]> git.proxmox.com Git - qemu.git/blob - qemu-doc.texi
Do not use load_seg_vm to load CS in real mode iret handling
[qemu.git] / qemu-doc.texi
1 \input texinfo @c -*- texinfo -*-
2 @c %**start of header
3 @setfilename qemu-doc.info
4 @settitle QEMU Emulator User Documentation
5 @exampleindent 0
6 @paragraphindent 0
7 @c %**end of header
8
9 @iftex
10 @titlepage
11 @sp 7
12 @center @titlefont{QEMU Emulator}
13 @sp 1
14 @center @titlefont{User Documentation}
15 @sp 3
16 @end titlepage
17 @end iftex
18
19 @ifnottex
20 @node Top
21 @top
22
23 @menu
24 * Introduction::
25 * Installation::
26 * QEMU PC System emulator::
27 * QEMU System emulator for non PC targets::
28 * QEMU User space emulator::
29 * compilation:: Compilation from the sources
30 * Index::
31 @end menu
32 @end ifnottex
33
34 @contents
35
36 @node Introduction
37 @chapter Introduction
38
39 @menu
40 * intro_features:: Features
41 @end menu
42
43 @node intro_features
44 @section Features
45
46 QEMU is a FAST! processor emulator using dynamic translation to
47 achieve good emulation speed.
48
49 QEMU has two operating modes:
50
51 @itemize @minus
52
53 @item
54 Full system emulation. In this mode, QEMU emulates a full system (for
55 example a PC), including one or several processors and various
56 peripherals. It can be used to launch different Operating Systems
57 without rebooting the PC or to debug system code.
58
59 @item
60 User mode emulation. In this mode, QEMU can launch
61 processes compiled for one CPU on another CPU. It can be used to
62 launch the Wine Windows API emulator (@url{http://www.winehq.org}) or
63 to ease cross-compilation and cross-debugging.
64
65 @end itemize
66
67 QEMU can run without an host kernel driver and yet gives acceptable
68 performance.
69
70 For system emulation, the following hardware targets are supported:
71 @itemize
72 @item PC (x86 or x86_64 processor)
73 @item ISA PC (old style PC without PCI bus)
74 @item PREP (PowerPC processor)
75 @item G3 BW PowerMac (PowerPC processor)
76 @item Mac99 PowerMac (PowerPC processor, in progress)
77 @item Sun4m/Sun4c/Sun4d (32-bit Sparc processor)
78 @item Sun4u/Sun4v (64-bit Sparc processor, in progress)
79 @item Malta board (32-bit and 64-bit MIPS processors)
80 @item MIPS Magnum (64-bit MIPS processor)
81 @item ARM Integrator/CP (ARM)
82 @item ARM Versatile baseboard (ARM)
83 @item ARM RealView Emulation baseboard (ARM)
84 @item Spitz, Akita, Borzoi and Terrier PDAs (PXA270 processor)
85 @item Luminary Micro LM3S811EVB (ARM Cortex-M3)
86 @item Luminary Micro LM3S6965EVB (ARM Cortex-M3)
87 @item Freescale MCF5208EVB (ColdFire V2).
88 @item Arnewsh MCF5206 evaluation board (ColdFire V2).
89 @item Palm Tungsten|E PDA (OMAP310 processor)
90 @item N800 and N810 tablets (OMAP2420 processor)
91 @item MusicPal (MV88W8618 ARM processor)
92 @end itemize
93
94 For user emulation, x86, PowerPC, ARM, 32-bit MIPS, Sparc32/64 and ColdFire(m68k) CPUs are supported.
95
96 @node Installation
97 @chapter Installation
98
99 If you want to compile QEMU yourself, see @ref{compilation}.
100
101 @menu
102 * install_linux:: Linux
103 * install_windows:: Windows
104 * install_mac:: Macintosh
105 @end menu
106
107 @node install_linux
108 @section Linux
109
110 If a precompiled package is available for your distribution - you just
111 have to install it. Otherwise, see @ref{compilation}.
112
113 @node install_windows
114 @section Windows
115
116 Download the experimental binary installer at
117 @url{http://www.free.oszoo.org/@/download.html}.
118
119 @node install_mac
120 @section Mac OS X
121
122 Download the experimental binary installer at
123 @url{http://www.free.oszoo.org/@/download.html}.
124
125 @node QEMU PC System emulator
126 @chapter QEMU PC System emulator
127
128 @menu
129 * pcsys_introduction:: Introduction
130 * pcsys_quickstart:: Quick Start
131 * sec_invocation:: Invocation
132 * pcsys_keys:: Keys
133 * pcsys_monitor:: QEMU Monitor
134 * disk_images:: Disk Images
135 * pcsys_network:: Network emulation
136 * direct_linux_boot:: Direct Linux Boot
137 * pcsys_usb:: USB emulation
138 * vnc_security:: VNC security
139 * gdb_usage:: GDB usage
140 * pcsys_os_specific:: Target OS specific information
141 @end menu
142
143 @node pcsys_introduction
144 @section Introduction
145
146 @c man begin DESCRIPTION
147
148 The QEMU PC System emulator simulates the
149 following peripherals:
150
151 @itemize @minus
152 @item
153 i440FX host PCI bridge and PIIX3 PCI to ISA bridge
154 @item
155 Cirrus CLGD 5446 PCI VGA card or dummy VGA card with Bochs VESA
156 extensions (hardware level, including all non standard modes).
157 @item
158 PS/2 mouse and keyboard
159 @item
160 2 PCI IDE interfaces with hard disk and CD-ROM support
161 @item
162 Floppy disk
163 @item
164 PCI/ISA PCI network adapters
165 @item
166 Serial ports
167 @item
168 Creative SoundBlaster 16 sound card
169 @item
170 ENSONIQ AudioPCI ES1370 sound card
171 @item
172 Intel 82801AA AC97 Audio compatible sound card
173 @item
174 Adlib(OPL2) - Yamaha YM3812 compatible chip
175 @item
176 Gravis Ultrasound GF1 sound card
177 @item
178 CS4231A compatible sound card
179 @item
180 PCI UHCI USB controller and a virtual USB hub.
181 @end itemize
182
183 SMP is supported with up to 255 CPUs.
184
185 Note that adlib, ac97, gus and cs4231a are only available when QEMU
186 was configured with --audio-card-list option containing the name(s) of
187 required card(s).
188
189 QEMU uses the PC BIOS from the Bochs project and the Plex86/Bochs LGPL
190 VGA BIOS.
191
192 QEMU uses YM3812 emulation by Tatsuyuki Satoh.
193
194 QEMU uses GUS emulation(GUSEMU32 @url{http://www.deinmeister.de/gusemu/})
195 by Tibor "TS" Schütz.
196
197 CS4231A is the chip used in Windows Sound System and GUSMAX products
198
199 @c man end
200
201 @node pcsys_quickstart
202 @section Quick Start
203
204 Download and uncompress the linux image (@file{linux.img}) and type:
205
206 @example
207 qemu linux.img
208 @end example
209
210 Linux should boot and give you a prompt.
211
212 @node sec_invocation
213 @section Invocation
214
215 @example
216 @c man begin SYNOPSIS
217 usage: qemu [options] [@var{disk_image}]
218 @c man end
219 @end example
220
221 @c man begin OPTIONS
222 @var{disk_image} is a raw hard disk image for IDE hard disk 0.
223
224 General options:
225 @table @option
226 @item -M @var{machine}
227 Select the emulated @var{machine} (@code{-M ?} for list)
228
229 @item -fda @var{file}
230 @item -fdb @var{file}
231 Use @var{file} as floppy disk 0/1 image (@pxref{disk_images}). You can
232 use the host floppy by using @file{/dev/fd0} as filename (@pxref{host_drives}).
233
234 @item -hda @var{file}
235 @item -hdb @var{file}
236 @item -hdc @var{file}
237 @item -hdd @var{file}
238 Use @var{file} as hard disk 0, 1, 2 or 3 image (@pxref{disk_images}).
239
240 @item -cdrom @var{file}
241 Use @var{file} as CD-ROM image (you cannot use @option{-hdc} and
242 @option{-cdrom} at the same time). You can use the host CD-ROM by
243 using @file{/dev/cdrom} as filename (@pxref{host_drives}).
244
245 @item -drive @var{option}[,@var{option}[,@var{option}[,...]]]
246
247 Define a new drive. Valid options are:
248
249 @table @code
250 @item file=@var{file}
251 This option defines which disk image (@pxref{disk_images}) to use with
252 this drive. If the filename contains comma, you must double it
253 (for instance, "file=my,,file" to use file "my,file").
254 @item if=@var{interface}
255 This option defines on which type on interface the drive is connected.
256 Available types are: ide, scsi, sd, mtd, floppy, pflash.
257 @item bus=@var{bus},unit=@var{unit}
258 These options define where is connected the drive by defining the bus number and
259 the unit id.
260 @item index=@var{index}
261 This option defines where is connected the drive by using an index in the list
262 of available connectors of a given interface type.
263 @item media=@var{media}
264 This option defines the type of the media: disk or cdrom.
265 @item cyls=@var{c},heads=@var{h},secs=@var{s}[,trans=@var{t}]
266 These options have the same definition as they have in @option{-hdachs}.
267 @item snapshot=@var{snapshot}
268 @var{snapshot} is "on" or "off" and allows to enable snapshot for given drive (see @option{-snapshot}).
269 @item cache=@var{cache}
270 @var{cache} is "on" or "off" and allows to disable host cache to access data.
271 @item format=@var{format}
272 Specify which disk @var{format} will be used rather than detecting
273 the format. Can be used to specifiy format=raw to avoid interpreting
274 an untrusted format header.
275 @end table
276
277 Instead of @option{-cdrom} you can use:
278 @example
279 qemu -drive file=file,index=2,media=cdrom
280 @end example
281
282 Instead of @option{-hda}, @option{-hdb}, @option{-hdc}, @option{-hdd}, you can
283 use:
284 @example
285 qemu -drive file=file,index=0,media=disk
286 qemu -drive file=file,index=1,media=disk
287 qemu -drive file=file,index=2,media=disk
288 qemu -drive file=file,index=3,media=disk
289 @end example
290
291 You can connect a CDROM to the slave of ide0:
292 @example
293 qemu -drive file=file,if=ide,index=1,media=cdrom
294 @end example
295
296 If you don't specify the "file=" argument, you define an empty drive:
297 @example
298 qemu -drive if=ide,index=1,media=cdrom
299 @end example
300
301 You can connect a SCSI disk with unit ID 6 on the bus #0:
302 @example
303 qemu -drive file=file,if=scsi,bus=0,unit=6
304 @end example
305
306 Instead of @option{-fda}, @option{-fdb}, you can use:
307 @example
308 qemu -drive file=file,index=0,if=floppy
309 qemu -drive file=file,index=1,if=floppy
310 @end example
311
312 By default, @var{interface} is "ide" and @var{index} is automatically
313 incremented:
314 @example
315 qemu -drive file=a -drive file=b"
316 @end example
317 is interpreted like:
318 @example
319 qemu -hda a -hdb b
320 @end example
321
322 @item -boot [a|c|d|n]
323 Boot on floppy (a), hard disk (c), CD-ROM (d), or Etherboot (n). Hard disk boot
324 is the default.
325
326 @item -snapshot
327 Write to temporary files instead of disk image files. In this case,
328 the raw disk image you use is not written back. You can however force
329 the write back by pressing @key{C-a s} (@pxref{disk_images}).
330
331 @item -no-fd-bootchk
332 Disable boot signature checking for floppy disks in Bochs BIOS. It may
333 be needed to boot from old floppy disks.
334
335 @item -m @var{megs}
336 Set virtual RAM size to @var{megs} megabytes. Default is 128 MiB. Optionally,
337 a suffix of ``M'' or ``G'' can be used to signify a value in megabytes or
338 gigabytes respectively.
339
340 @item -smp @var{n}
341 Simulate an SMP system with @var{n} CPUs. On the PC target, up to 255
342 CPUs are supported. On Sparc32 target, Linux limits the number of usable CPUs
343 to 4.
344
345 @item -audio-help
346
347 Will show the audio subsystem help: list of drivers, tunable
348 parameters.
349
350 @item -soundhw @var{card1}[,@var{card2},...] or -soundhw all
351
352 Enable audio and selected sound hardware. Use ? to print all
353 available sound hardware.
354
355 @example
356 qemu -soundhw sb16,adlib hda
357 qemu -soundhw es1370 hda
358 qemu -soundhw ac97 hda
359 qemu -soundhw all hda
360 qemu -soundhw ?
361 @end example
362
363 Note that Linux's i810_audio OSS kernel (for AC97) module might
364 require manually specifying clocking.
365
366 @example
367 modprobe i810_audio clocking=48000
368 @end example
369
370 @item -localtime
371 Set the real time clock to local time (the default is to UTC
372 time). This option is needed to have correct date in MS-DOS or
373 Windows.
374
375 @item -startdate @var{date}
376 Set the initial date of the real time clock. Valid format for
377 @var{date} are: @code{now} or @code{2006-06-17T16:01:21} or
378 @code{2006-06-17}. The default value is @code{now}.
379
380 @item -pidfile @var{file}
381 Store the QEMU process PID in @var{file}. It is useful if you launch QEMU
382 from a script.
383
384 @item -daemonize
385 Daemonize the QEMU process after initialization. QEMU will not detach from
386 standard IO until it is ready to receive connections on any of its devices.
387 This option is a useful way for external programs to launch QEMU without having
388 to cope with initialization race conditions.
389
390 @item -win2k-hack
391 Use it when installing Windows 2000 to avoid a disk full bug. After
392 Windows 2000 is installed, you no longer need this option (this option
393 slows down the IDE transfers).
