]> git.proxmox.com Git - qemu.git/blob - op-i386.c
eflags update
[qemu.git] / op-i386.c
1 /*
2 * i386 micro operations
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 */
20 #include "exec-i386.h"
21
22 /* NOTE: data are not static to force relocation generation by GCC */
23
24 uint8_t parity_table[256] = {
25 CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
26 0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
27 0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
28 CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
29 0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
30 CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
31 CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
32 0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
33 0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
34 CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
35 CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
36 0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
37 CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
38 0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
39 0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
40 CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
41 0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
42 CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
43 CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
44 0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
45 CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
46 0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
47 0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
48 CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
49 CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
50 0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
51 0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
52 CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
53 0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
54 CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
55 CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
56 0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
57 };
58
59 /* modulo 17 table */
60 const uint8_t rclw_table[32] = {
61 0, 1, 2, 3, 4, 5, 6, 7,
62 8, 9,10,11,12,13,14,15,
63 16, 0, 1, 2, 3, 4, 5, 6,
64 7, 8, 9,10,11,12,13,14,
65 };
66
67 /* modulo 9 table */
68 const uint8_t rclb_table[32] = {
69 0, 1, 2, 3, 4, 5, 6, 7,
70 8, 0, 1, 2, 3, 4, 5, 6,
71 7, 8, 0, 1, 2, 3, 4, 5,
72 6, 7, 8, 0, 1, 2, 3, 4,
73 };
74
75 #ifdef USE_X86LDOUBLE
76 /* an array of Intel 80-bit FP constants, to be loaded via integer ops */
77 typedef unsigned short f15ld[5];
78 const f15ld f15rk[] =
79 {
80 /*0*/ {0x0000,0x0000,0x0000,0x0000,0x0000},
81 /*1*/ {0x0000,0x0000,0x0000,0x8000,0x3fff},
82 /*pi*/ {0xc235,0x2168,0xdaa2,0xc90f,0x4000},
83 /*lg2*/ {0xf799,0xfbcf,0x9a84,0x9a20,0x3ffd},
84 /*ln2*/ {0x79ac,0xd1cf,0x17f7,0xb172,0x3ffe},
85 /*l2e*/ {0xf0bc,0x5c17,0x3b29,0xb8aa,0x3fff},
86 /*l2t*/ {0x8afe,0xcd1b,0x784b,0xd49a,0x4000}
87 };
88 #else
89 /* the same, 64-bit version */
90 typedef unsigned short f15ld[4];
91 const f15ld f15rk[] =
92 {
93 #ifndef WORDS_BIGENDIAN
94 /*0*/ {0x0000,0x0000,0x0000,0x0000},
95 /*1*/ {0x0000,0x0000,0x0000,0x3ff0},
96 /*pi*/ {0x2d18,0x5444,0x21fb,0x4009},
97 /*lg2*/ {0x79ff,0x509f,0x4413,0x3fd3},
98 /*ln2*/ {0x39ef,0xfefa,0x2e42,0x3fe6},
99 /*l2e*/ {0x82fe,0x652b,0x1547,0x3ff7},
100 /*l2t*/ {0xa371,0x0979,0x934f,0x400a}
101 #else
102 /*0*/ {0x0000,0x0000,0x0000,0x0000},
103 /*1*/ {0x3ff0,0x0000,0x0000,0x0000},
104 /*pi*/ {0x4009,0x21fb,0x5444,0x2d18},
105 /*lg2*/ {0x3fd3,0x4413,0x509f,0x79ff},
106 /*ln2*/ {0x3fe6,0x2e42,0xfefa,0x39ef},
107 /*l2e*/ {0x3ff7,0x1547,0x652b,0x82fe},
108 /*l2t*/ {0x400a,0x934f,0x0979,0xa371}
109 #endif
110 };
111 #endif
112
113 /* n must be a constant to be efficient */
114 static inline int lshift(int x, int n)
115 {
116 if (n >= 0)
117 return x << n;
118 else
119 return x >> (-n);
120 }
121
122 /* we define the various pieces of code used by the JIT */
123
124 #define REG EAX
125 #define REGNAME _EAX
126 #include "opreg_template.h"
127 #undef REG
128 #undef REGNAME
129
130 #define REG ECX
131 #define REGNAME _ECX
132 #include "opreg_template.h"
133 #undef REG
134 #undef REGNAME
135
136 #define REG EDX
137 #define REGNAME _EDX
138 #include "opreg_template.h"
139 #undef REG
140 #undef REGNAME
141
142 #define REG EBX
143 #define REGNAME _EBX
144 #include "opreg_template.h"
145 #undef REG
146 #undef REGNAME
147
148 #define REG ESP
149 #define REGNAME _ESP
150 #include "opreg_template.h"
151 #undef REG
152 #undef REGNAME
153
154 #define REG EBP
155 #define REGNAME _EBP
156 #include "opreg_template.h"
157 #undef REG
158 #undef REGNAME
159
160 #define REG ESI
161 #define REGNAME _ESI
162 #include "opreg_template.h"
163 #undef REG
164 #undef REGNAME
165
166 #define REG EDI
167 #define REGNAME _EDI
168 #include "opreg_template.h"
169 #undef REG
170 #undef REGNAME
171
172 /* operations with flags */
173
174 void OPPROTO op_addl_T0_T1_cc(void)
175 {
176 CC_SRC = T0;
177 T0 += T1;
178 CC_DST = T0;
179 }
180
181 void OPPROTO op_orl_T0_T1_cc(void)
182 {
183 T0 |= T1;
184 CC_DST = T0;
185 }
186
187 void OPPROTO op_andl_T0_T1_cc(void)
188 {
189 T0 &= T1;
190 CC_DST = T0;
191 }
192
193 void OPPROTO op_subl_T0_T1_cc(void)
194 {
195 CC_SRC = T0;
196 T0 -= T1;
197 CC_DST = T0;
198 }
199
200 void OPPROTO op_xorl_T0_T1_cc(void)
201 {
202 T0 ^= T1;
203 CC_DST = T0;
204 }
205
206 void OPPROTO op_cmpl_T0_T1_cc(void)
207 {
208 CC_SRC = T0;
209 CC_DST = T0 - T1;
210 }
211
212 void OPPROTO op_negl_T0_cc(void)
213 {
214 CC_SRC = 0;
215 T0 = -T0;
216 CC_DST = T0;
217 }
218
219 void OPPROTO op_incl_T0_cc(void)
220 {
221 CC_SRC = cc_table[CC_OP].compute_c();
222 T0++;
223 CC_DST = T0;
224 }
225
226 void OPPROTO op_decl_T0_cc(void)
227 {
228 CC_SRC = cc_table[CC_OP].compute_c();
229 T0--;
230 CC_DST = T0;
231 }
232
233 void OPPROTO op_testl_T0_T1_cc(void)
234 {
235 CC_DST = T0 & T1;
236 }
237
238 /* operations without flags */
239
240 void OPPROTO op_addl_T0_T1(void)
241 {
242 T0 += T1;
243 }
244
245 void OPPROTO op_orl_T0_T1(void)
246 {
247 T0 |= T1;
248 }
249
250 void OPPROTO op_andl_T0_T1(void)
251 {
252 T0 &= T1;
253 }
254
255 void OPPROTO op_subl_T0_T1(void)
256 {
257 T0 -= T1;
258 }
259
260 void OPPROTO op_xorl_T0_T1(void)
261 {
262 T0 ^= T1;
263 }
264
265 void OPPROTO op_negl_T0(void)
266 {
267 T0 = -T0;
268 }
269
270 void OPPROTO op_incl_T0(void)
271 {
272 T0++;
273 }
274
275 void OPPROTO op_decl_T0(void)
276 {
277 T0--;
278 }
279
280 void OPPROTO op_notl_T0(void)
281 {
