]> git.proxmox.com Git - qemu.git/blob - qemu-doc.texi
m68k/ColdFire system emulation.
[qemu.git] / qemu-doc.texi
1 \input texinfo @c -*- texinfo -*-
2 @c %**start of header
3 @setfilename qemu-doc.info
4 @settitle QEMU Emulator User Documentation
5 @exampleindent 0
6 @paragraphindent 0
7 @c %**end of header
8
9 @iftex
10 @titlepage
11 @sp 7
12 @center @titlefont{QEMU Emulator}
13 @sp 1
14 @center @titlefont{User Documentation}
15 @sp 3
16 @end titlepage
17 @end iftex
18
19 @ifnottex
20 @node Top
21 @top
22
23 @menu
24 * Introduction::
25 * Installation::
26 * QEMU PC System emulator::
27 * QEMU System emulator for non PC targets::
28 * QEMU User space emulator::
29 * compilation:: Compilation from the sources
30 * Index::
31 @end menu
32 @end ifnottex
33
34 @contents
35
36 @node Introduction
37 @chapter Introduction
38
39 @menu
40 * intro_features:: Features
41 @end menu
42
43 @node intro_features
44 @section Features
45
46 QEMU is a FAST! processor emulator using dynamic translation to
47 achieve good emulation speed.
48
49 QEMU has two operating modes:
50
51 @itemize @minus
52
53 @item
54 Full system emulation. In this mode, QEMU emulates a full system (for
55 example a PC), including one or several processors and various
56 peripherals. It can be used to launch different Operating Systems
57 without rebooting the PC or to debug system code.
58
59 @item
60 User mode emulation. In this mode, QEMU can launch
61 processes compiled for one CPU on another CPU. It can be used to
62 launch the Wine Windows API emulator (@url{http://www.winehq.org}) or
63 to ease cross-compilation and cross-debugging.
64
65 @end itemize
66
67 QEMU can run without an host kernel driver and yet gives acceptable
68 performance.
69
70 For system emulation, the following hardware targets are supported:
71 @itemize
72 @item PC (x86 or x86_64 processor)
73 @item ISA PC (old style PC without PCI bus)
74 @item PREP (PowerPC processor)
75 @item G3 BW PowerMac (PowerPC processor)
76 @item Mac99 PowerMac (PowerPC processor, in progress)
77 @item Sun4m (32-bit Sparc processor)
78 @item Sun4u (64-bit Sparc processor, in progress)
79 @item Malta board (32-bit MIPS processor)
80 @item ARM Integrator/CP (ARM926E, 1026E or 946E processor)
81 @item ARM Versatile baseboard (ARM926E)
82 @item ARM RealView Emulation baseboard (ARM926EJ-S)
83 @item Spitz, Akita, Borzoi and Terrier PDAs (PXA270 processor)
84 @end itemize
85
86 For user emulation, x86, PowerPC, ARM, MIPS, Sparc32/64 and ColdFire(m68k) CPUs are supported.
87
88 @node Installation
89 @chapter Installation
90
91 If you want to compile QEMU yourself, see @ref{compilation}.
92
93 @menu
94 * install_linux:: Linux
95 * install_windows:: Windows
96 * install_mac:: Macintosh
97 @end menu
98
99 @node install_linux
100 @section Linux
101
102 If a precompiled package is available for your distribution - you just
103 have to install it. Otherwise, see @ref{compilation}.
104
105 @node install_windows
106 @section Windows
107
108 Download the experimental binary installer at
109 @url{http://www.free.oszoo.org/@/download.html}.
110
111 @node install_mac
112 @section Mac OS X
113
114 Download the experimental binary installer at
115 @url{http://www.free.oszoo.org/@/download.html}.
116
117 @node QEMU PC System emulator
118 @chapter QEMU PC System emulator
119
120 @menu
121 * pcsys_introduction:: Introduction
122 * pcsys_quickstart:: Quick Start
123 * sec_invocation:: Invocation
124 * pcsys_keys:: Keys
125 * pcsys_monitor:: QEMU Monitor
126 * disk_images:: Disk Images
127 * pcsys_network:: Network emulation
128 * direct_linux_boot:: Direct Linux Boot
129 * pcsys_usb:: USB emulation
130 * gdb_usage:: GDB usage
131 * pcsys_os_specific:: Target OS specific information
132 @end menu
133
134 @node pcsys_introduction
135 @section Introduction
136
137 @c man begin DESCRIPTION
138
139 The QEMU PC System emulator simulates the
140 following peripherals:
141
142 @itemize @minus
143 @item
144 i440FX host PCI bridge and PIIX3 PCI to ISA bridge
145 @item
146 Cirrus CLGD 5446 PCI VGA card or dummy VGA card with Bochs VESA
147 extensions (hardware level, including all non standard modes).
148 @item
149 PS/2 mouse and keyboard
150 @item
151 2 PCI IDE interfaces with hard disk and CD-ROM support
152 @item
153 Floppy disk
154 @item
155 NE2000 PCI network adapters
156 @item
157 Serial ports
158 @item
159 Creative SoundBlaster 16 sound card
160 @item
161 ENSONIQ AudioPCI ES1370 sound card
162 @item
163 Adlib(OPL2) - Yamaha YM3812 compatible chip
164 @item
165 PCI UHCI USB controller and a virtual USB hub.
166 @end itemize
167
168 SMP is supported with up to 255 CPUs.
169
170 Note that adlib is only available when QEMU was configured with
171 -enable-adlib
172
173 QEMU uses the PC BIOS from the Bochs project and the Plex86/Bochs LGPL
174 VGA BIOS.
175
176 QEMU uses YM3812 emulation by Tatsuyuki Satoh.
177
178 @c man end
179
180 @node pcsys_quickstart
181 @section Quick Start
182
183 Download and uncompress the linux image (@file{linux.img}) and type:
184
185 @example
186 qemu linux.img
187 @end example
188
189 Linux should boot and give you a prompt.
190
191 @node sec_invocation
192 @section Invocation
193
194 @example
195 @c man begin SYNOPSIS
196 usage: qemu [options] [disk_image]
197 @c man end
198 @end example
199
200 @c man begin OPTIONS
201 @var{disk_image} is a raw hard disk image for IDE hard disk 0.
202
203 General options:
204 @table @option
205 @item -M machine
206 Select the emulated machine (@code{-M ?} for list)
207
208 @item -fda file
209 @item -fdb file
210 Use @var{file} as floppy disk 0/1 image (@pxref{disk_images}). You can
211 use the host floppy by using @file{/dev/fd0} as filename (@pxref{host_drives}).
212
213 @item -hda file
214 @item -hdb file
215 @item -hdc file
216 @item -hdd file
217 Use @var{file} as hard disk 0, 1, 2 or 3 image (@pxref{disk_images}).
218
219 @item -cdrom file
220 Use @var{file} as CD-ROM image (you cannot use @option{-hdc} and and
221 @option{-cdrom} at the same time). You can use the host CD-ROM by
222 using @file{/dev/cdrom} as filename (@pxref{host_drives}).
223
224 @item -boot [a|c|d|n]
225 Boot on floppy (a), hard disk (c), CD-ROM (d), or Etherboot (n). Hard disk boot
226 is the default.
227
228 @item -snapshot
229 Write to temporary files instead of disk image files. In this case,
230 the raw disk image you use is not written back. You can however force
231 the write back by pressing @key{C-a s} (@pxref{disk_images}).
232
233 @item -no-fd-bootchk
234 Disable boot signature checking for floppy disks in Bochs BIOS. It may
235 be needed to boot from old floppy disks.
236
237 @item -m megs
238 Set virtual RAM size to @var{megs} megabytes. Default is 128 MB.
239
240 @item -smp n
241 Simulate an SMP system with @var{n} CPUs. On the PC target, up to 255
242 CPUs are supported.
243
244 @item -nographic
245
246 Normally, QEMU uses SDL to display the VGA output. With this option,
247 you can totally disable graphical output so that QEMU is a simple
248 command line application. The emulated serial port is redirected on
249 the console. Therefore, you can still use QEMU to debug a Linux kernel
250 with a serial console.
251
252 @item -no-frame
253
254 Do not use decorations for SDL windows and start them using the whole
255 available screen space. This makes the using QEMU in a dedicated desktop
256 workspace more convenient.
257
258 @item -vnc display
259
260 Normally, QEMU uses SDL to display the VGA output. With this option,
261 you can have QEMU listen on VNC display @var{display} and redirect the VGA
262 display over the VNC session. It is very useful to enable the usb
263 tablet device when using this option (option @option{-usbdevice
264 tablet}). When using the VNC display, you must use the @option{-k}
265 option to set the keyboard layout if you are not using en-us.
266
267 @var{display} may be in the form @var{interface:d}, in which case connections
268 will only be allowed from @var{interface} on display @var{d}. Optionally,
269 @var{interface} can be omitted. @var{display} can also be in the form
270 @var{unix:path} where @var{path} is the location of a unix socket to listen for
271 connections on.
272
273
274 @item -k language
275
276 Use keyboard layout @var{language} (for example @code{fr} for
277 French). This option is only needed where it is not easy to get raw PC
278 keycodes (e.g. on Macs, with some X11 servers or with a VNC
279 display). You don't normally need to use it on PC/Linux or PC/Windows
280 hosts.
281
282 The available layouts are:
283 @example
284 ar de-ch es fo fr-ca hu ja mk no pt-br sv
285 da en-gb et fr fr-ch is lt nl pl ru th
286 de en-us fi fr-be hr it lv nl-be pt sl tr
287 @end example
288
289 The default is @code{en-us}.
290
291 @item -audio-help
292
293 Will show the audio subsystem help: list of drivers, tunable
294 parameters.
