]> git.proxmox.com Git - qemu.git/blob - qemu-doc.texi
Allow to unscale the output window with a Ctrl-Alt-u hotkey
[qemu.git] / qemu-doc.texi
1 \input texinfo @c -*- texinfo -*-
2 @c %**start of header
3 @setfilename qemu-doc.info
4 @settitle QEMU Emulator User Documentation
5 @exampleindent 0
6 @paragraphindent 0
7 @c %**end of header
8
9 @iftex
10 @titlepage
11 @sp 7
12 @center @titlefont{QEMU Emulator}
13 @sp 1
14 @center @titlefont{User Documentation}
15 @sp 3
16 @end titlepage
17 @end iftex
18
19 @ifnottex
20 @node Top
21 @top
22
23 @menu
24 * Introduction::
25 * Installation::
26 * QEMU PC System emulator::
27 * QEMU System emulator for non PC targets::
28 * QEMU User space emulator::
29 * compilation:: Compilation from the sources
30 * Index::
31 @end menu
32 @end ifnottex
33
34 @contents
35
36 @node Introduction
37 @chapter Introduction
38
39 @menu
40 * intro_features:: Features
41 @end menu
42
43 @node intro_features
44 @section Features
45
46 QEMU is a FAST! processor emulator using dynamic translation to
47 achieve good emulation speed.
48
49 QEMU has two operating modes:
50
51 @itemize @minus
52
53 @item
54 Full system emulation. In this mode, QEMU emulates a full system (for
55 example a PC), including one or several processors and various
56 peripherals. It can be used to launch different Operating Systems
57 without rebooting the PC or to debug system code.
58
59 @item
60 User mode emulation. In this mode, QEMU can launch
61 processes compiled for one CPU on another CPU. It can be used to
62 launch the Wine Windows API emulator (@url{http://www.winehq.org}) or
63 to ease cross-compilation and cross-debugging.
64
65 @end itemize
66
67 QEMU can run without an host kernel driver and yet gives acceptable
68 performance.
69
70 For system emulation, the following hardware targets are supported:
71 @itemize
72 @item PC (x86 or x86_64 processor)
73 @item ISA PC (old style PC without PCI bus)
74 @item PREP (PowerPC processor)
75 @item G3 Beige PowerMac (PowerPC processor)
76 @item Mac99 PowerMac (PowerPC processor, in progress)
77 @item Sun4m/Sun4c/Sun4d (32-bit Sparc processor)
78 @item Sun4u/Sun4v (64-bit Sparc processor, in progress)
79 @item Malta board (32-bit and 64-bit MIPS processors)
80 @item MIPS Magnum (64-bit MIPS processor)
81 @item ARM Integrator/CP (ARM)
82 @item ARM Versatile baseboard (ARM)
83 @item ARM RealView Emulation baseboard (ARM)
84 @item Spitz, Akita, Borzoi, Terrier and Tosa PDAs (PXA270 processor)
85 @item Luminary Micro LM3S811EVB (ARM Cortex-M3)
86 @item Luminary Micro LM3S6965EVB (ARM Cortex-M3)
87 @item Freescale MCF5208EVB (ColdFire V2).
88 @item Arnewsh MCF5206 evaluation board (ColdFire V2).
89 @item Palm Tungsten|E PDA (OMAP310 processor)
90 @item N800 and N810 tablets (OMAP2420 processor)
91 @item MusicPal (MV88W8618 ARM processor)
92 @item Gumstix "Connex" and "Verdex" motherboards (PXA255/270).
93 @item Siemens SX1 smartphone (OMAP310 processor)
94 @item Syborg SVP base model (ARM Cortex-A8).
95 @item AXIS-Devboard88 (CRISv32 ETRAX-FS).
96 @item Petalogix Spartan 3aDSP1800 MMU ref design (MicroBlaze).
97 @end itemize
98
99 For user emulation, x86, PowerPC, ARM, 32-bit MIPS, Sparc32/64, ColdFire(m68k), CRISv32 and MicroBlaze CPUs are supported.
100
101 @node Installation
102 @chapter Installation
103
104 If you want to compile QEMU yourself, see @ref{compilation}.
105
106 @menu
107 * install_linux:: Linux
108 * install_windows:: Windows
109 * install_mac:: Macintosh
110 @end menu
111
112 @node install_linux
113 @section Linux
114
115 If a precompiled package is available for your distribution - you just
116 have to install it. Otherwise, see @ref{compilation}.
117
118 @node install_windows
119 @section Windows
120
121 Download the experimental binary installer at
122 @url{http://www.free.oszoo.org/@/download.html}.
123
124 @node install_mac
125 @section Mac OS X
126
127 Download the experimental binary installer at
128 @url{http://www.free.oszoo.org/@/download.html}.
129
130 @node QEMU PC System emulator
131 @chapter QEMU PC System emulator
132
133 @menu
134 * pcsys_introduction:: Introduction
135 * pcsys_quickstart:: Quick Start
136 * sec_invocation:: Invocation
137 * pcsys_keys:: Keys
138 * pcsys_monitor:: QEMU Monitor
139 * disk_images:: Disk Images
140 * pcsys_network:: Network emulation
141 * direct_linux_boot:: Direct Linux Boot
142 * pcsys_usb:: USB emulation
143 * vnc_security:: VNC security
144 * gdb_usage:: GDB usage
145 * pcsys_os_specific:: Target OS specific information
146 @end menu
147
148 @node pcsys_introduction
149 @section Introduction
150
151 @c man begin DESCRIPTION
152
153 The QEMU PC System emulator simulates the
154 following peripherals:
155
156 @itemize @minus
157 @item
158 i440FX host PCI bridge and PIIX3 PCI to ISA bridge
159 @item
160 Cirrus CLGD 5446 PCI VGA card or dummy VGA card with Bochs VESA
161 extensions (hardware level, including all non standard modes).
162 @item
163 PS/2 mouse and keyboard
164 @item
165 2 PCI IDE interfaces with hard disk and CD-ROM support
166 @item
167 Floppy disk
168 @item
169 PCI and ISA network adapters
170 @item
171 Serial ports
172 @item
173 Creative SoundBlaster 16 sound card
174 @item
175 ENSONIQ AudioPCI ES1370 sound card
176 @item
177 Intel 82801AA AC97 Audio compatible sound card
178 @item
179 Adlib(OPL2) - Yamaha YM3812 compatible chip
180 @item
181 Gravis Ultrasound GF1 sound card
182 @item
183 CS4231A compatible sound card
184 @item
185 PCI UHCI USB controller and a virtual USB hub.
186 @end itemize
187
188 SMP is supported with up to 255 CPUs.
189
190 Note that adlib, gus and cs4231a are only available when QEMU was
191 configured with --audio-card-list option containing the name(s) of
192 required card(s).
193
194 QEMU uses the PC BIOS from the Bochs project and the Plex86/Bochs LGPL
195 VGA BIOS.
196
197 QEMU uses YM3812 emulation by Tatsuyuki Satoh.
198
199 QEMU uses GUS emulation(GUSEMU32 @url{http://www.deinmeister.de/gusemu/})
200 by Tibor "TS" Schütz.
201
202 CS4231A is the chip used in Windows Sound System and GUSMAX products
203
204 @c man end
205
206 @node pcsys_quickstart
207 @section Quick Start
208
209 Download and uncompress the linux image (@file{linux.img}) and type:
210
211 @example
212 qemu linux.img
213 @end example
214
215 Linux should boot and give you a prompt.
216
217 @node sec_invocation
218 @section Invocation
219
220 @example
221 @c man begin SYNOPSIS
222 usage: qemu [options] [@var{disk_image}]
223 @c man end
224 @end example
225
226 @c man begin OPTIONS
227 @var{disk_image} is a raw hard disk image for IDE hard disk 0. Some
228 targets do not need a disk image.
229
230 @include qemu-options.texi
231
232 @c man end
233
234 @node pcsys_keys
235 @section Keys
236
237 @c man begin OPTIONS
238
239 During the graphical emulation, you can use the following keys:
240 @table @key
241 @item Ctrl-Alt-f
242 Toggle full screen
243
244 @item Ctrl-Alt-u
245 Restore the screen's un-scaled dimensions
246
247 @item Ctrl-Alt-n
248 Switch to virtual console 'n'. Standard console mappings are:
249 @table @emph
250 @item 1
251 Target system display
252 @item 2
253 Monitor
254 @item 3
255 Serial port
256 @end table
257
258 @item Ctrl-Alt
259 Toggle mouse and keyboard grab.
260 @end table
261
262 In the virtual consoles, you can use @key{Ctrl-Up}, @key{Ctrl-Down},
263 @key{Ctrl-PageUp} and @key{Ctrl-PageDown} to move in the back log.
264
265 During emulation, if you are using the @option{-nographic} option, use
266 @key{Ctrl-a h} to get terminal commands:
267
268 @table @key
269 @item Ctrl-a h
270 @item Ctrl-a ?
271 Print this help
272 @item Ctrl-a x
273 Exit emulator
274 @item Ctrl-a s
275 Save disk data back to file (if -snapshot)
276 @item Ctrl-a t
277 Toggle console timestamps
278 @item Ctrl-a b
279 Send break (magic sysrq in Linux)
280 @item Ctrl-a c
281 Switch between console and monitor
282 @item Ctrl-a Ctrl-a
283 Send Ctrl-a
284 @end table
285 @c man end
286
287 @ignore
288
289 @c man begin SEEALSO
290 The HTML documentation of QEMU for more precise information and Linux
291 user mode emulator invocation.
292 @c man end
293
294 @c man begin AUTHOR
295 Fabrice Bellard
296 @c man end
297
298 @end ignore
299
300 @node pcsys_monitor
301 @section QEMU Monitor
302
303 The QEMU monitor is used to give complex commands to the QEMU
304 emulator. You can use it to:
305
306 @itemize @minus
307
308 @item
309 Remove or insert removable media images
310 (such as CD-ROM or floppies).
311
312 @item
313 Freeze/unfreeze the Virtual Machine (VM) and save or restore its state
314 from a disk file.
315
316 @item Inspect the VM state without an external debugger.
