]> git.proxmox.com Git - qemu.git/blob - qemu-doc.texi
fdc-test: split test_media_change() test, so insert part can be reused
[qemu.git] / qemu-doc.texi
1 \input texinfo @c -*- texinfo -*-
2 @c %**start of header
3 @setfilename qemu-doc.info
4
5 @documentlanguage en
6 @documentencoding UTF-8
7
8 @settitle QEMU Emulator User Documentation
9 @exampleindent 0
10 @paragraphindent 0
11 @c %**end of header
12
13 @ifinfo
14 @direntry
15 * QEMU: (qemu-doc). The QEMU Emulator User Documentation.
16 @end direntry
17 @end ifinfo
18
19 @iftex
20 @titlepage
21 @sp 7
22 @center @titlefont{QEMU Emulator}
23 @sp 1
24 @center @titlefont{User Documentation}
25 @sp 3
26 @end titlepage
27 @end iftex
28
29 @ifnottex
30 @node Top
31 @top
32
33 @menu
34 * Introduction::
35 * Installation::
36 * QEMU PC System emulator::
37 * QEMU System emulator for non PC targets::
38 * QEMU User space emulator::
39 * compilation:: Compilation from the sources
40 * License::
41 * Index::
42 @end menu
43 @end ifnottex
44
45 @contents
46
47 @node Introduction
48 @chapter Introduction
49
50 @menu
51 * intro_features:: Features
52 @end menu
53
54 @node intro_features
55 @section Features
56
57 QEMU is a FAST! processor emulator using dynamic translation to
58 achieve good emulation speed.
59
60 QEMU has two operating modes:
61
62 @itemize
63 @cindex operating modes
64
65 @item
66 @cindex system emulation
67 Full system emulation. In this mode, QEMU emulates a full system (for
68 example a PC), including one or several processors and various
69 peripherals. It can be used to launch different Operating Systems
70 without rebooting the PC or to debug system code.
71
72 @item
73 @cindex user mode emulation
74 User mode emulation. In this mode, QEMU can launch
75 processes compiled for one CPU on another CPU. It can be used to
76 launch the Wine Windows API emulator (@url{http://www.winehq.org}) or
77 to ease cross-compilation and cross-debugging.
78
79 @end itemize
80
81 QEMU can run without a host kernel driver and yet gives acceptable
82 performance.
83
84 For system emulation, the following hardware targets are supported:
85 @itemize
86 @cindex emulated target systems
87 @cindex supported target systems
88 @item PC (x86 or x86_64 processor)
89 @item ISA PC (old style PC without PCI bus)
90 @item PREP (PowerPC processor)
91 @item G3 Beige PowerMac (PowerPC processor)
92 @item Mac99 PowerMac (PowerPC processor, in progress)
93 @item Sun4m/Sun4c/Sun4d (32-bit Sparc processor)
94 @item Sun4u/Sun4v (64-bit Sparc processor, in progress)
95 @item Malta board (32-bit and 64-bit MIPS processors)
96 @item MIPS Magnum (64-bit MIPS processor)
97 @item ARM Integrator/CP (ARM)
98 @item ARM Versatile baseboard (ARM)
99 @item ARM RealView Emulation/Platform baseboard (ARM)
100 @item Spitz, Akita, Borzoi, Terrier and Tosa PDAs (PXA270 processor)
101 @item Luminary Micro LM3S811EVB (ARM Cortex-M3)
102 @item Luminary Micro LM3S6965EVB (ARM Cortex-M3)
103 @item Freescale MCF5208EVB (ColdFire V2).
104 @item Arnewsh MCF5206 evaluation board (ColdFire V2).
105 @item Palm Tungsten|E PDA (OMAP310 processor)
106 @item N800 and N810 tablets (OMAP2420 processor)
107 @item MusicPal (MV88W8618 ARM processor)
108 @item Gumstix "Connex" and "Verdex" motherboards (PXA255/270).
109 @item Siemens SX1 smartphone (OMAP310 processor)
110 @item AXIS-Devboard88 (CRISv32 ETRAX-FS).
111 @item Petalogix Spartan 3aDSP1800 MMU ref design (MicroBlaze).
112 @item Avnet LX60/LX110/LX200 boards (Xtensa)
113 @end itemize
114
115 @cindex supported user mode targets
116 For user emulation, x86 (32 and 64 bit), PowerPC (32 and 64 bit),
117 ARM, MIPS (32 bit only), Sparc (32 and 64 bit),
118 Alpha, ColdFire(m68k), CRISv32 and MicroBlaze CPUs are supported.
119
120 @node Installation
121 @chapter Installation
122
123 If you want to compile QEMU yourself, see @ref{compilation}.
124
125 @menu
126 * install_linux:: Linux
127 * install_windows:: Windows
128 * install_mac:: Macintosh
129 @end menu
130
131 @node install_linux
132 @section Linux
133 @cindex installation (Linux)
134
135 If a precompiled package is available for your distribution - you just
136 have to install it. Otherwise, see @ref{compilation}.
137
138 @node install_windows
139 @section Windows
140 @cindex installation (Windows)
141
142 Download the experimental binary installer at
143 @url{http://www.free.oszoo.org/@/download.html}.
144 TODO (no longer available)
145
146 @node install_mac
147 @section Mac OS X
148
149 Download the experimental binary installer at
150 @url{http://www.free.oszoo.org/@/download.html}.
151 TODO (no longer available)
152
153 @node QEMU PC System emulator
154 @chapter QEMU PC System emulator
155 @cindex system emulation (PC)
156
157 @menu
158 * pcsys_introduction:: Introduction
159 * pcsys_quickstart:: Quick Start
160 * sec_invocation:: Invocation
161 * pcsys_keys:: Keys
162 * pcsys_monitor:: QEMU Monitor
163 * disk_images:: Disk Images
164 * pcsys_network:: Network emulation
165 * pcsys_other_devs:: Other Devices
166 * direct_linux_boot:: Direct Linux Boot
167 * pcsys_usb:: USB emulation
168 * vnc_security:: VNC security
169 * gdb_usage:: GDB usage
170 * pcsys_os_specific:: Target OS specific information
171 @end menu
172
173 @node pcsys_introduction
174 @section Introduction
175
176 @c man begin DESCRIPTION
177
178 The QEMU PC System emulator simulates the
179 following peripherals:
180
181 @itemize @minus
182 @item
183 i440FX host PCI bridge and PIIX3 PCI to ISA bridge
184 @item
185 Cirrus CLGD 5446 PCI VGA card or dummy VGA card with Bochs VESA
186 extensions (hardware level, including all non standard modes).
187 @item
188 PS/2 mouse and keyboard
189 @item
190 2 PCI IDE interfaces with hard disk and CD-ROM support
191 @item
192 Floppy disk
193 @item
194 PCI and ISA network adapters
195 @item
196 Serial ports
197 @item
198 Creative SoundBlaster 16 sound card
199 @item
200 ENSONIQ AudioPCI ES1370 sound card
201 @item
202 Intel 82801AA AC97 Audio compatible sound card
203 @item
204 Intel HD Audio Controller and HDA codec
205 @item
206 Adlib (OPL2) - Yamaha YM3812 compatible chip
207 @item
208 Gravis Ultrasound GF1 sound card
209 @item
210 CS4231A compatible sound card
211 @item
212 PCI UHCI USB controller and a virtual USB hub.
213 @end itemize
214
215 SMP is supported with up to 255 CPUs.
216
217 Note that adlib, gus and cs4231a are only available when QEMU was
218 configured with --audio-card-list option containing the name(s) of
219 required card(s).
220
221 QEMU uses the PC BIOS from the Bochs project and the Plex86/Bochs LGPL
222 VGA BIOS.
223
224 QEMU uses YM3812 emulation by Tatsuyuki Satoh.
225
226 QEMU uses GUS emulation (GUSEMU32 @url{http://www.deinmeister.de/gusemu/})
227 by Tibor "TS" Schütz.
228
229 Note that, by default, GUS shares IRQ(7) with parallel ports and so
230 QEMU must be told to not have parallel ports to have working GUS.
231
232 @example
233 qemu-system-i386 dos.img -soundhw gus -parallel none
234 @end example
235
236 Alternatively:
237 @example
238 qemu-system-i386 dos.img -device gus,irq=5
239 @end example
240
241 Or some other unclaimed IRQ.
242
243 CS4231A is the chip used in Windows Sound System and GUSMAX products
244
245 @c man end
246
247 @node pcsys_quickstart
248 @section Quick Start
249 @cindex quick start
250
251 Download and uncompress the linux image (@file{linux.img}) and type:
252
253 @example
254 qemu-system-i386 linux.img
255 @end example
256
257 Linux should boot and give you a prompt.
258
259 @node sec_invocation
260 @section Invocation
261
262 @example
263 @c man begin SYNOPSIS
264 usage: qemu-system-i386 [options] [@var{disk_image}]
265 @c man end
266 @end example
267
268 @c man begin OPTIONS
269 @var{disk_image} is a raw hard disk image for IDE hard disk 0. Some
270 targets do not need a disk image.
271
272 @include qemu-options.texi
273
274 @c man end
275
276 @node pcsys_keys
277 @section Keys
278
279 @c man begin OPTIONS
280
281 During the graphical emulation, you can use special key combinations to change
282 modes. The default key mappings are shown below, but if you use @code{-alt-grab}
283 then the modifier is Ctrl-Alt-Shift (instead of Ctrl-Alt) and if you use
284 @code{-ctrl-grab} then the modifier is the right Ctrl key (instead of Ctrl-Alt):
285
286 @table @key
287 @item Ctrl-Alt-f
288 @kindex Ctrl-Alt-f
289 Toggle full screen
290
291 @item Ctrl-Alt-+
292 @kindex Ctrl-Alt-+
293 Enlarge the screen
294
295 @item Ctrl-Alt--
296 @kindex Ctrl-Alt--
297 Shrink the screen
298
299 @item Ctrl-Alt-u
300 @kindex Ctrl-Alt-u
301 Restore the screen's un-scaled dimensions
302
303 @item Ctrl-Alt-n
304 @kindex Ctrl-Alt-n
305 Switch to virtual console 'n'. Standard console mappings are:
306 @table @emph
307 @item 1
308 Target system display
309 @item 2
310 Monitor
311 @item 3
312 Serial port
313 @end table
314
315 @item Ctrl-Alt
316 @kindex Ctrl-Alt
317 Toggle mouse and keyboard grab.
318 @end table
319
320 @kindex Ctrl-Up
321 @kindex Ctrl-Down
322 @kindex Ctrl-PageUp
323 @kindex Ctrl-PageDown
324 In the virtual consoles, you can use @key{Ctrl-Up}, @key{Ctrl-Down},
325 @key{Ctrl-PageUp} and @key{Ctrl-PageDown} to move in the back log.
326
327 @kindex Ctrl-a h
328 During emulation, if you are using the @option{-nographic} option, use
329 @key{Ctrl-a h} to get terminal commands:
330
331 @table @key
332 @item Ctrl-a h
333 @kindex Ctrl-a h
334 @item Ctrl-a ?
335 @kindex Ctrl-a ?
336 Print this help
337 @item Ctrl-a x
338 @kindex Ctrl-a x
339 Exit emulator
340 @item Ctrl-a s
341 @kindex Ctrl-a s
342 Save disk data back to file (if -snapshot)
343 @item Ctrl-a t
344 @kindex Ctrl-a t
345 Toggle console timestamps
346 @item Ctrl-a b
347 @kindex Ctrl-a b
348 Send break (magic sysrq in Linux)
349 @item Ctrl-a c
350 @kindex Ctrl-a c
351 Switch between console and monitor
352 @item Ctrl-a Ctrl-a
353 @kindex Ctrl-a a
354 Send Ctrl-a
355 @end table
356 @c man end
357
358 @ignore
359
360 @c man begin SEEALSO
361 The HTML documentation of QEMU for more precise information and Linux
362 user mode emulator invocation.
363 @c man end
364
365 @c man begin AUTHOR
366 Fabrice Bellard
367 @c man end
368
369 @end ignore
370
371 @node pcsys_monitor
372 @section QEMU Monitor
373 @cindex QEMU monitor
374
375 The QEMU monitor is used to give complex commands to the QEMU
376 emulator. You can use it to:
377
378 @itemize @minus
379
380 @item
381 Remove or insert removable media images
382 (such as CD-ROM or floppies).
383
384 @item
385 Freeze/unfreeze the Virtual Machine (VM) and save or restore its state
386 from a disk file.
387
388 @item Inspect the VM state without an external debugger.