394
395 @item -option-rom @var{file}
396 Load the contents of @var{file} as an option ROM.
397 This option is useful to load things like EtherBoot.
398
399 @item -name @var{name}
400 Sets the @var{name} of the guest.
401 This name will be display in the SDL window caption.
402 The @var{name} will also be used for the VNC server.
403
404 @end table
405
406 Display options:
407 @table @option
408
409 @item -nographic
410
411 Normally, QEMU uses SDL to display the VGA output. With this option,
412 you can totally disable graphical output so that QEMU is a simple
413 command line application. The emulated serial port is redirected on
414 the console. Therefore, you can still use QEMU to debug a Linux kernel
415 with a serial console.
416
417 @item -curses
418
419 Normally, QEMU uses SDL to display the VGA output. With this option,
420 QEMU can display the VGA output when in text mode using a
421 curses/ncurses interface. Nothing is displayed in graphical mode.
422
423 @item -no-frame
424
425 Do not use decorations for SDL windows and start them using the whole
426 available screen space. This makes the using QEMU in a dedicated desktop
427 workspace more convenient.
428
429 @item -no-quit
430
431 Disable SDL window close capability.
432
433 @item -full-screen
434 Start in full screen.
435
436 @item -vnc @var{display}[,@var{option}[,@var{option}[,...]]]
437
438 Normally, QEMU uses SDL to display the VGA output. With this option,
439 you can have QEMU listen on VNC display @var{display} and redirect the VGA
440 display over the VNC session. It is very useful to enable the usb
441 tablet device when using this option (option @option{-usbdevice
442 tablet}). When using the VNC display, you must use the @option{-k}
443 parameter to set the keyboard layout if you are not using en-us. Valid
444 syntax for the @var{display} is
445
446 @table @code
447
448 @item @var{host}:@var{d}
449
450 TCP connections will only be allowed from @var{host} on display @var{d}.
451 By convention the TCP port is 5900+@var{d}. Optionally, @var{host} can
452 be omitted in which case the server will accept connections from any host.
453
454 @item @code{unix}:@var{path}
455
456 Connections will be allowed over UNIX domain sockets where @var{path} is the
457 location of a unix socket to listen for connections on.
458
459 @item none
460
461 VNC is initialized but not started. The monitor @code{change} command
462 can be used to later start the VNC server.
463
464 @end table
465
466 Following the @var{display} value there may be one or more @var{option} flags
467 separated by commas. Valid options are
468
469 @table @code
470
471 @item reverse
472
473 Connect to a listening VNC client via a ``reverse'' connection. The
474 client is specified by the @var{display}. For reverse network
475 connections (@var{host}:@var{d},@code{reverse}), the @var{d} argument
476 is a TCP port number, not a display number.
477
478 @item password
479
480 Require that password based authentication is used for client connections.
481 The password must be set separately using the @code{change} command in the
482 @ref{pcsys_monitor}
483
484 @item tls
485
486 Require that client use TLS when communicating with the VNC server. This
487 uses anonymous TLS credentials so is susceptible to a man-in-the-middle
488 attack. It is recommended that this option be combined with either the
489 @var{x509} or @var{x509verify} options.
490
491 @item x509=@var{/path/to/certificate/dir}
492
493 Valid if @option{tls} is specified. Require that x509 credentials are used
494 for negotiating the TLS session. The server will send its x509 certificate
495 to the client. It is recommended that a password be set on the VNC server
496 to provide authentication of the client when this is used. The path following
497 this option specifies where the x509 certificates are to be loaded from.
498 See the @ref{vnc_security} section for details on generating certificates.
499
500 @item x509verify=@var{/path/to/certificate/dir}
501
502 Valid if @option{tls} is specified. Require that x509 credentials are used
503 for negotiating the TLS session. The server will send its x509 certificate
504 to the client, and request that the client send its own x509 certificate.
505 The server will validate the client's certificate against the CA certificate,
506 and reject clients when validation fails. If the certificate authority is
507 trusted, this is a sufficient authentication mechanism. You may still wish
508 to set a password on the VNC server as a second authentication layer. The
509 path following this option specifies where the x509 certificates are to
510 be loaded from. See the @ref{vnc_security} section for details on generating
511 certificates.
512
513 @end table
514
515 @item -k @var{language}
516
517 Use keyboard layout @var{language} (for example @code{fr} for
518 French). This option is only needed where it is not easy to get raw PC
519 keycodes (e.g. on Macs, with some X11 servers or with a VNC
520 display). You don't normally need to use it on PC/Linux or PC/Windows
521 hosts.
522
523 The available layouts are:
524 @example
525 ar de-ch es fo fr-ca hu ja mk no pt-br sv
526 da en-gb et fr fr-ch is lt nl pl ru th
527 de en-us fi fr-be hr it lv nl-be pt sl tr
528 @end example
529
530 The default is @code{en-us}.
531
532 @end table
533
534 USB options:
535 @table @option
536
537 @item -usb
538 Enable the USB driver (will be the default soon)
539
540 @item -usbdevice @var{devname}
541 Add the USB device @var{devname}. @xref{usb_devices}.
542
543 @table @code
544
545 @item mouse
546 Virtual Mouse. This will override the PS/2 mouse emulation when activated.
547
548 @item tablet
549 Pointer device that uses absolute coordinates (like a touchscreen). This
550 means qemu is able to report the mouse position without having to grab the
551 mouse. Also overrides the PS/2 mouse emulation when activated.
552
553 @item disk:[format=@var{format}]:file
554 Mass storage device based on file. The optional @var{format} argument
555 will be used rather than detecting the format. Can be used to specifiy
556 format=raw to avoid interpreting an untrusted format header.
557
558 @item host:bus.addr
559 Pass through the host device identified by bus.addr (Linux only).
560
561 @item host:vendor_id:product_id
562 Pass through the host device identified by vendor_id:product_id (Linux only).
563
564 @item serial:[vendorid=@var{vendor_id}][,productid=@var{product_id}]:@var{dev}
565 Serial converter to host character device @var{dev}, see @code{-serial} for the
566 available devices.
567
568 @item braille
569 Braille device. This will use BrlAPI to display the braille output on a real
570 or fake device.
571
572 @item net:options
573 Network adapter that supports CDC ethernet and RNDIS protocols.
574
575 @end table
576
577 @end table
578
579 Network options:
580
581 @table @option
582
583 @item -net nic[,vlan=@var{n}][,macaddr=@var{addr}][,model=@var{type}]
584 Create a new Network Interface Card and connect it to VLAN @var{n} (@var{n}
585 = 0 is the default). The NIC is an ne2k_pci by default on the PC
586 target. Optionally, the MAC address can be changed. If no
587 @option{-net} option is specified, a single NIC is created.
588 Qemu can emulate several different models of network card.
589 Valid values for @var{type} are
590 @code{i82551}, @code{i82557b}, @code{i82559er},
591 @code{ne2k_pci}, @code{ne2k_isa}, @code{pcnet}, @code{rtl8139},
592 @code{e1000}, @code{smc91c111}, @code{lance} and @code{mcf_fec}.
593 Not all devices are supported on all targets. Use -net nic,model=?
594 for a list of available devices for your target.
595
596 @item -net user[,vlan=@var{n}][,hostname=@var{name}]
597 Use the user mode network stack which requires no administrator
598 privilege to run. @option{hostname=name} can be used to specify the client
599 hostname reported by the builtin DHCP server.
600
601 @item -net tap[,vlan=@var{n}][,fd=@var{h}][,ifname=@var{name}][,script=@var{file}]
602 Connect the host TAP network interface @var{name} to VLAN @var{n} and
603 use the network script @var{file} to configure it. The default
604 network script is @file{/etc/qemu-ifup}. Use @option{script=no} to
605 disable script execution. If @var{name} is not
606 provided, the OS automatically provides one. @option{fd}=@var{h} can be
607 used to specify the handle of an already opened host TAP interface. Example:
608
609 @example
610 qemu linux.img -net nic -net tap
611 @end example
612
613 More complicated example (two NICs, each one connected to a TAP device)
614 @example
615 qemu linux.img -net nic,vlan=0 -net tap,vlan=0,ifname=tap0 \
616 -net nic,vlan=1 -net tap,vlan=1,ifname=tap1
617 @end example
618
619
620 @item -net socket[,vlan=@var{n}][,fd=@var{h}][,listen=[@var{host}]:@var{port}][,connect=@var{host}:@var{port}]
621
622 Connect the VLAN @var{n} to a remote VLAN in another QEMU virtual
623 machine using a TCP socket connection. If @option{listen} is
624 specified, QEMU waits for incoming connections on @var{port}
625 (@var{host} is optional). @option{connect} is used to connect to
626 another QEMU instance using the @option{listen} option. @option{fd}=@var{h}
627 specifies an already opened TCP socket.
628
629 Example:
630 @example
631 # launch a first QEMU instance
632 qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
633 -net socket,listen=:1234
634 # connect the VLAN 0 of this instance to the VLAN 0
635 # of the first instance
636 qemu linux.img -net nic,macaddr=52:54:00:12:34:57 \
637 -net socket,connect=127.0.0.1:1234
638 @end example
639
640 @item -net socket[,vlan=@var{n}][,fd=@var{h}][,mcast=@var{maddr}:@var{port}]
641
642 Create a VLAN @var{n} shared with another QEMU virtual
643 machines using a UDP multicast socket, effectively making a bus for
644 every QEMU with same multicast address @var{maddr} and @var{port}.
645 NOTES:
646 @enumerate
647 @item
648 Several QEMU can be running on different hosts and share same bus (assuming
649 correct multicast setup for these hosts).
650 @item
651 mcast support is compatible with User Mode Linux (argument @option{eth@var{N}=mcast}), see
652 @url{http://user-mode-linux.sf.net}.
653 @item
654 Use @option{fd=h} to specify an already opened UDP multicast socket.
655 @end enumerate
656
657 Example:
658 @example
659 # launch one QEMU instance
660 qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
661 -net socket,mcast=230.0.0.1:1234
662 # launch another QEMU instance on same "bus"
663 qemu linux.img -net nic,macaddr=52:54:00:12:34:57 \
664 -net socket,mcast=230.0.0.1:1234
665 # launch yet another QEMU instance on same "bus"
666 qemu linux.img -net nic,macaddr=52:54:00:12:34:58 \
667 -net socket,mcast=230.0.0.1:1234
668 @end example
669
670 Example (User Mode Linux compat.):
671 @example
672 # launch QEMU instance (note mcast address selected
673 # is UML's default)
674 qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
675 -net socket,mcast=239.192.168.1:1102
676 # launch UML
677 /path/to/linux ubd0=/path/to/root_fs eth0=mcast
678 @end example
679
680 @item -net vde[,vlan=@var{n}][,sock=@var{socketpath}][,port=@var{n}][,group=@var{groupname}][,mode=@var{octalmode}]
681 Connect VLAN @var{n} to PORT @var{n} of a vde switch running on host and
682 listening for incoming connections on @var{socketpath}. Use GROUP @var{groupname}
683 and MODE @var{octalmode} to change default ownership and permissions for
684 communication port. This option is available only if QEMU has been compiled
685 with vde support enabled.
686
687 Example:
688 @example
689 # launch vde switch
690 vde_switch -F -sock /tmp/myswitch
691 # launch QEMU instance
692 qemu linux.img -net nic -net vde,sock=/tmp/myswitch
693 @end example
694
695 @item -net none
696 Indicate that no network devices should be configured. It is used to
697 override the default configuration (@option{-net nic -net user}) which
698 is activated if no @option{-net} options are provided.
699
700 @item -tftp @var{dir}
701 When using the user mode network stack, activate a built-in TFTP
702 server. The files in @var{dir} will be exposed as the root of a TFTP server.
703 The TFTP client on the guest must be configured in binary mode (use the command
704 @code{bin} of the Unix TFTP client). The host IP address on the guest is as
705 usual 10.0.2.2.
706
707 @item -bootp @var{file}
708 When using the user mode network stack, broadcast @var{file} as the BOOTP
709 filename. In conjunction with @option{-tftp}, this can be used to network boot
710 a guest from a local directory.
711
712 Example (using pxelinux):
713 @example
714 qemu -hda linux.img -boot n -tftp /path/to/tftp/files -bootp /pxelinux.0
715 @end example
716
717 @item -smb @var{dir}
718 When using the user mode network stack, activate a built-in SMB
719 server so that Windows OSes can access to the host files in @file{@var{dir}}
720 transparently.
721
722 In the guest Windows OS, the line:
723 @example
724 10.0.2.4 smbserver
725 @end example
726 must be added in the file @file{C:\WINDOWS\LMHOSTS} (for windows 9x/Me)
727 or @file{C:\WINNT\SYSTEM32\DRIVERS\ETC\LMHOSTS} (Windows NT/2000).
728
729 Then @file{@var{dir}} can be accessed in @file{\\smbserver\qemu}.
730
731 Note that a SAMBA server must be installed on the host OS in
732 @file{/usr/sbin/smbd}. QEMU was tested successfully with smbd version
733 2.2.7a from the Red Hat 9 and version 3.0.10-1.fc3 from Fedora Core 3.
734
735 @item -redir [tcp|udp]:@var{host-port}:[@var{guest-host}]:@var{guest-port}
736
737 When using the user mode network stack, redirect incoming TCP or UDP
738 connections to the host port @var{host-port} to the guest
739 @var{guest-host} on guest port @var{guest-port}. If @var{guest-host}
740 is not specified, its value is 10.0.2.15 (default address given by the
741 built-in DHCP server).
742
743 For example, to redirect host X11 connection from screen 1 to guest
744 screen 0, use the following:
745
746 @example
747 # on the host
748 qemu -redir tcp:6001::6000 [...]
749 # this host xterm should open in the guest X11 server
750 xterm -display :1
751 @end example
752
753 To redirect telnet connections from host port 5555 to telnet port on
754 the guest, use the following:
755
756 @example
757 # on the host
758 qemu -redir tcp:5555::23 [...]
759 telnet localhost 5555
760 @end example
761
762 Then when you use on the host @code{telnet localhost 5555}, you
763 connect to the guest telnet server.
764
765 @end table
766
767 Linux boot specific: When using these options, you can use a given
768 Linux kernel without installing it in the disk image. It can be useful
769 for easier testing of various kernels.
