]> git.proxmox.com Git - qemu.git/blob - qemu-doc.texi
Documentation: Fix item list
[qemu.git] / qemu-doc.texi
1 \input texinfo @c -*- texinfo -*-
2 @c %**start of header
3 @setfilename qemu-doc.info
4
5 @documentlanguage en
6 @documentencoding UTF-8
7
8 @settitle QEMU Emulator User Documentation
9 @exampleindent 0
10 @paragraphindent 0
11 @c %**end of header
12
13 @ifinfo
14 @direntry
15 * QEMU: (qemu-doc). The QEMU Emulator User Documentation.
16 @end direntry
17 @end ifinfo
18
19 @iftex
20 @titlepage
21 @sp 7
22 @center @titlefont{QEMU Emulator}
23 @sp 1
24 @center @titlefont{User Documentation}
25 @sp 3
26 @end titlepage
27 @end iftex
28
29 @ifnottex
30 @node Top
31 @top
32
33 @menu
34 * Introduction::
35 * Installation::
36 * QEMU PC System emulator::
37 * QEMU System emulator for non PC targets::
38 * QEMU User space emulator::
39 * compilation:: Compilation from the sources
40 * Index::
41 @end menu
42 @end ifnottex
43
44 @contents
45
46 @node Introduction
47 @chapter Introduction
48
49 @menu
50 * intro_features:: Features
51 @end menu
52
53 @node intro_features
54 @section Features
55
56 QEMU is a FAST! processor emulator using dynamic translation to
57 achieve good emulation speed.
58
59 QEMU has two operating modes:
60
61 @itemize
62
63 @item
64 Full system emulation. In this mode, QEMU emulates a full system (for
65 example a PC), including one or several processors and various
66 peripherals. It can be used to launch different Operating Systems
67 without rebooting the PC or to debug system code.
68
69 @item
70 User mode emulation. In this mode, QEMU can launch
71 processes compiled for one CPU on another CPU. It can be used to
72 launch the Wine Windows API emulator (@url{http://www.winehq.org}) or
73 to ease cross-compilation and cross-debugging.
74
75 @end itemize
76
77 QEMU can run without an host kernel driver and yet gives acceptable
78 performance.
79
80 For system emulation, the following hardware targets are supported:
81 @itemize
82 @item PC (x86 or x86_64 processor)
83 @item ISA PC (old style PC without PCI bus)
84 @item PREP (PowerPC processor)
85 @item G3 Beige PowerMac (PowerPC processor)
86 @item Mac99 PowerMac (PowerPC processor, in progress)
87 @item Sun4m/Sun4c/Sun4d (32-bit Sparc processor)
88 @item Sun4u/Sun4v (64-bit Sparc processor, in progress)
89 @item Malta board (32-bit and 64-bit MIPS processors)
90 @item MIPS Magnum (64-bit MIPS processor)
91 @item ARM Integrator/CP (ARM)
92 @item ARM Versatile baseboard (ARM)
93 @item ARM RealView Emulation/Platform baseboard (ARM)
94 @item Spitz, Akita, Borzoi, Terrier and Tosa PDAs (PXA270 processor)
95 @item Luminary Micro LM3S811EVB (ARM Cortex-M3)
96 @item Luminary Micro LM3S6965EVB (ARM Cortex-M3)
97 @item Freescale MCF5208EVB (ColdFire V2).
98 @item Arnewsh MCF5206 evaluation board (ColdFire V2).
99 @item Palm Tungsten|E PDA (OMAP310 processor)
100 @item N800 and N810 tablets (OMAP2420 processor)
101 @item MusicPal (MV88W8618 ARM processor)
102 @item Gumstix "Connex" and "Verdex" motherboards (PXA255/270).
103 @item Siemens SX1 smartphone (OMAP310 processor)
104 @item Syborg SVP base model (ARM Cortex-A8).
105 @item AXIS-Devboard88 (CRISv32 ETRAX-FS).
106 @item Petalogix Spartan 3aDSP1800 MMU ref design (MicroBlaze).
107 @end itemize
108
109 For user emulation, x86, PowerPC, ARM, 32-bit MIPS, Sparc32/64, ColdFire(m68k), CRISv32 and MicroBlaze CPUs are supported.
110
111 @node Installation
112 @chapter Installation
113
114 If you want to compile QEMU yourself, see @ref{compilation}.
115
116 @menu
117 * install_linux:: Linux
118 * install_windows:: Windows
119 * install_mac:: Macintosh
120 @end menu
121
122 @node install_linux
123 @section Linux
124
125 If a precompiled package is available for your distribution - you just
126 have to install it. Otherwise, see @ref{compilation}.
127
128 @node install_windows
129 @section Windows
130
131 Download the experimental binary installer at
132 @url{http://www.free.oszoo.org/@/download.html}.
133
134 @node install_mac
135 @section Mac OS X
136
137 Download the experimental binary installer at
138 @url{http://www.free.oszoo.org/@/download.html}.
139
140 @node QEMU PC System emulator
141 @chapter QEMU PC System emulator
142
143 @menu
144 * pcsys_introduction:: Introduction
145 * pcsys_quickstart:: Quick Start
146 * sec_invocation:: Invocation
147 * pcsys_keys:: Keys
148 * pcsys_monitor:: QEMU Monitor
149 * disk_images:: Disk Images
150 * pcsys_network:: Network emulation
151 * direct_linux_boot:: Direct Linux Boot
152 * pcsys_usb:: USB emulation
153 * vnc_security:: VNC security
154 * gdb_usage:: GDB usage
155 * pcsys_os_specific:: Target OS specific information
156 @end menu
157
158 @node pcsys_introduction
159 @section Introduction
160
161 @c man begin DESCRIPTION
162
163 The QEMU PC System emulator simulates the
164 following peripherals:
165
166 @itemize @minus
167 @item
168 i440FX host PCI bridge and PIIX3 PCI to ISA bridge
169 @item
170 Cirrus CLGD 5446 PCI VGA card or dummy VGA card with Bochs VESA
171 extensions (hardware level, including all non standard modes).
172 @item
173 PS/2 mouse and keyboard
174 @item
175 2 PCI IDE interfaces with hard disk and CD-ROM support
176 @item
177 Floppy disk
178 @item
179 PCI and ISA network adapters
180 @item
181 Serial ports
182 @item
183 Creative SoundBlaster 16 sound card
184 @item
185 ENSONIQ AudioPCI ES1370 sound card
186 @item
187 Intel 82801AA AC97 Audio compatible sound card
188 @item
189 Adlib(OPL2) - Yamaha YM3812 compatible chip
190 @item
191 Gravis Ultrasound GF1 sound card
192 @item
193 CS4231A compatible sound card
194 @item
195 PCI UHCI USB controller and a virtual USB hub.
196 @end itemize
197
198 SMP is supported with up to 255 CPUs.
199
200 Note that adlib, gus and cs4231a are only available when QEMU was
201 configured with --audio-card-list option containing the name(s) of
202 required card(s).
203
204 QEMU uses the PC BIOS from the Bochs project and the Plex86/Bochs LGPL
205 VGA BIOS.
206
207 QEMU uses YM3812 emulation by Tatsuyuki Satoh.
208
209 QEMU uses GUS emulation(GUSEMU32 @url{http://www.deinmeister.de/gusemu/})
210 by Tibor "TS" Schütz.
211
212 Not that, by default, GUS shares IRQ(7) with parallel ports and so
213 qemu must be told to not have parallel ports to have working GUS
214
215 @example
216 qemu dos.img -soundhw gus -parallel none
217 @end example
218
219 Alternatively:
220 @example
221 qemu dos.img -device gus,irq=5
222 @end example
223
224 Or some other unclaimed IRQ.
225
226 CS4231A is the chip used in Windows Sound System and GUSMAX products
227
228 @c man end
229
230 @node pcsys_quickstart
231 @section Quick Start
232
233 Download and uncompress the linux image (@file{linux.img}) and type:
234
235 @example
236 qemu linux.img
237 @end example
238
239 Linux should boot and give you a prompt.
240
241 @node sec_invocation
242 @section Invocation
243
244 @example
245 @c man begin SYNOPSIS
246 usage: qemu [options] [@var{disk_image}]
247 @c man end
248 @end example
249
250 @c man begin OPTIONS
251 @var{disk_image} is a raw hard disk image for IDE hard disk 0. Some
252 targets do not need a disk image.
253
254 @include qemu-options.texi
255
256 @c man end
257
258 @node pcsys_keys
259 @section Keys
260
261 @c man begin OPTIONS
262
263 During the graphical emulation, you can use the following keys:
264 @table @key
265 @item Ctrl-Alt-f
266 Toggle full screen
267
268 @item Ctrl-Alt-u
269 Restore the screen's un-scaled dimensions
270
271 @item Ctrl-Alt-n
272 Switch to virtual console 'n'. Standard console mappings are:
273 @table @emph
274 @item 1
275 Target system display
276 @item 2
277 Monitor
278 @item 3
279 Serial port
280 @end table
281
282 @item Ctrl-Alt
283 Toggle mouse and keyboard grab.
284 @end table
285
286 In the virtual consoles, you can use @key{Ctrl-Up}, @key{Ctrl-Down},
287 @key{Ctrl-PageUp} and @key{Ctrl-PageDown} to move in the back log.
288
289 During emulation, if you are using the @option{-nographic} option, use
290 @key{Ctrl-a h} to get terminal commands:
291
292 @table @key
293 @item Ctrl-a h
294 @item Ctrl-a ?
295 Print this help
296 @item Ctrl-a x
297 Exit emulator
298 @item Ctrl-a s
299 Save disk data back to file (if -snapshot)
300 @item Ctrl-a t
301 Toggle console timestamps
302 @item Ctrl-a b
303 Send break (magic sysrq in Linux)
304 @item Ctrl-a c
305 Switch between console and monitor
306 @item Ctrl-a Ctrl-a
307 Send Ctrl-a
308 @end table
309 @c man end
310
311 @ignore
312
313 @c man begin SEEALSO
314 The HTML documentation of QEMU for more precise information and Linux
315 user mode emulator invocation.
316 @c man end
317
318 @c man begin AUTHOR
319 Fabrice Bellard
320 @c man end
321
322 @end ignore
323
324 @node pcsys_monitor
325 @section QEMU Monitor
326
327 The QEMU monitor is used to give complex commands to the QEMU
328 emulator. You can use it to:
329
330 @itemize @minus
331
332 @item
333 Remove or insert removable media images
334 (such as CD-ROM or floppies).
335
336 @item
337 Freeze/unfreeze the Virtual Machine (VM) and save or restore its state
338 from a disk file.
339
340 @item Inspect the VM state without an external debugger.
