_LDouble, CPU86_LDouble);
1532
1533 /* correct (but slow) PowerPC rint() (glibc version is incorrect) */
1534 double qemu_rint(double x)
1535 {
1536 double y = 4503599627370496.0;
1537 if (fabs(x) >= y)
1538 return x;
1539 if (x < 0)
1540 y = -y;
1541 y = (x + y) - y;
1542 if (y == 0.0)
1543 y = copysign(y, x);
1544 return y;
1545 }
1546
1547 #define rint qemu_rint
1548 #endif
1549
1550 #define RC_MASK 0xc00
1551 #define RC_NEAR 0x000
1552 #define RC_DOWN 0x400
1553 #define RC_UP 0x800
1554 #define RC_CHOP 0xc00
1555
1556 #define MAXTAN 9223372036854775808.0
1557
1558 #ifdef USE_X86LDOUBLE
1559
1560 /* only for x86 */
1561 typedef union {
1562 long double d;
1563 struct {
1564 unsigned long long lower;
1565 unsigned short upper;
1566 } l;
1567 } CPU86_LDoubleU;
1568
1569 /* the following deal with x86 long double-precision numbers */
1570 #define MAXEXPD 0x7fff
1571 #define EXPBIAS 16383
1572 #define EXPD(fp) (fp.l.upper & 0x7fff)
1573 #define SIGND(fp) ((fp.l.upper) & 0x8000)
1574 #define MANTD(fp) (fp.l.lower)
1575 #define BIASEXPONENT(fp) fp.l.upper = (fp.l.upper & ~(0x7fff)) | EXPBIAS
1576
1577 #else
1578
1579 typedef union {
1580 double d;
1581 #ifndef WORDS_BIGENDIAN
1582 struct {
1583 unsigned long lower;
1584 long upper;
1585 } l;
1586 #else
1587 struct {
1588 long upper;
1589 unsigned long lower;
1590 } l;
1591 #endif
1592 long long ll;
1593 } CPU86_LDoubleU;
1594
1595 /* the following deal with IEEE double-precision numbers */
1596 #define MAXEXPD 0x7ff
1597 #define EXPBIAS 1023
1598 #define EXPD(fp) (((fp.l.upper) >> 20) & 0x7FF)
1599 #define SIGND(fp) ((fp.l.upper) & 0x80000000)
1600 #define MANTD(fp) (fp.ll & ((1LL << 52) - 1))
1601 #define BIASEXPONENT(fp) fp.l.upper = (fp.l.upper & ~(0x7ff << 20)) | (EXPBIAS << 20)
1602 #endif
1603
1604 /* fp load FT0 */
1605
1606 void OPPROTO op_flds_FT0_A0(void)
1607 {
1608 FT0 = ldfl((void *)A0);
1609 }
1610
1611 void OPPROTO op_fldl_FT0_A0(void)
1612 {
1613 FT0 = ldfq((void *)A0);
1614 }
1615
1616 /* helpers are needed to avoid static constant reference. XXX: find a better way */
1617 #ifdef USE_INT_TO_FLOAT_HELPERS
1618
1619 void helper_fild_FT0_A0(void)
1620 {
1621 FT0 = (CPU86_LDouble)ldsw((void *)A0);
1622 }
1623
1624 void helper_fildl_FT0_A0(void)
1625 {
1626 FT0 = (CPU86_LDouble)((int32_t)ldl((void *)A0));
1627 }
1628
1629 void helper_fildll_FT0_A0(void)
1630 {
1631 FT0 = (CPU86_LDouble)((int64_t)ldq((void *)A0));
1632 }
1633
1634 void OPPROTO op_fild_FT0_A0(void)
1635 {
1636 helper_fild_FT0_A0();
1637 }
1638
1639 void OPPROTO op_fildl_FT0_A0(void)
1640 {