295
296 @item -soundhw card1,card2,... or -soundhw all
297
298 Enable audio and selected sound hardware. Use ? to print all
299 available sound hardware.
300
301 @example
302 qemu -soundhw sb16,adlib hda
303 qemu -soundhw es1370 hda
304 qemu -soundhw all hda
305 qemu -soundhw ?
306 @end example
307
308 @item -localtime
309 Set the real time clock to local time (the default is to UTC
310 time). This option is needed to have correct date in MS-DOS or
311 Windows.
312
313 @item -full-screen
314 Start in full screen.
315
316 @item -pidfile file
317 Store the QEMU process PID in @var{file}. It is useful if you launch QEMU
318 from a script.
319
320 @item -daemonize
321 Daemonize the QEMU process after initialization. QEMU will not detach from
322 standard IO until it is ready to receive connections on any of its devices.
323 This option is a useful way for external programs to launch QEMU without having
324 to cope with initialization race conditions.
325
326 @item -win2k-hack
327 Use it when installing Windows 2000 to avoid a disk full bug. After
328 Windows 2000 is installed, you no longer need this option (this option
329 slows down the IDE transfers).
330
331 @item -option-rom file
332 Load the contents of file as an option ROM. This option is useful to load
333 things like EtherBoot.
334
335 @item -name string
336 Sets the name of the guest. This name will be display in the SDL window
337 caption. The name will also be used for the VNC server.
338
339 @end table
340
341 USB options:
342 @table @option
343
344 @item -usb
345 Enable the USB driver (will be the default soon)
346
347 @item -usbdevice devname
348 Add the USB device @var{devname}. @xref{usb_devices}.
349 @end table
350
351 Network options:
352
353 @table @option
354
355 @item -net nic[,vlan=n][,macaddr=addr][,model=type]
356 Create a new Network Interface Card and connect it to VLAN @var{n} (@var{n}
357 = 0 is the default). The NIC is currently an NE2000 on the PC
358 target. Optionally, the MAC address can be changed. If no
359 @option{-net} option is specified, a single NIC is created.
360 Qemu can emulate several different models of network card.
361 Valid values for @var{type} are
362 @code{i82551}, @code{i82557b}, @code{i82559er},
363 @code{ne2k_pci}, @code{ne2k_isa}, @code{pcnet}, @code{rtl8139},
364 @code{smc91c111} and @code{lance}.
365 Not all devices are supported on all targets.
366
367 @item -net user[,vlan=n][,hostname=name]
368 Use the user mode network stack which requires no administrator
369 priviledge to run. @option{hostname=name} can be used to specify the client
370 hostname reported by the builtin DHCP server.
371
372 @item -net tap[,vlan=n][,fd=h][,ifname=name][,script=file]
373 Connect the host TAP network interface @var{name} to VLAN @var{n} and
374 use the network script @var{file} to configure it. The default
375 network script is @file{/etc/qemu-ifup}. Use @option{script=no} to
376 disable script execution. If @var{name} is not
377 provided, the OS automatically provides one. @option{fd=h} can be
378 used to specify the handle of an already opened host TAP interface. Example:
379
380 @example
381 qemu linux.img -net nic -net tap
382 @end example
383
384 More complicated example (two NICs, each one connected to a TAP device)
385 @example
386 qemu linux.img -net nic,vlan=0 -net tap,vlan=0,ifname=tap0 \
387 -net nic,vlan=1 -net tap,vlan=1,ifname=tap1
388 @end example
389
390
391 @item -net socket[,vlan=n][,fd=h][,listen=[host]:port][,connect=host:port]
392
393 Connect the VLAN @var{n} to a remote VLAN in another QEMU virtual
394 machine using a TCP socket connection. If @option{listen} is
395 specified, QEMU waits for incoming connections on @var{port}
396 (@var{host} is optional). @option{connect} is used to connect to
397 another QEMU instance using the @option{listen} option. @option{fd=h}
398 specifies an already opened TCP socket.
399
400 Example:
401 @example
402 # launch a first QEMU instance
403 qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
404 -net socket,listen=:1234
405 # connect the VLAN 0 of this instance to the VLAN 0
406 # of the first instance
407 qemu linux.img -net nic,macaddr=52:54:00:12:34:57 \
408 -net socket,connect=127.0.0.1:1234
409 @end example
410
411 @item -net socket[,vlan=n][,fd=h][,mcast=maddr:port]
412
413 Create a VLAN @var{n} shared with another QEMU virtual
414 machines using a UDP multicast socket, effectively making a bus for
415 every QEMU with same multicast address @var{maddr} and @var{port}.
416 NOTES:
417 @enumerate
418 @item
419 Several QEMU can be running on different hosts and share same bus (assuming
420 correct multicast setup for these hosts).
421 @item
422 mcast support is compatible with User Mode Linux (argument @option{eth@var{N}=mcast}), see
423 @url{http://user-mode-linux.sf.net}.
424 @item Use @option{fd=h} to specify an already opened UDP multicast socket.
425 @end enumerate
426
427 Example:
428 @example
429 # launch one QEMU instance
430 qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
431 -net socket,mcast=230.0.0.1:1234
432 # launch another QEMU instance on same "bus"
433 qemu linux.img -net nic,macaddr=52:54:00:12:34:57 \
434 -net socket,mcast=230.0.0.1:1234
435 # launch yet another QEMU instance on same "bus"
436 qemu linux.img -net nic,macaddr=52:54:00:12:34:58 \
437 -net socket,mcast=230.0.0.1:1234
438 @end example
439
440 Example (User Mode Linux compat.):
441 @example
442 # launch QEMU instance (note mcast address selected
443 # is UML's default)
444 qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
445 -net socket,mcast=239.192.168.1:1102
446 # launch UML
447 /path/to/linux ubd0=/path/to/root_fs eth0=mcast
448 @end example
449
450 @item -net none
451 Indicate that no network devices should be configured. It is used to
452 override the default configuration (@option{-net nic -net user}) which
453 is activated if no @option{-net} options are provided.
454
455 @item -tftp dir
456 When using the user mode network stack, activate a built-in TFTP
457 server. The files in @var{dir} will be exposed as the root of a TFTP server.
458 The TFTP client on the guest must be configured in binary mode (use the command
459 @code{bin} of the Unix TFTP client). The host IP address on the guest is as
460 usual 10.0.2.2.
461
462 @item -bootp file
463 When using the user mode network stack, broadcast @var{file} as the BOOTP
464 filename. In conjunction with @option{-tftp}, this can be used to network boot
465 a guest from a local directory.
466
467 Example (using pxelinux):
468 @example
469 qemu -hda linux.img -boot n -tftp /path/to/tftp/files -bootp /pxelinux.0
470 @end example
471
472 @item -smb dir
473 When using the user mode network stack, activate a built-in SMB
474 server so that Windows OSes can access to the host files in @file{dir}
475 transparently.
476
477 In the guest Windows OS, the line:
478 @example
479 10.0.2.4 smbserver
480 @end example
481 must be added in the file @file{C:\WINDOWS\LMHOSTS} (for windows 9x/Me)
482 or @file{C:\WINNT\SYSTEM32\DRIVERS\ETC\LMHOSTS} (Windows NT/2000).
483
484 Then @file{dir} can be accessed in @file{\\smbserver\qemu}.
485
486 Note that a SAMBA server must be installed on the host OS in
487 @file{/usr/sbin/smbd}. QEMU was tested successfully with smbd version
488 2.2.7a from the Red Hat 9 and version 3.0.10-1.fc3 from Fedora Core 3.
489
490 @item -redir [tcp|udp]:host-port:[guest-host]:guest-port
491
492 When using the user mode network stack, redirect incoming TCP or UDP
493 connections to the host port @var{host-port} to the guest
494 @var{guest-host} on guest port @var{guest-port}. If @var{guest-host}
495 is not specified, its value is 10.0.2.15 (default address given by the
496 built-in DHCP server).
497
498 For example, to redirect host X11 connection from screen 1 to guest
499 screen 0, use the following:
500
501 @example
502 # on the host
503 qemu -redir tcp:6001::6000 [...]
504 # this host xterm should open in the guest X11 server
505 xterm -display :1
506 @end example
507
508 To redirect telnet connections from host port 5555 to telnet port on
509 the guest, use the following:
510
511 @example
512 # on the host
513 qemu -redir tcp:5555::23 [...]
514 telnet localhost 5555
515 @end example
516
517 Then when you use on the host @code{telnet localhost 5555}, you
518 connect to the guest telnet server.
519
520 @end table
521
522 Linux boot specific: When using these options, you can use a given
523 Linux kernel without installing it in the disk image. It can be useful
524 for easier testing of various kernels.
525
526 @table @option
527
528 @item -kernel bzImage
529 Use @var{bzImage} as kernel image.
530
531 @item -append cmdline
532 Use @var{cmdline} as kernel command line
533
534 @item -initrd file
535 Use @var{file} as initial ram disk.
536
537 @end table
538
539 Debug/Expert options:
540 @table @option
541
542 @item -serial dev
543 Redirect the virtual serial port to host character device
544 @var{dev}. The default device is @code{vc} in graphical mode and
545 @code{stdio} in non graphical mode.
546
547 This option can be used several times to simulate up to 4 serials
548 ports.
549
550 Use @code{-serial none} to disable all serial ports.
551
552 Available character devices are:
553 @table @code
554 @item vc
555 Virtual console
556 @item pty
557 [Linux only] Pseudo TTY (a new PTY is automatically allocated)
558 @item none
559 No device is allocated.
560 @item null
561 void device
562 @item /dev/XXX
563 [Linux only] Use host tty, e.g. @file{/dev/ttyS0}. The host serial port
564 parameters are set according to the emulated ones.