341
342 @end itemize
343
344 @subsection Commands
345
346 The following commands are available:
347
348 @include qemu-monitor.texi
349
350 @subsection Integer expressions
351
352 The monitor understands integers expressions for every integer
353 argument. You can use register names to get the value of specifics
354 CPU registers by prefixing them with @emph{$}.
355
356 @node disk_images
357 @section Disk Images
358
359 Since version 0.6.1, QEMU supports many disk image formats, including
360 growable disk images (their size increase as non empty sectors are
361 written), compressed and encrypted disk images. Version 0.8.3 added
362 the new qcow2 disk image format which is essential to support VM
363 snapshots.
364
365 @menu
366 * disk_images_quickstart:: Quick start for disk image creation
367 * disk_images_snapshot_mode:: Snapshot mode
368 * vm_snapshots:: VM snapshots
369 * qemu_img_invocation:: qemu-img Invocation
370 * qemu_nbd_invocation:: qemu-nbd Invocation
371 * host_drives:: Using host drives
372 * disk_images_fat_images:: Virtual FAT disk images
373 * disk_images_nbd:: NBD access
374 @end menu
375
376 @node disk_images_quickstart
377 @subsection Quick start for disk image creation
378
379 You can create a disk image with the command:
380 @example
381 qemu-img create myimage.img mysize
382 @end example
383 where @var{myimage.img} is the disk image filename and @var{mysize} is its
384 size in kilobytes. You can add an @code{M} suffix to give the size in
385 megabytes and a @code{G} suffix for gigabytes.
386
387 See @ref{qemu_img_invocation} for more information.
388
389 @node disk_images_snapshot_mode
390 @subsection Snapshot mode
391
392 If you use the option @option{-snapshot}, all disk images are
393 considered as read only. When sectors in written, they are written in
394 a temporary file created in @file{/tmp}. You can however force the
395 write back to the raw disk images by using the @code{commit} monitor
396 command (or @key{C-a s} in the serial console).
397
398 @node vm_snapshots
399 @subsection VM snapshots
400
401 VM snapshots are snapshots of the complete virtual machine including
402 CPU state, RAM, device state and the content of all the writable
403 disks. In order to use VM snapshots, you must have at least one non
404 removable and writable block device using the @code{qcow2} disk image
405 format. Normally this device is the first virtual hard drive.
406
407 Use the monitor command @code{savevm} to create a new VM snapshot or
408 replace an existing one. A human readable name can be assigned to each
409 snapshot in addition to its numerical ID.
410
411 Use @code{loadvm} to restore a VM snapshot and @code{delvm} to remove
412 a VM snapshot. @code{info snapshots} lists the available snapshots
413 with their associated information:
414
415 @example
416 (qemu) info snapshots
417 Snapshot devices: hda
418 Snapshot list (from hda):
419 ID TAG VM SIZE DATE VM CLOCK
420 1 start 41M 2006-08-06 12:38:02 00:00:14.954
421 2 40M 2006-08-06 12:43:29 00:00:18.633
422 3 msys 40M 2006-08-06 12:44:04 00:00:23.514
423 @end example
424
425 A VM snapshot is made of a VM state info (its size is shown in
426 @code{info snapshots}) and a snapshot of every writable disk image.
427 The VM state info is stored in the first @code{qcow2} non removable
428 and writable block device. The disk image snapshots are stored in
429 every disk image. The size of a snapshot in a disk image is difficult
430 to evaluate and is not shown by @code{info snapshots} because the
431 associated disk sectors are shared among all the snapshots to save
432 disk space (otherwise each snapshot would need a full copy of all the
433 disk images).
434
435 When using the (unrelated) @code{-snapshot} option
436 (@ref{disk_images_snapshot_mode}), you can always make VM snapshots,
437 but they are deleted as soon as you exit QEMU.
438
439 VM snapshots currently have the following known limitations:
440 @itemize
441 @item
442 They cannot cope with removable devices if they are removed or
443 inserted after a snapshot is done.
444 @item
445 A few device drivers still have incomplete snapshot support so their
446 state is not saved or restored properly (in particular USB).
447 @end itemize
448
449 @node qemu_img_invocation
450 @subsection @code{qemu-img} Invocation
451
452 @include qemu-img.texi
453
454 @node qemu_nbd_invocation
455 @subsection @code{qemu-nbd} Invocation
456
457 @include qemu-nbd.texi
458
459 @node host_drives
460 @subsection Using host drives
461
462 In addition to disk image files, QEMU can directly access host
463 devices. We describe here the usage for QEMU version >= 0.8.3.
464
465 @subsubsection Linux
466
467 On Linux, you can directly use the host device filename instead of a
468 disk image filename provided you have enough privileges to access
469 it. For example, use @file{/dev/cdrom} to access to the CDROM or
470 @file{/dev/fd0} for the floppy.
471
472 @table @code
473 @item CD
474 You can specify a CDROM device even if no CDROM is loaded. QEMU has
475 specific code to detect CDROM insertion or removal. CDROM ejection by
476 the guest OS is supported. Currently only data CDs are supported.
477 @item Floppy
478 You can specify a floppy device even if no floppy is loaded. Floppy
479 removal is currently not detected accurately (if you change floppy
480 without doing floppy access while the floppy is not loaded, the guest
481 OS will think that the same floppy is loaded).
482 @item Hard disks
483 Hard disks can be used. Normally you must specify the whole disk
484 (@file{/dev/hdb} instead of @file{/dev/hdb1}) so that the guest OS can
485 see it as a partitioned disk. WARNING: unless you know what you do, it
486 is better to only make READ-ONLY accesses to the hard disk otherwise
487 you may corrupt your host data (use the @option{-snapshot} command
488 line option or modify the device permissions accordingly).
489 @end table
490
491 @subsubsection Windows
492
493 @table @code
494 @item CD
495 The preferred syntax is the drive letter (e.g. @file{d:}). The
496 alternate syntax @file{\\.\d:} is supported. @file{/dev/cdrom} is
497 supported as an alias to the first CDROM drive.
498
499 Currently there is no specific code to handle removable media, so it
500 is better to use the @code{change} or @code{eject} monitor commands to
501 change or eject media.
502 @item Hard disks
503 Hard disks can be used with the syntax: @file{\\.\PhysicalDrive@var{N}}
504 where @var{N} is the drive number (0 is the first hard disk).
505
506 WARNING: unless you know what you do, it is better to only make
507 READ-ONLY accesses to the hard disk otherwise you may corrupt your
508 host data (use the @option{-snapshot} command line so that the
509 modifications are written in a temporary file).
510 @end table
511
512
513 @subsubsection Mac OS X
514
515 @file{/dev/cdrom} is an alias to the first CDROM.
516
517 Currently there is no specific code to handle removable media, so it
518 is better to use the @code{change} or @code{eject} monitor commands to
519 change or eject media.
520
521 @node disk_images_fat_images
522 @subsection Virtual FAT disk images
523
524 QEMU can automatically create a virtual FAT disk image from a
525 directory tree. In order to use it, just type:
526
527 @example
528 qemu linux.img -hdb fat:/my_directory
529 @end example
530
531 Then you access access to all the files in the @file{/my_directory}
532 directory without having to copy them in a disk image or to export
533 them via SAMBA or NFS. The default access is @emph{read-only}.
534
535 Floppies can be emulated with the @code{:floppy:} option:
536
537 @example
538 qemu linux.img -fda fat:floppy:/my_directory
539 @end example
540
541 A read/write support is available for testing (beta stage) with the
542 @code{:rw:} option:
543
544 @example
545 qemu linux.img -fda fat:floppy:rw:/my_directory
546 @end example
547
548 What you should @emph{never} do:
549 @itemize
550 @item use non-ASCII filenames ;
551 @item use "-snapshot" together with ":rw:" ;
552 @item expect it to work when loadvm'ing ;
553 @item write to the FAT directory on the host system while accessing it with the guest system.
554 @end itemize
555
556 @node disk_images_nbd
557 @subsection NBD access
558
559 QEMU can access directly to block device exported using the Network Block Device
560 protocol.
561
562 @example
563 qemu linux.img -hdb nbd:my_nbd_server.mydomain.org:1024
564 @end example
565
566 If the NBD server is located on the same host, you can use an unix socket instead
567 of an inet socket:
568
569 @example
570 qemu linux.img -hdb nbd:unix:/tmp/my_socket
571 @end example
572
573 In this case, the block device must be exported using qemu-nbd:
574
575 @example
576 qemu-nbd --socket=/tmp/my_socket my_disk.qcow2
577 @end example
578
579 The use of qemu-nbd allows to share a disk between several guests:
580 @example
581 qemu-nbd --socket=/tmp/my_socket --share=2 my_disk.qcow2
582 @end example
583
584 and then you can use it with two guests:
585 @example
586 qemu linux1.img -hdb nbd:unix:/tmp/my_socket
587 qemu linux2.img -hdb nbd:unix:/tmp/my_socket
588 @end example
589
590 @node pcsys_network
591 @section Network emulation
592
593 QEMU can simulate several network cards (PCI or ISA cards on the PC
594 target) and can connect them to an arbitrary number of Virtual Local
595 Area Networks (VLANs). Host TAP devices can be connected to any QEMU
596 VLAN. VLAN can be connected between separate instances of QEMU to
597 simulate large networks. For simpler usage, a non privileged user mode
598 network stack can replace the TAP device to have a basic network
599 connection.
600
601 @subsection VLANs
602
603 QEMU simulates several VLANs. A VLAN can be symbolised as a virtual
604 connection between several network devices. These devices can be for
605 example QEMU virtual Ethernet cards or virtual Host ethernet devices
606 (TAP devices).
607
608 @subsection Using TAP network interfaces
609
610 This is the standard way to connect QEMU to a real network. QEMU adds
611 a virtual network device on your host (called @code{tapN}), and you
612 can then configure it as if it was a real ethernet card.
613
614 @subsubsection Linux host
615
616 As an example, you can download the @file{linux-test-xxx.tar.gz}
617 archive and copy the script @file{qemu-ifup} in @file{/etc} and
618 configure properly @code{sudo} so that the command @code{ifconfig}
619 contained in @file{qemu-ifup} can be executed as root. You must verify
620 that your host kernel supports the TAP network interfaces: the
621 device @file{/dev/net/tun} must be present.
622
623 See @ref{sec_invocation} to have examples of command lines using the
624 TAP network interfaces.
625
626 @subsubsection Windows host
627
628 There is a virtual ethernet driver for Windows 2000/XP systems, called
629 TAP-Win32. But it is not included in standard QEMU for Windows,
630 so you will need to get it separately. It is part of OpenVPN package,
631 so download OpenVPN from : @url{http://openvpn.net/}.