282 T0 = ~T0;
283 }
284
285 void OPPROTO op_bswapl_T0(void)
286 {
287 T0 = bswap32(T0);
288 }
289
290 /* multiply/divide */
291 void OPPROTO op_mulb_AL_T0(void)
292 {
293 unsigned int res;
294 res = (uint8_t)EAX * (uint8_t)T0;
295 EAX = (EAX & 0xffff0000) | res;
296 CC_SRC = (res & 0xff00);
297 }
298
299 void OPPROTO op_imulb_AL_T0(void)
300 {
301 int res;
302 res = (int8_t)EAX * (int8_t)T0;
303 EAX = (EAX & 0xffff0000) | (res & 0xffff);
304 CC_SRC = (res != (int8_t)res);
305 }
306
307 void OPPROTO op_mulw_AX_T0(void)
308 {
309 unsigned int res;
310 res = (uint16_t)EAX * (uint16_t)T0;
311 EAX = (EAX & 0xffff0000) | (res & 0xffff);
312 EDX = (EDX & 0xffff0000) | ((res >> 16) & 0xffff);
313 CC_SRC = res >> 16;
314 }
315
316 void OPPROTO op_imulw_AX_T0(void)
317 {
318 int res;
319 res = (int16_t)EAX * (int16_t)T0;
320 EAX = (EAX & 0xffff0000) | (res & 0xffff);
321 EDX = (EDX & 0xffff0000) | ((res >> 16) & 0xffff);
322 CC_SRC = (res != (int16_t)res);
323 }
324
325 void OPPROTO op_mull_EAX_T0(void)
326 {
327 uint64_t res;
328 res = (uint64_t)((uint32_t)EAX) * (uint64_t)((uint32_t)T0);
329 EAX = res;
330 EDX = res >> 32;
331 CC_SRC = res >> 32;
332 }
333
334 void OPPROTO op_imull_EAX_T0(void)
335 {
336 int64_t res;
337 res = (int64_t)((int32_t)EAX) * (int64_t)((int32_t)T0);
338 EAX = res;
339 EDX = res >> 32;
340 CC_SRC = (res != (int32_t)res);
341 }
342
343 void OPPROTO op_imulw_T0_T1(void)
344 {
345 int res;
346 res = (int16_t)T0 * (int16_t)T1;
347 T0 = res;
348 CC_SRC = (res != (int16_t)res);
349 }
350
351 void OPPROTO op_imull_T0_T1(void)
352 {
353 int64_t res;
354 res = (int64_t)((int32_t)T0) * (int64_t)((int32_t)T1);
355 T0 = res;
356 CC_SRC = (res != (int32_t)res);
357 }
358
359 /* division, flags are undefined */
360 /* XXX: add exceptions for overflow */
361 void OPPROTO op_divb_AL_T0(void)
362 {
363 unsigned int num, den, q, r;
364
365 num = (EAX & 0xffff);
366 den = (T0 & 0xff);
367 if (den == 0)
368 raise_exception(EXCP00_DIVZ);
369 q = (num / den) & 0xff;
370 r = (num % den) & 0xff;
371 EAX = (EAX & 0xffff0000) | (r << 8) | q;
372 }
373
374 void OPPROTO op_idivb_AL_T0(void)
375 {
376 int num, den, q, r;
377
378 num = (int16_t)EAX;
379 den = (int8_t)T0;
380 if (den == 0)
381 raise_exception(EXCP00_DIVZ);
382 q = (num / den) & 0xff;
383 r = (num % den) & 0xff;
384 EAX = (EAX & 0xffff0000) | (r << 8) | q;
385 }
386
387 void OPPROTO op_divw_AX_T0(void)
388 {
389 unsigned int num, den, q, r;
390
391 num = (EAX & 0xffff) | ((EDX & 0xffff) << 16);
392 den = (T0 & 0xffff);
393 if (den == 0)
394 raise_exception(EXCP00_DIVZ);
395 q = (num / den) & 0xffff;
396 r = (num % den) & 0xffff;
397 EAX = (EAX & 0xffff0000) | q;
398 EDX = (EDX & 0xffff0000) | r;
399 }
400
401 void OPPROTO op_idivw_AX_T0(void)
402 {
403 int num, den, q, r;
404
405 num = (EAX & 0xffff) | ((EDX & 0xffff) << 16);
406 den = (int16_t)T0;
407 if (den == 0)
408 raise_exception(EXCP00_DIVZ);
409 q = (num / den) & 0xffff;
410 r = (num % den) & 0xffff;
411 EAX = (EAX & 0xffff0000) | q;
412 EDX = (EDX & 0xffff0000) | r;
413 }
414
415 void OPPROTO op_divl_EAX_T0(void)
416 {
417 unsigned int den, q, r;
418 uint64_t num;
419
420 num = EAX | ((uint64_t)EDX << 32);
421 den = T0;
422 if (den == 0)
423 raise_exception(EXCP00_DIVZ);
424 q = (num / den);
425 r = (num % den);
426 EAX = q;
427 EDX = r;
428 }
429
430 void OPPROTO op_idivl_EAX_T0(void)
431 {
432 int den, q, r;
433 int64_t num;
434
435 num = EAX | ((uint64_t)EDX << 32);
436 den = T0;
437 if (den == 0)
438 raise_exception(EXCP00_DIVZ);
439 q = (num / den);
440 r = (num % den);
441 EAX = q;
442 EDX = r;
443 }
444
445 /* constant load & misc op */
446
447 void OPPROTO op_movl_T0_im(void)
448 {
449 T0 = PARAM1;
450 }
451
452 void OPPROTO op_addl_T0_im(void)
453 {
454 T0 += PARAM1;
455 }
456
457 void OPPROTO op_andl_T0_ffff(void)
458 {
459 T0 = T0 & 0xffff;
460 }
461
462 void OPPROTO op_movl_T0_T1(void)
463 {
464 T0 = T1;
465 }
466
467 void OPPROTO op_movl_T1_im(void)
468 {
469 T1 = PARAM1;
470 }
471
472 void OPPROTO op_addl_T1_im(void)
473 {
474 T1 += PARAM1;
475 }
476
477 void OPPROTO op_movl_T1_A0(void)
478 {
479 T1 = A0;
480 }
481
482 void OPPROTO op_movl_A0_im(void)
483 {
484 A0 = PARAM1;
485 }
486
487 void OPPROTO op_addl_A0_im(void)
488 {
489 A0 += PARAM1;
490 }
491
492 void OPPROTO op_addl_A0_AL(void)
493 {
494 A0 += (EAX & 0xff);
495 }
496
497 void OPPROTO op_andl_A0_ffff(void)
498 {
499 A0 = A0 & 0xffff;
500 }
501
502 /* memory access */
503
504 void OPPROTO op_ldub_T0_A0(void)
505 {
506 T0 = ldub((uint8_t *)A0);
507 }
508
509 void OPPROTO op_ldsb_T0_A0(void)
510 {
511 T0 = ldsb((int8_t *)A0);
512 }
513
514 void OPPROTO op_lduw_T0_A0(void)
515 {
516 T0 = lduw((uint8_t *)A0);
517 }
518
519 void OPPROTO op_ldsw_T0_A0(void)
520 {
521 T0 = ldsw((int8_t *)A0);
522 }
523
524 void OPPROTO op_ldl_T0_A0(void)
525 {
526 T0 = ldl((uint8_t *)A0);
527 }
528
529 void OPPROTO op_ldub_T1_A0(void)
530 {
531 T1 = ldub((uint8_t *)A0);
532 }
533
534 void OPPROTO op_ldsb_T1_A0(void)
535 {
536 T1 = ldsb((int8_t *)A0);
537 }
538
539 void OPPROTO op_lduw_T1_A0(void)
540 {
541 T1 = lduw((uint8_t *)A0);
542 }
543
544 void OPPROTO op_ldsw_T1_A0(void)
545 {
546 T1 = ldsw((int8_t *)A0);
547 }
548
549 void OPPROTO op_ldl_T1_A0(void)
550 {
551 T1 = ldl((uint8_t *)A0);
552 }
553
554 void OPPROTO op_stb_T0_A0(void)
555 {
556 stb((uint8_t *)A0, T0);
557 }
558
559 void OPPROTO op_stw_T0_A0(void)
560 {
561 stw((uint8_t *)A0, T0);
562 }
563
564 void OPPROTO op_stl_T0_A0(void)
565 {
566 stl((uint8_t *)A0, T0);
567 }
568
569 /* used for bit operations */
570
571 void OPPROTO op_add_bitw_A0_T1(void)
572 {
573 A0 += ((int32_t)T1 >> 4) << 1;
574 }
575
576 void OPPROTO op_add_bitl_A0_T1(void)
577 {
578 A0 += ((int32_t)T1 >> 5) << 2;
579 }
580
581 /* indirect jump */
582
583 void OPPROTO op_jmp_T0(void)
584 {
585 EIP = T0;
586 }
587
588 void OPPROTO op_jmp_im(void)
589 {
590 EIP = PARAM1;
591 }
592
593 void OPPROTO op_int_im(void)
594 {
595 EIP = PARAM1;
596 raise_exception(EXCP0D_GPF);
597 }
598
599 void OPPROTO op_int3(void)
600 {
601 EIP = PARAM1;
602 raise_exception(EXCP03_INT3);
603 }
604
605 void OPPROTO op_into(void)
606 {
607 int eflags;
608 eflags = cc_table[CC_OP].compute_all();
609 if (eflags & CC_O) {
610 raise_exception(EXCP04_INTO);
611 }
612 }
613
614 void OPPROTO op_boundw(void)
615 {
616 int low, high, v;
617 low = ldsw((uint8_t *)A0);
618 high = ldsw((uint8_t *)A0 + 2);
619 v = (int16_t)T0;
620 if (v < low || v > high)
621 raise_exception(EXCP05_BOUND);
622 FORCE_RET();
623 }
624
625 void OPPROTO op_boundl(void)
626 {
627 int low, high, v;
628 low = ldl((uint8_t *)A0);