1641 helper_fildl_FT0_A0();
1642 }
1643
1644 void OPPROTO op_fildll_FT0_A0(void)
1645 {
1646 helper_fildll_FT0_A0();
1647 }
1648
1649 #else
1650
1651 void OPPROTO op_fild_FT0_A0(void)
1652 {
1653 FT0 = (CPU86_LDouble)ldsw((void *)A0);
1654 }
1655
1656 void OPPROTO op_fildl_FT0_A0(void)
1657 {
1658 FT0 = (CPU86_LDouble)((int32_t)ldl((void *)A0));
1659 }
1660
1661 void OPPROTO op_fildll_FT0_A0(void)
1662 {
1663 FT0 = (CPU86_LDouble)((int64_t)ldq((void *)A0));
1664 }
1665 #endif
1666
1667 /* fp load ST0 */
1668
1669 void OPPROTO op_flds_ST0_A0(void)
1670 {
1671 ST0 = ldfl((void *)A0);
1672 }
1673
1674 void OPPROTO op_fldl_ST0_A0(void)
1675 {
1676 ST0 = ldfq((void *)A0);
1677 }
1678
1679 #ifdef USE_X86LDOUBLE
1680 void OPPROTO op_fldt_ST0_A0(void)
1681 {
1682 ST0 = *(long double *)A0;
1683 }
1684 #else
1685 void helper_fldt_ST0_A0(void)
1686 {
1687 CPU86_LDoubleU temp;
1688 int upper, e;
1689 /* mantissa */
1690 upper = lduw((uint8_t *)A0 + 8);
1691 /* XXX: handle overflow ? */
1692 e = (upper & 0x7fff) - 16383 + EXPBIAS; /* exponent */
1693 e |= (upper >> 4) & 0x800; /* sign */
1694 temp.ll = ((ldq((void *)A0) >> 11) & ((1LL << 52) - 1)) | ((uint64_t)e << 52);
1695 ST0 = temp.d;
1696 }
1697
1698 void OPPROTO op_fldt_ST0_A0(void)
1699 {
1700 helper_fldt_ST0_A0();
1701 }
1702 #endif
1703
1704 /* helpers are needed to avoid static constant reference. XXX: find a better way */
1705 #ifdef USE_INT_TO_FLOAT_HELPERS
1706
1707 void helper_fild_ST0_A0(void)
1708 {
1709 ST0 = (CPU86_LDouble)ldsw((void *)A0);
1710 }
1711
1712 void helper_fildl_ST0_A0(void)
1713 {
1714 ST0 = (CPU86_LDouble)((int32_t)ldl((void *)A0));
1715 }
1716
1717 void helper_fildll_ST0_A0(void)
1718 {
1719 ST0 = (CPU86_LDouble)((int64_t)ldq((void *)A0));
1720 }
1721
1722 void OPPROTO op_fild_ST0_A0(void)
1723 {
1724 helper_fild_ST0_A0();
1725 }
1726
1727 void OPPROTO op_fildl_ST0_A0(void)
1728 {
1729 helper_fildl_ST0_A0();
1730 }
1731
1732 void OPPROTO op_fildll_ST0_A0(void)
1733 {
1734 helper_fildll_ST0_A0();
1735 }
1736
1737 #else
1738
1739 void OPPROTO op_fild_ST0_A0(void)
1740 {
1741 ST0 = (CPU86_LDouble)ldsw((void *)A0);
1742 }
1743
1744 void OPPROTO op_fildl_ST0_A0(void)
1745 {
1746 ST0 = (CPU86_LDouble)((int32_t)ldl((void *)A0));
1747 }
1748
1749 void OPPROTO op_fildll_ST0_A0(void)
1750 {
1751 ST0 = (CPU86_LDouble)((int64_t)ldq((void *)A0));
1752 }
1753
1754 #endif
1755
1756 /* fp store */
1757
1758 void OPPROTO op_fsts_ST0_A0(void)
1759 {
1760 stfl((void *)A0, (float)ST0);
1761 }
1762
1763 void OPPROTO op_fstl_ST0_A0(void)
1764 {
1765 stfq((void *)A0, (double)ST0);