632
633 @subsection Using the user mode network stack
634
635 By using the option @option{-net user} (default configuration if no
636 @option{-net} option is specified), QEMU uses a completely user mode
637 network stack (you don't need root privilege to use the virtual
638 network). The virtual network configuration is the following:
639
640 @example
641
642 QEMU VLAN <------> Firewall/DHCP server <-----> Internet
643 | (10.0.2.2)
644 |
645 ----> DNS server (10.0.2.3)
646 |
647 ----> SMB server (10.0.2.4)
648 @end example
649
650 The QEMU VM behaves as if it was behind a firewall which blocks all
651 incoming connections. You can use a DHCP client to automatically
652 configure the network in the QEMU VM. The DHCP server assign addresses
653 to the hosts starting from 10.0.2.15.
654
655 In order to check that the user mode network is working, you can ping
656 the address 10.0.2.2 and verify that you got an address in the range
657 10.0.2.x from the QEMU virtual DHCP server.
658
659 Note that @code{ping} is not supported reliably to the internet as it
660 would require root privileges. It means you can only ping the local
661 router (10.0.2.2).
662
663 When using the built-in TFTP server, the router is also the TFTP
664 server.
665
666 When using the @option{-redir} option, TCP or UDP connections can be
667 redirected from the host to the guest. It allows for example to
668 redirect X11, telnet or SSH connections.
669
670 @subsection Connecting VLANs between QEMU instances
671
672 Using the @option{-net socket} option, it is possible to make VLANs
673 that span several QEMU instances. See @ref{sec_invocation} to have a
674 basic example.
675
676 @node direct_linux_boot
677 @section Direct Linux Boot
678
679 This section explains how to launch a Linux kernel inside QEMU without
680 having to make a full bootable image. It is very useful for fast Linux
681 kernel testing.
682
683 The syntax is:
684 @example
685 qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img -append "root=/dev/hda"
686 @end example
687
688 Use @option{-kernel} to provide the Linux kernel image and
689 @option{-append} to give the kernel command line arguments. The
690 @option{-initrd} option can be used to provide an INITRD image.
691
692 When using the direct Linux boot, a disk image for the first hard disk
693 @file{hda} is required because its boot sector is used to launch the
694 Linux kernel.
695
696 If you do not need graphical output, you can disable it and redirect
697 the virtual serial port and the QEMU monitor to the console with the
698 @option{-nographic} option. The typical command line is:
699 @example
700 qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
701 -append "root=/dev/hda console=ttyS0" -nographic
702 @end example
703
704 Use @key{Ctrl-a c} to switch between the serial console and the
705 monitor (@pxref{pcsys_keys}).
706
707 @node pcsys_usb
708 @section USB emulation
709
710 QEMU emulates a PCI UHCI USB controller. You can virtually plug
711 virtual USB devices or real host USB devices (experimental, works only
712 on Linux hosts). Qemu will automatically create and connect virtual USB hubs
713 as necessary to connect multiple USB devices.
714
715 @menu
716 * usb_devices::
717 * host_usb_devices::
718 @end menu
719 @node usb_devices
720 @subsection Connecting USB devices
721
722 USB devices can be connected with the @option{-usbdevice} commandline option
723 or the @code{usb_add} monitor command. Available devices are:
724
725 @table @code
726 @item mouse
727 Virtual Mouse. This will override the PS/2 mouse emulation when activated.
728 @item tablet
729 Pointer device that uses absolute coordinates (like a touchscreen).
730 This means qemu is able to report the mouse position without having
731 to grab the mouse. Also overrides the PS/2 mouse emulation when activated.
732 @item disk:@var{file}
733 Mass storage device based on @var{file} (@pxref{disk_images})
734 @item host:@var{bus.addr}
735 Pass through the host device identified by @var{bus.addr}
736 (Linux only)
737 @item host:@var{vendor_id:product_id}
738 Pass through the host device identified by @var{vendor_id:product_id}
739 (Linux only)
740 @item wacom-tablet
741 Virtual Wacom PenPartner tablet. This device is similar to the @code{tablet}
742 above but it can be used with the tslib library because in addition to touch
743 coordinates it reports touch pressure.
744 @item keyboard
745 Standard USB keyboard. Will override the PS/2 keyboard (if present).
746 @item serial:[vendorid=@var{vendor_id}][,product_id=@var{product_id}]:@var{dev}
747 Serial converter. This emulates an FTDI FT232BM chip connected to host character
748 device @var{dev}. The available character devices are the same as for the
749 @code{-serial} option. The @code{vendorid} and @code{productid} options can be
750 used to override the default 0403:6001. For instance,
751 @example
752 usb_add serial:productid=FA00:tcp:192.168.0.2:4444
753 @end example
754 will connect to tcp port 4444 of ip 192.168.0.2, and plug that to the virtual
755 serial converter, faking a Matrix Orbital LCD Display (USB ID 0403:FA00).
756 @item braille
757 Braille device. This will use BrlAPI to display the braille output on a real
758 or fake device.
759 @item net:@var{options}
760 Network adapter that supports CDC ethernet and RNDIS protocols. @var{options}
761 specifies NIC options as with @code{-net nic,}@var{options} (see description).
762 For instance, user-mode networking can be used with
763 @example
764 qemu [...OPTIONS...] -net user,vlan=0 -usbdevice net:vlan=0
765 @end example
766 Currently this cannot be used in machines that support PCI NICs.
767 @item bt[:@var{hci-type}]
768 Bluetooth dongle whose type is specified in the same format as with
769 the @option{-bt hci} option, @pxref{bt-hcis,,allowed HCI types}. If
770 no type is given, the HCI logic corresponds to @code{-bt hci,vlan=0}.
771 This USB device implements the USB Transport Layer of HCI. Example
772 usage:
773 @example
774 qemu [...OPTIONS...] -usbdevice bt:hci,vlan=3 -bt device:keyboard,vlan=3
775 @end example
776 @end table
777
778 @node host_usb_devices
779 @subsection Using host USB devices on a Linux host
780
781 WARNING: this is an experimental feature. QEMU will slow down when
782 using it. USB devices requiring real time streaming (i.e. USB Video
783 Cameras) are not supported yet.
784
785 @enumerate
786 @item If you use an early Linux 2.4 kernel, verify that no Linux driver
787 is actually using the USB device. A simple way to do that is simply to
788 disable the corresponding kernel module by renaming it from @file{mydriver.o}
789 to @file{mydriver.o.disabled}.
790
791 @item Verify that @file{/proc/bus/usb} is working (most Linux distributions should enable it by default). You should see something like that:
792 @example
793 ls /proc/bus/usb
794 001 devices drivers
795 @end example
796
797 @item Since only root can access to the USB devices directly, you can either launch QEMU as root or change the permissions of the USB devices you want to use. For testing, the following suffices:
798 @example
799 chown -R myuid /proc/bus/usb
800 @end example
801
802 @item Launch QEMU and do in the monitor:
803 @example
804 info usbhost
805 Device 1.2, speed 480 Mb/s
806 Class 00: USB device 1234:5678, USB DISK
807 @end example
808 You should see the list of the devices you can use (Never try to use
809 hubs, it won't work).
810
811 @item Add the device in QEMU by using:
812 @example
813 usb_add host:1234:5678
814 @end example
815
816 Normally the guest OS should report that a new USB device is
817 plugged. You can use the option @option{-usbdevice} to do the same.
818
819 @item Now you can try to use the host USB device in QEMU.
820
821 @end enumerate
822
823 When relaunching QEMU, you may have to unplug and plug again the USB
824 device to make it work again (this is a bug).
825
826 @node vnc_security
827 @section VNC security
828
829 The VNC server capability provides access to the graphical console
830 of the guest VM across the network. This has a number of security
831 considerations depending on the deployment scenarios.
832
833 @menu
834 * vnc_sec_none::
835 * vnc_sec_password::
836 * vnc_sec_certificate::
837 * vnc_sec_certificate_verify::
838 * vnc_sec_certificate_pw::
839 * vnc_sec_sasl::
840 * vnc_sec_certificate_sasl::
841 * vnc_generate_cert::
842 * vnc_setup_sasl::
843 @end menu
844 @node vnc_sec_none
845 @subsection Without passwords
846
847 The simplest VNC server setup does not include any form of authentication.
848 For this setup it is recommended to restrict it to listen on a UNIX domain
849 socket only. For example
850
851 @example
852 qemu [...OPTIONS...] -vnc unix:/home/joebloggs/.qemu-myvm-vnc
853 @end example
854
855 This ensures that only users on local box with read/write access to that
856 path can access the VNC server. To securely access the VNC server from a
857 remote machine, a combination of netcat+ssh can be used to provide a secure
858 tunnel.
859
860 @node vnc_sec_password
861 @subsection With passwords
862
863 The VNC protocol has limited support for password based authentication. Since
864 the protocol limits passwords to 8 characters it should not be considered
865 to provide high security. The password can be fairly easily brute-forced by
866 a client making repeat connections. For this reason, a VNC server using password
867 authentication should be restricted to only listen on the loopback interface
868 or UNIX domain sockets. Password authentication is requested with the @code{password}
869 option, and then once QEMU is running the password is set with the monitor. Until
870 the monitor is used to set the password all clients will be rejected.
871
872 @example
873 qemu [...OPTIONS...] -vnc :1,password -monitor stdio
874 (qemu) change vnc password
875 Password: ********
876 (qemu)
877 @end example
878
879 @node vnc_sec_certificate
880 @subsection With x509 certificates
881
882 The QEMU VNC server also implements the VeNCrypt extension allowing use of
883 TLS for encryption of the session, and x509 certificates for authentication.
884 The use of x509 certificates is strongly recommended, because TLS on its
885 own is susceptible to man-in-the-middle attacks. Basic x509 certificate
886 support provides a secure session, but no authentication. This allows any
887 client to connect, and provides an encrypted session.
888
889 @example
890 qemu [...OPTIONS...] -vnc :1,tls,x509=/etc/pki/qemu -monitor stdio
891 @end example
892
893 In the above example @code{/etc/pki/qemu} should contain at least three files,
894 @code{ca-cert.pem}, @code{server-cert.pem} and @code{server-key.pem}. Unprivileged
895 users will want to use a private directory, for example @code{$HOME/.pki/qemu}.
896 NB the @code{server-key.pem} file should be protected with file mode 0600 to
897 only be readable by the user owning it.
898
899 @node vnc_sec_certificate_verify
900 @subsection With x509 certificates and client verification
901
902 Certificates can also provide a means to authenticate the client connecting.
903 The server will request that the client provide a certificate, which it will
904 then validate against the CA certificate. This is a good choice if deploying
905 in an environment with a private internal certificate authority.