317
318 @end itemize
319
320 @subsection Commands
321
322 The following commands are available:
323
324 @include qemu-monitor.texi
325
326 @subsection Integer expressions
327
328 The monitor understands integers expressions for every integer
329 argument. You can use register names to get the value of specifics
330 CPU registers by prefixing them with @emph{$}.
331
332 @node disk_images
333 @section Disk Images
334
335 Since version 0.6.1, QEMU supports many disk image formats, including
336 growable disk images (their size increase as non empty sectors are
337 written), compressed and encrypted disk images. Version 0.8.3 added
338 the new qcow2 disk image format which is essential to support VM
339 snapshots.
340
341 @menu
342 * disk_images_quickstart:: Quick start for disk image creation
343 * disk_images_snapshot_mode:: Snapshot mode
344 * vm_snapshots:: VM snapshots
345 * qemu_img_invocation:: qemu-img Invocation
346 * qemu_nbd_invocation:: qemu-nbd Invocation
347 * host_drives:: Using host drives
348 * disk_images_fat_images:: Virtual FAT disk images
349 * disk_images_nbd:: NBD access
350 @end menu
351
352 @node disk_images_quickstart
353 @subsection Quick start for disk image creation
354
355 You can create a disk image with the command:
356 @example
357 qemu-img create myimage.img mysize
358 @end example
359 where @var{myimage.img} is the disk image filename and @var{mysize} is its
360 size in kilobytes. You can add an @code{M} suffix to give the size in
361 megabytes and a @code{G} suffix for gigabytes.
362
363 See @ref{qemu_img_invocation} for more information.
364
365 @node disk_images_snapshot_mode
366 @subsection Snapshot mode
367
368 If you use the option @option{-snapshot}, all disk images are
369 considered as read only. When sectors in written, they are written in
370 a temporary file created in @file{/tmp}. You can however force the
371 write back to the raw disk images by using the @code{commit} monitor
372 command (or @key{C-a s} in the serial console).
373
374 @node vm_snapshots
375 @subsection VM snapshots
376
377 VM snapshots are snapshots of the complete virtual machine including
378 CPU state, RAM, device state and the content of all the writable
379 disks. In order to use VM snapshots, you must have at least one non
380 removable and writable block device using the @code{qcow2} disk image
381 format. Normally this device is the first virtual hard drive.
382
383 Use the monitor command @code{savevm} to create a new VM snapshot or
384 replace an existing one. A human readable name can be assigned to each
385 snapshot in addition to its numerical ID.
386
387 Use @code{loadvm} to restore a VM snapshot and @code{delvm} to remove
388 a VM snapshot. @code{info snapshots} lists the available snapshots
389 with their associated information:
390
391 @example
392 (qemu) info snapshots
393 Snapshot devices: hda
394 Snapshot list (from hda):
395 ID TAG VM SIZE DATE VM CLOCK
396 1 start 41M 2006-08-06 12:38:02 00:00:14.954
397 2 40M 2006-08-06 12:43:29 00:00:18.633
398 3 msys 40M 2006-08-06 12:44:04 00:00:23.514
399 @end example
400
401 A VM snapshot is made of a VM state info (its size is shown in
402 @code{info snapshots}) and a snapshot of every writable disk image.
403 The VM state info is stored in the first @code{qcow2} non removable
404 and writable block device. The disk image snapshots are stored in
405 every disk image. The size of a snapshot in a disk image is difficult
406 to evaluate and is not shown by @code{info snapshots} because the
407 associated disk sectors are shared among all the snapshots to save
408 disk space (otherwise each snapshot would need a full copy of all the
409 disk images).
410
411 When using the (unrelated) @code{-snapshot} option
412 (@ref{disk_images_snapshot_mode}), you can always make VM snapshots,
413 but they are deleted as soon as you exit QEMU.
414
415 VM snapshots currently have the following known limitations:
416 @itemize
417 @item
418 They cannot cope with removable devices if they are removed or
419 inserted after a snapshot is done.
420 @item
421 A few device drivers still have incomplete snapshot support so their
422 state is not saved or restored properly (in particular USB).
423 @end itemize
424
425 @node qemu_img_invocation
426 @subsection @code{qemu-img} Invocation
427
428 @include qemu-img.texi
429
430 @node qemu_nbd_invocation
431 @subsection @code{qemu-nbd} Invocation
432
433 @include qemu-nbd.texi
434
435 @node host_drives
436 @subsection Using host drives
437
438 In addition to disk image files, QEMU can directly access host
439 devices. We describe here the usage for QEMU version >= 0.8.3.
440
441 @subsubsection Linux
442
443 On Linux, you can directly use the host device filename instead of a
444 disk image filename provided you have enough privileges to access
445 it. For example, use @file{/dev/cdrom} to access to the CDROM or
446 @file{/dev/fd0} for the floppy.
447
448 @table @code
449 @item CD
450 You can specify a CDROM device even if no CDROM is loaded. QEMU has
451 specific code to detect CDROM insertion or removal. CDROM ejection by
452 the guest OS is supported. Currently only data CDs are supported.
453 @item Floppy
454 You can specify a floppy device even if no floppy is loaded. Floppy
455 removal is currently not detected accurately (if you change floppy
456 without doing floppy access while the floppy is not loaded, the guest
457 OS will think that the same floppy is loaded).
458 @item Hard disks
459 Hard disks can be used. Normally you must specify the whole disk
460 (@file{/dev/hdb} instead of @file{/dev/hdb1}) so that the guest OS can
461 see it as a partitioned disk. WARNING: unless you know what you do, it
462 is better to only make READ-ONLY accesses to the hard disk otherwise
463 you may corrupt your host data (use the @option{-snapshot} command
464 line option or modify the device permissions accordingly).
465 @end table
466
467 @subsubsection Windows
468
469 @table @code
470 @item CD
471 The preferred syntax is the drive letter (e.g. @file{d:}). The
472 alternate syntax @file{\\.\d:} is supported. @file{/dev/cdrom} is
473 supported as an alias to the first CDROM drive.
474
475 Currently there is no specific code to handle removable media, so it
476 is better to use the @code{change} or @code{eject} monitor commands to
477 change or eject media.
478 @item Hard disks
479 Hard disks can be used with the syntax: @file{\\.\PhysicalDrive@var{N}}
480 where @var{N} is the drive number (0 is the first hard disk).
481
482 WARNING: unless you know what you do, it is better to only make
483 READ-ONLY accesses to the hard disk otherwise you may corrupt your
484 host data (use the @option{-snapshot} command line so that the
485 modifications are written in a temporary file).
486 @end table
487
488
489 @subsubsection Mac OS X
490
491 @file{/dev/cdrom} is an alias to the first CDROM.
492
493 Currently there is no specific code to handle removable media, so it
494 is better to use the @code{change} or @code{eject} monitor commands to
495 change or eject media.
496
497 @node disk_images_fat_images
498 @subsection Virtual FAT disk images
499
500 QEMU can automatically create a virtual FAT disk image from a
501 directory tree. In order to use it, just type:
502
503 @example
504 qemu linux.img -hdb fat:/my_directory
505 @end example
506
507 Then you access access to all the files in the @file{/my_directory}
508 directory without having to copy them in a disk image or to export
509 them via SAMBA or NFS. The default access is @emph{read-only}.
510
511 Floppies can be emulated with the @code{:floppy:} option:
512
513 @example
514 qemu linux.img -fda fat:floppy:/my_directory
515 @end example
516
517 A read/write support is available for testing (beta stage) with the
518 @code{:rw:} option:
519
520 @example
521 qemu linux.img -fda fat:floppy:rw:/my_directory
522 @end example
523
524 What you should @emph{never} do:
525 @itemize
526 @item use non-ASCII filenames ;
527 @item use "-snapshot" together with ":rw:" ;
528 @item expect it to work when loadvm'ing ;
529 @item write to the FAT directory on the host system while accessing it with the guest system.
530 @end itemize
531
532 @node disk_images_nbd
533 @subsection NBD access
534
535 QEMU can access directly to block device exported using the Network Block Device
536 protocol.
537
538 @example
539 qemu linux.img -hdb nbd:my_nbd_server.mydomain.org:1024
540 @end example
541
542 If the NBD server is located on the same host, you can use an unix socket instead
543 of an inet socket:
544
545 @example
546 qemu linux.img -hdb nbd:unix:/tmp/my_socket
547 @end example
548
549 In this case, the block device must be exported using qemu-nbd:
550
551 @example
552 qemu-nbd --socket=/tmp/my_socket my_disk.qcow2
553 @end example
554
555 The use of qemu-nbd allows to share a disk between several guests:
556 @example
557 qemu-nbd --socket=/tmp/my_socket --share=2 my_disk.qcow2
558 @end example
559
560 and then you can use it with two guests:
561 @example
562 qemu linux1.img -hdb nbd:unix:/tmp/my_socket
563 qemu linux2.img -hdb nbd:unix:/tmp/my_socket
564 @end example
565
566 @node pcsys_network
567 @section Network emulation
568
569 QEMU can simulate several network cards (PCI or ISA cards on the PC
570 target) and can connect them to an arbitrary number of Virtual Local
571 Area Networks (VLANs). Host TAP devices can be connected to any QEMU
572 VLAN. VLAN can be connected between separate instances of QEMU to
573 simulate large networks. For simpler usage, a non privileged user mode
574 network stack can replace the TAP device to have a basic network
575 connection.
576
577 @subsection VLANs
578
579 QEMU simulates several VLANs. A VLAN can be symbolised as a virtual
580 connection between several network devices. These devices can be for
581 example QEMU virtual Ethernet cards or virtual Host ethernet devices
582 (TAP devices).
583
584 @subsection Using TAP network interfaces
585
586 This is the standard way to connect QEMU to a real network. QEMU adds
587 a virtual network device on your host (called @code{tapN}), and you
588 can then configure it as if it was a real ethernet card.
589
590 @subsubsection Linux host
591
592 As an example, you can download the @file{linux-test-xxx.tar.gz}
593 archive and copy the script @file{qemu-ifup} in @file{/etc} and
594 configure properly @code{sudo} so that the command @code{ifconfig}
595 contained in @file{qemu-ifup} can be executed as root. You must verify
596 that your host kernel supports the TAP network interfaces: the
597 device @file{/dev/net/tun} must be present.
598
599 See @ref{sec_invocation} to have examples of command lines using the
600 TAP network interfaces.
601
602 @subsubsection Windows host
603
604 There is a virtual ethernet driver for Windows 2000/XP systems, called
605 TAP-Win32. But it is not included in standard QEMU for Windows,
606 so you will need to get it separately. It is part of OpenVPN package,
607 so download OpenVPN from : @url{http://openvpn.net/}.