389
390 @end itemize
391
392 @subsection Commands
393
394 The following commands are available:
395
396 @include qemu-monitor.texi
397
398 @subsection Integer expressions
399
400 The monitor understands integers expressions for every integer
401 argument. You can use register names to get the value of specifics
402 CPU registers by prefixing them with @emph{$}.
403
404 @node disk_images
405 @section Disk Images
406
407 Since version 0.6.1, QEMU supports many disk image formats, including
408 growable disk images (their size increase as non empty sectors are
409 written), compressed and encrypted disk images. Version 0.8.3 added
410 the new qcow2 disk image format which is essential to support VM
411 snapshots.
412
413 @menu
414 * disk_images_quickstart:: Quick start for disk image creation
415 * disk_images_snapshot_mode:: Snapshot mode
416 * vm_snapshots:: VM snapshots
417 * qemu_img_invocation:: qemu-img Invocation
418 * qemu_nbd_invocation:: qemu-nbd Invocation
419 * host_drives:: Using host drives
420 * disk_images_fat_images:: Virtual FAT disk images
421 * disk_images_nbd:: NBD access
422 * disk_images_sheepdog:: Sheepdog disk images
423 * disk_images_iscsi:: iSCSI LUNs
424 * disk_images_gluster:: GlusterFS disk images
425 @end menu
426
427 @node disk_images_quickstart
428 @subsection Quick start for disk image creation
429
430 You can create a disk image with the command:
431 @example
432 qemu-img create myimage.img mysize
433 @end example
434 where @var{myimage.img} is the disk image filename and @var{mysize} is its
435 size in kilobytes. You can add an @code{M} suffix to give the size in
436 megabytes and a @code{G} suffix for gigabytes.
437
438 See @ref{qemu_img_invocation} for more information.
439
440 @node disk_images_snapshot_mode
441 @subsection Snapshot mode
442
443 If you use the option @option{-snapshot}, all disk images are
444 considered as read only. When sectors in written, they are written in
445 a temporary file created in @file{/tmp}. You can however force the
446 write back to the raw disk images by using the @code{commit} monitor
447 command (or @key{C-a s} in the serial console).
448
449 @node vm_snapshots
450 @subsection VM snapshots
451
452 VM snapshots are snapshots of the complete virtual machine including
453 CPU state, RAM, device state and the content of all the writable
454 disks. In order to use VM snapshots, you must have at least one non
455 removable and writable block device using the @code{qcow2} disk image
456 format. Normally this device is the first virtual hard drive.
457
458 Use the monitor command @code{savevm} to create a new VM snapshot or
459 replace an existing one. A human readable name can be assigned to each
460 snapshot in addition to its numerical ID.
461
462 Use @code{loadvm} to restore a VM snapshot and @code{delvm} to remove
463 a VM snapshot. @code{info snapshots} lists the available snapshots
464 with their associated information:
465
466 @example
467 (qemu) info snapshots
468 Snapshot devices: hda
469 Snapshot list (from hda):
470 ID TAG VM SIZE DATE VM CLOCK
471 1 start 41M 2006-08-06 12:38:02 00:00:14.954
472 2 40M 2006-08-06 12:43:29 00:00:18.633
473 3 msys 40M 2006-08-06 12:44:04 00:00:23.514
474 @end example
475
476 A VM snapshot is made of a VM state info (its size is shown in
477 @code{info snapshots}) and a snapshot of every writable disk image.
478 The VM state info is stored in the first @code{qcow2} non removable
479 and writable block device. The disk image snapshots are stored in
480 every disk image. The size of a snapshot in a disk image is difficult
481 to evaluate and is not shown by @code{info snapshots} because the
482 associated disk sectors are shared among all the snapshots to save
483 disk space (otherwise each snapshot would need a full copy of all the
484 disk images).
485
486 When using the (unrelated) @code{-snapshot} option
487 (@ref{disk_images_snapshot_mode}), you can always make VM snapshots,
488 but they are deleted as soon as you exit QEMU.
489
490 VM snapshots currently have the following known limitations:
491 @itemize
492 @item
493 They cannot cope with removable devices if they are removed or
494 inserted after a snapshot is done.
495 @item
496 A few device drivers still have incomplete snapshot support so their
497 state is not saved or restored properly (in particular USB).
498 @end itemize
499
500 @node qemu_img_invocation
501 @subsection @code{qemu-img} Invocation
502
503 @include qemu-img.texi
504
505 @node qemu_nbd_invocation
506 @subsection @code{qemu-nbd} Invocation
507
508 @include qemu-nbd.texi
509
510 @node host_drives
511 @subsection Using host drives
512
513 In addition to disk image files, QEMU can directly access host
514 devices. We describe here the usage for QEMU version >= 0.8.3.
515
516 @subsubsection Linux
517
518 On Linux, you can directly use the host device filename instead of a
519 disk image filename provided you have enough privileges to access
520 it. For example, use @file{/dev/cdrom} to access to the CDROM or
521 @file{/dev/fd0} for the floppy.
522
523 @table @code
524 @item CD
525 You can specify a CDROM device even if no CDROM is loaded. QEMU has
526 specific code to detect CDROM insertion or removal. CDROM ejection by
527 the guest OS is supported. Currently only data CDs are supported.
528 @item Floppy
529 You can specify a floppy device even if no floppy is loaded. Floppy
530 removal is currently not detected accurately (if you change floppy
531 without doing floppy access while the floppy is not loaded, the guest
532 OS will think that the same floppy is loaded).
533 @item Hard disks
534 Hard disks can be used. Normally you must specify the whole disk
535 (@file{/dev/hdb} instead of @file{/dev/hdb1}) so that the guest OS can
536 see it as a partitioned disk. WARNING: unless you know what you do, it
537 is better to only make READ-ONLY accesses to the hard disk otherwise
538 you may corrupt your host data (use the @option{-snapshot} command
539 line option or modify the device permissions accordingly).
540 @end table
541
542 @subsubsection Windows
543
544 @table @code
545 @item CD
546 The preferred syntax is the drive letter (e.g. @file{d:}). The
547 alternate syntax @file{\\.\d:} is supported. @file{/dev/cdrom} is
548 supported as an alias to the first CDROM drive.
549
550 Currently there is no specific code to handle removable media, so it
551 is better to use the @code{change} or @code{eject} monitor commands to
552 change or eject media.
553 @item Hard disks
554 Hard disks can be used with the syntax: @file{\\.\PhysicalDrive@var{N}}
555 where @var{N} is the drive number (0 is the first hard disk).
556
557 WARNING: unless you know what you do, it is better to only make
558 READ-ONLY accesses to the hard disk otherwise you may corrupt your
559 host data (use the @option{-snapshot} command line so that the
560 modifications are written in a temporary file).
561 @end table
562
563
564 @subsubsection Mac OS X
565
566 @file{/dev/cdrom} is an alias to the first CDROM.
567
568 Currently there is no specific code to handle removable media, so it
569 is better to use the @code{change} or @code{eject} monitor commands to
570 change or eject media.
571
572 @node disk_images_fat_images
573 @subsection Virtual FAT disk images
574
575 QEMU can automatically create a virtual FAT disk image from a
576 directory tree. In order to use it, just type:
577
578 @example
579 qemu-system-i386 linux.img -hdb fat:/my_directory
580 @end example
581
582 Then you access access to all the files in the @file{/my_directory}
583 directory without having to copy them in a disk image or to export
584 them via SAMBA or NFS. The default access is @emph{read-only}.
585
586 Floppies can be emulated with the @code{:floppy:} option:
587
588 @example
589 qemu-system-i386 linux.img -fda fat:floppy:/my_directory
590 @end example
591
592 A read/write support is available for testing (beta stage) with the
593 @code{:rw:} option:
594
595 @example
596 qemu-system-i386 linux.img -fda fat:floppy:rw:/my_directory
597 @end example
598
599 What you should @emph{never} do:
600 @itemize
601 @item use non-ASCII filenames ;
602 @item use "-snapshot" together with ":rw:" ;
603 @item expect it to work when loadvm'ing ;
604 @item write to the FAT directory on the host system while accessing it with the guest system.
605 @end itemize
606
607 @node disk_images_nbd
608 @subsection NBD access
609
610 QEMU can access directly to block device exported using the Network Block Device
611 protocol.
612
613 @example
614 qemu-system-i386 linux.img -hdb nbd://my_nbd_server.mydomain.org:1024/
615 @end example
616
617 If the NBD server is located on the same host, you can use an unix socket instead
618 of an inet socket:
619
620 @example
621 qemu-system-i386 linux.img -hdb nbd+unix://?socket=/tmp/my_socket
622 @end example
623
624 In this case, the block device must be exported using qemu-nbd:
625
626 @example
627 qemu-nbd --socket=/tmp/my_socket my_disk.qcow2
628 @end example
629
630 The use of qemu-nbd allows to share a disk between several guests:
631 @example
632 qemu-nbd --socket=/tmp/my_socket --share=2 my_disk.qcow2
633 @end example
634
635 @noindent
636 and then you can use it with two guests:
637 @example
638 qemu-system-i386 linux1.img -hdb nbd+unix://?socket=/tmp/my_socket
639 qemu-system-i386 linux2.img -hdb nbd+unix://?socket=/tmp/my_socket
640 @end example
641
642 If the nbd-server uses named exports (supported since NBD 2.9.18, or with QEMU's
643 own embedded NBD server), you must specify an export name in the URI:
644 @example
645 qemu-system-i386 -cdrom nbd://localhost/debian-500-ppc-netinst
646 qemu-system-i386 -cdrom nbd://localhost/openSUSE-11.1-ppc-netinst
647 @end example
648
649 The URI syntax for NBD is supported since QEMU 1.3. An alternative syntax is
650 also available. Here are some example of the older syntax:
651 @example
652 qemu-system-i386 linux.img -hdb nbd:my_nbd_server.mydomain.org:1024
653 qemu-system-i386 linux2.img -hdb nbd:unix:/tmp/my_socket
654 qemu-system-i386 -cdrom nbd:localhost:10809:exportname=debian-500-ppc-netinst
655 @end example
656
657 @node disk_images_sheepdog
658 @subsection Sheepdog disk images
659
660 Sheepdog is a distributed storage system for QEMU. It provides highly
661 available block level storage volumes that can be attached to
662 QEMU-based virtual machines.
663
664 You can create a Sheepdog disk image with the command:
665 @example
666 qemu-img create sheepdog:@var{image} @var{size}
667 @end example
668 where @var{image} is the Sheepdog image name and @var{size} is its
669 size.
670
671 To import the existing @var{filename} to Sheepdog, you can use a
672 convert command.
673 @example
674 qemu-img convert @var{filename} sheepdog:@var{image}
675 @end example
676
677 You can boot from the Sheepdog disk image with the command:
678 @example
679 qemu-system-i386 sheepdog:@var{image}
680 @end example
681
682 You can also create a snapshot of the Sheepdog image like qcow2.
683 @example
684 qemu-img snapshot -c @var{tag} sheepdog:@var{image}
685 @end example
686 where @var{tag} is a tag name of the newly created snapshot.
687
688 To boot from the Sheepdog snapshot, specify the tag name of the
689 snapshot.
690 @example
691 qemu-system-i386 sheepdog:@var{image}:@var{tag}
692 @end example
693
694 You can create a cloned image from the existing snapshot.
695 @example
696 qemu-img create -b sheepdog:@var{base}:@var{tag} sheepdog:@var{image}
697 @end example
698 where @var{base} is a image name of the source snapshot and @var{tag}
699 is its tag name.
700
701 If the Sheepdog daemon doesn't run on the local host, you need to
702 specify one of the Sheepdog servers to connect to.
703 @example
704 qemu-img create sheepdog:@var{hostname}:@var{port}:@var{image} @var{size}
705 qemu-system-i386 sheepdog:@var{hostname}:@var{port}:@var{image}
706 @end example
707
708 @node disk_images_iscsi
709 @subsection iSCSI LUNs
710
711 iSCSI is a popular protocol used to access SCSI devices across a computer
712 network.
713
714 There are two different ways iSCSI devices can be used by QEMU.
715
716 The first method is to mount the iSCSI LUN on the host, and make it appear as
717 any other ordinary SCSI device on the host and then to access this device as a
718 /dev/sd device from QEMU. How to do this differs between host OSes.
719
720 The second method involves using the iSCSI initiator that is built into
721 QEMU. This provides a mechanism that works the same way regardless of which
722 host OS you are running QEMU on. This section will describe this second method
723 of using iSCSI together with QEMU.
724
725 In QEMU, iSCSI devices are described using special iSCSI URLs
726
727 @example
728 URL syntax:
729 iscsi://[<username>[%<password>]@@]<host>[:<port>]/<target-iqn-name>/<lun>
730 @end example
731
732 Username and password are optional and only used if your target is set up
733 using CHAP authentication for access control.
734 Alternatively the username and password can also be set via environment
735 variables to have these not show up in the process list
736
737 @example
738 export LIBISCSI_CHAP_USERNAME=<username>
739 export LIBISCSI_CHAP_PASSWORD=<password>
740 iscsi://<host>/<target-iqn-name>/<lun>
741 @end example
742
743 Various session related parameters can be set via special options, either
744 in a configuration file provided via '-readconfig' or directly on the
745 command line.
