]> git.proxmox.com Git - qemu.git/blob - op-i386.c
mmap2 fix
[qemu.git] / op-i386.c
1 /*
2 * i386 micro operations
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 */
20 #include "exec-i386.h"
21
22 /* NOTE: data are not static to force relocation generation by GCC */
23
24 uint8_t parity_table[256] = {
25 CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
26 0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
27 0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
28 CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
29 0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
30 CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
31 CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
32 0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
33 0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
34 CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
35 CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
36 0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
37 CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
38 0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
39 0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
40 CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
41 0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
42 CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
43 CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
44 0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
45 CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
46 0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
47 0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
48 CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
49 CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
50 0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
51 0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
52 CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
53 0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
54 CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
55 CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
56 0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
57 };
58
59 /* modulo 17 table */
60 const uint8_t rclw_table[32] = {
61 0, 1, 2, 3, 4, 5, 6, 7,
62 8, 9,10,11,12,13,14,15,
63 16, 0, 1, 2, 3, 4, 5, 6,
64 7, 8, 9,10,11,12,13,14,
65 };
66
67 /* modulo 9 table */
68 const uint8_t rclb_table[32] = {
69 0, 1, 2, 3, 4, 5, 6, 7,
70 8, 0, 1, 2, 3, 4, 5, 6,
71 7, 8, 0, 1, 2, 3, 4, 5,
72 6, 7, 8, 0, 1, 2, 3, 4,
73 };
74
75 #ifdef USE_X86LDOUBLE
76 /* an array of Intel 80-bit FP constants, to be loaded via integer ops */
77 typedef unsigned short f15ld[5];
78 const f15ld f15rk[] =
79 {
80 /*0*/ {0x0000,0x0000,0x0000,0x0000,0x0000},
81 /*1*/ {0x0000,0x0000,0x0000,0x8000,0x3fff},
82 /*pi*/ {0xc235,0x2168,0xdaa2,0xc90f,0x4000},
83 /*lg2*/ {0xf799,0xfbcf,0x9a84,0x9a20,0x3ffd},
84 /*ln2*/ {0x79ac,0xd1cf,0x17f7,0xb172,0x3ffe},
85 /*l2e*/ {0xf0bc,0x5c17,0x3b29,0xb8aa,0x3fff},
86 /*l2t*/ {0x8afe,0xcd1b,0x784b,0xd49a,0x4000}
87 };
88 #else
89 /* the same, 64-bit version */
90 typedef unsigned short f15ld[4];
91 const f15ld f15rk[] =
92 {
93 #ifndef WORDS_BIGENDIAN
94 /*0*/ {0x0000,0x0000,0x0000,0x0000},
95 /*1*/ {0x0000,0x0000,0x0000,0x3ff0},
96 /*pi*/ {0x2d18,0x5444,0x21fb,0x4009},
97 /*lg2*/ {0x79ff,0x509f,0x4413,0x3fd3},
98 /*ln2*/ {0x39ef,0xfefa,0x2e42,0x3fe6},
99 /*l2e*/ {0x82fe,0x652b,0x1547,0x3ff7},
100 /*l2t*/ {0xa371,0x0979,0x934f,0x400a}
101 #else
102 /*0*/ {0x0000,0x0000,0x0000,0x0000},
103 /*1*/ {0x3ff0,0x0000,0x0000,0x0000},
104 /*pi*/ {0x4009,0x21fb,0x5444,0x2d18},
105 /*lg2*/ {0x3fd3,0x4413,0x509f,0x79ff},
106 /*ln2*/ {0x3fe6,0x2e42,0xfefa,0x39ef},
107 /*l2e*/ {0x3ff7,0x1547,0x652b,0x82fe},
108 /*l2t*/ {0x400a,0x934f,0x0979,0xa371}
109 #endif
110 };
111 #endif
112
113 /* n must be a constant to be efficient */
114 static inline int lshift(int x, int n)
115 {
116 if (n >= 0)
117 return x << n;
118 else
119 return x >> (-n);
120 }
121
122 /* we define the various pieces of code used by the JIT */
123
124 #define REG EAX
125 #define REGNAME _EAX
126 #include "opreg_template.h"
127 #undef REG
128 #undef REGNAME
129
130 #define REG ECX
131 #define REGNAME _ECX
132 #include "opreg_template.h"
133 #undef REG
134 #undef REGNAME
135
136 #define REG EDX
137 #define REGNAME _EDX
138 #include "opreg_template.h"
139 #undef REG
140 #undef REGNAME
141
142 #define REG EBX
143 #define REGNAME _EBX
144 #include "opreg_template.h"
145 #undef REG
146 #undef REGNAME
147
148 #define REG ESP
149 #define REGNAME _ESP
150 #include "opreg_template.h"
151 #undef REG
152 #undef REGNAME
153
154 #define REG EBP
155 #define REGNAME _EBP
156 #include "opreg_template.h"
157 #undef REG
158 #undef REGNAME
159
160 #define REG ESI
161 #define REGNAME _ESI
162 #include "opreg_template.h"
163 #undef REG
164 #undef REGNAME
165
166 #define REG EDI
167 #define REGNAME _EDI
168 #include "opreg_template.h"
169 #undef REG
170 #undef REGNAME
171
172 /* operations with flags */
173
174 void OPPROTO op_addl_T0_T1_cc(void)
175 {
176 CC_SRC = T0;
177 T0 += T1;
178 CC_DST = T0;
179 }
180
181 void OPPROTO op_orl_T0_T1_cc(void)
182 {
183 T0 |= T1;
184 CC_DST = T0;
185 }
186
187 void OPPROTO op_andl_T0_T1_cc(void)
188 {
189 T0 &= T1;
190 CC_DST = T0;
191 }
192
193 void OPPROTO op_subl_T0_T1_cc(void)
194 {
195 CC_SRC = T0;
196 T0 -= T1;
197 CC_DST = T0;
198 }
199
200 void OPPROTO op_xorl_T0_T1_cc(void)
201 {
202 T0 ^= T1;
203 CC_DST = T0;
204 }
205
206 void OPPROTO op_cmpl_T0_T1_cc(void)
207 {
208 CC_SRC = T0;
209 CC_DST = T0 - T1;
210 }
211
212 void OPPROTO op_negl_T0_cc(void)
213 {
214 CC_SRC = 0;
215 T0 = -T0;
216 CC_DST = T0;
217 }
218
219 void OPPROTO op_incl_T0_cc(void)
220 {
221 CC_SRC = cc_table[CC_OP].compute_c();
222 T0++;
223 CC_DST = T0;
224 }
225
226 void OPPROTO op_decl_T0_cc(void)
227 {
228 CC_SRC = cc_table[CC_OP].compute_c();
229 T0--;
230 CC_DST = T0;
231 }
232
233 void OPPROTO op_testl_T0_T1_cc(void)
234 {
235 CC_DST = T0 & T1;
236 }
237
238 /* operations without flags */
239
240 void OPPROTO op_addl_T0_T1(void)
241 {
242 T0 += T1;
243 }
244
245 void OPPROTO op_orl_T0_T1(void)
246 {
247 T0 |= T1;
248 }
249
250 void OPPROTO op_andl_T0_T1(void)
251 {
252 T0 &= T1;
253 }
254
255 void OPPROTO op_subl_T0_T1(void)
256 {
257 T0 -= T1;
258 }
259
260 void OPPROTO op_xorl_T0_T1(void)
261 {
262 T0 ^= T1;
263 }
264
265 void OPPROTO op_negl_T0(void)
266 {
267 T0 = -T0;
268 }
269
270 void OPPROTO op_incl_T0(void)
271 {
272 T0++;
273 }
274
275 void OPPROTO op_decl_T0(void)
276 {
277 T0--;
278 }
279
280 void OPPROTO op_notl_T0(void)
281 {
282 T0 = ~T0;
283 }
284
285 void OPPROTO op_bswapl_T0(void)
286 {
287 T0 = bswap32(T0);
288 }
289
290 /* multiply/divide */
291 void OPPROTO op_mulb_AL_T0(void)
292 {
293 unsigned int res;
294 res = (uint8_t)EAX * (uint8_t)T0;
295 EAX = (EAX & 0xffff0000) | res;
296 CC_SRC = (res & 0xff00);
297 }
298
299 void OPPROTO op_imulb_AL_T0(void)
300 {
301 int res;
302 res = (int8_t)EAX * (int8_t)T0;
303 EAX = (EAX & 0xffff0000) | (res & 0xffff);
304 CC_SRC = (res != (int8_t)res);
305 }
306
307 void OPPROTO op_mulw_AX_T0(void)
308 {
309 unsigned int res;
310 res = (uint16_t)EAX * (uint16_t)T0;
311 EAX = (EAX & 0xffff0000) | (res & 0xffff);
312 EDX = (EDX & 0xffff0000) | ((res >> 16) & 0xffff);
313 CC_SRC = res >> 16;
314 }
315
316 void OPPROTO op_imulw_AX_T0(void)
317 {
318 int res;
319 res = (int16_t)EAX * (int16_t)T0;
320 EAX = (EAX & 0xffff0000) | (res & 0xffff);
321 EDX = (EDX & 0xffff0000) | ((res >> 16) & 0xffff);