608
609 @subsection Using the user mode network stack
610
611 By using the option @option{-net user} (default configuration if no
612 @option{-net} option is specified), QEMU uses a completely user mode
613 network stack (you don't need root privilege to use the virtual
614 network). The virtual network configuration is the following:
615
616 @example
617
618 QEMU VLAN <------> Firewall/DHCP server <-----> Internet
619 | (10.0.2.2)
620 |
621 ----> DNS server (10.0.2.3)
622 |
623 ----> SMB server (10.0.2.4)
624 @end example
625
626 The QEMU VM behaves as if it was behind a firewall which blocks all
627 incoming connections. You can use a DHCP client to automatically
628 configure the network in the QEMU VM. The DHCP server assign addresses
629 to the hosts starting from 10.0.2.15.
630
631 In order to check that the user mode network is working, you can ping
632 the address 10.0.2.2 and verify that you got an address in the range
633 10.0.2.x from the QEMU virtual DHCP server.
634
635 Note that @code{ping} is not supported reliably to the internet as it
636 would require root privileges. It means you can only ping the local
637 router (10.0.2.2).
638
639 When using the built-in TFTP server, the router is also the TFTP
640 server.
641
642 When using the @option{-redir} option, TCP or UDP connections can be
643 redirected from the host to the guest. It allows for example to
644 redirect X11, telnet or SSH connections.
645
646 @subsection Connecting VLANs between QEMU instances
647
648 Using the @option{-net socket} option, it is possible to make VLANs
649 that span several QEMU instances. See @ref{sec_invocation} to have a
650 basic example.
651
652 @node direct_linux_boot
653 @section Direct Linux Boot
654
655 This section explains how to launch a Linux kernel inside QEMU without
656 having to make a full bootable image. It is very useful for fast Linux
657 kernel testing.
658
659 The syntax is:
660 @example
661 qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img -append "root=/dev/hda"
662 @end example
663
664 Use @option{-kernel} to provide the Linux kernel image and
665 @option{-append} to give the kernel command line arguments. The
666 @option{-initrd} option can be used to provide an INITRD image.
667
668 When using the direct Linux boot, a disk image for the first hard disk
669 @file{hda} is required because its boot sector is used to launch the
670 Linux kernel.
671
672 If you do not need graphical output, you can disable it and redirect
673 the virtual serial port and the QEMU monitor to the console with the
674 @option{-nographic} option. The typical command line is:
675 @example
676 qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
677 -append "root=/dev/hda console=ttyS0" -nographic
678 @end example
679
680 Use @key{Ctrl-a c} to switch between the serial console and the
681 monitor (@pxref{pcsys_keys}).
682
683 @node pcsys_usb
684 @section USB emulation
685
686 QEMU emulates a PCI UHCI USB controller. You can virtually plug
687 virtual USB devices or real host USB devices (experimental, works only
688 on Linux hosts). Qemu will automatically create and connect virtual USB hubs
689 as necessary to connect multiple USB devices.
690
691 @menu
692 * usb_devices::
693 * host_usb_devices::
694 @end menu
695 @node usb_devices
696 @subsection Connecting USB devices
697
698 USB devices can be connected with the @option{-usbdevice} commandline option
699 or the @code{usb_add} monitor command. Available devices are:
700
701 @table @code
702 @item mouse
703 Virtual Mouse. This will override the PS/2 mouse emulation when activated.
704 @item tablet
705 Pointer device that uses absolute coordinates (like a touchscreen).
706 This means qemu is able to report the mouse position without having
707 to grab the mouse. Also overrides the PS/2 mouse emulation when activated.
708 @item disk:@var{file}
709 Mass storage device based on @var{file} (@pxref{disk_images})
710 @item host:@var{bus.addr}
711 Pass through the host device identified by @var{bus.addr}
712 (Linux only)
713 @item host:@var{vendor_id:product_id}
714 Pass through the host device identified by @var{vendor_id:product_id}
715 (Linux only)
716 @item wacom-tablet
717 Virtual Wacom PenPartner tablet. This device is similar to the @code{tablet}
718 above but it can be used with the tslib library because in addition to touch
719 coordinates it reports touch pressure.
720 @item keyboard
721 Standard USB keyboard. Will override the PS/2 keyboard (if present).
722 @item serial:[vendorid=@var{vendor_id}][,product_id=@var{product_id}]:@var{dev}
723 Serial converter. This emulates an FTDI FT232BM chip connected to host character
724 device @var{dev}. The available character devices are the same as for the
725 @code{-serial} option. The @code{vendorid} and @code{productid} options can be
726 used to override the default 0403:6001. For instance,
727 @example
728 usb_add serial:productid=FA00:tcp:192.168.0.2:4444
729 @end example
730 will connect to tcp port 4444 of ip 192.168.0.2, and plug that to the virtual
731 serial converter, faking a Matrix Orbital LCD Display (USB ID 0403:FA00).
732 @item braille
733 Braille device. This will use BrlAPI to display the braille output on a real
734 or fake device.
735 @item net:@var{options}
736 Network adapter that supports CDC ethernet and RNDIS protocols. @var{options}
737 specifies NIC options as with @code{-net nic,}@var{options} (see description).
738 For instance, user-mode networking can be used with
739 @example
740 qemu [...OPTIONS...] -net user,vlan=0 -usbdevice net:vlan=0
741 @end example
742 Currently this cannot be used in machines that support PCI NICs.
743 @item bt[:@var{hci-type}]
744 Bluetooth dongle whose type is specified in the same format as with
745 the @option{-bt hci} option, @pxref{bt-hcis,,allowed HCI types}. If
746 no type is given, the HCI logic corresponds to @code{-bt hci,vlan=0}.
747 This USB device implements the USB Transport Layer of HCI. Example
748 usage:
749 @example
750 qemu [...OPTIONS...] -usbdevice bt:hci,vlan=3 -bt device:keyboard,vlan=3
751 @end example
752 @end table
753
754 @node host_usb_devices
755 @subsection Using host USB devices on a Linux host
756
757 WARNING: this is an experimental feature. QEMU will slow down when
758 using it. USB devices requiring real time streaming (i.e. USB Video
759 Cameras) are not supported yet.
760
761 @enumerate
762 @item If you use an early Linux 2.4 kernel, verify that no Linux driver
763 is actually using the USB device. A simple way to do that is simply to
764 disable the corresponding kernel module by renaming it from @file{mydriver.o}
765 to @file{mydriver.o.disabled}.
766
767 @item Verify that @file{/proc/bus/usb} is working (most Linux distributions should enable it by default). You should see something like that:
768 @example
769 ls /proc/bus/usb
770 001 devices drivers
771 @end example
772
773 @item Since only root can access to the USB devices directly, you can either launch QEMU as root or change the permissions of the USB devices you want to use. For testing, the following suffices:
774 @example
775 chown -R myuid /proc/bus/usb
776 @end example
777
778 @item Launch QEMU and do in the monitor:
779 @example
780 info usbhost
781 Device 1.2, speed 480 Mb/s
782 Class 00: USB device 1234:5678, USB DISK
783 @end example
784 You should see the list of the devices you can use (Never try to use
785 hubs, it won't work).
786
787 @item Add the device in QEMU by using:
788 @example
789 usb_add host:1234:5678
790 @end example
791
792 Normally the guest OS should report that a new USB device is
793 plugged. You can use the option @option{-usbdevice} to do the same.
794
795 @item Now you can try to use the host USB device in QEMU.
796
797 @end enumerate
798
799 When relaunching QEMU, you may have to unplug and plug again the USB
800 device to make it work again (this is a bug).
801
802 @node vnc_security
803 @section VNC security
804
805 The VNC server capability provides access to the graphical console
806 of the guest VM across the network. This has a number of security
807 considerations depending on the deployment scenarios.
808
809 @menu
810 * vnc_sec_none::
811 * vnc_sec_password::
812 * vnc_sec_certificate::
813 * vnc_sec_certificate_verify::
814 * vnc_sec_certificate_pw::
815 * vnc_sec_sasl::
816 * vnc_sec_certificate_sasl::
817 * vnc_generate_cert::
818 * vnc_setup_sasl::
819 @end menu
820 @node vnc_sec_none
821 @subsection Without passwords
822
823 The simplest VNC server setup does not include any form of authentication.
824 For this setup it is recommended to restrict it to listen on a UNIX domain
825 socket only. For example
826
827 @example
828 qemu [...OPTIONS...] -vnc unix:/home/joebloggs/.qemu-myvm-vnc
829 @end example
830
831 This ensures that only users on local box with read/write access to that
832 path can access the VNC server. To securely access the VNC server from a
833 remote machine, a combination of netcat+ssh can be used to provide a secure
834 tunnel.
835
836 @node vnc_sec_password
837 @subsection With passwords
838
839 The VNC protocol has limited support for password based authentication. Since
840 the protocol limits passwords to 8 characters it should not be considered
841 to provide high security. The password can be fairly easily brute-forced by
842 a client making repeat connections. For this reason, a VNC server using password
843 authentication should be restricted to only listen on the loopback interface
844 or UNIX domain sockets. Password authentication is requested with the @code{password}
845 option, and then once QEMU is running the password is set with the monitor. Until
846 the monitor is used to set the password all clients will be rejected.
847
848 @example
849 qemu [...OPTIONS...] -vnc :1,password -monitor stdio
850 (qemu) change vnc password
851 Password: ********
852 (qemu)
853 @end example
854
855 @node vnc_sec_certificate
856 @subsection With x509 certificates
857
858 The QEMU VNC server also implements the VeNCrypt extension allowing use of
859 TLS for encryption of the session, and x509 certificates for authentication.
860 The use of x509 certificates is strongly recommended, because TLS on its
861 own is susceptible to man-in-the-middle attacks. Basic x509 certificate
862 support provides a secure session, but no authentication. This allows any
863 client to connect, and provides an encrypted session.
864
865 @example
866 qemu [...OPTIONS...] -vnc :1,tls,x509=/etc/pki/qemu -monitor stdio
867 @end example
868
869 In the above example @code{/etc/pki/qemu} should contain at least three files,
870 @code{ca-cert.pem}, @code{server-cert.pem} and @code{server-key.pem}. Unprivileged
871 users will want to use a private directory, for example @code{$HOME/.pki/qemu}.