1766 }
1767
1768 #ifdef USE_X86LDOUBLE
1769 void OPPROTO op_fstt_ST0_A0(void)
1770 {
1771 *(long double *)A0 = ST0;
1772 }
1773 #else
1774 void helper_fstt_ST0_A0(void)
1775 {
1776 CPU86_LDoubleU temp;
1777 int e;
1778 temp.d = ST0;
1779 /* mantissa */
1780 stq((void *)A0, (MANTD(temp) << 11) | (1LL << 63));
1781 /* exponent + sign */
1782 e = EXPD(temp) - EXPBIAS + 16383;
1783 e |= SIGND(temp) >> 16;
1784 stw((uint8_t *)A0 + 8, e);
1785 }
1786
1787 void OPPROTO op_fstt_ST0_A0(void)
1788 {
1789 helper_fstt_ST0_A0();
1790 }
1791 #endif
1792
1793 void OPPROTO op_fist_ST0_A0(void)
1794 {
1795 int val;
1796 val = lrint(ST0);
1797 stw((void *)A0, val);
1798 }
1799
1800 void OPPROTO op_fistl_ST0_A0(void)
1801 {
1802 int val;
1803 val = lrint(ST0);
1804 stl((void *)A0, val);
1805 }
1806
1807 void OPPROTO op_fistll_ST0_A0(void)
1808 {
1809 int64_t val;
1810 val = llrint(ST0);
1811 stq((void *)A0, val);
1812 }
1813
1814 /* BCD ops */
1815
1816 #define MUL10(iv) ( iv + iv + (iv << 3) )
1817
1818 void helper_fbld_ST0_A0(void)
1819 {
1820 uint8_t *seg;
1821 CPU86_LDouble fpsrcop;
1822 int m32i;
1823 unsigned int v;
1824
1825 /* in this code, seg/m32i will be used as temporary ptr/int */
1826 seg = (uint8_t *)A0 + 8;
1827 v = ldub(seg--);
1828 /* XXX: raise exception */
1829 if (v != 0)
1830 return;
1831 v = ldub(seg--);
1832 /* XXX: raise exception */
1833 if ((v & 0xf0) != 0)
1834 return;
1835 m32i = v; /* <-- d14 */
1836 v = ldub(seg--);
1837 m32i = MUL10(m32i) + (v >> 4); /* <-- val * 10 + d13 */
1838 m32i = MUL10(m32i) + (v & 0xf); /* <-- val * 10 + d12 */
1839 v = ldub(seg--);
1840 m32i = MUL10(m32i) + (v >> 4); /* <-- val * 10 + d11 */
1841 m32i = MUL10(m32i) + (v & 0xf); /* <-- val * 10 + d10 */
1842 v = ldub(seg--);
1843 m32i = MUL10(m32i) + (v >> 4); /* <-- val * 10 + d9 */
1844 m32i = MUL10(m32i) + (v & 0xf); /* <-- val * 10 + d8 */
1845 fpsrcop = ((CPU86_LDouble)m32i) * 100000000.0;
1846
1847 v = ldub(seg--);
1848 m32i = (v >> 4); /* <-- d7 */
1849 m32i = MUL10(m32i) + (v & 0xf); /* <-- val * 10 + d6 */
1850 v = ldub(seg--);
1851 m32i = MUL10(m32i) + (v >> 4); /* <-- val * 10 + d5 */
1852 m32i = MUL10(m32i) + (v & 0xf); /* <-- val * 10 + d4 */
1853 v = ldub(seg--);
1854 m32i = MUL10(m32i) + (v >> 4); /* <-- val * 10 + d3 */
1855 m32i = MUL10(m32i) + (v & 0xf); /* <-- val * 10 + d2 */
1856 v = ldub(seg);
1857 m32i = MUL10(m32i) + (v >> 4); /* <-- val * 10 + d1 */
1858 m32i = MUL10(m32i) + (v & 0xf); /* <-- val * 10 + d0 */
1859 fpsrcop += ((CPU86_LDouble)m32i);
1860 if ( ldub(seg+9) & 0x80 )
1861 fpsrcop = -fpsrcop;