565 @item /dev/parportN
566 [Linux only, parallel port only] Use host parallel port
567 @var{N}. Currently SPP and EPP parallel port features can be used.
568 @item file:filename
569 Write output to filename. No character can be read.
570 @item stdio
571 [Unix only] standard input/output
572 @item pipe:filename
573 name pipe @var{filename}
574 @item COMn
575 [Windows only] Use host serial port @var{n}
576 @item udp:[remote_host]:remote_port[@@[src_ip]:src_port]
577 This implements UDP Net Console. When @var{remote_host} or @var{src_ip} are not specified they default to @code{0.0.0.0}. When not using a specifed @var{src_port} a random port is automatically chosen.
578
579 If you just want a simple readonly console you can use @code{netcat} or
580 @code{nc}, by starting qemu with: @code{-serial udp::4555} and nc as:
581 @code{nc -u -l -p 4555}. Any time qemu writes something to that port it
582 will appear in the netconsole session.
583
584 If you plan to send characters back via netconsole or you want to stop
585 and start qemu a lot of times, you should have qemu use the same
586 source port each time by using something like @code{-serial
587 udp::4555@@:4556} to qemu. Another approach is to use a patched
588 version of netcat which can listen to a TCP port and send and receive
589 characters via udp. If you have a patched version of netcat which
590 activates telnet remote echo and single char transfer, then you can
591 use the following options to step up a netcat redirector to allow
592 telnet on port 5555 to access the qemu port.
593 @table @code
594 @item Qemu Options:
595 -serial udp::4555@@:4556
596 @item netcat options:
597 -u -P 4555 -L 0.0.0.0:4556 -t -p 5555 -I -T
598 @item telnet options:
599 localhost 5555
600 @end table
601
602
603 @item tcp:[host]:port[,server][,nowait][,nodelay]
604 The TCP Net Console has two modes of operation. It can send the serial
605 I/O to a location or wait for a connection from a location. By default
606 the TCP Net Console is sent to @var{host} at the @var{port}. If you use
607 the @var{server} option QEMU will wait for a client socket application
608 to connect to the port before continuing, unless the @code{nowait}
609 option was specified. The @code{nodelay} option disables the Nagle buffering
610 algoritm. If @var{host} is omitted, 0.0.0.0 is assumed. Only
611 one TCP connection at a time is accepted. You can use @code{telnet} to
612 connect to the corresponding character device.
613 @table @code
614 @item Example to send tcp console to 192.168.0.2 port 4444
615 -serial tcp:192.168.0.2:4444
616 @item Example to listen and wait on port 4444 for connection
617 -serial tcp::4444,server
618 @item Example to not wait and listen on ip 192.168.0.100 port 4444
619 -serial tcp:192.168.0.100:4444,server,nowait
620 @end table
621
622 @item telnet:host:port[,server][,nowait][,nodelay]
623 The telnet protocol is used instead of raw tcp sockets. The options
624 work the same as if you had specified @code{-serial tcp}. The
625 difference is that the port acts like a telnet server or client using
626 telnet option negotiation. This will also allow you to send the
627 MAGIC_SYSRQ sequence if you use a telnet that supports sending the break
628 sequence. Typically in unix telnet you do it with Control-] and then
629 type "send break" followed by pressing the enter key.
630
631 @item unix:path[,server][,nowait]
632 A unix domain socket is used instead of a tcp socket. The option works the
633 same as if you had specified @code{-serial tcp} except the unix domain socket
634 @var{path} is used for connections.
635
636 @item mon:dev_string
637 This is a special option to allow the monitor to be multiplexed onto
638 another serial port. The monitor is accessed with key sequence of
639 @key{Control-a} and then pressing @key{c}. See monitor access
640 @ref{pcsys_keys} in the -nographic section for more keys.
641 @var{dev_string} should be any one of the serial devices specified
642 above. An example to multiplex the monitor onto a telnet server
643 listening on port 4444 would be:
644 @table @code
645 @item -serial mon:telnet::4444,server,nowait
646 @end table
647
648 @end table
649
650 @item -parallel dev
651 Redirect the virtual parallel port to host device @var{dev} (same
652 devices as the serial port). On Linux hosts, @file{/dev/parportN} can
653 be used to use hardware devices connected on the corresponding host
654 parallel port.
655
656 This option can be used several times to simulate up to 3 parallel
657 ports.
658
659 Use @code{-parallel none} to disable all parallel ports.
660
661 @item -monitor dev
662 Redirect the monitor to host device @var{dev} (same devices as the
663 serial port).
664 The default device is @code{vc} in graphical mode and @code{stdio} in
665 non graphical mode.
666
667 @item -echr numeric_ascii_value
668 Change the escape character used for switching to the monitor when using
669 monitor and serial sharing. The default is @code{0x01} when using the
670 @code{-nographic} option. @code{0x01} is equal to pressing
671 @code{Control-a}. You can select a different character from the ascii
672 control keys where 1 through 26 map to Control-a through Control-z. For
673 instance you could use the either of the following to change the escape
674 character to Control-t.
675 @table @code
676 @item -echr 0x14
677 @item -echr 20
678 @end table
679
680 @item -s
681 Wait gdb connection to port 1234 (@pxref{gdb_usage}).
682 @item -p port
683 Change gdb connection port. @var{port} can be either a decimal number
684 to specify a TCP port, or a host device (same devices as the serial port).
685 @item -S
686 Do not start CPU at startup (you must type 'c' in the monitor).
687 @item -d
688 Output log in /tmp/qemu.log
689 @item -hdachs c,h,s,[,t]
690 Force hard disk 0 physical geometry (1 <= @var{c} <= 16383, 1 <=
691 @var{h} <= 16, 1 <= @var{s} <= 63) and optionally force the BIOS
692 translation mode (@var{t}=none, lba or auto). Usually QEMU can guess
693 all thoses parameters. This option is useful for old MS-DOS disk
694 images.
695
696 @item -L path
697 Set the directory for the BIOS, VGA BIOS and keymaps.
698
699 @item -std-vga
700 Simulate a standard VGA card with Bochs VBE extensions (default is
701 Cirrus Logic GD5446 PCI VGA). If your guest OS supports the VESA 2.0
702 VBE extensions (e.g. Windows XP) and if you want to use high
703 resolution modes (>= 1280x1024x16) then you should use this option.
704
705 @item -no-acpi
706 Disable ACPI (Advanced Configuration and Power Interface) support. Use
707 it if your guest OS complains about ACPI problems (PC target machine
708 only).
709
710 @item -no-reboot
711 Exit instead of rebooting.
712
713 @item -loadvm file
714 Start right away with a saved state (@code{loadvm} in monitor)
715
716 @item -semihosting
717 Enable "Angel" semihosting interface (ARM target machines only).
718 Note that this allows guest direct access to the host filesystem,
719 so should only be used with trusted guest OS.
720 @end table
721
722 @c man end
723
724 @node pcsys_keys
725 @section Keys
726
727 @c man begin OPTIONS
728
729 During the graphical emulation, you can use the following keys:
730 @table @key
731 @item Ctrl-Alt-f
732 Toggle full screen
733
734 @item Ctrl-Alt-n
735 Switch to virtual console 'n'. Standard console mappings are:
736 @table @emph
737 @item 1
738 Target system display
739 @item 2
740 Monitor
741 @item 3
742 Serial port
743 @end table
744
745 @item Ctrl-Alt
746 Toggle mouse and keyboard grab.
747 @end table
748
749 In the virtual consoles, you can use @key{Ctrl-Up}, @key{Ctrl-Down},
750 @key{Ctrl-PageUp} and @key{Ctrl-PageDown} to move in the back log.
751
752 During emulation, if you are using the @option{-nographic} option, use
753 @key{Ctrl-a h} to get terminal commands:
754
755 @table @key
756 @item Ctrl-a h
757 Print this help
758 @item Ctrl-a x
759 Exit emulator
760 @item Ctrl-a s
761 Save disk data back to file (if -snapshot)
762 @item Ctrl-a t
763 toggle console timestamps
764 @item Ctrl-a b
765 Send break (magic sysrq in Linux)
766 @item Ctrl-a c
767 Switch between console and monitor
768 @item Ctrl-a Ctrl-a
769 Send Ctrl-a
770 @end table
771 @c man end
772
773 @ignore
774
775 @c man begin SEEALSO
776 The HTML documentation of QEMU for more precise information and Linux
777 user mode emulator invocation.
778 @c man end
779
780 @c man begin AUTHOR
781 Fabrice Bellard
782 @c man end
783
784 @end ignore
785
786 @node pcsys_monitor
787 @section QEMU Monitor
788
789 The QEMU monitor is used to give complex commands to the QEMU
790 emulator. You can use it to:
791
792 @itemize @minus
793
794 @item
795 Remove or insert removable media images
796 (such as CD-ROM or floppies)
797
798 @item
799 Freeze/unfreeze the Virtual Machine (VM) and save or restore its state
800 from a disk file.
801
802 @item Inspect the VM state without an external debugger.