906
907 @example
908 qemu [...OPTIONS...] -vnc :1,tls,x509verify=/etc/pki/qemu -monitor stdio
909 @end example
910
911
912 @node vnc_sec_certificate_pw
913 @subsection With x509 certificates, client verification and passwords
914
915 Finally, the previous method can be combined with VNC password authentication
916 to provide two layers of authentication for clients.
917
918 @example
919 qemu [...OPTIONS...] -vnc :1,password,tls,x509verify=/etc/pki/qemu -monitor stdio
920 (qemu) change vnc password
921 Password: ********
922 (qemu)
923 @end example
924
925
926 @node vnc_sec_sasl
927 @subsection With SASL authentication
928
929 The SASL authentication method is a VNC extension, that provides an
930 easily extendable, pluggable authentication method. This allows for
931 integration with a wide range of authentication mechanisms, such as
932 PAM, GSSAPI/Kerberos, LDAP, SQL databases, one-time keys and more.
933 The strength of the authentication depends on the exact mechanism
934 configured. If the chosen mechanism also provides a SSF layer, then
935 it will encrypt the datastream as well.
936
937 Refer to the later docs on how to choose the exact SASL mechanism
938 used for authentication, but assuming use of one supporting SSF,
939 then QEMU can be launched with:
940
941 @example
942 qemu [...OPTIONS...] -vnc :1,sasl -monitor stdio
943 @end example
944
945 @node vnc_sec_certificate_sasl
946 @subsection With x509 certificates and SASL authentication
947
948 If the desired SASL authentication mechanism does not supported
949 SSF layers, then it is strongly advised to run it in combination
950 with TLS and x509 certificates. This provides securely encrypted
951 data stream, avoiding risk of compromising of the security
952 credentials. This can be enabled, by combining the 'sasl' option
953 with the aforementioned TLS + x509 options:
954
955 @example
956 qemu [...OPTIONS...] -vnc :1,tls,x509,sasl -monitor stdio
957 @end example
958
959
960 @node vnc_generate_cert
961 @subsection Generating certificates for VNC
962
963 The GNU TLS packages provides a command called @code{certtool} which can
964 be used to generate certificates and keys in PEM format. At a minimum it
965 is neccessary to setup a certificate authority, and issue certificates to
966 each server. If using certificates for authentication, then each client
967 will also need to be issued a certificate. The recommendation is for the
968 server to keep its certificates in either @code{/etc/pki/qemu} or for
969 unprivileged users in @code{$HOME/.pki/qemu}.
970
971 @menu
972 * vnc_generate_ca::
973 * vnc_generate_server::
974 * vnc_generate_client::
975 @end menu
976 @node vnc_generate_ca
977 @subsubsection Setup the Certificate Authority
978
979 This step only needs to be performed once per organization / organizational
980 unit. First the CA needs a private key. This key must be kept VERY secret
981 and secure. If this key is compromised the entire trust chain of the certificates
982 issued with it is lost.
983
984 @example
985 # certtool --generate-privkey > ca-key.pem
986 @end example
987
988 A CA needs to have a public certificate. For simplicity it can be a self-signed
989 certificate, or one issue by a commercial certificate issuing authority. To
990 generate a self-signed certificate requires one core piece of information, the
991 name of the organization.
992
993 @example
994 # cat > ca.info <<EOF
995 cn = Name of your organization
996 ca
997 cert_signing_key
998 EOF
999 # certtool --generate-self-signed \
1000 --load-privkey ca-key.pem
1001 --template ca.info \
1002 --outfile ca-cert.pem
1003 @end example
1004
1005 The @code{ca-cert.pem} file should be copied to all servers and clients wishing to utilize
1006 TLS support in the VNC server. The @code{ca-key.pem} must not be disclosed/copied at all.
1007
1008 @node vnc_generate_server
1009 @subsubsection Issuing server certificates
1010
1011 Each server (or host) needs to be issued with a key and certificate. When connecting
1012 the certificate is sent to the client which validates it against the CA certificate.
1013 The core piece of information for a server certificate is the hostname. This should
1014 be the fully qualified hostname that the client will connect with, since the client
1015 will typically also verify the hostname in the certificate. On the host holding the
1016 secure CA private key:
1017
1018 @example
1019 # cat > server.info <<EOF
1020 organization = Name of your organization
1021 cn = server.foo.example.com
1022 tls_www_server
1023 encryption_key
1024 signing_key
1025 EOF
1026 # certtool --generate-privkey > server-key.pem
1027 # certtool --generate-certificate \
1028 --load-ca-certificate ca-cert.pem \
1029 --load-ca-privkey ca-key.pem \
1030 --load-privkey server server-key.pem \
1031 --template server.info \
1032 --outfile server-cert.pem
1033 @end example
1034
1035 The @code{server-key.pem} and @code{server-cert.pem} files should now be securely copied
1036 to the server for which they were generated. The @code{server-key.pem} is security
1037 sensitive and should be kept protected with file mode 0600 to prevent disclosure.
1038
1039 @node vnc_generate_client
1040 @subsubsection Issuing client certificates
1041
1042 If the QEMU VNC server is to use the @code{x509verify} option to validate client
1043 certificates as its authentication mechanism, each client also needs to be issued
1044 a certificate. The client certificate contains enough metadata to uniquely identify
1045 the client, typically organization, state, city, building, etc. On the host holding
1046 the secure CA private key:
1047
1048 @example
1049 # cat > client.info <<EOF
1050 country = GB
1051 state = London
1052 locality = London
1053 organiazation = Name of your organization
1054 cn = client.foo.example.com
1055 tls_www_client
1056 encryption_key
1057 signing_key
1058 EOF
1059 # certtool --generate-privkey > client-key.pem
1060 # certtool --generate-certificate \
1061 --load-ca-certificate ca-cert.pem \
1062 --load-ca-privkey ca-key.pem \
1063 --load-privkey client-key.pem \
1064 --template client.info \
1065 --outfile client-cert.pem
1066 @end example
1067
1068 The @code{client-key.pem} and @code{client-cert.pem} files should now be securely
1069 copied to the client for which they were generated.
1070
1071
1072 @node vnc_setup_sasl
1073
1074 @subsection Configuring SASL mechanisms
1075
1076 The following documentation assumes use of the Cyrus SASL implementation on a
1077 Linux host, but the principals should apply to any other SASL impl. When SASL
1078 is enabled, the mechanism configuration will be loaded from system default
1079 SASL service config /etc/sasl2/qemu.conf. If running QEMU as an
1080 unprivileged user, an environment variable SASL_CONF_PATH can be used
1081 to make it search alternate locations for the service config.
1082
1083 The default configuration might contain
1084
1085 @example
1086 mech_list: digest-md5
1087 sasldb_path: /etc/qemu/passwd.db
1088 @end example
1089
1090 This says to use the 'Digest MD5' mechanism, which is similar to the HTTP
1091 Digest-MD5 mechanism. The list of valid usernames & passwords is maintained
1092 in the /etc/qemu/passwd.db file, and can be updated using the saslpasswd2
1093 command. While this mechanism is easy to configure and use, it is not
1094 considered secure by modern standards, so only suitable for developers /
1095 ad-hoc testing.
1096
1097 A more serious deployment might use Kerberos, which is done with the 'gssapi'
1098 mechanism
1099
1100 @example
1101 mech_list: gssapi
1102 keytab: /etc/qemu/krb5.tab
1103 @end example
1104
1105 For this to work the administrator of your KDC must generate a Kerberos
1106 principal for the server, with a name of 'qemu/somehost.example.com@@EXAMPLE.COM'
1107 replacing 'somehost.example.com' with the fully qualified host name of the
1108 machine running QEMU, and 'EXAMPLE.COM' with the Keberos Realm.
1109
1110 Other configurations will be left as an exercise for the reader. It should
1111 be noted that only Digest-MD5 and GSSAPI provides a SSF layer for data
1112 encryption. For all other mechanisms, VNC should always be configured to
1113 use TLS and x509 certificates to protect security credentials from snooping.
1114
1115 @node gdb_usage
1116 @section GDB usage
1117
1118 QEMU has a primitive support to work with gdb, so that you can do
1119 'Ctrl-C' while the virtual machine is running and inspect its state.
1120
1121 In order to use gdb, launch qemu with the '-s' option. It will wait for a
1122 gdb connection:
1123 @example
1124 > qemu -s -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1125 -append "root=/dev/hda"
1126 Connected to host network interface: tun0
1127 Waiting gdb connection on port 1234
1128 @end example
1129
1130 Then launch gdb on the 'vmlinux' executable:
1131 @example
1132 > gdb vmlinux
1133 @end example
1134
1135 In gdb, connect to QEMU:
1136 @example
1137 (gdb) target remote localhost:1234
1138 @end example
1139
1140 Then you can use gdb normally. For example, type 'c' to launch the kernel:
1141 @example
1142 (gdb) c
1143 @end example
1144
1145 Here are some useful tips in order to use gdb on system code:
1146
1147 @enumerate
1148 @item
1149 Use @code{info reg} to display all the CPU registers.
1150 @item
1151 Use @code{x/10i $eip} to display the code at the PC position.
1152 @item
1153 Use @code{set architecture i8086} to dump 16 bit code. Then use
1154 @code{x/10i $cs*16+$eip} to dump the code at the PC position.
1155 @end enumerate
1156
1157 Advanced debugging options:
1158
1159 The default single stepping behavior is step with the IRQs and timer service routines off. It is set this way because when gdb executes a single step it expects to advance beyond the current instruction. With the IRQs and and timer service routines on, a single step might jump into the one of the interrupt or exception vectors instead of executing the current instruction. This means you may hit the same breakpoint a number of times before executing the instruction gdb wants to have executed. Because there are rare circumstances where you want to single step into an interrupt vector the behavior can be controlled from GDB. There are three commands you can query and set the single step behavior:
1160 @table @code
1161 @item maintenance packet qqemu.sstepbits
1162
1163 This will display the MASK bits used to control the single stepping IE:
1164 @example
1165 (gdb) maintenance packet qqemu.sstepbits
1166 sending: "qqemu.sstepbits"
1167 received: "ENABLE=1,NOIRQ=2,NOTIMER=4"
1168 @end example
1169 @item maintenance packet qqemu.sstep
1170
1171 This will display the current value of the mask used when single stepping IE:
1172 @example
1173 (gdb) maintenance packet qqemu.sstep
1174 sending: "qqemu.sstep"
1175 received: "0x7"
1176 @end example
1177 @item maintenance packet Qqemu.sstep=HEX_VALUE
1178
1179 This will change the single step mask, so if wanted to enable IRQs on the single step, but not timers, you would use:
1180 @example
1181 (gdb) maintenance packet Qqemu.sstep=0x5
1182 sending: "qemu.sstep=0x5"
1183 received: "OK"
1184 @end example
1185 @end table
1186
1187 @node pcsys_os_specific
1188 @section Target OS specific information
1189
1190 @subsection Linux
1191
1192 To have access to SVGA graphic modes under X11, use the @code{vesa} or
1193 the @code{cirrus} X11 driver. For optimal performances, use 16 bit
1194 color depth in the guest and the host OS.
