]> git.proxmox.com Git - qemu.git/blob - qemu-doc.texi
Enhanced Documentation (Stefan Weil)
[qemu.git] / qemu-doc.texi
1 \input texinfo @c -*- texinfo -*-
2 @c %**start of header
3 @setfilename qemu-doc.info
4 @settitle QEMU CPU Emulator User Documentation
5 @exampleindent 0
6 @paragraphindent 0
7 @c %**end of header
8
9 @iftex
10 @titlepage
11 @sp 7
12 @center @titlefont{QEMU CPU Emulator}
13 @sp 1
14 @center @titlefont{User Documentation}
15 @sp 3
16 @end titlepage
17 @end iftex
18
19 @ifnottex
20 @node Top
21 @top
22
23 @menu
24 * Introduction::
25 * Installation::
26 * QEMU PC System emulator::
27 * QEMU System emulator for non PC targets::
28 * QEMU Linux User space emulator::
29 * compilation:: Compilation from the sources
30 * Index::
31 @end menu
32 @end ifnottex
33
34 @contents
35
36 @node Introduction
37 @chapter Introduction
38
39 @menu
40 * intro_features:: Features
41 @end menu
42
43 @node intro_features
44 @section Features
45
46 QEMU is a FAST! processor emulator using dynamic translation to
47 achieve good emulation speed.
48
49 QEMU has two operating modes:
50
51 @itemize @minus
52
53 @item
54 Full system emulation. In this mode, QEMU emulates a full system (for
55 example a PC), including one or several processors and various
56 peripherals. It can be used to launch different Operating Systems
57 without rebooting the PC or to debug system code.
58
59 @item
60 User mode emulation (Linux host only). In this mode, QEMU can launch
61 Linux processes compiled for one CPU on another CPU. It can be used to
62 launch the Wine Windows API emulator (@url{http://www.winehq.org}) or
63 to ease cross-compilation and cross-debugging.
64
65 @end itemize
66
67 QEMU can run without an host kernel driver and yet gives acceptable
68 performance.
69
70 For system emulation, the following hardware targets are supported:
71 @itemize
72 @item PC (x86 or x86_64 processor)
73 @item ISA PC (old style PC without PCI bus)
74 @item PREP (PowerPC processor)
75 @item G3 BW PowerMac (PowerPC processor)
76 @item Mac99 PowerMac (PowerPC processor, in progress)
77 @item Sun4m (32-bit Sparc processor)
78 @item Sun4u (64-bit Sparc processor, in progress)
79 @item Malta board (32-bit MIPS processor)
80 @item ARM Integrator/CP (ARM926E or 1026E processor)
81 @end itemize
82
83 For user emulation, x86, PowerPC, ARM, MIPS, and Sparc32/64 CPUs are supported.
84
85 @node Installation
86 @chapter Installation
87
88 If you want to compile QEMU yourself, see @ref{compilation}.
89
90 @menu
91 * install_linux:: Linux
92 * install_windows:: Windows
93 * install_mac:: Macintosh
94 @end menu
95
96 @node install_linux
97 @section Linux
98
99 If a precompiled package is available for your distribution - you just
100 have to install it. Otherwise, see @ref{compilation}.
101
102 @node install_windows
103 @section Windows
104
105 Download the experimental binary installer at
106 @url{http://www.free.oszoo.org/@/download.html}.
107
108 @node install_mac
109 @section Mac OS X
110
111 Download the experimental binary installer at
112 @url{http://www.free.oszoo.org/@/download.html}.
113
114 @node QEMU PC System emulator
115 @chapter QEMU PC System emulator
116
117 @menu
118 * pcsys_introduction:: Introduction
119 * pcsys_quickstart:: Quick Start
120 * sec_invocation:: Invocation
121 * pcsys_keys:: Keys
122 * pcsys_monitor:: QEMU Monitor
123 * disk_images:: Disk Images
124 * pcsys_network:: Network emulation
125 * direct_linux_boot:: Direct Linux Boot
126 * pcsys_usb:: USB emulation
127 * gdb_usage:: GDB usage
128 * pcsys_os_specific:: Target OS specific information
129 @end menu
130
131 @node pcsys_introduction
132 @section Introduction
133
134 @c man begin DESCRIPTION
135
136 The QEMU PC System emulator simulates the
137 following peripherals:
138
139 @itemize @minus
140 @item
141 i440FX host PCI bridge and PIIX3 PCI to ISA bridge
142 @item
143 Cirrus CLGD 5446 PCI VGA card or dummy VGA card with Bochs VESA
144 extensions (hardware level, including all non standard modes).
145 @item
146 PS/2 mouse and keyboard
147 @item
148 2 PCI IDE interfaces with hard disk and CD-ROM support
149 @item
150 Floppy disk
151 @item
152 NE2000 PCI network adapters
153 @item
154 Serial ports
155 @item
156 Creative SoundBlaster 16 sound card
157 @item
158 ENSONIQ AudioPCI ES1370 sound card
159 @item
160 Adlib(OPL2) - Yamaha YM3812 compatible chip
161 @item
162 PCI UHCI USB controller and a virtual USB hub.
163 @end itemize
164
165 SMP is supported with up to 255 CPUs.
166
167 Note that adlib is only available when QEMU was configured with
168 -enable-adlib
169
170 QEMU uses the PC BIOS from the Bochs project and the Plex86/Bochs LGPL
171 VGA BIOS.
172
173 QEMU uses YM3812 emulation by Tatsuyuki Satoh.
174
175 @c man end
176
177 @node pcsys_quickstart
178 @section Quick Start
179
180 Download and uncompress the linux image (@file{linux.img}) and type:
181
182 @example
183 qemu linux.img
184 @end example
185
186 Linux should boot and give you a prompt.
187
188 @node sec_invocation
189 @section Invocation
190
191 @example
192 @c man begin SYNOPSIS
193 usage: qemu [options] [disk_image]
194 @c man end
195 @end example
196
197 @c man begin OPTIONS
198 @var{disk_image} is a raw hard disk image for IDE hard disk 0.
199
200 General options:
201 @table @option
202 @item -M machine
203 Select the emulated machine (@code{-M ?} for list)
204
205 @item -fda file
206 @item -fdb file
207 Use @var{file} as floppy disk 0/1 image (@pxref{disk_images}). You can
208 use the host floppy by using @file{/dev/fd0} as filename.
209
210 @item -hda file
211 @item -hdb file
212 @item -hdc file
213 @item -hdd file
214 Use @var{file} as hard disk 0, 1, 2 or 3 image (@pxref{disk_images}).
215
216 @item -cdrom file
217 Use @var{file} as CD-ROM image (you cannot use @option{-hdc} and and
218 @option{-cdrom} at the same time). You can use the host CD-ROM by
219 using @file{/dev/cdrom} as filename.
220
221 @item -boot [a|c|d]
222 Boot on floppy (a), hard disk (c) or CD-ROM (d). Hard disk boot is
223 the default.
224
225 @item -snapshot
226 Write to temporary files instead of disk image files. In this case,
227 the raw disk image you use is not written back. You can however force
228 the write back by pressing @key{C-a s} (@pxref{disk_images}).
229
230 @item -m megs
231 Set virtual RAM size to @var{megs} megabytes. Default is 128 MB.
232
233 @item -smp n
234 Simulate an SMP system with @var{n} CPUs. On the PC target, up to 255
235 CPUs are supported.
236
237 @item -nographic
238
239 Normally, QEMU uses SDL to display the VGA output. With this option,
240 you can totally disable graphical output so that QEMU is a simple
241 command line application. The emulated serial port is redirected on
242 the console. Therefore, you can still use QEMU to debug a Linux kernel
243 with a serial console.