872 NB the @code{server-key.pem} file should be protected with file mode 0600 to
873 only be readable by the user owning it.
874
875 @node vnc_sec_certificate_verify
876 @subsection With x509 certificates and client verification
877
878 Certificates can also provide a means to authenticate the client connecting.
879 The server will request that the client provide a certificate, which it will
880 then validate against the CA certificate. This is a good choice if deploying
881 in an environment with a private internal certificate authority.
882
883 @example
884 qemu [...OPTIONS...] -vnc :1,tls,x509verify=/etc/pki/qemu -monitor stdio
885 @end example
886
887
888 @node vnc_sec_certificate_pw
889 @subsection With x509 certificates, client verification and passwords
890
891 Finally, the previous method can be combined with VNC password authentication
892 to provide two layers of authentication for clients.
893
894 @example
895 qemu [...OPTIONS...] -vnc :1,password,tls,x509verify=/etc/pki/qemu -monitor stdio
896 (qemu) change vnc password
897 Password: ********
898 (qemu)
899 @end example
900
901
902 @node vnc_sec_sasl
903 @subsection With SASL authentication
904
905 The SASL authentication method is a VNC extension, that provides an
906 easily extendable, pluggable authentication method. This allows for
907 integration with a wide range of authentication mechanisms, such as
908 PAM, GSSAPI/Kerberos, LDAP, SQL databases, one-time keys and more.
909 The strength of the authentication depends on the exact mechanism
910 configured. If the chosen mechanism also provides a SSF layer, then
911 it will encrypt the datastream as well.
912
913 Refer to the later docs on how to choose the exact SASL mechanism
914 used for authentication, but assuming use of one supporting SSF,
915 then QEMU can be launched with:
916
917 @example
918 qemu [...OPTIONS...] -vnc :1,sasl -monitor stdio
919 @end example
920
921 @node vnc_sec_certificate_sasl
922 @subsection With x509 certificates and SASL authentication
923
924 If the desired SASL authentication mechanism does not supported
925 SSF layers, then it is strongly advised to run it in combination
926 with TLS and x509 certificates. This provides securely encrypted
927 data stream, avoiding risk of compromising of the security
928 credentials. This can be enabled, by combining the 'sasl' option
929 with the aforementioned TLS + x509 options:
930
931 @example
932 qemu [...OPTIONS...] -vnc :1,tls,x509,sasl -monitor stdio
933 @end example
934
935
936 @node vnc_generate_cert
937 @subsection Generating certificates for VNC
938
939 The GNU TLS packages provides a command called @code{certtool} which can
940 be used to generate certificates and keys in PEM format. At a minimum it
941 is neccessary to setup a certificate authority, and issue certificates to
942 each server. If using certificates for authentication, then each client
943 will also need to be issued a certificate. The recommendation is for the
944 server to keep its certificates in either @code{/etc/pki/qemu} or for
945 unprivileged users in @code{$HOME/.pki/qemu}.
946
947 @menu
948 * vnc_generate_ca::
949 * vnc_generate_server::
950 * vnc_generate_client::
951 @end menu
952 @node vnc_generate_ca
953 @subsubsection Setup the Certificate Authority
954
955 This step only needs to be performed once per organization / organizational
956 unit. First the CA needs a private key. This key must be kept VERY secret
957 and secure. If this key is compromised the entire trust chain of the certificates
958 issued with it is lost.
959
960 @example
961 # certtool --generate-privkey > ca-key.pem
962 @end example
963
964 A CA needs to have a public certificate. For simplicity it can be a self-signed
965 certificate, or one issue by a commercial certificate issuing authority. To
966 generate a self-signed certificate requires one core piece of information, the
967 name of the organization.
968
969 @example
970 # cat > ca.info <<EOF
971 cn = Name of your organization
972 ca
973 cert_signing_key
974 EOF
975 # certtool --generate-self-signed \
976 --load-privkey ca-key.pem
977 --template ca.info \
978 --outfile ca-cert.pem
979 @end example
980
981 The @code{ca-cert.pem} file should be copied to all servers and clients wishing to utilize
982 TLS support in the VNC server. The @code{ca-key.pem} must not be disclosed/copied at all.
983
984 @node vnc_generate_server
985 @subsubsection Issuing server certificates
986
987 Each server (or host) needs to be issued with a key and certificate. When connecting
988 the certificate is sent to the client which validates it against the CA certificate.
989 The core piece of information for a server certificate is the hostname. This should
990 be the fully qualified hostname that the client will connect with, since the client
991 will typically also verify the hostname in the certificate. On the host holding the
992 secure CA private key:
993
994 @example
995 # cat > server.info <<EOF
996 organization = Name of your organization
997 cn = server.foo.example.com
998 tls_www_server
999 encryption_key
1000 signing_key
1001 EOF
1002 # certtool --generate-privkey > server-key.pem
1003 # certtool --generate-certificate \
1004 --load-ca-certificate ca-cert.pem \
1005 --load-ca-privkey ca-key.pem \
1006 --load-privkey server server-key.pem \
1007 --template server.info \
1008 --outfile server-cert.pem
1009 @end example
1010
1011 The @code{server-key.pem} and @code{server-cert.pem} files should now be securely copied
1012 to the server for which they were generated. The @code{server-key.pem} is security
1013 sensitive and should be kept protected with file mode 0600 to prevent disclosure.
1014
1015 @node vnc_generate_client
1016 @subsubsection Issuing client certificates
1017
1018 If the QEMU VNC server is to use the @code{x509verify} option to validate client
1019 certificates as its authentication mechanism, each client also needs to be issued
1020 a certificate. The client certificate contains enough metadata to uniquely identify
1021 the client, typically organization, state, city, building, etc. On the host holding
1022 the secure CA private key:
1023
1024 @example
1025 # cat > client.info <<EOF
1026 country = GB
1027 state = London
1028 locality = London
1029 organiazation = Name of your organization
1030 cn = client.foo.example.com
1031 tls_www_client
1032 encryption_key
1033 signing_key
1034 EOF
1035 # certtool --generate-privkey > client-key.pem
1036 # certtool --generate-certificate \
1037 --load-ca-certificate ca-cert.pem \
1038 --load-ca-privkey ca-key.pem \
1039 --load-privkey client-key.pem \
1040 --template client.info \
1041 --outfile client-cert.pem
1042 @end example
1043
1044 The @code{client-key.pem} and @code{client-cert.pem} files should now be securely
1045 copied to the client for which they were generated.
1046
1047
1048 @node vnc_setup_sasl
1049
1050 @subsection Configuring SASL mechanisms
1051
1052 The following documentation assumes use of the Cyrus SASL implementation on a
1053 Linux host, but the principals should apply to any other SASL impl. When SASL
1054 is enabled, the mechanism configuration will be loaded from system default
1055 SASL service config /etc/sasl2/qemu.conf. If running QEMU as an
1056 unprivileged user, an environment variable SASL_CONF_PATH can be used
1057 to make it search alternate locations for the service config.
1058
1059 The default configuration might contain
1060
1061 @example
1062 mech_list: digest-md5
1063 sasldb_path: /etc/qemu/passwd.db
1064 @end example
1065
1066 This says to use the 'Digest MD5' mechanism, which is similar to the HTTP
1067 Digest-MD5 mechanism. The list of valid usernames & passwords is maintained
1068 in the /etc/qemu/passwd.db file, and can be updated using the saslpasswd2
1069 command. While this mechanism is easy to configure and use, it is not
1070 considered secure by modern standards, so only suitable for developers /
1071 ad-hoc testing.
1072
1073 A more serious deployment might use Kerberos, which is done with the 'gssapi'
1074 mechanism
1075
1076 @example
1077 mech_list: gssapi
1078 keytab: /etc/qemu/krb5.tab
1079 @end example
1080
1081 For this to work the administrator of your KDC must generate a Kerberos
1082 principal for the server, with a name of 'qemu/somehost.example.com@@EXAMPLE.COM'
1083 replacing 'somehost.example.com' with the fully qualified host name of the
1084 machine running QEMU, and 'EXAMPLE.COM' with the Keberos Realm.
1085
1086 Other configurations will be left as an exercise for the reader. It should
1087 be noted that only Digest-MD5 and GSSAPI provides a SSF layer for data
1088 encryption. For all other mechanisms, VNC should always be configured to
1089 use TLS and x509 certificates to protect security credentials from snooping.
1090
1091 @node gdb_usage
1092 @section GDB usage
1093
1094 QEMU has a primitive support to work with gdb, so that you can do
1095 'Ctrl-C' while the virtual machine is running and inspect its state.
1096
1097 In order to use gdb, launch qemu with the '-s' option. It will wait for a
1098 gdb connection:
1099 @example
1100 > qemu -s -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1101 -append "root=/dev/hda"
1102 Connected to host network interface: tun0
1103 Waiting gdb connection on port 1234
1104 @end example
1105
1106 Then launch gdb on the 'vmlinux' executable:
1107 @example
1108 > gdb vmlinux
1109 @end example
1110
1111 In gdb, connect to QEMU:
1112 @example
1113 (gdb) target remote localhost:1234
1114 @end example
1115
1116 Then you can use gdb normally. For example, type 'c' to launch the kernel:
1117 @example
1118 (gdb) c
1119 @end example
1120
1121 Here are some useful tips in order to use gdb on system code:
1122
1123 @enumerate
1124 @item
1125 Use @code{info reg} to display all the CPU registers.
1126 @item
1127 Use @code{x/10i $eip} to display the code at the PC position.
1128 @item
1129 Use @code{set architecture i8086} to dump 16 bit code. Then use
1130 @code{x/10i $cs*16+$eip} to dump the code at the PC position.