746
747 If the initiator-name is not specified qemu will use a default name
748 of 'iqn.2008-11.org.linux-kvm[:<name>'] where <name> is the name of the
749 virtual machine.
750
751
752 @example
753 Setting a specific initiator name to use when logging in to the target
754 -iscsi initiator-name=iqn.qemu.test:my-initiator
755 @end example
756
757 @example
758 Controlling which type of header digest to negotiate with the target
759 -iscsi header-digest=CRC32C|CRC32C-NONE|NONE-CRC32C|NONE
760 @end example
761
762 These can also be set via a configuration file
763 @example
764 [iscsi]
765 user = "CHAP username"
766 password = "CHAP password"
767 initiator-name = "iqn.qemu.test:my-initiator"
768 # header digest is one of CRC32C|CRC32C-NONE|NONE-CRC32C|NONE
769 header-digest = "CRC32C"
770 @end example
771
772
773 Setting the target name allows different options for different targets
774 @example
775 [iscsi "iqn.target.name"]
776 user = "CHAP username"
777 password = "CHAP password"
778 initiator-name = "iqn.qemu.test:my-initiator"
779 # header digest is one of CRC32C|CRC32C-NONE|NONE-CRC32C|NONE
780 header-digest = "CRC32C"
781 @end example
782
783
784 Howto use a configuration file to set iSCSI configuration options:
785 @example
786 cat >iscsi.conf <<EOF
787 [iscsi]
788 user = "me"
789 password = "my password"
790 initiator-name = "iqn.qemu.test:my-initiator"
791 header-digest = "CRC32C"
792 EOF
793
794 qemu-system-i386 -drive file=iscsi://127.0.0.1/iqn.qemu.test/1 \
795 -readconfig iscsi.conf
796 @end example
797
798
799 Howto set up a simple iSCSI target on loopback and accessing it via QEMU:
800 @example
801 This example shows how to set up an iSCSI target with one CDROM and one DISK
802 using the Linux STGT software target. This target is available on Red Hat based
803 systems as the package 'scsi-target-utils'.
804
805 tgtd --iscsi portal=127.0.0.1:3260
806 tgtadm --lld iscsi --op new --mode target --tid 1 -T iqn.qemu.test
807 tgtadm --lld iscsi --mode logicalunit --op new --tid 1 --lun 1 \
808 -b /IMAGES/disk.img --device-type=disk
809 tgtadm --lld iscsi --mode logicalunit --op new --tid 1 --lun 2 \
810 -b /IMAGES/cd.iso --device-type=cd
811 tgtadm --lld iscsi --op bind --mode target --tid 1 -I ALL
812
813 qemu-system-i386 -iscsi initiator-name=iqn.qemu.test:my-initiator \
814 -boot d -drive file=iscsi://127.0.0.1/iqn.qemu.test/1 \
815 -cdrom iscsi://127.0.0.1/iqn.qemu.test/2
816 @end example
817
818 @node disk_images_gluster
819 @subsection GlusterFS disk images
820
821 GlusterFS is an user space distributed file system.
822
823 You can boot from the GlusterFS disk image with the command:
824 @example
825 qemu-system-x86_64 -drive file=gluster[+@var{transport}]://[@var{server}[:@var{port}]]/@var{volname}/@var{image}[?socket=...]
826 @end example
827
828 @var{gluster} is the protocol.
829
830 @var{transport} specifies the transport type used to connect to gluster
831 management daemon (glusterd). Valid transport types are
832 tcp, unix and rdma. If a transport type isn't specified, then tcp
833 type is assumed.
834
835 @var{server} specifies the server where the volume file specification for
836 the given volume resides. This can be either hostname, ipv4 address
837 or ipv6 address. ipv6 address needs to be within square brackets [ ].
838 If transport type is unix, then @var{server} field should not be specifed.
839 Instead @var{socket} field needs to be populated with the path to unix domain
840 socket.
841
842 @var{port} is the port number on which glusterd is listening. This is optional
843 and if not specified, QEMU will send 0 which will make gluster to use the
844 default port. If the transport type is unix, then @var{port} should not be
845 specified.
846
847 @var{volname} is the name of the gluster volume which contains the disk image.
848
849 @var{image} is the path to the actual disk image that resides on gluster volume.
850
851 You can create a GlusterFS disk image with the command:
852 @example
853 qemu-img create gluster://@var{server}/@var{volname}/@var{image} @var{size}
854 @end example
855
856 Examples
857 @example
858 qemu-system-x86_64 -drive file=gluster://1.2.3.4/testvol/a.img
859 qemu-system-x86_64 -drive file=gluster+tcp://1.2.3.4/testvol/a.img
860 qemu-system-x86_64 -drive file=gluster+tcp://1.2.3.4:24007/testvol/dir/a.img
861 qemu-system-x86_64 -drive file=gluster+tcp://[1:2:3:4:5:6:7:8]/testvol/dir/a.img
862 qemu-system-x86_64 -drive file=gluster+tcp://[1:2:3:4:5:6:7:8]:24007/testvol/dir/a.img
863 qemu-system-x86_64 -drive file=gluster+tcp://server.domain.com:24007/testvol/dir/a.img
864 qemu-system-x86_64 -drive file=gluster+unix:///testvol/dir/a.img?socket=/tmp/glusterd.socket
865 qemu-system-x86_64 -drive file=gluster+rdma://1.2.3.4:24007/testvol/a.img
866 @end example
867
868 @node pcsys_network
869 @section Network emulation
870
871 QEMU can simulate several network cards (PCI or ISA cards on the PC
872 target) and can connect them to an arbitrary number of Virtual Local
873 Area Networks (VLANs). Host TAP devices can be connected to any QEMU
874 VLAN. VLAN can be connected between separate instances of QEMU to
875 simulate large networks. For simpler usage, a non privileged user mode
876 network stack can replace the TAP device to have a basic network
877 connection.
878
879 @subsection VLANs
880
881 QEMU simulates several VLANs. A VLAN can be symbolised as a virtual
882 connection between several network devices. These devices can be for
883 example QEMU virtual Ethernet cards or virtual Host ethernet devices
884 (TAP devices).
885
886 @subsection Using TAP network interfaces
887
888 This is the standard way to connect QEMU to a real network. QEMU adds
889 a virtual network device on your host (called @code{tapN}), and you
890 can then configure it as if it was a real ethernet card.
891
892 @subsubsection Linux host
893
894 As an example, you can download the @file{linux-test-xxx.tar.gz}
895 archive and copy the script @file{qemu-ifup} in @file{/etc} and
896 configure properly @code{sudo} so that the command @code{ifconfig}
897 contained in @file{qemu-ifup} can be executed as root. You must verify
898 that your host kernel supports the TAP network interfaces: the
899 device @file{/dev/net/tun} must be present.
900
901 See @ref{sec_invocation} to have examples of command lines using the
902 TAP network interfaces.
903
904 @subsubsection Windows host
905
906 There is a virtual ethernet driver for Windows 2000/XP systems, called
907 TAP-Win32. But it is not included in standard QEMU for Windows,
908 so you will need to get it separately. It is part of OpenVPN package,
909 so download OpenVPN from : @url{http://openvpn.net/}.
910
911 @subsection Using the user mode network stack
912
913 By using the option @option{-net user} (default configuration if no
914 @option{-net} option is specified), QEMU uses a completely user mode
915 network stack (you don't need root privilege to use the virtual
916 network). The virtual network configuration is the following:
917
918 @example
919
920 QEMU VLAN <------> Firewall/DHCP server <-----> Internet
921 | (10.0.2.2)
922 |
923 ----> DNS server (10.0.2.3)
924 |
925 ----> SMB server (10.0.2.4)
926 @end example
927
928 The QEMU VM behaves as if it was behind a firewall which blocks all
929 incoming connections. You can use a DHCP client to automatically
930 configure the network in the QEMU VM. The DHCP server assign addresses
931 to the hosts starting from 10.0.2.15.
932
933 In order to check that the user mode network is working, you can ping
934 the address 10.0.2.2 and verify that you got an address in the range
935 10.0.2.x from the QEMU virtual DHCP server.
936
937 Note that @code{ping} is not supported reliably to the internet as it
938 would require root privileges. It means you can only ping the local
939 router (10.0.2.2).
940
941 When using the built-in TFTP server, the router is also the TFTP
942 server.
943
944 When using the @option{-redir} option, TCP or UDP connections can be
945 redirected from the host to the guest. It allows for example to
946 redirect X11, telnet or SSH connections.
947
948 @subsection Connecting VLANs between QEMU instances
949
950 Using the @option{-net socket} option, it is possible to make VLANs
951 that span several QEMU instances. See @ref{sec_invocation} to have a
952 basic example.
953
954 @node pcsys_other_devs
955 @section Other Devices
956
957 @subsection Inter-VM Shared Memory device
958
959 With KVM enabled on a Linux host, a shared memory device is available. Guests
960 map a POSIX shared memory region into the guest as a PCI device that enables
961 zero-copy communication to the application level of the guests. The basic
962 syntax is:
963
964 @example
965 qemu-system-i386 -device ivshmem,size=<size in format accepted by -m>[,shm=<shm name>]
966 @end example
967
968 If desired, interrupts can be sent between guest VMs accessing the same shared
969 memory region. Interrupt support requires using a shared memory server and
970 using a chardev socket to connect to it. The code for the shared memory server
971 is qemu.git/contrib/ivshmem-server. An example syntax when using the shared
972 memory server is:
973
974 @example
975 qemu-system-i386 -device ivshmem,size=<size in format accepted by -m>[,chardev=<id>]
976 [,msi=on][,ioeventfd=on][,vectors=n][,role=peer|master]
977 qemu-system-i386 -chardev socket,path=<path>,id=<id>
978 @end example
979
980 When using the server, the guest will be assigned a VM ID (>=0) that allows guests
981 using the same server to communicate via interrupts. Guests can read their
982 VM ID from a device register (see example code). Since receiving the shared
983 memory region from the server is asynchronous, there is a (small) chance the
984 guest may boot before the shared memory is attached. To allow an application
985 to ensure shared memory is attached, the VM ID register will return -1 (an
986 invalid VM ID) until the memory is attached. Once the shared memory is
987 attached, the VM ID will return the guest's valid VM ID. With these semantics,
988 the guest application can check to ensure the shared memory is attached to the
989 guest before proceeding.
990
991 The @option{role} argument can be set to either master or peer and will affect
992 how the shared memory is migrated. With @option{role=master}, the guest will
993 copy the shared memory on migration to the destination host. With
994 @option{role=peer}, the guest will not be able to migrate with the device attached.
995 With the @option{peer} case, the device should be detached and then reattached
996 after migration using the PCI hotplug support.
997
998 @node direct_linux_boot
999 @section Direct Linux Boot
1000
1001 This section explains how to launch a Linux kernel inside QEMU without
1002 having to make a full bootable image. It is very useful for fast Linux
1003 kernel testing.
1004
1005 The syntax is:
1006 @example
1007 qemu-system-i386 -kernel arch/i386/boot/bzImage -hda root-2.4.20.img -append "root=/dev/hda"
1008 @end example
1009
1010 Use @option{-kernel} to provide the Linux kernel image and
1011 @option{-append} to give the kernel command line arguments. The
1012 @option{-initrd} option can be used to provide an INITRD image.
1013
1014 When using the direct Linux boot, a disk image for the first hard disk
1015 @file{hda} is required because its boot sector is used to launch the
1016 Linux kernel.
1017
1018 If you do not need graphical output, you can disable it and redirect
1019 the virtual serial port and the QEMU monitor to the console with the
1020 @option{-nographic} option. The typical command line is:
1021 @example
1022 qemu-system-i386 -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1023 -append "root=/dev/hda console=ttyS0" -nographic
1024 @end example
1025
1026 Use @key{Ctrl-a c} to switch between the serial console and the
1027 monitor (@pxref{pcsys_keys}).
1028
1029 @node pcsys_usb
1030 @section USB emulation
1031
1032 QEMU emulates a PCI UHCI USB controller. You can virtually plug
1033 virtual USB devices or real host USB devices (experimental, works only
1034 on Linux hosts). QEMU will automatically create and connect virtual USB hubs
1035 as necessary to connect multiple USB devices.
1036
1037 @menu
1038 * usb_devices::
1039 * host_usb_devices::
1040 @end menu
1041 @node usb_devices
1042 @subsection Connecting USB devices
1043
1044 USB devices can be connected with the @option{-usbdevice} commandline option
1045 or the @code{usb_add} monitor command. Available devices are:
1046
1047 @table @code
1048 @item mouse
1049 Virtual Mouse. This will override the PS/2 mouse emulation when activated.
1050 @item tablet
1051 Pointer device that uses absolute coordinates (like a touchscreen).
1052 This means QEMU is able to report the mouse position without having
1053 to grab the mouse. Also overrides the PS/2 mouse emulation when activated.