322 CC_SRC = (res != (int16_t)res);
323 }
324
325 void OPPROTO op_mull_EAX_T0(void)
326 {
327 uint64_t res;
328 res = (uint64_t)((uint32_t)EAX) * (uint64_t)((uint32_t)T0);
329 EAX = res;
330 EDX = res >> 32;
331 CC_SRC = res >> 32;
332 }
333
334 void OPPROTO op_imull_EAX_T0(void)
335 {
336 int64_t res;
337 res = (int64_t)((int32_t)EAX) * (int64_t)((int32_t)T0);
338 EAX = res;
339 EDX = res >> 32;
340 CC_SRC = (res != (int32_t)res);
341 }
342
343 void OPPROTO op_imulw_T0_T1(void)
344 {
345 int res;
346 res = (int16_t)T0 * (int16_t)T1;
347 T0 = res;
348 CC_SRC = (res != (int16_t)res);
349 }
350
351 void OPPROTO op_imull_T0_T1(void)
352 {
353 int64_t res;
354 res = (int64_t)((int32_t)T0) * (int64_t)((int32_t)T1);
355 T0 = res;
356 CC_SRC = (res != (int32_t)res);
357 }
358
359 /* division, flags are undefined */
360 /* XXX: add exceptions for overflow */
361 void OPPROTO op_divb_AL_T0(void)
362 {
363 unsigned int num, den, q, r;
364
365 num = (EAX & 0xffff);
366 den = (T0 & 0xff);
367 if (den == 0)
368 raise_exception(EXCP00_DIVZ);
369 q = (num / den) & 0xff;
370 r = (num % den) & 0xff;
371 EAX = (EAX & 0xffff0000) | (r << 8) | q;
372 }
373
374 void OPPROTO op_idivb_AL_T0(void)
375 {
376 int num, den, q, r;
377
378 num = (int16_t)EAX;
379 den = (int8_t)T0;
380 if (den == 0)
381 raise_exception(EXCP00_DIVZ);
382 q = (num / den) & 0xff;
383 r = (num % den) & 0xff;
384 EAX = (EAX & 0xffff0000) | (r << 8) | q;
385 }
386
387 void OPPROTO op_divw_AX_T0(void)
388 {
389 unsigned int num, den, q, r;
390
391 num = (EAX & 0xffff) | ((EDX & 0xffff) << 16);
392 den = (T0 & 0xffff);
393 if (den == 0)
394 raise_exception(EXCP00_DIVZ);
395 q = (num / den) & 0xffff;
396 r = (num % den) & 0xffff;
397 EAX = (EAX & 0xffff0000) | q;
398 EDX = (EDX & 0xffff0000) | r;
399 }
400
401 void OPPROTO op_idivw_AX_T0(void)
402 {
403 int num, den, q, r;
404
405 num = (EAX & 0xffff) | ((EDX & 0xffff) << 16);
406 den = (int16_t)T0;
407 if (den == 0)
408 raise_exception(EXCP00_DIVZ);
409 q = (num / den) & 0xffff;
410 r = (num % den) & 0xffff;
411 EAX = (EAX & 0xffff0000) | q;
412 EDX = (EDX & 0xffff0000) | r;
413 }
414
415 #ifdef BUGGY_GCC_DIV64
416 /* gcc 2.95.4 on PowerPC does not seem to like using __udivdi3, so we
417 call it from another function */
418 uint32_t div64(uint32_t *q_ptr, uint64_t num, uint32_t den)
419 {
420 *q_ptr = num / den;
421 return num % den;
422 }
423
424 int32_t idiv64(int32_t *q_ptr, int64_t num, int32_t den)
425 {
426 *q_ptr = num / den;
427 return num % den;
428 }
429 #endif
430
431 void OPPROTO op_divl_EAX_T0(void)
432 {
433 unsigned int den, q, r;
434 uint64_t num;
435
436 num = EAX | ((uint64_t)EDX << 32);
437 den = T0;
438 if (den == 0)
439 raise_exception(EXCP00_DIVZ);
440 #ifdef BUGGY_GCC_DIV64
441 r = div64(&q, num, den);
442 #else
443 q = (num / den);
444 r = (num % den);
445 #endif
446 EAX = q;
447 EDX = r;
448 }
449
450 void OPPROTO op_idivl_EAX_T0(void)
451 {
452 int den, q, r;
453 int64_t num;
454
455 num = EAX | ((uint64_t)EDX << 32);
456 den = T0;
457 if (den == 0)
458 raise_exception(EXCP00_DIVZ);
459 #ifdef BUGGY_GCC_DIV64
460 r = idiv64(&q, num, den);
461 #else
462 q = (num / den);
463 r = (num % den);
464 #endif
465 EAX = q;
466 EDX = r;
467 }
468
469 /* constant load & misc op */
470
471 void OPPROTO op_movl_T0_im(void)
472 {
473 T0 = PARAM1;
474 }
475
476 void OPPROTO op_addl_T0_im(void)
477 {
478 T0 += PARAM1;
479 }
480
481 void OPPROTO op_andl_T0_ffff(void)
482 {
483 T0 = T0 & 0xffff;
484 }
485
486 void OPPROTO op_movl_T0_T1(void)
487 {
488 T0 = T1;
489 }
490
491 void OPPROTO op_movl_T1_im(void)
492 {
493 T1 = PARAM1;
494 }
495
496 void OPPROTO op_addl_T1_im(void)
497 {
498 T1 += PARAM1;
499 }
500
501 void OPPROTO op_movl_T1_A0(void)
502 {
503 T1 = A0;
504 }
505
506 void OPPROTO op_movl_A0_im(void)
507 {
508 A0 = PARAM1;
509 }
510
511 void OPPROTO op_addl_A0_im(void)
512 {
513 A0 += PARAM1;
514 }
515
516 void OPPROTO op_addl_A0_AL(void)
517 {
518 A0 += (EAX & 0xff);
519 }
520
521 void OPPROTO op_andl_A0_ffff(void)
522 {
523 A0 = A0 & 0xffff;
524 }
525
526 /* memory access */
527
528 void OPPROTO op_ldub_T0_A0(void)
529 {
530 T0 = ldub((uint8_t *)A0);
531 }
532
533 void OPPROTO op_ldsb_T0_A0(void)
534 {
535 T0 = ldsb((int8_t *)A0);
536 }
537
538 void OPPROTO op_lduw_T0_A0(void)
539 {
540 T0 = lduw((uint8_t *)A0);
541 }
542
543 void OPPROTO op_ldsw_T0_A0(void)
544 {
545 T0 = ldsw((int8_t *)A0);
546 }
547
548 void OPPROTO op_ldl_T0_A0(void)
549 {
550 T0 = ldl((uint8_t *)A0);
551 }
552
553 void OPPROTO op_ldub_T1_A0(void)
554 {
555 T1 = ldub((uint8_t *)A0);
556 }
557
558 void OPPROTO op_ldsb_T1_A0(void)
559 {
560 T1 = ldsb((int8_t *)A0);
561 }
562
563 void OPPROTO op_lduw_T1_A0(void)
564 {
565 T1 = lduw((uint8_t *)A0);
566 }
567
568 void OPPROTO op_ldsw_T1_A0(void)
569 {
570 T1 = ldsw((int8_t *)A0);
571 }
572
573 void OPPROTO op_ldl_T1_A0(void)
574 {
575 T1 = ldl((uint8_t *)A0);
576 }
577
578 void OPPROTO op_stb_T0_A0(void)
579 {
580 stb((uint8_t *)A0, T0);
581 }
582
583 void OPPROTO op_stw_T0_A0(void)
584 {
585 stw((uint8_t *)A0, T0);
586 }
587
588 void OPPROTO op_stl_T0_A0(void)
589 {
590 stl((uint8_t *)A0, T0);
591 }
592
593 /* used for bit operations */
594
595 void OPPROTO op_add_bitw_A0_T1(void)
596 {
597 A0 += ((int32_t)T1 >> 4) << 1;
598 }
599
600 void OPPROTO op_add_bitl_A0_T1(void)
601 {
602 A0 += ((int32_t)T1 >> 5) << 2;
603 }
604
605 /* indirect jump */
606
607 void OPPROTO op_jmp_T0(void)
608 {
609 EIP = T0;
610 }
611
612 void OPPROTO op_jmp_im(void)
613 {
614 EIP = PARAM1;
615 }
616
617 void OPPROTO op_int_im(void)
618 {
619 int intno;
620 intno = PARAM1;
621 EIP = PARAM2;
622 raise_exception_err(EXCP0D_GPF, intno * 8 + 2);
623 }
624
625 void OPPROTO op_raise_exception(void)
626 {
627 int exception_index;
628 exception_index = PARAM1;
629 raise_exception(exception_index);
630 }
631
632 void OPPROTO op_into(void)
633 {
634 int eflags;
635 eflags = cc_table[CC_OP].compute_all();
636 if (eflags & CC_O) {
637 EIP = PARAM1;
638 raise_exception(EXCP04_INTO);
639 }
640 FORCE_RET();
641 }
642
643 void OPPROTO op_cli(void)
644 {
645 env->eflags &= ~IF_MASK;
646 }
647
648 void OPPROTO op_sti(void)
649 {
650 env->eflags |= IF_MASK;
651 }
652
653 #if 0
654 /* vm86plus instructions */
655 void OPPROTO op_cli_vm(void)
656 {
657 env->eflags &= ~VIF_MASK;
658 }
659
660 void OPPROTO op_sti_vm(void)
661 {
662 env->eflags |= VIF_MASK;
663 if (env->eflags & VIP_MASK) {
664 EIP = PARAM1;
665 raise_exception(EXCP0D_GPF);
666 }
667 FORCE_RET();
668 }
669 #endif
670
671 void OPPROTO op_boundw(void)
672 {
673 int low, high, v;
674 low = ldsw((uint8_t *)A0);
675 high = ldsw((uint8_t *)A0 + 2);
676 v = (int16_t)T0;
677 if (v < low || v > high)
678 raise_exception(EXCP05_BOUND);
679 FORCE_RET();
680 }
681
682 void OPPROTO op_boundl(void)
683 {
684 int low, high, v;
685 low = ldl((uint8_t *)A0);
686 high = ldl((uint8_t *)A0 + 4);
687 v = T0;
688 if (v < low || v > high)
689 raise_exception(EXCP05_BOUND);
690 FORCE_RET();
691 }
692
693 void OPPROTO op_cmpxchg8b(void)
694 {
695 uint64_t d;
696 int eflags;
697
698 eflags = cc_table[CC_OP].compute_all();
699 d = ldq((uint8_t *)A0);
700 if (d == (((uint64_t)EDX << 32) | EAX)) {
701 stq((uint8_t *)A0, ((uint64_t)ECX << 32) | EBX);
702 eflags |= CC_Z;
703 } else {
704 EDX = d >> 32;
705 EAX = d;
706 eflags &= ~CC_Z;
707 }
708 CC_SRC = eflags;
709 FORCE_RET();
710 }
711
712 #if defined(__powerpc__)
713
714 /* on PowerPC we patch the jump instruction directly */
715 #define JUMP_TB(tbparam, n, eip)\
716 do {\