244
245 @item -vnc d
246
247 Normally, QEMU uses SDL to display the VGA output. With this option,
248 you can have QEMU listen on VNC display d and redirect the VGA display
249 over the VNC session. It is very useful to enable the usb tablet device
250 when using this option (option @option{-usbdevice tablet}).
251
252 @item -k language
253
254 Use keyboard layout @var{language} (for example @code{fr} for
255 French). This option is only needed where it is not easy to get raw PC
256 keycodes (e.g. on Macs or with some X11 servers). You don't need to
257 use it on PC/Linux or PC/Windows hosts.
258
259 The available layouts are:
260 @example
261 ar de-ch es fo fr-ca hu ja mk no pt-br sv
262 da en-gb et fr fr-ch is lt nl pl ru th
263 de en-us fi fr-be hr it lv nl-be pt sl tr
264 @end example
265
266 The default is @code{en-us}.
267
268 @item -audio-help
269
270 Will show the audio subsystem help: list of drivers, tunable
271 parameters.
272
273 @item -soundhw card1,card2,... or -soundhw all
274
275 Enable audio and selected sound hardware. Use ? to print all
276 available sound hardware.
277
278 @example
279 qemu -soundhw sb16,adlib hda
280 qemu -soundhw es1370 hda
281 qemu -soundhw all hda
282 qemu -soundhw ?
283 @end example
284
285 @item -localtime
286 Set the real time clock to local time (the default is to UTC
287 time). This option is needed to have correct date in MS-DOS or
288 Windows.
289
290 @item -full-screen
291 Start in full screen.
292
293 @item -pidfile file
294 Store the QEMU process PID in @var{file}. It is useful if you launch QEMU
295 from a script.
296
297 @item -win2k-hack
298 Use it when installing Windows 2000 to avoid a disk full bug. After
299 Windows 2000 is installed, you no longer need this option (this option
300 slows down the IDE transfers).
301
302 @end table
303
304 USB options:
305 @table @option
306
307 @item -usb
308 Enable the USB driver (will be the default soon)
309
310 @item -usbdevice devname
311 Add the USB device @var{devname}. See the monitor command
312 @code{usb_add} to have more information.
313 @end table
314
315 Network options:
316
317 @table @option
318
319 @item -net nic[,vlan=n][,macaddr=addr][,model=type]
320 Create a new Network Interface Card and connect it to VLAN @var{n} (@var{n}
321 = 0 is the default). The NIC is currently an NE2000 on the PC
322 target. Optionally, the MAC address can be changed. If no
323 @option{-net} option is specified, a single NIC is created.
324 Qemu can emulate several different models of network card. Valid values for
325 @var{type} are @code{ne2k_pci}, @code{ne2k_isa}, @code{rtl8139},
326 @code{smc91c111} and @code{lance}. Not all devices are supported on all
327 targets.
328
329 @item -net user[,vlan=n][,hostname=name]
330 Use the user mode network stack which requires no administrator
331 priviledge to run. @option{hostname=name} can be used to specify the client
332 hostname reported by the builtin DHCP server.
333
334 @item -net tap[,vlan=n][,fd=h][,ifname=name][,script=file]
335 Connect the host TAP network interface @var{name} to VLAN @var{n} and
336 use the network script @var{file} to configure it. The default
337 network script is @file{/etc/qemu-ifup}. If @var{name} is not
338 provided, the OS automatically provides one. @option{fd=h} can be
339 used to specify the handle of an already opened host TAP interface. Example:
340
341 @example
342 qemu linux.img -net nic -net tap
343 @end example
344
345 More complicated example (two NICs, each one connected to a TAP device)
346 @example
347 qemu linux.img -net nic,vlan=0 -net tap,vlan=0,ifname=tap0 \
348 -net nic,vlan=1 -net tap,vlan=1,ifname=tap1
349 @end example
350
351
352 @item -net socket[,vlan=n][,fd=h][,listen=[host]:port][,connect=host:port]
353
354 Connect the VLAN @var{n} to a remote VLAN in another QEMU virtual
355 machine using a TCP socket connection. If @option{listen} is
356 specified, QEMU waits for incoming connections on @var{port}
357 (@var{host} is optional). @option{connect} is used to connect to
358 another QEMU instance using the @option{listen} option. @option{fd=h}
359 specifies an already opened TCP socket.
360
361 Example:
362 @example
363 # launch a first QEMU instance
364 qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
365 -net socket,listen=:1234
366 # connect the VLAN 0 of this instance to the VLAN 0
367 # of the first instance
368 qemu linux.img -net nic,macaddr=52:54:00:12:34:57 \
369 -net socket,connect=127.0.0.1:1234
370 @end example
371
372 @item -net socket[,vlan=n][,fd=h][,mcast=maddr:port]
373
374 Create a VLAN @var{n} shared with another QEMU virtual
375 machines using a UDP multicast socket, effectively making a bus for
376 every QEMU with same multicast address @var{maddr} and @var{port}.
377 NOTES:
378 @enumerate
379 @item
380 Several QEMU can be running on different hosts and share same bus (assuming
381 correct multicast setup for these hosts).
382 @item
383 mcast support is compatible with User Mode Linux (argument @option{eth@var{N}=mcast}), see
384 @url{http://user-mode-linux.sf.net}.
385 @item Use @option{fd=h} to specify an already opened UDP multicast socket.
386 @end enumerate
387
388 Example:
389 @example
390 # launch one QEMU instance
391 qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
392 -net socket,mcast=230.0.0.1:1234
393 # launch another QEMU instance on same "bus"
394 qemu linux.img -net nic,macaddr=52:54:00:12:34:57 \
395 -net socket,mcast=230.0.0.1:1234
396 # launch yet another QEMU instance on same "bus"
397 qemu linux.img -net nic,macaddr=52:54:00:12:34:58 \
398 -net socket,mcast=230.0.0.1:1234
399 @end example
400
401 Example (User Mode Linux compat.):
402 @example
403 # launch QEMU instance (note mcast address selected
404 # is UML's default)
405 qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
406 -net socket,mcast=239.192.168.1:1102
407 # launch UML
408 /path/to/linux ubd0=/path/to/root_fs eth0=mcast
409 @end example
410
411 @item -net none
412 Indicate that no network devices should be configured. It is used to
413 override the default configuration (@option{-net nic -net user}) which
414 is activated if no @option{-net} options are provided.
415
416 @item -tftp prefix
417 When using the user mode network stack, activate a built-in TFTP
418 server. All filenames beginning with @var{prefix} can be downloaded
419 from the host to the guest using a TFTP client. The TFTP client on the
420 guest must be configured in binary mode (use the command @code{bin} of
421 the Unix TFTP client). The host IP address on the guest is as usual
422 10.0.2.2.
423
424 @item -smb dir
425 When using the user mode network stack, activate a built-in SMB
426 server so that Windows OSes can access to the host files in @file{dir}
427 transparently.
428
429 In the guest Windows OS, the line:
430 @example
431 10.0.2.4 smbserver
432 @end example
433 must be added in the file @file{C:\WINDOWS\LMHOSTS} (for windows 9x/Me)
434 or @file{C:\WINNT\SYSTEM32\DRIVERS\ETC\LMHOSTS} (Windows NT/2000).
435
436 Then @file{dir} can be accessed in @file{\\smbserver\qemu}.
437
438 Note that a SAMBA server must be installed on the host OS in
439 @file{/usr/sbin/smbd}. QEMU was tested succesfully with smbd version
440 2.2.7a from the Red Hat 9 and version 3.0.10-1.fc3 from Fedora Core 3.
441
442 @item -redir [tcp|udp]:host-port:[guest-host]:guest-port
443
444 When using the user mode network stack, redirect incoming TCP or UDP
445 connections to the host port @var{host-port} to the guest
446 @var{guest-host} on guest port @var{guest-port}. If @var{guest-host}
447 is not specified, its value is 10.0.2.15 (default address given by the
448 built-in DHCP server).