1195
1196 When using a 2.6 guest Linux kernel, you should add the option
1197 @code{clock=pit} on the kernel command line because the 2.6 Linux
1198 kernels make very strict real time clock checks by default that QEMU
1199 cannot simulate exactly.
1200
1201 When using a 2.6 guest Linux kernel, verify that the 4G/4G patch is
1202 not activated because QEMU is slower with this patch. The QEMU
1203 Accelerator Module is also much slower in this case. Earlier Fedora
1204 Core 3 Linux kernel (< 2.6.9-1.724_FC3) were known to incorporate this
1205 patch by default. Newer kernels don't have it.
1206
1207 @subsection Windows
1208
1209 If you have a slow host, using Windows 95 is better as it gives the
1210 best speed. Windows 2000 is also a good choice.
1211
1212 @subsubsection SVGA graphic modes support
1213
1214 QEMU emulates a Cirrus Logic GD5446 Video
1215 card. All Windows versions starting from Windows 95 should recognize
1216 and use this graphic card. For optimal performances, use 16 bit color
1217 depth in the guest and the host OS.
1218
1219 If you are using Windows XP as guest OS and if you want to use high
1220 resolution modes which the Cirrus Logic BIOS does not support (i.e. >=
1221 1280x1024x16), then you should use the VESA VBE virtual graphic card
1222 (option @option{-std-vga}).
1223
1224 @subsubsection CPU usage reduction
1225
1226 Windows 9x does not correctly use the CPU HLT
1227 instruction. The result is that it takes host CPU cycles even when
1228 idle. You can install the utility from
1229 @url{http://www.user.cityline.ru/~maxamn/amnhltm.zip} to solve this
1230 problem. Note that no such tool is needed for NT, 2000 or XP.
1231
1232 @subsubsection Windows 2000 disk full problem
1233
1234 Windows 2000 has a bug which gives a disk full problem during its
1235 installation. When installing it, use the @option{-win2k-hack} QEMU
1236 option to enable a specific workaround. After Windows 2000 is
1237 installed, you no longer need this option (this option slows down the
1238 IDE transfers).
1239
1240 @subsubsection Windows 2000 shutdown
1241
1242 Windows 2000 cannot automatically shutdown in QEMU although Windows 98
1243 can. It comes from the fact that Windows 2000 does not automatically
1244 use the APM driver provided by the BIOS.
1245
1246 In order to correct that, do the following (thanks to Struan
1247 Bartlett): go to the Control Panel => Add/Remove Hardware & Next =>
1248 Add/Troubleshoot a device => Add a new device & Next => No, select the
1249 hardware from a list & Next => NT Apm/Legacy Support & Next => Next
1250 (again) a few times. Now the driver is installed and Windows 2000 now
1251 correctly instructs QEMU to shutdown at the appropriate moment.
1252
1253 @subsubsection Share a directory between Unix and Windows
1254
1255 See @ref{sec_invocation} about the help of the option @option{-smb}.
1256
1257 @subsubsection Windows XP security problem
1258
1259 Some releases of Windows XP install correctly but give a security
1260 error when booting:
1261 @example
1262 A problem is preventing Windows from accurately checking the
1263 license for this computer. Error code: 0x800703e6.
1264 @end example
1265
1266 The workaround is to install a service pack for XP after a boot in safe
1267 mode. Then reboot, and the problem should go away. Since there is no
1268 network while in safe mode, its recommended to download the full
1269 installation of SP1 or SP2 and transfer that via an ISO or using the
1270 vvfat block device ("-hdb fat:directory_which_holds_the_SP").
1271
1272 @subsection MS-DOS and FreeDOS
1273
1274 @subsubsection CPU usage reduction
1275
1276 DOS does not correctly use the CPU HLT instruction. The result is that
1277 it takes host CPU cycles even when idle. You can install the utility
1278 from @url{http://www.vmware.com/software/dosidle210.zip} to solve this
1279 problem.
1280
1281 @node QEMU System emulator for non PC targets
1282 @chapter QEMU System emulator for non PC targets
1283
1284 QEMU is a generic emulator and it emulates many non PC
1285 machines. Most of the options are similar to the PC emulator. The
1286 differences are mentioned in the following sections.
1287
1288 @menu
1289 * QEMU PowerPC System emulator::
1290 * Sparc32 System emulator::
1291 * Sparc64 System emulator::
1292 * MIPS System emulator::
1293 * ARM System emulator::
1294 * ColdFire System emulator::
1295 @end menu
1296
1297 @node QEMU PowerPC System emulator
1298 @section QEMU PowerPC System emulator
1299
1300 Use the executable @file{qemu-system-ppc} to simulate a complete PREP
1301 or PowerMac PowerPC system.
1302
1303 QEMU emulates the following PowerMac peripherals:
1304
1305 @itemize @minus
1306 @item
1307 UniNorth or Grackle PCI Bridge
1308 @item
1309 PCI VGA compatible card with VESA Bochs Extensions
1310 @item
1311 2 PMAC IDE interfaces with hard disk and CD-ROM support
1312 @item
1313 NE2000 PCI adapters
1314 @item
1315 Non Volatile RAM
1316 @item
1317 VIA-CUDA with ADB keyboard and mouse.
1318 @end itemize
1319
1320 QEMU emulates the following PREP peripherals:
1321
1322 @itemize @minus
1323 @item
1324 PCI Bridge
1325 @item
1326 PCI VGA compatible card with VESA Bochs Extensions
1327 @item
1328 2 IDE interfaces with hard disk and CD-ROM support
1329 @item
1330 Floppy disk
1331 @item
1332 NE2000 network adapters
1333 @item
1334 Serial port
1335 @item
1336 PREP Non Volatile RAM
1337 @item
1338 PC compatible keyboard and mouse.
1339 @end itemize
1340
1341 QEMU uses the Open Hack'Ware Open Firmware Compatible BIOS available at
1342 @url{http://perso.magic.fr/l_indien/OpenHackWare/index.htm}.
1343
1344 Since version 0.9.1, QEMU uses OpenBIOS @url{http://www.openbios.org/}
1345 for the g3beige and mac99 PowerMac machines. OpenBIOS is a free (GPL
1346 v2) portable firmware implementation. The goal is to implement a 100%
1347 IEEE 1275-1994 (referred to as Open Firmware) compliant firmware.
1348
1349 @c man begin OPTIONS
1350
1351 The following options are specific to the PowerPC emulation:
1352
1353 @table @option
1354
1355 @item -g @var{W}x@var{H}[x@var{DEPTH}]
1356
1357 Set the initial VGA graphic mode. The default is 800x600x15.
1358
1359 @item -prom-env @var{string}
1360
1361 Set OpenBIOS variables in NVRAM, for example:
1362
1363 @example
1364 qemu-system-ppc -prom-env 'auto-boot?=false' \
1365 -prom-env 'boot-device=hd:2,\yaboot' \
1366 -prom-env 'boot-args=conf=hd:2,\yaboot.conf'
1367 @end example
1368
1369 These variables are not used by Open Hack'Ware.
1370
1371 @end table
1372
1373 @c man end
1374
1375
1376 More information is available at
1377 @url{http://perso.magic.fr/l_indien/qemu-ppc/}.
1378
1379 @node Sparc32 System emulator
1380 @section Sparc32 System emulator
1381
1382 Use the executable @file{qemu-system-sparc} to simulate the following
1383 Sun4m architecture machines:
1384 @itemize @minus
1385 @item
1386 SPARCstation 4
1387 @item
1388 SPARCstation 5
1389 @item
1390 SPARCstation 10
1391 @item
1392 SPARCstation 20
1393 @item
1394 SPARCserver 600MP
1395 @item
1396 SPARCstation LX
1397 @item
1398 SPARCstation Voyager
1399 @item
1400 SPARCclassic
1401 @item
1402 SPARCbook
1403 @end itemize
1404
1405 The emulation is somewhat complete. SMP up to 16 CPUs is supported,
1406 but Linux limits the number of usable CPUs to 4.
1407
1408 It's also possible to simulate a SPARCstation 2 (sun4c architecture),
1409 SPARCserver 1000, or SPARCcenter 2000 (sun4d architecture), but these
1410 emulators are not usable yet.
1411
1412 QEMU emulates the following sun4m/sun4c/sun4d peripherals:
1413
1414 @itemize @minus
1415 @item
1416 IOMMU or IO-UNITs
1417 @item
1418 TCX Frame buffer
1419 @item
1420 Lance (Am7990) Ethernet
1421 @item
1422 Non Volatile RAM M48T02/M48T08
1423 @item
1424 Slave I/O: timers, interrupt controllers, Zilog serial ports, keyboard
1425 and power/reset logic
1426 @item
1427 ESP SCSI controller with hard disk and CD-ROM support
1428 @item
1429 Floppy drive (not on SS-600MP)
1430 @item
1431 CS4231 sound device (only on SS-5, not working yet)
1432 @end itemize
1433
1434 The number of peripherals is fixed in the architecture. Maximum
1435 memory size depends on the machine type, for SS-5 it is 256MB and for
1436 others 2047MB.
1437
1438 Since version 0.8.2, QEMU uses OpenBIOS
1439 @url{http://www.openbios.org/}. OpenBIOS is a free (GPL v2) portable
1440 firmware implementation. The goal is to implement a 100% IEEE
1441 1275-1994 (referred to as Open Firmware) compliant firmware.
1442
1443 A sample Linux 2.6 series kernel and ram disk image are available on
1444 the QEMU web site. There are still issues with NetBSD and OpenBSD, but
1445 some kernel versions work. Please note that currently Solaris kernels
1446 don't work probably due to interface issues between OpenBIOS and
1447 Solaris.
1448
1449 @c man begin OPTIONS
1450
1451 The following options are specific to the Sparc32 emulation:
1452
1453 @table @option
1454
1455 @item -g @var{W}x@var{H}x[x@var{DEPTH}]
1456
1457 Set the initial TCX graphic mode. The default is 1024x768x8, currently
1458 the only other possible mode is 1024x768x24.