717 static void __attribute__((unused)) *__op_label ## n = &&label ## n;\
718 asm volatile ("b %0" : : "i" (&__op_jmp ## n));\
719 label ## n:\
720 T0 = (long)(tbparam) + (n);\
721 EIP = eip;\
722 } while (0)
723
724 #else
725
726 /* jump to next block operations (more portable code, does not need
727 cache flushing, but slower because of indirect jump) */
728 #define JUMP_TB(tbparam, n, eip)\
729 do {\
730 static void __attribute__((unused)) *__op_label ## n = &&label ## n;\
731 goto *((TranslationBlock *)tbparam)->tb_next[n];\
732 label ## n:\
733 T0 = (long)(tbparam) + (n);\
734 EIP = eip;\
735 } while (0)
736
737 #endif
738
739 void OPPROTO op_jmp_tb_next(void)
740 {
741 JUMP_TB(PARAM1, 0, PARAM2);
742 }
743
744 void OPPROTO op_movl_T0_0(void)
745 {
746 T0 = 0;
747 }
748
749 /* multiple size ops */
750
751 #define ldul ldl
752
753 #define SHIFT 0
754 #include "ops_template.h"
755 #undef SHIFT
756
757 #define SHIFT 1
758 #include "ops_template.h"
759 #undef SHIFT
760
761 #define SHIFT 2
762 #include "ops_template.h"
763 #undef SHIFT
764
765 /* sign extend */
766
767 void OPPROTO op_movsbl_T0_T0(void)
768 {
769 T0 = (int8_t)T0;
770 }
771
772 void OPPROTO op_movzbl_T0_T0(void)
773 {
774 T0 = (uint8_t)T0;
775 }
776
777 void OPPROTO op_movswl_T0_T0(void)
778 {
779 T0 = (int16_t)T0;
780 }
781
782 void OPPROTO op_movzwl_T0_T0(void)
783 {
784 T0 = (uint16_t)T0;
785 }
786
787 void OPPROTO op_movswl_EAX_AX(void)
788 {
789 EAX = (int16_t)EAX;
790 }
791
792 void OPPROTO op_movsbw_AX_AL(void)
793 {
794 EAX = (EAX & 0xffff0000) | ((int8_t)EAX & 0xffff);
795 }
796
797 void OPPROTO op_movslq_EDX_EAX(void)
798 {
799 EDX = (int32_t)EAX >> 31;
800 }
801
802 void OPPROTO op_movswl_DX_AX(void)
803 {
804 EDX = (EDX & 0xffff0000) | (((int16_t)EAX >> 15) & 0xffff);
805 }
806
807 /* push/pop */
808
809 void op_pushl_T0(void)
810 {
811 uint32_t offset;
812 offset = ESP - 4;
813 stl((void *)offset, T0);
814 /* modify ESP after to handle exceptions correctly */
815 ESP = offset;
816 }
817
818 void op_pushw_T0(void)
819 {
820 uint32_t offset;
821 offset = ESP - 2;
822 stw((void *)offset, T0);
823 /* modify ESP after to handle exceptions correctly */
824 ESP = offset;
825 }
826
827 void op_pushl_ss32_T0(void)
828 {
829 uint32_t offset;
830 offset = ESP - 4;
831 stl(env->seg_cache[R_SS].base + offset, T0);
832 /* modify ESP after to handle exceptions correctly */
833 ESP = offset;
834 }
835
836 void op_pushw_ss32_T0(void)
837 {
838 uint32_t offset;
839 offset = ESP - 2;
840 stw(env->seg_cache[R_SS].base + offset, T0);
841 /* modify ESP after to handle exceptions correctly */
842 ESP = offset;
843 }
844
845 void op_pushl_ss16_T0(void)
846 {
847 uint32_t offset;
848 offset = (ESP - 4) & 0xffff;
849 stl(env->seg_cache[R_SS].base + offset, T0);
850 /* modify ESP after to handle exceptions correctly */
851 ESP = (ESP & ~0xffff) | offset;
852 }
853
854 void op_pushw_ss16_T0(void)
855 {
856 uint32_t offset;
857 offset = (ESP - 2) & 0xffff;
858 stw(env->seg_cache[R_SS].base + offset, T0);
859 /* modify ESP after to handle exceptions correctly */
860 ESP = (ESP & ~0xffff) | offset;
861 }
862
863 /* NOTE: ESP update is done after */
864 void op_popl_T0(void)
865 {
866 T0 = ldl((void *)ESP);
867 }
868
869 void op_popw_T0(void)
870 {
871 T0 = lduw((void *)ESP);
872 }
873
874 void op_popl_ss32_T0(void)
875 {
876 T0 = ldl(env->seg_cache[R_SS].base + ESP);
877 }
878
879 void op_popw_ss32_T0(void)
880 {
881 T0 = lduw(env->seg_cache[R_SS].base + ESP);
882 }
883
884 void op_popl_ss16_T0(void)
885 {
886 T0 = ldl(env->seg_cache[R_SS].base + (ESP & 0xffff));
887 }
888
889 void op_popw_ss16_T0(void)
890 {
891 T0 = lduw(env->seg_cache[R_SS].base + (ESP & 0xffff));
892 }
893
894 void op_addl_ESP_4(void)
895 {
896 ESP += 4;
897 }
898
899 void op_addl_ESP_2(void)
900 {
901 ESP += 2;
902 }
903
904 void op_addw_ESP_4(void)
905 {
906 ESP = (ESP & ~0xffff) | ((ESP + 4) & 0xffff);
907 }
908
909 void op_addw_ESP_2(void)
910 {
911 ESP = (ESP & ~0xffff) | ((ESP + 2) & 0xffff);
912 }
913
914 void op_addl_ESP_im(void)
915 {
916 ESP += PARAM1;
917 }
918
919 void op_addw_ESP_im(void)
920 {
921 ESP = (ESP & ~0xffff) | ((ESP + PARAM1) & 0xffff);
922 }
923
924 /* rdtsc */
925 #ifndef __i386__
926 uint64_t emu_time;
927 #endif
928
929 void OPPROTO op_rdtsc(void)
930 {
931 uint64_t val;
932 #ifdef __i386__
933 asm("rdtsc" : "=A" (val));
934 #else
935 /* better than nothing: the time increases */
936 val = emu_time++;
937 #endif
938 EAX = val;
939 EDX = val >> 32;
940 }
941
942 /* We simulate a pre-MMX pentium as in valgrind */
943 #define CPUID_FP87 (1 << 0)
944 #define CPUID_VME (1 << 1)
945 #define CPUID_DE (1 << 2)
946 #define CPUID_PSE (1 << 3)
947 #define CPUID_TSC (1 << 4)
948 #define CPUID_MSR (1 << 5)
949 #define CPUID_PAE (1 << 6)
950 #define CPUID_MCE (1 << 7)
951 #define CPUID_CX8 (1 << 8)
952 #define CPUID_APIC (1 << 9)
953 #define CPUID_SEP (1 << 11) /* sysenter/sysexit */
954 #define CPUID_MTRR (1 << 12)
955 #define CPUID_PGE (1 << 13)
956 #define CPUID_MCA (1 << 14)
957 #define CPUID_CMOV (1 << 15)
958 /* ... */
959 #define CPUID_MMX (1 << 23)
960 #define CPUID_FXSR (1 << 24)
961 #define CPUID_SSE (1 << 25)
962 #define CPUID_SSE2 (1 << 26)
963
964 void helper_cpuid(void)
965 {
966 if (EAX == 0) {
967 EAX = 1; /* max EAX index supported */
968 EBX = 0x756e6547;
969 ECX = 0x6c65746e;
970 EDX = 0x49656e69;
971 } else {
972 /* EAX = 1 info */
973 EAX = 0x52b;
974 EBX = 0;
975 ECX = 0;
976 EDX = CPUID_FP87 | CPUID_DE | CPUID_PSE |
977 CPUID_TSC | CPUID_MSR | CPUID_MCE |
978 CPUID_CX8;
979 }
980 }
981
982 void OPPROTO op_cpuid(void)
983 {
984 helper_cpuid();
985 }
986
987 /* bcd */
988
989 /* XXX: exception */
990 void OPPROTO op_aam(void)
991 {
992 int base = PARAM1;
993 int al, ah;
994 al = EAX & 0xff;
995 ah = al / base;
996 al = al % base;
997 EAX = (EAX & ~0xffff) | al | (ah << 8);
998 CC_DST = al;
999 }
1000
1001 void OPPROTO op_aad(void)
1002 {
1003 int base = PARAM1;
1004 int al, ah;
1005 al = EAX & 0xff;
1006 ah = (EAX >> 8) & 0xff;
1007 al = ((ah * base) + al) & 0xff;
1008 EAX = (EAX & ~0xffff) | al;
1009 CC_DST = al;
1010 }
1011
1012 void OPPROTO op_aaa(void)
1013 {
1014 int icarry;
1015 int al, ah, af;
1016 int eflags;
1017
1018 eflags = cc_table[CC_OP].compute_all();
1019 af = eflags & CC_A;
1020 al = EAX & 0xff;
1021 ah = (EAX >> 8) & 0xff;
1022
1023 icarry = (al > 0xf9);
1024 if (((al & 0x0f) > 9 ) || af) {
1025 al = (al + 6) & 0x0f;
1026 ah = (ah + 1 + icarry) & 0xff;
1027 eflags |= CC_C | CC_A;
1028 } else {
1029 eflags &= ~(CC_C | CC_A);
1030 al &= 0x0f;
1031 }
1032 EAX = (EAX & ~0xffff) | al | (ah << 8);
1033 CC_SRC = eflags;
1034 }
1035
1036 void OPPROTO op_aas(void)
1037 {
1038 int icarry;
1039 int al, ah, af;
1040 int eflags;
1041
1042 eflags = cc_table[CC_OP].compute_all();
1043 af = eflags & CC_A;
1044 al = EAX & 0xff;
1045 ah = (EAX >> 8) & 0xff;
1046
1047 icarry = (al < 6);
1048 if (((al & 0x0f) > 9 ) || af) {
1049 al = (al - 6) & 0x0f;
1050 ah = (ah - 1 - icarry) & 0xff;
1051 eflags |= CC_C | CC_A;
1052 } else {
1053 eflags &= ~(CC_C | CC_A);
1054 al &= 0x0f;
1055 }
1056 EAX = (EAX & ~0xffff) | al | (ah << 8);
1057 CC_SRC = eflags;
1058 }
1059
1060 void OPPROTO op_daa(void)
1061 {
1062 int al, af, cf;
1063 int eflags;
1064
1065 eflags = cc_table[CC_OP].compute_all();
1066 cf = eflags & CC_C;
1067 af = eflags & CC_A;
1068 al = EAX & 0xff;
1069
1070 eflags = 0;
1071 if (((al & 0x0f) > 9 ) || af) {
1072 al = (al + 6) & 0xff;
1073 eflags |= CC_A;
1074 }
1075 if ((al > 0x9f) || cf) {
1076 al = (al + 0x60) & 0xff;
1077 eflags |= CC_C;
1078 }