629 high = ldl((uint8_t *)A0 + 4);
630 v = T0;
631 if (v < low || v > high)
632 raise_exception(EXCP05_BOUND);
633 FORCE_RET();
634 }
635
636 void OPPROTO op_cmpxchg8b(void)
637 {
638 uint64_t d;
639 int eflags;
640
641 eflags = cc_table[CC_OP].compute_all();
642 d = ldq((uint8_t *)A0);
643 if (d == (((uint64_t)EDX << 32) | EAX)) {
644 stq((uint8_t *)A0, ((uint64_t)ECX << 32) | EBX);
645 eflags |= CC_Z;
646 } else {
647 EDX = d >> 32;
648 EAX = d;
649 eflags &= ~CC_Z;
650 }
651 CC_SRC = eflags;
652 FORCE_RET();
653 }
654
655 /* string ops */
656
657 #define ldul ldl
658
659 #define SHIFT 0
660 #include "ops_template.h"
661 #undef SHIFT
662
663 #define SHIFT 1
664 #include "ops_template.h"
665 #undef SHIFT
666
667 #define SHIFT 2
668 #include "ops_template.h"
669 #undef SHIFT
670
671 /* sign extend */
672
673 void OPPROTO op_movsbl_T0_T0(void)
674 {
675 T0 = (int8_t)T0;
676 }
677
678 void OPPROTO op_movzbl_T0_T0(void)
679 {
680 T0 = (uint8_t)T0;
681 }
682
683 void OPPROTO op_movswl_T0_T0(void)
684 {
685 T0 = (int16_t)T0;
686 }
687
688 void OPPROTO op_movzwl_T0_T0(void)
689 {
690 T0 = (uint16_t)T0;
691 }
692
693 void OPPROTO op_movswl_EAX_AX(void)
694 {
695 EAX = (int16_t)EAX;
696 }
697
698 void OPPROTO op_movsbw_AX_AL(void)
699 {
700 EAX = (EAX & 0xffff0000) | ((int8_t)EAX & 0xffff);
701 }
702
703 void OPPROTO op_movslq_EDX_EAX(void)
704 {
705 EDX = (int32_t)EAX >> 31;
706 }
707
708 void OPPROTO op_movswl_DX_AX(void)
709 {
710 EDX = (EDX & 0xffff0000) | (((int16_t)EAX >> 15) & 0xffff);
711 }
712
713 /* push/pop */
714
715 void op_pushl_T0(void)
716 {
717 uint32_t offset;
718 offset = ESP - 4;
719 stl((void *)offset, T0);
720 /* modify ESP after to handle exceptions correctly */
721 ESP = offset;
722 }
723
724 void op_pushw_T0(void)
725 {
726 uint32_t offset;
727 offset = ESP - 2;
728 stw((void *)offset, T0);
729 /* modify ESP after to handle exceptions correctly */
730 ESP = offset;
731 }
732
733 void op_pushl_ss32_T0(void)
734 {
735 uint32_t offset;
736 offset = ESP - 4;
737 stl(env->seg_cache[R_SS].base + offset, T0);
738 /* modify ESP after to handle exceptions correctly */
739 ESP = offset;
740 }
741
742 void op_pushw_ss32_T0(void)
743 {
744 uint32_t offset;
745 offset = ESP - 2;
746 stw(env->seg_cache[R_SS].base + offset, T0);
747 /* modify ESP after to handle exceptions correctly */
748 ESP = offset;
749 }
750
751 void op_pushl_ss16_T0(void)
752 {
753 uint32_t offset;
754 offset = (ESP - 4) & 0xffff;
755 stl(env->seg_cache[R_SS].base + offset, T0);
756 /* modify ESP after to handle exceptions correctly */
757 ESP = (ESP & ~0xffff) | offset;
758 }
759
760 void op_pushw_ss16_T0(void)
761 {
762 uint32_t offset;
763 offset = (ESP - 2) & 0xffff;
764 stw(env->seg_cache[R_SS].base + offset, T0);
765 /* modify ESP after to handle exceptions correctly */
766 ESP = (ESP & ~0xffff) | offset;
767 }
768
769 /* NOTE: ESP update is done after */
770 void op_popl_T0(void)
771 {
772 T0 = ldl((void *)ESP);
773 }
774
775 void op_popw_T0(void)
776 {
777 T0 = lduw((void *)ESP);
778 }
779
780 void op_popl_ss32_T0(void)
781 {
782 T0 = ldl(env->seg_cache[R_SS].base + ESP);
783 }
784
785 void op_popw_ss32_T0(void)
786 {
787 T0 = lduw(env->seg_cache[R_SS].base + ESP);
788 }
789
790 void op_popl_ss16_T0(void)
791 {
792 T0 = ldl(env->seg_cache[R_SS].base + (ESP & 0xffff));
793 }
794
795 void op_popw_ss16_T0(void)
796 {
797 T0 = lduw(env->seg_cache[R_SS].base + (ESP & 0xffff));
798 }
799
800 void op_addl_ESP_4(void)
801 {
802 ESP += 4;
803 }
804
805 void op_addl_ESP_2(void)
806 {
807 ESP += 2;
808 }
809
810 void op_addw_ESP_4(void)
811 {
812 ESP = (ESP & ~0xffff) | ((ESP + 4) & 0xffff);
813 }
814
815 void op_addw_ESP_2(void)
816 {
817 ESP = (ESP & ~0xffff) | ((ESP + 2) & 0xffff);
818 }
819
820 void op_addl_ESP_im(void)
821 {
822 ESP += PARAM1;
823 }
824
825 void op_addw_ESP_im(void)
826 {
827 ESP = (ESP & ~0xffff) | ((ESP + PARAM1) & 0xffff);
828 }
829
830 /* rdtsc */
831 #ifndef __i386__
832 uint64_t emu_time;
833 #endif
834
835 void OPPROTO op_rdtsc(void)
836 {
837 uint64_t val;
838 #ifdef __i386__
839 asm("rdtsc" : "=A" (val));
840 #else
841 /* better than nothing: the time increases */
842 val = emu_time++;
843 #endif
844 EAX = val;
845 EDX = val >> 32;
846 }
847
848 /* We simulate a pre-MMX pentium as in valgrind */
849 #define CPUID_FP87 (1 << 0)
850 #define CPUID_VME (1 << 1)
851 #define CPUID_DE (1 << 2)
852 #define CPUID_PSE (1 << 3)
853 #define CPUID_TSC (1 << 4)
854 #define CPUID_MSR (1 << 5)
855 #define CPUID_PAE (1 << 6)
856 #define CPUID_MCE (1 << 7)
857 #define CPUID_CX8 (1 << 8)
858 #define CPUID_APIC (1 << 9)
859 #define CPUID_SEP (1 << 11) /* sysenter/sysexit */
860 #define CPUID_MTRR (1 << 12)
861 #define CPUID_PGE (1 << 13)
862 #define CPUID_MCA (1 << 14)
863 #define CPUID_CMOV (1 << 15)
864 /* ... */
865 #define CPUID_MMX (1 << 23)
866 #define CPUID_FXSR (1 << 24)
867 #define CPUID_SSE (1 << 25)
868 #define CPUID_SSE2 (1 << 26)
869
870 void helper_cpuid(void)
871 {
872 if (EAX == 0) {
873 EAX = 1; /* max EAX index supported */
874 EBX = 0x756e6547;
875 ECX = 0x6c65746e;
876 EDX = 0x49656e69;
877 } else {
878 /* EAX = 1 info */
879 EAX = 0x52b;
880 EBX = 0;
881 ECX = 0;
882 EDX = CPUID_FP87 | CPUID_VME | CPUID_DE | CPUID_PSE |
883 CPUID_TSC | CPUID_MSR | CPUID_MCE |
884 CPUID_CX8;
885 }
886 }
887
888 void OPPROTO op_cpuid(void)
889 {
890 helper_cpuid();
891 }
892
893 /* bcd */
894
895 /* XXX: exception */
896 void OPPROTO op_aam(void)
897 {
898 int base = PARAM1;
899 int al, ah;
900 al = EAX & 0xff;
901 ah = al / base;
902 al = al % base;
903 EAX = (EAX & ~0xffff) | al | (ah << 8);
904 CC_DST = al;
905 }
906
907 void OPPROTO op_aad(void)
908 {
909 int base = PARAM1;
910 int al, ah;
911 al = EAX & 0xff;
912 ah = (EAX >> 8) & 0xff;
913 al = ((ah * base) + al) & 0xff;
914 EAX = (EAX & ~0xffff) | al;
915 CC_DST = al;
916 }
917
918 void OPPROTO op_aaa(void)
919 {
920 int icarry;
921 int al, ah, af;
922 int eflags;
923
924 eflags = cc_table[CC_OP].compute_all();
925 af = eflags & CC_A;
926 al = EAX & 0xff;
927 ah = (EAX >> 8) & 0xff;
928
929 icarry = (al > 0xf9);
930 if (((al & 0x0f) > 9 ) || af) {
931 al = (al + 6) & 0x0f;
932 ah = (ah + 1 + icarry) & 0xff;
933 eflags |= CC_C | CC_A;
934 } else {
935 eflags &= ~(CC_C | CC_A);
936 al &= 0x0f;
937 }
938 EAX = (EAX & ~0xffff) | al | (ah << 8);
939 CC_SRC = eflags;
940 }
941
942 void OPPROTO op_aas(void)
943 {
944 int icarry;
945 int al, ah, af;
946 int eflags;
947
948 eflags = cc_table[CC_OP].compute_all();
949 af = eflags & CC_A;
950 al = EAX & 0xff;
951 ah = (EAX >> 8) & 0xff;
952
953 icarry = (al < 6);
954 if (((al & 0x0f) > 9 ) || af) {