803
804 @end itemize
805
806 @subsection Commands
807
808 The following commands are available:
809
810 @table @option
811
812 @item help or ? [cmd]
813 Show the help for all commands or just for command @var{cmd}.
814
815 @item commit
816 Commit changes to the disk images (if -snapshot is used)
817
818 @item info subcommand
819 show various information about the system state
820
821 @table @option
822 @item info network
823 show the various VLANs and the associated devices
824 @item info block
825 show the block devices
826 @item info registers
827 show the cpu registers
828 @item info history
829 show the command line history
830 @item info pci
831 show emulated PCI device
832 @item info usb
833 show USB devices plugged on the virtual USB hub
834 @item info usbhost
835 show all USB host devices
836 @item info capture
837 show information about active capturing
838 @item info snapshots
839 show list of VM snapshots
840 @item info mice
841 show which guest mouse is receiving events
842 @end table
843
844 @item q or quit
845 Quit the emulator.
846
847 @item eject [-f] device
848 Eject a removable medium (use -f to force it).
849
850 @item change device filename
851 Change a removable medium.
852
853 @item screendump filename
854 Save screen into PPM image @var{filename}.
855
856 @item mouse_move dx dy [dz]
857 Move the active mouse to the specified coordinates @var{dx} @var{dy}
858 with optional scroll axis @var{dz}.
859
860 @item mouse_button val
861 Change the active mouse button state @var{val} (1=L, 2=M, 4=R).
862
863 @item mouse_set index
864 Set which mouse device receives events at given @var{index}, index
865 can be obtained with
866 @example
867 info mice
868 @end example
869
870 @item wavcapture filename [frequency [bits [channels]]]
871 Capture audio into @var{filename}. Using sample rate @var{frequency}
872 bits per sample @var{bits} and number of channels @var{channels}.
873
874 Defaults:
875 @itemize @minus
876 @item Sample rate = 44100 Hz - CD quality
877 @item Bits = 16
878 @item Number of channels = 2 - Stereo
879 @end itemize
880
881 @item stopcapture index
882 Stop capture with a given @var{index}, index can be obtained with
883 @example
884 info capture
885 @end example
886
887 @item log item1[,...]
888 Activate logging of the specified items to @file{/tmp/qemu.log}.
889
890 @item savevm [tag|id]
891 Create a snapshot of the whole virtual machine. If @var{tag} is
892 provided, it is used as human readable identifier. If there is already
893 a snapshot with the same tag or ID, it is replaced. More info at
894 @ref{vm_snapshots}.
895
896 @item loadvm tag|id
897 Set the whole virtual machine to the snapshot identified by the tag
898 @var{tag} or the unique snapshot ID @var{id}.
899
900 @item delvm tag|id
901 Delete the snapshot identified by @var{tag} or @var{id}.
902
903 @item stop
904 Stop emulation.
905
906 @item c or cont
907 Resume emulation.
908
909 @item gdbserver [port]
910 Start gdbserver session (default port=1234)
911
912 @item x/fmt addr
913 Virtual memory dump starting at @var{addr}.
914
915 @item xp /fmt addr
916 Physical memory dump starting at @var{addr}.
917
918 @var{fmt} is a format which tells the command how to format the
919 data. Its syntax is: @option{/@{count@}@{format@}@{size@}}
920
921 @table @var
922 @item count
923 is the number of items to be dumped.
924
925 @item format
926 can be x (hexa), d (signed decimal), u (unsigned decimal), o (octal),
927 c (char) or i (asm instruction).
928
929 @item size
930 can be b (8 bits), h (16 bits), w (32 bits) or g (64 bits). On x86,
931 @code{h} or @code{w} can be specified with the @code{i} format to
932 respectively select 16 or 32 bit code instruction size.
933
934 @end table
935
936 Examples:
937 @itemize
938 @item
939 Dump 10 instructions at the current instruction pointer:
940 @example
941 (qemu) x/10i $eip
942 0x90107063: ret
943 0x90107064: sti
944 0x90107065: lea 0x0(%esi,1),%esi
945 0x90107069: lea 0x0(%edi,1),%edi
946 0x90107070: ret
947 0x90107071: jmp 0x90107080
948 0x90107073: nop
949 0x90107074: nop
950 0x90107075: nop
951 0x90107076: nop
952 @end example
953
954 @item
955 Dump 80 16 bit values at the start of the video memory.
956 @smallexample
957 (qemu) xp/80hx 0xb8000
958 0x000b8000: 0x0b50 0x0b6c 0x0b65 0x0b78 0x0b38 0x0b36 0x0b2f 0x0b42
959 0x000b8010: 0x0b6f 0x0b63 0x0b68 0x0b73 0x0b20 0x0b56 0x0b47 0x0b41
960 0x000b8020: 0x0b42 0x0b69 0x0b6f 0x0b73 0x0b20 0x0b63 0x0b75 0x0b72
961 0x000b8030: 0x0b72 0x0b65 0x0b6e 0x0b74 0x0b2d 0x0b63 0x0b76 0x0b73
962 0x000b8040: 0x0b20 0x0b30 0x0b35 0x0b20 0x0b4e 0x0b6f 0x0b76 0x0b20
963 0x000b8050: 0x0b32 0x0b30 0x0b30 0x0b33 0x0720 0x0720 0x0720 0x0720
964 0x000b8060: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
965 0x000b8070: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
966 0x000b8080: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
967 0x000b8090: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
968 @end smallexample
969 @end itemize
970
971 @item p or print/fmt expr
972
973 Print expression value. Only the @var{format} part of @var{fmt} is
974 used.
975
976 @item sendkey keys
977
978 Send @var{keys} to the emulator. Use @code{-} to press several keys
979 simultaneously. Example:
980 @example
981 sendkey ctrl-alt-f1
982 @end example
983
984 This command is useful to send keys that your graphical user interface
985 intercepts at low level, such as @code{ctrl-alt-f1} in X Window.
986
987 @item system_reset
988
989 Reset the system.
990
991 @item usb_add devname
992
993 Add the USB device @var{devname}. For details of available devices see
994 @ref{usb_devices}
995
996 @item usb_del devname
997
998 Remove the USB device @var{devname} from the QEMU virtual USB
999 hub. @var{devname} has the syntax @code{bus.addr}. Use the monitor
1000 command @code{info usb} to see the devices you can remove.
1001
1002 @end table
1003
1004 @subsection Integer expressions
1005
1006 The monitor understands integers expressions for every integer
1007 argument. You can use register names to get the value of specifics
1008 CPU registers by prefixing them with @emph{$}.
1009
1010 @node disk_images
1011 @section Disk Images
1012
1013 Since version 0.6.1, QEMU supports many disk image formats, including
1014 growable disk images (their size increase as non empty sectors are
1015 written), compressed and encrypted disk images. Version 0.8.3 added
1016 the new qcow2 disk image format which is essential to support VM
1017 snapshots.
1018
1019 @menu
1020 * disk_images_quickstart:: Quick start for disk image creation
1021 * disk_images_snapshot_mode:: Snapshot mode
1022 * vm_snapshots:: VM snapshots
1023 * qemu_img_invocation:: qemu-img Invocation
1024 * host_drives:: Using host drives
1025 * disk_images_fat_images:: Virtual FAT disk images
1026 @end menu
1027
1028 @node disk_images_quickstart
1029 @subsection Quick start for disk image creation
1030
1031 You can create a disk image with the command:
1032 @example
1033 qemu-img create myimage.img mysize
1034 @end example
1035 where @var{myimage.img} is the disk image filename and @var{mysize} is its
1036 size in kilobytes. You can add an @code{M} suffix to give the size in
1037 megabytes and a @code{G} suffix for gigabytes.
1038
1039 See @ref{qemu_img_invocation} for more information.
1040
1041 @node disk_images_snapshot_mode
1042 @subsection Snapshot mode
1043
1044 If you use the option @option{-snapshot}, all disk images are
1045 considered as read only. When sectors in written, they are written in
1046 a temporary file created in @file{/tmp}. You can however force the
1047 write back to the raw disk images by using the @code{commit} monitor
1048 command (or @key{C-a s} in the serial console).
1049
1050 @node vm_snapshots
1051 @subsection VM snapshots
1052
1053 VM snapshots are snapshots of the complete virtual machine including
1054 CPU state, RAM, device state and the content of all the writable
1055 disks. In order to use VM snapshots, you must have at least one non
1056 removable and writable block device using the @code{qcow2} disk image
1057 format. Normally this device is the first virtual hard drive.
1058
1059 Use the monitor command @code{savevm} to create a new VM snapshot or
1060 replace an existing one. A human readable name can be assigned to each
1061 snapshot in addition to its numerical ID.
1062
1063 Use @code{loadvm} to restore a VM snapshot and @code{delvm} to remove
1064 a VM snapshot. @code{info snapshots} lists the available snapshots
1065 with their associated information:
1066
1067 @example
1068 (qemu) info snapshots
1069 Snapshot devices: hda
1070 Snapshot list (from hda):
1071 ID TAG VM SIZE DATE VM CLOCK
1072 1 start 41M 2006-08-06 12:38:02 00:00:14.954
1073 2 40M 2006-08-06 12:43:29 00:00:18.633
1074 3 msys 40M 2006-08-06 12:44:04 00:00:23.514
1075 @end example
1076
1077 A VM snapshot is made of a VM state info (its size is shown in
1078 @code{info snapshots}) and a snapshot of every writable disk image.
1079 The VM state info is stored in the first @code{qcow2} non removable
1080 and writable block device. The disk image snapshots are stored in
1081 every disk image. The size of a snapshot in a disk image is difficult
1082 to evaluate and is not shown by @code{info snapshots} because the
1083 associated disk sectors are shared among all the snapshots to save
1084 disk space (otherwise each snapshot would need a full copy of all the
1085 disk images).
1086
1087 When using the (unrelated) @code{-snapshot} option
1088 (@ref{disk_images_snapshot_mode}), you can always make VM snapshots,
1089 but they are deleted as soon as you exit QEMU.
1090
1091 VM snapshots currently have the following known limitations:
1092 @itemize
1093 @item
1094 They cannot cope with removable devices if they are removed or
1095 inserted after a snapshot is done.