449
450 For example, to redirect host X11 connection from screen 1 to guest
451 screen 0, use the following:
452
453 @example
454 # on the host
455 qemu -redir tcp:6001::6000 [...]
456 # this host xterm should open in the guest X11 server
457 xterm -display :1
458 @end example
459
460 To redirect telnet connections from host port 5555 to telnet port on
461 the guest, use the following:
462
463 @example
464 # on the host
465 qemu -redir tcp:5555::23 [...]
466 telnet localhost 5555
467 @end example
468
469 Then when you use on the host @code{telnet localhost 5555}, you
470 connect to the guest telnet server.
471
472 @end table
473
474 Linux boot specific: When using these options, you can use a given
475 Linux kernel without installing it in the disk image. It can be useful
476 for easier testing of various kernels.
477
478 @table @option
479
480 @item -kernel bzImage
481 Use @var{bzImage} as kernel image.
482
483 @item -append cmdline
484 Use @var{cmdline} as kernel command line
485
486 @item -initrd file
487 Use @var{file} as initial ram disk.
488
489 @end table
490
491 Debug/Expert options:
492 @table @option
493
494 @item -serial dev
495 Redirect the virtual serial port to host device @var{dev}. Available
496 devices are:
497 @table @code
498 @item vc
499 Virtual console
500 @item pty
501 [Linux only] Pseudo TTY (a new PTY is automatically allocated)
502 @item null
503 void device
504 @item /dev/XXX
505 [Linux only] Use host tty, e.g. @file{/dev/ttyS0}. The host serial port
506 parameters are set according to the emulated ones.
507 @item /dev/parportN
508 [Linux only, parallel port only] Use host parallel port
509 @var{N}. Currently only SPP parallel port features can be used.
510 @item file:filename
511 Write output to filename. No character can be read.
512 @item stdio
513 [Unix only] standard input/output
514 @item pipe:filename
515 [Unix only] name pipe @var{filename}
516 @end table
517 The default device is @code{vc} in graphical mode and @code{stdio} in
518 non graphical mode.
519
520 This option can be used several times to simulate up to 4 serials
521 ports.
522
523 @item -parallel dev
524 Redirect the virtual parallel port to host device @var{dev} (same
525 devices as the serial port). On Linux hosts, @file{/dev/parportN} can
526 be used to use hardware devices connected on the corresponding host
527 parallel port.
528
529 This option can be used several times to simulate up to 3 parallel
530 ports.
531
532 @item -monitor dev
533 Redirect the monitor to host device @var{dev} (same devices as the
534 serial port).
535 The default device is @code{vc} in graphical mode and @code{stdio} in
536 non graphical mode.
537
538 @item -s
539 Wait gdb connection to port 1234 (@pxref{gdb_usage}).
540 @item -p port
541 Change gdb connection port.
542 @item -S
543 Do not start CPU at startup (you must type 'c' in the monitor).
544 @item -d
545 Output log in /tmp/qemu.log
546 @item -hdachs c,h,s,[,t]
547 Force hard disk 0 physical geometry (1 <= @var{c} <= 16383, 1 <=
548 @var{h} <= 16, 1 <= @var{s} <= 63) and optionally force the BIOS
549 translation mode (@var{t}=none, lba or auto). Usually QEMU can guess
550 all thoses parameters. This option is useful for old MS-DOS disk
551 images.
552
553 @item -std-vga
554 Simulate a standard VGA card with Bochs VBE extensions (default is
555 Cirrus Logic GD5446 PCI VGA)
556 @item -loadvm file
557 Start right away with a saved state (@code{loadvm} in monitor)
558 @end table
559
560 @c man end
561
562 @node pcsys_keys
563 @section Keys
564
565 @c man begin OPTIONS
566
567 During the graphical emulation, you can use the following keys:
568 @table @key
569 @item Ctrl-Alt-f
570 Toggle full screen
571
572 @item Ctrl-Alt-n
573 Switch to virtual console 'n'. Standard console mappings are:
574 @table @emph
575 @item 1
576 Target system display
577 @item 2
578 Monitor
579 @item 3
580 Serial port
581 @end table
582
583 @item Ctrl-Alt
584 Toggle mouse and keyboard grab.
585 @end table
586
587 In the virtual consoles, you can use @key{Ctrl-Up}, @key{Ctrl-Down},
588 @key{Ctrl-PageUp} and @key{Ctrl-PageDown} to move in the back log.
589
590 During emulation, if you are using the @option{-nographic} option, use
591 @key{Ctrl-a h} to get terminal commands:
592
593 @table @key
594 @item Ctrl-a h
595 Print this help
596 @item Ctrl-a x
597 Exit emulatior
598 @item Ctrl-a s
599 Save disk data back to file (if -snapshot)
600 @item Ctrl-a b
601 Send break (magic sysrq in Linux)
602 @item Ctrl-a c
603 Switch between console and monitor
604 @item Ctrl-a Ctrl-a
605 Send Ctrl-a
606 @end table
607 @c man end
608
609 @ignore
610
611 @c man begin SEEALSO
612 The HTML documentation of QEMU for more precise information and Linux
613 user mode emulator invocation.
614 @c man end
615
616 @c man begin AUTHOR
617 Fabrice Bellard
618 @c man end
619
620 @end ignore
621
622 @node pcsys_monitor
623 @section QEMU Monitor
624
625 The QEMU monitor is used to give complex commands to the QEMU
626 emulator. You can use it to:
627
628 @itemize @minus
629
630 @item
631 Remove or insert removable medias images
632 (such as CD-ROM or floppies)
633
634 @item
635 Freeze/unfreeze the Virtual Machine (VM) and save or restore its state
636 from a disk file.
637
638 @item Inspect the VM state without an external debugger.
639
640 @end itemize
641
642 @subsection Commands
643
644 The following commands are available:
645
646 @table @option
647
648 @item help or ? [cmd]
649 Show the help for all commands or just for command @var{cmd}.
650
651 @item commit
652 Commit changes to the disk images (if -snapshot is used)
653
654 @item info subcommand
655 show various information about the system state
656
657 @table @option
658 @item info network
659 show the various VLANs and the associated devices
660 @item info block
661 show the block devices
662 @item info registers
663 show the cpu registers
664 @item info history
665 show the command line history
666 @item info pci
667 show emulated PCI device
668 @item info usb
669 show USB devices plugged on the virtual USB hub
670 @item info usbhost
671 show all USB host devices
672 @end table
673
674 @item q or quit
675 Quit the emulator.
676
677 @item eject [-f] device
678 Eject a removable media (use -f to force it).
679
680 @item change device filename
681 Change a removable media.
682
683 @item screendump filename
684 Save screen into PPM image @var{filename}.
685
686 @item log item1[,...]
687 Activate logging of the specified items to @file{/tmp/qemu.log}.
688
689 @item savevm filename
690 Save the whole virtual machine state to @var{filename}.
691
692 @item loadvm filename
693 Restore the whole virtual machine state from @var{filename}.
694
695 @item stop
696 Stop emulation.
697
698 @item c or cont
699 Resume emulation.
700
701 @item gdbserver [port]
702 Start gdbserver session (default port=1234)
703
704 @item x/fmt addr
705 Virtual memory dump starting at @var{addr}.
706
707 @item xp /fmt addr
708 Physical memory dump starting at @var{addr}.
709
710 @var{fmt} is a format which tells the command how to format the
711 data. Its syntax is: @option{/@{count@}@{format@}@{size@}}
712
713 @table @var
714 @item count
715 is the number of items to be dumped.
716
717 @item format
718 can be x (hexa), d (signed decimal), u (unsigned decimal), o (octal),
719 c (char) or i (asm instruction).