1079 EAX = (EAX & ~0xff) | al;
1080 /* well, speed is not an issue here, so we compute the flags by hand */
1081 eflags |= (al == 0) << 6; /* zf */
1082 eflags |= parity_table[al]; /* pf */
1083 eflags |= (al & 0x80); /* sf */
1084 CC_SRC = eflags;
1085 }
1086
1087 void OPPROTO op_das(void)
1088 {
1089 int al, al1, af, cf;
1090 int eflags;
1091
1092 eflags = cc_table[CC_OP].compute_all();
1093 cf = eflags & CC_C;
1094 af = eflags & CC_A;
1095 al = EAX & 0xff;
1096
1097 eflags = 0;
1098 al1 = al;
1099 if (((al & 0x0f) > 9 ) || af) {
1100 eflags |= CC_A;
1101 if (al < 6 || cf)
1102 eflags |= CC_C;
1103 al = (al - 6) & 0xff;
1104 }
1105 if ((al1 > 0x99) || cf) {
1106 al = (al - 0x60) & 0xff;
1107 eflags |= CC_C;
1108 }
1109 EAX = (EAX & ~0xff) | al;
1110 /* well, speed is not an issue here, so we compute the flags by hand */
1111 eflags |= (al == 0) << 6; /* zf */
1112 eflags |= parity_table[al]; /* pf */
1113 eflags |= (al & 0x80); /* sf */
1114 CC_SRC = eflags;
1115 }
1116
1117 /* segment handling */
1118
1119 /* XXX: use static VM86 information */
1120 void load_seg(int seg_reg, int selector)
1121 {
1122 SegmentCache *sc;
1123 SegmentDescriptorTable *dt;
1124 int index;
1125 uint32_t e1, e2;
1126 uint8_t *ptr;
1127
1128 sc = &env->seg_cache[seg_reg];
1129 if (env->eflags & VM_MASK) {
1130 sc->base = (void *)(selector << 4);
1131 sc->limit = 0xffff;
1132 sc->seg_32bit = 0;
1133 } else {
1134 if (selector & 0x4)
1135 dt = &env->ldt;
1136 else
1137 dt = &env->gdt;
1138 index = selector & ~7;
1139 if ((index + 7) > dt->limit)
1140 raise_exception_err(EXCP0D_GPF, selector);
1141 ptr = dt->base + index;
1142 e1 = ldl(ptr);
1143 e2 = ldl(ptr + 4);
1144 sc->base = (void *)((e1 >> 16) | ((e2 & 0xff) << 16) | (e2 & 0xff000000));
1145 sc->limit = (e1 & 0xffff) | (e2 & 0x000f0000);
1146 if (e2 & (1 << 23))
1147 sc->limit = (sc->limit << 12) | 0xfff;
1148 sc->seg_32bit = (e2 >> 22) & 1;
1149 #if 0
1150 fprintf(logfile, "load_seg: sel=0x%04x base=0x%08lx limit=0x%08lx seg_32bit=%d\n",
1151 selector, (unsigned long)sc->base, sc->limit, sc->seg_32bit);
1152 #endif
1153 }
1154 env->segs[seg_reg] = selector;
1155 }
1156
1157 void OPPROTO op_movl_seg_T0(void)
1158 {
1159 load_seg(PARAM1, T0 & 0xffff);
1160 }
1161
1162 void OPPROTO op_movl_T0_seg(void)
1163 {
1164 T0 = env->segs[PARAM1];
1165 }
1166
1167 void OPPROTO op_movl_A0_seg(void)
1168 {
1169 A0 = *(unsigned long *)((char *)env + PARAM1);
1170 }
1171
1172 void OPPROTO op_addl_A0_seg(void)
1173 {
1174 A0 += *(unsigned long *)((char *)env + PARAM1);
1175 }
1176
1177 void helper_lsl(void)
1178 {
1179 unsigned int selector, limit;
1180 SegmentDescriptorTable *dt;
1181 int index;
1182 uint32_t e1, e2;
1183 uint8_t *ptr;
1184
1185 CC_SRC = cc_table[CC_OP].compute_all() & ~CC_Z;
1186 selector = T0 & 0xffff;
1187 if (selector & 0x4)
1188 dt = &env->ldt;
1189 else
1190 dt = &env->gdt;
1191 index = selector & ~7;
1192 if ((index + 7) > dt->limit)
1193 return;
1194 ptr = dt->base + index;
1195 e1 = ldl(ptr);
1196 e2 = ldl(ptr + 4);
1197 limit = (e1 & 0xffff) | (e2 & 0x000f0000);
1198 if (e2 & (1 << 23))
1199 limit = (limit << 12) | 0xfff;
1200 T1 = limit;
1201 CC_SRC |= CC_Z;
1202 }
1203
1204 void OPPROTO op_lsl(void)
1205 {
1206 helper_lsl();
1207 }
1208
1209 void helper_lar(void)
1210 {
1211 unsigned int selector;
1212 SegmentDescriptorTable *dt;
1213 int index;
1214 uint32_t e2;
1215 uint8_t *ptr;
1216
1217 CC_SRC = cc_table[CC_OP].compute_all() & ~CC_Z;
1218 selector = T0 & 0xffff;
1219 if (selector & 0x4)
1220 dt = &env->ldt;
1221 else
1222 dt = &env->gdt;
1223 index = selector & ~7;
1224 if ((index + 7) > dt->limit)
1225 return;
1226 ptr = dt->base + index;
1227 e2 = ldl(ptr + 4);
1228 T1 = e2 & 0x00f0ff00;
1229 CC_SRC |= CC_Z;
1230 }
1231
1232 void OPPROTO op_lar(void)
1233 {
1234 helper_lar();
1235 }
1236
1237 /* flags handling */
1238
1239 /* slow jumps cases : in order to avoid calling a function with a
1240 pointer (which can generate a stack frame on PowerPC), we use
1241 op_setcc to set T0 and then call op_jcc. */
1242 void OPPROTO op_jcc(void)
1243 {
1244 if (T0)
1245 JUMP_TB(PARAM1, 0, PARAM2);
1246 else
1247 JUMP_TB(PARAM1, 1, PARAM3);
1248 FORCE_RET();
1249 }
1250
1251 /* slow set cases (compute x86 flags) */
1252 void OPPROTO op_seto_T0_cc(void)
1253 {
1254 int eflags;
1255 eflags = cc_table[CC_OP].compute_all();
1256 T0 = (eflags >> 11) & 1;
1257 }
1258
1259 void OPPROTO op_setb_T0_cc(void)
1260 {
1261 T0 = cc_table[CC_OP].compute_c();
1262 }
1263
1264 void OPPROTO op_setz_T0_cc(void)
1265 {
1266 int eflags;
1267 eflags = cc_table[CC_OP].compute_all();
1268 T0 = (eflags >> 6) & 1;
1269 }
1270
1271 void OPPROTO op_setbe_T0_cc(void)
1272 {
1273 int eflags;
1274 eflags = cc_table[CC_OP].compute_all();
1275 T0 = (eflags & (CC_Z | CC_C)) != 0;
1276 }
1277
1278 void OPPROTO op_sets_T0_cc(void)
1279 {
1280 int eflags;
1281 eflags = cc_table[CC_OP].compute_all();
1282 T0 = (eflags >> 7) & 1;
1283 }
1284
1285 void OPPROTO op_setp_T0_cc(void)
1286 {
1287 int eflags;
1288 eflags = cc_table[CC_OP].compute_all();
1289 T0 = (eflags >> 2) & 1;
1290 }
1291
1292 void OPPROTO op_setl_T0_cc(void)
1293 {
1294 int eflags;
1295 eflags = cc_table[CC_OP].compute_all();
1296 T0 = ((eflags ^ (eflags >> 4)) >> 7) & 1;
1297 }
1298
1299 void OPPROTO op_setle_T0_cc(void)
1300 {
1301 int eflags;
1302 eflags = cc_table[CC_OP].compute_all();
1303 T0 = (((eflags ^ (eflags >> 4)) & 0x80) || (eflags & CC_Z)) != 0;
1304 }
1305
1306 void OPPROTO op_xor_T0_1(void)
1307 {
1308 T0 ^= 1;
1309 }
1310
1311 void OPPROTO op_set_cc_op(void)
1312 {
1313 CC_OP = PARAM1;
1314 }
1315
1316 #define FL_UPDATE_MASK32 (TF_MASK | AC_MASK | ID_MASK)
1317 #define FL_UPDATE_MASK16 (TF_MASK)
1318
1319 void OPPROTO op_movl_eflags_T0(void)
1320 {
1321 int eflags;
1322 eflags = T0;
1323 CC_SRC = eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
1324 DF = 1 - (2 * ((eflags >> 10) & 1));
1325 /* we also update some system flags as in user mode */
1326 env->eflags = (env->eflags & ~FL_UPDATE_MASK32) | (eflags & FL_UPDATE_MASK32);
1327 }
1328
1329 void OPPROTO op_movw_eflags_T0(void)
1330 {
1331 int eflags;
1332 eflags = T0;
1333 CC_SRC = eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
1334 DF = 1 - (2 * ((eflags >> 10) & 1));
1335 /* we also update some system flags as in user mode */
1336 env->eflags = (env->eflags & ~FL_UPDATE_MASK16) | (eflags & FL_UPDATE_MASK16);
1337 }
1338
1339 #if 0
1340 /* vm86plus version */
1341 void OPPROTO op_movw_eflags_T0_vm(void)
1342 {
1343 int eflags;
1344 eflags = T0;
1345 CC_SRC = eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
1346 DF = 1 - (2 * ((eflags >> 10) & 1));
1347 /* we also update some system flags as in user mode */
1348 env->eflags = (env->eflags & ~(FL_UPDATE_MASK16 | VIF_MASK)) |
1349 (eflags & FL_UPDATE_MASK16);
1350 if (eflags & IF_MASK) {
1351 env->eflags |= VIF_MASK;
1352 if (env->eflags & VIP_MASK) {
1353 EIP = PARAM1;
1354 raise_exception(EXCP0D_GPF);
1355 }
1356 }
1357 FORCE_RET();
1358 }
1359
1360 void OPPROTO op_movl_eflags_T0_vm(void)
1361 {
1362 int eflags;
1363 eflags = T0;
1364 CC_SRC = eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
1365 DF = 1 - (2 * ((eflags >> 10) & 1));
1366 /* we also update some system flags as in user mode */
1367 env->eflags = (env->eflags & ~(FL_UPDATE_MASK32 | VIF_MASK)) |
1368 (eflags & FL_UPDATE_MASK32);
1369 if (eflags & IF_MASK) {
1370 env->eflags |= VIF_MASK;
1371 if (env->eflags & VIP_MASK) {
1372 EIP = PARAM1;
1373 raise_exception(EXCP0D_GPF);
1374 }
1375 }
1376 FORCE_RET();