1862 ST0 = fpsrcop;
1863 }
1864
1865 void OPPROTO op_fbld_ST0_A0(void)
1866 {
1867 helper_fbld_ST0_A0();
1868 }
1869
1870 void helper_fbst_ST0_A0(void)
1871 {
1872 CPU86_LDouble fptemp;
1873 CPU86_LDouble fpsrcop;
1874 int v;
1875 uint8_t *mem_ref, *mem_end;
1876
1877 fpsrcop = rint(ST0);
1878 mem_ref = (uint8_t *)A0;
1879 mem_end = mem_ref + 8;
1880 if ( fpsrcop < 0.0 ) {
1881 stw(mem_end, 0x8000);
1882 fpsrcop = -fpsrcop;
1883 } else {
1884 stw(mem_end, 0x0000);
1885 }
1886 while (mem_ref < mem_end) {
1887 if (fpsrcop == 0.0)
1888 break;
1889 fptemp = floor(fpsrcop/10.0);
1890 v = ((int)(fpsrcop - fptemp*10.0));
1891 if (fptemp == 0.0) {
1892 stb(mem_ref++, v);
1893 break;
1894 }
1895 fpsrcop = fptemp;
1896 fptemp = floor(fpsrcop/10.0);
1897 v |= (((int)(fpsrcop - fptemp*10.0)) << 4);
1898 stb(mem_ref++, v);
1899 fpsrcop = fptemp;
1900 }
1901 while (mem_ref < mem_end) {
1902 stb(mem_ref++, 0);
1903 }
1904 }
1905
1906 void OPPROTO op_fbst_ST0_A0(void)
1907 {
1908 helper_fbst_ST0_A0();
1909 }
1910
1911 /* FPU move */
1912
1913 static inline void fpush(void)
1914 {
1915 env->fpstt = (env->fpstt - 1) & 7;
1916 env->fptags[env->fpstt] = 0; /* validate stack entry */
1917 }
1918
1919 static inline void fpop(void)
1920 {
1921 env->fptags[env->fpstt] = 1; /* invvalidate stack entry */
1922 env->fpstt = (env->fpstt + 1) & 7;
1923 }
1924
1925 void OPPROTO op_fpush(void)
1926 {
1927 fpush();
1928 }
1929
1930 void OPPROTO op_fpop(void)
1931 {
1932 fpop();
1933 }
1934
1935 void OPPROTO op_fdecstp(void)
1936 {
1937 env->fpstt = (env->fpstt - 1) & 7;
1938 env->fpus &= (~0x4700);
1939 }
1940
1941 void OPPROTO op_fincstp(void)
1942 {
1943 env->fpstt = (env->fpstt + 1) & 7;
1944 env->fpus &= (~0x4700);
1945 }
1946
1947 void OPPROTO op_fmov_ST0_FT0(void)
1948 {
1949 ST0 = FT0;
1950 }
1951
1952 void OPPROTO op_fmov_FT0_STN(void)
1953 {
1954 FT0 = ST(PARAM1);
1955 }
1956
1957 void OPPROTO op_fmov_ST0_STN(void)
1958 {
1959 ST0 = ST(PARAM1);
1960 }
1961
1962 void OPPROTO op_fmov_STN_ST0(void)
1963 {
1964 ST(PARAM1) = ST0;
1965 }
1966
1967 void OPPROTO op_fxchg_ST0_STN(void)
1968 {
1969 CPU86_LDouble tmp;
1970 tmp = ST(PARAM1);
1971 ST(PARAM1) = ST0;
1972 ST0 = tmp;
1973 }
1974
1975 /* FPU operations */
1976
1977 /* XXX: handle nans */
1978 void OPPROTO op_fcom_ST0_FT0(void)
1979 {
1980 env->fpus &= (~0x4500); /* (C3,C2,C0) <-- 000 */
1981 if (ST0 < FT0)
1982 env->fpus |= 0x100; /* (C3,C2,C0) <-- 001 */
1983 else if (ST0 == FT0)
1984 env->fpus |= 0x4000; /* (C3,C2,C0) <-- 100 */
1985 FORCE_RET();
1986 }
1987
1988 /* XXX: handle nans */