720
721 @item size
722 can be b (8 bits), h (16 bits), w (32 bits) or g (64 bits). On x86,
723 @code{h} or @code{w} can be specified with the @code{i} format to
724 respectively select 16 or 32 bit code instruction size.
725
726 @end table
727
728 Examples:
729 @itemize
730 @item
731 Dump 10 instructions at the current instruction pointer:
732 @example
733 (qemu) x/10i $eip
734 0x90107063: ret
735 0x90107064: sti
736 0x90107065: lea 0x0(%esi,1),%esi
737 0x90107069: lea 0x0(%edi,1),%edi
738 0x90107070: ret
739 0x90107071: jmp 0x90107080
740 0x90107073: nop
741 0x90107074: nop
742 0x90107075: nop
743 0x90107076: nop
744 @end example
745
746 @item
747 Dump 80 16 bit values at the start of the video memory.
748 @smallexample
749 (qemu) xp/80hx 0xb8000
750 0x000b8000: 0x0b50 0x0b6c 0x0b65 0x0b78 0x0b38 0x0b36 0x0b2f 0x0b42
751 0x000b8010: 0x0b6f 0x0b63 0x0b68 0x0b73 0x0b20 0x0b56 0x0b47 0x0b41
752 0x000b8020: 0x0b42 0x0b69 0x0b6f 0x0b73 0x0b20 0x0b63 0x0b75 0x0b72
753 0x000b8030: 0x0b72 0x0b65 0x0b6e 0x0b74 0x0b2d 0x0b63 0x0b76 0x0b73
754 0x000b8040: 0x0b20 0x0b30 0x0b35 0x0b20 0x0b4e 0x0b6f 0x0b76 0x0b20
755 0x000b8050: 0x0b32 0x0b30 0x0b30 0x0b33 0x0720 0x0720 0x0720 0x0720
756 0x000b8060: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
757 0x000b8070: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
758 0x000b8080: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
759 0x000b8090: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
760 @end smallexample
761 @end itemize
762
763 @item p or print/fmt expr
764
765 Print expression value. Only the @var{format} part of @var{fmt} is
766 used.
767
768 @item sendkey keys
769
770 Send @var{keys} to the emulator. Use @code{-} to press several keys
771 simultaneously. Example:
772 @example
773 sendkey ctrl-alt-f1
774 @end example
775
776 This command is useful to send keys that your graphical user interface
777 intercepts at low level, such as @code{ctrl-alt-f1} in X Window.
778
779 @item system_reset
780
781 Reset the system.
782
783 @item usb_add devname
784
785 Plug the USB device devname to the QEMU virtual USB hub. @var{devname}
786 is either a virtual device name (for example @code{mouse}) or a host
787 USB device identifier. Host USB device identifiers have the following
788 syntax: @code{host:bus.addr} or @code{host:vendor_id:product_id}.
789
790 @item usb_del devname
791
792 Remove the USB device @var{devname} from the QEMU virtual USB
793 hub. @var{devname} has the syntax @code{bus.addr}. Use the monitor
794 command @code{info usb} to see the devices you can remove.
795
796 @end table
797
798 @subsection Integer expressions
799
800 The monitor understands integers expressions for every integer
801 argument. You can use register names to get the value of specifics
802 CPU registers by prefixing them with @emph{$}.
803
804 @node disk_images
805 @section Disk Images
806
807 Since version 0.6.1, QEMU supports many disk image formats, including
808 growable disk images (their size increase as non empty sectors are
809 written), compressed and encrypted disk images.
810
811 @menu
812 * disk_images_quickstart:: Quick start for disk image creation
813 * disk_images_snapshot_mode:: Snapshot mode
814 * qemu_img_invocation:: qemu-img Invocation
815 * disk_images_fat_images:: Virtual FAT disk images
816 @end menu
817
818 @node disk_images_quickstart
819 @subsection Quick start for disk image creation
820
821 You can create a disk image with the command:
822 @example
823 qemu-img create myimage.img mysize
824 @end example
825 where @var{myimage.img} is the disk image filename and @var{mysize} is its
826 size in kilobytes. You can add an @code{M} suffix to give the size in
827 megabytes and a @code{G} suffix for gigabytes.
828
829 See @ref{qemu_img_invocation} for more information.
830
831 @node disk_images_snapshot_mode
832 @subsection Snapshot mode
833
834 If you use the option @option{-snapshot}, all disk images are
835 considered as read only. When sectors in written, they are written in
836 a temporary file created in @file{/tmp}. You can however force the
837 write back to the raw disk images by using the @code{commit} monitor
838 command (or @key{C-a s} in the serial console).
839
840 @node qemu_img_invocation
841 @subsection @code{qemu-img} Invocation
842
843 @include qemu-img.texi
844
845 @node disk_images_fat_images
846 @subsection Virtual FAT disk images
847
848 QEMU can automatically create a virtual FAT disk image from a
849 directory tree. In order to use it, just type:
850
851 @example
852 qemu linux.img -hdb fat:/my_directory
853 @end example
854
855 Then you access access to all the files in the @file{/my_directory}
856 directory without having to copy them in a disk image or to export
857 them via SAMBA or NFS. The default access is @emph{read-only}.
858
859 Floppies can be emulated with the @code{:floppy:} option:
860
861 @example
862 qemu linux.img -fda fat:floppy:/my_directory
863 @end example
864
865 A read/write support is available for testing (beta stage) with the
866 @code{:rw:} option:
867
868 @example
869 qemu linux.img -fda fat:floppy:rw:/my_directory
870 @end example
871
872 What you should @emph{never} do:
873 @itemize
874 @item use non-ASCII filenames ;
875 @item use "-snapshot" together with ":rw:" ;
876 @item expect it to work when loadvm'ing ;
877 @item write to the FAT directory on the host system while accessing it with the guest system.
878 @end itemize
879
880 @node pcsys_network
881 @section Network emulation
882
883 QEMU can simulate several networks cards (NE2000 boards on the PC
884 target) and can connect them to an arbitrary number of Virtual Local
885 Area Networks (VLANs). Host TAP devices can be connected to any QEMU
886 VLAN. VLAN can be connected between separate instances of QEMU to
887 simulate large networks. For simpler usage, a non priviledged user mode
888 network stack can replace the TAP device to have a basic network
889 connection.
890
891 @subsection VLANs
892
893 QEMU simulates several VLANs. A VLAN can be symbolised as a virtual
894 connection between several network devices. These devices can be for
895 example QEMU virtual Ethernet cards or virtual Host ethernet devices
896 (TAP devices).
897
898 @subsection Using TAP network interfaces
899
900 This is the standard way to connect QEMU to a real network. QEMU adds
901 a virtual network device on your host (called @code{tapN}), and you
902 can then configure it as if it was a real ethernet card.
903
904 As an example, you can download the @file{linux-test-xxx.tar.gz}
905 archive and copy the script @file{qemu-ifup} in @file{/etc} and
906 configure properly @code{sudo} so that the command @code{ifconfig}
907 contained in @file{qemu-ifup} can be executed as root. You must verify
908 that your host kernel supports the TAP network interfaces: the
909 device @file{/dev/net/tun} must be present.
910
911 See @ref{direct_linux_boot} to have an example of network use with a
912 Linux distribution and @ref{sec_invocation} to have examples of
913 command lines using the TAP network interfaces.
914
915 @subsection Using the user mode network stack
916
917 By using the option @option{-net user} (default configuration if no
918 @option{-net} option is specified), QEMU uses a completely user mode
919 network stack (you don't need root priviledge to use the virtual
920 network). The virtual network configuration is the following:
921
922 @example
923
924 QEMU VLAN <------> Firewall/DHCP server <-----> Internet
925 | (10.0.2.2)
926 |
927 ----> DNS server (10.0.2.3)
928 |
929 ----> SMB server (10.0.2.4)
930 @end example
931
932 The QEMU VM behaves as if it was behind a firewall which blocks all
933 incoming connections. You can use a DHCP client to automatically
934 configure the network in the QEMU VM. The DHCP server assign addresses
935 to the hosts starting from 10.0.2.15.