770
771 @table @option
772
773 @item -kernel @var{bzImage}
774 Use @var{bzImage} as kernel image.
775
776 @item -append @var{cmdline}
777 Use @var{cmdline} as kernel command line
778
779 @item -initrd @var{file}
780 Use @var{file} as initial ram disk.
781
782 @end table
783
784 Debug/Expert options:
785 @table @option
786
787 @item -serial @var{dev}
788 Redirect the virtual serial port to host character device
789 @var{dev}. The default device is @code{vc} in graphical mode and
790 @code{stdio} in non graphical mode.
791
792 This option can be used several times to simulate up to 4 serials
793 ports.
794
795 Use @code{-serial none} to disable all serial ports.
796
797 Available character devices are:
798 @table @code
799 @item vc[:WxH]
800 Virtual console. Optionally, a width and height can be given in pixel with
801 @example
802 vc:800x600
803 @end example
804 It is also possible to specify width or height in characters:
805 @example
806 vc:80Cx24C
807 @end example
808 @item pty
809 [Linux only] Pseudo TTY (a new PTY is automatically allocated)
810 @item none
811 No device is allocated.
812 @item null
813 void device
814 @item /dev/XXX
815 [Linux only] Use host tty, e.g. @file{/dev/ttyS0}. The host serial port
816 parameters are set according to the emulated ones.
817 @item /dev/parport@var{N}
818 [Linux only, parallel port only] Use host parallel port
819 @var{N}. Currently SPP and EPP parallel port features can be used.
820 @item file:@var{filename}
821 Write output to @var{filename}. No character can be read.
822 @item stdio
823 [Unix only] standard input/output
824 @item pipe:@var{filename}
825 name pipe @var{filename}
826 @item COM@var{n}
827 [Windows only] Use host serial port @var{n}
828 @item udp:[@var{remote_host}]:@var{remote_port}[@@[@var{src_ip}]:@var{src_port}]
829 This implements UDP Net Console.
830 When @var{remote_host} or @var{src_ip} are not specified
831 they default to @code{0.0.0.0}.
832 When not using a specified @var{src_port} a random port is automatically chosen.
833
834 If you just want a simple readonly console you can use @code{netcat} or
835 @code{nc}, by starting qemu with: @code{-serial udp::4555} and nc as:
836 @code{nc -u -l -p 4555}. Any time qemu writes something to that port it
837 will appear in the netconsole session.
838
839 If you plan to send characters back via netconsole or you want to stop
840 and start qemu a lot of times, you should have qemu use the same
841 source port each time by using something like @code{-serial
842 udp::4555@@:4556} to qemu. Another approach is to use a patched
843 version of netcat which can listen to a TCP port and send and receive
844 characters via udp. If you have a patched version of netcat which
845 activates telnet remote echo and single char transfer, then you can
846 use the following options to step up a netcat redirector to allow
847 telnet on port 5555 to access the qemu port.
848 @table @code
849 @item Qemu Options:
850 -serial udp::4555@@:4556
851 @item netcat options:
852 -u -P 4555 -L 0.0.0.0:4556 -t -p 5555 -I -T
853 @item telnet options:
854 localhost 5555
855 @end table
856
857
858 @item tcp:[@var{host}]:@var{port}[,@var{server}][,nowait][,nodelay]
859 The TCP Net Console has two modes of operation. It can send the serial
860 I/O to a location or wait for a connection from a location. By default
861 the TCP Net Console is sent to @var{host} at the @var{port}. If you use
862 the @var{server} option QEMU will wait for a client socket application
863 to connect to the port before continuing, unless the @code{nowait}
864 option was specified. The @code{nodelay} option disables the Nagle buffering
865 algorithm. If @var{host} is omitted, 0.0.0.0 is assumed. Only
866 one TCP connection at a time is accepted. You can use @code{telnet} to
867 connect to the corresponding character device.
868 @table @code
869 @item Example to send tcp console to 192.168.0.2 port 4444
870 -serial tcp:192.168.0.2:4444
871 @item Example to listen and wait on port 4444 for connection
872 -serial tcp::4444,server
873 @item Example to not wait and listen on ip 192.168.0.100 port 4444
874 -serial tcp:192.168.0.100:4444,server,nowait
875 @end table
876
877 @item telnet:@var{host}:@var{port}[,server][,nowait][,nodelay]
878 The telnet protocol is used instead of raw tcp sockets. The options
879 work the same as if you had specified @code{-serial tcp}. The
880 difference is that the port acts like a telnet server or client using
881 telnet option negotiation. This will also allow you to send the
882 MAGIC_SYSRQ sequence if you use a telnet that supports sending the break
883 sequence. Typically in unix telnet you do it with Control-] and then
884 type "send break" followed by pressing the enter key.
885
886 @item unix:@var{path}[,server][,nowait]
887 A unix domain socket is used instead of a tcp socket. The option works the
888 same as if you had specified @code{-serial tcp} except the unix domain socket
889 @var{path} is used for connections.
890
891 @item mon:@var{dev_string}
892 This is a special option to allow the monitor to be multiplexed onto
893 another serial port. The monitor is accessed with key sequence of
894 @key{Control-a} and then pressing @key{c}. See monitor access
895 @ref{pcsys_keys} in the -nographic section for more keys.
896 @var{dev_string} should be any one of the serial devices specified
897 above. An example to multiplex the monitor onto a telnet server
898 listening on port 4444 would be:
899 @table @code
900 @item -serial mon:telnet::4444,server,nowait
901 @end table
902
903 @item braille
904 Braille device. This will use BrlAPI to display the braille output on a real
905 or fake device.
906
907 @end table
908
909 @item -parallel @var{dev}
910 Redirect the virtual parallel port to host device @var{dev} (same
911 devices as the serial port). On Linux hosts, @file{/dev/parportN} can
912 be used to use hardware devices connected on the corresponding host
913 parallel port.
914
915 This option can be used several times to simulate up to 3 parallel
916 ports.
917
918 Use @code{-parallel none} to disable all parallel ports.
919
920 @item -monitor @var{dev}
921 Redirect the monitor to host device @var{dev} (same devices as the
922 serial port).
923 The default device is @code{vc} in graphical mode and @code{stdio} in
924 non graphical mode.
925
926 @item -echr numeric_ascii_value
927 Change the escape character used for switching to the monitor when using
928 monitor and serial sharing. The default is @code{0x01} when using the
929 @code{-nographic} option. @code{0x01} is equal to pressing
930 @code{Control-a}. You can select a different character from the ascii
931 control keys where 1 through 26 map to Control-a through Control-z. For
932 instance you could use the either of the following to change the escape
933 character to Control-t.
934 @table @code
935 @item -echr 0x14
936 @item -echr 20
937 @end table
938
939 @item -s
940 Wait gdb connection to port 1234 (@pxref{gdb_usage}).
941 @item -p @var{port}
942 Change gdb connection port. @var{port} can be either a decimal number
943 to specify a TCP port, or a host device (same devices as the serial port).
944 @item -S
945 Do not start CPU at startup (you must type 'c' in the monitor).
946 @item -d
947 Output log in /tmp/qemu.log
948 @item -hdachs @var{c},@var{h},@var{s},[,@var{t}]
949 Force hard disk 0 physical geometry (1 <= @var{c} <= 16383, 1 <=
950 @var{h} <= 16, 1 <= @var{s} <= 63) and optionally force the BIOS
951 translation mode (@var{t}=none, lba or auto). Usually QEMU can guess
952 all those parameters. This option is useful for old MS-DOS disk
953 images.
954
955 @item -L path
956 Set the directory for the BIOS, VGA BIOS and keymaps.
957
958 @item -vga @var{type}
959 Select type of VGA card to emulate. Valid values for @var{type} are
960 @table @code
961 @item cirrus
962 Cirrus Logic GD5446 Video card. All Windows versions starting from
963 Windows 95 should recognize and use this graphic card. For optimal
964 performances, use 16 bit color depth in the guest and the host OS.
965 (This one is the default)
966 @item std
967 Standard VGA card with Bochs VBE extensions. If your guest OS
968 supports the VESA 2.0 VBE extensions (e.g. Windows XP) and if you want
969 to use high resolution modes (>= 1280x1024x16) then you should use
970 this option.
971 @item vmware
972 VMWare SVGA-II compatible adapter. Use it if you have sufficiently
973 recent XFree86/XOrg server or Windows guest with a driver for this
974 card.
975 @end table
976
977 @item -no-acpi
978 Disable ACPI (Advanced Configuration and Power Interface) support. Use
979 it if your guest OS complains about ACPI problems (PC target machine
980 only).
981
982 @item -no-reboot
983 Exit instead of rebooting.
984
985 @item -no-shutdown
986 Don't exit QEMU on guest shutdown, but instead only stop the emulation.
987 This allows for instance switching to monitor to commit changes to the
988 disk image.
989
990 @item -loadvm file
991 Start right away with a saved state (@code{loadvm} in monitor)
992
993 @item -semihosting
994 Enable semihosting syscall emulation (ARM and M68K target machines only).
995
996 On ARM this implements the "Angel" interface.
997 On M68K this implements the "ColdFire GDB" interface used by libgloss.
998
999 Note that this allows guest direct access to the host filesystem,
1000 so should only be used with trusted guest OS.
1001
1002 @item -icount [N|auto]
1003 Enable virtual instruction counter. The virtual cpu will execute one
1004 instruction every 2^N ns of virtual time. If @code{auto} is specified
1005 then the virtual cpu speed will be automatically adjusted to keep virtual
1006 time within a few seconds of real time.
1007
1008 Note that while this option can give deterministic behavior, it does not
1009 provide cycle accurate emulation. Modern CPUs contain superscalar out of
1010 order cores with complex cache hierarchies. The number of instructions
1011 executed often has little or no correlation with actual performance.
1012 @end table
1013
1014 @c man end
1015
1016 @node pcsys_keys
1017 @section Keys
1018
1019 @c man begin OPTIONS
1020
1021 During the graphical emulation, you can use the following keys:
1022 @table @key
1023 @item Ctrl-Alt-f
1024 Toggle full screen
1025
1026 @item Ctrl-Alt-n
1027 Switch to virtual console 'n'. Standard console mappings are:
1028 @table @emph
1029 @item 1
1030 Target system display
1031 @item 2
1032 Monitor
1033 @item 3
1034 Serial port
1035 @end table
1036
1037 @item Ctrl-Alt
1038 Toggle mouse and keyboard grab.
1039 @end table
1040
1041 In the virtual consoles, you can use @key{Ctrl-Up}, @key{Ctrl-Down},
1042 @key{Ctrl-PageUp} and @key{Ctrl-PageDown} to move in the back log.
1043
1044 During emulation, if you are using the @option{-nographic} option, use
1045 @key{Ctrl-a h} to get terminal commands:
1046
1047 @table @key
1048 @item Ctrl-a h
1049 Print this help
1050 @item Ctrl-a x
1051 Exit emulator
1052 @item Ctrl-a s
1053 Save disk data back to file (if -snapshot)
1054 @item Ctrl-a t
1055 toggle console timestamps
1056 @item Ctrl-a b
1057 Send break (magic sysrq in Linux)
1058 @item Ctrl-a c
1059 Switch between console and monitor
1060 @item Ctrl-a Ctrl-a
1061 Send Ctrl-a
1062 @end table
1063 @c man end
1064
1065 @ignore
1066
1067 @c man begin SEEALSO
1068 The HTML documentation of QEMU for more precise information and Linux
1069 user mode emulator invocation.
1070 @c man end
1071
1072 @c man begin AUTHOR
1073 Fabrice Bellard
1074 @c man end
1075
1076 @end ignore
1077
1078 @node pcsys_monitor
1079 @section QEMU Monitor
1080
1081 The QEMU monitor is used to give complex commands to the QEMU
1082 emulator. You can use it to:
1083
1084 @itemize @minus
1085
1086 @item
1087 Remove or insert removable media images
1088 (such as CD-ROM or floppies).
1089
1090 @item
1091 Freeze/unfreeze the Virtual Machine (VM) and save or restore its state
1092 from a disk file.
1093
1094 @item Inspect the VM state without an external debugger.
1095
1096 @end itemize
1097
1098 @subsection Commands
1099
1100 The following commands are available:
1101
1102 @table @option
1103
1104 @item help or ? [@var{cmd}]
1105 Show the help for all commands or just for command @var{cmd}.
1106
1107 @item commit
1108 Commit changes to the disk images (if -snapshot is used).
1109
1110 @item info @var{subcommand}
1111 Show various information about the system state.
1112
1113 @table @option
1114 @item info network
1115 show the various VLANs and the associated devices
1116 @item info block
1117 show the block devices
1118 @item info registers
1119 show the cpu registers
1120 @item info history
1121 show the command line history
1122 @item info pci
1123 show emulated PCI device
1124 @item info usb
1125 show USB devices plugged on the virtual USB hub
1126 @item info usbhost
1127 show all USB host devices
1128 @item info capture
1129 show information about active capturing
1130 @item info snapshots
1131 show list of VM snapshots
1132 @item info mice
1133 show which guest mouse is receiving events
1134 @end table
1135
1136 @item q or quit
1137 Quit the emulator.
1138
1139 @item eject [-f] @var{device}
1140 Eject a removable medium (use -f to force it).
1141
1142 @item change @var{device} @var{setting}
1143
1144 Change the configuration of a device.
1145
1146 @table @option
1147 @item change @var{diskdevice} @var{filename}
1148 Change the medium for a removable disk device to point to @var{filename}. eg
1149
1150 @example
1151 (qemu) change ide1-cd0 /path/to/some.iso
1152 @end example
1153
1154 @item change vnc @var{display},@var{options}
1155 Change the configuration of the VNC server. The valid syntax for @var{display}
1156 and @var{options} are described at @ref{sec_invocation}. eg
1157
1158 @example
1159 (qemu) change vnc localhost:1
1160 @end example
1161
1162 @item change vnc password
1163
1164 Change the password associated with the VNC server. The monitor will prompt for
1165 the new password to be entered. VNC passwords are only significant upto 8 letters.