1054 @item disk:@var{file}
1055 Mass storage device based on @var{file} (@pxref{disk_images})
1056 @item host:@var{bus.addr}
1057 Pass through the host device identified by @var{bus.addr}
1058 (Linux only)
1059 @item host:@var{vendor_id:product_id}
1060 Pass through the host device identified by @var{vendor_id:product_id}
1061 (Linux only)
1062 @item wacom-tablet
1063 Virtual Wacom PenPartner tablet. This device is similar to the @code{tablet}
1064 above but it can be used with the tslib library because in addition to touch
1065 coordinates it reports touch pressure.
1066 @item keyboard
1067 Standard USB keyboard. Will override the PS/2 keyboard (if present).
1068 @item serial:[vendorid=@var{vendor_id}][,product_id=@var{product_id}]:@var{dev}
1069 Serial converter. This emulates an FTDI FT232BM chip connected to host character
1070 device @var{dev}. The available character devices are the same as for the
1071 @code{-serial} option. The @code{vendorid} and @code{productid} options can be
1072 used to override the default 0403:6001. For instance,
1073 @example
1074 usb_add serial:productid=FA00:tcp:192.168.0.2:4444
1075 @end example
1076 will connect to tcp port 4444 of ip 192.168.0.2, and plug that to the virtual
1077 serial converter, faking a Matrix Orbital LCD Display (USB ID 0403:FA00).
1078 @item braille
1079 Braille device. This will use BrlAPI to display the braille output on a real
1080 or fake device.
1081 @item net:@var{options}
1082 Network adapter that supports CDC ethernet and RNDIS protocols. @var{options}
1083 specifies NIC options as with @code{-net nic,}@var{options} (see description).
1084 For instance, user-mode networking can be used with
1085 @example
1086 qemu-system-i386 [...OPTIONS...] -net user,vlan=0 -usbdevice net:vlan=0
1087 @end example
1088 Currently this cannot be used in machines that support PCI NICs.
1089 @item bt[:@var{hci-type}]
1090 Bluetooth dongle whose type is specified in the same format as with
1091 the @option{-bt hci} option, @pxref{bt-hcis,,allowed HCI types}. If
1092 no type is given, the HCI logic corresponds to @code{-bt hci,vlan=0}.
1093 This USB device implements the USB Transport Layer of HCI. Example
1094 usage:
1095 @example
1096 qemu-system-i386 [...OPTIONS...] -usbdevice bt:hci,vlan=3 -bt device:keyboard,vlan=3
1097 @end example
1098 @end table
1099
1100 @node host_usb_devices
1101 @subsection Using host USB devices on a Linux host
1102
1103 WARNING: this is an experimental feature. QEMU will slow down when
1104 using it. USB devices requiring real time streaming (i.e. USB Video
1105 Cameras) are not supported yet.
1106
1107 @enumerate
1108 @item If you use an early Linux 2.4 kernel, verify that no Linux driver
1109 is actually using the USB device. A simple way to do that is simply to
1110 disable the corresponding kernel module by renaming it from @file{mydriver.o}
1111 to @file{mydriver.o.disabled}.
1112
1113 @item Verify that @file{/proc/bus/usb} is working (most Linux distributions should enable it by default). You should see something like that:
1114 @example
1115 ls /proc/bus/usb
1116 001 devices drivers
1117 @end example
1118
1119 @item Since only root can access to the USB devices directly, you can either launch QEMU as root or change the permissions of the USB devices you want to use. For testing, the following suffices:
1120 @example
1121 chown -R myuid /proc/bus/usb
1122 @end example
1123
1124 @item Launch QEMU and do in the monitor:
1125 @example
1126 info usbhost
1127 Device 1.2, speed 480 Mb/s
1128 Class 00: USB device 1234:5678, USB DISK
1129 @end example
1130 You should see the list of the devices you can use (Never try to use
1131 hubs, it won't work).
1132
1133 @item Add the device in QEMU by using:
1134 @example
1135 usb_add host:1234:5678
1136 @end example
1137
1138 Normally the guest OS should report that a new USB device is
1139 plugged. You can use the option @option{-usbdevice} to do the same.
1140
1141 @item Now you can try to use the host USB device in QEMU.
1142
1143 @end enumerate
1144
1145 When relaunching QEMU, you may have to unplug and plug again the USB
1146 device to make it work again (this is a bug).
1147
1148 @node vnc_security
1149 @section VNC security
1150
1151 The VNC server capability provides access to the graphical console
1152 of the guest VM across the network. This has a number of security
1153 considerations depending on the deployment scenarios.
1154
1155 @menu
1156 * vnc_sec_none::
1157 * vnc_sec_password::
1158 * vnc_sec_certificate::
1159 * vnc_sec_certificate_verify::
1160 * vnc_sec_certificate_pw::
1161 * vnc_sec_sasl::
1162 * vnc_sec_certificate_sasl::
1163 * vnc_generate_cert::
1164 * vnc_setup_sasl::
1165 @end menu
1166 @node vnc_sec_none
1167 @subsection Without passwords
1168
1169 The simplest VNC server setup does not include any form of authentication.
1170 For this setup it is recommended to restrict it to listen on a UNIX domain
1171 socket only. For example
1172
1173 @example
1174 qemu-system-i386 [...OPTIONS...] -vnc unix:/home/joebloggs/.qemu-myvm-vnc
1175 @end example
1176
1177 This ensures that only users on local box with read/write access to that
1178 path can access the VNC server. To securely access the VNC server from a
1179 remote machine, a combination of netcat+ssh can be used to provide a secure
1180 tunnel.
1181
1182 @node vnc_sec_password
1183 @subsection With passwords
1184
1185 The VNC protocol has limited support for password based authentication. Since
1186 the protocol limits passwords to 8 characters it should not be considered
1187 to provide high security. The password can be fairly easily brute-forced by
1188 a client making repeat connections. For this reason, a VNC server using password
1189 authentication should be restricted to only listen on the loopback interface
1190 or UNIX domain sockets. Password authentication is not supported when operating
1191 in FIPS 140-2 compliance mode as it requires the use of the DES cipher. Password
1192 authentication is requested with the @code{password} option, and then once QEMU
1193 is running the password is set with the monitor. Until the monitor is used to
1194 set the password all clients will be rejected.
1195
1196 @example
1197 qemu-system-i386 [...OPTIONS...] -vnc :1,password -monitor stdio
1198 (qemu) change vnc password
1199 Password: ********
1200 (qemu)
1201 @end example
1202
1203 @node vnc_sec_certificate
1204 @subsection With x509 certificates
1205
1206 The QEMU VNC server also implements the VeNCrypt extension allowing use of
1207 TLS for encryption of the session, and x509 certificates for authentication.
1208 The use of x509 certificates is strongly recommended, because TLS on its
1209 own is susceptible to man-in-the-middle attacks. Basic x509 certificate
1210 support provides a secure session, but no authentication. This allows any
1211 client to connect, and provides an encrypted session.
1212
1213 @example
1214 qemu-system-i386 [...OPTIONS...] -vnc :1,tls,x509=/etc/pki/qemu -monitor stdio
1215 @end example
1216
1217 In the above example @code{/etc/pki/qemu} should contain at least three files,
1218 @code{ca-cert.pem}, @code{server-cert.pem} and @code{server-key.pem}. Unprivileged
1219 users will want to use a private directory, for example @code{$HOME/.pki/qemu}.
1220 NB the @code{server-key.pem} file should be protected with file mode 0600 to
1221 only be readable by the user owning it.
1222
1223 @node vnc_sec_certificate_verify
1224 @subsection With x509 certificates and client verification
1225
1226 Certificates can also provide a means to authenticate the client connecting.
1227 The server will request that the client provide a certificate, which it will
1228 then validate against the CA certificate. This is a good choice if deploying
1229 in an environment with a private internal certificate authority.
1230
1231 @example
1232 qemu-system-i386 [...OPTIONS...] -vnc :1,tls,x509verify=/etc/pki/qemu -monitor stdio
1233 @end example
1234
1235
1236 @node vnc_sec_certificate_pw
1237 @subsection With x509 certificates, client verification and passwords
1238
1239 Finally, the previous method can be combined with VNC password authentication
1240 to provide two layers of authentication for clients.
1241
1242 @example
1243 qemu-system-i386 [...OPTIONS...] -vnc :1,password,tls,x509verify=/etc/pki/qemu -monitor stdio
1244 (qemu) change vnc password
1245 Password: ********
1246 (qemu)
1247 @end example
1248
1249
1250 @node vnc_sec_sasl
1251 @subsection With SASL authentication
1252
1253 The SASL authentication method is a VNC extension, that provides an
1254 easily extendable, pluggable authentication method. This allows for
1255 integration with a wide range of authentication mechanisms, such as
1256 PAM, GSSAPI/Kerberos, LDAP, SQL databases, one-time keys and more.
1257 The strength of the authentication depends on the exact mechanism
1258 configured. If the chosen mechanism also provides a SSF layer, then
1259 it will encrypt the datastream as well.
1260
1261 Refer to the later docs on how to choose the exact SASL mechanism
1262 used for authentication, but assuming use of one supporting SSF,
1263 then QEMU can be launched with:
1264
1265 @example
1266 qemu-system-i386 [...OPTIONS...] -vnc :1,sasl -monitor stdio
1267 @end example
1268
1269 @node vnc_sec_certificate_sasl
1270 @subsection With x509 certificates and SASL authentication
1271
1272 If the desired SASL authentication mechanism does not supported
1273 SSF layers, then it is strongly advised to run it in combination
1274 with TLS and x509 certificates. This provides securely encrypted
1275 data stream, avoiding risk of compromising of the security
1276 credentials. This can be enabled, by combining the 'sasl' option
1277 with the aforementioned TLS + x509 options:
1278
1279 @example
1280 qemu-system-i386 [...OPTIONS...] -vnc :1,tls,x509,sasl -monitor stdio
1281 @end example
1282
1283
1284 @node vnc_generate_cert
1285 @subsection Generating certificates for VNC
1286
1287 The GNU TLS packages provides a command called @code{certtool} which can
1288 be used to generate certificates and keys in PEM format. At a minimum it
1289 is necessary to setup a certificate authority, and issue certificates to
1290 each server. If using certificates for authentication, then each client
1291 will also need to be issued a certificate. The recommendation is for the
1292 server to keep its certificates in either @code{/etc/pki/qemu} or for
1293 unprivileged users in @code{$HOME/.pki/qemu}.
1294
1295 @menu
1296 * vnc_generate_ca::
1297 * vnc_generate_server::
1298 * vnc_generate_client::
1299 @end menu
1300 @node vnc_generate_ca
1301 @subsubsection Setup the Certificate Authority
1302
1303 This step only needs to be performed once per organization / organizational
1304 unit. First the CA needs a private key. This key must be kept VERY secret
1305 and secure. If this key is compromised the entire trust chain of the certificates
1306 issued with it is lost.
1307
1308 @example
1309 # certtool --generate-privkey > ca-key.pem
1310 @end example
1311
1312 A CA needs to have a public certificate. For simplicity it can be a self-signed
1313 certificate, or one issue by a commercial certificate issuing authority. To
1314 generate a self-signed certificate requires one core piece of information, the
1315 name of the organization.
1316
1317 @example
1318 # cat > ca.info <<EOF
1319 cn = Name of your organization
1320 ca
1321 cert_signing_key
1322 EOF
1323 # certtool --generate-self-signed \
1324 --load-privkey ca-key.pem
1325 --template ca.info \
1326 --outfile ca-cert.pem
1327 @end example
1328
1329 The @code{ca-cert.pem} file should be copied to all servers and clients wishing to utilize
1330 TLS support in the VNC server. The @code{ca-key.pem} must not be disclosed/copied at all.
1331
1332 @node vnc_generate_server
1333 @subsubsection Issuing server certificates
1334
1335 Each server (or host) needs to be issued with a key and certificate. When connecting
1336 the certificate is sent to the client which validates it against the CA certificate.
1337 The core piece of information for a server certificate is the hostname. This should
1338 be the fully qualified hostname that the client will connect with, since the client
1339 will typically also verify the hostname in the certificate. On the host holding the
1340 secure CA private key:
1341
1342 @example
1343 # cat > server.info <<EOF
1344 organization = Name of your organization
1345 cn = server.foo.example.com
1346 tls_www_server
1347 encryption_key
1348 signing_key
1349 EOF
1350 # certtool --generate-privkey > server-key.pem
1351 # certtool --generate-certificate \
1352 --load-ca-certificate ca-cert.pem \
1353 --load-ca-privkey ca-key.pem \
1354 --load-privkey server server-key.pem \
1355 --template server.info \
1356 --outfile server-cert.pem
1357 @end example
1358
1359 The @code{server-key.pem} and @code{server-cert.pem} files should now be securely copied
1360 to the server for which they were generated. The @code{server-key.pem} is security
1361 sensitive and should be kept protected with file mode 0600 to prevent disclosure.