1459
1460 @item -prom-env @var{string}
1461
1462 Set OpenBIOS variables in NVRAM, for example:
1463
1464 @example
1465 qemu-system-sparc -prom-env 'auto-boot?=false' \
1466 -prom-env 'boot-device=sd(0,2,0):d' -prom-env 'boot-args=linux single'
1467 @end example
1468
1469 @item -M [SS-4|SS-5|SS-10|SS-20|SS-600MP|LX|Voyager|SPARCClassic|SPARCbook|SS-2|SS-1000|SS-2000]
1470
1471 Set the emulated machine type. Default is SS-5.
1472
1473 @end table
1474
1475 @c man end
1476
1477 @node Sparc64 System emulator
1478 @section Sparc64 System emulator
1479
1480 Use the executable @file{qemu-system-sparc64} to simulate a Sun4u
1481 (UltraSPARC PC-like machine), Sun4v (T1 PC-like machine), or generic
1482 Niagara (T1) machine. The emulator is not usable for anything yet, but
1483 it can launch some kernels.
1484
1485 QEMU emulates the following peripherals:
1486
1487 @itemize @minus
1488 @item
1489 UltraSparc IIi APB PCI Bridge
1490 @item
1491 PCI VGA compatible card with VESA Bochs Extensions
1492 @item
1493 PS/2 mouse and keyboard
1494 @item
1495 Non Volatile RAM M48T59
1496 @item
1497 PC-compatible serial ports
1498 @item
1499 2 PCI IDE interfaces with hard disk and CD-ROM support
1500 @item
1501 Floppy disk
1502 @end itemize
1503
1504 @c man begin OPTIONS
1505
1506 The following options are specific to the Sparc64 emulation:
1507
1508 @table @option
1509
1510 @item -prom-env @var{string}
1511
1512 Set OpenBIOS variables in NVRAM, for example:
1513
1514 @example
1515 qemu-system-sparc64 -prom-env 'auto-boot?=false'
1516 @end example
1517
1518 @item -M [sun4u|sun4v|Niagara]
1519
1520 Set the emulated machine type. The default is sun4u.
1521
1522 @end table
1523
1524 @c man end
1525
1526 @node MIPS System emulator
1527 @section MIPS System emulator
1528
1529 Four executables cover simulation of 32 and 64-bit MIPS systems in
1530 both endian options, @file{qemu-system-mips}, @file{qemu-system-mipsel}
1531 @file{qemu-system-mips64} and @file{qemu-system-mips64el}.
1532 Five different machine types are emulated:
1533
1534 @itemize @minus
1535 @item
1536 A generic ISA PC-like machine "mips"
1537 @item
1538 The MIPS Malta prototype board "malta"
1539 @item
1540 An ACER Pica "pica61". This machine needs the 64-bit emulator.
1541 @item
1542 MIPS emulator pseudo board "mipssim"
1543 @item
1544 A MIPS Magnum R4000 machine "magnum". This machine needs the 64-bit emulator.
1545 @end itemize
1546
1547 The generic emulation is supported by Debian 'Etch' and is able to
1548 install Debian into a virtual disk image. The following devices are
1549 emulated:
1550
1551 @itemize @minus
1552 @item
1553 A range of MIPS CPUs, default is the 24Kf
1554 @item
1555 PC style serial port
1556 @item
1557 PC style IDE disk
1558 @item
1559 NE2000 network card
1560 @end itemize
1561
1562 The Malta emulation supports the following devices:
1563
1564 @itemize @minus
1565 @item
1566 Core board with MIPS 24Kf CPU and Galileo system controller
1567 @item
1568 PIIX4 PCI/USB/SMbus controller
1569 @item
1570 The Multi-I/O chip's serial device
1571 @item
1572 PCI network cards (PCnet32 and others)
1573 @item
1574 Malta FPGA serial device
1575 @item
1576 Cirrus (default) or any other PCI VGA graphics card
1577 @end itemize
1578
1579 The ACER Pica emulation supports:
1580
1581 @itemize @minus
1582 @item
1583 MIPS R4000 CPU
1584 @item
1585 PC-style IRQ and DMA controllers
1586 @item
1587 PC Keyboard
1588 @item
1589 IDE controller
1590 @end itemize
1591
1592 The mipssim pseudo board emulation provides an environment similiar
1593 to what the proprietary MIPS emulator uses for running Linux.
1594 It supports:
1595
1596 @itemize @minus
1597 @item
1598 A range of MIPS CPUs, default is the 24Kf
1599 @item
1600 PC style serial port
1601 @item
1602 MIPSnet network emulation
1603 @end itemize
1604
1605 The MIPS Magnum R4000 emulation supports:
1606
1607 @itemize @minus
1608 @item
1609 MIPS R4000 CPU
1610 @item
1611 PC-style IRQ controller
1612 @item
1613 PC Keyboard
1614 @item
1615 SCSI controller
1616 @item
1617 G364 framebuffer
1618 @end itemize
1619
1620
1621 @node ARM System emulator
1622 @section ARM System emulator
1623
1624 Use the executable @file{qemu-system-arm} to simulate a ARM
1625 machine. The ARM Integrator/CP board is emulated with the following
1626 devices:
1627
1628 @itemize @minus
1629 @item
1630 ARM926E, ARM1026E, ARM946E, ARM1136 or Cortex-A8 CPU
1631 @item
1632 Two PL011 UARTs
1633 @item
1634 SMC 91c111 Ethernet adapter
1635 @item
1636 PL110 LCD controller
1637 @item
1638 PL050 KMI with PS/2 keyboard and mouse.
1639 @item
1640 PL181 MultiMedia Card Interface with SD card.
1641 @end itemize
1642
1643 The ARM Versatile baseboard is emulated with the following devices:
1644
1645 @itemize @minus
1646 @item
1647 ARM926E, ARM1136 or Cortex-A8 CPU
1648 @item
1649 PL190 Vectored Interrupt Controller
1650 @item
1651 Four PL011 UARTs
1652 @item
1653 SMC 91c111 Ethernet adapter
1654 @item
1655 PL110 LCD controller
1656 @item
1657 PL050 KMI with PS/2 keyboard and mouse.
1658 @item
1659 PCI host bridge. Note the emulated PCI bridge only provides access to
1660 PCI memory space. It does not provide access to PCI IO space.
1661 This means some devices (eg. ne2k_pci NIC) are not usable, and others
1662 (eg. rtl8139 NIC) are only usable when the guest drivers use the memory
1663 mapped control registers.
1664 @item
1665 PCI OHCI USB controller.
1666 @item
1667 LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices.
1668 @item
1669 PL181 MultiMedia Card Interface with SD card.
1670 @end itemize
1671
1672 Several variants of the ARM RealView baseboard are emulated,
1673 including the EB, PB-A8 and PBX-A9. Due to interactions with the
1674 bootloader, only certain Linux kernel configurations work out
1675 of the box on these boards.
1676
1677 Kernels for the PB-A8 board should have CONFIG_REALVIEW_HIGH_PHYS_OFFSET
1678 enabled in the kernel, and expect 512M RAM. Kernels for The PBX-A9 board
1679 should have CONFIG_SPARSEMEM enabled, CONFIG_REALVIEW_HIGH_PHYS_OFFSET
1680 disabled and expect 1024M RAM.
1681
1682 The following devices are emuilated:
1683
1684 @itemize @minus
1685 @item
1686 ARM926E, ARM1136, ARM11MPCore, Cortex-A8 or Cortex-A9 MPCore CPU
1687 @item
1688 ARM AMBA Generic/Distributed Interrupt Controller
1689 @item
1690 Four PL011 UARTs
1691 @item
1692 SMC 91c111 or SMSC LAN9118 Ethernet adapter
1693 @item
1694 PL110 LCD controller
1695 @item
1696 PL050 KMI with PS/2 keyboard and mouse
1697 @item
1698 PCI host bridge
1699 @item
1700 PCI OHCI USB controller
1701 @item
1702 LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices
1703 @item
1704 PL181 MultiMedia Card Interface with SD card.
1705 @end itemize
1706
1707 The XScale-based clamshell PDA models ("Spitz", "Akita", "Borzoi"
1708 and "Terrier") emulation includes the following peripherals:
1709
1710 @itemize @minus
1711 @item
1712 Intel PXA270 System-on-chip (ARM V5TE core)
1713 @item
1714 NAND Flash memory
1715 @item
1716 IBM/Hitachi DSCM microdrive in a PXA PCMCIA slot - not in "Akita"
1717 @item
1718 On-chip OHCI USB controller
1719 @item
1720 On-chip LCD controller
1721 @item
1722 On-chip Real Time Clock
1723 @item
1724 TI ADS7846 touchscreen controller on SSP bus
1725 @item
1726 Maxim MAX1111 analog-digital converter on I@math{^2}C bus
1727 @item
1728 GPIO-connected keyboard controller and LEDs
1729 @item
1730 Secure Digital card connected to PXA MMC/SD host
1731 @item
1732 Three on-chip UARTs
1733 @item
1734 WM8750 audio CODEC on I@math{^2}C and I@math{^2}S busses
1735 @end itemize
1736
1737 The Palm Tungsten|E PDA (codename "Cheetah") emulation includes the
1738 following elements:
1739
1740 @itemize @minus
1741 @item
1742 Texas Instruments OMAP310 System-on-chip (ARM 925T core)
1743 @item
1744 ROM and RAM memories (ROM firmware image can be loaded with -option-rom)
1745 @item
1746 On-chip LCD controller
1747 @item
1748 On-chip Real Time Clock
1749 @item
1750 TI TSC2102i touchscreen controller / analog-digital converter / Audio
1751 CODEC, connected through MicroWire and I@math{^2}S busses
1752 @item
1753 GPIO-connected matrix keypad
1754 @item
1755 Secure Digital card connected to OMAP MMC/SD host
1756 @item
1757 Three on-chip UARTs
1758 @end itemize
1759
1760 Nokia N800 and N810 internet tablets (known also as RX-34 and RX-44 / 48)
1761 emulation supports the following elements:
1762
1763 @itemize @minus
1764 @item
1765 Texas Instruments OMAP2420 System-on-chip (ARM 1136 core)
1766 @item
1767 RAM and non-volatile OneNAND Flash memories
1768 @item
1769 Display connected to EPSON remote framebuffer chip and OMAP on-chip
1770 display controller and a LS041y3 MIPI DBI-C controller
1771 @item
1772 TI TSC2301 (in N800) and TI TSC2005 (in N810) touchscreen controllers
1773 driven through SPI bus
1774 @item
1775 National Semiconductor LM8323-controlled qwerty keyboard driven
1776 through I@math{^2}C bus
1777 @item
1778 Secure Digital card connected to OMAP MMC/SD host
1779 @item
1780 Three OMAP on-chip UARTs and on-chip STI debugging console
1781 @item
1782 A Bluetooth(R) transciever and HCI connected to an UART
1783 @item
1784 Mentor Graphics "Inventra" dual-role USB controller embedded in a TI
1785 TUSB6010 chip - only USB host mode is supported
1786 @item
1787 TI TMP105 temperature sensor driven through I@math{^2}C bus
1788 @item
1789 TI TWL92230C power management companion with an RTC on I@math{^2}C bus
1790 @item
1791 Nokia RETU and TAHVO multi-purpose chips with an RTC, connected
1792 through CBUS
1793 @end itemize
1794
1795 The Luminary Micro Stellaris LM3S811EVB emulation includes the following
1796 devices:
1797
1798 @itemize @minus
1799 @item
1800 Cortex-M3 CPU core.
1801 @item
1802 64k Flash and 8k SRAM.