1166 eg.
1167
1168 @example
1169 (qemu) change vnc password
1170 Password: ********
1171 @end example
1172
1173 @end table
1174
1175 @item screendump @var{filename}
1176 Save screen into PPM image @var{filename}.
1177
1178 @item mouse_move @var{dx} @var{dy} [@var{dz}]
1179 Move the active mouse to the specified coordinates @var{dx} @var{dy}
1180 with optional scroll axis @var{dz}.
1181
1182 @item mouse_button @var{val}
1183 Change the active mouse button state @var{val} (1=L, 2=M, 4=R).
1184
1185 @item mouse_set @var{index}
1186 Set which mouse device receives events at given @var{index}, index
1187 can be obtained with
1188 @example
1189 info mice
1190 @end example
1191
1192 @item wavcapture @var{filename} [@var{frequency} [@var{bits} [@var{channels}]]]
1193 Capture audio into @var{filename}. Using sample rate @var{frequency}
1194 bits per sample @var{bits} and number of channels @var{channels}.
1195
1196 Defaults:
1197 @itemize @minus
1198 @item Sample rate = 44100 Hz - CD quality
1199 @item Bits = 16
1200 @item Number of channels = 2 - Stereo
1201 @end itemize
1202
1203 @item stopcapture @var{index}
1204 Stop capture with a given @var{index}, index can be obtained with
1205 @example
1206 info capture
1207 @end example
1208
1209 @item log @var{item1}[,...]
1210 Activate logging of the specified items to @file{/tmp/qemu.log}.
1211
1212 @item savevm [@var{tag}|@var{id}]
1213 Create a snapshot of the whole virtual machine. If @var{tag} is
1214 provided, it is used as human readable identifier. If there is already
1215 a snapshot with the same tag or ID, it is replaced. More info at
1216 @ref{vm_snapshots}.
1217
1218 @item loadvm @var{tag}|@var{id}
1219 Set the whole virtual machine to the snapshot identified by the tag
1220 @var{tag} or the unique snapshot ID @var{id}.
1221
1222 @item delvm @var{tag}|@var{id}
1223 Delete the snapshot identified by @var{tag} or @var{id}.
1224
1225 @item stop
1226 Stop emulation.
1227
1228 @item c or cont
1229 Resume emulation.
1230
1231 @item gdbserver [@var{port}]
1232 Start gdbserver session (default @var{port}=1234)
1233
1234 @item x/fmt @var{addr}
1235 Virtual memory dump starting at @var{addr}.
1236
1237 @item xp /@var{fmt} @var{addr}
1238 Physical memory dump starting at @var{addr}.
1239
1240 @var{fmt} is a format which tells the command how to format the
1241 data. Its syntax is: @option{/@{count@}@{format@}@{size@}}
1242
1243 @table @var
1244 @item count
1245 is the number of items to be dumped.
1246
1247 @item format
1248 can be x (hex), d (signed decimal), u (unsigned decimal), o (octal),
1249 c (char) or i (asm instruction).
1250
1251 @item size
1252 can be b (8 bits), h (16 bits), w (32 bits) or g (64 bits). On x86,
1253 @code{h} or @code{w} can be specified with the @code{i} format to
1254 respectively select 16 or 32 bit code instruction size.
1255
1256 @end table
1257
1258 Examples:
1259 @itemize
1260 @item
1261 Dump 10 instructions at the current instruction pointer:
1262 @example
1263 (qemu) x/10i $eip
1264 0x90107063: ret
1265 0x90107064: sti
1266 0x90107065: lea 0x0(%esi,1),%esi
1267 0x90107069: lea 0x0(%edi,1),%edi
1268 0x90107070: ret
1269 0x90107071: jmp 0x90107080
1270 0x90107073: nop
1271 0x90107074: nop
1272 0x90107075: nop
1273 0x90107076: nop
1274 @end example
1275
1276 @item
1277 Dump 80 16 bit values at the start of the video memory.
1278 @smallexample
1279 (qemu) xp/80hx 0xb8000
1280 0x000b8000: 0x0b50 0x0b6c 0x0b65 0x0b78 0x0b38 0x0b36 0x0b2f 0x0b42
1281 0x000b8010: 0x0b6f 0x0b63 0x0b68 0x0b73 0x0b20 0x0b56 0x0b47 0x0b41
1282 0x000b8020: 0x0b42 0x0b69 0x0b6f 0x0b73 0x0b20 0x0b63 0x0b75 0x0b72
1283 0x000b8030: 0x0b72 0x0b65 0x0b6e 0x0b74 0x0b2d 0x0b63 0x0b76 0x0b73
1284 0x000b8040: 0x0b20 0x0b30 0x0b35 0x0b20 0x0b4e 0x0b6f 0x0b76 0x0b20
1285 0x000b8050: 0x0b32 0x0b30 0x0b30 0x0b33 0x0720 0x0720 0x0720 0x0720
1286 0x000b8060: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
1287 0x000b8070: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
1288 0x000b8080: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
1289 0x000b8090: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
1290 @end smallexample
1291 @end itemize
1292
1293 @item p or print/@var{fmt} @var{expr}
1294
1295 Print expression value. Only the @var{format} part of @var{fmt} is
1296 used.
1297
1298 @item sendkey @var{keys}
1299
1300 Send @var{keys} to the emulator. @var{keys} could be the name of the
1301 key or @code{#} followed by the raw value in either decimal or hexadecimal
1302 format. Use @code{-} to press several keys simultaneously. Example:
1303 @example
1304 sendkey ctrl-alt-f1
1305 @end example
1306
1307 This command is useful to send keys that your graphical user interface
1308 intercepts at low level, such as @code{ctrl-alt-f1} in X Window.
1309
1310 @item system_reset
1311
1312 Reset the system.
1313
1314 @item boot_set @var{bootdevicelist}
1315
1316 Define new values for the boot device list. Those values will override
1317 the values specified on the command line through the @code{-boot} option.
1318
1319 The values that can be specified here depend on the machine type, but are
1320 the same that can be specified in the @code{-boot} command line option.
1321
1322 @item usb_add @var{devname}
1323
1324 Add the USB device @var{devname}. For details of available devices see
1325 @ref{usb_devices}
1326
1327 @item usb_del @var{devname}
1328
1329 Remove the USB device @var{devname} from the QEMU virtual USB
1330 hub. @var{devname} has the syntax @code{bus.addr}. Use the monitor
1331 command @code{info usb} to see the devices you can remove.
1332
1333 @end table
1334
1335 @subsection Integer expressions
1336
1337 The monitor understands integers expressions for every integer
1338 argument. You can use register names to get the value of specifics
1339 CPU registers by prefixing them with @emph{$}.
1340
1341 @node disk_images
1342 @section Disk Images
1343
1344 Since version 0.6.1, QEMU supports many disk image formats, including
1345 growable disk images (their size increase as non empty sectors are
1346 written), compressed and encrypted disk images. Version 0.8.3 added
1347 the new qcow2 disk image format which is essential to support VM
1348 snapshots.
1349
1350 @menu
1351 * disk_images_quickstart:: Quick start for disk image creation
1352 * disk_images_snapshot_mode:: Snapshot mode
1353 * vm_snapshots:: VM snapshots
1354 * qemu_img_invocation:: qemu-img Invocation
1355 * qemu_nbd_invocation:: qemu-nbd Invocation
1356 * host_drives:: Using host drives
1357 * disk_images_fat_images:: Virtual FAT disk images
1358 * disk_images_nbd:: NBD access
1359 @end menu
1360
1361 @node disk_images_quickstart
1362 @subsection Quick start for disk image creation
1363
1364 You can create a disk image with the command:
1365 @example
1366 qemu-img create myimage.img mysize
1367 @end example
1368 where @var{myimage.img} is the disk image filename and @var{mysize} is its
1369 size in kilobytes. You can add an @code{M} suffix to give the size in
1370 megabytes and a @code{G} suffix for gigabytes.
1371
1372 See @ref{qemu_img_invocation} for more information.
1373
1374 @node disk_images_snapshot_mode
1375 @subsection Snapshot mode
1376
1377 If you use the option @option{-snapshot}, all disk images are
1378 considered as read only. When sectors in written, they are written in
1379 a temporary file created in @file{/tmp}. You can however force the
1380 write back to the raw disk images by using the @code{commit} monitor
1381 command (or @key{C-a s} in the serial console).
1382
1383 @node vm_snapshots
1384 @subsection VM snapshots
1385
1386 VM snapshots are snapshots of the complete virtual machine including
1387 CPU state, RAM, device state and the content of all the writable
1388 disks. In order to use VM snapshots, you must have at least one non
1389 removable and writable block device using the @code{qcow2} disk image
1390 format. Normally this device is the first virtual hard drive.
1391
1392 Use the monitor command @code{savevm} to create a new VM snapshot or
1393 replace an existing one. A human readable name can be assigned to each
1394 snapshot in addition to its numerical ID.
1395
1396 Use @code{loadvm} to restore a VM snapshot and @code{delvm} to remove
1397 a VM snapshot. @code{info snapshots} lists the available snapshots
1398 with their associated information:
1399
1400 @example
1401 (qemu) info snapshots
1402 Snapshot devices: hda
1403 Snapshot list (from hda):
1404 ID TAG VM SIZE DATE VM CLOCK
1405 1 start 41M 2006-08-06 12:38:02 00:00:14.954
1406 2 40M 2006-08-06 12:43:29 00:00:18.633
1407 3 msys 40M 2006-08-06 12:44:04 00:00:23.514
1408 @end example
1409
1410 A VM snapshot is made of a VM state info (its size is shown in
1411 @code{info snapshots}) and a snapshot of every writable disk image.
1412 The VM state info is stored in the first @code{qcow2} non removable
1413 and writable block device. The disk image snapshots are stored in
1414 every disk image. The size of a snapshot in a disk image is difficult
1415 to evaluate and is not shown by @code{info snapshots} because the
1416 associated disk sectors are shared among all the snapshots to save
1417 disk space (otherwise each snapshot would need a full copy of all the
1418 disk images).
1419
1420 When using the (unrelated) @code{-snapshot} option
1421 (@ref{disk_images_snapshot_mode}), you can always make VM snapshots,
1422 but they are deleted as soon as you exit QEMU.
1423
1424 VM snapshots currently have the following known limitations:
1425 @itemize
1426 @item
1427 They cannot cope with removable devices if they are removed or
1428 inserted after a snapshot is done.
1429 @item
1430 A few device drivers still have incomplete snapshot support so their
1431 state is not saved or restored properly (in particular USB).
1432 @end itemize
1433
1434 @node qemu_img_invocation
1435 @subsection @code{qemu-img} Invocation
1436
1437 @include qemu-img.texi
1438
1439 @node qemu_nbd_invocation
1440 @subsection @code{qemu-nbd} Invocation
1441
1442 @include qemu-nbd.texi
1443
1444 @node host_drives
1445 @subsection Using host drives
1446
1447 In addition to disk image files, QEMU can directly access host
1448 devices. We describe here the usage for QEMU version >= 0.8.3.
1449
1450 @subsubsection Linux
1451
1452 On Linux, you can directly use the host device filename instead of a
1453 disk image filename provided you have enough privileges to access
1454 it. For example, use @file{/dev/cdrom} to access to the CDROM or
1455 @file{/dev/fd0} for the floppy.
1456
1457 @table @code
1458 @item CD
1459 You can specify a CDROM device even if no CDROM is loaded. QEMU has
1460 specific code to detect CDROM insertion or removal. CDROM ejection by
1461 the guest OS is supported. Currently only data CDs are supported.
1462 @item Floppy
1463 You can specify a floppy device even if no floppy is loaded. Floppy
1464 removal is currently not detected accurately (if you change floppy
1465 without doing floppy access while the floppy is not loaded, the guest
1466 OS will think that the same floppy is loaded).
1467 @item Hard disks
1468 Hard disks can be used. Normally you must specify the whole disk
1469 (@file{/dev/hdb} instead of @file{/dev/hdb1}) so that the guest OS can
1470 see it as a partitioned disk. WARNING: unless you know what you do, it
1471 is better to only make READ-ONLY accesses to the hard disk otherwise
1472 you may corrupt your host data (use the @option{-snapshot} command
1473 line option or modify the device permissions accordingly).
1474 @end table
1475
1476 @subsubsection Windows
1477
1478 @table @code
1479 @item CD
1480 The preferred syntax is the drive letter (e.g. @file{d:}). The
1481 alternate syntax @file{\\.\d:} is supported. @file{/dev/cdrom} is
1482 supported as an alias to the first CDROM drive.
1483
1484 Currently there is no specific code to handle removable media, so it
1485 is better to use the @code{change} or @code{eject} monitor commands to
1486 change or eject media.
1487 @item Hard disks
1488 Hard disks can be used with the syntax: @file{\\.\PhysicalDrive@var{N}}
1489 where @var{N} is the drive number (0 is the first hard disk).
1490
1491 WARNING: unless you know what you do, it is better to only make
1492 READ-ONLY accesses to the hard disk otherwise you may corrupt your
1493 host data (use the @option{-snapshot} command line so that the
1494 modifications are written in a temporary file).
1495 @end table
1496
1497
1498 @subsubsection Mac OS X
1499
1500 @file{/dev/cdrom} is an alias to the first CDROM.
1501
1502 Currently there is no specific code to handle removable media, so it
1503 is better to use the @code{change} or @code{eject} monitor commands to
1504 change or eject media.
1505
1506 @node disk_images_fat_images
1507 @subsection Virtual FAT disk images
1508
1509 QEMU can automatically create a virtual FAT disk image from a
1510 directory tree. In order to use it, just type:
1511
1512 @example
1513 qemu linux.img -hdb fat:/my_directory
1514 @end example
1515
1516 Then you access access to all the files in the @file{/my_directory}
1517 directory without having to copy them in a disk image or to export
1518 them via SAMBA or NFS. The default access is @emph{read-only}.