1131 @end enumerate
1132
1133 Advanced debugging options:
1134
1135 The default single stepping behavior is step with the IRQs and timer service routines off. It is set this way because when gdb executes a single step it expects to advance beyond the current instruction. With the IRQs and and timer service routines on, a single step might jump into the one of the interrupt or exception vectors instead of executing the current instruction. This means you may hit the same breakpoint a number of times before executing the instruction gdb wants to have executed. Because there are rare circumstances where you want to single step into an interrupt vector the behavior can be controlled from GDB. There are three commands you can query and set the single step behavior:
1136 @table @code
1137 @item maintenance packet qqemu.sstepbits
1138
1139 This will display the MASK bits used to control the single stepping IE:
1140 @example
1141 (gdb) maintenance packet qqemu.sstepbits
1142 sending: "qqemu.sstepbits"
1143 received: "ENABLE=1,NOIRQ=2,NOTIMER=4"
1144 @end example
1145 @item maintenance packet qqemu.sstep
1146
1147 This will display the current value of the mask used when single stepping IE:
1148 @example
1149 (gdb) maintenance packet qqemu.sstep
1150 sending: "qqemu.sstep"
1151 received: "0x7"
1152 @end example
1153 @item maintenance packet Qqemu.sstep=HEX_VALUE
1154
1155 This will change the single step mask, so if wanted to enable IRQs on the single step, but not timers, you would use:
1156 @example
1157 (gdb) maintenance packet Qqemu.sstep=0x5
1158 sending: "qemu.sstep=0x5"
1159 received: "OK"
1160 @end example
1161 @end table
1162
1163 @node pcsys_os_specific
1164 @section Target OS specific information
1165
1166 @subsection Linux
1167
1168 To have access to SVGA graphic modes under X11, use the @code{vesa} or
1169 the @code{cirrus} X11 driver. For optimal performances, use 16 bit
1170 color depth in the guest and the host OS.
1171
1172 When using a 2.6 guest Linux kernel, you should add the option
1173 @code{clock=pit} on the kernel command line because the 2.6 Linux
1174 kernels make very strict real time clock checks by default that QEMU
1175 cannot simulate exactly.
1176
1177 When using a 2.6 guest Linux kernel, verify that the 4G/4G patch is
1178 not activated because QEMU is slower with this patch. The QEMU
1179 Accelerator Module is also much slower in this case. Earlier Fedora
1180 Core 3 Linux kernel (< 2.6.9-1.724_FC3) were known to incorporate this
1181 patch by default. Newer kernels don't have it.
1182
1183 @subsection Windows
1184
1185 If you have a slow host, using Windows 95 is better as it gives the
1186 best speed. Windows 2000 is also a good choice.
1187
1188 @subsubsection SVGA graphic modes support
1189
1190 QEMU emulates a Cirrus Logic GD5446 Video
1191 card. All Windows versions starting from Windows 95 should recognize
1192 and use this graphic card. For optimal performances, use 16 bit color
1193 depth in the guest and the host OS.
1194
1195 If you are using Windows XP as guest OS and if you want to use high
1196 resolution modes which the Cirrus Logic BIOS does not support (i.e. >=
1197 1280x1024x16), then you should use the VESA VBE virtual graphic card
1198 (option @option{-std-vga}).
1199
1200 @subsubsection CPU usage reduction
1201
1202 Windows 9x does not correctly use the CPU HLT
1203 instruction. The result is that it takes host CPU cycles even when
1204 idle. You can install the utility from
1205 @url{http://www.user.cityline.ru/~maxamn/amnhltm.zip} to solve this
1206 problem. Note that no such tool is needed for NT, 2000 or XP.
1207
1208 @subsubsection Windows 2000 disk full problem
1209
1210 Windows 2000 has a bug which gives a disk full problem during its
1211 installation. When installing it, use the @option{-win2k-hack} QEMU
1212 option to enable a specific workaround. After Windows 2000 is
1213 installed, you no longer need this option (this option slows down the
1214 IDE transfers).
1215
1216 @subsubsection Windows 2000 shutdown
1217
1218 Windows 2000 cannot automatically shutdown in QEMU although Windows 98
1219 can. It comes from the fact that Windows 2000 does not automatically
1220 use the APM driver provided by the BIOS.
1221
1222 In order to correct that, do the following (thanks to Struan
1223 Bartlett): go to the Control Panel => Add/Remove Hardware & Next =>
1224 Add/Troubleshoot a device => Add a new device & Next => No, select the
1225 hardware from a list & Next => NT Apm/Legacy Support & Next => Next
1226 (again) a few times. Now the driver is installed and Windows 2000 now
1227 correctly instructs QEMU to shutdown at the appropriate moment.
1228
1229 @subsubsection Share a directory between Unix and Windows
1230
1231 See @ref{sec_invocation} about the help of the option @option{-smb}.
1232
1233 @subsubsection Windows XP security problem
1234
1235 Some releases of Windows XP install correctly but give a security
1236 error when booting:
1237 @example
1238 A problem is preventing Windows from accurately checking the
1239 license for this computer. Error code: 0x800703e6.
1240 @end example
1241
1242 The workaround is to install a service pack for XP after a boot in safe
1243 mode. Then reboot, and the problem should go away. Since there is no
1244 network while in safe mode, its recommended to download the full
1245 installation of SP1 or SP2 and transfer that via an ISO or using the
1246 vvfat block device ("-hdb fat:directory_which_holds_the_SP").
1247
1248 @subsection MS-DOS and FreeDOS
1249
1250 @subsubsection CPU usage reduction
1251
1252 DOS does not correctly use the CPU HLT instruction. The result is that
1253 it takes host CPU cycles even when idle. You can install the utility
1254 from @url{http://www.vmware.com/software/dosidle210.zip} to solve this
1255 problem.
1256
1257 @node QEMU System emulator for non PC targets
1258 @chapter QEMU System emulator for non PC targets
1259
1260 QEMU is a generic emulator and it emulates many non PC
1261 machines. Most of the options are similar to the PC emulator. The
1262 differences are mentioned in the following sections.
1263
1264 @menu
1265 * QEMU PowerPC System emulator::
1266 * Sparc32 System emulator::
1267 * Sparc64 System emulator::
1268 * MIPS System emulator::
1269 * ARM System emulator::
1270 * ColdFire System emulator::
1271 @end menu
1272
1273 @node QEMU PowerPC System emulator
1274 @section QEMU PowerPC System emulator
1275
1276 Use the executable @file{qemu-system-ppc} to simulate a complete PREP
1277 or PowerMac PowerPC system.
1278
1279 QEMU emulates the following PowerMac peripherals:
1280
1281 @itemize @minus
1282 @item
1283 UniNorth or Grackle PCI Bridge
1284 @item
1285 PCI VGA compatible card with VESA Bochs Extensions
1286 @item
1287 2 PMAC IDE interfaces with hard disk and CD-ROM support
1288 @item
1289 NE2000 PCI adapters
1290 @item
1291 Non Volatile RAM
1292 @item
1293 VIA-CUDA with ADB keyboard and mouse.
1294 @end itemize
1295
1296 QEMU emulates the following PREP peripherals:
1297
1298 @itemize @minus
1299 @item
1300 PCI Bridge
1301 @item
1302 PCI VGA compatible card with VESA Bochs Extensions
1303 @item
1304 2 IDE interfaces with hard disk and CD-ROM support
1305 @item
1306 Floppy disk
1307 @item
1308 NE2000 network adapters
1309 @item
1310 Serial port
1311 @item
1312 PREP Non Volatile RAM
1313 @item
1314 PC compatible keyboard and mouse.
1315 @end itemize
1316
1317 QEMU uses the Open Hack'Ware Open Firmware Compatible BIOS available at
1318 @url{http://perso.magic.fr/l_indien/OpenHackWare/index.htm}.
1319
1320 Since version 0.9.1, QEMU uses OpenBIOS @url{http://www.openbios.org/}
1321 for the g3beige and mac99 PowerMac machines. OpenBIOS is a free (GPL
1322 v2) portable firmware implementation. The goal is to implement a 100%
1323 IEEE 1275-1994 (referred to as Open Firmware) compliant firmware.
1324
1325 @c man begin OPTIONS
1326
1327 The following options are specific to the PowerPC emulation:
1328
1329 @table @option
1330
1331 @item -g WxH[xDEPTH]
1332
1333 Set the initial VGA graphic mode. The default is 800x600x15.
1334
1335 @item -prom-env string
1336
1337 Set OpenBIOS variables in NVRAM, for example:
1338
1339 @example
1340 qemu-system-ppc -prom-env 'auto-boot?=false' \
1341 -prom-env 'boot-device=hd:2,\yaboot' \
1342 -prom-env 'boot-args=conf=hd:2,\yaboot.conf'
1343 @end example
1344
1345 These variables are not used by Open Hack'Ware.
1346
1347 @end table
1348
1349 @c man end
1350
1351
1352 More information is available at
1353 @url{http://perso.magic.fr/l_indien/qemu-ppc/}.
1354
1355 @node Sparc32 System emulator
1356 @section Sparc32 System emulator
1357
1358 Use the executable @file{qemu-system-sparc} to simulate the following
1359 Sun4m architecture machines:
1360 @itemize @minus
1361 @item
1362 SPARCstation 4
1363 @item
1364 SPARCstation 5
1365 @item
1366 SPARCstation 10
1367 @item
1368 SPARCstation 20
1369 @item
1370 SPARCserver 600MP
1371 @item
1372 SPARCstation LX
1373 @item
1374 SPARCstation Voyager
1375 @item
1376 SPARCclassic
1377 @item
1378 SPARCbook
1379 @end itemize
1380
1381 The emulation is somewhat complete. SMP up to 16 CPUs is supported,
1382 but Linux limits the number of usable CPUs to 4.
1383
1384 It's also possible to simulate a SPARCstation 2 (sun4c architecture),
1385 SPARCserver 1000, or SPARCcenter 2000 (sun4d architecture), but these
1386 emulators are not usable yet.
1387
1388 QEMU emulates the following sun4m/sun4c/sun4d peripherals:
1389
1390 @itemize @minus
1391 @item
1392 IOMMU or IO-UNITs
1393 @item
1394 TCX Frame buffer
1395 @item
1396 Lance (Am7990) Ethernet
1397 @item
1398 Non Volatile RAM M48T02/M48T08
1399 @item
1400 Slave I/O: timers, interrupt controllers, Zilog serial ports, keyboard
1401 and power/reset logic
1402 @item
1403 ESP SCSI controller with hard disk and CD-ROM support
1404 @item
1405 Floppy drive (not on SS-600MP)
1406 @item
1407 CS4231 sound device (only on SS-5, not working yet)
1408 @end itemize
1409
1410 The number of peripherals is fixed in the architecture. Maximum
1411 memory size depends on the machine type, for SS-5 it is 256MB and for
1412 others 2047MB.