1362
1363 @node vnc_generate_client
1364 @subsubsection Issuing client certificates
1365
1366 If the QEMU VNC server is to use the @code{x509verify} option to validate client
1367 certificates as its authentication mechanism, each client also needs to be issued
1368 a certificate. The client certificate contains enough metadata to uniquely identify
1369 the client, typically organization, state, city, building, etc. On the host holding
1370 the secure CA private key:
1371
1372 @example
1373 # cat > client.info <<EOF
1374 country = GB
1375 state = London
1376 locality = London
1377 organiazation = Name of your organization
1378 cn = client.foo.example.com
1379 tls_www_client
1380 encryption_key
1381 signing_key
1382 EOF
1383 # certtool --generate-privkey > client-key.pem
1384 # certtool --generate-certificate \
1385 --load-ca-certificate ca-cert.pem \
1386 --load-ca-privkey ca-key.pem \
1387 --load-privkey client-key.pem \
1388 --template client.info \
1389 --outfile client-cert.pem
1390 @end example
1391
1392 The @code{client-key.pem} and @code{client-cert.pem} files should now be securely
1393 copied to the client for which they were generated.
1394
1395
1396 @node vnc_setup_sasl
1397
1398 @subsection Configuring SASL mechanisms
1399
1400 The following documentation assumes use of the Cyrus SASL implementation on a
1401 Linux host, but the principals should apply to any other SASL impl. When SASL
1402 is enabled, the mechanism configuration will be loaded from system default
1403 SASL service config /etc/sasl2/qemu.conf. If running QEMU as an
1404 unprivileged user, an environment variable SASL_CONF_PATH can be used
1405 to make it search alternate locations for the service config.
1406
1407 The default configuration might contain
1408
1409 @example
1410 mech_list: digest-md5
1411 sasldb_path: /etc/qemu/passwd.db
1412 @end example
1413
1414 This says to use the 'Digest MD5' mechanism, which is similar to the HTTP
1415 Digest-MD5 mechanism. The list of valid usernames & passwords is maintained
1416 in the /etc/qemu/passwd.db file, and can be updated using the saslpasswd2
1417 command. While this mechanism is easy to configure and use, it is not
1418 considered secure by modern standards, so only suitable for developers /
1419 ad-hoc testing.
1420
1421 A more serious deployment might use Kerberos, which is done with the 'gssapi'
1422 mechanism
1423
1424 @example
1425 mech_list: gssapi
1426 keytab: /etc/qemu/krb5.tab
1427 @end example
1428
1429 For this to work the administrator of your KDC must generate a Kerberos
1430 principal for the server, with a name of 'qemu/somehost.example.com@@EXAMPLE.COM'
1431 replacing 'somehost.example.com' with the fully qualified host name of the
1432 machine running QEMU, and 'EXAMPLE.COM' with the Kerberos Realm.
1433
1434 Other configurations will be left as an exercise for the reader. It should
1435 be noted that only Digest-MD5 and GSSAPI provides a SSF layer for data
1436 encryption. For all other mechanisms, VNC should always be configured to
1437 use TLS and x509 certificates to protect security credentials from snooping.
1438
1439 @node gdb_usage
1440 @section GDB usage
1441
1442 QEMU has a primitive support to work with gdb, so that you can do
1443 'Ctrl-C' while the virtual machine is running and inspect its state.
1444
1445 In order to use gdb, launch QEMU with the '-s' option. It will wait for a
1446 gdb connection:
1447 @example
1448 qemu-system-i386 -s -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1449 -append "root=/dev/hda"
1450 Connected to host network interface: tun0
1451 Waiting gdb connection on port 1234
1452 @end example
1453
1454 Then launch gdb on the 'vmlinux' executable:
1455 @example
1456 > gdb vmlinux
1457 @end example
1458
1459 In gdb, connect to QEMU:
1460 @example
1461 (gdb) target remote localhost:1234
1462 @end example
1463
1464 Then you can use gdb normally. For example, type 'c' to launch the kernel:
1465 @example
1466 (gdb) c
1467 @end example
1468
1469 Here are some useful tips in order to use gdb on system code:
1470
1471 @enumerate
1472 @item
1473 Use @code{info reg} to display all the CPU registers.
1474 @item
1475 Use @code{x/10i $eip} to display the code at the PC position.
1476 @item
1477 Use @code{set architecture i8086} to dump 16 bit code. Then use
1478 @code{x/10i $cs*16+$eip} to dump the code at the PC position.
1479 @end enumerate
1480
1481 Advanced debugging options:
1482
1483 The default single stepping behavior is step with the IRQs and timer service routines off. It is set this way because when gdb executes a single step it expects to advance beyond the current instruction. With the IRQs and and timer service routines on, a single step might jump into the one of the interrupt or exception vectors instead of executing the current instruction. This means you may hit the same breakpoint a number of times before executing the instruction gdb wants to have executed. Because there are rare circumstances where you want to single step into an interrupt vector the behavior can be controlled from GDB. There are three commands you can query and set the single step behavior:
1484 @table @code
1485 @item maintenance packet qqemu.sstepbits
1486
1487 This will display the MASK bits used to control the single stepping IE:
1488 @example
1489 (gdb) maintenance packet qqemu.sstepbits
1490 sending: "qqemu.sstepbits"
1491 received: "ENABLE=1,NOIRQ=2,NOTIMER=4"
1492 @end example
1493 @item maintenance packet qqemu.sstep
1494
1495 This will display the current value of the mask used when single stepping IE:
1496 @example
1497 (gdb) maintenance packet qqemu.sstep
1498 sending: "qqemu.sstep"
1499 received: "0x7"
1500 @end example
1501 @item maintenance packet Qqemu.sstep=HEX_VALUE
1502
1503 This will change the single step mask, so if wanted to enable IRQs on the single step, but not timers, you would use:
1504 @example
1505 (gdb) maintenance packet Qqemu.sstep=0x5
1506 sending: "qemu.sstep=0x5"
1507 received: "OK"
1508 @end example
1509 @end table
1510
1511 @node pcsys_os_specific
1512 @section Target OS specific information
1513
1514 @subsection Linux
1515
1516 To have access to SVGA graphic modes under X11, use the @code{vesa} or
1517 the @code{cirrus} X11 driver. For optimal performances, use 16 bit
1518 color depth in the guest and the host OS.
1519
1520 When using a 2.6 guest Linux kernel, you should add the option
1521 @code{clock=pit} on the kernel command line because the 2.6 Linux
1522 kernels make very strict real time clock checks by default that QEMU
1523 cannot simulate exactly.
1524
1525 When using a 2.6 guest Linux kernel, verify that the 4G/4G patch is
1526 not activated because QEMU is slower with this patch. The QEMU
1527 Accelerator Module is also much slower in this case. Earlier Fedora
1528 Core 3 Linux kernel (< 2.6.9-1.724_FC3) were known to incorporate this
1529 patch by default. Newer kernels don't have it.
1530
1531 @subsection Windows
1532
1533 If you have a slow host, using Windows 95 is better as it gives the
1534 best speed. Windows 2000 is also a good choice.
1535
1536 @subsubsection SVGA graphic modes support
1537
1538 QEMU emulates a Cirrus Logic GD5446 Video
1539 card. All Windows versions starting from Windows 95 should recognize
1540 and use this graphic card. For optimal performances, use 16 bit color
1541 depth in the guest and the host OS.
1542
1543 If you are using Windows XP as guest OS and if you want to use high
1544 resolution modes which the Cirrus Logic BIOS does not support (i.e. >=
1545 1280x1024x16), then you should use the VESA VBE virtual graphic card
1546 (option @option{-std-vga}).
1547
1548 @subsubsection CPU usage reduction
1549
1550 Windows 9x does not correctly use the CPU HLT
1551 instruction. The result is that it takes host CPU cycles even when
1552 idle. You can install the utility from
1553 @url{http://www.user.cityline.ru/~maxamn/amnhltm.zip} to solve this
1554 problem. Note that no such tool is needed for NT, 2000 or XP.
1555
1556 @subsubsection Windows 2000 disk full problem
1557
1558 Windows 2000 has a bug which gives a disk full problem during its
1559 installation. When installing it, use the @option{-win2k-hack} QEMU
1560 option to enable a specific workaround. After Windows 2000 is
1561 installed, you no longer need this option (this option slows down the
1562 IDE transfers).
1563
1564 @subsubsection Windows 2000 shutdown
1565
1566 Windows 2000 cannot automatically shutdown in QEMU although Windows 98
1567 can. It comes from the fact that Windows 2000 does not automatically
1568 use the APM driver provided by the BIOS.
1569
1570 In order to correct that, do the following (thanks to Struan
1571 Bartlett): go to the Control Panel => Add/Remove Hardware & Next =>
1572 Add/Troubleshoot a device => Add a new device & Next => No, select the
1573 hardware from a list & Next => NT Apm/Legacy Support & Next => Next
1574 (again) a few times. Now the driver is installed and Windows 2000 now
1575 correctly instructs QEMU to shutdown at the appropriate moment.
1576
1577 @subsubsection Share a directory between Unix and Windows
1578
1579 See @ref{sec_invocation} about the help of the option @option{-smb}.
1580
1581 @subsubsection Windows XP security problem
1582
1583 Some releases of Windows XP install correctly but give a security
1584 error when booting:
1585 @example
1586 A problem is preventing Windows from accurately checking the
1587 license for this computer. Error code: 0x800703e6.
1588 @end example
1589
1590 The workaround is to install a service pack for XP after a boot in safe
1591 mode. Then reboot, and the problem should go away. Since there is no
1592 network while in safe mode, its recommended to download the full
1593 installation of SP1 or SP2 and transfer that via an ISO or using the
1594 vvfat block device ("-hdb fat:directory_which_holds_the_SP").
1595
1596 @subsection MS-DOS and FreeDOS
1597
1598 @subsubsection CPU usage reduction
1599
1600 DOS does not correctly use the CPU HLT instruction. The result is that
1601 it takes host CPU cycles even when idle. You can install the utility
1602 from @url{http://www.vmware.com/software/dosidle210.zip} to solve this
1603 problem.
1604
1605 @node QEMU System emulator for non PC targets
1606 @chapter QEMU System emulator for non PC targets
1607
1608 QEMU is a generic emulator and it emulates many non PC
1609 machines. Most of the options are similar to the PC emulator. The
1610 differences are mentioned in the following sections.
1611
1612 @menu
1613 * PowerPC System emulator::
1614 * Sparc32 System emulator::
1615 * Sparc64 System emulator::
1616 * MIPS System emulator::
1617 * ARM System emulator::
1618 * ColdFire System emulator::
1619 * Cris System emulator::
1620 * Microblaze System emulator::
1621 * SH4 System emulator::
1622 * Xtensa System emulator::
1623 @end menu
1624
1625 @node PowerPC System emulator
1626 @section PowerPC System emulator
1627 @cindex system emulation (PowerPC)
1628
1629 Use the executable @file{qemu-system-ppc} to simulate a complete PREP
1630 or PowerMac PowerPC system.
1631
1632 QEMU emulates the following PowerMac peripherals:
1633
1634 @itemize @minus
1635 @item
1636 UniNorth or Grackle PCI Bridge
1637 @item
1638 PCI VGA compatible card with VESA Bochs Extensions
1639 @item
1640 2 PMAC IDE interfaces with hard disk and CD-ROM support
1641 @item
1642 NE2000 PCI adapters
1643 @item
1644 Non Volatile RAM
1645 @item
1646 VIA-CUDA with ADB keyboard and mouse.
1647 @end itemize
1648
1649 QEMU emulates the following PREP peripherals:
1650
1651 @itemize @minus
1652 @item
1653 PCI Bridge
1654 @item
1655 PCI VGA compatible card with VESA Bochs Extensions
1656 @item
1657 2 IDE interfaces with hard disk and CD-ROM support
1658 @item
1659 Floppy disk
1660 @item
1661 NE2000 network adapters
1662 @item
1663 Serial port
1664 @item
1665 PREP Non Volatile RAM
1666 @item
1667 PC compatible keyboard and mouse.
1668 @end itemize
1669
1670 QEMU uses the Open Hack'Ware Open Firmware Compatible BIOS available at
1671 @url{http://perso.magic.fr/l_indien/OpenHackWare/index.htm}.