1519
1520 Floppies can be emulated with the @code{:floppy:} option:
1521
1522 @example
1523 qemu linux.img -fda fat:floppy:/my_directory
1524 @end example
1525
1526 A read/write support is available for testing (beta stage) with the
1527 @code{:rw:} option:
1528
1529 @example
1530 qemu linux.img -fda fat:floppy:rw:/my_directory
1531 @end example
1532
1533 What you should @emph{never} do:
1534 @itemize
1535 @item use non-ASCII filenames ;
1536 @item use "-snapshot" together with ":rw:" ;
1537 @item expect it to work when loadvm'ing ;
1538 @item write to the FAT directory on the host system while accessing it with the guest system.
1539 @end itemize
1540
1541 @node disk_images_nbd
1542 @subsection NBD access
1543
1544 QEMU can access directly to block device exported using the Network Block Device
1545 protocol.
1546
1547 @example
1548 qemu linux.img -hdb nbd:my_nbd_server.mydomain.org:1024
1549 @end example
1550
1551 If the NBD server is located on the same host, you can use an unix socket instead
1552 of an inet socket:
1553
1554 @example
1555 qemu linux.img -hdb nbd:unix:/tmp/my_socket
1556 @end example
1557
1558 In this case, the block device must be exported using qemu-nbd:
1559
1560 @example
1561 qemu-nbd --socket=/tmp/my_socket my_disk.qcow2
1562 @end example
1563
1564 The use of qemu-nbd allows to share a disk between several guests:
1565 @example
1566 qemu-nbd --socket=/tmp/my_socket --share=2 my_disk.qcow2
1567 @end example
1568
1569 and then you can use it with two guests:
1570 @example
1571 qemu linux1.img -hdb nbd:unix:/tmp/my_socket
1572 qemu linux2.img -hdb nbd:unix:/tmp/my_socket
1573 @end example
1574
1575 @node pcsys_network
1576 @section Network emulation
1577
1578 QEMU can simulate several network cards (PCI or ISA cards on the PC
1579 target) and can connect them to an arbitrary number of Virtual Local
1580 Area Networks (VLANs). Host TAP devices can be connected to any QEMU
1581 VLAN. VLAN can be connected between separate instances of QEMU to
1582 simulate large networks. For simpler usage, a non privileged user mode
1583 network stack can replace the TAP device to have a basic network
1584 connection.
1585
1586 @subsection VLANs
1587
1588 QEMU simulates several VLANs. A VLAN can be symbolised as a virtual
1589 connection between several network devices. These devices can be for
1590 example QEMU virtual Ethernet cards or virtual Host ethernet devices
1591 (TAP devices).
1592
1593 @subsection Using TAP network interfaces
1594
1595 This is the standard way to connect QEMU to a real network. QEMU adds
1596 a virtual network device on your host (called @code{tapN}), and you
1597 can then configure it as if it was a real ethernet card.
1598
1599 @subsubsection Linux host
1600
1601 As an example, you can download the @file{linux-test-xxx.tar.gz}
1602 archive and copy the script @file{qemu-ifup} in @file{/etc} and
1603 configure properly @code{sudo} so that the command @code{ifconfig}
1604 contained in @file{qemu-ifup} can be executed as root. You must verify
1605 that your host kernel supports the TAP network interfaces: the
1606 device @file{/dev/net/tun} must be present.
1607
1608 See @ref{sec_invocation} to have examples of command lines using the
1609 TAP network interfaces.
1610
1611 @subsubsection Windows host
1612
1613 There is a virtual ethernet driver for Windows 2000/XP systems, called
1614 TAP-Win32. But it is not included in standard QEMU for Windows,
1615 so you will need to get it separately. It is part of OpenVPN package,
1616 so download OpenVPN from : @url{http://openvpn.net/}.
1617
1618 @subsection Using the user mode network stack
1619
1620 By using the option @option{-net user} (default configuration if no
1621 @option{-net} option is specified), QEMU uses a completely user mode
1622 network stack (you don't need root privilege to use the virtual
1623 network). The virtual network configuration is the following:
1624
1625 @example
1626
1627 QEMU VLAN <------> Firewall/DHCP server <-----> Internet
1628 | (10.0.2.2)
1629 |
1630 ----> DNS server (10.0.2.3)
1631 |
1632 ----> SMB server (10.0.2.4)
1633 @end example
1634
1635 The QEMU VM behaves as if it was behind a firewall which blocks all
1636 incoming connections. You can use a DHCP client to automatically
1637 configure the network in the QEMU VM. The DHCP server assign addresses
1638 to the hosts starting from 10.0.2.15.
1639
1640 In order to check that the user mode network is working, you can ping
1641 the address 10.0.2.2 and verify that you got an address in the range
1642 10.0.2.x from the QEMU virtual DHCP server.
1643
1644 Note that @code{ping} is not supported reliably to the internet as it
1645 would require root privileges. It means you can only ping the local
1646 router (10.0.2.2).
1647
1648 When using the built-in TFTP server, the router is also the TFTP
1649 server.
1650
1651 When using the @option{-redir} option, TCP or UDP connections can be
1652 redirected from the host to the guest. It allows for example to
1653 redirect X11, telnet or SSH connections.
1654
1655 @subsection Connecting VLANs between QEMU instances
1656
1657 Using the @option{-net socket} option, it is possible to make VLANs
1658 that span several QEMU instances. See @ref{sec_invocation} to have a
1659 basic example.
1660
1661 @node direct_linux_boot
1662 @section Direct Linux Boot
1663
1664 This section explains how to launch a Linux kernel inside QEMU without
1665 having to make a full bootable image. It is very useful for fast Linux
1666 kernel testing.
1667
1668 The syntax is:
1669 @example
1670 qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img -append "root=/dev/hda"
1671 @end example
1672
1673 Use @option{-kernel} to provide the Linux kernel image and
1674 @option{-append} to give the kernel command line arguments. The
1675 @option{-initrd} option can be used to provide an INITRD image.
1676
1677 When using the direct Linux boot, a disk image for the first hard disk
1678 @file{hda} is required because its boot sector is used to launch the
1679 Linux kernel.
1680
1681 If you do not need graphical output, you can disable it and redirect
1682 the virtual serial port and the QEMU monitor to the console with the
1683 @option{-nographic} option. The typical command line is:
1684 @example
1685 qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1686 -append "root=/dev/hda console=ttyS0" -nographic
1687 @end example
1688
1689 Use @key{Ctrl-a c} to switch between the serial console and the
1690 monitor (@pxref{pcsys_keys}).
1691
1692 @node pcsys_usb
1693 @section USB emulation
1694
1695 QEMU emulates a PCI UHCI USB controller. You can virtually plug
1696 virtual USB devices or real host USB devices (experimental, works only
1697 on Linux hosts). Qemu will automatically create and connect virtual USB hubs
1698 as necessary to connect multiple USB devices.
1699
1700 @menu
1701 * usb_devices::
1702 * host_usb_devices::
1703 @end menu
1704 @node usb_devices
1705 @subsection Connecting USB devices
1706
1707 USB devices can be connected with the @option{-usbdevice} commandline option
1708 or the @code{usb_add} monitor command. Available devices are:
1709
1710 @table @code
1711 @item mouse
1712 Virtual Mouse. This will override the PS/2 mouse emulation when activated.
1713 @item tablet
1714 Pointer device that uses absolute coordinates (like a touchscreen).
1715 This means qemu is able to report the mouse position without having
1716 to grab the mouse. Also overrides the PS/2 mouse emulation when activated.
1717 @item disk:@var{file}
1718 Mass storage device based on @var{file} (@pxref{disk_images})
1719 @item host:@var{bus.addr}
1720 Pass through the host device identified by @var{bus.addr}
1721 (Linux only)
1722 @item host:@var{vendor_id:product_id}
1723 Pass through the host device identified by @var{vendor_id:product_id}
1724 (Linux only)
1725 @item wacom-tablet
1726 Virtual Wacom PenPartner tablet. This device is similar to the @code{tablet}
1727 above but it can be used with the tslib library because in addition to touch
1728 coordinates it reports touch pressure.
1729 @item keyboard
1730 Standard USB keyboard. Will override the PS/2 keyboard (if present).
1731 @item serial:[vendorid=@var{vendor_id}][,product_id=@var{product_id}]:@var{dev}
1732 Serial converter. This emulates an FTDI FT232BM chip connected to host character
1733 device @var{dev}. The available character devices are the same as for the
1734 @code{-serial} option. The @code{vendorid} and @code{productid} options can be
1735 used to override the default 0403:6001. For instance,
1736 @example
1737 usb_add serial:productid=FA00:tcp:192.168.0.2:4444
1738 @end example
1739 will connect to tcp port 4444 of ip 192.168.0.2, and plug that to the virtual
1740 serial converter, faking a Matrix Orbital LCD Display (USB ID 0403:FA00).
1741 @item braille
1742 Braille device. This will use BrlAPI to display the braille output on a real
1743 or fake device.
1744 @item net:@var{options}
1745 Network adapter that supports CDC ethernet and RNDIS protocols. @var{options}
1746 specifies NIC options as with @code{-net nic,}@var{options} (see description).
1747 For instance, user-mode networking can be used with
1748 @example
1749 qemu [...OPTIONS...] -net user,vlan=0 -usbdevice net:vlan=0
1750 @end example
1751 Currently this cannot be used in machines that support PCI NICs.
1752 @end table
1753
1754 @node host_usb_devices
1755 @subsection Using host USB devices on a Linux host
1756
1757 WARNING: this is an experimental feature. QEMU will slow down when
1758 using it. USB devices requiring real time streaming (i.e. USB Video
1759 Cameras) are not supported yet.
1760
1761 @enumerate
1762 @item If you use an early Linux 2.4 kernel, verify that no Linux driver
1763 is actually using the USB device. A simple way to do that is simply to
1764 disable the corresponding kernel module by renaming it from @file{mydriver.o}
1765 to @file{mydriver.o.disabled}.
1766
1767 @item Verify that @file{/proc/bus/usb} is working (most Linux distributions should enable it by default). You should see something like that:
1768 @example
1769 ls /proc/bus/usb
1770 001 devices drivers
1771 @end example
1772
1773 @item Since only root can access to the USB devices directly, you can either launch QEMU as root or change the permissions of the USB devices you want to use. For testing, the following suffices:
1774 @example
1775 chown -R myuid /proc/bus/usb
1776 @end example
1777
1778 @item Launch QEMU and do in the monitor:
1779 @example
1780 info usbhost
1781 Device 1.2, speed 480 Mb/s
1782 Class 00: USB device 1234:5678, USB DISK
1783 @end example
1784 You should see the list of the devices you can use (Never try to use
1785 hubs, it won't work).
1786
1787 @item Add the device in QEMU by using:
1788 @example
1789 usb_add host:1234:5678
1790 @end example
1791
1792 Normally the guest OS should report that a new USB device is
1793 plugged. You can use the option @option{-usbdevice} to do the same.
1794
1795 @item Now you can try to use the host USB device in QEMU.
1796
1797 @end enumerate
1798
1799 When relaunching QEMU, you may have to unplug and plug again the USB
1800 device to make it work again (this is a bug).
1801
1802 @node vnc_security
1803 @section VNC security
1804
1805 The VNC server capability provides access to the graphical console
1806 of the guest VM across the network. This has a number of security
1807 considerations depending on the deployment scenarios.
1808
1809 @menu
1810 * vnc_sec_none::
1811 * vnc_sec_password::
1812 * vnc_sec_certificate::
1813 * vnc_sec_certificate_verify::
1814 * vnc_sec_certificate_pw::
1815 * vnc_generate_cert::
1816 @end menu
1817 @node vnc_sec_none
1818 @subsection Without passwords
1819
1820 The simplest VNC server setup does not include any form of authentication.
1821 For this setup it is recommended to restrict it to listen on a UNIX domain
1822 socket only. For example
1823
1824 @example
1825 qemu [...OPTIONS...] -vnc unix:/home/joebloggs/.qemu-myvm-vnc
1826 @end example
1827
1828 This ensures that only users on local box with read/write access to that
1829 path can access the VNC server. To securely access the VNC server from a
1830 remote machine, a combination of netcat+ssh can be used to provide a secure
1831 tunnel.
1832
1833 @node vnc_sec_password
1834 @subsection With passwords
1835
1836 The VNC protocol has limited support for password based authentication. Since
1837 the protocol limits passwords to 8 characters it should not be considered
1838 to provide high security. The password can be fairly easily brute-forced by
1839 a client making repeat connections. For this reason, a VNC server using password
1840 authentication should be restricted to only listen on the loopback interface
1841 or UNIX domain sockets. Password ayuthentication is requested with the @code{password}
1842 option, and then once QEMU is running the password is set with the monitor. Until
1843 the monitor is used to set the password all clients will be rejected.
1844
1845 @example
1846 qemu [...OPTIONS...] -vnc :1,password -monitor stdio
1847 (qemu) change vnc password
1848 Password: ********
1849 (qemu)
1850 @end example
1851
1852 @node vnc_sec_certificate
1853 @subsection With x509 certificates
1854
1855 The QEMU VNC server also implements the VeNCrypt extension allowing use of
1856 TLS for encryption of the session, and x509 certificates for authentication.
1857 The use of x509 certificates is strongly recommended, because TLS on its
1858 own is susceptible to man-in-the-middle attacks. Basic x509 certificate
1859 support provides a secure session, but no authentication. This allows any
1860 client to connect, and provides an encrypted session.
1861
1862 @example
1863 qemu [...OPTIONS...] -vnc :1,tls,x509=/etc/pki/qemu -monitor stdio
1864 @end example
1865
1866 In the above example @code{/etc/pki/qemu} should contain at least three files,
1867 @code{ca-cert.pem}, @code{server-cert.pem} and @code{server-key.pem}. Unprivileged
1868 users will want to use a private directory, for example @code{$HOME/.pki/qemu}.
1869 NB the @code{server-key.pem} file should be protected with file mode 0600 to
1870 only be readable by the user owning it.