936
937 In order to check that the user mode network is working, you can ping
938 the address 10.0.2.2 and verify that you got an address in the range
939 10.0.2.x from the QEMU virtual DHCP server.
940
941 Note that @code{ping} is not supported reliably to the internet as it
942 would require root priviledges. It means you can only ping the local
943 router (10.0.2.2).
944
945 When using the built-in TFTP server, the router is also the TFTP
946 server.
947
948 When using the @option{-redir} option, TCP or UDP connections can be
949 redirected from the host to the guest. It allows for example to
950 redirect X11, telnet or SSH connections.
951
952 @subsection Connecting VLANs between QEMU instances
953
954 Using the @option{-net socket} option, it is possible to make VLANs
955 that span several QEMU instances. See @ref{sec_invocation} to have a
956 basic example.
957
958 @node direct_linux_boot
959 @section Direct Linux Boot
960
961 This section explains how to launch a Linux kernel inside QEMU without
962 having to make a full bootable image. It is very useful for fast Linux
963 kernel testing. The QEMU network configuration is also explained.
964
965 @enumerate
966 @item
967 Download the archive @file{linux-test-xxx.tar.gz} containing a Linux
968 kernel and a disk image.
969
970 @item Optional: If you want network support (for example to launch X11 examples), you
971 must copy the script @file{qemu-ifup} in @file{/etc} and configure
972 properly @code{sudo} so that the command @code{ifconfig} contained in
973 @file{qemu-ifup} can be executed as root. You must verify that your host
974 kernel supports the TUN/TAP network interfaces: the device
975 @file{/dev/net/tun} must be present.
976
977 When network is enabled, there is a virtual network connection between
978 the host kernel and the emulated kernel. The emulated kernel is seen
979 from the host kernel at IP address 172.20.0.2 and the host kernel is
980 seen from the emulated kernel at IP address 172.20.0.1.
981
982 @item Launch @code{qemu.sh}. You should have the following output:
983
984 @smallexample
985 > ./qemu.sh
986 Connected to host network interface: tun0
987 Linux version 2.4.21 (bellard@@voyager.localdomain) (gcc version 3.2.2 20030222 @/(Red Hat @/Linux 3.2.2-5)) #5 Tue Nov 11 18:18:53 CET 2003
988 BIOS-provided physical RAM map:
989 BIOS-e801: 0000000000000000 - 000000000009f000 (usable)
990 BIOS-e801: 0000000000100000 - 0000000002000000 (usable)
991 32MB LOWMEM available.
992 On node 0 totalpages: 8192
993 zone(0): 4096 pages.
994 zone(1): 4096 pages.
995 zone(2): 0 pages.
996 Kernel command line: root=/dev/hda sb=0x220,5,1,5 ide2=noprobe ide3=noprobe ide4=noprobe @/ide5=noprobe console=ttyS0
997 ide_setup: ide2=noprobe
998 ide_setup: ide3=noprobe
999 ide_setup: ide4=noprobe
1000 ide_setup: ide5=noprobe
1001 Initializing CPU#0
1002 Detected 2399.621 MHz processor.
1003 Console: colour EGA 80x25
1004 Calibrating delay loop... 4744.80 BogoMIPS
1005 Memory: 28872k/32768k available (1210k kernel code, 3508k reserved, 266k data, 64k init, @/0k highmem)
1006 Dentry cache hash table entries: 4096 (order: 3, 32768 bytes)
1007 Inode cache hash table entries: 2048 (order: 2, 16384 bytes)
1008 Mount cache hash table entries: 512 (order: 0, 4096 bytes)
1009 Buffer-cache hash table entries: 1024 (order: 0, 4096 bytes)
1010 Page-cache hash table entries: 8192 (order: 3, 32768 bytes)
1011 CPU: Intel Pentium Pro stepping 03
1012 Checking 'hlt' instruction... OK.
1013 POSIX conformance testing by UNIFIX
1014 Linux NET4.0 for Linux 2.4
1015 Based upon Swansea University Computer Society NET3.039
1016 Initializing RT netlink socket
1017 apm: BIOS not found.
1018 Starting kswapd
1019 Journalled Block Device driver loaded
1020 Detected PS/2 Mouse Port.
1021 pty: 256 Unix98 ptys configured
1022 Serial driver version 5.05c (2001-07-08) with no serial options enabled
1023 ttyS00 at 0x03f8 (irq = 4) is a 16450
1024 ne.c:v1.10 9/23/94 Donald Becker (becker@@scyld.com)
1025 Last modified Nov 1, 2000 by Paul Gortmaker
1026 NE*000 ethercard probe at 0x300: 52 54 00 12 34 56
1027 eth0: NE2000 found at 0x300, using IRQ 9.
1028 RAMDISK driver initialized: 16 RAM disks of 4096K size 1024 blocksize
1029 Uniform Multi-Platform E-IDE driver Revision: 7.00beta4-2.4
1030 ide: Assuming 50MHz system bus speed for PIO modes; override with idebus=xx
1031 hda: QEMU HARDDISK, ATA DISK drive
1032 ide0 at 0x1f0-0x1f7,0x3f6 on irq 14
1033 hda: attached ide-disk driver.
1034 hda: 20480 sectors (10 MB) w/256KiB Cache, CHS=20/16/63
1035 Partition check:
1036 hda:
1037 Soundblaster audio driver Copyright (C) by Hannu Savolainen 1993-1996
1038 NET4: Linux TCP/IP 1.0 for NET4.0
1039 IP Protocols: ICMP, UDP, TCP, IGMP
1040 IP: routing cache hash table of 512 buckets, 4Kbytes
1041 TCP: Hash tables configured (established 2048 bind 4096)
1042 NET4: Unix domain sockets 1.0/SMP for Linux NET4.0.
1043 EXT2-fs warning: mounting unchecked fs, running e2fsck is recommended
1044 VFS: Mounted root (ext2 filesystem).
1045 Freeing unused kernel memory: 64k freed
1046
1047 Linux version 2.4.21 (bellard@@voyager.localdomain) (gcc version 3.2.2 20030222 @/(Red Hat @/Linux 3.2.2-5)) #5 Tue Nov 11 18:18:53 CET 2003
1048
1049 QEMU Linux test distribution (based on Redhat 9)
1050
1051 Type 'exit' to halt the system
1052
1053 sh-2.05b#
1054 @end smallexample
1055
1056 @item
1057 Then you can play with the kernel inside the virtual serial console. You
1058 can launch @code{ls} for example. Type @key{Ctrl-a h} to have an help
1059 about the keys you can type inside the virtual serial console. In
1060 particular, use @key{Ctrl-a x} to exit QEMU and use @key{Ctrl-a b} as
1061 the Magic SysRq key.
1062
1063 @item
1064 If the network is enabled, launch the script @file{/etc/linuxrc} in the
1065 emulator (don't forget the leading dot):
1066 @example
1067 . /etc/linuxrc
1068 @end example
1069
1070 Then enable X11 connections on your PC from the emulated Linux:
1071 @example
1072 xhost +172.20.0.2
1073 @end example
1074
1075 You can now launch @file{xterm} or @file{xlogo} and verify that you have
1076 a real Virtual Linux system !
1077
1078 @end enumerate
1079
1080 NOTES:
1081 @enumerate
1082 @item
1083 A 2.5.74 kernel is also included in the archive. Just
1084 replace the bzImage in qemu.sh to try it.