1413
1414 Since version 0.8.2, QEMU uses OpenBIOS
1415 @url{http://www.openbios.org/}. OpenBIOS is a free (GPL v2) portable
1416 firmware implementation. The goal is to implement a 100% IEEE
1417 1275-1994 (referred to as Open Firmware) compliant firmware.
1418
1419 A sample Linux 2.6 series kernel and ram disk image are available on
1420 the QEMU web site. There are still issues with NetBSD and OpenBSD, but
1421 some kernel versions work. Please note that currently Solaris kernels
1422 don't work probably due to interface issues between OpenBIOS and
1423 Solaris.
1424
1425 @c man begin OPTIONS
1426
1427 The following options are specific to the Sparc32 emulation:
1428
1429 @table @option
1430
1431 @item -g WxHx[xDEPTH]
1432
1433 Set the initial TCX graphic mode. The default is 1024x768x8, currently
1434 the only other possible mode is 1024x768x24.
1435
1436 @item -prom-env string
1437
1438 Set OpenBIOS variables in NVRAM, for example:
1439
1440 @example
1441 qemu-system-sparc -prom-env 'auto-boot?=false' \
1442 -prom-env 'boot-device=sd(0,2,0):d' -prom-env 'boot-args=linux single'
1443 @end example
1444
1445 @item -M [SS-4|SS-5|SS-10|SS-20|SS-600MP|LX|Voyager|SPARCClassic|SPARCbook|SS-2|SS-1000|SS-2000]
1446
1447 Set the emulated machine type. Default is SS-5.
1448
1449 @end table
1450
1451 @c man end
1452
1453 @node Sparc64 System emulator
1454 @section Sparc64 System emulator
1455
1456 Use the executable @file{qemu-system-sparc64} to simulate a Sun4u
1457 (UltraSPARC PC-like machine), Sun4v (T1 PC-like machine), or generic
1458 Niagara (T1) machine. The emulator is not usable for anything yet, but
1459 it can launch some kernels.
1460
1461 QEMU emulates the following peripherals:
1462
1463 @itemize @minus
1464 @item
1465 UltraSparc IIi APB PCI Bridge
1466 @item
1467 PCI VGA compatible card with VESA Bochs Extensions
1468 @item
1469 PS/2 mouse and keyboard
1470 @item
1471 Non Volatile RAM M48T59
1472 @item
1473 PC-compatible serial ports
1474 @item
1475 2 PCI IDE interfaces with hard disk and CD-ROM support
1476 @item
1477 Floppy disk
1478 @end itemize
1479
1480 @c man begin OPTIONS
1481
1482 The following options are specific to the Sparc64 emulation:
1483
1484 @table @option
1485
1486 @item -prom-env string
1487
1488 Set OpenBIOS variables in NVRAM, for example:
1489
1490 @example
1491 qemu-system-sparc64 -prom-env 'auto-boot?=false'
1492 @end example
1493
1494 @item -M [sun4u|sun4v|Niagara]
1495
1496 Set the emulated machine type. The default is sun4u.
1497
1498 @end table
1499
1500 @c man end
1501
1502 @node MIPS System emulator
1503 @section MIPS System emulator
1504
1505 Four executables cover simulation of 32 and 64-bit MIPS systems in
1506 both endian options, @file{qemu-system-mips}, @file{qemu-system-mipsel}
1507 @file{qemu-system-mips64} and @file{qemu-system-mips64el}.
1508 Five different machine types are emulated:
1509
1510 @itemize @minus
1511 @item
1512 A generic ISA PC-like machine "mips"
1513 @item
1514 The MIPS Malta prototype board "malta"
1515 @item
1516 An ACER Pica "pica61". This machine needs the 64-bit emulator.
1517 @item
1518 MIPS emulator pseudo board "mipssim"
1519 @item
1520 A MIPS Magnum R4000 machine "magnum". This machine needs the 64-bit emulator.
1521 @end itemize
1522
1523 The generic emulation is supported by Debian 'Etch' and is able to
1524 install Debian into a virtual disk image. The following devices are
1525 emulated:
1526
1527 @itemize @minus
1528 @item
1529 A range of MIPS CPUs, default is the 24Kf
1530 @item
1531 PC style serial port
1532 @item
1533 PC style IDE disk
1534 @item
1535 NE2000 network card
1536 @end itemize
1537
1538 The Malta emulation supports the following devices:
1539
1540 @itemize @minus
1541 @item
1542 Core board with MIPS 24Kf CPU and Galileo system controller
1543 @item
1544 PIIX4 PCI/USB/SMbus controller
1545 @item
1546 The Multi-I/O chip's serial device
1547 @item
1548 PCI network cards (PCnet32 and others)
1549 @item
1550 Malta FPGA serial device
1551 @item
1552 Cirrus (default) or any other PCI VGA graphics card
1553 @end itemize
1554
1555 The ACER Pica emulation supports:
1556
1557 @itemize @minus
1558 @item
1559 MIPS R4000 CPU
1560 @item
1561 PC-style IRQ and DMA controllers
1562 @item
1563 PC Keyboard
1564 @item
1565 IDE controller
1566 @end itemize
1567
1568 The mipssim pseudo board emulation provides an environment similiar
1569 to what the proprietary MIPS emulator uses for running Linux.
1570 It supports:
1571
1572 @itemize @minus
1573 @item
1574 A range of MIPS CPUs, default is the 24Kf
1575 @item
1576 PC style serial port
1577 @item
1578 MIPSnet network emulation
1579 @end itemize
1580
1581 The MIPS Magnum R4000 emulation supports:
1582
1583 @itemize @minus
1584 @item
1585 MIPS R4000 CPU
1586 @item
1587 PC-style IRQ controller
1588 @item
1589 PC Keyboard
1590 @item
1591 SCSI controller
1592 @item
1593 G364 framebuffer
1594 @end itemize
1595
1596
1597 @node ARM System emulator
1598 @section ARM System emulator
1599
1600 Use the executable @file{qemu-system-arm} to simulate a ARM
1601 machine. The ARM Integrator/CP board is emulated with the following
1602 devices:
1603
1604 @itemize @minus
1605 @item
1606 ARM926E, ARM1026E, ARM946E, ARM1136 or Cortex-A8 CPU
1607 @item
1608 Two PL011 UARTs
1609 @item
1610 SMC 91c111 Ethernet adapter
1611 @item
1612 PL110 LCD controller
1613 @item
1614 PL050 KMI with PS/2 keyboard and mouse.
1615 @item
1616 PL181 MultiMedia Card Interface with SD card.
1617 @end itemize
1618
1619 The ARM Versatile baseboard is emulated with the following devices:
1620
1621 @itemize @minus
1622 @item
1623 ARM926E, ARM1136 or Cortex-A8 CPU
1624 @item
1625 PL190 Vectored Interrupt Controller
1626 @item
1627 Four PL011 UARTs
1628 @item
1629 SMC 91c111 Ethernet adapter
1630 @item
1631 PL110 LCD controller
1632 @item
1633 PL050 KMI with PS/2 keyboard and mouse.
1634 @item
1635 PCI host bridge. Note the emulated PCI bridge only provides access to
1636 PCI memory space. It does not provide access to PCI IO space.
1637 This means some devices (eg. ne2k_pci NIC) are not usable, and others
1638 (eg. rtl8139 NIC) are only usable when the guest drivers use the memory
1639 mapped control registers.
1640 @item
1641 PCI OHCI USB controller.
1642 @item
1643 LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices.
1644 @item
1645 PL181 MultiMedia Card Interface with SD card.
1646 @end itemize
1647
1648 The ARM RealView Emulation baseboard is emulated with the following devices:
1649
1650 @itemize @minus
1651 @item
1652 ARM926E, ARM1136, ARM11MPCORE(x4) or Cortex-A8 CPU
1653 @item
1654 ARM AMBA Generic/Distributed Interrupt Controller
1655 @item
1656 Four PL011 UARTs
1657 @item
1658 SMC 91c111 Ethernet adapter
1659 @item
1660 PL110 LCD controller
1661 @item
1662 PL050 KMI with PS/2 keyboard and mouse
1663 @item
1664 PCI host bridge
1665 @item
1666 PCI OHCI USB controller
1667 @item
1668 LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices
1669 @item
1670 PL181 MultiMedia Card Interface with SD card.
1671 @end itemize
1672
1673 The XScale-based clamshell PDA models ("Spitz", "Akita", "Borzoi"
1674 and "Terrier") emulation includes the following peripherals:
1675
1676 @itemize @minus
1677 @item
1678 Intel PXA270 System-on-chip (ARM V5TE core)
1679 @item
1680 NAND Flash memory
1681 @item
1682 IBM/Hitachi DSCM microdrive in a PXA PCMCIA slot - not in "Akita"
1683 @item
1684 On-chip OHCI USB controller
1685 @item
1686 On-chip LCD controller
1687 @item
1688 On-chip Real Time Clock
1689 @item
1690 TI ADS7846 touchscreen controller on SSP bus
1691 @item
1692 Maxim MAX1111 analog-digital converter on I@math{^2}C bus
1693 @item
1694 GPIO-connected keyboard controller and LEDs
1695 @item
1696 Secure Digital card connected to PXA MMC/SD host
1697 @item
1698 Three on-chip UARTs
1699 @item
1700 WM8750 audio CODEC on I@math{^2}C and I@math{^2}S busses
1701 @end itemize
1702
1703 The Palm Tungsten|E PDA (codename "Cheetah") emulation includes the
1704 following elements:
1705
1706 @itemize @minus
1707 @item
1708 Texas Instruments OMAP310 System-on-chip (ARM 925T core)
1709 @item
1710 ROM and RAM memories (ROM firmware image can be loaded with -option-rom)
1711 @item
1712 On-chip LCD controller
1713 @item
1714 On-chip Real Time Clock
1715 @item
1716 TI TSC2102i touchscreen controller / analog-digital converter / Audio
1717 CODEC, connected through MicroWire and I@math{^2}S busses
1718 @item
1719 GPIO-connected matrix keypad
1720 @item
1721 Secure Digital card connected to OMAP MMC/SD host
1722 @item
1723 Three on-chip UARTs
1724 @end itemize
1725
1726 Nokia N800 and N810 internet tablets (known also as RX-34 and RX-44 / 48)
1727 emulation supports the following elements:
1728
1729 @itemize @minus
1730 @item
1731 Texas Instruments OMAP2420 System-on-chip (ARM 1136 core)
1732 @item
1733 RAM and non-volatile OneNAND Flash memories
1734 @item
1735 Display connected to EPSON remote framebuffer chip and OMAP on-chip
1736 display controller and a LS041y3 MIPI DBI-C controller
1737 @item
1738 TI TSC2301 (in N800) and TI TSC2005 (in N810) touchscreen controllers
1739 driven through SPI bus
1740 @item
1741 National Semiconductor LM8323-controlled qwerty keyboard driven
1742 through I@math{^2}C bus
1743 @item
1744 Secure Digital card connected to OMAP MMC/SD host
1745 @item
1746 Three OMAP on-chip UARTs and on-chip STI debugging console
1747 @item
1748 A Bluetooth(R) transciever and HCI connected to an UART
1749 @item
1750 Mentor Graphics "Inventra" dual-role USB controller embedded in a TI
1751 TUSB6010 chip - only USB host mode is supported
1752 @item
1753 TI TMP105 temperature sensor driven through I@math{^2}C bus
1754 @item
1755 TI TWL92230C power management companion with an RTC on I@math{^2}C bus
1756 @item
1757 Nokia RETU and TAHVO multi-purpose chips with an RTC, connected
1758 through CBUS
1759 @end itemize
1760
1761 The Luminary Micro Stellaris LM3S811EVB emulation includes the following
1762 devices:
