]> git.proxmox.com Git - qemu.git/blob - qemu-options.hx
qdev: add -device command line option.
[qemu.git] / qemu-options.hx
1 HXCOMM Use DEFHEADING() to define headings in both help text and texi
2 HXCOMM Text between STEXI and ETEXI are copied to texi version and
3 HXCOMM discarded from C version
4 HXCOMM DEF(option, HAS_ARG/0, opt_enum, opt_help) is used to construct
5 HXCOMM option structures, enums and help message.
6 HXCOMM HXCOMM can be used for comments, discarded from both texi and C
7
8 DEFHEADING(Standard options:)
9 STEXI
10 @table @option
11 ETEXI
12
13 DEF("help", 0, QEMU_OPTION_h,
14 "-h or -help display this help and exit\n")
15 STEXI
16 @item -h
17 Display help and exit
18 ETEXI
19
20 DEF("version", 0, QEMU_OPTION_version,
21 "-version display version information and exit\n")
22 STEXI
23 @item -version
24 Display version information and exit
25 ETEXI
26
27 DEF("M", HAS_ARG, QEMU_OPTION_M,
28 "-M machine select emulated machine (-M ? for list)\n")
29 STEXI
30 @item -M @var{machine}
31 Select the emulated @var{machine} (@code{-M ?} for list)
32 ETEXI
33
34 DEF("cpu", HAS_ARG, QEMU_OPTION_cpu,
35 "-cpu cpu select CPU (-cpu ? for list)\n")
36 STEXI
37 @item -cpu @var{model}
38 Select CPU model (-cpu ? for list and additional feature selection)
39 ETEXI
40
41 DEF("smp", HAS_ARG, QEMU_OPTION_smp,
42 "-smp n set the number of CPUs to 'n' [default=1]\n")
43 STEXI
44 @item -smp @var{n}
45 Simulate an SMP system with @var{n} CPUs. On the PC target, up to 255
46 CPUs are supported. On Sparc32 target, Linux limits the number of usable CPUs
47 to 4.
48 ETEXI
49
50 DEF("numa", HAS_ARG, QEMU_OPTION_numa,
51 "-numa node[,mem=size][,cpus=cpu[-cpu]][,nodeid=node]\n")
52 STEXI
53 @item -numa @var{opts}
54 Simulate a multi node NUMA system. If mem and cpus are omitted, resources
55 are split equally.
56 ETEXI
57
58 DEF("fda", HAS_ARG, QEMU_OPTION_fda,
59 "-fda/-fdb file use 'file' as floppy disk 0/1 image\n")
60 DEF("fdb", HAS_ARG, QEMU_OPTION_fdb, "")
61 STEXI
62 @item -fda @var{file}
63 @item -fdb @var{file}
64 Use @var{file} as floppy disk 0/1 image (@pxref{disk_images}). You can
65 use the host floppy by using @file{/dev/fd0} as filename (@pxref{host_drives}).
66 ETEXI
67
68 DEF("hda", HAS_ARG, QEMU_OPTION_hda,
69 "-hda/-hdb file use 'file' as IDE hard disk 0/1 image\n")
70 DEF("hdb", HAS_ARG, QEMU_OPTION_hdb, "")
71 DEF("hdc", HAS_ARG, QEMU_OPTION_hdc,
72 "-hdc/-hdd file use 'file' as IDE hard disk 2/3 image\n")
73 DEF("hdd", HAS_ARG, QEMU_OPTION_hdd, "")
74 STEXI
75 @item -hda @var{file}
76 @item -hdb @var{file}
77 @item -hdc @var{file}
78 @item -hdd @var{file}
79 Use @var{file} as hard disk 0, 1, 2 or 3 image (@pxref{disk_images}).
80 ETEXI
81
82 DEF("cdrom", HAS_ARG, QEMU_OPTION_cdrom,
83 "-cdrom file use 'file' as IDE cdrom image (cdrom is ide1 master)\n")
84 STEXI
85 @item -cdrom @var{file}
86 Use @var{file} as CD-ROM image (you cannot use @option{-hdc} and
87 @option{-cdrom} at the same time). You can use the host CD-ROM by
88 using @file{/dev/cdrom} as filename (@pxref{host_drives}).
89 ETEXI
90
91 DEF("drive", HAS_ARG, QEMU_OPTION_drive,
92 "-drive [file=file][,if=type][,bus=n][,unit=m][,media=d][,index=i]\n"
93 " [,cyls=c,heads=h,secs=s[,trans=t]][,snapshot=on|off]\n"
94 " [,cache=writethrough|writeback|none][,format=f][,serial=s]\n"
95 " [,addr=A]\n"
96 " use 'file' as a drive image\n")
97 STEXI
98 @item -drive @var{option}[,@var{option}[,@var{option}[,...]]]