1085
1086 @item
1087 In order to exit cleanly from qemu, you can do a @emph{shutdown} inside
1088 qemu. qemu will automatically exit when the Linux shutdown is done.
1089
1090 @item
1091 You can boot slightly faster by disabling the probe of non present IDE
1092 interfaces. To do so, add the following options on the kernel command
1093 line:
1094 @example
1095 ide1=noprobe ide2=noprobe ide3=noprobe ide4=noprobe ide5=noprobe
1096 @end example
1097
1098 @item
1099 The example disk image is a modified version of the one made by Kevin
1100 Lawton for the plex86 Project (@url{www.plex86.org}).
1101
1102 @end enumerate
1103
1104 @node pcsys_usb
1105 @section USB emulation
1106
1107 QEMU emulates a PCI UHCI USB controller and a 8 port USB hub connected
1108 to it. You can virtually plug to the hub virtual USB devices or real
1109 host USB devices (experimental, works only on Linux hosts).
1110
1111 @subsection Using virtual USB devices
1112
1113 A virtual USB mouse device is available for testing in QEMU.
1114
1115 You can try it with the following monitor commands:
1116
1117 @example
1118 # add the mouse device
1119 (qemu) usb_add mouse
1120
1121 # show the virtual USB devices plugged on the QEMU Virtual USB hub
1122 (qemu) info usb
1123 Device 0.3, speed 12 Mb/s
1124
1125 # after some time you can try to remove the mouse
1126 (qemu) usb_del 0.3
1127 @end example
1128
1129 The option @option{-usbdevice} is similar to the monitor command
1130 @code{usb_add}.
1131
1132 @subsection Using host USB devices on a Linux host
1133
1134 WARNING: this is an experimental feature. QEMU will slow down when
1135 using it. USB devices requiring real time streaming (i.e. USB Video
1136 Cameras) are not supported yet.
1137
1138 @enumerate
1139 @item If you use an early Linux 2.4 kernel, verify that no Linux driver
1140 is actually using the USB device. A simple way to do that is simply to
1141 disable the corresponding kernel module by renaming it from @file{mydriver.o}
1142 to @file{mydriver.o.disabled}.
1143
1144 @item Verify that @file{/proc/bus/usb} is working (most Linux distributions should enable it by default). You should see something like that:
1145 @example
1146 ls /proc/bus/usb
1147 001 devices drivers
1148 @end example
1149
1150 @item Since only root can access to the USB devices directly, you can either launch QEMU as root or change the permissions of the USB devices you want to use. For testing, the following suffices:
1151 @example
1152 chown -R myuid /proc/bus/usb
1153 @end example
1154
1155 @item Launch QEMU and do in the monitor:
1156 @example
1157 info usbhost
1158 Device 1.2, speed 480 Mb/s
1159 Class 00: USB device 1234:5678, USB DISK
1160 @end example
1161 You should see the list of the devices you can use (Never try to use
1162 hubs, it won't work).
1163
1164 @item Add the device in QEMU by using:
1165 @example
1166 usb_add host:1234:5678
1167 @end example
1168
1169 Normally the guest OS should report that a new USB device is
1170 plugged. You can use the option @option{-usbdevice} to do the same.
1171
1172 @item Now you can try to use the host USB device in QEMU.
1173
1174 @end enumerate
1175
1176 When relaunching QEMU, you may have to unplug and plug again the USB
1177 device to make it work again (this is a bug).
1178
1179 @node gdb_usage
1180 @section GDB usage
1181
1182 QEMU has a primitive support to work with gdb, so that you can do
1183 'Ctrl-C' while the virtual machine is running and inspect its state.
1184
1185 In order to use gdb, launch qemu with the '-s' option. It will wait for a
1186 gdb connection:
1187 @example
1188 > qemu -s -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1189 -append "root=/dev/hda"
1190 Connected to host network interface: tun0
1191 Waiting gdb connection on port 1234
1192 @end example
1193
1194 Then launch gdb on the 'vmlinux' executable:
1195 @example
1196 > gdb vmlinux
1197 @end example
1198
1199 In gdb, connect to QEMU:
1200 @example
1201 (gdb) target remote localhost:1234
1202 @end example
1203
1204 Then you can use gdb normally. For example, type 'c' to launch the kernel:
1205 @example
1206 (gdb) c
1207 @end example
1208
1209 Here are some useful tips in order to use gdb on system code:
1210
1211 @enumerate
1212 @item
1213 Use @code{info reg} to display all the CPU registers.
1214 @item
1215 Use @code{x/10i $eip} to display the code at the PC position.
1216 @item
1217 Use @code{set architecture i8086} to dump 16 bit code. Then use
1218 @code{x/10i $cs*16+*eip} to dump the code at the PC position.
1219 @end enumerate
1220
1221 @node pcsys_os_specific
1222 @section Target OS specific information
1223
1224 @subsection Linux
1225
1226 To have access to SVGA graphic modes under X11, use the @code{vesa} or
1227 the @code{cirrus} X11 driver. For optimal performances, use 16 bit
1228 color depth in the guest and the host OS.
1229
1230 When using a 2.6 guest Linux kernel, you should add the option
1231 @code{clock=pit} on the kernel command line because the 2.6 Linux
1232 kernels make very strict real time clock checks by default that QEMU
1233 cannot simulate exactly.
1234
1235 When using a 2.6 guest Linux kernel, verify that the 4G/4G patch is
1236 not activated because QEMU is slower with this patch. The QEMU
1237 Accelerator Module is also much slower in this case. Earlier Fedora
1238 Core 3 Linux kernel (< 2.6.9-1.724_FC3) were known to incorporte this
1239 patch by default. Newer kernels don't have it.
1240
1241 @subsection Windows
1242
1243 If you have a slow host, using Windows 95 is better as it gives the
1244 best speed. Windows 2000 is also a good choice.
1245
1246 @subsubsection SVGA graphic modes support
1247
1248 QEMU emulates a Cirrus Logic GD5446 Video
1249 card. All Windows versions starting from Windows 95 should recognize
1250 and use this graphic card. For optimal performances, use 16 bit color
1251 depth in the guest and the host OS.
1252
1253 @subsubsection CPU usage reduction
1254
1255 Windows 9x does not correctly use the CPU HLT
1256 instruction. The result is that it takes host CPU cycles even when
1257 idle. You can install the utility from
1258 @url{http://www.user.cityline.ru/~maxamn/amnhltm.zip} to solve this
1259 problem. Note that no such tool is needed for NT, 2000 or XP.
1260
1261 @subsubsection Windows 2000 disk full problem
1262
1263 Windows 2000 has a bug which gives a disk full problem during its
1264 installation. When installing it, use the @option{-win2k-hack} QEMU
1265 option to enable a specific workaround. After Windows 2000 is
1266 installed, you no longer need this option (this option slows down the
1267 IDE transfers).
1268
1269 @subsubsection Windows 2000 shutdown
1270
1271 Windows 2000 cannot automatically shutdown in QEMU although Windows 98
1272 can. It comes from the fact that Windows 2000 does not automatically
1273 use the APM driver provided by the BIOS.
1274
1275 In order to correct that, do the following (thanks to Struan
1276 Bartlett): go to the Control Panel => Add/Remove Hardware & Next =>
1277 Add/Troubleshoot a device => Add a new device & Next => No, select the
1278 hardware from a list & Next => NT Apm/Legacy Support & Next => Next
1279 (again) a few times. Now the driver is installed and Windows 2000 now
1280 correctly instructs QEMU to shutdown at the appropriate moment.
1281
1282 @subsubsection Share a directory between Unix and Windows
1283
1284 See @ref{sec_invocation} about the help of the option @option{-smb}.
1285
1286 @subsubsection Windows XP security problems
1287
1288 Some releases of Windows XP install correctly but give a security
1289 error when booting:
1290 @example
1291 A problem is preventing Windows from accurately checking the
1292 license for this computer. Error code: 0x800703e6.