1377 }
1378 #endif
1379
1380 /* XXX: compute only O flag */
1381 void OPPROTO op_movb_eflags_T0(void)
1382 {
1383 int of;
1384 of = cc_table[CC_OP].compute_all() & CC_O;
1385 CC_SRC = (T0 & (CC_S | CC_Z | CC_A | CC_P | CC_C)) | of;
1386 }
1387
1388 void OPPROTO op_movl_T0_eflags(void)
1389 {
1390 int eflags;
1391 eflags = cc_table[CC_OP].compute_all();
1392 eflags |= (DF & DF_MASK);
1393 eflags |= env->eflags & ~(VM_MASK | RF_MASK);
1394 T0 = eflags;
1395 }
1396
1397 /* vm86plus version */
1398 #if 0
1399 void OPPROTO op_movl_T0_eflags_vm(void)
1400 {
1401 int eflags;
1402 eflags = cc_table[CC_OP].compute_all();
1403 eflags |= (DF & DF_MASK);
1404 eflags |= env->eflags & ~(VM_MASK | RF_MASK | IF_MASK);
1405 if (env->eflags & VIF_MASK)
1406 eflags |= IF_MASK;
1407 T0 = eflags;
1408 }
1409 #endif
1410
1411 void OPPROTO op_cld(void)
1412 {
1413 DF = 1;
1414 }
1415
1416 void OPPROTO op_std(void)
1417 {
1418 DF = -1;
1419 }
1420
1421 void OPPROTO op_clc(void)
1422 {
1423 int eflags;
1424 eflags = cc_table[CC_OP].compute_all();
1425 eflags &= ~CC_C;
1426 CC_SRC = eflags;
1427 }
1428
1429 void OPPROTO op_stc(void)
1430 {
1431 int eflags;
1432 eflags = cc_table[CC_OP].compute_all();
1433 eflags |= CC_C;
1434 CC_SRC = eflags;
1435 }
1436
1437 void OPPROTO op_cmc(void)
1438 {
1439 int eflags;
1440 eflags = cc_table[CC_OP].compute_all();
1441 eflags ^= CC_C;
1442 CC_SRC = eflags;
1443 }
1444
1445 void OPPROTO op_salc(void)
1446 {
1447 int cf;
1448 cf = cc_table[CC_OP].compute_c();
1449 EAX = (EAX & ~0xff) | ((-cf) & 0xff);
1450 }
1451
1452 static int compute_all_eflags(void)
1453 {
1454 return CC_SRC;
1455 }
1456
1457 static int compute_c_eflags(void)
1458 {
1459 return CC_SRC & CC_C;
1460 }
1461
1462 static int compute_c_mul(void)
1463 {
1464 int cf;
1465 cf = (CC_SRC != 0);
1466 return cf;
1467 }
1468
1469 static int compute_all_mul(void)
1470 {
1471 int cf, pf, af, zf, sf, of;
1472 cf = (CC_SRC != 0);
1473 pf = 0; /* undefined */
1474 af = 0; /* undefined */
1475 zf = 0; /* undefined */
1476 sf = 0; /* undefined */
1477 of = cf << 11;
1478 return cf | pf | af | zf | sf | of;
1479 }
1480
1481 CCTable cc_table[CC_OP_NB] = {
1482 [CC_OP_DYNAMIC] = { /* should never happen */ },
1483
1484 [CC_OP_EFLAGS] = { compute_all_eflags, compute_c_eflags },
1485
1486 [CC_OP_MUL] = { compute_all_mul, compute_c_mul },
1487
1488 [CC_OP_ADDB] = { compute_all_addb, compute_c_addb },
1489 [CC_OP_ADDW] = { compute_all_addw, compute_c_addw },
1490 [CC_OP_ADDL] = { compute_all_addl, compute_c_addl },
1491
1492 [CC_OP_ADCB] = { compute_all_adcb, compute_c_adcb },
1493 [CC_OP_ADCW] = { compute_all_adcw, compute_c_adcw },
1494 [CC_OP_ADCL] = { compute_all_adcl, compute_c_adcl },
1495
1496 [CC_OP_SUBB] = { compute_all_subb, compute_c_subb },
1497 [CC_OP_SUBW] = { compute_all_subw, compute_c_subw },
1498 [CC_OP_SUBL] = { compute_all_subl, compute_c_subl },
1499
1500 [CC_OP_SBBB] = { compute_all_sbbb, compute_c_sbbb },
1501 [CC_OP_SBBW] = { compute_all_sbbw, compute_c_sbbw },
1502 [CC_OP_SBBL] = { compute_all_sbbl, compute_c_sbbl },
1503
1504 [CC_OP_LOGICB] = { compute_all_logicb, compute_c_logicb },
1505 [CC_OP_LOGICW] = { compute_all_logicw, compute_c_logicw },
1506 [CC_OP_LOGICL] = { compute_all_logicl, compute_c_logicl },
1507
1508 [CC_OP_INCB] = { compute_all_incb, compute_c_incl },
1509 [CC_OP_INCW] = { compute_all_incw, compute_c_incl },
1510 [CC_OP_INCL] = { compute_all_incl, compute_c_incl },
1511
1512 [CC_OP_DECB] = { compute_all_decb, compute_c_incl },
1513 [CC_OP_DECW] = { compute_all_decw, compute_c_incl },
1514 [CC_OP_DECL] = { compute_all_decl, compute_c_incl },
1515
1516 [CC_OP_SHLB] = { compute_all_shlb, compute_c_shlb },
1517 [CC_OP_SHLW] = { compute_all_shlw, compute_c_shlw },
1518 [CC_OP_SHLL] = { compute_all_shll, compute_c_shll },
1519
1520 [CC_OP_SARB] = { compute_all_sarb, compute_c_sarl },
1521 [CC_OP_SARW] = { compute_all_sarw, compute_c_sarl },
1522 [CC_OP_SARL] = { compute_all_sarl, compute_c_sarl },
1523 };
1524
1525 /* floating point support. Some of the code for complicated x87
1526 functions comes from the LGPL'ed x86 emulator found in the Willows
1527 TWIN windows emulator. */
1528
1529 #ifdef USE_X86LDOUBLE
1530 /* use long double functions */
1531 #define lrint lrintl
1532 #define llrint llrintl
1533 #define fabs fabsl
1534 #define sin sinl
1535 #define cos cosl
1536 #define sqrt sqrtl
1537 #define pow powl
1538 #define log logl
1539 #define tan tanl
1540 #define atan2 atan2l
1541 #define floor floorl
1542 #define ceil ceill
1543 #define rint rintl
1544 #endif
1545
1546 extern int lrint(CPU86_LDouble x);
1547 extern int64_t llrint(CPU86_LDouble x);
1548 extern CPU86_LDouble fabs(CPU86_LDouble x);
1549 extern CPU86_LDouble sin(CPU86_LDouble x);
1550 extern CPU86_LDouble cos(CPU86_LDouble x);
1551 extern CPU86_LDouble sqrt(CPU86_LDouble x);
1552 extern CPU86_LDouble pow(CPU86_LDouble, CPU86_LDouble);
1553 extern CPU86_LDouble log(CPU86_LDouble x);
1554 extern CPU86_LDouble tan(CPU86_LDouble x);
1555 extern CPU86_LDouble atan2(CPU86_LDouble, CPU86_LDouble);
1556 extern CPU86_LDouble floor(CPU86_LDouble x);
1557 extern CPU86_LDouble ceil(CPU86_LDouble x);
1558 extern CPU86_LDouble rint(CPU86_LDouble x);
1559
1560 #if defined(__powerpc__)
1561 extern CPU86_LDouble copysign(CPU86_LDouble, CPU86_LDouble);
1562
1563 /* correct (but slow) PowerPC rint() (glibc version is incorrect) */
1564 double qemu_rint(double x)
1565 {
1566 double y = 4503599627370496.0;
1567 if (fabs(x) >= y)
1568 return x;
1569 if (x < 0)
1570 y = -y;
1571 y = (x + y) - y;
1572 if (y == 0.0)
1573 y = copysign(y, x);
1574 return y;
1575 }
1576
1577 #define rint qemu_rint
1578 #endif
1579
1580 #define RC_MASK 0xc00
1581 #define RC_NEAR 0x000
1582 #define RC_DOWN 0x400
1583 #define RC_UP 0x800
1584 #define RC_CHOP 0xc00
1585
1586 #define MAXTAN 9223372036854775808.0
1587
1588 #ifdef USE_X86LDOUBLE
1589
1590 /* only for x86 */
1591 typedef union {
1592 long double d;
1593 struct {
1594 unsigned long long lower;
1595 unsigned short upper;
1596 } l;
1597 } CPU86_LDoubleU;
1598
1599 /* the following deal with x86 long double-precision numbers */
1600 #define MAXEXPD 0x7fff
1601 #define EXPBIAS 16383
1602 #define EXPD(fp) (fp.l.upper & 0x7fff)
1603 #define SIGND(fp) ((fp.l.upper) & 0x8000)
1604 #define MANTD(fp) (fp.l.lower)
1605 #define BIASEXPONENT(fp) fp.l.upper = (fp.l.upper & ~(0x7fff)) | EXPBIAS
1606
1607 #else
1608
1609 typedef union {
1610 double d;
1611 #ifndef WORDS_BIGENDIAN
1612 struct {
1613 unsigned long lower;
1614 long upper;
1615 } l;
1616 #else
1617 struct {
1618 long upper;
1619 unsigned long lower;
1620 } l;
1621 #endif
1622 long long ll;
1623 } CPU86_LDoubleU;
1624
1625 /* the following deal with IEEE double-precision numbers */
1626 #define MAXEXPD 0x7ff
1627 #define EXPBIAS 1023
1628 #define EXPD(fp) (((fp.l.upper) >> 20) & 0x7FF)
1629 #define SIGND(fp) ((fp.l.upper) & 0x80000000)
1630 #define MANTD(fp) (fp.ll & ((1LL << 52) - 1))
1631 #define BIASEXPONENT(fp) fp.l.upper = (fp.l.upper & ~(0x7ff << 20)) | (EXPBIAS << 20)
1632 #endif
1633
1634 /* fp load FT0 */
1635
1636 void OPPROTO op_flds_FT0_A0(void)
1637 {
1638 #ifdef USE_FP_CONVERT
1639 FP_CONVERT.i32 = ldl((void *)A0);
1640 FT0 = FP_CONVERT.f;
1641 #else
1642 FT0 = ldfl((void *)A0);
1643 #endif
1644 }
1645
1646 void OPPROTO op_fldl_FT0_A0(void)
1647 {
1648 #ifdef USE_FP_CONVERT
1649 FP_CONVERT.i64 = ldq((void *)A0);
1650 FT0 = FP_CONVERT.d;
1651 #else
1652 FT0 = ldfq((void *)A0);
1653 #endif
1654 }
1655