1672
1673 Since version 0.9.1, QEMU uses OpenBIOS @url{http://www.openbios.org/}
1674 for the g3beige and mac99 PowerMac machines. OpenBIOS is a free (GPL
1675 v2) portable firmware implementation. The goal is to implement a 100%
1676 IEEE 1275-1994 (referred to as Open Firmware) compliant firmware.
1677
1678 @c man begin OPTIONS
1679
1680 The following options are specific to the PowerPC emulation:
1681
1682 @table @option
1683
1684 @item -g @var{W}x@var{H}[x@var{DEPTH}]
1685
1686 Set the initial VGA graphic mode. The default is 800x600x15.
1687
1688 @item -prom-env @var{string}
1689
1690 Set OpenBIOS variables in NVRAM, for example:
1691
1692 @example
1693 qemu-system-ppc -prom-env 'auto-boot?=false' \
1694 -prom-env 'boot-device=hd:2,\yaboot' \
1695 -prom-env 'boot-args=conf=hd:2,\yaboot.conf'
1696 @end example
1697
1698 These variables are not used by Open Hack'Ware.
1699
1700 @end table
1701
1702 @c man end
1703
1704
1705 More information is available at
1706 @url{http://perso.magic.fr/l_indien/qemu-ppc/}.
1707
1708 @node Sparc32 System emulator
1709 @section Sparc32 System emulator
1710 @cindex system emulation (Sparc32)
1711
1712 Use the executable @file{qemu-system-sparc} to simulate the following
1713 Sun4m architecture machines:
1714 @itemize @minus
1715 @item
1716 SPARCstation 4
1717 @item
1718 SPARCstation 5
1719 @item
1720 SPARCstation 10
1721 @item
1722 SPARCstation 20
1723 @item
1724 SPARCserver 600MP
1725 @item
1726 SPARCstation LX
1727 @item
1728 SPARCstation Voyager
1729 @item
1730 SPARCclassic
1731 @item
1732 SPARCbook
1733 @end itemize
1734
1735 The emulation is somewhat complete. SMP up to 16 CPUs is supported,
1736 but Linux limits the number of usable CPUs to 4.
1737
1738 It's also possible to simulate a SPARCstation 2 (sun4c architecture),
1739 SPARCserver 1000, or SPARCcenter 2000 (sun4d architecture), but these
1740 emulators are not usable yet.
1741
1742 QEMU emulates the following sun4m/sun4c/sun4d peripherals:
1743
1744 @itemize @minus
1745 @item
1746 IOMMU or IO-UNITs
1747 @item
1748 TCX Frame buffer
1749 @item
1750 Lance (Am7990) Ethernet
1751 @item
1752 Non Volatile RAM M48T02/M48T08
1753 @item
1754 Slave I/O: timers, interrupt controllers, Zilog serial ports, keyboard
1755 and power/reset logic
1756 @item
1757 ESP SCSI controller with hard disk and CD-ROM support
1758 @item
1759 Floppy drive (not on SS-600MP)
1760 @item
1761 CS4231 sound device (only on SS-5, not working yet)
1762 @end itemize
1763
1764 The number of peripherals is fixed in the architecture. Maximum
1765 memory size depends on the machine type, for SS-5 it is 256MB and for
1766 others 2047MB.
1767
1768 Since version 0.8.2, QEMU uses OpenBIOS
1769 @url{http://www.openbios.org/}. OpenBIOS is a free (GPL v2) portable
1770 firmware implementation. The goal is to implement a 100% IEEE
1771 1275-1994 (referred to as Open Firmware) compliant firmware.
1772
1773 A sample Linux 2.6 series kernel and ram disk image are available on
1774 the QEMU web site. There are still issues with NetBSD and OpenBSD, but
1775 some kernel versions work. Please note that currently Solaris kernels
1776 don't work probably due to interface issues between OpenBIOS and
1777 Solaris.
1778
1779 @c man begin OPTIONS
1780
1781 The following options are specific to the Sparc32 emulation:
1782
1783 @table @option
1784
1785 @item -g @var{W}x@var{H}x[x@var{DEPTH}]
1786
1787 Set the initial TCX graphic mode. The default is 1024x768x8, currently
1788 the only other possible mode is 1024x768x24.
1789
1790 @item -prom-env @var{string}
1791
1792 Set OpenBIOS variables in NVRAM, for example:
1793
1794 @example
1795 qemu-system-sparc -prom-env 'auto-boot?=false' \
1796 -prom-env 'boot-device=sd(0,2,0):d' -prom-env 'boot-args=linux single'
1797 @end example
1798
1799 @item -M [SS-4|SS-5|SS-10|SS-20|SS-600MP|LX|Voyager|SPARCClassic] [|SPARCbook|SS-2|SS-1000|SS-2000]
1800
1801 Set the emulated machine type. Default is SS-5.
1802
1803 @end table
1804
1805 @c man end
1806
1807 @node Sparc64 System emulator
1808 @section Sparc64 System emulator
1809 @cindex system emulation (Sparc64)
1810
1811 Use the executable @file{qemu-system-sparc64} to simulate a Sun4u
1812 (UltraSPARC PC-like machine), Sun4v (T1 PC-like machine), or generic
1813 Niagara (T1) machine. The emulator is not usable for anything yet, but
1814 it can launch some kernels.
1815
1816 QEMU emulates the following peripherals:
1817
1818 @itemize @minus
1819 @item
1820 UltraSparc IIi APB PCI Bridge
1821 @item
1822 PCI VGA compatible card with VESA Bochs Extensions
1823 @item
1824 PS/2 mouse and keyboard
1825 @item
1826 Non Volatile RAM M48T59
1827 @item
1828 PC-compatible serial ports
1829 @item
1830 2 PCI IDE interfaces with hard disk and CD-ROM support
1831 @item
1832 Floppy disk
1833 @end itemize
1834
1835 @c man begin OPTIONS
1836
1837 The following options are specific to the Sparc64 emulation:
1838
1839 @table @option
1840
1841 @item -prom-env @var{string}
1842
1843 Set OpenBIOS variables in NVRAM, for example:
1844
1845 @example
1846 qemu-system-sparc64 -prom-env 'auto-boot?=false'
1847 @end example
1848
1849 @item -M [sun4u|sun4v|Niagara]
1850
1851 Set the emulated machine type. The default is sun4u.
1852
1853 @end table
1854
1855 @c man end
1856
1857 @node MIPS System emulator
1858 @section MIPS System emulator
1859 @cindex system emulation (MIPS)
1860
1861 Four executables cover simulation of 32 and 64-bit MIPS systems in
1862 both endian options, @file{qemu-system-mips}, @file{qemu-system-mipsel}
1863 @file{qemu-system-mips64} and @file{qemu-system-mips64el}.
1864 Five different machine types are emulated:
1865
1866 @itemize @minus
1867 @item
1868 A generic ISA PC-like machine "mips"
1869 @item
1870 The MIPS Malta prototype board "malta"
1871 @item
1872 An ACER Pica "pica61". This machine needs the 64-bit emulator.
1873 @item
1874 MIPS emulator pseudo board "mipssim"
1875 @item
1876 A MIPS Magnum R4000 machine "magnum". This machine needs the 64-bit emulator.
1877 @end itemize
1878
1879 The generic emulation is supported by Debian 'Etch' and is able to
1880 install Debian into a virtual disk image. The following devices are
1881 emulated:
1882
1883 @itemize @minus
1884 @item
1885 A range of MIPS CPUs, default is the 24Kf
1886 @item
1887 PC style serial port
1888 @item
1889 PC style IDE disk
1890 @item
1891 NE2000 network card
1892 @end itemize
1893
1894 The Malta emulation supports the following devices:
1895
1896 @itemize @minus
1897 @item
1898 Core board with MIPS 24Kf CPU and Galileo system controller
1899 @item
1900 PIIX4 PCI/USB/SMbus controller
1901 @item
1902 The Multi-I/O chip's serial device
1903 @item
1904 PCI network cards (PCnet32 and others)
1905 @item
1906 Malta FPGA serial device
1907 @item
1908 Cirrus (default) or any other PCI VGA graphics card
1909 @end itemize
1910
1911 The ACER Pica emulation supports:
1912
1913 @itemize @minus
1914 @item
1915 MIPS R4000 CPU
1916 @item
1917 PC-style IRQ and DMA controllers
1918 @item
1919 PC Keyboard
1920 @item
1921 IDE controller
1922 @end itemize
1923
1924 The mipssim pseudo board emulation provides an environment similar
1925 to what the proprietary MIPS emulator uses for running Linux.
1926 It supports:
1927
1928 @itemize @minus
1929 @item
1930 A range of MIPS CPUs, default is the 24Kf
1931 @item
1932 PC style serial port
1933 @item
1934 MIPSnet network emulation
1935 @end itemize
1936
1937 The MIPS Magnum R4000 emulation supports:
1938
1939 @itemize @minus
1940 @item
1941 MIPS R4000 CPU
1942 @item
1943 PC-style IRQ controller
1944 @item
1945 PC Keyboard
1946 @item
1947 SCSI controller
1948 @item
1949 G364 framebuffer
1950 @end itemize
1951
1952
1953 @node ARM System emulator
1954 @section ARM System emulator
1955 @cindex system emulation (ARM)
1956
1957 Use the executable @file{qemu-system-arm} to simulate a ARM
1958 machine. The ARM Integrator/CP board is emulated with the following
1959 devices:
1960
1961 @itemize @minus
1962 @item
1963 ARM926E, ARM1026E, ARM946E, ARM1136 or Cortex-A8 CPU
1964 @item
1965 Two PL011 UARTs
1966 @item
1967 SMC 91c111 Ethernet adapter
1968 @item
1969 PL110 LCD controller
1970 @item
1971 PL050 KMI with PS/2 keyboard and mouse.
1972 @item
1973 PL181 MultiMedia Card Interface with SD card.
1974 @end itemize
1975
1976 The ARM Versatile baseboard is emulated with the following devices:
1977
1978 @itemize @minus
1979 @item
1980 ARM926E, ARM1136 or Cortex-A8 CPU
1981 @item
1982 PL190 Vectored Interrupt Controller
1983 @item
1984 Four PL011 UARTs
1985 @item
1986 SMC 91c111 Ethernet adapter
1987 @item
1988 PL110 LCD controller
1989 @item
1990 PL050 KMI with PS/2 keyboard and mouse.
1991 @item
1992 PCI host bridge. Note the emulated PCI bridge only provides access to
1993 PCI memory space. It does not provide access to PCI IO space.
1994 This means some devices (eg. ne2k_pci NIC) are not usable, and others
1995 (eg. rtl8139 NIC) are only usable when the guest drivers use the memory
1996 mapped control registers.
1997 @item
1998 PCI OHCI USB controller.
1999 @item
2000 LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices.
2001 @item
2002 PL181 MultiMedia Card Interface with SD card.
2003 @end itemize
2004
2005 Several variants of the ARM RealView baseboard are emulated,
2006 including the EB, PB-A8 and PBX-A9. Due to interactions with the
2007 bootloader, only certain Linux kernel configurations work out
2008 of the box on these boards.
2009
2010 Kernels for the PB-A8 board should have CONFIG_REALVIEW_HIGH_PHYS_OFFSET
2011 enabled in the kernel, and expect 512M RAM. Kernels for The PBX-A9 board
2012 should have CONFIG_SPARSEMEM enabled, CONFIG_REALVIEW_HIGH_PHYS_OFFSET
2013 disabled and expect 1024M RAM.