99
100 Define a new drive. Valid options are:
101
102 @table @code
103 @item file=@var{file}
104 This option defines which disk image (@pxref{disk_images}) to use with
105 this drive. If the filename contains comma, you must double it
106 (for instance, "file=my,,file" to use file "my,file").
107 @item if=@var{interface}
108 This option defines on which type on interface the drive is connected.
109 Available types are: ide, scsi, sd, mtd, floppy, pflash, virtio.
110 @item bus=@var{bus},unit=@var{unit}
111 These options define where is connected the drive by defining the bus number and
112 the unit id.
113 @item index=@var{index}
114 This option defines where is connected the drive by using an index in the list
115 of available connectors of a given interface type.
116 @item media=@var{media}
117 This option defines the type of the media: disk or cdrom.
118 @item cyls=@var{c},heads=@var{h},secs=@var{s}[,trans=@var{t}]
119 These options have the same definition as they have in @option{-hdachs}.
120 @item snapshot=@var{snapshot}
121 @var{snapshot} is "on" or "off" and allows to enable snapshot for given drive (see @option{-snapshot}).
122 @item cache=@var{cache}
123 @var{cache} is "none", "writeback", or "writethrough" and controls how the host cache is used to access block data.
124 @item format=@var{format}
125 Specify which disk @var{format} will be used rather than detecting
126 the format. Can be used to specifiy format=raw to avoid interpreting
127 an untrusted format header.
128 @item serial=@var{serial}
129 This option specifies the serial number to assign to the device.
130 @item addr=@var{addr}
131 Specify the controller's PCI address (if=virtio only).
132 @end table
133
134 By default, writethrough caching is used for all block device. This means that
135 the host page cache will be used to read and write data but write notification
136 will be sent to the guest only when the data has been reported as written by
137 the storage subsystem.
138
139 Writeback caching will report data writes as completed as soon as the data is
140 present in the host page cache. This is safe as long as you trust your host.
141 If your host crashes or loses power, then the guest may experience data
142 corruption. When using the @option{-snapshot} option, writeback caching is
143 used by default.
144
145 The host page cache can be avoided entirely with @option{cache=none}. This will
146 attempt to do disk IO directly to the guests memory. QEMU may still perform
147 an internal copy of the data.
148
149 Some block drivers perform badly with @option{cache=writethrough}, most notably,
150 qcow2. If performance is more important than correctness,
151 @option{cache=writeback} should be used with qcow2.
152
153 Instead of @option{-cdrom} you can use:
154 @example
155 qemu -drive file=file,index=2,media=cdrom
156 @end example
157
158 Instead of @option{-hda}, @option{-hdb}, @option{-hdc}, @option{-hdd}, you can
159 use:
160 @example
161 qemu -drive file=file,index=0,media=disk
162 qemu -drive file=file,index=1,media=disk
163 qemu -drive file=file,index=2,media=disk
164 qemu -drive file=file,index=3,media=disk
165 @end example
166
167 You can connect a CDROM to the slave of ide0:
168 @example
169 qemu -drive file=file,if=ide,index=1,media=cdrom
170 @end example
171
172 If you don't specify the "file=" argument, you define an empty drive:
173 @example
174 qemu -drive if=ide,index=1,media=cdrom
175 @end example
176
177 You can connect a SCSI disk with unit ID 6 on the bus #0:
178 @example
179 qemu -drive file=file,if=scsi,bus=0,unit=6
180 @end example
181
182 Instead of @option{-fda}, @option{-fdb}, you can use:
183 @example
184 qemu -drive file=file,index=0,if=floppy
185 qemu -drive file=file,index=1,if=floppy
186 @end example
187
188 By default, @var{interface} is "ide" and @var{index} is automatically
189 incremented:
190 @example
191 qemu -drive file=a -drive file=b"
192 @end example
193 is interpreted like:
194 @example
195 qemu -hda a -hdb b
196 @end example
197 ETEXI
198
199 DEF("mtdblock", HAS_ARG, QEMU_OPTION_mtdblock,
200 "-mtdblock file use 'file' as on-board Flash memory image\n")
201 STEXI
202
203 @item -mtdblock file
204 Use 'file' as on-board Flash memory image.
205 ETEXI
206
207 DEF("sd", HAS_ARG, QEMU_OPTION_sd,
208 "-sd file use 'file' as SecureDigital card image\n")
209 STEXI
210 @item -sd file
211 Use 'file' as SecureDigital card image.
212 ETEXI
213
214 DEF("pflash", HAS_ARG, QEMU_OPTION_pflash,
215 "-pflash file use 'file' as a parallel flash image\n")