1656 /* helpers are needed to avoid static constant reference. XXX: find a better way */
1657 #ifdef USE_INT_TO_FLOAT_HELPERS
1658
1659 void helper_fild_FT0_A0(void)
1660 {
1661 FT0 = (CPU86_LDouble)ldsw((void *)A0);
1662 }
1663
1664 void helper_fildl_FT0_A0(void)
1665 {
1666 FT0 = (CPU86_LDouble)((int32_t)ldl((void *)A0));
1667 }
1668
1669 void helper_fildll_FT0_A0(void)
1670 {
1671 FT0 = (CPU86_LDouble)((int64_t)ldq((void *)A0));
1672 }
1673
1674 void OPPROTO op_fild_FT0_A0(void)
1675 {
1676 helper_fild_FT0_A0();
1677 }
1678
1679 void OPPROTO op_fildl_FT0_A0(void)
1680 {
1681 helper_fildl_FT0_A0();
1682 }
1683
1684 void OPPROTO op_fildll_FT0_A0(void)
1685 {
1686 helper_fildll_FT0_A0();
1687 }
1688
1689 #else
1690
1691 void OPPROTO op_fild_FT0_A0(void)
1692 {
1693 #ifdef USE_FP_CONVERT
1694 FP_CONVERT.i32 = ldsw((void *)A0);
1695 FT0 = (CPU86_LDouble)FP_CONVERT.i32;
1696 #else
1697 FT0 = (CPU86_LDouble)ldsw((void *)A0);
1698 #endif
1699 }
1700
1701 void OPPROTO op_fildl_FT0_A0(void)
1702 {
1703 #ifdef USE_FP_CONVERT
1704 FP_CONVERT.i32 = (int32_t) ldl((void *)A0);
1705 FT0 = (CPU86_LDouble)FP_CONVERT.i32;
1706 #else
1707 FT0 = (CPU86_LDouble)((int32_t)ldl((void *)A0));
1708 #endif
1709 }
1710
1711 void OPPROTO op_fildll_FT0_A0(void)
1712 {
1713 #ifdef USE_FP_CONVERT
1714 FP_CONVERT.i64 = (int64_t) ldq((void *)A0);
1715 FT0 = (CPU86_LDouble)FP_CONVERT.i64;
1716 #else
1717 FT0 = (CPU86_LDouble)((int64_t)ldq((void *)A0));
1718 #endif
1719 }
1720 #endif
1721
1722 /* fp load ST0 */
1723
1724 void OPPROTO op_flds_ST0_A0(void)
1725 {
1726 #ifdef USE_FP_CONVERT
1727 FP_CONVERT.i32 = ldl((void *)A0);
1728 ST0 = FP_CONVERT.f;
1729 #else
1730 ST0 = ldfl((void *)A0);
1731 #endif
1732 }
1733
1734 void OPPROTO op_fldl_ST0_A0(void)
1735 {
1736 #ifdef USE_FP_CONVERT
1737 FP_CONVERT.i64 = ldq((void *)A0);
1738 ST0 = FP_CONVERT.d;
1739 #else
1740 ST0 = ldfq((void *)A0);
1741 #endif
1742 }
1743
1744 #ifdef USE_X86LDOUBLE
1745 void OPPROTO op_fldt_ST0_A0(void)
1746 {
1747 ST0 = *(long double *)A0;
1748 }
1749 #else
1750 void helper_fldt_ST0_A0(void)
1751 {
1752 CPU86_LDoubleU temp;
1753 int upper, e;
1754 /* mantissa */
1755 upper = lduw((uint8_t *)A0 + 8);
1756 /* XXX: handle overflow ? */
1757 e = (upper & 0x7fff) - 16383 + EXPBIAS; /* exponent */
1758 e |= (upper >> 4) & 0x800; /* sign */
1759 temp.ll = ((ldq((void *)A0) >> 11) & ((1LL << 52) - 1)) | ((uint64_t)e << 52);
1760 ST0 = temp.d;
1761 }
1762
1763 void OPPROTO op_fldt_ST0_A0(void)
1764 {
1765 helper_fldt_ST0_A0();
1766 }
1767 #endif
1768
1769 /* helpers are needed to avoid static constant reference. XXX: find a better way */
1770 #ifdef USE_INT_TO_FLOAT_HELPERS
1771
1772 void helper_fild_ST0_A0(void)
1773 {
1774 ST0 = (CPU86_LDouble)ldsw((void *)A0);
1775 }
1776
1777 void helper_fildl_ST0_A0(void)
1778 {
1779 ST0 = (CPU86_LDouble)((int32_t)ldl((void *)A0));
1780 }
1781
1782 void helper_fildll_ST0_A0(void)
1783 {
1784 ST0 = (CPU86_LDouble)((int64_t)ldq((void *)A0));
1785 }
1786
1787 void OPPROTO op_fild_ST0_A0(void)
1788 {
1789 helper_fild_ST0_A0();
1790 }
1791
1792 void OPPROTO op_fildl_ST0_A0(void)
1793 {
1794 helper_fildl_ST0_A0();
1795 }
1796
1797 void OPPROTO op_fildll_ST0_A0(void)
1798 {
1799 helper_fildll_ST0_A0();
1800 }
1801
1802 #else
1803
1804 void OPPROTO op_fild_ST0_A0(void)
1805 {
1806 #ifdef USE_FP_CONVERT
1807 FP_CONVERT.i32 = ldsw((void *)A0);
1808 ST0 = (CPU86_LDouble)FP_CONVERT.i32;
1809 #else
1810 ST0 = (CPU86_LDouble)ldsw((void *)A0);
1811 #endif
1812 }
1813
1814 void OPPROTO op_fildl_ST0_A0(void)
1815 {
1816 #ifdef USE_FP_CONVERT
1817 FP_CONVERT.i32 = (int32_t) ldl((void *)A0);
1818 ST0 = (CPU86_LDouble)FP_CONVERT.i32;
1819 #else
1820 ST0 = (CPU86_LDouble)((int32_t)ldl((void *)A0));
1821 #endif
1822 }
1823
1824 void OPPROTO op_fildll_ST0_A0(void)
1825 {
1826 #ifdef USE_FP_CONVERT
1827 FP_CONVERT.i64 = (int64_t) ldq((void *)A0);
1828 ST0 = (CPU86_LDouble)FP_CONVERT.i64;
1829 #else
1830 ST0 = (CPU86_LDouble)((int64_t)ldq((void *)A0));
1831 #endif
1832 }
1833
1834 #endif
1835
1836 /* fp store */
1837
1838 void OPPROTO op_fsts_ST0_A0(void)
1839 {
1840 #ifdef USE_FP_CONVERT
1841 FP_CONVERT.d = ST0;
1842 stfl((void *)A0, FP_CONVERT.f);
1843 #else
1844 stfl((void *)A0, (float)ST0);
1845 #endif
1846 }
1847
1848 void OPPROTO op_fstl_ST0_A0(void)
1849 {
1850 stfq((void *)A0, (double)ST0);
1851 }
1852
1853 #ifdef USE_X86LDOUBLE
1854 void OPPROTO op_fstt_ST0_A0(void)
1855 {
1856 *(long double *)A0 = ST0;
1857 }
1858 #else
1859 void helper_fstt_ST0_A0(void)
1860 {
1861 CPU86_LDoubleU temp;
1862 int e;
1863 temp.d = ST0;
1864 /* mantissa */
1865 stq((void *)A0, (MANTD(temp) << 11) | (1LL << 63));
1866 /* exponent + sign */
1867 e = EXPD(temp) - EXPBIAS + 16383;
1868 e |= SIGND(temp) >> 16;
1869 stw((uint8_t *)A0 + 8, e);
1870 }
1871
1872 void OPPROTO op_fstt_ST0_A0(void)
1873 {
1874 helper_fstt_ST0_A0();
1875 }
1876 #endif
1877
1878 void OPPROTO op_fist_ST0_A0(void)
1879 {
1880 #if defined(__sparc__) && !defined(__sparc_v9__)
1881 register CPU86_LDouble d asm("o0");
1882 #else
1883 CPU86_LDouble d;
1884 #endif
1885 int val;
1886
1887 d = ST0;
1888 val = lrint(d);
1889 stw((void *)A0, val);
1890 }
1891
1892 void OPPROTO op_fistl_ST0_A0(void)
1893 {
1894 #if defined(__sparc__) && !defined(__sparc_v9__)
1895 register CPU86_LDouble d asm("o0");
1896 #else
1897 CPU86_LDouble d;
1898 #endif
1899 int val;
1900
1901 d = ST0;
1902 val = lrint(d);
1903 stl((void *)A0, val);
1904 }
1905
1906 void OPPROTO op_fistll_ST0_A0(void)
1907 {
1908 #if defined(__sparc__) && !defined(__sparc_v9__)
1909 register CPU86_LDouble d asm("o0");
1910 #else
1911 CPU86_LDouble d;
1912 #endif
1913 int64_t val;
1914
1915 d = ST0;
1916 val = llrint(d);
1917 stq((void *)A0, val);
1918 }
1919
1920 /* BCD ops */
1921
1922 #define MUL10(iv) ( iv + iv + (iv << 3) )
1923
1924 void helper_fbld_ST0_A0(void)
1925 {
1926 uint8_t *seg;
1927 CPU86_LDouble fpsrcop;
1928 int m32i;
1929 unsigned int v;
1930
1931 /* in this code, seg/m32i will be used as temporary ptr/int */
1932 seg = (uint8_t *)A0 + 8;
1933 v = ldub(seg--);
1934 /* XXX: raise exception */
1935 if (v != 0)
1936 return;
1937 v = ldub(seg--);
1938 /* XXX: raise exception */
1939 if ((v & 0xf0) != 0)
1940 return;
1941 m32i = v; /* <-- d14 */
1942 v = ldub(seg--);
1943 m32i = MUL10(m32i) + (v >> 4); /* <-- val * 10 + d13 */
1944 m32i = MUL10(m32i) + (v & 0xf); /* <-- val * 10 + d12 */
1945 v = ldub(seg--);
1946 m32i = MUL10(m32i) + (v >> 4); /* <-- val * 10 + d11 */
1947 m32i = MUL10(m32i) + (v & 0xf); /* <-- val * 10 + d10 */
1948 v = ldub(seg--);
1949 m32i = MUL10(m32i) + (v >> 4); /* <-- val * 10 + d9 */
1950 m32i = MUL10(m32i) + (v & 0xf); /* <-- val * 10 + d8 */
1951 fpsrcop = ((CPU86_LDouble)m32i) * 100000000.0;
1952
1953 v = ldub(seg--);
1954 m32i = (v >> 4); /* <-- d7 */
1955 m32i = MUL10(m32i) + (v & 0xf); /* <-- val * 10 + d6 */
1956 v = ldub(seg--);
1957 m32i = MUL10(m32i) + (v >> 4); /* <-- val * 10 + d5 */
1958 m32i = MUL10(m32i) + (v & 0xf); /* <-- val * 10 + d4 */
1959 v = ldub(seg--);
1960 m32i = MUL10(m32i) + (v >> 4); /* <-- val * 10 + d3 */
1961 m32i = MUL10(m32i) + (v & 0xf); /* <-- val * 10 + d2 */
1962 v = ldub(seg);
1963 m32i = MUL10(m32i) + (v >> 4); /* <-- val * 10 + d1 */
1964 m32i = MUL10(m32i) + (v & 0xf); /* <-- val * 10 + d0 */
1965 fpsrcop += ((CPU86_LDouble)m32i);
1966 if ( ldub(seg+9) & 0x80 )
1967 fpsrcop = -fpsrcop;
1968 ST0 = fpsrcop;
1969 }
1970
1971 void OPPROTO op_fbld_ST0_A0(void)
1972 {
1973 helper_fbld_ST0_A0();
1974 }
1975
1976 void helper_fbst_ST0_A0(void)
1977 {
1978 CPU86_LDouble fptemp;