955 al = (al - 6) & 0x0f;
956 ah = (ah - 1 - icarry) & 0xff;
957 eflags |= CC_C | CC_A;
958 } else {
959 eflags &= ~(CC_C | CC_A);
960 al &= 0x0f;
961 }
962 EAX = (EAX & ~0xffff) | al | (ah << 8);
963 CC_SRC = eflags;
964 }
965
966 void OPPROTO op_daa(void)
967 {
968 int al, af, cf;
969 int eflags;
970
971 eflags = cc_table[CC_OP].compute_all();
972 cf = eflags & CC_C;
973 af = eflags & CC_A;
974 al = EAX & 0xff;
975
976 eflags = 0;
977 if (((al & 0x0f) > 9 ) || af) {
978 al = (al + 6) & 0xff;
979 eflags |= CC_A;
980 }
981 if ((al > 0x9f) || cf) {
982 al = (al + 0x60) & 0xff;
983 eflags |= CC_C;
984 }
985 EAX = (EAX & ~0xff) | al;
986 /* well, speed is not an issue here, so we compute the flags by hand */
987 eflags |= (al == 0) << 6; /* zf */
988 eflags |= parity_table[al]; /* pf */
989 eflags |= (al & 0x80); /* sf */
990 CC_SRC = eflags;
991 }
992
993 void OPPROTO op_das(void)
994 {
995 int al, al1, af, cf;
996 int eflags;
997
998 eflags = cc_table[CC_OP].compute_all();
999 cf = eflags & CC_C;
1000 af = eflags & CC_A;
1001 al = EAX & 0xff;
1002
1003 eflags = 0;
1004 al1 = al;
1005 if (((al & 0x0f) > 9 ) || af) {
1006 eflags |= CC_A;
1007 if (al < 6 || cf)
1008 eflags |= CC_C;
1009 al = (al - 6) & 0xff;
1010 }
1011 if ((al1 > 0x99) || cf) {
1012 al = (al - 0x60) & 0xff;
1013 eflags |= CC_C;
1014 }
1015 EAX = (EAX & ~0xff) | al;
1016 /* well, speed is not an issue here, so we compute the flags by hand */
1017 eflags |= (al == 0) << 6; /* zf */
1018 eflags |= parity_table[al]; /* pf */
1019 eflags |= (al & 0x80); /* sf */
1020 CC_SRC = eflags;
1021 }
1022
1023 /* segment handling */
1024
1025 /* XXX: use static VM86 information */
1026 void load_seg(int seg_reg, int selector)
1027 {
1028 SegmentCache *sc;
1029 SegmentDescriptorTable *dt;
1030 int index;
1031 uint32_t e1, e2;
1032 uint8_t *ptr;
1033
1034 env->segs[seg_reg] = selector;
1035 sc = &env->seg_cache[seg_reg];
1036 if (env->eflags & VM_MASK) {
1037 sc->base = (void *)(selector << 4);
1038 sc->limit = 0xffff;
1039 sc->seg_32bit = 0;
1040 } else {
1041 if (selector & 0x4)
1042 dt = &env->ldt;
1043 else
1044 dt = &env->gdt;
1045 index = selector & ~7;
1046 if ((index + 7) > dt->limit)
1047 raise_exception(EXCP0D_GPF);
1048 ptr = dt->base + index;
1049 e1 = ldl(ptr);
1050 e2 = ldl(ptr + 4);
1051 sc->base = (void *)((e1 >> 16) | ((e2 & 0xff) << 16) | (e2 & 0xff000000));
1052 sc->limit = (e1 & 0xffff) | (e2 & 0x000f0000);
1053 if (e2 & (1 << 23))
1054 sc->limit = (sc->limit << 12) | 0xfff;
1055 sc->seg_32bit = (e2 >> 22) & 1;
1056 #if 0
1057 fprintf(logfile, "load_seg: sel=0x%04x base=0x%08lx limit=0x%08lx seg_32bit=%d\n",
1058 selector, (unsigned long)sc->base, sc->limit, sc->seg_32bit);
1059 #endif
1060 }
1061 }
1062
1063 void OPPROTO op_movl_seg_T0(void)
1064 {
1065 load_seg(PARAM1, T0 & 0xffff);
1066 }
1067
1068 void OPPROTO op_movl_T0_seg(void)
1069 {
1070 T0 = env->segs[PARAM1];
1071 }
1072
1073 void OPPROTO op_movl_A0_seg(void)
1074 {
1075 A0 = *(unsigned long *)((char *)env + PARAM1);
1076 }
1077
1078 void OPPROTO op_addl_A0_seg(void)
1079 {
1080 A0 += *(unsigned long *)((char *)env + PARAM1);
1081 }
1082
1083 /* flags handling */
1084
1085 /* slow jumps cases (compute x86 flags) */
1086 void OPPROTO op_jo_cc(void)
1087 {
1088 int eflags;
1089 eflags = cc_table[CC_OP].compute_all();
1090 if (eflags & CC_O)
1091 EIP = PARAM1;
1092 else
1093 EIP = PARAM2;
1094 FORCE_RET();
1095 }
1096
1097 void OPPROTO op_jb_cc(void)
1098 {
1099 if (cc_table[CC_OP].compute_c())
1100 EIP = PARAM1;
1101 else
1102 EIP = PARAM2;
1103 FORCE_RET();
1104 }
1105
1106 void OPPROTO op_jz_cc(void)
1107 {
1108 int eflags;
1109 eflags = cc_table[CC_OP].compute_all();
1110 if (eflags & CC_Z)
1111 EIP = PARAM1;
1112 else
1113 EIP = PARAM2;
1114 FORCE_RET();
1115 }
1116
1117 void OPPROTO op_jbe_cc(void)
1118 {
1119 int eflags;
1120 eflags = cc_table[CC_OP].compute_all();
1121 if (eflags & (CC_Z | CC_C))
1122 EIP = PARAM1;
1123 else
1124 EIP = PARAM2;
1125 FORCE_RET();
1126 }
1127
1128 void OPPROTO op_js_cc(void)
1129 {
1130 int eflags;
1131 eflags = cc_table[CC_OP].compute_all();
1132 if (eflags & CC_S)
1133 EIP = PARAM1;
1134 else
1135 EIP = PARAM2;
1136 FORCE_RET();
1137 }
1138
1139 void OPPROTO op_jp_cc(void)
1140 {
1141 int eflags;
1142 eflags = cc_table[CC_OP].compute_all();
1143 if (eflags & CC_P)
1144 EIP = PARAM1;
1145 else
1146 EIP = PARAM2;
1147 FORCE_RET();
1148 }
1149
1150 void OPPROTO op_jl_cc(void)
1151 {
1152 int eflags;
1153 eflags = cc_table[CC_OP].compute_all();
1154 if ((eflags ^ (eflags >> 4)) & 0x80)
1155 EIP = PARAM1;
1156 else
1157 EIP = PARAM2;
1158 FORCE_RET();
1159 }
1160
1161 void OPPROTO op_jle_cc(void)
1162 {
1163 int eflags;
1164 eflags = cc_table[CC_OP].compute_all();
1165 if (((eflags ^ (eflags >> 4)) & 0x80) || (eflags & CC_Z))
1166 EIP = PARAM1;
1167 else
1168 EIP = PARAM2;
1169 FORCE_RET();
1170 }
1171
1172 /* slow set cases (compute x86 flags) */
1173 void OPPROTO op_seto_T0_cc(void)
1174 {
1175 int eflags;
1176 eflags = cc_table[CC_OP].compute_all();
1177 T0 = (eflags >> 11) & 1;
1178 }
1179
1180 void OPPROTO op_setb_T0_cc(void)
1181 {
1182 T0 = cc_table[CC_OP].compute_c();
1183 }
1184
1185 void OPPROTO op_setz_T0_cc(void)
1186 {
1187 int eflags;
1188 eflags = cc_table[CC_OP].compute_all();
1189 T0 = (eflags >> 6) & 1;
1190 }
1191
1192 void OPPROTO op_setbe_T0_cc(void)
1193 {
1194 int eflags;
1195 eflags = cc_table[CC_OP].compute_all();
1196 T0 = (eflags & (CC_Z | CC_C)) != 0;
1197 }
1198
1199 void OPPROTO op_sets_T0_cc(void)
1200 {
1201 int eflags;
1202 eflags = cc_table[CC_OP].compute_all();
1203 T0 = (eflags >> 7) & 1;
1204 }
1205
1206 void OPPROTO op_setp_T0_cc(void)
1207 {
1208 int eflags;
1209 eflags = cc_table[CC_OP].compute_all();
1210 T0 = (eflags >> 2) & 1;
1211 }
1212
1213 void OPPROTO op_setl_T0_cc(void)
1214 {
1215 int eflags;
1216 eflags = cc_table[CC_OP].compute_all();
1217 T0 = ((eflags ^ (eflags >> 4)) >> 7) & 1;
1218 }
1219
1220 void OPPROTO op_setle_T0_cc(void)
1221 {
1222 int eflags;
1223 eflags = cc_table[CC_OP].compute_all();
1224 T0 = (((eflags ^ (eflags >> 4)) & 0x80) || (eflags & CC_Z)) != 0;
1225 }
1226
1227 void OPPROTO op_xor_T0_1(void)
1228 {
1229 T0 ^= 1;
1230 }
1231
1232 void OPPROTO op_set_cc_op(void)
1233 {
1234 CC_OP = PARAM1;
1235 }
1236
1237 #define FL_UPDATE_MASK (TF_MASK | AC_MASK | ID_MASK)
1238
1239 void OPPROTO op_movl_eflags_T0(void)
1240 {
1241 int eflags;
1242 eflags = T0;
1243 CC_SRC = eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
1244 DF = 1 - (2 * ((eflags >> 10) & 1));
1245 /* we also update some system flags as in user mode */