216 STEXI
217 @item -pflash file
218 Use 'file' as a parallel flash image.
219 ETEXI
220
221 DEF("boot", HAS_ARG, QEMU_OPTION_boot,
222 "-boot [order=drives][,once=drives][,menu=on|off]\n"
223 " 'drives': floppy (a), hard disk (c), CD-ROM (d), network (n)\n")
224 STEXI
225 @item -boot [order=@var{drives}][,once=@var{drives}][,menu=on|off]
226
227 Specify boot order @var{drives} as a string of drive letters. Valid
228 drive letters depend on the target achitecture. The x86 PC uses: a, b
229 (floppy 1 and 2), c (first hard disk), d (first CD-ROM), n-p (Etherboot
230 from network adapter 1-4), hard disk boot is the default. To apply a
231 particular boot order only on the first startup, specify it via
232 @option{once}.
233
234 Interactive boot menus/prompts can be enabled via @option{menu=on} as far
235 as firmware/BIOS supports them. The default is non-interactive boot.
236
237 @example
238 # try to boot from network first, then from hard disk
239 qemu -boot order=nc
240 # boot from CD-ROM first, switch back to default order after reboot
241 qemu -boot once=d
242 @end example
243
244 Note: The legacy format '-boot @var{drives}' is still supported but its
245 use is discouraged as it may be removed from future versions.
246 ETEXI
247
248 DEF("snapshot", 0, QEMU_OPTION_snapshot,
249 "-snapshot write to temporary files instead of disk image files\n")
250 STEXI
251 @item -snapshot
252 Write to temporary files instead of disk image files. In this case,
253 the raw disk image you use is not written back. You can however force
254 the write back by pressing @key{C-a s} (@pxref{disk_images}).
255 ETEXI
256
257 DEF("m", HAS_ARG, QEMU_OPTION_m,
258 "-m megs set virtual RAM size to megs MB [default=%d]\n")
259 STEXI
260 @item -m @var{megs}
261 Set virtual RAM size to @var{megs} megabytes. Default is 128 MiB. Optionally,
262 a suffix of ``M'' or ``G'' can be used to signify a value in megabytes or
263 gigabytes respectively.
264 ETEXI
265
266 DEF("k", HAS_ARG, QEMU_OPTION_k,
267 "-k language use keyboard layout (for example 'fr' for French)\n")
268 STEXI
269 @item -k @var{language}
270
271 Use keyboard layout @var{language} (for example @code{fr} for
272 French). This option is only needed where it is not easy to get raw PC
273 keycodes (e.g. on Macs, with some X11 servers or with a VNC
274 display). You don't normally need to use it on PC/Linux or PC/Windows
275 hosts.
276
277 The available layouts are:
278 @example
279 ar de-ch es fo fr-ca hu ja mk no pt-br sv
280 da en-gb et fr fr-ch is lt nl pl ru th
281 de en-us fi fr-be hr it lv nl-be pt sl tr
282 @end example
283
284 The default is @code{en-us}.
285 ETEXI
286
287
288 #ifdef HAS_AUDIO
289 DEF("audio-help", 0, QEMU_OPTION_audio_help,
290 "-audio-help print list of audio drivers and their options\n")
291 #endif
292 STEXI
293 @item -audio-help
294
295 Will show the audio subsystem help: list of drivers, tunable
296 parameters.
297 ETEXI
298
299 #ifdef HAS_AUDIO
300 DEF("soundhw", HAS_ARG, QEMU_OPTION_soundhw,
301 "-soundhw c1,... enable audio support\n"
302 " and only specified sound cards (comma separated list)\n"
303 " use -soundhw ? to get the list of supported cards\n"
304 " use -soundhw all to enable all of them\n")
305 #endif
306 STEXI
307 @item -soundhw @var{card1}[,@var{card2},...] or -soundhw all
308
309 Enable audio and selected sound hardware. Use ? to print all
310 available sound hardware.
311
312 @example
313 qemu -soundhw sb16,adlib disk.img
314 qemu -soundhw es1370 disk.img
315 qemu -soundhw ac97 disk.img
316 qemu -soundhw all disk.img
317 qemu -soundhw ?
318 @end example
319
320 Note that Linux's i810_audio OSS kernel (for AC97) module might
321 require manually specifying clocking.