1293 @end example
1294 The only known workaround is to boot in Safe mode
1295 without networking support.
1296
1297 Future QEMU releases are likely to correct this bug.
1298
1299 @subsection MS-DOS and FreeDOS
1300
1301 @subsubsection CPU usage reduction
1302
1303 DOS does not correctly use the CPU HLT instruction. The result is that
1304 it takes host CPU cycles even when idle. You can install the utility
1305 from @url{http://www.vmware.com/software/dosidle210.zip} to solve this
1306 problem.
1307
1308 @node QEMU System emulator for non PC targets
1309 @chapter QEMU System emulator for non PC targets
1310
1311 QEMU is a generic emulator and it emulates many non PC
1312 machines. Most of the options are similar to the PC emulator. The
1313 differences are mentionned in the following sections.
1314
1315 @menu
1316 * QEMU PowerPC System emulator::
1317 * Sparc32 System emulator invocation::
1318 * Sparc64 System emulator invocation::
1319 * MIPS System emulator invocation::
1320 * ARM System emulator invocation::
1321 @end menu
1322
1323 @node QEMU PowerPC System emulator
1324 @section QEMU PowerPC System emulator
1325
1326 Use the executable @file{qemu-system-ppc} to simulate a complete PREP
1327 or PowerMac PowerPC system.
1328
1329 QEMU emulates the following PowerMac peripherals:
1330
1331 @itemize @minus
1332 @item
1333 UniNorth PCI Bridge
1334 @item
1335 PCI VGA compatible card with VESA Bochs Extensions
1336 @item
1337 2 PMAC IDE interfaces with hard disk and CD-ROM support
1338 @item
1339 NE2000 PCI adapters
1340 @item
1341 Non Volatile RAM
1342 @item
1343 VIA-CUDA with ADB keyboard and mouse.
1344 @end itemize
1345
1346 QEMU emulates the following PREP peripherals:
1347
1348 @itemize @minus
1349 @item
1350 PCI Bridge
1351 @item
1352 PCI VGA compatible card with VESA Bochs Extensions
1353 @item
1354 2 IDE interfaces with hard disk and CD-ROM support
1355 @item
1356 Floppy disk
1357 @item
1358 NE2000 network adapters
1359 @item
1360 Serial port
1361 @item
1362 PREP Non Volatile RAM
1363 @item
1364 PC compatible keyboard and mouse.
1365 @end itemize
1366
1367 QEMU uses the Open Hack'Ware Open Firmware Compatible BIOS available at
1368 @url{http://perso.magic.fr/l_indien/OpenHackWare/index.htm}.
1369
1370 @c man begin OPTIONS
1371
1372 The following options are specific to the PowerPC emulation:
1373
1374 @table @option
1375
1376 @item -g WxH[xDEPTH]
1377
1378 Set the initial VGA graphic mode. The default is 800x600x15.
1379
1380 @end table
1381
1382 @c man end
1383
1384
1385 More information is available at
1386 @url{http://perso.magic.fr/l_indien/qemu-ppc/}.
1387
1388 @node Sparc32 System emulator invocation
1389 @section Sparc32 System emulator invocation
1390
1391 Use the executable @file{qemu-system-sparc} to simulate a JavaStation
1392 (sun4m architecture). The emulation is somewhat complete.
1393
1394 QEMU emulates the following sun4m peripherals:
1395
1396 @itemize @minus
1397 @item
1398 IOMMU
1399 @item
1400 TCX Frame buffer
1401 @item
1402 Lance (Am7990) Ethernet
1403 @item
1404 Non Volatile RAM M48T08
1405 @item
1406 Slave I/O: timers, interrupt controllers, Zilog serial ports, keyboard
1407 and power/reset logic
1408 @item
1409 ESP SCSI controller with hard disk and CD-ROM support
1410 @item
1411 Floppy drive
1412 @end itemize
1413
1414 The number of peripherals is fixed in the architecture.
1415
1416 QEMU uses the Proll, a PROM replacement available at
1417 @url{http://people.redhat.com/@/zaitcev/linux/}. The required
1418 QEMU-specific patches are included with the sources.
1419
1420 A sample Linux 2.6 series kernel and ram disk image are available on
1421 the QEMU web site. Please note that currently neither Linux 2.4
1422 series, NetBSD, nor OpenBSD kernels work.
1423
1424 @c man begin OPTIONS
1425
1426 The following options are specific to the Sparc emulation:
1427
1428 @table @option
1429
1430 @item -g WxH
1431
1432 Set the initial TCX graphic mode. The default is 1024x768.
1433
1434 @end table
1435
1436 @c man end
1437
1438 @node Sparc64 System emulator invocation
1439 @section Sparc64 System emulator invocation
1440
1441 Use the executable @file{qemu-system-sparc64} to simulate a Sun4u machine.
1442 The emulator is not usable for anything yet.
1443
1444 QEMU emulates the following sun4u peripherals:
1445
1446 @itemize @minus
1447 @item
1448 UltraSparc IIi APB PCI Bridge
1449 @item
1450 PCI VGA compatible card with VESA Bochs Extensions
1451 @item
1452 Non Volatile RAM M48T59
1453 @item
1454 PC-compatible serial ports
1455 @end itemize
1456
1457 @node MIPS System emulator invocation
1458 @section MIPS System emulator invocation
1459
1460 Use the executable @file{qemu-system-mips} to simulate a MIPS machine.
1461 The emulator is able to boot a Linux kernel and to run a Linux Debian
1462 installation from NFS. The following devices are emulated:
1463
1464 @itemize @minus
1465 @item
1466 MIPS R4K CPU
1467 @item
1468 PC style serial port
1469 @item
1470 NE2000 network card
1471 @end itemize
1472
1473 More information is available in the QEMU mailing-list archive.
1474
1475 @node ARM System emulator invocation
1476 @section ARM System emulator invocation
1477
1478 Use the executable @file{qemu-system-arm} to simulate a ARM
1479 machine. The ARM Integrator/CP board is emulated with the following
1480 devices:
1481
1482 @itemize @minus
1483 @item
1484 ARM926E or ARM1026E CPU
1485 @item
1486 Two PL011 UARTs
1487 @item
1488 SMC 91c111 Ethernet adapter
1489 @end itemize
1490
1491 A Linux 2.6 test image is available on the QEMU web site. More
1492 information is available in the QEMU mailing-list archive.
1493
1494 @node QEMU Linux User space emulator
1495 @chapter QEMU Linux User space emulator
1496
1497 @menu
1498 * Quick Start::
1499 * Wine launch::
1500 * Command line options::
1501 @end menu
1502
1503 @node Quick Start
1504 @section Quick Start
1505
1506 In order to launch a Linux process, QEMU needs the process executable
1507 itself and all the target (x86) dynamic libraries used by it.
1508
1509 @itemize
1510
1511 @item On x86, you can just try to launch any process by using the native
1512 libraries:
1513
1514 @example
1515 qemu-i386 -L / /bin/ls
1516 @end example
1517
1518 @code{-L /} tells that the x86 dynamic linker must be searched with a
1519 @file{/} prefix.