2014
2015 The following devices are emulated:
2016
2017 @itemize @minus
2018 @item
2019 ARM926E, ARM1136, ARM11MPCore, Cortex-A8 or Cortex-A9 MPCore CPU
2020 @item
2021 ARM AMBA Generic/Distributed Interrupt Controller
2022 @item
2023 Four PL011 UARTs
2024 @item
2025 SMC 91c111 or SMSC LAN9118 Ethernet adapter
2026 @item
2027 PL110 LCD controller
2028 @item
2029 PL050 KMI with PS/2 keyboard and mouse
2030 @item
2031 PCI host bridge
2032 @item
2033 PCI OHCI USB controller
2034 @item
2035 LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices
2036 @item
2037 PL181 MultiMedia Card Interface with SD card.
2038 @end itemize
2039
2040 The XScale-based clamshell PDA models ("Spitz", "Akita", "Borzoi"
2041 and "Terrier") emulation includes the following peripherals:
2042
2043 @itemize @minus
2044 @item
2045 Intel PXA270 System-on-chip (ARM V5TE core)
2046 @item
2047 NAND Flash memory
2048 @item
2049 IBM/Hitachi DSCM microdrive in a PXA PCMCIA slot - not in "Akita"
2050 @item
2051 On-chip OHCI USB controller
2052 @item
2053 On-chip LCD controller
2054 @item
2055 On-chip Real Time Clock
2056 @item
2057 TI ADS7846 touchscreen controller on SSP bus
2058 @item
2059 Maxim MAX1111 analog-digital converter on I@math{^2}C bus
2060 @item
2061 GPIO-connected keyboard controller and LEDs
2062 @item
2063 Secure Digital card connected to PXA MMC/SD host
2064 @item
2065 Three on-chip UARTs
2066 @item
2067 WM8750 audio CODEC on I@math{^2}C and I@math{^2}S busses
2068 @end itemize
2069
2070 The Palm Tungsten|E PDA (codename "Cheetah") emulation includes the
2071 following elements:
2072
2073 @itemize @minus
2074 @item
2075 Texas Instruments OMAP310 System-on-chip (ARM 925T core)
2076 @item
2077 ROM and RAM memories (ROM firmware image can be loaded with -option-rom)
2078 @item
2079 On-chip LCD controller
2080 @item
2081 On-chip Real Time Clock
2082 @item
2083 TI TSC2102i touchscreen controller / analog-digital converter / Audio
2084 CODEC, connected through MicroWire and I@math{^2}S busses
2085 @item
2086 GPIO-connected matrix keypad
2087 @item
2088 Secure Digital card connected to OMAP MMC/SD host
2089 @item
2090 Three on-chip UARTs
2091 @end itemize
2092
2093 Nokia N800 and N810 internet tablets (known also as RX-34 and RX-44 / 48)
2094 emulation supports the following elements:
2095
2096 @itemize @minus
2097 @item
2098 Texas Instruments OMAP2420 System-on-chip (ARM 1136 core)
2099 @item
2100 RAM and non-volatile OneNAND Flash memories
2101 @item
2102 Display connected to EPSON remote framebuffer chip and OMAP on-chip
2103 display controller and a LS041y3 MIPI DBI-C controller
2104 @item
2105 TI TSC2301 (in N800) and TI TSC2005 (in N810) touchscreen controllers
2106 driven through SPI bus
2107 @item
2108 National Semiconductor LM8323-controlled qwerty keyboard driven
2109 through I@math{^2}C bus
2110 @item
2111 Secure Digital card connected to OMAP MMC/SD host
2112 @item
2113 Three OMAP on-chip UARTs and on-chip STI debugging console
2114 @item
2115 A Bluetooth(R) transceiver and HCI connected to an UART
2116 @item
2117 Mentor Graphics "Inventra" dual-role USB controller embedded in a TI
2118 TUSB6010 chip - only USB host mode is supported
2119 @item
2120 TI TMP105 temperature sensor driven through I@math{^2}C bus
2121 @item
2122 TI TWL92230C power management companion with an RTC on I@math{^2}C bus
2123 @item
2124 Nokia RETU and TAHVO multi-purpose chips with an RTC, connected
2125 through CBUS
2126 @end itemize
2127
2128 The Luminary Micro Stellaris LM3S811EVB emulation includes the following
2129 devices:
2130
2131 @itemize @minus
2132 @item
2133 Cortex-M3 CPU core.
2134 @item
2135 64k Flash and 8k SRAM.
2136 @item
2137 Timers, UARTs, ADC and I@math{^2}C interface.
2138 @item
2139 OSRAM Pictiva 96x16 OLED with SSD0303 controller on I@math{^2}C bus.
2140 @end itemize
2141
2142 The Luminary Micro Stellaris LM3S6965EVB emulation includes the following
2143 devices:
2144
2145 @itemize @minus
2146 @item
2147 Cortex-M3 CPU core.
2148 @item
2149 256k Flash and 64k SRAM.
2150 @item
2151 Timers, UARTs, ADC, I@math{^2}C and SSI interfaces.
2152 @item
2153 OSRAM Pictiva 128x64 OLED with SSD0323 controller connected via SSI.
2154 @end itemize
2155
2156 The Freecom MusicPal internet radio emulation includes the following
2157 elements:
2158
2159 @itemize @minus
2160 @item
2161 Marvell MV88W8618 ARM core.
2162 @item
2163 32 MB RAM, 256 KB SRAM, 8 MB flash.
2164 @item
2165 Up to 2 16550 UARTs
2166 @item
2167 MV88W8xx8 Ethernet controller
2168 @item
2169 MV88W8618 audio controller, WM8750 CODEC and mixer
2170 @item
2171 128×64 display with brightness control
2172 @item
2173 2 buttons, 2 navigation wheels with button function
2174 @end itemize
2175
2176 The Siemens SX1 models v1 and v2 (default) basic emulation.
2177 The emulation includes the following elements:
2178
2179 @itemize @minus
2180 @item
2181 Texas Instruments OMAP310 System-on-chip (ARM 925T core)
2182 @item
2183 ROM and RAM memories (ROM firmware image can be loaded with -pflash)
2184 V1
2185 1 Flash of 16MB and 1 Flash of 8MB
2186 V2
2187 1 Flash of 32MB
2188 @item
2189 On-chip LCD controller
2190 @item
2191 On-chip Real Time Clock
2192 @item
2193 Secure Digital card connected to OMAP MMC/SD host
2194 @item
2195 Three on-chip UARTs
2196 @end itemize
2197
2198 A Linux 2.6 test image is available on the QEMU web site. More
2199 information is available in the QEMU mailing-list archive.
2200
2201 @c man begin OPTIONS
2202
2203 The following options are specific to the ARM emulation:
2204
2205 @table @option
2206
2207 @item -semihosting
2208 Enable semihosting syscall emulation.
2209
2210 On ARM this implements the "Angel" interface.
2211
2212 Note that this allows guest direct access to the host filesystem,
2213 so should only be used with trusted guest OS.
2214
2215 @end table
2216
2217 @node ColdFire System emulator
2218 @section ColdFire System emulator
2219 @cindex system emulation (ColdFire)
2220 @cindex system emulation (M68K)
2221
2222 Use the executable @file{qemu-system-m68k} to simulate a ColdFire machine.
2223 The emulator is able to boot a uClinux kernel.
2224
2225 The M5208EVB emulation includes the following devices:
2226
2227 @itemize @minus
2228 @item
2229 MCF5208 ColdFire V2 Microprocessor (ISA A+ with EMAC).
2230 @item
2231 Three Two on-chip UARTs.
2232 @item
2233 Fast Ethernet Controller (FEC)
2234 @end itemize
2235
2236 The AN5206 emulation includes the following devices:
2237
2238 @itemize @minus
2239 @item
2240 MCF5206 ColdFire V2 Microprocessor.
2241 @item
2242 Two on-chip UARTs.
2243 @end itemize
2244
2245 @c man begin OPTIONS
2246
2247 The following options are specific to the ColdFire emulation:
2248
2249 @table @option
2250
2251 @item -semihosting
2252 Enable semihosting syscall emulation.
2253
2254 On M68K this implements the "ColdFire GDB" interface used by libgloss.
2255
2256 Note that this allows guest direct access to the host filesystem,
2257 so should only be used with trusted guest OS.
2258
2259 @end table
2260
2261 @node Cris System emulator
2262 @section Cris System emulator
2263 @cindex system emulation (Cris)
2264
2265 TODO
2266
2267 @node Microblaze System emulator
2268 @section Microblaze System emulator
2269 @cindex system emulation (Microblaze)
2270
2271 TODO
2272
2273 @node SH4 System emulator
2274 @section SH4 System emulator
2275 @cindex system emulation (SH4)
2276
2277 TODO
2278
2279 @node Xtensa System emulator
2280 @section Xtensa System emulator
2281 @cindex system emulation (Xtensa)
2282
2283 Two executables cover simulation of both Xtensa endian options,
2284 @file{qemu-system-xtensa} and @file{qemu-system-xtensaeb}.
2285 Two different machine types are emulated:
2286
2287 @itemize @minus
2288 @item
2289 Xtensa emulator pseudo board "sim"
2290 @item
2291 Avnet LX60/LX110/LX200 board
2292 @end itemize
2293
2294 The sim pseudo board emulation provides an environment similar
2295 to one provided by the proprietary Tensilica ISS.
2296 It supports:
2297
2298 @itemize @minus
2299 @item
2300 A range of Xtensa CPUs, default is the DC232B
2301 @item
2302 Console and filesystem access via semihosting calls
2303 @end itemize
2304
2305 The Avnet LX60/LX110/LX200 emulation supports:
2306
2307 @itemize @minus
2308 @item
2309 A range of Xtensa CPUs, default is the DC232B
2310 @item
2311 16550 UART
2312 @item
2313 OpenCores 10/100 Mbps Ethernet MAC
2314 @end itemize
2315
2316 @c man begin OPTIONS
2317
2318 The following options are specific to the Xtensa emulation:
2319
2320 @table @option
2321
2322 @item -semihosting
2323 Enable semihosting syscall emulation.
2324
2325 Xtensa semihosting provides basic file IO calls, such as open/read/write/seek/select.
2326 Tensilica baremetal libc for ISS and linux platform "sim" use this interface.
2327
2328 Note that this allows guest direct access to the host filesystem,
2329 so should only be used with trusted guest OS.
2330
2331 @end table
2332 @node QEMU User space emulator
2333 @chapter QEMU User space emulator
2334
2335 @menu
2336 * Supported Operating Systems ::
2337 * Linux User space emulator::
2338 * BSD User space emulator ::
2339 @end menu
2340
2341 @node Supported Operating Systems
2342 @section Supported Operating Systems
2343
2344 The following OS are supported in user space emulation:
2345
2346 @itemize @minus
2347 @item
2348 Linux (referred as qemu-linux-user)
2349 @item
2350 BSD (referred as qemu-bsd-user)
2351 @end itemize
2352
2353 @node Linux User space emulator
2354 @section Linux User space emulator
2355
2356 @menu
2357 * Quick Start::
2358 * Wine launch::
2359 * Command line options::
2360 * Other binaries::
2361 @end menu
2362
2363 @node Quick Start
2364 @subsection Quick Start
2365
2366 In order to launch a Linux process, QEMU needs the process executable
2367 itself and all the target (x86) dynamic libraries used by it.
2368
2369 @itemize
2370
2371 @item On x86, you can just try to launch any process by using the native
2372 libraries:
2373
2374 @example
2375 qemu-i386 -L / /bin/ls
2376 @end example
2377
2378 @code{-L /} tells that the x86 dynamic linker must be searched with a
2379 @file{/} prefix.
2380
2381 @item Since QEMU is also a linux process, you can launch QEMU with
2382 QEMU (NOTE: you can only do that if you compiled QEMU from the sources):
2383
2384 @example
2385 qemu-i386 -L / qemu-i386 -L / /bin/ls
2386 @end example
2387
2388 @item On non x86 CPUs, you need first to download at least an x86 glibc
2389 (@file{qemu-runtime-i386-XXX-.tar.gz} on the QEMU web page). Ensure that
2390 @code{LD_LIBRARY_PATH} is not set:
2391
2392 @example
2393 unset LD_LIBRARY_PATH
2394 @end example
2395
2396 Then you can launch the precompiled @file{ls} x86 executable:
2397
2398 @example
2399 qemu-i386 tests/i386/ls
2400 @end example
2401 You can look at @file{scripts/qemu-binfmt-conf.sh} so that
2402 QEMU is automatically launched by the Linux kernel when you try to
2403 launch x86 executables. It requires the @code{binfmt_misc} module in the
2404 Linux kernel.
2405
2406 @item The x86 version of QEMU is also included. You can try weird things such as:
2407 @example
2408 qemu-i386 /usr/local/qemu-i386/bin/qemu-i386 \
2409 /usr/local/qemu-i386/bin/ls-i386
2410 @end example
2411
2412 @end itemize
2413
2414 @node Wine launch
2415 @subsection Wine launch
2416
2417 @itemize
2418
2419 @item Ensure that you have a working QEMU with the x86 glibc
2420 distribution (see previous section). In order to verify it, you must be
2421 able to do:
2422
2423 @example
2424 qemu-i386 /usr/local/qemu-i386/bin/ls-i386
2425 @end example
2426
2427 @item Download the binary x86 Wine install
2428 (@file{qemu-XXX-i386-wine.tar.gz} on the QEMU web page).
2429
2430 @item Configure Wine on your account. Look at the provided script
2431 @file{/usr/local/qemu-i386/@/bin/wine-conf.sh}. Your previous
2432 @code{$@{HOME@}/.wine} directory is saved to @code{$@{HOME@}/.wine.org}.
2433
2434 @item Then you can try the example @file{putty.exe}:
2435
2436 @example
2437 qemu-i386 /usr/local/qemu-i386/wine/bin/wine \
2438 /usr/local/qemu-i386/wine/c/Program\ Files/putty.exe
2439 @end example
2440
2441 @end itemize
2442
2443 @node Command line options
2444 @subsection Command line options
2445
2446 @example
2447 usage: qemu-i386 [-h] [-d] [-L path] [-s size] [-cpu model] [-g port] [-B offset] [-R size] program [arguments...]