322
323 @example
324 modprobe i810_audio clocking=48000
325 @end example
326 ETEXI
327
328 STEXI
329 @end table
330 ETEXI
331
332 DEF("usb", 0, QEMU_OPTION_usb,
333 "-usb enable the USB driver (will be the default soon)\n")
334 STEXI
335 USB options:
336 @table @option
337
338 @item -usb
339 Enable the USB driver (will be the default soon)
340 ETEXI
341
342 DEF("usbdevice", HAS_ARG, QEMU_OPTION_usbdevice,
343 "-usbdevice name add the host or guest USB device 'name'\n")
344 STEXI
345
346 @item -usbdevice @var{devname}
347 Add the USB device @var{devname}. @xref{usb_devices}.
348
349 @table @code
350
351 @item mouse
352 Virtual Mouse. This will override the PS/2 mouse emulation when activated.
353
354 @item tablet
355 Pointer device that uses absolute coordinates (like a touchscreen). This
356 means qemu is able to report the mouse position without having to grab the
357 mouse. Also overrides the PS/2 mouse emulation when activated.
358
359 @item disk:[format=@var{format}]:file
360 Mass storage device based on file. The optional @var{format} argument
361 will be used rather than detecting the format. Can be used to specifiy
362 format=raw to avoid interpreting an untrusted format header.
363
364 @item host:bus.addr
365 Pass through the host device identified by bus.addr (Linux only).
366
367 @item host:vendor_id:product_id
368 Pass through the host device identified by vendor_id:product_id (Linux only).
369
370 @item serial:[vendorid=@var{vendor_id}][,productid=@var{product_id}]:@var{dev}
371 Serial converter to host character device @var{dev}, see @code{-serial} for the
372 available devices.
373
374 @item braille
375 Braille device. This will use BrlAPI to display the braille output on a real
376 or fake device.
377
378 @item net:options
379 Network adapter that supports CDC ethernet and RNDIS protocols.
380
381 @end table
382 ETEXI
383
384 DEF("device", HAS_ARG, QEMU_OPTION_device,
385 "-device driver[,options] add device\n")
386 DEF("name", HAS_ARG, QEMU_OPTION_name,
387 "-name string1[,process=string2] set the name of the guest\n"
388 " string1 sets the window title and string2 the process name (on Linux)\n")
389 STEXI
390 @item -name @var{name}
391 Sets the @var{name} of the guest.
392 This name will be displayed in the SDL window caption.
393 The @var{name} will also be used for the VNC server.
394 Also optionally set the top visible process name in Linux.
395 ETEXI
396
397 DEF("uuid", HAS_ARG, QEMU_OPTION_uuid,
398 "-uuid %%08x-%%04x-%%04x-%%04x-%%012x\n"
399 " specify machine UUID\n")
400 STEXI
401 @item -uuid @var{uuid}
402 Set system UUID.
403 ETEXI
404
405 STEXI
406 @end table
407 ETEXI
408
409 DEFHEADING()
410
411 DEFHEADING(Display options:)
412
413 STEXI
414 @table @option
415 ETEXI
416
417 DEF("nographic", 0, QEMU_OPTION_nographic,
418 "-nographic disable graphical output and redirect serial I/Os to console\n")
419 STEXI
420 @item -nographic
421
422 Normally, QEMU uses SDL to display the VGA output. With this option,
423 you can totally disable graphical output so that QEMU is a simple
424 command line application. The emulated serial port is redirected on
425 the console. Therefore, you can still use QEMU to debug a Linux kernel
426 with a serial console.
427 ETEXI
428
429 #ifdef CONFIG_CURSES
430 DEF("curses", 0, QEMU_OPTION_curses,
431 "-curses use a curses/ncurses interface instead of SDL\n")
432 #endif
433 STEXI
434 @item -curses
435
436 Normally, QEMU uses SDL to display the VGA output. With this option,
437 QEMU can display the VGA output when in text mode using a
438 curses/ncurses interface. Nothing is displayed in graphical mode.
439 ETEXI
440
441 #ifdef CONFIG_SDL
442 DEF("no-frame", 0, QEMU_OPTION_no_frame,
443 "-no-frame open SDL window without a frame and window decorations\n")
444 #endif
445 STEXI
446 @item -no-frame
447
448 Do not use decorations for SDL windows and start them using the whole
449 available screen space. This makes the using QEMU in a dedicated desktop
450 workspace more convenient.
451 ETEXI
452
453 #ifdef CONFIG_SDL
454 DEF("alt-grab", 0, QEMU_OPTION_alt_grab,
455 "-alt-grab use Ctrl-Alt-Shift to grab mouse (instead of Ctrl-Alt)\n")
456 #endif
457 STEXI
458 @item -alt-grab
459
460 Use Ctrl-Alt-Shift to grab mouse (instead of Ctrl-Alt).
461 ETEXI
462
463 #ifdef CONFIG_SDL
464 DEF("no-quit", 0, QEMU_OPTION_no_quit,
465 "-no-quit disable SDL window close capability\n")