1979 CPU86_LDouble fpsrcop;
1980 int v;
1981 uint8_t *mem_ref, *mem_end;
1982
1983 fpsrcop = rint(ST0);
1984 mem_ref = (uint8_t *)A0;
1985 mem_end = mem_ref + 8;
1986 if ( fpsrcop < 0.0 ) {
1987 stw(mem_end, 0x8000);
1988 fpsrcop = -fpsrcop;
1989 } else {
1990 stw(mem_end, 0x0000);
1991 }
1992 while (mem_ref < mem_end) {
1993 if (fpsrcop == 0.0)
1994 break;
1995 fptemp = floor(fpsrcop/10.0);
1996 v = ((int)(fpsrcop - fptemp*10.0));
1997 if (fptemp == 0.0) {
1998 stb(mem_ref++, v);
1999 break;
2000 }
2001 fpsrcop = fptemp;
2002 fptemp = floor(fpsrcop/10.0);
2003 v |= (((int)(fpsrcop - fptemp*10.0)) << 4);
2004 stb(mem_ref++, v);
2005 fpsrcop = fptemp;
2006 }
2007 while (mem_ref < mem_end) {
2008 stb(mem_ref++, 0);
2009 }
2010 }
2011
2012 void OPPROTO op_fbst_ST0_A0(void)
2013 {
2014 helper_fbst_ST0_A0();
2015 }
2016
2017 /* FPU move */
2018
2019 static inline void fpush(void)
2020 {
2021 env->fpstt = (env->fpstt - 1) & 7;
2022 env->fptags[env->fpstt] = 0; /* validate stack entry */
2023 }
2024
2025 static inline void fpop(void)
2026 {
2027 env->fptags[env->fpstt] = 1; /* invvalidate stack entry */
2028 env->fpstt = (env->fpstt + 1) & 7;
2029 }
2030
2031 void OPPROTO op_fpush(void)
2032 {
2033 fpush();
2034 }
2035
2036 void OPPROTO op_fpop(void)
2037 {
2038 fpop();
2039 }
2040
2041 void OPPROTO op_fdecstp(void)
2042 {
2043 env->fpstt = (env->fpstt - 1) & 7;
2044 env->fpus &= (~0x4700);
2045 }
2046
2047 void OPPROTO op_fincstp(void)
2048 {
2049 env->fpstt = (env->fpstt + 1) & 7;
2050 env->fpus &= (~0x4700);
2051 }
2052
2053 void OPPROTO op_fmov_ST0_FT0(void)
2054 {
2055 ST0 = FT0;
2056 }
2057
2058 void OPPROTO op_fmov_FT0_STN(void)
2059 {
2060 FT0 = ST(PARAM1);
2061 }
2062
2063 void OPPROTO op_fmov_ST0_STN(void)
2064 {
2065 ST0 = ST(PARAM1);
2066 }
2067
2068 void OPPROTO op_fmov_STN_ST0(void)
2069 {
2070 ST(PARAM1) = ST0;
2071 }
2072
2073 void OPPROTO op_fxchg_ST0_STN(void)
2074 {
2075 CPU86_LDouble tmp;
2076 tmp = ST(PARAM1);
2077 ST(PARAM1) = ST0;
2078 ST0 = tmp;
2079 }
2080
2081 /* FPU operations */
2082
2083 /* XXX: handle nans */
2084 void OPPROTO op_fcom_ST0_FT0(void)
2085 {
2086 env->fpus &= (~0x4500); /* (C3,C2,C0) <-- 000 */
2087 if (ST0 < FT0)
2088 env->fpus |= 0x100; /* (C3,C2,C0) <-- 001 */
2089 else if (ST0 == FT0)
2090 env->fpus |= 0x4000; /* (C3,C2,C0) <-- 100 */
2091 FORCE_RET();
2092 }
2093
2094 /* XXX: handle nans */
2095 void OPPROTO op_fucom_ST0_FT0(void)
2096 {
2097 env->fpus &= (~0x4500); /* (C3,C2,C0) <-- 000 */
2098 if (ST0 < FT0)
2099 env->fpus |= 0x100; /* (C3,C2,C0) <-- 001 */
2100 else if (ST0 == FT0)
2101 env->fpus |= 0x4000; /* (C3,C2,C0) <-- 100 */
2102 FORCE_RET();
2103 }
2104
2105 void OPPROTO op_fadd_ST0_FT0(void)
2106 {
2107 ST0 += FT0;
2108 }
2109
2110 void OPPROTO op_fmul_ST0_FT0(void)
2111 {
2112 ST0 *= FT0;
2113 }
2114
2115 void OPPROTO op_fsub_ST0_FT0(void)
2116 {
2117 ST0 -= FT0;
2118 }
2119
2120 void OPPROTO op_fsubr_ST0_FT0(void)
2121 {
2122 ST0 = FT0 - ST0;
2123 }
2124
2125 void OPPROTO op_fdiv_ST0_FT0(void)
2126 {
2127 ST0 /= FT0;
2128 }
2129
2130 void OPPROTO op_fdivr_ST0_FT0(void)
2131 {
2132 ST0 = FT0 / ST0;
2133 }
2134
2135 /* fp operations between STN and ST0 */
2136
2137 void OPPROTO op_fadd_STN_ST0(void)
2138 {
2139 ST(PARAM1) += ST0;
2140 }
2141
2142 void OPPROTO op_fmul_STN_ST0(void)
2143 {
2144 ST(PARAM1) *= ST0;
2145 }
2146
2147 void OPPROTO op_fsub_STN_ST0(void)
2148 {
2149 ST(PARAM1) -= ST0;
2150 }
2151
2152 void OPPROTO op_fsubr_STN_ST0(void)
2153 {
2154 CPU86_LDouble *p;
2155 p = &ST(PARAM1);
2156 *p = ST0 - *p;
2157 }
2158
2159 void OPPROTO op_fdiv_STN_ST0(void)
2160 {
2161 ST(PARAM1) /= ST0;
2162 }
2163
2164 void OPPROTO op_fdivr_STN_ST0(void)
2165 {
2166 CPU86_LDouble *p;
2167 p = &ST(PARAM1);
2168 *p = ST0 / *p;
2169 }
2170
2171 /* misc FPU operations */
2172 void OPPROTO op_fchs_ST0(void)
2173 {
2174 ST0 = -ST0;
2175 }
2176
2177 void OPPROTO op_fabs_ST0(void)
2178 {
2179 ST0 = fabs(ST0);
2180 }
2181
2182 void helper_fxam_ST0(void)
2183 {
2184 CPU86_LDoubleU temp;
2185 int expdif;
2186
2187 temp.d = ST0;
2188
2189 env->fpus &= (~0x4700); /* (C3,C2,C1,C0) <-- 0000 */
2190 if (SIGND(temp))
2191 env->fpus |= 0x200; /* C1 <-- 1 */
2192
2193 expdif = EXPD(temp);
2194 if (expdif == MAXEXPD) {
2195 if (MANTD(temp) == 0)
2196 env->fpus |= 0x500 /*Infinity*/;
2197 else
2198 env->fpus |= 0x100 /*NaN*/;
2199 } else if (expdif == 0) {
2200 if (MANTD(temp) == 0)
2201 env->fpus |= 0x4000 /*Zero*/;
2202 else
2203 env->fpus |= 0x4400 /*Denormal*/;
2204 } else {
2205 env->fpus |= 0x400;
2206 }
2207 }
2208
2209 void OPPROTO op_fxam_ST0(void)
2210 {
2211 helper_fxam_ST0();
2212 }
2213
2214 void OPPROTO op_fld1_ST0(void)
2215 {
2216 ST0 = *(CPU86_LDouble *)&f15rk[1];
2217 }
2218
2219 void OPPROTO op_fldl2t_ST0(void)
2220 {
2221 ST0 = *(CPU86_LDouble *)&f15rk[6];
2222 }
2223
2224 void OPPROTO op_fldl2e_ST0(void)
2225 {
2226 ST0 = *(CPU86_LDouble *)&f15rk[5];
2227 }
2228
2229 void OPPROTO op_fldpi_ST0(void)
2230 {
2231 ST0 = *(CPU86_LDouble *)&f15rk[2];
2232 }
2233
2234 void OPPROTO op_fldlg2_ST0(void)
2235 {
2236 ST0 = *(CPU86_LDouble *)&f15rk[3];
2237 }
2238
2239 void OPPROTO op_fldln2_ST0(void)
2240 {
2241 ST0 = *(CPU86_LDouble *)&f15rk[4];
2242 }
2243
2244 void OPPROTO op_fldz_ST0(void)
2245 {
2246 ST0 = *(CPU86_LDouble *)&f15rk[0];
2247 }
2248
2249 void OPPROTO op_fldz_FT0(void)
2250 {
2251 ST0 = *(CPU86_LDouble *)&f15rk[0];
2252 }
2253
2254 void helper_f2xm1(void)
2255 {
2256 ST0 = pow(2.0,ST0) - 1.0;
2257 }
2258
2259 void helper_fyl2x(void)
2260 {
2261 CPU86_LDouble fptemp;
2262
2263 fptemp = ST0;
2264 if (fptemp>0.0){
2265 fptemp = log(fptemp)/log(2.0); /* log2(ST) */
2266 ST1 *= fptemp;
2267 fpop();
2268 } else {
2269 env->fpus &= (~0x4700);
2270 env->fpus |= 0x400;
2271 }
2272 }
2273
2274 void helper_fptan(void)
2275 {
2276 CPU86_LDouble fptemp;
2277
2278 fptemp = ST0;
2279 if((fptemp > MAXTAN)||(fptemp < -MAXTAN)) {
2280 env->fpus |= 0x400;
2281 } else {
2282 ST0 = tan(fptemp);
2283 fpush();
2284 ST0 = 1.0;
2285 env->fpus &= (~0x400); /* C2 <-- 0 */
2286 /* the above code is for |arg| < 2**52 only */
2287 }
2288 }
2289
2290 void helper_fpatan(void)
2291 {
2292 CPU86_LDouble fptemp, fpsrcop;
2293
2294 fpsrcop = ST1;
2295 fptemp = ST0;
2296 ST1 = atan2(fpsrcop,fptemp);
2297 fpop();
2298 }
2299
2300 void helper_fxtract(void)
2301 {
2302 CPU86_LDoubleU temp;
2303 unsigned int expdif;
2304
2305 temp.d = ST0;
2306 expdif = EXPD(temp) - EXPBIAS;
2307 /*DP exponent bias*/
2308 ST0 = expdif;
2309 fpush();
2310 BIASEXPONENT(temp);
2311 ST0 = temp.d;
2312 }
2313
2314 void helper_fprem1(void)
2315 {
2316 CPU86_LDouble dblq, fpsrcop, fptemp;
2317 CPU86_LDoubleU fpsrcop1, fptemp1;
2318 int expdif;
2319 int q;
2320
2321 fpsrcop = ST0;
2322 fptemp = ST1;
2323 fpsrcop1.d = fpsrcop;
2324 fptemp1.d = fptemp;
2325 expdif = EXPD(fpsrcop1) - EXPD(fptemp1);
2326 if (expdif < 53) {
2327 dblq = fpsrcop / fptemp;
2328 dblq = (dblq < 0.0)? ceil(dblq): floor(dblq);
2329 ST0 = fpsrcop - fptemp*dblq;
2330 q = (int)dblq; /* cutting off top bits is assumed here */
2331 env->fpus &= (~0x4700); /* (C3,C2,C1,C0) <-- 0000 */
2332 /* (C0,C1,C3) <-- (q2,q1,q0) */
2333 env->fpus |= (q&0x4) << 6; /* (C0) <-- q2 */
2334 env->fpus |= (q&0x2) << 8; /* (C1) <-- q1 */
2335 env->fpus |= (q&0x1) << 14; /* (C3) <-- q0 */
2336 } else {
2337 env->fpus |= 0x400; /* C2 <-- 1 */
2338 fptemp = pow(2.0, expdif-50);
2339 fpsrcop = (ST0 / ST1) / fptemp;
2340 /* fpsrcop = integer obtained by rounding to the nearest */
2341 fpsrcop = (fpsrcop-floor(fpsrcop) < ceil(fpsrcop)-fpsrcop)?