1246 env->eflags = (env->eflags & ~FL_UPDATE_MASK) | (eflags & FL_UPDATE_MASK);
1247 }
1248
1249 /* XXX: compute only O flag */
1250 void OPPROTO op_movb_eflags_T0(void)
1251 {
1252 int of;
1253 of = cc_table[CC_OP].compute_all() & CC_O;
1254 CC_SRC = (T0 & (CC_S | CC_Z | CC_A | CC_P | CC_C)) | of;
1255 }
1256
1257 void OPPROTO op_movl_T0_eflags(void)
1258 {
1259 int eflags;
1260 eflags = cc_table[CC_OP].compute_all();
1261 eflags |= (DF & DF_MASK);
1262 eflags |= env->eflags & ~(VM_MASK | RF_MASK);
1263 T0 = eflags;
1264 }
1265
1266 void OPPROTO op_cld(void)
1267 {
1268 DF = 1;
1269 }
1270
1271 void OPPROTO op_std(void)
1272 {
1273 DF = -1;
1274 }
1275
1276 void OPPROTO op_clc(void)
1277 {
1278 int eflags;
1279 eflags = cc_table[CC_OP].compute_all();
1280 eflags &= ~CC_C;
1281 CC_SRC = eflags;
1282 }
1283
1284 void OPPROTO op_stc(void)
1285 {
1286 int eflags;
1287 eflags = cc_table[CC_OP].compute_all();
1288 eflags |= CC_C;
1289 CC_SRC = eflags;
1290 }
1291
1292 void OPPROTO op_cmc(void)
1293 {
1294 int eflags;
1295 eflags = cc_table[CC_OP].compute_all();
1296 eflags ^= CC_C;
1297 CC_SRC = eflags;
1298 }
1299
1300 void OPPROTO op_salc(void)
1301 {
1302 int cf;
1303 cf = cc_table[CC_OP].compute_c();
1304 EAX = (EAX & ~0xff) | ((-cf) & 0xff);
1305 }
1306
1307 static int compute_all_eflags(void)
1308 {
1309 return CC_SRC;
1310 }
1311
1312 static int compute_c_eflags(void)
1313 {
1314 return CC_SRC & CC_C;
1315 }
1316
1317 static int compute_c_mul(void)
1318 {
1319 int cf;
1320 cf = (CC_SRC != 0);
1321 return cf;
1322 }
1323
1324 static int compute_all_mul(void)
1325 {
1326 int cf, pf, af, zf, sf, of;
1327 cf = (CC_SRC != 0);
1328 pf = 0; /* undefined */
1329 af = 0; /* undefined */
1330 zf = 0; /* undefined */
1331 sf = 0; /* undefined */
1332 of = cf << 11;
1333 return cf | pf | af | zf | sf | of;
1334 }
1335
1336 CCTable cc_table[CC_OP_NB] = {
1337 [CC_OP_DYNAMIC] = { /* should never happen */ },
1338
1339 [CC_OP_EFLAGS] = { compute_all_eflags, compute_c_eflags },
1340
1341 [CC_OP_MUL] = { compute_all_mul, compute_c_mul },
1342
1343 [CC_OP_ADDB] = { compute_all_addb, compute_c_addb },
1344 [CC_OP_ADDW] = { compute_all_addw, compute_c_addw },
1345 [CC_OP_ADDL] = { compute_all_addl, compute_c_addl },
1346
1347 [CC_OP_ADCB] = { compute_all_adcb, compute_c_adcb },
1348 [CC_OP_ADCW] = { compute_all_adcw, compute_c_adcw },
1349 [CC_OP_ADCL] = { compute_all_adcl, compute_c_adcl },
1350
1351 [CC_OP_SUBB] = { compute_all_subb, compute_c_subb },
1352 [CC_OP_SUBW] = { compute_all_subw, compute_c_subw },
1353 [CC_OP_SUBL] = { compute_all_subl, compute_c_subl },
1354
1355 [CC_OP_SBBB] = { compute_all_sbbb, compute_c_sbbb },
1356 [CC_OP_SBBW] = { compute_all_sbbw, compute_c_sbbw },
1357 [CC_OP_SBBL] = { compute_all_sbbl, compute_c_sbbl },
1358
1359 [CC_OP_LOGICB] = { compute_all_logicb, compute_c_logicb },
1360 [CC_OP_LOGICW] = { compute_all_logicw, compute_c_logicw },
1361 [CC_OP_LOGICL] = { compute_all_logicl, compute_c_logicl },
1362
1363 [CC_OP_INCB] = { compute_all_incb, compute_c_incl },
1364 [CC_OP_INCW] = { compute_all_incw, compute_c_incl },
1365 [CC_OP_INCL] = { compute_all_incl, compute_c_incl },
1366
1367 [CC_OP_DECB] = { compute_all_decb, compute_c_incl },
1368 [CC_OP_DECW] = { compute_all_decw, compute_c_incl },
1369 [CC_OP_DECL] = { compute_all_decl, compute_c_incl },
1370
1371 [CC_OP_SHLB] = { compute_all_shlb, compute_c_shll },
1372 [CC_OP_SHLW] = { compute_all_shlw, compute_c_shll },
1373 [CC_OP_SHLL] = { compute_all_shll, compute_c_shll },
1374
1375 [CC_OP_SARB] = { compute_all_sarb, compute_c_shll },
1376 [CC_OP_SARW] = { compute_all_sarw, compute_c_shll },
1377 [CC_OP_SARL] = { compute_all_sarl, compute_c_shll },
1378 };
1379
1380 /* floating point support */
1381
1382 #ifdef USE_X86LDOUBLE
1383 /* use long double functions */
1384 #define lrint lrintl
1385 #define llrint llrintl
1386 #define fabs fabsl
1387 #define sin sinl
1388 #define cos cosl
1389 #define sqrt sqrtl
1390 #define pow powl
1391 #define log logl
1392 #define tan tanl
1393 #define atan2 atan2l
1394 #define floor floorl
1395 #define ceil ceill
1396 #define rint rintl
1397 #endif
1398
1399 extern int lrint(CPU86_LDouble x);
1400 extern int64_t llrint(CPU86_LDouble x);
1401 extern CPU86_LDouble fabs(CPU86_LDouble x);
1402 extern CPU86_LDouble sin(CPU86_LDouble x);
1403 extern CPU86_LDouble cos(CPU86_LDouble x);
1404 extern CPU86_LDouble sqrt(CPU86_LDouble x);
1405 extern CPU86_LDouble pow(CPU86_LDouble, CPU86_LDouble);
1406 extern CPU86_LDouble log(CPU86_LDouble x);
1407 extern CPU86_LDouble tan(CPU86_LDouble x);
1408 extern CPU86_LDouble atan2(CPU86_LDouble, CPU86_LDouble);
1409 extern CPU86_LDouble floor(CPU86_LDouble x);
1410 extern CPU86_LDouble ceil(CPU86_LDouble x);
1411 extern CPU86_LDouble rint(CPU86_LDouble x);
1412
1413 #define RC_MASK 0xc00
1414 #define RC_NEAR 0x000
1415 #define RC_DOWN 0x400
1416 #define RC_UP 0x800
1417 #define RC_CHOP 0xc00
1418
1419 #define MAXTAN 9223372036854775808.0
1420
1421 #ifdef USE_X86LDOUBLE
1422
1423 /* only for x86 */
1424 typedef union {
1425 long double d;
1426 struct {
1427 unsigned long long lower;
1428 unsigned short upper;
1429 } l;
1430 } CPU86_LDoubleU;
1431
1432 /* the following deal with x86 long double-precision numbers */
1433 #define MAXEXPD 0x7fff
1434 #define EXPBIAS 16383
1435 #define EXPD(fp) (fp.l.upper & 0x7fff)
1436 #define SIGND(fp) ((fp.l.upper) & 0x8000)
1437 #define MANTD(fp) (fp.l.lower)
1438 #define BIASEXPONENT(fp) fp.l.upper = (fp.l.upper & ~(0x7fff)) | EXPBIAS
1439
1440 #else
1441
1442 typedef union {
1443 double d;
1444 #ifndef WORDS_BIGENDIAN
1445 struct {
1446 unsigned long lower;
1447 long upper;
1448 } l;
1449 #else
1450 struct {
1451 long upper;
1452 unsigned long lower;
1453 } l;
1454 #endif
1455 long long ll;
1456 } CPU86_LDoubleU;
1457
1458 /* the following deal with IEEE double-precision numbers */
1459 #define MAXEXPD 0x7ff
1460 #define EXPBIAS 1023
1461 #define EXPD(fp) (((fp.l.upper) >> 20) & 0x7FF)
1462 #define SIGND(fp) ((fp.l.upper) & 0x80000000)
1463 #define MANTD(fp) (fp.ll & ((1LL << 52) - 1))
1464 #define BIASEXPONENT(fp) fp.l.upper = (fp.l.upper & ~(0x7ff << 20)) | (EXPBIAS << 20)
1465 #endif
1466
1467 /* fp load FT0 */
1468
1469 void OPPROTO op_flds_FT0_A0(void)
1470 {
1471 FT0 = ldfl((void *)A0);
1472 }
1473
1474 void OPPROTO op_fldl_FT0_A0(void)
1475 {
1476 FT0 = ldfq((void *)A0);
1477 }
1478
1479 /* helpers are needed to avoid static constant reference. XXX: find a better way */
1480 #ifdef USE_INT_TO_FLOAT_HELPERS
1481
1482 void helper_fild_FT0_A0(void)
1483 {
1484 FT0 = (CPU86_LDouble)ldsw((void *)A0);
1485 }
1486