466 #endif
467 STEXI
468 @item -no-quit
469
470 Disable SDL window close capability.
471 ETEXI
472
473 #ifdef CONFIG_SDL
474 DEF("sdl", 0, QEMU_OPTION_sdl,
475 "-sdl enable SDL\n")
476 #endif
477 STEXI
478 @item -sdl
479
480 Enable SDL.
481 ETEXI
482
483 DEF("portrait", 0, QEMU_OPTION_portrait,
484 "-portrait rotate graphical output 90 deg left (only PXA LCD)\n")
485 STEXI
486 @item -portrait
487
488 Rotate graphical output 90 deg left (only PXA LCD).
489 ETEXI
490
491 DEF("vga", HAS_ARG, QEMU_OPTION_vga,
492 "-vga [std|cirrus|vmware|xenfb|none]\n"
493 " select video card type\n")
494 STEXI
495 @item -vga @var{type}
496 Select type of VGA card to emulate. Valid values for @var{type} are
497 @table @code
498 @item cirrus
499 Cirrus Logic GD5446 Video card. All Windows versions starting from
500 Windows 95 should recognize and use this graphic card. For optimal
501 performances, use 16 bit color depth in the guest and the host OS.
502 (This one is the default)
503 @item std
504 Standard VGA card with Bochs VBE extensions. If your guest OS
505 supports the VESA 2.0 VBE extensions (e.g. Windows XP) and if you want
506 to use high resolution modes (>= 1280x1024x16) then you should use
507 this option.
508 @item vmware
509 VMWare SVGA-II compatible adapter. Use it if you have sufficiently
510 recent XFree86/XOrg server or Windows guest with a driver for this
511 card.
512 @item none
513 Disable VGA card.
514 @end table
515 ETEXI
516
517 DEF("full-screen", 0, QEMU_OPTION_full_screen,
518 "-full-screen start in full screen\n")
519 STEXI
520 @item -full-screen
521 Start in full screen.
522 ETEXI
523
524 #if defined(TARGET_PPC) || defined(TARGET_SPARC)
525 DEF("g", 1, QEMU_OPTION_g ,
526 "-g WxH[xDEPTH] Set the initial graphical resolution and depth\n")
527 #endif
528 STEXI
529 ETEXI
530
531 DEF("vnc", HAS_ARG, QEMU_OPTION_vnc ,
532 "-vnc display start a VNC server on display\n")
533 STEXI
534 @item -vnc @var{display}[,@var{option}[,@var{option}[,...]]]
535
536 Normally, QEMU uses SDL to display the VGA output. With this option,
537 you can have QEMU listen on VNC display @var{display} and redirect the VGA
538 display over the VNC session. It is very useful to enable the usb
539 tablet device when using this option (option @option{-usbdevice
540 tablet}). When using the VNC display, you must use the @option{-k}
541 parameter to set the keyboard layout if you are not using en-us. Valid
542 syntax for the @var{display} is
543
544 @table @code
545
546 @item @var{host}:@var{d}
547
548 TCP connections will only be allowed from @var{host} on display @var{d}.
549 By convention the TCP port is 5900+@var{d}. Optionally, @var{host} can
550 be omitted in which case the server will accept connections from any host.
551
552 @item @code{unix}:@var{path}
553
554 Connections will be allowed over UNIX domain sockets where @var{path} is the
555 location of a unix socket to listen for connections on.
556
557 @item none
558
559 VNC is initialized but not started. The monitor @code{change} command
560 can be used to later start the VNC server.
561
562 @end table
563
564 Following the @var{display} value there may be one or more @var{option} flags
565 separated by commas. Valid options are
566
567 @table @code
568
569 @item reverse
570
571 Connect to a listening VNC client via a ``reverse'' connection. The
572 client is specified by the @var{display}. For reverse network
573 connections (@var{host}:@var{d},@code{reverse}), the @var{d} argument
574 is a TCP port number, not a display number.
575
576 @item password
577
578 Require that password based authentication is used for client connections.
579 The password must be set separately using the @code{change} command in the
580 @ref{pcsys_monitor}
581
582 @item tls
583
584 Require that client use TLS when communicating with the VNC server. This
585 uses anonymous TLS credentials so is susceptible to a man-in-the-middle
586 attack. It is recommended that this option be combined with either the
587 @var{x509} or @var{x509verify} options.
588
589 @item x509=@var{/path/to/certificate/dir}
590
591 Valid if @option{tls} is specified. Require that x509 credentials are used
592 for negotiating the TLS session. The server will send its x509 certificate
593 to the client. It is recommended that a password be set on the VNC server
594 to provide authentication of the client when this is used. The path following
595 this option specifies where the x509 certificates are to be loaded from.
596 See the @ref{vnc_security} section for details on generating certificates.
597
598 @item x509verify=@var{/path/to/certificate/dir}
599
600 Valid if @option{tls} is specified. Require that x509 credentials are used
601 for negotiating the TLS session. The server will send its x509 certificate
602 to the client, and request that the client send its own x509 certificate.