1871
1872 @node vnc_sec_certificate_verify
1873 @subsection With x509 certificates and client verification
1874
1875 Certificates can also provide a means to authenticate the client connecting.
1876 The server will request that the client provide a certificate, which it will
1877 then validate against the CA certificate. This is a good choice if deploying
1878 in an environment with a private internal certificate authority.
1879
1880 @example
1881 qemu [...OPTIONS...] -vnc :1,tls,x509verify=/etc/pki/qemu -monitor stdio
1882 @end example
1883
1884
1885 @node vnc_sec_certificate_pw
1886 @subsection With x509 certificates, client verification and passwords
1887
1888 Finally, the previous method can be combined with VNC password authentication
1889 to provide two layers of authentication for clients.
1890
1891 @example
1892 qemu [...OPTIONS...] -vnc :1,password,tls,x509verify=/etc/pki/qemu -monitor stdio
1893 (qemu) change vnc password
1894 Password: ********
1895 (qemu)
1896 @end example
1897
1898 @node vnc_generate_cert
1899 @subsection Generating certificates for VNC
1900
1901 The GNU TLS packages provides a command called @code{certtool} which can
1902 be used to generate certificates and keys in PEM format. At a minimum it
1903 is neccessary to setup a certificate authority, and issue certificates to
1904 each server. If using certificates for authentication, then each client
1905 will also need to be issued a certificate. The recommendation is for the
1906 server to keep its certificates in either @code{/etc/pki/qemu} or for
1907 unprivileged users in @code{$HOME/.pki/qemu}.
1908
1909 @menu
1910 * vnc_generate_ca::
1911 * vnc_generate_server::
1912 * vnc_generate_client::
1913 @end menu
1914 @node vnc_generate_ca
1915 @subsubsection Setup the Certificate Authority
1916
1917 This step only needs to be performed once per organization / organizational
1918 unit. First the CA needs a private key. This key must be kept VERY secret
1919 and secure. If this key is compromised the entire trust chain of the certificates
1920 issued with it is lost.
1921
1922 @example
1923 # certtool --generate-privkey > ca-key.pem
1924 @end example
1925
1926 A CA needs to have a public certificate. For simplicity it can be a self-signed
1927 certificate, or one issue by a commercial certificate issuing authority. To
1928 generate a self-signed certificate requires one core piece of information, the
1929 name of the organization.
1930
1931 @example
1932 # cat > ca.info <<EOF
1933 cn = Name of your organization
1934 ca
1935 cert_signing_key
1936 EOF
1937 # certtool --generate-self-signed \
1938 --load-privkey ca-key.pem
1939 --template ca.info \
1940 --outfile ca-cert.pem
1941 @end example
1942
1943 The @code{ca-cert.pem} file should be copied to all servers and clients wishing to utilize
1944 TLS support in the VNC server. The @code{ca-key.pem} must not be disclosed/copied at all.
1945
1946 @node vnc_generate_server
1947 @subsubsection Issuing server certificates
1948
1949 Each server (or host) needs to be issued with a key and certificate. When connecting
1950 the certificate is sent to the client which validates it against the CA certificate.
1951 The core piece of information for a server certificate is the hostname. This should
1952 be the fully qualified hostname that the client will connect with, since the client
1953 will typically also verify the hostname in the certificate. On the host holding the
1954 secure CA private key:
1955
1956 @example
1957 # cat > server.info <<EOF
1958 organization = Name of your organization
1959 cn = server.foo.example.com
1960 tls_www_server
1961 encryption_key
1962 signing_key
1963 EOF
1964 # certtool --generate-privkey > server-key.pem
1965 # certtool --generate-certificate \
1966 --load-ca-certificate ca-cert.pem \
1967 --load-ca-privkey ca-key.pem \
1968 --load-privkey server server-key.pem \
1969 --template server.info \
1970 --outfile server-cert.pem
1971 @end example
1972
1973 The @code{server-key.pem} and @code{server-cert.pem} files should now be securely copied
1974 to the server for which they were generated. The @code{server-key.pem} is security
1975 sensitive and should be kept protected with file mode 0600 to prevent disclosure.
1976
1977 @node vnc_generate_client
1978 @subsubsection Issuing client certificates
1979
1980 If the QEMU VNC server is to use the @code{x509verify} option to validate client
1981 certificates as its authentication mechanism, each client also needs to be issued
1982 a certificate. The client certificate contains enough metadata to uniquely identify
1983 the client, typically organization, state, city, building, etc. On the host holding
1984 the secure CA private key:
1985
1986 @example
1987 # cat > client.info <<EOF
1988 country = GB
1989 state = London
1990 locality = London
1991 organiazation = Name of your organization
1992 cn = client.foo.example.com
1993 tls_www_client
1994 encryption_key
1995 signing_key
1996 EOF
1997 # certtool --generate-privkey > client-key.pem
1998 # certtool --generate-certificate \
1999 --load-ca-certificate ca-cert.pem \
2000 --load-ca-privkey ca-key.pem \
2001 --load-privkey client-key.pem \
2002 --template client.info \
2003 --outfile client-cert.pem
2004 @end example
2005
2006 The @code{client-key.pem} and @code{client-cert.pem} files should now be securely
2007 copied to the client for which they were generated.
2008
2009 @node gdb_usage
2010 @section GDB usage
2011
2012 QEMU has a primitive support to work with gdb, so that you can do
2013 'Ctrl-C' while the virtual machine is running and inspect its state.
2014
2015 In order to use gdb, launch qemu with the '-s' option. It will wait for a
2016 gdb connection:
2017 @example
2018 > qemu -s -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
2019 -append "root=/dev/hda"
2020 Connected to host network interface: tun0
2021 Waiting gdb connection on port 1234
2022 @end example
2023
2024 Then launch gdb on the 'vmlinux' executable:
2025 @example
2026 > gdb vmlinux
2027 @end example
2028
2029 In gdb, connect to QEMU:
2030 @example
2031 (gdb) target remote localhost:1234
2032 @end example
2033
2034 Then you can use gdb normally. For example, type 'c' to launch the kernel:
2035 @example
2036 (gdb) c
2037 @end example
2038
2039 Here are some useful tips in order to use gdb on system code:
2040
2041 @enumerate
2042 @item
2043 Use @code{info reg} to display all the CPU registers.
2044 @item
2045 Use @code{x/10i $eip} to display the code at the PC position.
2046 @item
2047 Use @code{set architecture i8086} to dump 16 bit code. Then use
2048 @code{x/10i $cs*16+$eip} to dump the code at the PC position.
2049 @end enumerate
2050
2051 Advanced debugging options:
2052
2053 The default single stepping behavior is step with the IRQs and timer service routines off. It is set this way because when gdb executes a single step it expects to advance beyond the current instruction. With the IRQs and and timer service routines on, a single step might jump into the one of the interrupt or exception vectors instead of executing the current instruction. This means you may hit the same breakpoint a number of times before executing the instruction gdb wants to have executed. Because there are rare circumstances where you want to single step into an interrupt vector the behavior can be controlled from GDB. There are three commands you can query and set the single step behavior:
2054 @table @code
2055 @item maintenance packet qqemu.sstepbits
2056
2057 This will display the MASK bits used to control the single stepping IE:
2058 @example
2059 (gdb) maintenance packet qqemu.sstepbits
2060 sending: "qqemu.sstepbits"
2061 received: "ENABLE=1,NOIRQ=2,NOTIMER=4"
2062 @end example
2063 @item maintenance packet qqemu.sstep
2064
2065 This will display the current value of the mask used when single stepping IE:
2066 @example
2067 (gdb) maintenance packet qqemu.sstep
2068 sending: "qqemu.sstep"
2069 received: "0x7"
2070 @end example
2071 @item maintenance packet Qqemu.sstep=HEX_VALUE
2072
2073 This will change the single step mask, so if wanted to enable IRQs on the single step, but not timers, you would use:
2074 @example
2075 (gdb) maintenance packet Qqemu.sstep=0x5
2076 sending: "qemu.sstep=0x5"
2077 received: "OK"
2078 @end example
2079 @end table
2080
2081 @node pcsys_os_specific
2082 @section Target OS specific information
2083
2084 @subsection Linux
2085
2086 To have access to SVGA graphic modes under X11, use the @code{vesa} or
2087 the @code{cirrus} X11 driver. For optimal performances, use 16 bit
2088 color depth in the guest and the host OS.
2089
2090 When using a 2.6 guest Linux kernel, you should add the option
2091 @code{clock=pit} on the kernel command line because the 2.6 Linux
2092 kernels make very strict real time clock checks by default that QEMU
2093 cannot simulate exactly.
2094
2095 When using a 2.6 guest Linux kernel, verify that the 4G/4G patch is
2096 not activated because QEMU is slower with this patch. The QEMU
2097 Accelerator Module is also much slower in this case. Earlier Fedora
2098 Core 3 Linux kernel (< 2.6.9-1.724_FC3) were known to incorporate this
2099 patch by default. Newer kernels don't have it.
2100
2101 @subsection Windows
2102
2103 If you have a slow host, using Windows 95 is better as it gives the
2104 best speed. Windows 2000 is also a good choice.
2105
2106 @subsubsection SVGA graphic modes support
2107
2108 QEMU emulates a Cirrus Logic GD5446 Video
2109 card. All Windows versions starting from Windows 95 should recognize
2110 and use this graphic card. For optimal performances, use 16 bit color
2111 depth in the guest and the host OS.
2112
2113 If you are using Windows XP as guest OS and if you want to use high
2114 resolution modes which the Cirrus Logic BIOS does not support (i.e. >=
2115 1280x1024x16), then you should use the VESA VBE virtual graphic card
2116 (option @option{-std-vga}).
2117
2118 @subsubsection CPU usage reduction
2119
2120 Windows 9x does not correctly use the CPU HLT
2121 instruction. The result is that it takes host CPU cycles even when
2122 idle. You can install the utility from
2123 @url{http://www.user.cityline.ru/~maxamn/amnhltm.zip} to solve this
2124 problem. Note that no such tool is needed for NT, 2000 or XP.
2125
2126 @subsubsection Windows 2000 disk full problem
2127
2128 Windows 2000 has a bug which gives a disk full problem during its
2129 installation. When installing it, use the @option{-win2k-hack} QEMU
2130 option to enable a specific workaround. After Windows 2000 is
2131 installed, you no longer need this option (this option slows down the
2132 IDE transfers).
2133
2134 @subsubsection Windows 2000 shutdown
2135
2136 Windows 2000 cannot automatically shutdown in QEMU although Windows 98
2137 can. It comes from the fact that Windows 2000 does not automatically
2138 use the APM driver provided by the BIOS.
2139
2140 In order to correct that, do the following (thanks to Struan
2141 Bartlett): go to the Control Panel => Add/Remove Hardware & Next =>
2142 Add/Troubleshoot a device => Add a new device & Next => No, select the
2143 hardware from a list & Next => NT Apm/Legacy Support & Next => Next
2144 (again) a few times. Now the driver is installed and Windows 2000 now
2145 correctly instructs QEMU to shutdown at the appropriate moment.
2146
2147 @subsubsection Share a directory between Unix and Windows
2148
2149 See @ref{sec_invocation} about the help of the option @option{-smb}.
2150
2151 @subsubsection Windows XP security problem
2152
2153 Some releases of Windows XP install correctly but give a security
2154 error when booting:
2155 @example
2156 A problem is preventing Windows from accurately checking the
2157 license for this computer. Error code: 0x800703e6.
2158 @end example
2159
2160 The workaround is to install a service pack for XP after a boot in safe
2161 mode. Then reboot, and the problem should go away. Since there is no
2162 network while in safe mode, its recommended to download the full
2163 installation of SP1 or SP2 and transfer that via an ISO or using the
2164 vvfat block device ("-hdb fat:directory_which_holds_the_SP").
2165
2166 @subsection MS-DOS and FreeDOS
2167
2168 @subsubsection CPU usage reduction
2169
2170 DOS does not correctly use the CPU HLT instruction. The result is that
2171 it takes host CPU cycles even when idle. You can install the utility
2172 from @url{http://www.vmware.com/software/dosidle210.zip} to solve this
2173 problem.
2174
2175 @node QEMU System emulator for non PC targets
2176 @chapter QEMU System emulator for non PC targets
2177
2178 QEMU is a generic emulator and it emulates many non PC
2179 machines. Most of the options are similar to the PC emulator. The
2180 differences are mentioned in the following sections.
2181
2182 @menu
2183 * QEMU PowerPC System emulator::
2184 * Sparc32 System emulator::
2185 * Sparc64 System emulator::
2186 * MIPS System emulator::
2187 * ARM System emulator::
2188 * ColdFire System emulator::
2189 @end menu
2190
2191 @node QEMU PowerPC System emulator
2192 @section QEMU PowerPC System emulator
2193
2194 Use the executable @file{qemu-system-ppc} to simulate a complete PREP
2195 or PowerMac PowerPC system.
2196
2197 QEMU emulates the following PowerMac peripherals:
2198
2199 @itemize @minus
2200 @item
2201 UniNorth PCI Bridge
2202 @item
2203 PCI VGA compatible card with VESA Bochs Extensions
2204 @item
2205 2 PMAC IDE interfaces with hard disk and CD-ROM support
2206 @item
2207 NE2000 PCI adapters
2208 @item
2209 Non Volatile RAM
2210 @item
2211 VIA-CUDA with ADB keyboard and mouse.
2212 @end itemize
2213
2214 QEMU emulates the following PREP peripherals:
2215
2216 @itemize @minus
2217 @item
2218 PCI Bridge
2219 @item
2220 PCI VGA compatible card with VESA Bochs Extensions
2221 @item
2222 2 IDE interfaces with hard disk and CD-ROM support
2223 @item
2224 Floppy disk
2225 @item
2226 NE2000 network adapters
2227 @item
2228 Serial port
2229 @item
2230 PREP Non Volatile RAM
2231 @item
2232 PC compatible keyboard and mouse.
2233 @end itemize
2234
2235 QEMU uses the Open Hack'Ware Open Firmware Compatible BIOS available at
2236 @url{http://perso.magic.fr/l_indien/OpenHackWare/index.htm}.