1096 @item
1097 A few device drivers still have incomplete snapshot support so their
1098 state is not saved or restored properly (in particular USB).
1099 @end itemize
1100
1101 @node qemu_img_invocation
1102 @subsection @code{qemu-img} Invocation
1103
1104 @include qemu-img.texi
1105
1106 @node host_drives
1107 @subsection Using host drives
1108
1109 In addition to disk image files, QEMU can directly access host
1110 devices. We describe here the usage for QEMU version >= 0.8.3.
1111
1112 @subsubsection Linux
1113
1114 On Linux, you can directly use the host device filename instead of a
1115 disk image filename provided you have enough proviledge to access
1116 it. For example, use @file{/dev/cdrom} to access to the CDROM or
1117 @file{/dev/fd0} for the floppy.
1118
1119 @table @code
1120 @item CD
1121 You can specify a CDROM device even if no CDROM is loaded. QEMU has
1122 specific code to detect CDROM insertion or removal. CDROM ejection by
1123 the guest OS is supported. Currently only data CDs are supported.
1124 @item Floppy
1125 You can specify a floppy device even if no floppy is loaded. Floppy
1126 removal is currently not detected accurately (if you change floppy
1127 without doing floppy access while the floppy is not loaded, the guest
1128 OS will think that the same floppy is loaded).
1129 @item Hard disks
1130 Hard disks can be used. Normally you must specify the whole disk
1131 (@file{/dev/hdb} instead of @file{/dev/hdb1}) so that the guest OS can
1132 see it as a partitioned disk. WARNING: unless you know what you do, it
1133 is better to only make READ-ONLY accesses to the hard disk otherwise
1134 you may corrupt your host data (use the @option{-snapshot} command
1135 line option or modify the device permissions accordingly).
1136 @end table
1137
1138 @subsubsection Windows
1139
1140 @table @code
1141 @item CD
1142 The prefered syntax is the drive letter (e.g. @file{d:}). The
1143 alternate syntax @file{\\.\d:} is supported. @file{/dev/cdrom} is
1144 supported as an alias to the first CDROM drive.
1145
1146 Currently there is no specific code to handle removable media, so it
1147 is better to use the @code{change} or @code{eject} monitor commands to
1148 change or eject media.
1149 @item Hard disks
1150 Hard disks can be used with the syntax: @file{\\.\PhysicalDriveN}
1151 where @var{N} is the drive number (0 is the first hard disk).
1152
1153 WARNING: unless you know what you do, it is better to only make
1154 READ-ONLY accesses to the hard disk otherwise you may corrupt your
1155 host data (use the @option{-snapshot} command line so that the
1156 modifications are written in a temporary file).
1157 @end table
1158
1159
1160 @subsubsection Mac OS X
1161
1162 @file{/dev/cdrom} is an alias to the first CDROM.
1163
1164 Currently there is no specific code to handle removable media, so it
1165 is better to use the @code{change} or @code{eject} monitor commands to
1166 change or eject media.
1167
1168 @node disk_images_fat_images
1169 @subsection Virtual FAT disk images
1170
1171 QEMU can automatically create a virtual FAT disk image from a
1172 directory tree. In order to use it, just type:
1173
1174 @example
1175 qemu linux.img -hdb fat:/my_directory
1176 @end example
1177
1178 Then you access access to all the files in the @file{/my_directory}
1179 directory without having to copy them in a disk image or to export
1180 them via SAMBA or NFS. The default access is @emph{read-only}.
1181
1182 Floppies can be emulated with the @code{:floppy:} option:
1183
1184 @example
1185 qemu linux.img -fda fat:floppy:/my_directory
1186 @end example
1187
1188 A read/write support is available for testing (beta stage) with the
1189 @code{:rw:} option:
1190
1191 @example
1192 qemu linux.img -fda fat:floppy:rw:/my_directory
1193 @end example
1194
1195 What you should @emph{never} do:
1196 @itemize
1197 @item use non-ASCII filenames ;
1198 @item use "-snapshot" together with ":rw:" ;
1199 @item expect it to work when loadvm'ing ;
1200 @item write to the FAT directory on the host system while accessing it with the guest system.
1201 @end itemize
1202
1203 @node pcsys_network
1204 @section Network emulation
1205
1206 QEMU can simulate several networks cards (NE2000 boards on the PC
1207 target) and can connect them to an arbitrary number of Virtual Local
1208 Area Networks (VLANs). Host TAP devices can be connected to any QEMU
1209 VLAN. VLAN can be connected between separate instances of QEMU to
1210 simulate large networks. For simpler usage, a non priviledged user mode
1211 network stack can replace the TAP device to have a basic network
1212 connection.
1213
1214 @subsection VLANs
1215
1216 QEMU simulates several VLANs. A VLAN can be symbolised as a virtual
1217 connection between several network devices. These devices can be for
1218 example QEMU virtual Ethernet cards or virtual Host ethernet devices
1219 (TAP devices).
1220
1221 @subsection Using TAP network interfaces
1222
1223 This is the standard way to connect QEMU to a real network. QEMU adds
1224 a virtual network device on your host (called @code{tapN}), and you
1225 can then configure it as if it was a real ethernet card.
1226
1227 @subsubsection Linux host
1228
1229 As an example, you can download the @file{linux-test-xxx.tar.gz}
1230 archive and copy the script @file{qemu-ifup} in @file{/etc} and
1231 configure properly @code{sudo} so that the command @code{ifconfig}
1232 contained in @file{qemu-ifup} can be executed as root. You must verify
1233 that your host kernel supports the TAP network interfaces: the
1234 device @file{/dev/net/tun} must be present.
1235
1236 See @ref{sec_invocation} to have examples of command lines using the
1237 TAP network interfaces.
1238
1239 @subsubsection Windows host
1240
1241 There is a virtual ethernet driver for Windows 2000/XP systems, called
1242 TAP-Win32. But it is not included in standard QEMU for Windows,
1243 so you will need to get it separately. It is part of OpenVPN package,
1244 so download OpenVPN from : @url{http://openvpn.net/}.
1245
1246 @subsection Using the user mode network stack
1247
1248 By using the option @option{-net user} (default configuration if no
1249 @option{-net} option is specified), QEMU uses a completely user mode
1250 network stack (you don't need root priviledge to use the virtual
1251 network). The virtual network configuration is the following:
1252
1253 @example
1254
1255 QEMU VLAN <------> Firewall/DHCP server <-----> Internet
1256 | (10.0.2.2)
1257 |
1258 ----> DNS server (10.0.2.3)
1259 |
1260 ----> SMB server (10.0.2.4)
1261 @end example
1262
1263 The QEMU VM behaves as if it was behind a firewall which blocks all
1264 incoming connections. You can use a DHCP client to automatically
1265 configure the network in the QEMU VM. The DHCP server assign addresses
1266 to the hosts starting from 10.0.2.15.
1267
1268 In order to check that the user mode network is working, you can ping
1269 the address 10.0.2.2 and verify that you got an address in the range
1270 10.0.2.x from the QEMU virtual DHCP server.
1271
1272 Note that @code{ping} is not supported reliably to the internet as it
1273 would require root priviledges. It means you can only ping the local
1274 router (10.0.2.2).
1275
1276 When using the built-in TFTP server, the router is also the TFTP
1277 server.
1278
1279 When using the @option{-redir} option, TCP or UDP connections can be
1280 redirected from the host to the guest. It allows for example to
1281 redirect X11, telnet or SSH connections.
1282
1283 @subsection Connecting VLANs between QEMU instances
1284
1285 Using the @option{-net socket} option, it is possible to make VLANs
1286 that span several QEMU instances. See @ref{sec_invocation} to have a
1287 basic example.
1288
1289 @node direct_linux_boot
1290 @section Direct Linux Boot
1291
1292 This section explains how to launch a Linux kernel inside QEMU without
1293 having to make a full bootable image. It is very useful for fast Linux
1294 kernel testing.
1295
1296 The syntax is:
1297 @example
1298 qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img -append "root=/dev/hda"
1299 @end example
1300
1301 Use @option{-kernel} to provide the Linux kernel image and
1302 @option{-append} to give the kernel command line arguments. The
1303 @option{-initrd} option can be used to provide an INITRD image.
1304
1305 When using the direct Linux boot, a disk image for the first hard disk
1306 @file{hda} is required because its boot sector is used to launch the
1307 Linux kernel.
1308
1309 If you do not need graphical output, you can disable it and redirect
1310 the virtual serial port and the QEMU monitor to the console with the
1311 @option{-nographic} option. The typical command line is:
1312 @example
1313 qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1314 -append "root=/dev/hda console=ttyS0" -nographic
1315 @end example
1316
1317 Use @key{Ctrl-a c} to switch between the serial console and the
1318 monitor (@pxref{pcsys_keys}).
1319
1320 @node pcsys_usb
1321 @section USB emulation
1322
1323 QEMU emulates a PCI UHCI USB controller. You can virtually plug
1324 virtual USB devices or real host USB devices (experimental, works only
1325 on Linux hosts). Qemu will automatically create and connect virtual USB hubs
1326 as necessary to connect multiple USB devices.
1327
1328 @menu
1329 * usb_devices::
1330 * host_usb_devices::
1331 @end menu
1332 @node usb_devices
1333 @subsection Connecting USB devices
1334
1335 USB devices can be connected with the @option{-usbdevice} commandline option
1336 or the @code{usb_add} monitor command. Available devices are:
1337
1338 @table @var
1339 @item @code{mouse}
1340 Virtual Mouse. This will override the PS/2 mouse emulation when activated.
1341 @item @code{tablet}
1342 Pointer device that uses absolute coordinates (like a touchscreen).
1343 This means qemu is able to report the mouse position without having
1344 to grab the mouse. Also overrides the PS/2 mouse emulation when activated.