1487 void helper_fildl_FT0_A0(void)
1488 {
1489 FT0 = (CPU86_LDouble)((int32_t)ldl((void *)A0));
1490 }
1491
1492 void helper_fildll_FT0_A0(void)
1493 {
1494 FT0 = (CPU86_LDouble)((int64_t)ldq((void *)A0));
1495 }
1496
1497 void OPPROTO op_fild_FT0_A0(void)
1498 {
1499 helper_fild_FT0_A0();
1500 }
1501
1502 void OPPROTO op_fildl_FT0_A0(void)
1503 {
1504 helper_fildl_FT0_A0();
1505 }
1506
1507 void OPPROTO op_fildll_FT0_A0(void)
1508 {
1509 helper_fildll_FT0_A0();
1510 }
1511
1512 #else
1513
1514 void OPPROTO op_fild_FT0_A0(void)
1515 {
1516 FT0 = (CPU86_LDouble)ldsw((void *)A0);
1517 }
1518
1519 void OPPROTO op_fildl_FT0_A0(void)
1520 {
1521 FT0 = (CPU86_LDouble)((int32_t)ldl((void *)A0));
1522 }
1523
1524 void OPPROTO op_fildll_FT0_A0(void)
1525 {
1526 FT0 = (CPU86_LDouble)((int64_t)ldq((void *)A0));
1527 }
1528 #endif
1529
1530 /* fp load ST0 */
1531
1532 void OPPROTO op_flds_ST0_A0(void)
1533 {
1534 ST0 = ldfl((void *)A0);
1535 }
1536
1537 void OPPROTO op_fldl_ST0_A0(void)
1538 {
1539 ST0 = ldfq((void *)A0);
1540 }
1541
1542 #ifdef USE_X86LDOUBLE
1543 void OPPROTO op_fldt_ST0_A0(void)
1544 {
1545 ST0 = *(long double *)A0;
1546 }
1547 #else
1548 void helper_fldt_ST0_A0(void)
1549 {
1550 CPU86_LDoubleU temp;
1551 int upper, e;
1552 /* mantissa */
1553 upper = lduw((uint8_t *)A0 + 8);
1554 /* XXX: handle overflow ? */
1555 e = (upper & 0x7fff) - 16383 + EXPBIAS; /* exponent */
1556 e |= (upper >> 4) & 0x800; /* sign */
1557 temp.ll = ((ldq((void *)A0) >> 11) & ((1LL << 52) - 1)) | ((uint64_t)e << 52);
1558 ST0 = temp.d;
1559 }
1560
1561 void OPPROTO op_fldt_ST0_A0(void)
1562 {
1563 helper_fldt_ST0_A0();
1564 }
1565 #endif
1566
1567 /* helpers are needed to avoid static constant reference. XXX: find a better way */
1568 #ifdef USE_INT_TO_FLOAT_HELPERS
1569
1570 void helper_fild_ST0_A0(void)
1571 {
1572 ST0 = (CPU86_LDouble)ldsw((void *)A0);
1573 }
1574
1575 void helper_fildl_ST0_A0(void)
1576 {
1577 ST0 = (CPU86_LDouble)((int32_t)ldl((void *)A0));
1578 }
1579
1580 void helper_fildll_ST0_A0(void)
1581 {
1582 ST0 = (CPU86_LDouble)((int64_t)ldq((void *)A0));
1583 }
1584
1585 void OPPROTO op_fild_ST0_A0(void)
1586 {
1587 helper_fild_ST0_A0();
1588 }
1589
1590 void OPPROTO op_fildl_ST0_A0(void)
1591 {
1592 helper_fildl_ST0_A0();
1593 }
1594
1595 void OPPROTO op_fildll_ST0_A0(void)
1596 {
1597 helper_fildll_ST0_A0();
1598 }
1599
1600 #else
1601
1602 void OPPROTO op_fild_ST0_A0(void)
1603 {
1604 ST0 = (CPU86_LDouble)ldsw((void *)A0);
1605 }
1606
1607 void OPPROTO op_fildl_ST0_A0(void)
1608 {
1609 ST0 = (CPU86_LDouble)((int32_t)ldl((void *)A0));
1610 }
1611
1612 void OPPROTO op_fildll_ST0_A0(void)
1613 {
1614 ST0 = (CPU86_LDouble)((int64_t)ldq((void *)A0));
1615 }
1616
1617 #endif
1618
1619 /* fp store */
1620
1621 void OPPROTO op_fsts_ST0_A0(void)
1622 {
1623 stfl((void *)A0, (float)ST0);
1624 }
1625
1626 void OPPROTO op_fstl_ST0_A0(void)
1627 {
1628 stfq((void *)A0, (double)ST0);
1629 }
1630
1631 #ifdef USE_X86LDOUBLE
1632 void OPPROTO op_fstt_ST0_A0(void)
1633 {
1634 *(long double *)A0 = ST0;
1635 }
1636 #else
1637 void helper_fstt_ST0_A0(void)
1638 {
1639 CPU86_LDoubleU temp;
1640 int e;
1641 temp.d = ST0;
1642 /* mantissa */
1643 stq((void *)A0, (MANTD(temp) << 11) | (1LL << 63));
1644 /* exponent + sign */
1645 e = EXPD(temp) - EXPBIAS + 16383;
1646 e |= SIGND(temp) >> 16;
1647 stw((uint8_t *)A0 + 8, e);
1648 }
1649
1650 void OPPROTO op_fstt_ST0_A0(void)
1651 {
1652 helper_fstt_ST0_A0();
1653 }
1654 #endif
1655
1656 void OPPROTO op_fist_ST0_A0(void)
1657 {
1658 int val;
1659 val = lrint(ST0);
1660 stw((void *)A0, val);
1661 }
1662
1663 void OPPROTO op_fistl_ST0_A0(void)
1664 {
1665 int val;
1666 val = lrint(ST0);
1667 stl((void *)A0, val);
1668 }
1669
1670 void OPPROTO op_fistll_ST0_A0(void)
1671 {
1672 int64_t val;
1673 val = llrint(ST0);
1674 stq((void *)A0, val);
1675 }
1676
1677 /* BCD ops */
1678
1679 #define MUL10(iv) ( iv + iv + (iv << 3) )
1680
1681 void helper_fbld_ST0_A0(void)
1682 {
1683 uint8_t *seg;
1684 CPU86_LDouble fpsrcop;
1685 int m32i;
1686 unsigned int v;
1687
1688 /* in this code, seg/m32i will be used as temporary ptr/int */
1689 seg = (uint8_t *)A0 + 8;
1690 v = ldub(seg--);
1691 /* XXX: raise exception */
1692 if (v != 0)
1693 return;
1694 v = ldub(seg--);
1695 /* XXX: raise exception */
1696 if ((v & 0xf0) != 0)
1697 return;
1698 m32i = v; /* <-- d14 */
1699 v = ldub(seg--);
1700 m32i = MUL10(m32i) + (v >> 4); /* <-- val * 10 + d13 */
1701 m32i = MUL10(m32i) + (v & 0xf); /* <-- val * 10 + d12 */
1702 v = ldub(seg--);
1703 m32i = MUL10(m32i) + (v >> 4); /* <-- val * 10 + d11 */
1704 m32i = MUL10(m32i) + (v & 0xf); /* <-- val * 10 + d10 */
1705 v = ldub(seg--);
1706 m32i = MUL10(m32i) + (v >> 4); /* <-- val * 10 + d9 */
1707 m32i = MUL10(m32i) + (v & 0xf); /* <-- val * 10 + d8 */
1708 fpsrcop = ((CPU86_LDouble)m32i) * 100000000.0;
1709
1710 v = ldub(seg--);
1711 m32i = (v >> 4); /* <-- d7 */
1712 m32i = MUL10(m32i) + (v & 0xf); /* <-- val * 10 + d6 */
1713 v = ldub(seg--);
1714 m32i = MUL10(m32i) + (v >> 4); /* <-- val * 10 + d5 */
1715 m32i = MUL10(m32i) + (v & 0xf); /* <-- val * 10 + d4 */
1716 v = ldub(seg--);
1717 m32i = MUL10(m32i) + (v >> 4); /* <-- val * 10 + d3 */
1718 m32i = MUL10(m32i) + (v & 0xf); /* <-- val * 10 + d2 */
1719 v = ldub(seg);
1720 m32i = MUL10(m32i) + (v >> 4); /* <-- val * 10 + d1 */
1721 m32i = MUL10(m32i) + (v & 0xf); /* <-- val * 10 + d0 */
1722 fpsrcop += ((CPU86_LDouble)m32i);
1723 if ( ldub(seg+9) & 0x80 )
1724 fpsrcop = -fpsrcop;
1725 ST0 = fpsrcop;
1726 }
1727
1728 void OPPROTO op_fbld_ST0_A0(void)
1729 {
1730 helper_fbld_ST0_A0();
1731 }
1732
1733 void helper_fbst_ST0_A0(void)
1734 {
1735 CPU86_LDouble fptemp;
1736 CPU86_LDouble fpsrcop;
1737 int v;
1738 uint8_t *mem_ref, *mem_end;
1739
1740 fpsrcop = rint(ST0);
1741 mem_ref = (uint8_t *)A0;
1742 mem_end = mem_ref + 8;
1743 if ( fpsrcop < 0.0 ) {
1744 stw(mem_end, 0x8000);
1745 fpsrcop = -fpsrcop;
1746 } else {
1747 stw(mem_end, 0x0000);
1748 }
1749 while (mem_ref < mem_end) {
1750 if (fpsrcop == 0.0)
1751 break;
1752 fptemp = floor(fpsrcop/10.0);
1753 v = ((int)(fpsrcop - fptemp*10.0));
1754 if (fptemp == 0.0) {
1755 stb(mem_ref++, v);
1756 break;
1757 }
1758 fpsrcop = fptemp;
1759 fptemp = floor(fpsrcop/10.0);
1760 v |= (((int)(fpsrcop - fptemp*10.0)) << 4);
1761 stb(mem_ref++, v);
1762 fpsrcop = fptemp;
1763 }
1764 while (mem_ref < mem_end) {
1765 stb(mem_ref++, 0);
1766 }
1767 }
1768
1769 void OPPROTO op_fbst_ST0_A0(void)
1770 {
1771 helper_fbst_ST0_A0();
1772 }
1773
1774 /* FPU move */
1775
1776 static inline void fpush(void)
1777 {
1778 env->fpstt = (env->fpstt - 1) & 7;