1989 void OPPROTO op_fucom_ST0_FT0(void)
1990 {
1991 env->fpus &= (~0x4500); /* (C3,C2,C0) <-- 000 */
1992 if (ST0 < FT0)
1993 env->fpus |= 0x100; /* (C3,C2,C0) <-- 001 */
1994 else if (ST0 == FT0)
1995 env->fpus |= 0x4000; /* (C3,C2,C0) <-- 100 */
1996 FORCE_RET();
1997 }
1998
1999 void OPPROTO op_fadd_ST0_FT0(void)
2000 {
2001 ST0 += FT0;
2002 }
2003
2004 void OPPROTO op_fmul_ST0_FT0(void)
2005 {
2006 ST0 *= FT0;
2007 }
2008
2009 void OPPROTO op_fsub_ST0_FT0(void)
2010 {
2011 ST0 -= FT0;
2012 }
2013
2014 void OPPROTO op_fsubr_ST0_FT0(void)
2015 {
2016 ST0 = FT0 - ST0;
2017 }
2018
2019 void OPPROTO op_fdiv_ST0_FT0(void)
2020 {
2021 ST0 /= FT0;
2022 }
2023
2024 void OPPROTO op_fdivr_ST0_FT0(void)
2025 {
2026 ST0 = FT0 / ST0;
2027 }
2028
2029 /* fp operations between STN and ST0 */
2030
2031 void OPPROTO op_fadd_STN_ST0(void)
2032 {
2033 ST(PARAM1) += ST0;
2034 }
2035
2036 void OPPROTO op_fmul_STN_ST0(void)
2037 {
2038 ST(PARAM1) *= ST0;
2039 }
2040
2041 void OPPROTO op_fsub_STN_ST0(void)
2042 {
2043 ST(PARAM1) -= ST0;
2044 }
2045
2046 void OPPROTO op_fsubr_STN_ST0(void)
2047 {
2048 CPU86_LDouble *p;
2049 p = &ST(PARAM1);
2050 *p = ST0 - *p;
2051 }
2052
2053 void OPPROTO op_fdiv_STN_ST0(void)
2054 {
2055 ST(PARAM1) /= ST0;
2056 }
2057
2058 void OPPROTO op_fdivr_STN_ST0(void)
2059 {
2060 CPU86_LDouble *p;
2061 p = &ST(PARAM1);
2062 *p = ST0 / *p;
2063 }
2064
2065 /* misc FPU operations */
2066 void OPPROTO op_fchs_ST0(void)
2067 {
2068 ST0 = -ST0;
2069 }
2070
2071 void OPPROTO op_fabs_ST0(void)
2072 {
2073 ST0 = fabs(ST0);
2074 }
2075
2076 void helper_fxam_ST0(void)
2077 {
2078 CPU86_LDoubleU temp;
2079 int expdif;
2080
2081 temp.d = ST0;
2082
2083 env->fpus &= (~0x4700); /* (C3,C2,C1,C0) <-- 0000 */
2084 if (SIGND(temp))
2085 env->fpus |= 0x200; /* C1 <-- 1 */
2086
2087 expdif = EXPD(temp);
2088 if (expdif == MAXEXPD) {
2089 if (MANTD(temp) == 0)
2090 env->fpus |= 0x500 /*Infinity*/;
2091 else
2092 env->fpus |= 0x100 /*NaN*/;
2093 } else if (expdif == 0) {
2094 if (MANTD(temp) == 0)
2095 env->fpus |= 0x4000 /*Zero*/;
2096 else
2097 env->fpus |= 0x4400 /*Denormal*/;
2098 } else {
2099 env->fpus |= 0x400;
2100 }
2101 }
2102
2103 void OPPROTO op_fxam_ST0(void)
2104 {
2105 helper_fxam_ST0();
2106 }
2107
2108 void OPPROTO op_fld1_ST0(void)
2109 {
2110 ST0 = *(CPU86_LDouble *)&f15rk[1];
2111 }
2112
2113 void OPPROTO op_fldl2t_ST0(void)
2114 {
2115 ST0 = *(CPU86_LDouble *)&f15rk[6];
2116 }
2117
2118 void OPPROTO op_fldl2e_ST0(void)
2119 {
2120 ST0 = *(CPU86_LDouble *)&f15rk[5];
2121 }
2122
2123 void OPPROTO op_fldpi_ST0(void)
2124 {