2237
2238 @c man begin OPTIONS
2239
2240 The following options are specific to the PowerPC emulation:
2241
2242 @table @option
2243
2244 @item -g WxH[xDEPTH]
2245
2246 Set the initial VGA graphic mode. The default is 800x600x15.
2247
2248 @end table
2249
2250 @c man end
2251
2252
2253 More information is available at
2254 @url{http://perso.magic.fr/l_indien/qemu-ppc/}.
2255
2256 @node Sparc32 System emulator
2257 @section Sparc32 System emulator
2258
2259 Use the executable @file{qemu-system-sparc} to simulate a SPARCstation
2260 5, SPARCstation 10, SPARCstation 20, SPARCserver 600MP (sun4m
2261 architecture), SPARCstation 2 (sun4c architecture), SPARCserver 1000,
2262 or SPARCcenter 2000 (sun4d architecture). The emulation is somewhat
2263 complete. SMP up to 16 CPUs is supported, but Linux limits the number
2264 of usable CPUs to 4.
2265
2266 QEMU emulates the following sun4m/sun4d peripherals:
2267
2268 @itemize @minus
2269 @item
2270 IOMMU or IO-UNITs
2271 @item
2272 TCX Frame buffer
2273 @item
2274 Lance (Am7990) Ethernet
2275 @item
2276 Non Volatile RAM M48T08
2277 @item
2278 Slave I/O: timers, interrupt controllers, Zilog serial ports, keyboard
2279 and power/reset logic
2280 @item
2281 ESP SCSI controller with hard disk and CD-ROM support
2282 @item
2283 Floppy drive (not on SS-600MP)
2284 @item
2285 CS4231 sound device (only on SS-5, not working yet)
2286 @end itemize
2287
2288 The number of peripherals is fixed in the architecture. Maximum
2289 memory size depends on the machine type, for SS-5 it is 256MB and for
2290 others 2047MB.
2291
2292 Since version 0.8.2, QEMU uses OpenBIOS
2293 @url{http://www.openbios.org/}. OpenBIOS is a free (GPL v2) portable
2294 firmware implementation. The goal is to implement a 100% IEEE
2295 1275-1994 (referred to as Open Firmware) compliant firmware.
2296
2297 A sample Linux 2.6 series kernel and ram disk image are available on
2298 the QEMU web site. Please note that currently NetBSD, OpenBSD or
2299 Solaris kernels don't work.
2300
2301 @c man begin OPTIONS
2302
2303 The following options are specific to the Sparc32 emulation:
2304
2305 @table @option
2306
2307 @item -g WxHx[xDEPTH]
2308
2309 Set the initial TCX graphic mode. The default is 1024x768x8, currently
2310 the only other possible mode is 1024x768x24.
2311
2312 @item -prom-env string
2313
2314 Set OpenBIOS variables in NVRAM, for example:
2315
2316 @example
2317 qemu-system-sparc -prom-env 'auto-boot?=false' \
2318 -prom-env 'boot-device=sd(0,2,0):d' -prom-env 'boot-args=linux single'
2319 @end example
2320
2321 @item -M [SS-5|SS-10|SS-20|SS-600MP|SS-2|SS-1000|SS-2000]
2322
2323 Set the emulated machine type. Default is SS-5.
2324
2325 @end table
2326
2327 @c man end
2328
2329 @node Sparc64 System emulator
2330 @section Sparc64 System emulator
2331
2332 Use the executable @file{qemu-system-sparc64} to simulate a Sun4u or
2333 Sun4v machine. The emulator is not usable for anything yet.
2334
2335 QEMU emulates the following peripherals:
2336
2337 @itemize @minus
2338 @item
2339 UltraSparc IIi APB PCI Bridge
2340 @item
2341 PCI VGA compatible card with VESA Bochs Extensions
2342 @item
2343 Non Volatile RAM M48T59
2344 @item
2345 PC-compatible serial ports
2346 @item
2347 2 PCI IDE interfaces with hard disk and CD-ROM support
2348 @end itemize
2349
2350 @c man begin OPTIONS
2351
2352 The following options are specific to the Sparc64 emulation:
2353
2354 @table @option
2355
2356 @item -M [sun4u|sun4v]
2357
2358 Set the emulated machine type. The default is sun4u.
2359
2360 @end table
2361
2362 @c man end
2363
2364 @node MIPS System emulator
2365 @section MIPS System emulator
2366
2367 Four executables cover simulation of 32 and 64-bit MIPS systems in
2368 both endian options, @file{qemu-system-mips}, @file{qemu-system-mipsel}
2369 @file{qemu-system-mips64} and @file{qemu-system-mips64el}.
2370 Five different machine types are emulated:
2371
2372 @itemize @minus
2373 @item
2374 A generic ISA PC-like machine "mips"
2375 @item
2376 The MIPS Malta prototype board "malta"
2377 @item
2378 An ACER Pica "pica61". This machine needs the 64-bit emulator.
2379 @item
2380 MIPS emulator pseudo board "mipssim"
2381 @item
2382 A MIPS Magnum R4000 machine "magnum". This machine needs the 64-bit emulator.
2383 @end itemize
2384
2385 The generic emulation is supported by Debian 'Etch' and is able to
2386 install Debian into a virtual disk image. The following devices are
2387 emulated:
2388
2389 @itemize @minus
2390 @item
2391 A range of MIPS CPUs, default is the 24Kf
2392 @item
2393 PC style serial port
2394 @item
2395 PC style IDE disk
2396 @item
2397 NE2000 network card
2398 @end itemize
2399
2400 The Malta emulation supports the following devices:
2401
2402 @itemize @minus
2403 @item
2404 Core board with MIPS 24Kf CPU and Galileo system controller
2405 @item
2406 PIIX4 PCI/USB/SMbus controller
2407 @item
2408 The Multi-I/O chip's serial device
2409 @item
2410 PCnet32 PCI network card
2411 @item
2412 Malta FPGA serial device
2413 @item
2414 Cirrus VGA graphics card
2415 @end itemize
2416
2417 The ACER Pica emulation supports:
2418
2419 @itemize @minus
2420 @item
2421 MIPS R4000 CPU
2422 @item
2423 PC-style IRQ and DMA controllers
2424 @item
2425 PC Keyboard
2426 @item
2427 IDE controller
2428 @end itemize
2429
2430 The mipssim pseudo board emulation provides an environment similiar
2431 to what the proprietary MIPS emulator uses for running Linux.
2432 It supports:
2433
2434 @itemize @minus
2435 @item
2436 A range of MIPS CPUs, default is the 24Kf
2437 @item
2438 PC style serial port
2439 @item
2440 MIPSnet network emulation
2441 @end itemize
2442
2443 The MIPS Magnum R4000 emulation supports:
2444
2445 @itemize @minus
2446 @item
2447 MIPS R4000 CPU
2448 @item
2449 PC-style IRQ controller
2450 @item
2451 PC Keyboard
2452 @item
2453 SCSI controller
2454 @item
2455 G364 framebuffer
2456 @end itemize
2457
2458
2459 @node ARM System emulator
2460 @section ARM System emulator
2461
2462 Use the executable @file{qemu-system-arm} to simulate a ARM
2463 machine. The ARM Integrator/CP board is emulated with the following
2464 devices:
2465
2466 @itemize @minus
2467 @item
2468 ARM926E, ARM1026E, ARM946E, ARM1136 or Cortex-A8 CPU
2469 @item
2470 Two PL011 UARTs
2471 @item
2472 SMC 91c111 Ethernet adapter
2473 @item
2474 PL110 LCD controller
2475 @item
2476 PL050 KMI with PS/2 keyboard and mouse.
2477 @item
2478 PL181 MultiMedia Card Interface with SD card.
2479 @end itemize
2480
2481 The ARM Versatile baseboard is emulated with the following devices:
2482
2483 @itemize @minus
2484 @item
2485 ARM926E, ARM1136 or Cortex-A8 CPU
2486 @item
2487 PL190 Vectored Interrupt Controller
2488 @item
2489 Four PL011 UARTs
2490 @item
2491 SMC 91c111 Ethernet adapter
2492 @item
2493 PL110 LCD controller
2494 @item
2495 PL050 KMI with PS/2 keyboard and mouse.
2496 @item
2497 PCI host bridge. Note the emulated PCI bridge only provides access to
2498 PCI memory space. It does not provide access to PCI IO space.
2499 This means some devices (eg. ne2k_pci NIC) are not usable, and others
2500 (eg. rtl8139 NIC) are only usable when the guest drivers use the memory
2501 mapped control registers.
2502 @item
2503 PCI OHCI USB controller.
2504 @item
2505 LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices.
2506 @item
2507 PL181 MultiMedia Card Interface with SD card.
2508 @end itemize
2509
2510 The ARM RealView Emulation baseboard is emulated with the following devices:
2511
2512 @itemize @minus
2513 @item
2514 ARM926E, ARM1136, ARM11MPCORE(x4) or Cortex-A8 CPU
2515 @item
2516 ARM AMBA Generic/Distributed Interrupt Controller
2517 @item
2518 Four PL011 UARTs
2519 @item
2520 SMC 91c111 Ethernet adapter
2521 @item
2522 PL110 LCD controller
2523 @item
2524 PL050 KMI with PS/2 keyboard and mouse
2525 @item
2526 PCI host bridge
2527 @item
2528 PCI OHCI USB controller
2529 @item
2530 LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices
2531 @item
2532 PL181 MultiMedia Card Interface with SD card.
2533 @end itemize
2534
2535 The XScale-based clamshell PDA models ("Spitz", "Akita", "Borzoi"
2536 and "Terrier") emulation includes the following peripherals:
2537
2538 @itemize @minus
2539 @item
2540 Intel PXA270 System-on-chip (ARM V5TE core)
2541 @item
2542 NAND Flash memory
2543 @item
2544 IBM/Hitachi DSCM microdrive in a PXA PCMCIA slot - not in "Akita"
2545 @item
2546 On-chip OHCI USB controller
2547 @item
2548 On-chip LCD controller
2549 @item
2550 On-chip Real Time Clock
2551 @item
2552 TI ADS7846 touchscreen controller on SSP bus
2553 @item
2554 Maxim MAX1111 analog-digital converter on I@math{^2}C bus
2555 @item
2556 GPIO-connected keyboard controller and LEDs
2557 @item
2558 Secure Digital card connected to PXA MMC/SD host
2559 @item
2560 Three on-chip UARTs
2561 @item
2562 WM8750 audio CODEC on I@math{^2}C and I@math{^2}S busses
2563 @end itemize
2564
2565 The Palm Tungsten|E PDA (codename "Cheetah") emulation includes the
2566 following elements:
2567
2568 @itemize @minus
2569 @item
2570 Texas Instruments OMAP310 System-on-chip (ARM 925T core)
2571 @item
2572 ROM and RAM memories (ROM firmware image can be loaded with -option-rom)
2573 @item
2574 On-chip LCD controller
2575 @item
2576 On-chip Real Time Clock
2577 @item
2578 TI TSC2102i touchscreen controller / analog-digital converter / Audio
2579 CODEC, connected through MicroWire and I@math{^2}S busses
2580 @item
2581 GPIO-connected matrix keypad
2582 @item
2583 Secure Digital card connected to OMAP MMC/SD host
2584 @item
2585 Three on-chip UARTs
2586 @end itemize
2587
2588 Nokia N800 and N810 internet tablets (known also as RX-34 and RX-44 / 48)
2589 emulation supports the following elements:
2590
2591 @itemize @minus
2592 @item
2593 Texas Instruments OMAP2420 System-on-chip (ARM 1136 core)
2594 @item
2595 RAM and non-volatile OneNAND Flash memories
2596 @item
2597 Display connected to EPSON remote framebuffer chip and OMAP on-chip
2598 display controller and a LS041y3 MIPI DBI-C controller
2599 @item
2600 TI TSC2301 (in N800) and TI TSC2005 (in N810) touchscreen controllers
2601 driven through SPI bus
2602 @item
2603 National Semiconductor LM8323-controlled qwerty keyboard driven
2604 through I@math{^2}C bus
2605 @item
2606 Secure Digital card connected to OMAP MMC/SD host
2607 @item
2608 Three OMAP on-chip UARTs and on-chip STI debugging console
2609 @item
2610 Mentor Graphics "Inventra" dual-role USB controller embedded in a TI
2611 TUSB6010 chip - only USB host mode is supported
2612 @item
2613 TI TMP105 temperature sensor driven through I@math{^2}C bus
2614 @item
2615 TI TWL92230C power management companion with an RTC on I@math{^2}C bus
2616 @item
2617 Nokia RETU and TAHVO multi-purpose chips with an RTC, connected
2618 through CBUS
2619 @end itemize
2620
2621 The Luminary Micro Stellaris LM3S811EVB emulation includes the following
2622 devices:
2623
2624 @itemize @minus
2625 @item
2626 Cortex-M3 CPU core.
2627 @item
2628 64k Flash and 8k SRAM.
2629 @item
2630 Timers, UARTs, ADC and I@math{^2}C interface.
2631 @item
2632 OSRAM Pictiva 96x16 OLED with SSD0303 controller on I@math{^2}C bus.
2633 @end itemize
2634
2635 The Luminary Micro Stellaris LM3S6965EVB emulation includes the following
2636 devices:
2637
2638 @itemize @minus
2639 @item
2640 Cortex-M3 CPU core.
2641 @item
2642 256k Flash and 64k SRAM.
2643 @item
2644 Timers, UARTs, ADC, I@math{^2}C and SSI interfaces.
2645 @item
2646 OSRAM Pictiva 128x64 OLED with SSD0323 controller connected via SSI.
2647 @end itemize
2648
2649 The Freecom MusicPal internet radio emulation includes the following
2650 elements:
2651
2652 @itemize @minus
2653 @item
2654 Marvell MV88W8618 ARM core.
2655 @item
2656 32 MB RAM, 256 KB SRAM, 8 MB flash.