1345 @item @code{disk:file}
1346 Mass storage device based on @var{file} (@pxref{disk_images})
1347 @item @code{host:bus.addr}
1348 Pass through the host device identified by @var{bus.addr}
1349 (Linux only)
1350 @item @code{host:vendor_id:product_id}
1351 Pass through the host device identified by @var{vendor_id:product_id}
1352 (Linux only)
1353 @end table
1354
1355 @node host_usb_devices
1356 @subsection Using host USB devices on a Linux host
1357
1358 WARNING: this is an experimental feature. QEMU will slow down when
1359 using it. USB devices requiring real time streaming (i.e. USB Video
1360 Cameras) are not supported yet.
1361
1362 @enumerate
1363 @item If you use an early Linux 2.4 kernel, verify that no Linux driver
1364 is actually using the USB device. A simple way to do that is simply to
1365 disable the corresponding kernel module by renaming it from @file{mydriver.o}
1366 to @file{mydriver.o.disabled}.
1367
1368 @item Verify that @file{/proc/bus/usb} is working (most Linux distributions should enable it by default). You should see something like that:
1369 @example
1370 ls /proc/bus/usb
1371 001 devices drivers
1372 @end example
1373
1374 @item Since only root can access to the USB devices directly, you can either launch QEMU as root or change the permissions of the USB devices you want to use. For testing, the following suffices:
1375 @example
1376 chown -R myuid /proc/bus/usb
1377 @end example
1378
1379 @item Launch QEMU and do in the monitor:
1380 @example
1381 info usbhost
1382 Device 1.2, speed 480 Mb/s
1383 Class 00: USB device 1234:5678, USB DISK
1384 @end example
1385 You should see the list of the devices you can use (Never try to use
1386 hubs, it won't work).
1387
1388 @item Add the device in QEMU by using:
1389 @example
1390 usb_add host:1234:5678
1391 @end example
1392
1393 Normally the guest OS should report that a new USB device is
1394 plugged. You can use the option @option{-usbdevice} to do the same.
1395
1396 @item Now you can try to use the host USB device in QEMU.
1397
1398 @end enumerate
1399
1400 When relaunching QEMU, you may have to unplug and plug again the USB
1401 device to make it work again (this is a bug).
1402
1403 @node gdb_usage
1404 @section GDB usage
1405
1406 QEMU has a primitive support to work with gdb, so that you can do
1407 'Ctrl-C' while the virtual machine is running and inspect its state.
1408
1409 In order to use gdb, launch qemu with the '-s' option. It will wait for a
1410 gdb connection:
1411 @example
1412 > qemu -s -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1413 -append "root=/dev/hda"
1414 Connected to host network interface: tun0
1415 Waiting gdb connection on port 1234
1416 @end example
1417
1418 Then launch gdb on the 'vmlinux' executable:
1419 @example
1420 > gdb vmlinux
1421 @end example
1422
1423 In gdb, connect to QEMU:
1424 @example
1425 (gdb) target remote localhost:1234
1426 @end example
1427
1428 Then you can use gdb normally. For example, type 'c' to launch the kernel:
1429 @example
1430 (gdb) c
1431 @end example
1432
1433 Here are some useful tips in order to use gdb on system code:
1434
1435 @enumerate
1436 @item
1437 Use @code{info reg} to display all the CPU registers.
1438 @item
1439 Use @code{x/10i $eip} to display the code at the PC position.
1440 @item
1441 Use @code{set architecture i8086} to dump 16 bit code. Then use
1442 @code{x/10i $cs*16+$eip} to dump the code at the PC position.
1443 @end enumerate
1444
1445 @node pcsys_os_specific
1446 @section Target OS specific information
1447
1448 @subsection Linux
1449
1450 To have access to SVGA graphic modes under X11, use the @code{vesa} or
1451 the @code{cirrus} X11 driver. For optimal performances, use 16 bit
1452 color depth in the guest and the host OS.
1453
1454 When using a 2.6 guest Linux kernel, you should add the option
1455 @code{clock=pit} on the kernel command line because the 2.6 Linux
1456 kernels make very strict real time clock checks by default that QEMU
1457 cannot simulate exactly.
1458
1459 When using a 2.6 guest Linux kernel, verify that the 4G/4G patch is
1460 not activated because QEMU is slower with this patch. The QEMU
1461 Accelerator Module is also much slower in this case. Earlier Fedora
1462 Core 3 Linux kernel (< 2.6.9-1.724_FC3) were known to incorporte this
1463 patch by default. Newer kernels don't have it.
1464
1465 @subsection Windows
1466
1467 If you have a slow host, using Windows 95 is better as it gives the
1468 best speed. Windows 2000 is also a good choice.
1469
1470 @subsubsection SVGA graphic modes support
1471
1472 QEMU emulates a Cirrus Logic GD5446 Video
1473 card. All Windows versions starting from Windows 95 should recognize
1474 and use this graphic card. For optimal performances, use 16 bit color
1475 depth in the guest and the host OS.
1476
1477 If you are using Windows XP as guest OS and if you want to use high
1478 resolution modes which the Cirrus Logic BIOS does not support (i.e. >=
1479 1280x1024x16), then you should use the VESA VBE virtual graphic card
1480 (option @option{-std-vga}).
1481
1482 @subsubsection CPU usage reduction
1483
1484 Windows 9x does not correctly use the CPU HLT
1485 instruction. The result is that it takes host CPU cycles even when
1486 idle. You can install the utility from
1487 @url{http://www.user.cityline.ru/~maxamn/amnhltm.zip} to solve this
1488 problem. Note that no such tool is needed for NT, 2000 or XP.
1489
1490 @subsubsection Windows 2000 disk full problem
1491
1492 Windows 2000 has a bug which gives a disk full problem during its
1493 installation. When installing it, use the @option{-win2k-hack} QEMU
1494 option to enable a specific workaround. After Windows 2000 is
1495 installed, you no longer need this option (this option slows down the
1496 IDE transfers).
1497
1498 @subsubsection Windows 2000 shutdown
1499
1500 Windows 2000 cannot automatically shutdown in QEMU although Windows 98
1501 can. It comes from the fact that Windows 2000 does not automatically
1502 use the APM driver provided by the BIOS.
1503
1504 In order to correct that, do the following (thanks to Struan
1505 Bartlett): go to the Control Panel => Add/Remove Hardware & Next =>
1506 Add/Troubleshoot a device => Add a new device & Next => No, select the
1507 hardware from a list & Next => NT Apm/Legacy Support & Next => Next
1508 (again) a few times. Now the driver is installed and Windows 2000 now
1509 correctly instructs QEMU to shutdown at the appropriate moment.
1510
1511 @subsubsection Share a directory between Unix and Windows
1512
1513 See @ref{sec_invocation} about the help of the option @option{-smb}.
1514
1515 @subsubsection Windows XP security problem
1516
1517 Some releases of Windows XP install correctly but give a security
1518 error when booting:
1519 @example
1520 A problem is preventing Windows from accurately checking the
1521 license for this computer. Error code: 0x800703e6.
1522 @end example
1523
1524 The workaround is to install a service pack for XP after a boot in safe
1525 mode. Then reboot, and the problem should go away. Since there is no
1526 network while in safe mode, its recommended to download the full
1527 installation of SP1 or SP2 and transfer that via an ISO or using the
1528 vvfat block device ("-hdb fat:directory_which_holds_the_SP").
1529
1530 @subsection MS-DOS and FreeDOS
1531
1532 @subsubsection CPU usage reduction
1533
1534 DOS does not correctly use the CPU HLT instruction. The result is that
1535 it takes host CPU cycles even when idle. You can install the utility
1536 from @url{http://www.vmware.com/software/dosidle210.zip} to solve this
1537 problem.
1538
1539 @node QEMU System emulator for non PC targets
1540 @chapter QEMU System emulator for non PC targets
1541
1542 QEMU is a generic emulator and it emulates many non PC
1543 machines. Most of the options are similar to the PC emulator. The
1544 differences are mentionned in the following sections.
1545
1546 @menu
1547 * QEMU PowerPC System emulator::
1548 * Sparc32 System emulator invocation::
1549 * Sparc64 System emulator invocation::
1550 * MIPS System emulator invocation::
1551 * ARM System emulator invocation::
1552 @end menu
1553
1554 @node QEMU PowerPC System emulator
1555 @section QEMU PowerPC System emulator
1556
1557 Use the executable @file{qemu-system-ppc} to simulate a complete PREP
1558 or PowerMac PowerPC system.
1559
1560 QEMU emulates the following PowerMac peripherals:
1561
1562 @itemize @minus
1563 @item
1564 UniNorth PCI Bridge
1565 @item
1566 PCI VGA compatible card with VESA Bochs Extensions
1567 @item
1568 2 PMAC IDE interfaces with hard disk and CD-ROM support
1569 @item
1570 NE2000 PCI adapters
1571 @item
1572 Non Volatile RAM
1573 @item
1574 VIA-CUDA with ADB keyboard and mouse.
1575 @end itemize
1576
1577 QEMU emulates the following PREP peripherals:
1578
1579 @itemize @minus
1580 @item
1581 PCI Bridge
1582 @item
1583 PCI VGA compatible card with VESA Bochs Extensions
1584 @item
1585 2 IDE interfaces with hard disk and CD-ROM support
1586 @item
1587 Floppy disk
1588 @item
1589 NE2000 network adapters
1590 @item
1591 Serial port
1592 @item
1593 PREP Non Volatile RAM
1594 @item
1595 PC compatible keyboard and mouse.
1596 @end itemize
1597
1598 QEMU uses the Open Hack'Ware Open Firmware Compatible BIOS available at
1599 @url{http://perso.magic.fr/l_indien/OpenHackWare/index.htm}.