1779 env->fptags[env->fpstt] = 0; /* validate stack entry */
1780 }
1781
1782 static inline void fpop(void)
1783 {
1784 env->fptags[env->fpstt] = 1; /* invvalidate stack entry */
1785 env->fpstt = (env->fpstt + 1) & 7;
1786 }
1787
1788 void OPPROTO op_fpush(void)
1789 {
1790 fpush();
1791 }
1792
1793 void OPPROTO op_fpop(void)
1794 {
1795 fpop();
1796 }
1797
1798 void OPPROTO op_fdecstp(void)
1799 {
1800 env->fpstt = (env->fpstt - 1) & 7;
1801 env->fpus &= (~0x4700);
1802 }
1803
1804 void OPPROTO op_fincstp(void)
1805 {
1806 env->fpstt = (env->fpstt + 1) & 7;
1807 env->fpus &= (~0x4700);
1808 }
1809
1810 void OPPROTO op_fmov_ST0_FT0(void)
1811 {
1812 ST0 = FT0;
1813 }
1814
1815 void OPPROTO op_fmov_FT0_STN(void)
1816 {
1817 FT0 = ST(PARAM1);
1818 }
1819
1820 void OPPROTO op_fmov_ST0_STN(void)
1821 {
1822 ST0 = ST(PARAM1);
1823 }
1824
1825 void OPPROTO op_fmov_STN_ST0(void)
1826 {
1827 ST(PARAM1) = ST0;
1828 }
1829
1830 void OPPROTO op_fxchg_ST0_STN(void)
1831 {
1832 CPU86_LDouble tmp;
1833 tmp = ST(PARAM1);
1834 ST(PARAM1) = ST0;
1835 ST0 = tmp;
1836 }
1837
1838 /* FPU operations */
1839
1840 /* XXX: handle nans */
1841 void OPPROTO op_fcom_ST0_FT0(void)
1842 {
1843 env->fpus &= (~0x4500); /* (C3,C2,C0) <-- 000 */
1844 if (ST0 < FT0)
1845 env->fpus |= 0x100; /* (C3,C2,C0) <-- 001 */
1846 else if (ST0 == FT0)
1847 env->fpus |= 0x4000; /* (C3,C2,C0) <-- 100 */
1848 FORCE_RET();
1849 }
1850
1851 /* XXX: handle nans */
1852 void OPPROTO op_fucom_ST0_FT0(void)
1853 {
1854 env->fpus &= (~0x4500); /* (C3,C2,C0) <-- 000 */
1855 if (ST0 < FT0)
1856 env->fpus |= 0x100; /* (C3,C2,C0) <-- 001 */
1857 else if (ST0 == FT0)
1858 env->fpus |= 0x4000; /* (C3,C2,C0) <-- 100 */
1859 FORCE_RET();
1860 }
1861
1862 void OPPROTO op_fadd_ST0_FT0(void)
1863 {
1864 ST0 += FT0;
1865 }
1866
1867 void OPPROTO op_fmul_ST0_FT0(void)
1868 {
1869 ST0 *= FT0;
1870 }
1871
1872 void OPPROTO op_fsub_ST0_FT0(void)
1873 {
1874 ST0 -= FT0;
1875 }
1876
1877 void OPPROTO op_fsubr_ST0_FT0(void)
1878 {
1879 ST0 = FT0 - ST0;
1880 }
1881
1882 void OPPROTO op_fdiv_ST0_FT0(void)
1883 {
1884 ST0 /= FT0;
1885 }
1886
1887 void OPPROTO op_fdivr_ST0_FT0(void)
1888 {
1889 ST0 = FT0 / ST0;
1890 }
1891
1892 /* fp operations between STN and ST0 */
1893
1894 void OPPROTO op_fadd_STN_ST0(void)
1895 {
1896 ST(PARAM1) += ST0;
1897 }
1898
1899 void OPPROTO op_fmul_STN_ST0(void)
1900 {
1901 ST(PARAM1) *= ST0;
1902 }
1903
1904 void OPPROTO op_fsub_STN_ST0(void)
1905 {
1906 ST(PARAM1) -= ST0;
1907 }
1908
1909 void OPPROTO op_fsubr_STN_ST0(void)
1910 {
1911 CPU86_LDouble *p;
1912 p = &ST(PARAM1);
1913 *p = ST0 - *p;
1914 }
1915
1916 void OPPROTO op_fdiv_STN_ST0(void)
1917 {
1918 ST(PARAM1) /= ST0;
1919 }
1920
1921 void OPPROTO op_fdivr_STN_ST0(void)
1922 {
1923 CPU86_LDouble *p;
1924 p = &ST(PARAM1);
1925 *p = ST0 / *p;
1926 }
1927
1928 /* misc FPU operations */
1929 void OPPROTO op_fchs_ST0(void)
1930 {
1931 ST0 = -ST0;
1932 }
1933
1934 void OPPROTO op_fabs_ST0(void)
1935 {
1936 ST0 = fabs(ST0);
1937 }
1938
1939 void helper_fxam_ST0(void)
1940 {
1941 CPU86_LDoubleU temp;
1942 int expdif;
1943
1944 temp.d = ST0;
1945
1946 env->fpus &= (~0x4700); /* (C3,C2,C1,C0) <-- 0000 */
1947 if (SIGND(temp))
1948 env->fpus |= 0x200; /* C1 <-- 1 */
1949
1950 expdif = EXPD(temp);
1951 if (expdif == MAXEXPD) {
1952 if (MANTD(temp) == 0)
1953 env->fpus |= 0x500 /*Infinity*/;
1954 else
1955 env->fpus |= 0x100 /*NaN*/;
1956 } else if (expdif == 0) {
1957 if (MANTD(temp) == 0)
1958 env->fpus |= 0x4000 /*Zero*/;
1959 else
1960 env->fpus |= 0x4400 /*Denormal*/;
1961 } else {
1962 env->fpus |= 0x400;
1963 }
1964 }
1965
1966 void OPPROTO op_fxam_ST0(void)
1967 {
1968 helper_fxam_ST0();
1969 }
1970
1971 void OPPROTO op_fld1_ST0(void)
1972 {
1973 ST0 = *(CPU86_LDouble *)&f15rk[1];
1974 }
1975
1976 void OPPROTO op_fldl2t_ST0(void)
1977 {
1978 ST0 = *(CPU86_LDouble *)&f15rk[6];
1979 }
1980
1981 void OPPROTO op_fldl2e_ST0(void)
1982 {
1983 ST0 = *(CPU86_LDouble *)&f15rk[5];
1984 }
1985
1986 void OPPROTO op_fldpi_ST0(void)
1987 {
1988 ST0 = *(CPU86_LDouble *)&f15rk[2];
1989 }
1990
1991 void OPPROTO op_fldlg2_ST0(void)
1992 {
1993 ST0 = *(CPU86_LDouble *)&f15rk[3];
1994 }
1995
1996 void OPPROTO op_fldln2_ST0(void)
1997 {
1998 ST0 = *(CPU86_LDouble *)&f15rk[4];
1999 }
2000
2001 void OPPROTO op_fldz_ST0(void)
2002 {
2003 ST0 = *(CPU86_LDouble *)&f15rk[0];
2004 }
2005
2006 void OPPROTO op_fldz_FT0(void)
2007 {
2008 ST0 = *(CPU86_LDouble *)&f15rk[0];
2009 }
2010
2011 void helper_f2xm1(void)
2012 {
2013 ST0 = pow(2.0,ST0) - 1.0;
2014 }
2015
2016 void helper_fyl2x(void)
2017 {
2018 CPU86_LDouble fptemp;
2019
2020 fptemp = ST0;
2021 if (fptemp>0.0){
2022 fptemp = log(fptemp)/log(2.0); /* log2(ST) */
2023 ST1 *= fptemp;
2024 fpop();
2025 } else {
2026 env->fpus &= (~0x4700);
2027 env->fpus |= 0x400;
2028 }
2029 }
2030
2031 void helper_fptan(void)
2032 {
2033 CPU86_LDouble fptemp;
2034
2035 fptemp = ST0;
2036 if((fptemp > MAXTAN)||(fptemp < -MAXTAN)) {
2037 env->fpus |= 0x400;
2038 } else {
2039 ST0 = tan(fptemp);
2040 fpush();
2041 ST0 = 1.0;
2042 env->fpus &= (~0x400); /* C2 <-- 0 */
2043 /* the above code is for |arg| < 2**52 only */
2044 }
2045 }
2046
2047 void helper_fpatan(void)
2048 {
2049 CPU86_LDouble fptemp, fpsrcop;
2050
2051 fpsrcop = ST1;
2052 fptemp = ST0;
2053 ST1 = atan2(fpsrcop,fptemp);
2054 fpop();
2055 }
2056
2057 void helper_fxtract(void)
2058 {
2059 CPU86_LDoubleU temp;
2060 unsigned int expdif;
2061
2062 temp.d = ST0;
2063 expdif = EXPD(temp) - EXPBIAS;
2064 /*DP exponent bias*/
2065 ST0 = expdif;
2066 fpush();
2067 BIASEXPONENT(temp);
2068 ST0 = temp.d;
2069 }
2070
2071 void helper_fprem1(void)
2072 {
2073 CPU86_LDouble dblq, fpsrcop, fptemp;
2074 CPU86_LDoubleU fpsrcop1, fptemp1;
2075 int expdif;
2076 int q;
2077
2078 fpsrcop = ST0;
2079 fptemp = ST1;
2080 fpsrcop1.d = fpsrcop;
2081 fptemp1.d = fptemp;
2082 expdif = EXPD(fpsrcop1) - EXPD(fptemp1);
2083 if (expdif < 53) {
2084 dblq = fpsrcop / fptemp;
2085 dblq = (dblq < 0.0)? ceil(dblq): floor(dblq);
2086 ST0 = fpsrcop - fptemp*dblq;
2087 q = (int)dblq; /* cutting off top bits is assumed here */
2088 env->fpus &= (~0x4700); /* (C3,C2,C1,C0) <-- 0000 */
2089 /* (C0,C1,C3) <-- (q2,q1,q0) */
2090 env->fpus |= (q&0x4) << 6; /* (C0) <-- q2 */
2091 env->fpus |= (q&0x2) << 8; /* (C1) <-- q1 */
2092 env->fpus |= (q&0x1) << 14; /* (C3) <-- q0 */
2093 } else {
2094 env->fpus |= 0x400; /* C2 <-- 1 */
2095 fptemp = pow(2.0, expdif-50);
2096 fpsrcop = (ST0 / ST1) / fptemp;
2097 /* fpsrcop = integer obtained by rounding to the nearest */
2098 fpsrcop = (fpsrcop-floor(fpsrcop) < ceil(fpsrcop)-fpsrcop)?