1520
1521 @item Since QEMU is also a linux process, you can launch qemu with qemu (NOTE: you can only do that if you compiled QEMU from the sources):
1522
1523 @example
1524 qemu-i386 -L / qemu-i386 -L / /bin/ls
1525 @end example
1526
1527 @item On non x86 CPUs, you need first to download at least an x86 glibc
1528 (@file{qemu-runtime-i386-XXX-.tar.gz} on the QEMU web page). Ensure that
1529 @code{LD_LIBRARY_PATH} is not set:
1530
1531 @example
1532 unset LD_LIBRARY_PATH
1533 @end example
1534
1535 Then you can launch the precompiled @file{ls} x86 executable:
1536
1537 @example
1538 qemu-i386 tests/i386/ls
1539 @end example
1540 You can look at @file{qemu-binfmt-conf.sh} so that
1541 QEMU is automatically launched by the Linux kernel when you try to
1542 launch x86 executables. It requires the @code{binfmt_misc} module in the
1543 Linux kernel.
1544
1545 @item The x86 version of QEMU is also included. You can try weird things such as:
1546 @example
1547 qemu-i386 /usr/local/qemu-i386/bin/qemu-i386 \
1548 /usr/local/qemu-i386/bin/ls-i386
1549 @end example
1550
1551 @end itemize
1552
1553 @node Wine launch
1554 @section Wine launch
1555
1556 @itemize
1557
1558 @item Ensure that you have a working QEMU with the x86 glibc
1559 distribution (see previous section). In order to verify it, you must be
1560 able to do:
1561
1562 @example
1563 qemu-i386 /usr/local/qemu-i386/bin/ls-i386
1564 @end example
1565
1566 @item Download the binary x86 Wine install
1567 (@file{qemu-XXX-i386-wine.tar.gz} on the QEMU web page).
1568
1569 @item Configure Wine on your account. Look at the provided script
1570 @file{/usr/local/qemu-i386/@/bin/wine-conf.sh}. Your previous
1571 @code{$@{HOME@}/.wine} directory is saved to @code{$@{HOME@}/.wine.org}.
1572
1573 @item Then you can try the example @file{putty.exe}:
1574
1575 @example
1576 qemu-i386 /usr/local/qemu-i386/wine/bin/wine \
1577 /usr/local/qemu-i386/wine/c/Program\ Files/putty.exe
1578 @end example
1579
1580 @end itemize
1581
1582 @node Command line options
1583 @section Command line options
1584
1585 @example
1586 usage: qemu-i386 [-h] [-d] [-L path] [-s size] program [arguments...]
1587 @end example
1588
1589 @table @option
1590 @item -h
1591 Print the help
1592 @item -L path
1593 Set the x86 elf interpreter prefix (default=/usr/local/qemu-i386)
1594 @item -s size
1595 Set the x86 stack size in bytes (default=524288)
1596 @end table
1597
1598 Debug options:
1599
1600 @table @option
1601 @item -d
1602 Activate log (logfile=/tmp/qemu.log)
1603 @item -p pagesize
1604 Act as if the host page size was 'pagesize' bytes
1605 @end table
1606
1607 @node compilation
1608 @chapter Compilation from the sources
1609
1610 @menu
1611 * Linux/Unix::
1612 * Windows::
1613 * Cross compilation for Windows with Linux::
1614 * Mac OS X::
1615 @end menu
1616
1617 @node Linux/Unix
1618 @section Linux/Unix
1619
1620 @subsection Compilation
1621
1622 First you must decompress the sources:
1623 @example
1624 cd /tmp
1625 tar zxvf qemu-x.y.z.tar.gz
1626 cd qemu-x.y.z
1627 @end example
1628
1629 Then you configure QEMU and build it (usually no options are needed):
1630 @example
1631 ./configure
1632 make
1633 @end example
1634
1635 Then type as root user:
1636 @example
1637 make install
1638 @end example
1639 to install QEMU in @file{/usr/local}.
1640
1641 @subsection Tested tool versions
1642
1643 In order to compile QEMU succesfully, it is very important that you
1644 have the right tools. The most important one is gcc. I cannot guaranty
1645 that QEMU works if you do not use a tested gcc version. Look at
1646 'configure' and 'Makefile' if you want to make a different gcc
1647 version work.
1648
1649 @example
1650 host gcc binutils glibc linux distribution
1651 ----------------------------------------------------------------------
1652 x86 3.2 2.13.2 2.1.3 2.4.18
1653 2.96 2.11.93.0.2 2.2.5 2.4.18 Red Hat 7.3
1654 3.2.2 2.13.90.0.18 2.3.2 2.4.20 Red Hat 9
1655
1656 PowerPC 3.3 [4] 2.13.90.0.18 2.3.1 2.4.20briq
1657 3.2
1658
1659 Alpha 3.3 [1] 2.14.90.0.4 2.2.5 2.2.20 [2] Debian 3.0
1660
1661 Sparc32 2.95.4 2.12.90.0.1 2.2.5 2.4.18 Debian 3.0
1662
1663 ARM 2.95.4 2.12.90.0.1 2.2.5 2.4.9 [3] Debian 3.0
1664
1665 [1] On Alpha, QEMU needs the gcc 'visibility' attribute only available
1666 for gcc version >= 3.3.
1667 [2] Linux >= 2.4.20 is necessary for precise exception support
1668 (untested).
1669 [3] 2.4.9-ac10-rmk2-np1-cerf2
1670
1671 [4] gcc 2.95.x generates invalid code when using too many register
1672 variables. You must use gcc 3.x on PowerPC.
1673 @end example
1674
1675 @node Windows
1676 @section Windows
1677
1678 @itemize
1679 @item Install the current versions of MSYS and MinGW from
1680 @url{http://www.mingw.org/}. You can find detailed installation
1681 instructions in the download section and the FAQ.
1682
1683 @item Download
1684 the MinGW development library of SDL 1.2.x
1685 (@file{SDL-devel-1.2.x-@/mingw32.tar.gz}) from
1686 @url{http://www.libsdl.org}. Unpack it in a temporary place, and
1687 unpack the archive @file{i386-mingw32msvc.tar.gz} in the MinGW tool
1688 directory. Edit the @file{sdl-config} script so that it gives the
1689 correct SDL directory when invoked.
1690
1691 @item Extract the current version of QEMU.
1692
1693 @item Start the MSYS shell (file @file{msys.bat}).
1694
1695 @item Change to the QEMU directory. Launch @file{./configure} and
1696 @file{make}. If you have problems using SDL, verify that
1697 @file{sdl-config} can be launched from the MSYS command line.
1698
1699 @item You can install QEMU in @file{Program Files/Qemu} by typing
1700 @file{make install}. Don't forget to copy @file{SDL.dll} in
1701 @file{Program Files/Qemu}.
1702
1703 @end itemize
1704
1705 @node Cross compilation for Windows with Linux
1706 @section Cross compilation for Windows with Linux
1707
1708 @itemize
1709 @item
1710 Install the MinGW cross compilation tools available at
1711 @url{http://www.mingw.org/}.
1712
1713 @item
1714 Install the Win32 version of SDL (@url{http://www.libsdl.org}) by
1715 unpacking @file{i386-mingw32msvc.tar.gz}. Set up the PATH environment
1716 variable so that @file{i386-mingw32msvc-sdl-config} can be launched by
1717 the QEMU configuration script.
1718
1719 @item
1720 Configure QEMU for Windows cross compilation:
1721 @example
1722 ./configure --enable-mingw32
1723 @end example
1724 If necessary, you can change the cross-prefix according to the prefix
1725 choosen for the MinGW tools with --cross-prefix. You can also use
1726 --prefix to set the Win32 install path.
1727
1728 @item You can install QEMU in the installation directory by typing
1729 @file{make install}. Don't forget to copy @file{SDL.dll} in the
1730 installation directory.
1731
1732 @end itemize
1733
1734 Note: Currently, Wine does not seem able to launch
1735 QEMU for Win32.
1736
1737 @node Mac OS X
1738 @section Mac OS X
1739
1740 The Mac OS X patches are not fully merged in QEMU, so you should look
1741 at the QEMU mailing list archive to have all the necessary
1742 information.
1743
1744 @node Index
1745 @chapter Index
1746 @printindex cp
1747
1748 @bye