1600
1601 @c man begin OPTIONS
1602
1603 The following options are specific to the PowerPC emulation:
1604
1605 @table @option
1606
1607 @item -g WxH[xDEPTH]
1608
1609 Set the initial VGA graphic mode. The default is 800x600x15.
1610
1611 @end table
1612
1613 @c man end
1614
1615
1616 More information is available at
1617 @url{http://perso.magic.fr/l_indien/qemu-ppc/}.
1618
1619 @node Sparc32 System emulator invocation
1620 @section Sparc32 System emulator invocation
1621
1622 Use the executable @file{qemu-system-sparc} to simulate a SparcStation 5
1623 (sun4m architecture). The emulation is somewhat complete.
1624
1625 QEMU emulates the following sun4m peripherals:
1626
1627 @itemize @minus
1628 @item
1629 IOMMU
1630 @item
1631 TCX Frame buffer
1632 @item
1633 Lance (Am7990) Ethernet
1634 @item
1635 Non Volatile RAM M48T08
1636 @item
1637 Slave I/O: timers, interrupt controllers, Zilog serial ports, keyboard
1638 and power/reset logic
1639 @item
1640 ESP SCSI controller with hard disk and CD-ROM support
1641 @item
1642 Floppy drive
1643 @end itemize
1644
1645 The number of peripherals is fixed in the architecture.
1646
1647 Since version 0.8.2, QEMU uses OpenBIOS
1648 @url{http://www.openbios.org/}. OpenBIOS is a free (GPL v2) portable
1649 firmware implementation. The goal is to implement a 100% IEEE
1650 1275-1994 (referred to as Open Firmware) compliant firmware.
1651
1652 A sample Linux 2.6 series kernel and ram disk image are available on
1653 the QEMU web site. Please note that currently NetBSD, OpenBSD or
1654 Solaris kernels don't work.
1655
1656 @c man begin OPTIONS
1657
1658 The following options are specific to the Sparc emulation:
1659
1660 @table @option
1661
1662 @item -g WxH
1663
1664 Set the initial TCX graphic mode. The default is 1024x768.
1665
1666 @item -prom-env string
1667
1668 Set OpenBIOS variables in NVRAM, for example:
1669
1670 @example
1671 qemu-system-sparc -prom-env 'auto-boot?=false' \
1672 -prom-env 'boot-device=sd(0,2,0):d' -prom-env 'boot-args=linux single'
1673 @end example
1674
1675 @end table
1676
1677 @c man end
1678
1679 @node Sparc64 System emulator invocation
1680 @section Sparc64 System emulator invocation
1681
1682 Use the executable @file{qemu-system-sparc64} to simulate a Sun4u machine.
1683 The emulator is not usable for anything yet.
1684
1685 QEMU emulates the following sun4u peripherals:
1686
1687 @itemize @minus
1688 @item
1689 UltraSparc IIi APB PCI Bridge
1690 @item
1691 PCI VGA compatible card with VESA Bochs Extensions
1692 @item
1693 Non Volatile RAM M48T59
1694 @item
1695 PC-compatible serial ports
1696 @end itemize
1697
1698 @node MIPS System emulator invocation
1699 @section MIPS System emulator invocation
1700
1701 Use the executable @file{qemu-system-mips} to simulate a MIPS machine.
1702 The emulator is able to boot a Linux kernel and to run a Linux Debian
1703 installation from NFS. The following devices are emulated:
1704
1705 @itemize @minus
1706 @item
1707 MIPS R4K CPU
1708 @item
1709 PC style serial port
1710 @item
1711 NE2000 network card
1712 @end itemize
1713
1714 More information is available in the QEMU mailing-list archive.
1715
1716 @node ARM System emulator invocation
1717 @section ARM System emulator invocation
1718
1719 Use the executable @file{qemu-system-arm} to simulate a ARM
1720 machine. The ARM Integrator/CP board is emulated with the following
1721 devices:
1722
1723 @itemize @minus
1724 @item
1725 ARM926E, ARM1026E or ARM946E CPU
1726 @item
1727 Two PL011 UARTs
1728 @item
1729 SMC 91c111 Ethernet adapter
1730 @item
1731 PL110 LCD controller
1732 @item
1733 PL050 KMI with PS/2 keyboard and mouse.
1734 @item
1735 PL181 MultiMedia Card Interface with SD card.
1736 @end itemize
1737
1738 The ARM Versatile baseboard is emulated with the following devices:
1739
1740 @itemize @minus
1741 @item
1742 ARM926E CPU
1743 @item
1744 PL190 Vectored Interrupt Controller
1745 @item
1746 Four PL011 UARTs
1747 @item
1748 SMC 91c111 Ethernet adapter
1749 @item
1750 PL110 LCD controller
1751 @item
1752 PL050 KMI with PS/2 keyboard and mouse.
1753 @item
1754 PCI host bridge. Note the emulated PCI bridge only provides access to
1755 PCI memory space. It does not provide access to PCI IO space.
1756 This means some devices (eg. ne2k_pci NIC) are not useable, and others
1757 (eg. rtl8139 NIC) are only useable when the guest drivers use the memory
1758 mapped control registers.
1759 @item
1760 PCI OHCI USB controller.
1761 @item
1762 LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices.
1763 @item
1764 PL181 MultiMedia Card Interface with SD card.
1765 @end itemize
1766
1767 The ARM RealView Emulation baseboard is emulated with the following devices:
1768
1769 @itemize @minus
1770 @item
1771 ARM926E CPU
1772 @item
1773 ARM AMBA Generic/Distributed Interrupt Controller
1774 @item
1775 Four PL011 UARTs
1776 @item
1777 SMC 91c111 Ethernet adapter
1778 @item
1779 PL110 LCD controller
1780 @item
1781 PL050 KMI with PS/2 keyboard and mouse
1782 @item
1783 PCI host bridge
1784 @item
1785 PCI OHCI USB controller
1786 @item
1787 LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices
1788 @item
1789 PL181 MultiMedia Card Interface with SD card.
1790 @end itemize
1791
1792 The XScale-based clamshell PDA models ("Spitz", "Akita", "Borzoi"
1793 and "Terrier") emulation includes the following peripherals:
1794
1795 @itemize @minus
1796 @item
1797 Intel PXA270 System-on-chip (ARM V5TE core)
1798 @item
1799 NAND Flash memory
1800 @item
1801 IBM/Hitachi DSCM microdrive in a PXA PCMCIA slot - not in "Akita"
1802 @item
1803 On-chip OHCI USB controller
1804 @item
1805 On-chip LCD controller
1806 @item
1807 On-chip Real Time Clock
1808 @item
1809 TI ADS7846 touchscreen controller on SSP bus
1810 @item
1811 Maxim MAX1111 analog-digital converter on I@math{^2}C bus
1812 @item
1813 GPIO-connected keyboard controller and LEDs
1814 @item
1815 Secure Digital card connected to PXA MMC/SD host
1816 @item
1817 Three on-chip UARTs
1818 @item
1819 WM8750 audio CODEC on I@math{^2}C and I@math{^2}S busses
1820 @end itemize
1821
1822 A Linux 2.6 test image is available on the QEMU web site. More
1823 information is available in the QEMU mailing-list archive.
1824
1825 @node QEMU User space emulator
1826 @chapter QEMU User space emulator
1827
1828 @menu
1829 * Supported Operating Systems ::
1830 * Linux User space emulator::
1831 * Mac OS X/Darwin User space emulator ::
1832 @end menu
1833
1834 @node Supported Operating Systems
1835 @section Supported Operating Systems
1836
1837 The following OS are supported in user space emulation:
1838
1839 @itemize @minus
1840 @item
1841 Linux (refered as qemu-linux-user)
1842 @item
1843 Mac OS X/Darwin (refered as qemu-darwin-user)
1844 @end itemize
1845
1846 @node Linux User space emulator
1847 @section Linux User space emulator
1848
1849 @menu
1850 * Quick Start::
1851 * Wine launch::
1852 * Command line options::
1853 * Other binaries::
1854 @end menu
1855
1856 @node Quick Start
1857 @subsection Quick Start
1858
1859 In order to launch a Linux process, QEMU needs the process executable
1860 itself and all the target (x86) dynamic libraries used by it.
1861
1862 @itemize
1863
1864 @item On x86, you can just try to launch any process by using the native
1865 libraries:
1866
1867 @example
1868 qemu-i386 -L / /bin/ls
1869 @end example
1870
1871 @code{-L /} tells that the x86 dynamic linker must be searched with a
1872 @file{/} prefix.