2125 ST0 = *(CPU86_LDouble *)&f15rk[2];
2126 }
2127
2128 void OPPROTO op_fldlg2_ST0(void)
2129 {
2130 ST0 = *(CPU86_LDouble *)&f15rk[3];
2131 }
2132
2133 void OPPROTO op_fldln2_ST0(void)
2134 {
2135 ST0 = *(CPU86_LDouble *)&f15rk[4];
2136 }
2137
2138 void OPPROTO op_fldz_ST0(void)
2139 {
2140 ST0 = *(CPU86_LDouble *)&f15rk[0];
2141 }
2142
2143 void OPPROTO op_fldz_FT0(void)
2144 {
2145 ST0 = *(CPU86_LDouble *)&f15rk[0];
2146 }
2147
2148 void helper_f2xm1(void)
2149 {
2150 ST0 = pow(2.0,ST0) - 1.0;
2151 }
2152
2153 void helper_fyl2x(void)
2154 {
2155 CPU86_LDouble fptemp;
2156
2157 fptemp = ST0;
2158 if (fptemp>0.0){
2159 fptemp = log(fptemp)/log(2.0); /* log2(ST) */
2160 ST1 *= fptemp;
2161 fpop();
2162 } else {
2163 env->fpus &= (~0x4700);
2164 env->fpus |= 0x400;
2165 }
2166 }
2167
2168 void helper_fptan(void)
2169 {
2170 CPU86_LDouble fptemp;
2171
2172 fptemp = ST0;
2173 if((fptemp > MAXTAN)||(fptemp < -MAXTAN)) {
2174 env->fpus |= 0x400;
2175 } else {
2176 ST0 = tan(fptemp);
2177 fpush();
2178 ST0 = 1.0;
2179 env->fpus &= (~0x400); /* C2 <-- 0 */
2180 /* the above code is for |arg| < 2**52 only */
2181 }
2182 }
2183
2184 void helper_fpatan(void)
2185 {
2186 CPU86_LDouble fptemp, fpsrcop;
2187
2188 fpsrcop = ST1;
2189 fptemp = ST0;
2190 ST1 = atan2(fpsrcop,fptemp);
2191 fpop();
2192 }
2193
2194 void helper_fxtract(void)
2195 {
2196 CPU86_LDoubleU temp;
2197 unsigned int expdif;
2198
2199 temp.d = ST0;
2200 expdif = EXPD(temp) - EXPBIAS;
2201 /*DP exponent bias*/
2202 ST0 = expdif;
2203 fpush();
2204 BIASEXPONENT(temp);
2205 ST0 = temp.d;
2206 }
2207
2208 void helper_fprem1(void)
2209 {
2210 CPU86_LDouble dblq, fpsrcop, fptemp;
2211 CPU86_LDoubleU fpsrcop1, fptemp1;
2212 int expdif;
2213 int q;
2214
2215 fpsrcop = ST0;
2216 fptemp = ST1;
2217 fpsrcop1.d = fpsrcop;
2218 fptemp1.d = fptemp;
2219 expdif = EXPD(fpsrcop1) - EXPD(fptemp1);
2220 if (expdif < 53) {
2221 dblq = fpsrcop / fptemp;
2222 dblq = (dblq < 0.0)? ceil(dblq): floor(dblq);
2223 ST0 = fpsrcop - fptemp*dblq;
2224 q = (int)dblq; /* cutting off top bits is assumed here */
2225 env->fpus &= (~0x4700); /* (C3,C2,C1,C0) <-- 0000 */
2226 /* (C0,C1,C3) <-- (q2,q1,q0) */
2227 env->fpus |= (q&0x4) << 6; /* (C0) <-- q2 */
2228 env->fpus |= (q&0x2) << 8; /* (C1) <-- q1 */
2229 env->fpus |= (q&0x1) << 14; /* (C3) <-- q0 */
2230 } else {
2231 env->fpus |= 0x400; /* C2 <-- 1 */
2232 fptemp = pow(2.0, expdif-50);
2233 fpsrcop = (ST0 / ST1) / fptemp;
2234 /* fpsrcop = integer obtained by rounding to the nearest */
2235 fpsrcop = (fpsrcop-floor(fpsrcop) < ceil(fpsrcop)-fpsrcop)?