603 The server will validate the client's certificate against the CA certificate,
604 and reject clients when validation fails. If the certificate authority is
605 trusted, this is a sufficient authentication mechanism. You may still wish
606 to set a password on the VNC server as a second authentication layer. The
607 path following this option specifies where the x509 certificates are to
608 be loaded from. See the @ref{vnc_security} section for details on generating
609 certificates.
610
611 @item sasl
612
613 Require that the client use SASL to authenticate with the VNC server.
614 The exact choice of authentication method used is controlled from the
615 system / user's SASL configuration file for the 'qemu' service. This
616 is typically found in /etc/sasl2/qemu.conf. If running QEMU as an
617 unprivileged user, an environment variable SASL_CONF_PATH can be used
618 to make it search alternate locations for the service config.
619 While some SASL auth methods can also provide data encryption (eg GSSAPI),
620 it is recommended that SASL always be combined with the 'tls' and
621 'x509' settings to enable use of SSL and server certificates. This
622 ensures a data encryption preventing compromise of authentication
623 credentials. See the @ref{vnc_security} section for details on using
624 SASL authentication.
625
626 @item acl
627
628 Turn on access control lists for checking of the x509 client certificate
629 and SASL party. For x509 certs, the ACL check is made against the
630 certificate's distinguished name. This is something that looks like
631 @code{C=GB,O=ACME,L=Boston,CN=bob}. For SASL party, the ACL check is
632 made against the username, which depending on the SASL plugin, may
633 include a realm component, eg @code{bob} or @code{bob@@EXAMPLE.COM}.
634 When the @option{acl} flag is set, the initial access list will be
635 empty, with a @code{deny} policy. Thus no one will be allowed to
636 use the VNC server until the ACLs have been loaded. This can be
637 achieved using the @code{acl} monitor command.
638
639 @end table
640 ETEXI
641
642 STEXI
643 @end table
644 ETEXI
645
646 DEFHEADING()
647
648 #ifdef TARGET_I386
649 DEFHEADING(i386 target only:)
650 #endif
651 STEXI
652 @table @option
653 ETEXI
654
655 #ifdef TARGET_I386
656 DEF("win2k-hack", 0, QEMU_OPTION_win2k_hack,
657 "-win2k-hack use it when installing Windows 2000 to avoid a disk full bug\n")
658 #endif
659 STEXI
660 @item -win2k-hack
661 Use it when installing Windows 2000 to avoid a disk full bug. After
662 Windows 2000 is installed, you no longer need this option (this option
663 slows down the IDE transfers).
664 ETEXI
665
666 #ifdef TARGET_I386
667 DEF("rtc-td-hack", 0, QEMU_OPTION_rtc_td_hack,
668 "-rtc-td-hack use it to fix time drift in Windows ACPI HAL\n")
669 #endif
670 STEXI
671 @item -rtc-td-hack
672 Use it if you experience time drift problem in Windows with ACPI HAL.
673 This option will try to figure out how many timer interrupts were not
674 processed by the Windows guest and will re-inject them.
675 ETEXI
676
677 #ifdef TARGET_I386
678 DEF("no-fd-bootchk", 0, QEMU_OPTION_no_fd_bootchk,
679 "-no-fd-bootchk disable boot signature checking for floppy disks\n")
680 #endif
681 STEXI
682 @item -no-fd-bootchk
683 Disable boot signature checking for floppy disks in Bochs BIOS. It may
684 be needed to boot from old floppy disks.
685 ETEXI
686
687 #ifdef TARGET_I386
688 DEF("no-acpi", 0, QEMU_OPTION_no_acpi,
689 "-no-acpi disable ACPI\n")
690 #endif
691 STEXI
692 @item -no-acpi
693 Disable ACPI (Advanced Configuration and Power Interface) support. Use
694 it if your guest OS complains about ACPI problems (PC target machine
695 only).
696 ETEXI
697
698 #ifdef TARGET_I386
699 DEF("no-hpet", 0, QEMU_OPTION_no_hpet,
700 "-no-hpet disable HPET\n")
701 #endif
702 STEXI
703 @item -no-hpet
704 Disable HPET support.
705 ETEXI
706
707 #ifdef TARGET_I386
708 DEF("balloon", HAS_ARG, QEMU_OPTION_balloon,
709 "-balloon none disable balloon device\n"
710 "-balloon virtio[,addr=str]\n"
711 " enable virtio balloon device (default)\n")
712 #endif
713 STEXI
714 @item -balloon none
715 Disable balloon device.
716 @item -balloon virtio[,addr=@var{addr}]
717 Enable virtio balloon device (default), optionally with PCI address
718 @var{addr}.