1763
1764 @itemize @minus
1765 @item
1766 Cortex-M3 CPU core.
1767 @item
1768 64k Flash and 8k SRAM.
1769 @item
1770 Timers, UARTs, ADC and I@math{^2}C interface.
1771 @item
1772 OSRAM Pictiva 96x16 OLED with SSD0303 controller on I@math{^2}C bus.
1773 @end itemize
1774
1775 The Luminary Micro Stellaris LM3S6965EVB emulation includes the following
1776 devices:
1777
1778 @itemize @minus
1779 @item
1780 Cortex-M3 CPU core.
1781 @item
1782 256k Flash and 64k SRAM.
1783 @item
1784 Timers, UARTs, ADC, I@math{^2}C and SSI interfaces.
1785 @item
1786 OSRAM Pictiva 128x64 OLED with SSD0323 controller connected via SSI.
1787 @end itemize
1788
1789 The Freecom MusicPal internet radio emulation includes the following
1790 elements:
1791
1792 @itemize @minus
1793 @item
1794 Marvell MV88W8618 ARM core.
1795 @item
1796 32 MB RAM, 256 KB SRAM, 8 MB flash.
1797 @item
1798 Up to 2 16550 UARTs
1799 @item
1800 MV88W8xx8 Ethernet controller
1801 @item
1802 MV88W8618 audio controller, WM8750 CODEC and mixer
1803 @item
1804 128×64 display with brightness control
1805 @item
1806 2 buttons, 2 navigation wheels with button function
1807 @end itemize
1808
1809 The Siemens SX1 models v1 and v2 (default) basic emulation.
1810 The emulaton includes the following elements:
1811
1812 @itemize @minus
1813 @item
1814 Texas Instruments OMAP310 System-on-chip (ARM 925T core)
1815 @item
1816 ROM and RAM memories (ROM firmware image can be loaded with -pflash)
1817 V1
1818 1 Flash of 16MB and 1 Flash of 8MB
1819 V2
1820 1 Flash of 32MB
1821 @item
1822 On-chip LCD controller
1823 @item
1824 On-chip Real Time Clock
1825 @item
1826 Secure Digital card connected to OMAP MMC/SD host
1827 @item
1828 Three on-chip UARTs
1829 @end itemize
1830
1831 The "Syborg" Symbian Virtual Platform base model includes the following
1832 elements:
1833
1834 @itemize @minus
1835 @item
1836 ARM Cortex-A8 CPU
1837 @item
1838 Interrupt controller
1839 @item
1840 Timer
1841 @item
1842 Real Time Clock
1843 @item
1844 Keyboard
1845 @item
1846 Framebuffer
1847 @item
1848 Touchscreen
1849 @item
1850 UARTs
1851 @end itemize
1852
1853 A Linux 2.6 test image is available on the QEMU web site. More
1854 information is available in the QEMU mailing-list archive.
1855
1856 @c man begin OPTIONS
1857
1858 The following options are specific to the ARM emulation:
1859
1860 @table @option
1861
1862 @item -semihosting
1863 Enable semihosting syscall emulation.
1864
1865 On ARM this implements the "Angel" interface.
1866
1867 Note that this allows guest direct access to the host filesystem,
1868 so should only be used with trusted guest OS.
1869
1870 @end table
1871
1872 @node ColdFire System emulator
1873 @section ColdFire System emulator
1874
1875 Use the executable @file{qemu-system-m68k} to simulate a ColdFire machine.
1876 The emulator is able to boot a uClinux kernel.
1877
1878 The M5208EVB emulation includes the following devices:
1879
1880 @itemize @minus
1881 @item
1882 MCF5208 ColdFire V2 Microprocessor (ISA A+ with EMAC).
1883 @item
1884 Three Two on-chip UARTs.
1885 @item
1886 Fast Ethernet Controller (FEC)
1887 @end itemize
1888
1889 The AN5206 emulation includes the following devices:
1890
1891 @itemize @minus
1892 @item
1893 MCF5206 ColdFire V2 Microprocessor.
1894 @item
1895 Two on-chip UARTs.
1896 @end itemize
1897
1898 @c man begin OPTIONS
1899
1900 The following options are specific to the ARM emulation:
1901
1902 @table @option
1903
1904 @item -semihosting
1905 Enable semihosting syscall emulation.
1906
1907 On M68K this implements the "ColdFire GDB" interface used by libgloss.
1908
1909 Note that this allows guest direct access to the host filesystem,
1910 so should only be used with trusted guest OS.
1911
1912 @end table
1913
1914 @node QEMU User space emulator
1915 @chapter QEMU User space emulator
1916
1917 @menu
1918 * Supported Operating Systems ::
1919 * Linux User space emulator::
1920 * Mac OS X/Darwin User space emulator ::
1921 * BSD User space emulator ::
1922 @end menu
1923
1924 @node Supported Operating Systems
1925 @section Supported Operating Systems
1926
1927 The following OS are supported in user space emulation:
1928
1929 @itemize @minus
1930 @item
1931 Linux (referred as qemu-linux-user)
1932 @item
1933 Mac OS X/Darwin (referred as qemu-darwin-user)
1934 @item
1935 BSD (referred as qemu-bsd-user)
1936 @end itemize
1937
1938 @node Linux User space emulator
1939 @section Linux User space emulator
1940
1941 @menu
1942 * Quick Start::
1943 * Wine launch::
1944 * Command line options::
1945 * Other binaries::
1946 @end menu
1947
1948 @node Quick Start
1949 @subsection Quick Start
1950
1951 In order to launch a Linux process, QEMU needs the process executable
1952 itself and all the target (x86) dynamic libraries used by it.
1953
1954 @itemize
1955
1956 @item On x86, you can just try to launch any process by using the native
1957 libraries:
1958
1959 @example
1960 qemu-i386 -L / /bin/ls
1961 @end example
1962
1963 @code{-L /} tells that the x86 dynamic linker must be searched with a
1964 @file{/} prefix.
1965
1966 @item Since QEMU is also a linux process, you can launch qemu with
1967 qemu (NOTE: you can only do that if you compiled QEMU from the sources):
1968
1969 @example
1970 qemu-i386 -L / qemu-i386 -L / /bin/ls
1971 @end example
1972
1973 @item On non x86 CPUs, you need first to download at least an x86 glibc
1974 (@file{qemu-runtime-i386-XXX-.tar.gz} on the QEMU web page). Ensure that
1975 @code{LD_LIBRARY_PATH} is not set:
1976
1977 @example
1978 unset LD_LIBRARY_PATH
1979 @end example
1980
1981 Then you can launch the precompiled @file{ls} x86 executable:
1982
1983 @example
1984 qemu-i386 tests/i386/ls
1985 @end example
1986 You can look at @file{qemu-binfmt-conf.sh} so that
1987 QEMU is automatically launched by the Linux kernel when you try to
1988 launch x86 executables. It requires the @code{binfmt_misc} module in the
1989 Linux kernel.
1990
1991 @item The x86 version of QEMU is also included. You can try weird things such as:
1992 @example
1993 qemu-i386 /usr/local/qemu-i386/bin/qemu-i386 \
1994 /usr/local/qemu-i386/bin/ls-i386
1995 @end example
1996
1997 @end itemize
1998
1999 @node Wine launch
2000 @subsection Wine launch
2001
2002 @itemize
2003
2004 @item Ensure that you have a working QEMU with the x86 glibc
2005 distribution (see previous section). In order to verify it, you must be
2006 able to do:
2007
2008 @example
2009 qemu-i386 /usr/local/qemu-i386/bin/ls-i386
2010 @end example
2011
2012 @item Download the binary x86 Wine install
2013 (@file{qemu-XXX-i386-wine.tar.gz} on the QEMU web page).
2014
2015 @item Configure Wine on your account. Look at the provided script
2016 @file{/usr/local/qemu-i386/@/bin/wine-conf.sh}. Your previous
2017 @code{$@{HOME@}/.wine} directory is saved to @code{$@{HOME@}/.wine.org}.
2018
2019 @item Then you can try the example @file{putty.exe}:
2020
2021 @example
2022 qemu-i386 /usr/local/qemu-i386/wine/bin/wine \
2023 /usr/local/qemu-i386/wine/c/Program\ Files/putty.exe
2024 @end example
2025
2026 @end itemize
2027
2028 @node Command line options
2029 @subsection Command line options
2030
2031 @example
2032 usage: qemu-i386 [-h] [-d] [-L path] [-s size] [-cpu model] [-g port] [-B offset] program [arguments...]
2033 @end example
2034
2035 @table @option
2036 @item -h
2037 Print the help
2038 @item -L path
2039 Set the x86 elf interpreter prefix (default=/usr/local/qemu-i386)
2040 @item -s size
2041 Set the x86 stack size in bytes (default=524288)
2042 @item -cpu model
2043 Select CPU model (-cpu ? for list and additional feature selection)
2044 @item -B offset
2045 Offset guest address by the specified number of bytes. This is useful when
2046 the address region rewuired by guest applications is reserved on the host.