1873
1874 @item Since QEMU is also a linux process, you can launch qemu with
1875 qemu (NOTE: you can only do that if you compiled QEMU from the sources):
1876
1877 @example
1878 qemu-i386 -L / qemu-i386 -L / /bin/ls
1879 @end example
1880
1881 @item On non x86 CPUs, you need first to download at least an x86 glibc
1882 (@file{qemu-runtime-i386-XXX-.tar.gz} on the QEMU web page). Ensure that
1883 @code{LD_LIBRARY_PATH} is not set:
1884
1885 @example
1886 unset LD_LIBRARY_PATH
1887 @end example
1888
1889 Then you can launch the precompiled @file{ls} x86 executable:
1890
1891 @example
1892 qemu-i386 tests/i386/ls
1893 @end example
1894 You can look at @file{qemu-binfmt-conf.sh} so that
1895 QEMU is automatically launched by the Linux kernel when you try to
1896 launch x86 executables. It requires the @code{binfmt_misc} module in the
1897 Linux kernel.
1898
1899 @item The x86 version of QEMU is also included. You can try weird things such as:
1900 @example
1901 qemu-i386 /usr/local/qemu-i386/bin/qemu-i386 \
1902 /usr/local/qemu-i386/bin/ls-i386
1903 @end example
1904
1905 @end itemize
1906
1907 @node Wine launch
1908 @subsection Wine launch
1909
1910 @itemize
1911
1912 @item Ensure that you have a working QEMU with the x86 glibc
1913 distribution (see previous section). In order to verify it, you must be
1914 able to do:
1915
1916 @example
1917 qemu-i386 /usr/local/qemu-i386/bin/ls-i386
1918 @end example
1919
1920 @item Download the binary x86 Wine install
1921 (@file{qemu-XXX-i386-wine.tar.gz} on the QEMU web page).
1922
1923 @item Configure Wine on your account. Look at the provided script
1924 @file{/usr/local/qemu-i386/@/bin/wine-conf.sh}. Your previous
1925 @code{$@{HOME@}/.wine} directory is saved to @code{$@{HOME@}/.wine.org}.
1926
1927 @item Then you can try the example @file{putty.exe}:
1928
1929 @example
1930 qemu-i386 /usr/local/qemu-i386/wine/bin/wine \
1931 /usr/local/qemu-i386/wine/c/Program\ Files/putty.exe
1932 @end example
1933
1934 @end itemize
1935
1936 @node Command line options
1937 @subsection Command line options
1938
1939 @example
1940 usage: qemu-i386 [-h] [-d] [-L path] [-s size] program [arguments...]
1941 @end example
1942
1943 @table @option
1944 @item -h
1945 Print the help
1946 @item -L path
1947 Set the x86 elf interpreter prefix (default=/usr/local/qemu-i386)
1948 @item -s size
1949 Set the x86 stack size in bytes (default=524288)
1950 @end table
1951
1952 Debug options:
1953
1954 @table @option
1955 @item -d
1956 Activate log (logfile=/tmp/qemu.log)
1957 @item -p pagesize
1958 Act as if the host page size was 'pagesize' bytes
1959 @end table
1960
1961 @node Other binaries
1962 @subsection Other binaries
1963
1964 @command{qemu-arm} is also capable of running ARM "Angel" semihosted ELF
1965 binaries (as implemented by the arm-elf and arm-eabi Newlib/GDB
1966 configurations), and arm-uclinux bFLT format binaries.
1967
1968 @command{qemu-m68k} is capable of running semihosted binaries using the BDM
1969 (m5xxx-ram-hosted.ld) or m68k-sim (sim.ld) syscall interfaces, and
1970 coldfire uClinux bFLT format binaries.
1971
1972 The binary format is detected automatically.
1973
1974 @node Mac OS X/Darwin User space emulator
1975 @section Mac OS X/Darwin User space emulator
1976
1977 @menu
1978 * Mac OS X/Darwin Status::
1979 * Mac OS X/Darwin Quick Start::
1980 * Mac OS X/Darwin Command line options::
1981 @end menu
1982
1983 @node Mac OS X/Darwin Status
1984 @subsection Mac OS X/Darwin Status
1985
1986 @itemize @minus
1987 @item
1988 target x86 on x86: Most apps (Cocoa and Carbon too) works. [1]
1989 @item
1990 target PowerPC on x86: Not working as the ppc commpage can't be mapped (yet!)
1991 @item
1992 target PowerPC on PowerPC: Most apps (Cocoa and Carbon too) works. [1]
1993 @item
1994 target x86 on PowerPC: most utilities work. Cocoa and Carbon apps are not yet supported.
1995 @end itemize
1996
1997 [1] If you're host commpage can be executed by qemu.
1998
1999 @node Mac OS X/Darwin Quick Start
2000 @subsection Quick Start
2001
2002 In order to launch a Mac OS X/Darwin process, QEMU needs the process executable
2003 itself and all the target dynamic libraries used by it. If you don't have the FAT
2004 libraries (you're running Mac OS X/ppc) you'll need to obtain it from a Mac OS X
2005 CD or compile them by hand.
2006
2007 @itemize
2008
2009 @item On x86, you can just try to launch any process by using the native
2010 libraries:
2011
2012 @example
2013 qemu-i386 /bin/ls
2014 @end example
2015
2016 or to run the ppc version of the executable:
2017
2018 @example
2019 qemu-ppc /bin/ls
2020 @end example
2021
2022 @item On ppc, you'll have to tell qemu where your x86 libraries (and dynamic linker)
2023 are installed:
2024
2025 @example
2026 qemu-i386 -L /opt/x86_root/ /bin/ls
2027 @end example
2028
2029 @code{-L /opt/x86_root/} tells that the dynamic linker (dyld) path is in
2030 @file{/opt/x86_root/usr/bin/dyld}.
2031
2032 @end itemize
2033
2034 @node Mac OS X/Darwin Command line options
2035 @subsection Command line options
2036
2037 @example
2038 usage: qemu-i386 [-h] [-d] [-L path] [-s size] program [arguments...]
2039 @end example
2040
2041 @table @option
2042 @item -h
2043 Print the help
2044 @item -L path
2045 Set the library root path (default=/)
2046 @item -s size
2047 Set the stack size in bytes (default=524288)
2048 @end table
2049
2050 Debug options:
2051
2052 @table @option
2053 @item -d
2054 Activate log (logfile=/tmp/qemu.log)
2055 @item -p pagesize
2056 Act as if the host page size was 'pagesize' bytes
2057 @end table
2058
2059 @node compilation
2060 @chapter Compilation from the sources
2061
2062 @menu
2063 * Linux/Unix::
2064 * Windows::
2065 * Cross compilation for Windows with Linux::
2066 * Mac OS X::
2067 @end menu
2068
2069 @node Linux/Unix
2070 @section Linux/Unix
2071
2072 @subsection Compilation
2073
2074 First you must decompress the sources:
2075 @example
2076 cd /tmp
2077 tar zxvf qemu-x.y.z.tar.gz
2078 cd qemu-x.y.z
2079 @end example
2080
2081 Then you configure QEMU and build it (usually no options are needed):
2082 @example
2083 ./configure
2084 make
2085 @end example
2086
2087 Then type as root user:
2088 @example
2089 make install
2090 @end example
2091 to install QEMU in @file{/usr/local}.
2092
2093 @subsection GCC version
2094
2095 In order to compile QEMU successfully, it is very important that you
2096 have the right tools. The most important one is gcc. On most hosts and
2097 in particular on x86 ones, @emph{gcc 4.x is not supported}. If your
2098 Linux distribution includes a gcc 4.x compiler, you can usually
2099 install an older version (it is invoked by @code{gcc32} or
2100 @code{gcc34}). The QEMU configure script automatically probes for
2101 these older versions so that usally you don't have to do anything.
2102
2103 @node Windows
2104 @section Windows
2105
2106 @itemize
2107 @item Install the current versions of MSYS and MinGW from
2108 @url{http://www.mingw.org/}. You can find detailed installation
2109 instructions in the download section and the FAQ.
2110
2111 @item Download
2112 the MinGW development library of SDL 1.2.x
2113 (@file{SDL-devel-1.2.x-@/mingw32.tar.gz}) from
2114 @url{http://www.libsdl.org}. Unpack it in a temporary place, and
2115 unpack the archive @file{i386-mingw32msvc.tar.gz} in the MinGW tool
2116 directory. Edit the @file{sdl-config} script so that it gives the
2117 correct SDL directory when invoked.
2118
2119 @item Extract the current version of QEMU.
2120
2121 @item Start the MSYS shell (file @file{msys.bat}).
2122
2123 @item Change to the QEMU directory. Launch @file{./configure} and
2124 @file{make}. If you have problems using SDL, verify that
2125 @file{sdl-config} can be launched from the MSYS command line.
2126
2127 @item You can install QEMU in @file{Program Files/Qemu} by typing
2128 @file{make install}. Don't forget to copy @file{SDL.dll} in
2129 @file{Program Files/Qemu}.
2130
2131 @end itemize
2132
2133 @node Cross compilation for Windows with Linux
2134 @section Cross compilation for Windows with Linux
2135
2136 @itemize
2137 @item
2138 Install the MinGW cross compilation tools available at
2139 @url{http://www.mingw.org/}.
2140
2141 @item
2142 Install the Win32 version of SDL (@url{http://www.libsdl.org}) by
2143 unpacking @file{i386-mingw32msvc.tar.gz}. Set up the PATH environment
2144 variable so that @file{i386-mingw32msvc-sdl-config} can be launched by
2145 the QEMU configuration script.
2146
2147 @item
2148 Configure QEMU for Windows cross compilation:
2149 @example
2150 ./configure --enable-mingw32
2151 @end example
2152 If necessary, you can change the cross-prefix according to the prefix
2153 choosen for the MinGW tools with --cross-prefix. You can also use
2154 --prefix to set the Win32 install path.
2155
2156 @item You can install QEMU in the installation directory by typing
2157 @file{make install}. Don't forget to copy @file{SDL.dll} in the
2158 installation directory.
2159
2160 @end itemize
2161
2162 Note: Currently, Wine does not seem able to launch
2163 QEMU for Win32.
2164
2165 @node Mac OS X
2166 @section Mac OS X
2167
2168 The Mac OS X patches are not fully merged in QEMU, so you should look
2169 at the QEMU mailing list archive to have all the necessary
2170 information.
2171
2172 @node Index
2173 @chapter Index
2174 @printindex cp
2175
2176 @bye