2236 floor(fpsrcop): ceil(fpsrcop);
2237 ST0 -= (ST1 * fpsrcop * fptemp);
2238 }
2239 }
2240
2241 void helper_fprem(void)
2242 {
2243 CPU86_LDouble dblq, fpsrcop, fptemp;
2244 CPU86_LDoubleU fpsrcop1, fptemp1;
2245 int expdif;
2246 int q;
2247
2248 fpsrcop = ST0;
2249 fptemp = ST1;
2250 fpsrcop1.d = fpsrcop;
2251 fptemp1.d = fptemp;
2252 expdif = EXPD(fpsrcop1) - EXPD(fptemp1);
2253 if ( expdif < 53 ) {
2254 dblq = fpsrcop / fptemp;
2255 dblq = (dblq < 0.0)? ceil(dblq): floor(dblq);
2256 ST0 = fpsrcop - fptemp*dblq;
2257 q = (int)dblq; /* cutting off top bits is assumed here */
2258 env->fpus &= (~0x4700); /* (C3,C2,C1,C0) <-- 0000 */
2259 /* (C0,C1,C3) <-- (q2,q1,q0) */
2260 env->fpus |= (q&0x4) << 6; /* (C0) <-- q2 */
2261 env->fpus |= (q&0x2) << 8; /* (C1) <-- q1 */
2262 env->fpus |= (q&0x1) << 14; /* (C3) <-- q0 */
2263 } else {
2264 env->fpus |= 0x400; /* C2 <-- 1 */
2265 fptemp = pow(2.0, expdif-50);
2266 fpsrcop = (ST0 / ST1) / fptemp;
2267 /* fpsrcop = integer obtained by chopping */
2268 fpsrcop = (fpsrcop < 0.0)?
2269 -(floor(fabs(fpsrcop))): floor(fpsrcop);
2270 ST0 -= (ST1 * fpsrcop * fptemp);
2271 }
2272 }
2273
2274 void helper_fyl2xp1(void)
2275 {
2276 CPU86_LDouble fptemp;
2277
2278 fptemp = ST0;
2279 if ((fptemp+1.0)>0.0) {
2280 fptemp = log(fptemp+1.0) / log(2.0); /* log2(ST+1.0) */
2281 ST1 *= fptemp;
2282 fpop();
2283 } else {
2284 env->fpus &= (~0x4700);
2285 env->fpus |= 0x400;
2286 }
2287 }
2288
2289 void helper_fsqrt(void)
2290 {
2291 CPU86_LDouble fptemp;
2292
2293 fptemp = ST0;
2294 if (fptemp<0.0) {
2295 env->fpus &= (~0x4700); /* (C3,C2,C1,C0) <-- 0000 */
2296 env->fpus |= 0x400;
2297 }
2298 ST0 = sqrt(fptemp);
2299 }
2300
2301 void helper_fsincos(void)
2302 {
2303 CPU86_LDouble fptemp;
2304
2305 fptemp = ST0;
2306 if ((fptemp > MAXTAN)||(fptemp < -MAXTAN)) {
2307 env->fpus |= 0x400;
2308 } else {
2309 ST0 = sin(fptemp);
2310 fpush();
2311 ST0 = cos(fptemp);
2312 env->fpus &= (~0x400); /* C2 <-- 0 */
2313 /* the above code is for |arg| < 2**63 only */
2314 }
2315 }
2316
2317 void helper_frndint(void)
2318 {
2319 ST0 = rint(ST0);
2320 }
2321
2322 void helper_fscale(void)
2323 {
2324 CPU86_LDouble fpsrcop, fptemp;
2325
2326 fpsrcop = 2.0;
2327 fptemp = pow(fpsrcop,ST1);
2328 ST0 *= fptemp;
2329 }
2330
2331 void helper_fsin(void)
2332 {
2333 CPU86_LDouble fptemp;
2334
2335 fptemp = ST0;
2336 if ((fptemp > MAXTAN)||(fptemp < -MAXTAN)) {
2337 env->fpus |= 0x400;
2338 } else {
2339 ST0 = sin(fptemp);
2340 env->fpus &= (~0x400); /* C2 <-- 0 */
2341 /* the above code is for |arg| < 2**53 only */
2342 }
2343 }
2344
2345 void helper_fcos(void)
2346 {
2347 CPU86_LDouble fptemp;
2348
2349 fptemp = ST0;
2350 if((fptemp > MAXTAN)||(fptemp < -MAXTAN)) {
2351 env->fpus |= 0x400;
2352 } else {
2353 ST0 = cos(fptemp);