719 ETEXI
720
721 #ifdef TARGET_I386
722 DEF("acpitable", HAS_ARG, QEMU_OPTION_acpitable,
723 "-acpitable [sig=str][,rev=n][,oem_id=str][,oem_table_id=str][,oem_rev=n][,asl_compiler_id=str][,asl_compiler_rev=n][,data=file1[:file2]...]\n"
724 " ACPI table description\n")
725 #endif
726 STEXI
727 @item -acpitable [sig=@var{str}][,rev=@var{n}][,oem_id=@var{str}][,oem_table_id=@var{str}][,oem_rev=@var{n}] [,asl_compiler_id=@var{str}][,asl_compiler_rev=@var{n}][,data=@var{file1}[:@var{file2}]...]
728 Add ACPI table with specified header fields and context from specified files.
729 ETEXI
730
731 #ifdef TARGET_I386
732 DEF("smbios", HAS_ARG, QEMU_OPTION_smbios,
733 "-smbios file=binary\n"
734 " Load SMBIOS entry from binary file\n"
735 "-smbios type=0[,vendor=str][,version=str][,date=str][,release=%%d.%%d]\n"
736 " Specify SMBIOS type 0 fields\n"
737 "-smbios type=1[,manufacturer=str][,product=str][,version=str][,serial=str]\n"
738 " [,uuid=uuid][,sku=str][,family=str]\n"
739 " Specify SMBIOS type 1 fields\n")
740 #endif
741 STEXI
742 @item -smbios file=@var{binary}
743 Load SMBIOS entry from binary file.
744
745 @item -smbios type=0[,vendor=@var{str}][,version=@var{str}][,date=@var{str}][,release=@var{%d.%d}]
746 Specify SMBIOS type 0 fields
747
748 @item -smbios type=1[,manufacturer=@var{str}][,product=@var{str}][,version=@var{str}][,serial=@var{str}][,uuid=@var{uuid}][,sku=@var{str}][,family=@var{str}]
749 Specify SMBIOS type 1 fields
750 ETEXI
751
752 #ifdef TARGET_I386
753 DEFHEADING()
754 #endif
755 STEXI
756 @end table
757 ETEXI
758
759 DEFHEADING(Network options:)
760 STEXI
761 @table @option
762 ETEXI
763
764 HXCOMM Legacy slirp options (now moved to -net user):
765 #ifdef CONFIG_SLIRP
766 DEF("tftp", HAS_ARG, QEMU_OPTION_tftp, "")
767 DEF("bootp", HAS_ARG, QEMU_OPTION_bootp, "")
768 DEF("redir", HAS_ARG, QEMU_OPTION_redir, "")
769 #ifndef _WIN32
770 DEF("smb", HAS_ARG, QEMU_OPTION_smb, "")
771 #endif
772 #endif
773
774 DEF("net", HAS_ARG, QEMU_OPTION_net,
775 "-net nic[,vlan=n][,macaddr=mac][,model=type][,name=str][,addr=str][,vectors=v]\n"
776 " create a new Network Interface Card and connect it to VLAN 'n'\n"
777 #ifdef CONFIG_SLIRP
778 "-net user[,vlan=n][,name=str][,net=addr[/mask]][,host=addr][,restrict=y|n]\n"
779 " [,hostname=host][,dhcpstart=addr][,dns=addr][,tftp=dir][,bootfile=f]\n"
780 " [,hostfwd=rule][,guestfwd=rule]"
781 #ifndef _WIN32
782 "[,smb=dir[,smbserver=addr]]\n"
783 #endif
784 " connect the user mode network stack to VLAN 'n', configure its\n"
785 " DHCP server and enabled optional services\n"
786 #endif
787 #ifdef _WIN32
788 "-net tap[,vlan=n][,name=str],ifname=name\n"
789 " connect the host TAP network interface to VLAN 'n'\n"
790 #else
791 "-net tap[,vlan=n][,name=str][,fd=h][,ifname=name][,script=file][,downscript=dfile]"
792 #ifdef TUNSETSNDBUF
793 "[,sndbuf=nbytes]"
794 #endif
795 "\n"
796 " connect the host TAP network interface to VLAN 'n' and use the\n"
797 " network scripts 'file' (default=%s)\n"
798 " and 'dfile' (default=%s);\n"
799 " use '[down]script=no' to disable script execution;\n"
800 " use 'fd=h' to connect to an already opened TAP interface\n"
801 #ifdef TUNSETSNDBUF
802 " use 'sndbuf=nbytes' to limit the size of the send buffer; the\n"
803 " default of 'sndbuf=1048576' can be disabled using 'sndbuf=0'\n"
804 #endif
805 #endif
806 "-net socket[,vlan=n][,name=str][,fd=h][,listen=[host]:port][,connect=host:port]\n"
807 " connect the vlan 'n' to another VLAN using a socket connection\n"
808 "-net socket[,vlan=n][,name=str][,fd=h][,mcast=maddr:port]\n"
809 " connect the vlan 'n' to multicast maddr and port\n"
810 #ifdef CONFIG_VDE
811 "-net vde[,vlan=n][,name=str][,sock=socketpath][,port=n][,group=groupname][,mode=octalmode]\n"
812 " connect the vlan 'n' to port 'n' of a vde switch running\n"
813 " on host and listening for incoming connections on 'socketpath'.\n"