1803 @item
1804 Timers, UARTs, ADC and I@math{^2}C interface.
1805 @item
1806 OSRAM Pictiva 96x16 OLED with SSD0303 controller on I@math{^2}C bus.
1807 @end itemize
1808
1809 The Luminary Micro Stellaris LM3S6965EVB emulation includes the following
1810 devices:
1811
1812 @itemize @minus
1813 @item
1814 Cortex-M3 CPU core.
1815 @item
1816 256k Flash and 64k SRAM.
1817 @item
1818 Timers, UARTs, ADC, I@math{^2}C and SSI interfaces.
1819 @item
1820 OSRAM Pictiva 128x64 OLED with SSD0323 controller connected via SSI.
1821 @end itemize
1822
1823 The Freecom MusicPal internet radio emulation includes the following
1824 elements:
1825
1826 @itemize @minus
1827 @item
1828 Marvell MV88W8618 ARM core.
1829 @item
1830 32 MB RAM, 256 KB SRAM, 8 MB flash.
1831 @item
1832 Up to 2 16550 UARTs
1833 @item
1834 MV88W8xx8 Ethernet controller
1835 @item
1836 MV88W8618 audio controller, WM8750 CODEC and mixer
1837 @item
1838 128×64 display with brightness control
1839 @item
1840 2 buttons, 2 navigation wheels with button function
1841 @end itemize
1842
1843 The Siemens SX1 models v1 and v2 (default) basic emulation.
1844 The emulaton includes the following elements:
1845
1846 @itemize @minus
1847 @item
1848 Texas Instruments OMAP310 System-on-chip (ARM 925T core)
1849 @item
1850 ROM and RAM memories (ROM firmware image can be loaded with -pflash)
1851 V1
1852 1 Flash of 16MB and 1 Flash of 8MB
1853 V2
1854 1 Flash of 32MB
1855 @item
1856 On-chip LCD controller
1857 @item
1858 On-chip Real Time Clock
1859 @item
1860 Secure Digital card connected to OMAP MMC/SD host
1861 @item
1862 Three on-chip UARTs
1863 @end itemize
1864
1865 The "Syborg" Symbian Virtual Platform base model includes the following
1866 elements:
1867
1868 @itemize @minus
1869 @item
1870 ARM Cortex-A8 CPU
1871 @item
1872 Interrupt controller
1873 @item
1874 Timer
1875 @item
1876 Real Time Clock
1877 @item
1878 Keyboard
1879 @item
1880 Framebuffer
1881 @item
1882 Touchscreen
1883 @item
1884 UARTs
1885 @end itemize
1886
1887 A Linux 2.6 test image is available on the QEMU web site. More
1888 information is available in the QEMU mailing-list archive.
1889
1890 @c man begin OPTIONS
1891
1892 The following options are specific to the ARM emulation:
1893
1894 @table @option
1895
1896 @item -semihosting
1897 Enable semihosting syscall emulation.
1898
1899 On ARM this implements the "Angel" interface.
1900
1901 Note that this allows guest direct access to the host filesystem,
1902 so should only be used with trusted guest OS.
1903
1904 @end table
1905
1906 @node ColdFire System emulator
1907 @section ColdFire System emulator
1908
1909 Use the executable @file{qemu-system-m68k} to simulate a ColdFire machine.
1910 The emulator is able to boot a uClinux kernel.
1911
1912 The M5208EVB emulation includes the following devices:
1913
1914 @itemize @minus
1915 @item
1916 MCF5208 ColdFire V2 Microprocessor (ISA A+ with EMAC).
1917 @item
1918 Three Two on-chip UARTs.
1919 @item
1920 Fast Ethernet Controller (FEC)
1921 @end itemize
1922
1923 The AN5206 emulation includes the following devices:
1924
1925 @itemize @minus
1926 @item
1927 MCF5206 ColdFire V2 Microprocessor.
1928 @item
1929 Two on-chip UARTs.
1930 @end itemize
1931
1932 @c man begin OPTIONS
1933
1934 The following options are specific to the ARM emulation:
1935
1936 @table @option
1937
1938 @item -semihosting
1939 Enable semihosting syscall emulation.
1940
1941 On M68K this implements the "ColdFire GDB" interface used by libgloss.
1942
1943 Note that this allows guest direct access to the host filesystem,
1944 so should only be used with trusted guest OS.
1945
1946 @end table
1947
1948 @node QEMU User space emulator
1949 @chapter QEMU User space emulator
1950
1951 @menu
1952 * Supported Operating Systems ::
1953 * Linux User space emulator::
1954 * Mac OS X/Darwin User space emulator ::
1955 * BSD User space emulator ::
1956 @end menu
1957
1958 @node Supported Operating Systems
1959 @section Supported Operating Systems
1960
1961 The following OS are supported in user space emulation:
1962
1963 @itemize @minus
1964 @item
1965 Linux (referred as qemu-linux-user)
1966 @item
1967 Mac OS X/Darwin (referred as qemu-darwin-user)
1968 @item
1969 BSD (referred as qemu-bsd-user)
1970 @end itemize
1971
1972 @node Linux User space emulator
1973 @section Linux User space emulator
1974
1975 @menu
1976 * Quick Start::
1977 * Wine launch::
1978 * Command line options::
1979 * Other binaries::
1980 @end menu
1981
1982 @node Quick Start
1983 @subsection Quick Start
1984
1985 In order to launch a Linux process, QEMU needs the process executable
1986 itself and all the target (x86) dynamic libraries used by it.
1987
1988 @itemize
1989
1990 @item On x86, you can just try to launch any process by using the native
1991 libraries:
1992
1993 @example
1994 qemu-i386 -L / /bin/ls
1995 @end example
1996
1997 @code{-L /} tells that the x86 dynamic linker must be searched with a
1998 @file{/} prefix.
1999
2000 @item Since QEMU is also a linux process, you can launch qemu with
2001 qemu (NOTE: you can only do that if you compiled QEMU from the sources):
2002
2003 @example
2004 qemu-i386 -L / qemu-i386 -L / /bin/ls
2005 @end example
2006
2007 @item On non x86 CPUs, you need first to download at least an x86 glibc
2008 (@file{qemu-runtime-i386-XXX-.tar.gz} on the QEMU web page). Ensure that
2009 @code{LD_LIBRARY_PATH} is not set:
2010
2011 @example
2012 unset LD_LIBRARY_PATH
2013 @end example
2014
2015 Then you can launch the precompiled @file{ls} x86 executable:
2016
2017 @example
2018 qemu-i386 tests/i386/ls
2019 @end example
2020 You can look at @file{qemu-binfmt-conf.sh} so that
2021 QEMU is automatically launched by the Linux kernel when you try to
2022 launch x86 executables. It requires the @code{binfmt_misc} module in the
2023 Linux kernel.
2024
2025 @item The x86 version of QEMU is also included. You can try weird things such as:
2026 @example
2027 qemu-i386 /usr/local/qemu-i386/bin/qemu-i386 \
2028 /usr/local/qemu-i386/bin/ls-i386
2029 @end example
2030
2031 @end itemize
2032
2033 @node Wine launch
2034 @subsection Wine launch
2035
2036 @itemize
2037
2038 @item Ensure that you have a working QEMU with the x86 glibc
2039 distribution (see previous section). In order to verify it, you must be
2040 able to do:
2041
2042 @example
2043 qemu-i386 /usr/local/qemu-i386/bin/ls-i386
2044 @end example
2045
2046 @item Download the binary x86 Wine install
2047 (@file{qemu-XXX-i386-wine.tar.gz} on the QEMU web page).
2048
2049 @item Configure Wine on your account. Look at the provided script
2050 @file{/usr/local/qemu-i386/@/bin/wine-conf.sh}. Your previous
2051 @code{$@{HOME@}/.wine} directory is saved to @code{$@{HOME@}/.wine.org}.
2052
2053 @item Then you can try the example @file{putty.exe}:
2054
2055 @example
2056 qemu-i386 /usr/local/qemu-i386/wine/bin/wine \
2057 /usr/local/qemu-i386/wine/c/Program\ Files/putty.exe
2058 @end example
2059
2060 @end itemize
2061
2062 @node Command line options
2063 @subsection Command line options
2064
2065 @example
2066 usage: qemu-i386 [-h] [-d] [-L path] [-s size] [-cpu model] [-g port] [-B offset] program [arguments...]
2067 @end example
2068
2069 @table @option
2070 @item -h
2071 Print the help
2072 @item -L path
2073 Set the x86 elf interpreter prefix (default=/usr/local/qemu-i386)
2074 @item -s size
2075 Set the x86 stack size in bytes (default=524288)
2076 @item -cpu model
2077 Select CPU model (-cpu ? for list and additional feature selection)
2078 @item -B offset
2079 Offset guest address by the specified number of bytes. This is useful when
2080 the address region rewuired by guest applications is reserved on the host.
2081 Ths option is currently only supported on some hosts.
2082 @end table
2083
2084 Debug options:
2085
2086 @table @option
2087 @item -d
2088 Activate log (logfile=/tmp/qemu.log)
2089 @item -p pagesize
2090 Act as if the host page size was 'pagesize' bytes
2091 @item -g port
2092 Wait gdb connection to port
2093 @item -singlestep
2094 Run the emulation in single step mode.
2095 @end table
2096
2097 Environment variables:
2098
2099 @table @env
2100 @item QEMU_STRACE
2101 Print system calls and arguments similar to the 'strace' program
2102 (NOTE: the actual 'strace' program will not work because the user
2103 space emulator hasn't implemented ptrace). At the moment this is
2104 incomplete. All system calls that don't have a specific argument
2105 format are printed with information for six arguments. Many
2106 flag-style arguments don't have decoders and will show up as numbers.
2107 @end table
2108
2109 @node Other binaries
2110 @subsection Other binaries
2111
2112 @command{qemu-arm} is also capable of running ARM "Angel" semihosted ELF
2113 binaries (as implemented by the arm-elf and arm-eabi Newlib/GDB
2114 configurations), and arm-uclinux bFLT format binaries.
2115
2116 @command{qemu-m68k} is capable of running semihosted binaries using the BDM
2117 (m5xxx-ram-hosted.ld) or m68k-sim (sim.ld) syscall interfaces, and
2118 coldfire uClinux bFLT format binaries.