2354 env->fpus &= (~0x400); /* C2 <-- 0 */
2355 /* the above code is for |arg5 < 2**63 only */
2356 }
2357 }
2358
2359 /* associated heplers to reduce generated code length and to simplify
2360 relocation (FP constants are usually stored in .rodata section) */
2361
2362 void OPPROTO op_f2xm1(void)
2363 {
2364 helper_f2xm1();
2365 }
2366
2367 void OPPROTO op_fyl2x(void)
2368 {
2369 helper_fyl2x();
2370 }
2371
2372 void OPPROTO op_fptan(void)
2373 {
2374 helper_fptan();
2375 }
2376
2377 void OPPROTO op_fpatan(void)
2378 {
2379 helper_fpatan();
2380 }
2381
2382 void OPPROTO op_fxtract(void)
2383 {
2384 helper_fxtract();
2385 }
2386
2387 void OPPROTO op_fprem1(void)
2388 {
2389 helper_fprem1();
2390 }
2391
2392
2393 void OPPROTO op_fprem(void)
2394 {
2395 helper_fprem();
2396 }
2397
2398 void OPPROTO op_fyl2xp1(void)
2399 {
2400 helper_fyl2xp1();
2401 }
2402
2403 void OPPROTO op_fsqrt(void)
2404 {
2405 helper_fsqrt();
2406 }
2407
2408 void OPPROTO op_fsincos(void)
2409 {
2410 helper_fsincos();
2411 }
2412
2413 void OPPROTO op_frndint(void)
2414 {
2415 helper_frndint();
2416 }
2417
2418 void OPPROTO op_fscale(void)
2419 {
2420 helper_fscale();
2421 }
2422
2423 void OPPROTO op_fsin(void)
2424 {
2425 helper_fsin();
2426 }
2427
2428 void OPPROTO op_fcos(void)
2429 {
2430 helper_fcos();
2431 }
2432
2433 void OPPROTO op_fnstsw_A0(void)
2434 {
2435 int fpus;
2436 fpus = (env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11;
2437 stw((void *)A0, fpus);
2438 }
2439
2440 void OPPROTO op_fnstsw_EAX(void)
2441 {
2442 int fpus;
2443 fpus = (env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11;
2444 EAX = (EAX & 0xffff0000) | fpus;
2445 }
2446
2447 void OPPROTO op_fnstcw_A0(void)
2448 {
2449 stw((void *)A0, env->fpuc);
2450 }
2451
2452 void OPPROTO op_fldcw_A0(void)
2453 {
2454 int rnd_type;
2455 env->fpuc = lduw((void *)A0);
2456 /* set rounding mode */
2457 switch(env->fpuc & RC_MASK) {
2458 default:
2459 case RC_NEAR:
2460 rnd_type = FE_TONEAREST;
2461 break;
2462 case RC_DOWN:
2463 rnd_type = FE_DOWNWARD;
2464 break;
2465 case RC_UP:
2466 rnd_type = FE_UPWARD;
2467 break;
2468 case RC_CHOP:
2469 rnd_type = FE_TOWARDZERO;
2470 break;
2471 }
2472 fesetround(rnd_type);
2473 }
2474
2475 void OPPROTO op_fclex(void)
2476 {
2477 env->fpus &= 0x7f00;
2478 }
2479
2480 void OPPROTO op_fninit(void)
2481 {
2482 env->fpus = 0;
2483 env->fpstt = 0;
2484 env->fpuc = 0x37f;
2485 env->fptags[0] = 1;
2486 env->fptags[1] = 1;
2487 env->fptags[2] = 1;
2488 env->fptags[3] = 1;
2489 env->fptags[4] = 1;
2490 env->fptags[5] = 1;
2491 env->fptags[6] = 1;
2492 env->fptags[7] = 1;
2493 }
2494
2495 /* threading support */
2496 void OPPROTO op_lock(void)
2497 {
2498 cpu_lock();
2499 }
2500
2501 void OPPROTO op_unlock(void)
2502 {
2503 cpu_unlock();
2504 }