2047 Ths option is currently only supported on some hosts.
2048 @end table
2049
2050 Debug options:
2051
2052 @table @option
2053 @item -d
2054 Activate log (logfile=/tmp/qemu.log)
2055 @item -p pagesize
2056 Act as if the host page size was 'pagesize' bytes
2057 @item -g port
2058 Wait gdb connection to port
2059 @item -singlestep
2060 Run the emulation in single step mode.
2061 @end table
2062
2063 Environment variables:
2064
2065 @table @env
2066 @item QEMU_STRACE
2067 Print system calls and arguments similar to the 'strace' program
2068 (NOTE: the actual 'strace' program will not work because the user
2069 space emulator hasn't implemented ptrace). At the moment this is
2070 incomplete. All system calls that don't have a specific argument
2071 format are printed with information for six arguments. Many
2072 flag-style arguments don't have decoders and will show up as numbers.
2073 @end table
2074
2075 @node Other binaries
2076 @subsection Other binaries
2077
2078 @command{qemu-arm} is also capable of running ARM "Angel" semihosted ELF
2079 binaries (as implemented by the arm-elf and arm-eabi Newlib/GDB
2080 configurations), and arm-uclinux bFLT format binaries.
2081
2082 @command{qemu-m68k} is capable of running semihosted binaries using the BDM
2083 (m5xxx-ram-hosted.ld) or m68k-sim (sim.ld) syscall interfaces, and
2084 coldfire uClinux bFLT format binaries.
2085
2086 The binary format is detected automatically.
2087
2088 @command{qemu-sparc} can execute Sparc32 binaries (Sparc32 CPU, 32 bit ABI).
2089
2090 @command{qemu-sparc32plus} can execute Sparc32 and SPARC32PLUS binaries
2091 (Sparc64 CPU, 32 bit ABI).
2092
2093 @command{qemu-sparc64} can execute some Sparc64 (Sparc64 CPU, 64 bit ABI) and
2094 SPARC32PLUS binaries (Sparc64 CPU, 32 bit ABI).
2095
2096 @node Mac OS X/Darwin User space emulator
2097 @section Mac OS X/Darwin User space emulator
2098
2099 @menu
2100 * Mac OS X/Darwin Status::
2101 * Mac OS X/Darwin Quick Start::
2102 * Mac OS X/Darwin Command line options::
2103 @end menu
2104
2105 @node Mac OS X/Darwin Status
2106 @subsection Mac OS X/Darwin Status
2107
2108 @itemize @minus
2109 @item
2110 target x86 on x86: Most apps (Cocoa and Carbon too) works. [1]
2111 @item
2112 target PowerPC on x86: Not working as the ppc commpage can't be mapped (yet!)
2113 @item
2114 target PowerPC on PowerPC: Most apps (Cocoa and Carbon too) works. [1]
2115 @item
2116 target x86 on PowerPC: most utilities work. Cocoa and Carbon apps are not yet supported.
2117 @end itemize
2118
2119 [1] If you're host commpage can be executed by qemu.
2120
2121 @node Mac OS X/Darwin Quick Start
2122 @subsection Quick Start
2123
2124 In order to launch a Mac OS X/Darwin process, QEMU needs the process executable
2125 itself and all the target dynamic libraries used by it. If you don't have the FAT
2126 libraries (you're running Mac OS X/ppc) you'll need to obtain it from a Mac OS X
2127 CD or compile them by hand.
2128
2129 @itemize
2130
2131 @item On x86, you can just try to launch any process by using the native
2132 libraries:
2133
2134 @example
2135 qemu-i386 /bin/ls
2136 @end example
2137
2138 or to run the ppc version of the executable:
2139
2140 @example
2141 qemu-ppc /bin/ls
2142 @end example
2143
2144 @item On ppc, you'll have to tell qemu where your x86 libraries (and dynamic linker)
2145 are installed:
2146
2147 @example
2148 qemu-i386 -L /opt/x86_root/ /bin/ls
2149 @end example
2150
2151 @code{-L /opt/x86_root/} tells that the dynamic linker (dyld) path is in
2152 @file{/opt/x86_root/usr/bin/dyld}.
2153
2154 @end itemize
2155
2156 @node Mac OS X/Darwin Command line options
2157 @subsection Command line options
2158
2159 @example
2160 usage: qemu-i386 [-h] [-d] [-L path] [-s size] program [arguments...]
2161 @end example
2162
2163 @table @option
2164 @item -h
2165 Print the help
2166 @item -L path
2167 Set the library root path (default=/)
2168 @item -s size
2169 Set the stack size in bytes (default=524288)
2170 @end table
2171
2172 Debug options:
2173
2174 @table @option
2175 @item -d
2176 Activate log (logfile=/tmp/qemu.log)
2177 @item -p pagesize
2178 Act as if the host page size was 'pagesize' bytes
2179 @item -singlestep
2180 Run the emulation in single step mode.
2181 @end table
2182
2183 @node BSD User space emulator
2184 @section BSD User space emulator
2185
2186 @menu
2187 * BSD Status::
2188 * BSD Quick Start::
2189 * BSD Command line options::
2190 @end menu
2191
2192 @node BSD Status
2193 @subsection BSD Status
2194
2195 @itemize @minus
2196 @item
2197 target Sparc64 on Sparc64: Some trivial programs work.
2198 @end itemize
2199
2200 @node BSD Quick Start
2201 @subsection Quick Start
2202
2203 In order to launch a BSD process, QEMU needs the process executable
2204 itself and all the target dynamic libraries used by it.
2205
2206 @itemize
2207
2208 @item On Sparc64, you can just try to launch any process by using the native
2209 libraries:
2210
2211 @example
2212 qemu-sparc64 /bin/ls
2213 @end example
2214
2215 @end itemize
2216
2217 @node BSD Command line options
2218 @subsection Command line options
2219
2220 @example
2221 usage: qemu-sparc64 [-h] [-d] [-L path] [-s size] [-bsd type] program [arguments...]
2222 @end example
2223
2224 @table @option
2225 @item -h
2226 Print the help
2227 @item -L path
2228 Set the library root path (default=/)
2229 @item -s size
2230 Set the stack size in bytes (default=524288)
2231 @item -bsd type
2232 Set the type of the emulated BSD Operating system. Valid values are
2233 FreeBSD, NetBSD and OpenBSD (default).
2234 @end table
2235
2236 Debug options:
2237
2238 @table @option
2239 @item -d
2240 Activate log (logfile=/tmp/qemu.log)
2241 @item -p pagesize
2242 Act as if the host page size was 'pagesize' bytes
2243 @item -singlestep
2244 Run the emulation in single step mode.
2245 @end table
2246
2247 @node compilation
2248 @chapter Compilation from the sources
2249
2250 @menu
2251 * Linux/Unix::
2252 * Windows::
2253 * Cross compilation for Windows with Linux::
2254 * Mac OS X::
2255 @end menu
2256
2257 @node Linux/Unix
2258 @section Linux/Unix
2259
2260 @subsection Compilation
2261
2262 First you must decompress the sources:
2263 @example
2264 cd /tmp
2265 tar zxvf qemu-x.y.z.tar.gz
2266 cd qemu-x.y.z
2267 @end example
2268
2269 Then you configure QEMU and build it (usually no options are needed):
2270 @example
2271 ./configure
2272 make
2273 @end example
2274
2275 Then type as root user:
2276 @example
2277 make install
2278 @end example
2279 to install QEMU in @file{/usr/local}.
2280
2281 @node Windows
2282 @section Windows
2283
2284 @itemize
2285 @item Install the current versions of MSYS and MinGW from
2286 @url{http://www.mingw.org/}. You can find detailed installation
2287 instructions in the download section and the FAQ.
2288
2289 @item Download
2290 the MinGW development library of SDL 1.2.x
2291 (@file{SDL-devel-1.2.x-@/mingw32.tar.gz}) from
2292 @url{http://www.libsdl.org}. Unpack it in a temporary place, and
2293 unpack the archive @file{i386-mingw32msvc.tar.gz} in the MinGW tool
2294 directory. Edit the @file{sdl-config} script so that it gives the
2295 correct SDL directory when invoked.
2296
2297 @item Extract the current version of QEMU.
2298
2299 @item Start the MSYS shell (file @file{msys.bat}).
2300
2301 @item Change to the QEMU directory. Launch @file{./configure} and
2302 @file{make}. If you have problems using SDL, verify that
2303 @file{sdl-config} can be launched from the MSYS command line.
2304
2305 @item You can install QEMU in @file{Program Files/Qemu} by typing
2306 @file{make install}. Don't forget to copy @file{SDL.dll} in
2307 @file{Program Files/Qemu}.
2308
2309 @end itemize
2310
2311 @node Cross compilation for Windows with Linux
2312 @section Cross compilation for Windows with Linux
2313
2314 @itemize
2315 @item
2316 Install the MinGW cross compilation tools available at
2317 @url{http://www.mingw.org/}.
2318
2319 @item
2320 Install the Win32 version of SDL (@url{http://www.libsdl.org}) by
2321 unpacking @file{i386-mingw32msvc.tar.gz}. Set up the PATH environment
2322 variable so that @file{i386-mingw32msvc-sdl-config} can be launched by
2323 the QEMU configuration script.
2324
2325 @item
2326 Configure QEMU for Windows cross compilation:
2327 @example
2328 ./configure --enable-mingw32
2329 @end example
2330 If necessary, you can change the cross-prefix according to the prefix
2331 chosen for the MinGW tools with --cross-prefix. You can also use
2332 --prefix to set the Win32 install path.
2333
2334 @item You can install QEMU in the installation directory by typing
2335 @file{make install}. Don't forget to copy @file{SDL.dll} in the
2336 installation directory.
2337
2338 @end itemize
2339
2340 Note: Currently, Wine does not seem able to launch
2341 QEMU for Win32.
2342
2343 @node Mac OS X
2344 @section Mac OS X
2345
2346 The Mac OS X patches are not fully merged in QEMU, so you should look
2347 at the QEMU mailing list archive to have all the necessary
2348 information.
2349
2350 @node Index
2351 @chapter Index
2352 @printindex cp
2353
2354 @bye