2448 @end example
2449
2450 @table @option
2451 @item -h
2452 Print the help
2453 @item -L path
2454 Set the x86 elf interpreter prefix (default=/usr/local/qemu-i386)
2455 @item -s size
2456 Set the x86 stack size in bytes (default=524288)
2457 @item -cpu model
2458 Select CPU model (-cpu help for list and additional feature selection)
2459 @item -ignore-environment
2460 Start with an empty environment. Without this option,
2461 the initial environment is a copy of the caller's environment.
2462 @item -E @var{var}=@var{value}
2463 Set environment @var{var} to @var{value}.
2464 @item -U @var{var}
2465 Remove @var{var} from the environment.
2466 @item -B offset
2467 Offset guest address by the specified number of bytes. This is useful when
2468 the address region required by guest applications is reserved on the host.
2469 This option is currently only supported on some hosts.
2470 @item -R size
2471 Pre-allocate a guest virtual address space of the given size (in bytes).
2472 "G", "M", and "k" suffixes may be used when specifying the size.
2473 @end table
2474
2475 Debug options:
2476
2477 @table @option
2478 @item -d
2479 Activate log (logfile=/tmp/qemu.log)
2480 @item -p pagesize
2481 Act as if the host page size was 'pagesize' bytes
2482 @item -g port
2483 Wait gdb connection to port
2484 @item -singlestep
2485 Run the emulation in single step mode.
2486 @end table
2487
2488 Environment variables:
2489
2490 @table @env
2491 @item QEMU_STRACE
2492 Print system calls and arguments similar to the 'strace' program
2493 (NOTE: the actual 'strace' program will not work because the user
2494 space emulator hasn't implemented ptrace). At the moment this is
2495 incomplete. All system calls that don't have a specific argument
2496 format are printed with information for six arguments. Many
2497 flag-style arguments don't have decoders and will show up as numbers.
2498 @end table
2499
2500 @node Other binaries
2501 @subsection Other binaries
2502
2503 @cindex user mode (Alpha)
2504 @command{qemu-alpha} TODO.
2505
2506 @cindex user mode (ARM)
2507 @command{qemu-armeb} TODO.
2508
2509 @cindex user mode (ARM)
2510 @command{qemu-arm} is also capable of running ARM "Angel" semihosted ELF
2511 binaries (as implemented by the arm-elf and arm-eabi Newlib/GDB
2512 configurations), and arm-uclinux bFLT format binaries.
2513
2514 @cindex user mode (ColdFire)
2515 @cindex user mode (M68K)
2516 @command{qemu-m68k} is capable of running semihosted binaries using the BDM
2517 (m5xxx-ram-hosted.ld) or m68k-sim (sim.ld) syscall interfaces, and
2518 coldfire uClinux bFLT format binaries.
2519
2520 The binary format is detected automatically.
2521
2522 @cindex user mode (Cris)
2523 @command{qemu-cris} TODO.
2524
2525 @cindex user mode (i386)
2526 @command{qemu-i386} TODO.
2527 @command{qemu-x86_64} TODO.
2528
2529 @cindex user mode (Microblaze)
2530 @command{qemu-microblaze} TODO.
2531
2532 @cindex user mode (MIPS)
2533 @command{qemu-mips} TODO.
2534 @command{qemu-mipsel} TODO.
2535
2536 @cindex user mode (PowerPC)
2537 @command{qemu-ppc64abi32} TODO.
2538 @command{qemu-ppc64} TODO.
2539 @command{qemu-ppc} TODO.
2540
2541 @cindex user mode (SH4)
2542 @command{qemu-sh4eb} TODO.
2543 @command{qemu-sh4} TODO.
2544
2545 @cindex user mode (SPARC)
2546 @command{qemu-sparc} can execute Sparc32 binaries (Sparc32 CPU, 32 bit ABI).
2547
2548 @command{qemu-sparc32plus} can execute Sparc32 and SPARC32PLUS binaries
2549 (Sparc64 CPU, 32 bit ABI).
2550
2551 @command{qemu-sparc64} can execute some Sparc64 (Sparc64 CPU, 64 bit ABI) and
2552 SPARC32PLUS binaries (Sparc64 CPU, 32 bit ABI).
2553
2554 @node BSD User space emulator
2555 @section BSD User space emulator
2556
2557 @menu
2558 * BSD Status::
2559 * BSD Quick Start::
2560 * BSD Command line options::
2561 @end menu
2562
2563 @node BSD Status
2564 @subsection BSD Status
2565
2566 @itemize @minus
2567 @item
2568 target Sparc64 on Sparc64: Some trivial programs work.
2569 @end itemize
2570
2571 @node BSD Quick Start
2572 @subsection Quick Start
2573
2574 In order to launch a BSD process, QEMU needs the process executable
2575 itself and all the target dynamic libraries used by it.
2576
2577 @itemize
2578
2579 @item On Sparc64, you can just try to launch any process by using the native
2580 libraries:
2581
2582 @example
2583 qemu-sparc64 /bin/ls
2584 @end example
2585
2586 @end itemize
2587
2588 @node BSD Command line options
2589 @subsection Command line options
2590
2591 @example
2592 usage: qemu-sparc64 [-h] [-d] [-L path] [-s size] [-bsd type] program [arguments...]
2593 @end example
2594
2595 @table @option
2596 @item -h
2597 Print the help
2598 @item -L path
2599 Set the library root path (default=/)
2600 @item -s size
2601 Set the stack size in bytes (default=524288)
2602 @item -ignore-environment
2603 Start with an empty environment. Without this option,
2604 the initial environment is a copy of the caller's environment.
2605 @item -E @var{var}=@var{value}
2606 Set environment @var{var} to @var{value}.
2607 @item -U @var{var}
2608 Remove @var{var} from the environment.
2609 @item -bsd type
2610 Set the type of the emulated BSD Operating system. Valid values are
2611 FreeBSD, NetBSD and OpenBSD (default).
2612 @end table
2613
2614 Debug options:
2615
2616 @table @option
2617 @item -d
2618 Activate log (logfile=/tmp/qemu.log)
2619 @item -p pagesize
2620 Act as if the host page size was 'pagesize' bytes
2621 @item -singlestep
2622 Run the emulation in single step mode.
2623 @end table
2624
2625 @node compilation
2626 @chapter Compilation from the sources
2627
2628 @menu
2629 * Linux/Unix::
2630 * Windows::
2631 * Cross compilation for Windows with Linux::
2632 * Mac OS X::
2633 * Make targets::
2634 @end menu
2635
2636 @node Linux/Unix
2637 @section Linux/Unix
2638
2639 @subsection Compilation
2640
2641 First you must decompress the sources:
2642 @example
2643 cd /tmp
2644 tar zxvf qemu-x.y.z.tar.gz
2645 cd qemu-x.y.z
2646 @end example
2647
2648 Then you configure QEMU and build it (usually no options are needed):
2649 @example
2650 ./configure
2651 make
2652 @end example
2653
2654 Then type as root user:
2655 @example
2656 make install
2657 @end example
2658 to install QEMU in @file{/usr/local}.
2659
2660 @node Windows
2661 @section Windows
2662
2663 @itemize
2664 @item Install the current versions of MSYS and MinGW from
2665 @url{http://www.mingw.org/}. You can find detailed installation
2666 instructions in the download section and the FAQ.
2667
2668 @item Download
2669 the MinGW development library of SDL 1.2.x
2670 (@file{SDL-devel-1.2.x-@/mingw32.tar.gz}) from
2671 @url{http://www.libsdl.org}. Unpack it in a temporary place and
2672 edit the @file{sdl-config} script so that it gives the
2673 correct SDL directory when invoked.
2674
2675 @item Install the MinGW version of zlib and make sure
2676 @file{zlib.h} and @file{libz.dll.a} are in
2677 MinGW's default header and linker search paths.
2678
2679 @item Extract the current version of QEMU.
2680
2681 @item Start the MSYS shell (file @file{msys.bat}).
2682
2683 @item Change to the QEMU directory. Launch @file{./configure} and
2684 @file{make}. If you have problems using SDL, verify that
2685 @file{sdl-config} can be launched from the MSYS command line.
2686
2687 @item You can install QEMU in @file{Program Files/QEMU} by typing
2688 @file{make install}. Don't forget to copy @file{SDL.dll} in
2689 @file{Program Files/QEMU}.
2690
2691 @end itemize
2692
2693 @node Cross compilation for Windows with Linux
2694 @section Cross compilation for Windows with Linux
2695
2696 @itemize
2697 @item
2698 Install the MinGW cross compilation tools available at
2699 @url{http://www.mingw.org/}.
2700
2701 @item Download
2702 the MinGW development library of SDL 1.2.x
2703 (@file{SDL-devel-1.2.x-@/mingw32.tar.gz}) from
2704 @url{http://www.libsdl.org}. Unpack it in a temporary place and
2705 edit the @file{sdl-config} script so that it gives the
2706 correct SDL directory when invoked. Set up the @code{PATH} environment
2707 variable so that @file{sdl-config} can be launched by
2708 the QEMU configuration script.
2709
2710 @item Install the MinGW version of zlib and make sure
2711 @file{zlib.h} and @file{libz.dll.a} are in
2712 MinGW's default header and linker search paths.
2713
2714 @item
2715 Configure QEMU for Windows cross compilation:
2716 @example
2717 PATH=/usr/i686-pc-mingw32/sys-root/mingw/bin:$PATH ./configure --cross-prefix='i686-pc-mingw32-'
2718 @end example
2719 The example assumes @file{sdl-config} is installed under @file{/usr/i686-pc-mingw32/sys-root/mingw/bin} and
2720 MinGW cross compilation tools have names like @file{i686-pc-mingw32-gcc} and @file{i686-pc-mingw32-strip}.
2721 We set the @code{PATH} environment variable to ensure the MinGW version of @file{sdl-config} is used and
2722 use --cross-prefix to specify the name of the cross compiler.
2723 You can also use --prefix to set the Win32 install path which defaults to @file{c:/Program Files/QEMU}.
2724
2725 Under Fedora Linux, you can run:
2726 @example
2727 yum -y install mingw32-gcc mingw32-SDL mingw32-zlib
2728 @end example
2729 to get a suitable cross compilation environment.
2730
2731 @item You can install QEMU in the installation directory by typing
2732 @code{make install}. Don't forget to copy @file{SDL.dll} and @file{zlib1.dll} into the
2733 installation directory.
2734
2735 @end itemize
2736
2737 Wine can be used to launch the resulting qemu-system-i386.exe
2738 and all other qemu-system-@var{target}.exe compiled for Win32.
2739
2740 @node Mac OS X
2741 @section Mac OS X
2742
2743 The Mac OS X patches are not fully merged in QEMU, so you should look
2744 at the QEMU mailing list archive to have all the necessary
2745 information.
2746
2747 @node Make targets
2748 @section Make targets
2749
2750 @table @code
2751
2752 @item make
2753 @item make all
2754 Make everything which is typically needed.
2755
2756 @item install
2757 TODO
2758
2759 @item install-doc
2760 TODO
2761
2762 @item make clean
2763 Remove most files which were built during make.
2764
2765 @item make distclean
2766 Remove everything which was built during make.
2767
2768 @item make dvi
2769 @item make html
2770 @item make info
2771 @item make pdf
2772 Create documentation in dvi, html, info or pdf format.
2773
2774 @item make cscope
2775 TODO
2776
2777 @item make defconfig
2778 (Re-)create some build configuration files.
2779 User made changes will be overwritten.
2780
2781 @item tar
2782 @item tarbin
2783 TODO
2784
2785 @end table
2786
2787 @node License
2788 @appendix License
2789
2790 QEMU is a trademark of Fabrice Bellard.
2791
2792 QEMU is released under the GNU General Public License (TODO: add link).
2793 Parts of QEMU have specific licenses, see file LICENSE.
2794
2795 TODO (refer to file LICENSE, include it, include the GPL?)
2796
2797 @node Index
2798 @appendix Index
2799 @menu
2800 * Concept Index::
2801 * Function Index::
2802 * Keystroke Index::
2803 * Program Index::
2804 * Data Type Index::
2805 * Variable Index::
2806 @end menu
2807
2808 @node Concept Index
2809 @section Concept Index
2810 This is the main index. Should we combine all keywords in one index? TODO
2811 @printindex cp
2812
2813 @node Function Index
2814 @section Function Index
2815 This index could be used for command line options and monitor functions.
2816 @printindex fn
2817
2818 @node Keystroke Index
2819 @section Keystroke Index
2820
2821 This is a list of all keystrokes which have a special function
2822 in system emulation.
2823
2824 @printindex ky
2825
2826 @node Program Index
2827 @section Program Index
2828 @printindex pg
2829
2830 @node Data Type Index
2831 @section Data Type Index
2832
2833 This index could be used for qdev device names and options.
2834
2835 @printindex tp
2836
2837 @node Variable Index
2838 @section Variable Index
2839 @printindex vr
2840
2841 @bye