2657 @item
2658 Up to 2 16550 UARTs
2659 @item
2660 MV88W8xx8 Ethernet controller
2661 @item
2662 MV88W8618 audio controller, WM8750 CODEC and mixer
2663 @item
2664 128×64 display with brightness control
2665 @item
2666 2 buttons, 2 navigation wheels with button function
2667 @end itemize
2668
2669 A Linux 2.6 test image is available on the QEMU web site. More
2670 information is available in the QEMU mailing-list archive.
2671
2672 @node ColdFire System emulator
2673 @section ColdFire System emulator
2674
2675 Use the executable @file{qemu-system-m68k} to simulate a ColdFire machine.
2676 The emulator is able to boot a uClinux kernel.
2677
2678 The M5208EVB emulation includes the following devices:
2679
2680 @itemize @minus
2681 @item
2682 MCF5208 ColdFire V2 Microprocessor (ISA A+ with EMAC).
2683 @item
2684 Three Two on-chip UARTs.
2685 @item
2686 Fast Ethernet Controller (FEC)
2687 @end itemize
2688
2689 The AN5206 emulation includes the following devices:
2690
2691 @itemize @minus
2692 @item
2693 MCF5206 ColdFire V2 Microprocessor.
2694 @item
2695 Two on-chip UARTs.
2696 @end itemize
2697
2698 @node QEMU User space emulator
2699 @chapter QEMU User space emulator
2700
2701 @menu
2702 * Supported Operating Systems ::
2703 * Linux User space emulator::
2704 * Mac OS X/Darwin User space emulator ::
2705 @end menu
2706
2707 @node Supported Operating Systems
2708 @section Supported Operating Systems
2709
2710 The following OS are supported in user space emulation:
2711
2712 @itemize @minus
2713 @item
2714 Linux (referred as qemu-linux-user)
2715 @item
2716 Mac OS X/Darwin (referred as qemu-darwin-user)
2717 @end itemize
2718
2719 @node Linux User space emulator
2720 @section Linux User space emulator
2721
2722 @menu
2723 * Quick Start::
2724 * Wine launch::
2725 * Command line options::
2726 * Other binaries::
2727 @end menu
2728
2729 @node Quick Start
2730 @subsection Quick Start
2731
2732 In order to launch a Linux process, QEMU needs the process executable
2733 itself and all the target (x86) dynamic libraries used by it.
2734
2735 @itemize
2736
2737 @item On x86, you can just try to launch any process by using the native
2738 libraries:
2739
2740 @example
2741 qemu-i386 -L / /bin/ls
2742 @end example
2743
2744 @code{-L /} tells that the x86 dynamic linker must be searched with a
2745 @file{/} prefix.
2746
2747 @item Since QEMU is also a linux process, you can launch qemu with
2748 qemu (NOTE: you can only do that if you compiled QEMU from the sources):
2749
2750 @example
2751 qemu-i386 -L / qemu-i386 -L / /bin/ls
2752 @end example
2753
2754 @item On non x86 CPUs, you need first to download at least an x86 glibc
2755 (@file{qemu-runtime-i386-XXX-.tar.gz} on the QEMU web page). Ensure that
2756 @code{LD_LIBRARY_PATH} is not set:
2757
2758 @example
2759 unset LD_LIBRARY_PATH
2760 @end example
2761
2762 Then you can launch the precompiled @file{ls} x86 executable:
2763
2764 @example
2765 qemu-i386 tests/i386/ls
2766 @end example
2767 You can look at @file{qemu-binfmt-conf.sh} so that
2768 QEMU is automatically launched by the Linux kernel when you try to
2769 launch x86 executables. It requires the @code{binfmt_misc} module in the
2770 Linux kernel.
2771
2772 @item The x86 version of QEMU is also included. You can try weird things such as:
2773 @example
2774 qemu-i386 /usr/local/qemu-i386/bin/qemu-i386 \
2775 /usr/local/qemu-i386/bin/ls-i386
2776 @end example
2777
2778 @end itemize
2779
2780 @node Wine launch
2781 @subsection Wine launch
2782
2783 @itemize
2784
2785 @item Ensure that you have a working QEMU with the x86 glibc
2786 distribution (see previous section). In order to verify it, you must be
2787 able to do:
2788
2789 @example
2790 qemu-i386 /usr/local/qemu-i386/bin/ls-i386
2791 @end example
2792
2793 @item Download the binary x86 Wine install
2794 (@file{qemu-XXX-i386-wine.tar.gz} on the QEMU web page).
2795
2796 @item Configure Wine on your account. Look at the provided script
2797 @file{/usr/local/qemu-i386/@/bin/wine-conf.sh}. Your previous
2798 @code{$@{HOME@}/.wine} directory is saved to @code{$@{HOME@}/.wine.org}.
2799
2800 @item Then you can try the example @file{putty.exe}:
2801
2802 @example
2803 qemu-i386 /usr/local/qemu-i386/wine/bin/wine \
2804 /usr/local/qemu-i386/wine/c/Program\ Files/putty.exe
2805 @end example
2806
2807 @end itemize
2808
2809 @node Command line options
2810 @subsection Command line options
2811
2812 @example
2813 usage: qemu-i386 [-h] [-d] [-L path] [-s size] program [arguments...]
2814 @end example
2815
2816 @table @option
2817 @item -h
2818 Print the help
2819 @item -L path
2820 Set the x86 elf interpreter prefix (default=/usr/local/qemu-i386)
2821 @item -s size
2822 Set the x86 stack size in bytes (default=524288)
2823 @end table
2824
2825 Debug options:
2826
2827 @table @option
2828 @item -d
2829 Activate log (logfile=/tmp/qemu.log)
2830 @item -p pagesize
2831 Act as if the host page size was 'pagesize' bytes
2832 @end table
2833
2834 Environment variables:
2835
2836 @table @env
2837 @item QEMU_STRACE
2838 Print system calls and arguments similar to the 'strace' program
2839 (NOTE: the actual 'strace' program will not work because the user
2840 space emulator hasn't implemented ptrace). At the moment this is
2841 incomplete. All system calls that don't have a specific argument
2842 format are printed with information for six arguments. Many
2843 flag-style arguments don't have decoders and will show up as numbers.
2844 @end table
2845
2846 @node Other binaries
2847 @subsection Other binaries
2848
2849 @command{qemu-arm} is also capable of running ARM "Angel" semihosted ELF
2850 binaries (as implemented by the arm-elf and arm-eabi Newlib/GDB
2851 configurations), and arm-uclinux bFLT format binaries.
2852
2853 @command{qemu-m68k} is capable of running semihosted binaries using the BDM
2854 (m5xxx-ram-hosted.ld) or m68k-sim (sim.ld) syscall interfaces, and
2855 coldfire uClinux bFLT format binaries.
2856
2857 The binary format is detected automatically.
2858
2859 @command{qemu-sparc32plus} can execute Sparc32 and SPARC32PLUS binaries
2860 (Sparc64 CPU, 32 bit ABI).
2861
2862 @command{qemu-sparc64} can execute some Sparc64 (Sparc64 CPU, 64 bit ABI) and
2863 SPARC32PLUS binaries (Sparc64 CPU, 32 bit ABI).
2864
2865 @node Mac OS X/Darwin User space emulator
2866 @section Mac OS X/Darwin User space emulator
2867
2868 @menu
2869 * Mac OS X/Darwin Status::
2870 * Mac OS X/Darwin Quick Start::
2871 * Mac OS X/Darwin Command line options::
2872 @end menu
2873
2874 @node Mac OS X/Darwin Status
2875 @subsection Mac OS X/Darwin Status
2876
2877 @itemize @minus
2878 @item
2879 target x86 on x86: Most apps (Cocoa and Carbon too) works. [1]
2880 @item
2881 target PowerPC on x86: Not working as the ppc commpage can't be mapped (yet!)
2882 @item
2883 target PowerPC on PowerPC: Most apps (Cocoa and Carbon too) works. [1]
2884 @item
2885 target x86 on PowerPC: most utilities work. Cocoa and Carbon apps are not yet supported.
2886 @end itemize
2887
2888 [1] If you're host commpage can be executed by qemu.
2889
2890 @node Mac OS X/Darwin Quick Start
2891 @subsection Quick Start
2892
2893 In order to launch a Mac OS X/Darwin process, QEMU needs the process executable
2894 itself and all the target dynamic libraries used by it. If you don't have the FAT
2895 libraries (you're running Mac OS X/ppc) you'll need to obtain it from a Mac OS X
2896 CD or compile them by hand.
2897
2898 @itemize
2899
2900 @item On x86, you can just try to launch any process by using the native
2901 libraries:
2902
2903 @example
2904 qemu-i386 /bin/ls
2905 @end example
2906
2907 or to run the ppc version of the executable:
2908
2909 @example
2910 qemu-ppc /bin/ls
2911 @end example
2912
2913 @item On ppc, you'll have to tell qemu where your x86 libraries (and dynamic linker)
2914 are installed:
2915
2916 @example
2917 qemu-i386 -L /opt/x86_root/ /bin/ls
2918 @end example
2919
2920 @code{-L /opt/x86_root/} tells that the dynamic linker (dyld) path is in
2921 @file{/opt/x86_root/usr/bin/dyld}.
2922
2923 @end itemize
2924
2925 @node Mac OS X/Darwin Command line options
2926 @subsection Command line options
2927
2928 @example
2929 usage: qemu-i386 [-h] [-d] [-L path] [-s size] program [arguments...]
2930 @end example
2931
2932 @table @option
2933 @item -h
2934 Print the help
2935 @item -L path
2936 Set the library root path (default=/)
2937 @item -s size
2938 Set the stack size in bytes (default=524288)
2939 @end table
2940
2941 Debug options:
2942
2943 @table @option
2944 @item -d
2945 Activate log (logfile=/tmp/qemu.log)
2946 @item -p pagesize
2947 Act as if the host page size was 'pagesize' bytes
2948 @end table
2949
2950 @node compilation
2951 @chapter Compilation from the sources
2952
2953 @menu
2954 * Linux/Unix::
2955 * Windows::
2956 * Cross compilation for Windows with Linux::
2957 * Mac OS X::
2958 @end menu
2959
2960 @node Linux/Unix
2961 @section Linux/Unix
2962
2963 @subsection Compilation
2964
2965 First you must decompress the sources:
2966 @example
2967 cd /tmp
2968 tar zxvf qemu-x.y.z.tar.gz
2969 cd qemu-x.y.z
2970 @end example
2971
2972 Then you configure QEMU and build it (usually no options are needed):
2973 @example
2974 ./configure
2975 make
2976 @end example
2977
2978 Then type as root user:
2979 @example
2980 make install
2981 @end example
2982 to install QEMU in @file{/usr/local}.
2983
2984 @subsection GCC version
2985
2986 In order to compile QEMU successfully, it is very important that you
2987 have the right tools. The most important one is gcc. On most hosts and
2988 in particular on x86 ones, @emph{gcc 4.x is not supported}. If your
2989 Linux distribution includes a gcc 4.x compiler, you can usually
2990 install an older version (it is invoked by @code{gcc32} or
2991 @code{gcc34}). The QEMU configure script automatically probes for
2992 these older versions so that usually you don't have to do anything.
2993
2994 @node Windows
2995 @section Windows
2996
2997 @itemize
2998 @item Install the current versions of MSYS and MinGW from
2999 @url{http://www.mingw.org/}. You can find detailed installation
3000 instructions in the download section and the FAQ.
3001
3002 @item Download
3003 the MinGW development library of SDL 1.2.x
3004 (@file{SDL-devel-1.2.x-@/mingw32.tar.gz}) from
3005 @url{http://www.libsdl.org}. Unpack it in a temporary place, and
3006 unpack the archive @file{i386-mingw32msvc.tar.gz} in the MinGW tool
3007 directory. Edit the @file{sdl-config} script so that it gives the
3008 correct SDL directory when invoked.
3009
3010 @item Extract the current version of QEMU.
3011
3012 @item Start the MSYS shell (file @file{msys.bat}).
3013
3014 @item Change to the QEMU directory. Launch @file{./configure} and
3015 @file{make}. If you have problems using SDL, verify that
3016 @file{sdl-config} can be launched from the MSYS command line.
3017
3018 @item You can install QEMU in @file{Program Files/Qemu} by typing
3019 @file{make install}. Don't forget to copy @file{SDL.dll} in
3020 @file{Program Files/Qemu}.
3021
3022 @end itemize
3023
3024 @node Cross compilation for Windows with Linux
3025 @section Cross compilation for Windows with Linux
3026
3027 @itemize
3028 @item
3029 Install the MinGW cross compilation tools available at
3030 @url{http://www.mingw.org/}.
3031
3032 @item
3033 Install the Win32 version of SDL (@url{http://www.libsdl.org}) by
3034 unpacking @file{i386-mingw32msvc.tar.gz}. Set up the PATH environment
3035 variable so that @file{i386-mingw32msvc-sdl-config} can be launched by
3036 the QEMU configuration script.
3037
3038 @item
3039 Configure QEMU for Windows cross compilation:
3040 @example
3041 ./configure --enable-mingw32
3042 @end example
3043 If necessary, you can change the cross-prefix according to the prefix
3044 chosen for the MinGW tools with --cross-prefix. You can also use
3045 --prefix to set the Win32 install path.
3046
3047 @item You can install QEMU in the installation directory by typing
3048 @file{make install}. Don't forget to copy @file{SDL.dll} in the
3049 installation directory.
3050
3051 @end itemize
3052
3053 Note: Currently, Wine does not seem able to launch
3054 QEMU for Win32.
3055
3056 @node Mac OS X
3057 @section Mac OS X
3058
3059 The Mac OS X patches are not fully merged in QEMU, so you should look
3060 at the QEMU mailing list archive to have all the necessary
3061 information.
3062
3063 @node Index
3064 @chapter Index
3065 @printindex cp
3066
3067 @bye