2099 floor(fpsrcop): ceil(fpsrcop);
2100 ST0 -= (ST1 * fpsrcop * fptemp);
2101 }
2102 }
2103
2104 void helper_fprem(void)
2105 {
2106 CPU86_LDouble dblq, fpsrcop, fptemp;
2107 CPU86_LDoubleU fpsrcop1, fptemp1;
2108 int expdif;
2109 int q;
2110
2111 fpsrcop = ST0;
2112 fptemp = ST1;
2113 fpsrcop1.d = fpsrcop;
2114 fptemp1.d = fptemp;
2115 expdif = EXPD(fpsrcop1) - EXPD(fptemp1);
2116 if ( expdif < 53 ) {
2117 dblq = fpsrcop / fptemp;
2118 dblq = (dblq < 0.0)? ceil(dblq): floor(dblq);
2119 ST0 = fpsrcop - fptemp*dblq;
2120 q = (int)dblq; /* cutting off top bits is assumed here */
2121 env->fpus &= (~0x4700); /* (C3,C2,C1,C0) <-- 0000 */
2122 /* (C0,C1,C3) <-- (q2,q1,q0) */
2123 env->fpus |= (q&0x4) << 6; /* (C0) <-- q2 */
2124 env->fpus |= (q&0x2) << 8; /* (C1) <-- q1 */
2125 env->fpus |= (q&0x1) << 14; /* (C3) <-- q0 */
2126 } else {
2127 env->fpus |= 0x400; /* C2 <-- 1 */
2128 fptemp = pow(2.0, expdif-50);
2129 fpsrcop = (ST0 / ST1) / fptemp;
2130 /* fpsrcop = integer obtained by chopping */
2131 fpsrcop = (fpsrcop < 0.0)?
2132 -(floor(fabs(fpsrcop))): floor(fpsrcop);
2133 ST0 -= (ST1 * fpsrcop * fptemp);
2134 }
2135 }
2136
2137 void helper_fyl2xp1(void)
2138 {
2139 CPU86_LDouble fptemp;
2140
2141 fptemp = ST0;
2142 if ((fptemp+1.0)>0.0) {
2143 fptemp = log(fptemp+1.0) / log(2.0); /* log2(ST+1.0) */
2144 ST1 *= fptemp;
2145 fpop();
2146 } else {
2147 env->fpus &= (~0x4700);
2148 env->fpus |= 0x400;
2149 }
2150 }
2151
2152 void helper_fsqrt(void)
2153 {
2154 CPU86_LDouble fptemp;
2155
2156 fptemp = ST0;
2157 if (fptemp<0.0) {
2158 env->fpus &= (~0x4700); /* (C3,C2,C1,C0) <-- 0000 */
2159 env->fpus |= 0x400;
2160 }
2161 ST0 = sqrt(fptemp);
2162 }
2163
2164 void helper_fsincos(void)
2165 {
2166 CPU86_LDouble fptemp;
2167
2168 fptemp = ST0;
2169 if ((fptemp > MAXTAN)||(fptemp < -MAXTAN)) {
2170 env->fpus |= 0x400;
2171 } else {
2172 ST0 = sin(fptemp);
2173 fpush();
2174 ST0 = cos(fptemp);
2175 env->fpus &= (~0x400); /* C2 <-- 0 */
2176 /* the above code is for |arg| < 2**63 only */
2177 }
2178 }
2179
2180 void helper_frndint(void)
2181 {
2182 ST0 = rint(ST0);
2183 }
2184
2185 void helper_fscale(void)
2186 {
2187 CPU86_LDouble fpsrcop, fptemp;
2188
2189 fpsrcop = 2.0;
2190 fptemp = pow(fpsrcop,ST1);
2191 ST0 *= fptemp;
2192 }
2193
2194 void helper_fsin(void)
2195 {
2196 CPU86_LDouble fptemp;
2197
2198 fptemp = ST0;
2199 if ((fptemp > MAXTAN)||(fptemp < -MAXTAN)) {
2200 env->fpus |= 0x400;
2201 } else {
2202 ST0 = sin(fptemp);
2203 env->fpus &= (~0x400); /* C2 <-- 0 */
2204 /* the above code is for |arg| < 2**53 only */
2205 }
2206 }
2207
2208 void helper_fcos(void)
2209 {
2210 CPU86_LDouble fptemp;
2211
2212 fptemp = ST0;
2213 if((fptemp > MAXTAN)||(fptemp < -MAXTAN)) {
2214 env->fpus |= 0x400;
2215 } else {
2216 ST0 = cos(fptemp);
2217 env->fpus &= (~0x400); /* C2 <-- 0 */
2218 /* the above code is for |arg5 < 2**63 only */
2219 }
2220 }
2221
2222 /* associated heplers to reduce generated code length and to simplify
2223 relocation (FP constants are usually stored in .rodata section) */
2224
2225 void OPPROTO op_f2xm1(void)
2226 {
2227 helper_f2xm1();
2228 }
2229
2230 void OPPROTO op_fyl2x(void)
2231 {
2232 helper_fyl2x();
2233 }
2234
2235 void OPPROTO op_fptan(void)
2236 {
2237 helper_fptan();
2238 }
2239
2240 void OPPROTO op_fpatan(void)
2241 {
2242 helper_fpatan();
2243 }
2244
2245 void OPPROTO op_fxtract(void)
2246 {
2247 helper_fxtract();
2248 }
2249
2250 void OPPROTO op_fprem1(void)
2251 {
2252 helper_fprem1();
2253 }
2254
2255
2256 void OPPROTO op_fprem(void)
2257 {
2258 helper_fprem();
2259 }
2260
2261 void OPPROTO op_fyl2xp1(void)
2262 {
2263 helper_fyl2xp1();
2264 }
2265
2266 void OPPROTO op_fsqrt(void)
2267 {
2268 helper_fsqrt();
2269 }
2270
2271 void OPPROTO op_fsincos(void)
2272 {
2273 helper_fsincos();
2274 }
2275
2276 void OPPROTO op_frndint(void)
2277 {
2278 helper_frndint();
2279 }
2280
2281 void OPPROTO op_fscale(void)
2282 {
2283 helper_fscale();
2284 }
2285
2286 void OPPROTO op_fsin(void)
2287 {
2288 helper_fsin();
2289 }
2290
2291 void OPPROTO op_fcos(void)
2292 {
2293 helper_fcos();
2294 }
2295
2296 void OPPROTO op_fnstsw_A0(void)
2297 {
2298 int fpus;
2299 fpus = (env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11;
2300 stw((void *)A0, fpus);
2301 }
2302
2303 void OPPROTO op_fnstsw_EAX(void)
2304 {
2305 int fpus;
2306 fpus = (env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11;
2307 EAX = (EAX & 0xffff0000) | fpus;
2308 }
2309
2310 void OPPROTO op_fnstcw_A0(void)
2311 {
2312 stw((void *)A0, env->fpuc);
2313 }
2314
2315 void OPPROTO op_fldcw_A0(void)
2316 {
2317 int rnd_type;
2318 env->fpuc = lduw((void *)A0);
2319 /* set rounding mode */
2320 switch(env->fpuc & RC_MASK) {
2321 default:
2322 case RC_NEAR:
2323 rnd_type = FE_TONEAREST;
2324 break;
2325 case RC_DOWN:
2326 rnd_type = FE_DOWNWARD;
2327 break;
2328 case RC_UP:
2329 rnd_type = FE_UPWARD;
2330 break;
2331 case RC_CHOP:
2332 rnd_type = FE_TOWARDZERO;
2333 break;
2334 }
2335 fesetround(rnd_type);
2336 }
2337
2338 void OPPROTO op_fclex(void)
2339 {
2340 env->fpus &= 0x7f00;
2341 }
2342
2343 void OPPROTO op_fninit(void)
2344 {
2345 env->fpus = 0;
2346 env->fpstt = 0;
2347 env->fpuc = 0x37f;
2348 env->fptags[0] = 1;
2349 env->fptags[1] = 1;
2350 env->fptags[2] = 1;
2351 env->fptags[3] = 1;
2352 env->fptags[4] = 1;
2353 env->fptags[5] = 1;
2354 env->fptags[6] = 1;
2355 env->fptags[7] = 1;
2356 }
2357
2358 /* threading support */
2359 void OPPROTO op_lock(void)
2360 {
2361 cpu_lock();
2362 }
2363
2364 void OPPROTO op_unlock(void)
2365 {
2366 cpu_unlock();
2367 }