2342 floor(fpsrcop): ceil(fpsrcop);
2343 ST0 -= (ST1 * fpsrcop * fptemp);
2344 }
2345 }
2346
2347 void helper_fprem(void)
2348 {
2349 CPU86_LDouble dblq, fpsrcop, fptemp;
2350 CPU86_LDoubleU fpsrcop1, fptemp1;
2351 int expdif;
2352 int q;
2353
2354 fpsrcop = ST0;
2355 fptemp = ST1;
2356 fpsrcop1.d = fpsrcop;
2357 fptemp1.d = fptemp;
2358 expdif = EXPD(fpsrcop1) - EXPD(fptemp1);
2359 if ( expdif < 53 ) {
2360 dblq = fpsrcop / fptemp;
2361 dblq = (dblq < 0.0)? ceil(dblq): floor(dblq);
2362 ST0 = fpsrcop - fptemp*dblq;
2363 q = (int)dblq; /* cutting off top bits is assumed here */
2364 env->fpus &= (~0x4700); /* (C3,C2,C1,C0) <-- 0000 */
2365 /* (C0,C1,C3) <-- (q2,q1,q0) */
2366 env->fpus |= (q&0x4) << 6; /* (C0) <-- q2 */
2367 env->fpus |= (q&0x2) << 8; /* (C1) <-- q1 */
2368 env->fpus |= (q&0x1) << 14; /* (C3) <-- q0 */
2369 } else {
2370 env->fpus |= 0x400; /* C2 <-- 1 */
2371 fptemp = pow(2.0, expdif-50);
2372 fpsrcop = (ST0 / ST1) / fptemp;
2373 /* fpsrcop = integer obtained by chopping */
2374 fpsrcop = (fpsrcop < 0.0)?
2375 -(floor(fabs(fpsrcop))): floor(fpsrcop);
2376 ST0 -= (ST1 * fpsrcop * fptemp);
2377 }
2378 }
2379
2380 void helper_fyl2xp1(void)
2381 {
2382 CPU86_LDouble fptemp;
2383
2384 fptemp = ST0;
2385 if ((fptemp+1.0)>0.0) {
2386 fptemp = log(fptemp+1.0) / log(2.0); /* log2(ST+1.0) */
2387 ST1 *= fptemp;
2388 fpop();
2389 } else {
2390 env->fpus &= (~0x4700);
2391 env->fpus |= 0x400;
2392 }
2393 }
2394
2395 void helper_fsqrt(void)
2396 {
2397 CPU86_LDouble fptemp;
2398
2399 fptemp = ST0;
2400 if (fptemp<0.0) {
2401 env->fpus &= (~0x4700); /* (C3,C2,C1,C0) <-- 0000 */
2402 env->fpus |= 0x400;
2403 }
2404 ST0 = sqrt(fptemp);
2405 }
2406
2407 void helper_fsincos(void)
2408 {
2409 CPU86_LDouble fptemp;
2410
2411 fptemp = ST0;
2412 if ((fptemp > MAXTAN)||(fptemp < -MAXTAN)) {
2413 env->fpus |= 0x400;
2414 } else {
2415 ST0 = sin(fptemp);
2416 fpush();
2417 ST0 = cos(fptemp);
2418 env->fpus &= (~0x400); /* C2 <-- 0 */
2419 /* the above code is for |arg| < 2**63 only */
2420 }
2421 }
2422
2423 void helper_frndint(void)
2424 {
2425 ST0 = rint(ST0);
2426 }
2427
2428 void helper_fscale(void)
2429 {
2430 CPU86_LDouble fpsrcop, fptemp;
2431
2432 fpsrcop = 2.0;
2433 fptemp = pow(fpsrcop,ST1);
2434 ST0 *= fptemp;
2435 }
2436
2437 void helper_fsin(void)
2438 {
2439 CPU86_LDouble fptemp;
2440
2441 fptemp = ST0;
2442 if ((fptemp > MAXTAN)||(fptemp < -MAXTAN)) {
2443 env->fpus |= 0x400;
2444 } else {
2445 ST0 = sin(fptemp);
2446 env->fpus &= (~0x400); /* C2 <-- 0 */
2447 /* the above code is for |arg| < 2**53 only */
2448 }
2449 }
2450
2451 void helper_fcos(void)
2452 {
2453 CPU86_LDouble fptemp;
2454
2455 fptemp = ST0;
2456 if((fptemp > MAXTAN)||(fptemp < -MAXTAN)) {
2457 env->fpus |= 0x400;
2458 } else {
2459 ST0 = cos(fptemp);
2460 env->fpus &= (~0x400); /* C2 <-- 0 */
2461 /* the above code is for |arg5 < 2**63 only */
2462 }
2463 }
2464
2465 /* associated heplers to reduce generated code length and to simplify
2466 relocation (FP constants are usually stored in .rodata section) */
2467
2468 void OPPROTO op_f2xm1(void)
2469 {
2470 helper_f2xm1();
2471 }
2472
2473 void OPPROTO op_fyl2x(void)
2474 {
2475 helper_fyl2x();
2476 }
2477
2478 void OPPROTO op_fptan(void)
2479 {
2480 helper_fptan();
2481 }
2482
2483 void OPPROTO op_fpatan(void)
2484 {
2485 helper_fpatan();
2486 }
2487
2488 void OPPROTO op_fxtract(void)
2489 {
2490 helper_fxtract();
2491 }
2492
2493 void OPPROTO op_fprem1(void)
2494 {
2495 helper_fprem1();
2496 }
2497
2498
2499 void OPPROTO op_fprem(void)
2500 {
2501 helper_fprem();
2502 }
2503
2504 void OPPROTO op_fyl2xp1(void)
2505 {
2506 helper_fyl2xp1();
2507 }
2508
2509 void OPPROTO op_fsqrt(void)
2510 {
2511 helper_fsqrt();
2512 }
2513
2514 void OPPROTO op_fsincos(void)
2515 {
2516 helper_fsincos();
2517 }
2518
2519 void OPPROTO op_frndint(void)
2520 {
2521 helper_frndint();
2522 }
2523
2524 void OPPROTO op_fscale(void)
2525 {
2526 helper_fscale();
2527 }
2528
2529 void OPPROTO op_fsin(void)
2530 {
2531 helper_fsin();
2532 }
2533
2534 void OPPROTO op_fcos(void)
2535 {
2536 helper_fcos();
2537 }
2538
2539 void OPPROTO op_fnstsw_A0(void)
2540 {
2541 int fpus;
2542 fpus = (env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11;
2543 stw((void *)A0, fpus);
2544 }
2545
2546 void OPPROTO op_fnstsw_EAX(void)
2547 {
2548 int fpus;
2549 fpus = (env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11;
2550 EAX = (EAX & 0xffff0000) | fpus;
2551 }
2552
2553 void OPPROTO op_fnstcw_A0(void)
2554 {
2555 stw((void *)A0, env->fpuc);
2556 }
2557
2558 void OPPROTO op_fldcw_A0(void)
2559 {
2560 int rnd_type;
2561 env->fpuc = lduw((void *)A0);
2562 /* set rounding mode */
2563 switch(env->fpuc & RC_MASK) {
2564 default:
2565 case RC_NEAR:
2566 rnd_type = FE_TONEAREST;
2567 break;
2568 case RC_DOWN:
2569 rnd_type = FE_DOWNWARD;
2570 break;
2571 case RC_UP:
2572 rnd_type = FE_UPWARD;
2573 break;
2574 case RC_CHOP:
2575 rnd_type = FE_TOWARDZERO;
2576 break;
2577 }
2578 fesetround(rnd_type);
2579 }
2580
2581 void OPPROTO op_fclex(void)
2582 {
2583 env->fpus &= 0x7f00;
2584 }
2585
2586 void OPPROTO op_fninit(void)
2587 {
2588 env->fpus = 0;
2589 env->fpstt = 0;
2590 env->fpuc = 0x37f;
2591 env->fptags[0] = 1;
2592 env->fptags[1] = 1;
2593 env->fptags[2] = 1;
2594 env->fptags[3] = 1;
2595 env->fptags[4] = 1;
2596 env->fptags[5] = 1;
2597 env->fptags[6] = 1;
2598 env->fptags[7] = 1;
2599 }
2600
2601 /* threading support */
2602 void OPPROTO op_lock(void)
2603 {
2604 cpu_lock();
2605 }
2606
2607 void OPPROTO op_unlock(void)
2608 {
2609 cpu_unlock();
2610 }