2119
2120 The binary format is detected automatically.
2121
2122 @command{qemu-sparc} can execute Sparc32 binaries (Sparc32 CPU, 32 bit ABI).
2123
2124 @command{qemu-sparc32plus} can execute Sparc32 and SPARC32PLUS binaries
2125 (Sparc64 CPU, 32 bit ABI).
2126
2127 @command{qemu-sparc64} can execute some Sparc64 (Sparc64 CPU, 64 bit ABI) and
2128 SPARC32PLUS binaries (Sparc64 CPU, 32 bit ABI).
2129
2130 @node Mac OS X/Darwin User space emulator
2131 @section Mac OS X/Darwin User space emulator
2132
2133 @menu
2134 * Mac OS X/Darwin Status::
2135 * Mac OS X/Darwin Quick Start::
2136 * Mac OS X/Darwin Command line options::
2137 @end menu
2138
2139 @node Mac OS X/Darwin Status
2140 @subsection Mac OS X/Darwin Status
2141
2142 @itemize @minus
2143 @item
2144 target x86 on x86: Most apps (Cocoa and Carbon too) works. [1]
2145 @item
2146 target PowerPC on x86: Not working as the ppc commpage can't be mapped (yet!)
2147 @item
2148 target PowerPC on PowerPC: Most apps (Cocoa and Carbon too) works. [1]
2149 @item
2150 target x86 on PowerPC: most utilities work. Cocoa and Carbon apps are not yet supported.
2151 @end itemize
2152
2153 [1] If you're host commpage can be executed by qemu.
2154
2155 @node Mac OS X/Darwin Quick Start
2156 @subsection Quick Start
2157
2158 In order to launch a Mac OS X/Darwin process, QEMU needs the process executable
2159 itself and all the target dynamic libraries used by it. If you don't have the FAT
2160 libraries (you're running Mac OS X/ppc) you'll need to obtain it from a Mac OS X
2161 CD or compile them by hand.
2162
2163 @itemize
2164
2165 @item On x86, you can just try to launch any process by using the native
2166 libraries:
2167
2168 @example
2169 qemu-i386 /bin/ls
2170 @end example
2171
2172 or to run the ppc version of the executable:
2173
2174 @example
2175 qemu-ppc /bin/ls
2176 @end example
2177
2178 @item On ppc, you'll have to tell qemu where your x86 libraries (and dynamic linker)
2179 are installed:
2180
2181 @example
2182 qemu-i386 -L /opt/x86_root/ /bin/ls
2183 @end example
2184
2185 @code{-L /opt/x86_root/} tells that the dynamic linker (dyld) path is in
2186 @file{/opt/x86_root/usr/bin/dyld}.
2187
2188 @end itemize
2189
2190 @node Mac OS X/Darwin Command line options
2191 @subsection Command line options
2192
2193 @example
2194 usage: qemu-i386 [-h] [-d] [-L path] [-s size] program [arguments...]
2195 @end example
2196
2197 @table @option
2198 @item -h
2199 Print the help
2200 @item -L path
2201 Set the library root path (default=/)
2202 @item -s size
2203 Set the stack size in bytes (default=524288)
2204 @end table
2205
2206 Debug options:
2207
2208 @table @option
2209 @item -d
2210 Activate log (logfile=/tmp/qemu.log)
2211 @item -p pagesize
2212 Act as if the host page size was 'pagesize' bytes
2213 @item -singlestep
2214 Run the emulation in single step mode.
2215 @end table
2216
2217 @node BSD User space emulator
2218 @section BSD User space emulator
2219
2220 @menu
2221 * BSD Status::
2222 * BSD Quick Start::
2223 * BSD Command line options::
2224 @end menu
2225
2226 @node BSD Status
2227 @subsection BSD Status
2228
2229 @itemize @minus
2230 @item
2231 target Sparc64 on Sparc64: Some trivial programs work.
2232 @end itemize
2233
2234 @node BSD Quick Start
2235 @subsection Quick Start
2236
2237 In order to launch a BSD process, QEMU needs the process executable
2238 itself and all the target dynamic libraries used by it.
2239
2240 @itemize
2241
2242 @item On Sparc64, you can just try to launch any process by using the native
2243 libraries:
2244
2245 @example
2246 qemu-sparc64 /bin/ls
2247 @end example
2248
2249 @end itemize
2250
2251 @node BSD Command line options
2252 @subsection Command line options
2253
2254 @example
2255 usage: qemu-sparc64 [-h] [-d] [-L path] [-s size] [-bsd type] program [arguments...]
2256 @end example
2257
2258 @table @option
2259 @item -h
2260 Print the help
2261 @item -L path
2262 Set the library root path (default=/)
2263 @item -s size
2264 Set the stack size in bytes (default=524288)
2265 @item -bsd type
2266 Set the type of the emulated BSD Operating system. Valid values are
2267 FreeBSD, NetBSD and OpenBSD (default).
2268 @end table
2269
2270 Debug options:
2271
2272 @table @option
2273 @item -d
2274 Activate log (logfile=/tmp/qemu.log)
2275 @item -p pagesize
2276 Act as if the host page size was 'pagesize' bytes
2277 @item -singlestep
2278 Run the emulation in single step mode.
2279 @end table
2280
2281 @node compilation
2282 @chapter Compilation from the sources
2283
2284 @menu
2285 * Linux/Unix::
2286 * Windows::
2287 * Cross compilation for Windows with Linux::
2288 * Mac OS X::
2289 * Make targets::
2290 @end menu
2291
2292 @node Linux/Unix
2293 @section Linux/Unix
2294
2295 @subsection Compilation
2296
2297 First you must decompress the sources:
2298 @example
2299 cd /tmp
2300 tar zxvf qemu-x.y.z.tar.gz
2301 cd qemu-x.y.z
2302 @end example
2303
2304 Then you configure QEMU and build it (usually no options are needed):
2305 @example
2306 ./configure
2307 make
2308 @end example
2309
2310 Then type as root user:
2311 @example
2312 make install
2313 @end example
2314 to install QEMU in @file{/usr/local}.
2315
2316 @node Windows
2317 @section Windows
2318
2319 @itemize
2320 @item Install the current versions of MSYS and MinGW from
2321 @url{http://www.mingw.org/}. You can find detailed installation
2322 instructions in the download section and the FAQ.
2323
2324 @item Download
2325 the MinGW development library of SDL 1.2.x
2326 (@file{SDL-devel-1.2.x-@/mingw32.tar.gz}) from
2327 @url{http://www.libsdl.org}. Unpack it in a temporary place and
2328 edit the @file{sdl-config} script so that it gives the
2329 correct SDL directory when invoked.
2330
2331 @item Install the MinGW version of zlib and make sure
2332 @file{zlib.h} and @file{libz.dll.a} are in
2333 MingGW's default header and linker search paths.
2334
2335 @item Extract the current version of QEMU.
2336
2337 @item Start the MSYS shell (file @file{msys.bat}).
2338
2339 @item Change to the QEMU directory. Launch @file{./configure} and
2340 @file{make}. If you have problems using SDL, verify that
2341 @file{sdl-config} can be launched from the MSYS command line.
2342
2343 @item You can install QEMU in @file{Program Files/Qemu} by typing
2344 @file{make install}. Don't forget to copy @file{SDL.dll} in
2345 @file{Program Files/Qemu}.
2346
2347 @end itemize
2348
2349 @node Cross compilation for Windows with Linux
2350 @section Cross compilation for Windows with Linux
2351
2352 @itemize
2353 @item
2354 Install the MinGW cross compilation tools available at
2355 @url{http://www.mingw.org/}.
2356
2357 @item Download
2358 the MinGW development library of SDL 1.2.x
2359 (@file{SDL-devel-1.2.x-@/mingw32.tar.gz}) from
2360 @url{http://www.libsdl.org}. Unpack it in a temporary place and
2361 edit the @file{sdl-config} script so that it gives the
2362 correct SDL directory when invoked. Set up the @code{PATH} environment
2363 variable so that @file{sdl-config} can be launched by
2364 the QEMU configuration script.
2365
2366 @item Install the MinGW version of zlib and make sure
2367 @file{zlib.h} and @file{libz.dll.a} are in
2368 MingGW's default header and linker search paths.
2369
2370 @item
2371 Configure QEMU for Windows cross compilation:
2372 @example
2373 PATH=/usr/i686-pc-mingw32/sys-root/mingw/bin:$PATH ./configure --cross-prefix='i686-pc-mingw32-'
2374 @end example
2375 The example assumes @file{sdl-config} is installed under @file{/usr/i686-pc-mingw32/sys-root/mingw/bin} and
2376 MinGW cross compilation tools have names like @file{i686-pc-mingw32-gcc} and @file{i686-pc-mingw32-strip}.
2377 We set the @code{PATH} environment variable to ensure the MingW version of @file{sdl-config} is used and
2378 use --cross-prefix to specify the name of the cross compiler.
2379 You can also use --prefix to set the Win32 install path which defaults to @file{c:/Program Files/Qemu}.
2380
2381 Under Fedora Linux, you can run:
2382 @example
2383 yum -y install mingw32-gcc mingw32-SDL mingw32-zlib
2384 @end example
2385 to get a suitable cross compilation environment.
2386
2387 @item You can install QEMU in the installation directory by typing
2388 @code{make install}. Don't forget to copy @file{SDL.dll} and @file{zlib1.dll} into the
2389 installation directory.
2390
2391 @end itemize
2392
2393 Wine can be used to launch the resulting qemu.exe compiled for Win32.
2394
2395 @node Mac OS X
2396 @section Mac OS X
2397
2398 The Mac OS X patches are not fully merged in QEMU, so you should look
2399 at the QEMU mailing list archive to have all the necessary
2400 information.
2401
2402 @node Make targets
2403 @section Make targets
2404
2405 @table @code
2406
2407 @item make
2408 @item make all
2409 Make everything which is typically needed.
2410
2411 @item install
2412 TODO
2413
2414 @item install-doc
2415 TODO
2416
2417 @item make clean
2418 Remove most files which were built during make.
2419
2420 @item make distclean
2421 Remove everything which was built during make.
2422
2423 @item make dvi
2424 @item make html
2425 @item make info
2426 @item make pdf
2427 Create documentation in dvi, html, info or pdf format.
2428
2429 @item make cscope
2430 TODO
2431
2432 @item make defconfig
2433 (Re-)create some build configuration files.
2434 User made changes will be overwritten.
2435
2436 @item tar
2437 @item tarbin
2438 TODO
2439
2440 @end table
2441
2442 @node Index
2443 @chapter Index
2444 @printindex cp
2445
2446 @bye