814 " Use group 'groupname' and mode 'octalmode' to change default\n"
815 " ownership and permissions for communication port.\n"
816 #endif
817 "-net dump[,vlan=n][,file=f][,len=n]\n"
818 " dump traffic on vlan 'n' to file 'f' (max n bytes per packet)\n"
819 "-net none use it alone to have zero network devices; if no -net option\n"
820 " is provided, the default is '-net nic -net user'\n")
821 STEXI
822 @item -net nic[,vlan=@var{n}][,macaddr=@var{mac}][,model=@var{type}][,name=@var{name}][,addr=@var{addr}][,vectors=@var{v}]
823 Create a new Network Interface Card and connect it to VLAN @var{n} (@var{n}
824 = 0 is the default). The NIC is an ne2k_pci by default on the PC
825 target. Optionally, the MAC address can be changed to @var{mac}, the
826 device address set to @var{addr} (PCI cards only),
827 and a @var{name} can be assigned for use in monitor commands.
828 Optionally, for PCI cards, you can specify the number @var{v} of MSI-X vectors
829 that the card should have; this option currently only affects virtio cards; set
830 @var{v} = 0 to disable MSI-X. If no @option{-net} option is specified, a single
831 NIC is created. Qemu can emulate several different models of network card.
832 Valid values for @var{type} are
833 @code{virtio}, @code{i82551}, @code{i82557b}, @code{i82559er},
834 @code{ne2k_pci}, @code{ne2k_isa}, @code{pcnet}, @code{rtl8139},
835 @code{e1000}, @code{smc91c111}, @code{lance} and @code{mcf_fec}.
836 Not all devices are supported on all targets. Use -net nic,model=?
837 for a list of available devices for your target.
838
839 @item -net user[,@var{option}][,@var{option}][,...]
840 Use the user mode network stack which requires no administrator
841 privilege to run. Valid options are:
842
843 @table @code
844 @item vlan=@var{n}
845 Connect user mode stack to VLAN @var{n} (@var{n} = 0 is the default).
846
847 @item name=@var{name}
848 Assign symbolic name for use in monitor commands.
849
850 @item net=@var{addr}[/@var{mask}]
851 Set IP network address the guest will see. Optionally specify the netmask,
852 either in the form a.b.c.d or as number of valid top-most bits. Default is
853 10.0.2.0/8.
854
855 @item host=@var{addr}
856 Specify the guest-visible address of the host. Default is the 2nd IP in the
857 guest network, i.e. x.x.x.2.
858
859 @item restrict=y|yes|n|no
860 If this options is enabled, the guest will be isolated, i.e. it will not be
861 able to contact the host and no guest IP packets will be routed over the host
862 to the outside. This option does not affect explicitly set forwarding rule.
863
864 @item hostname=@var{name}
865 Specifies the client hostname reported by the builtin DHCP server.
866
867 @item dhcpstart=@var{addr}
868 Specify the first of the 16 IPs the built-in DHCP server can assign. Default
869 is the 16th to 31st IP in the guest network, i.e. x.x.x.16 to x.x.x.31.
870
871 @item dns=@var{addr}
872 Specify the guest-visible address of the virtual nameserver. The address must
873 be different from the host address. Default is the 3rd IP in the guest network,
874 i.e. x.x.x.3.
875
876 @item tftp=@var{dir}
877 When using the user mode network stack, activate a built-in TFTP
878 server. The files in @var{dir} will be exposed as the root of a TFTP server.
879 The TFTP client on the guest must be configured in binary mode (use the command
880 @code{bin} of the Unix TFTP client).
881
882 @item bootfile=@var{file}
883 When using the user mode network stack, broadcast @var{file} as the BOOTP
884 filename. In conjunction with @option{tftp}, this can be used to network boot
885 a guest from a local directory.
886
887 Example (using pxelinux):
888 @example
889 qemu -hda linux.img -boot n -net user,tftp=/path/to/tftp/files,bootfile=/pxelinux.0
890 @end example
891
892 @item smb=@var{dir}[,smbserver=@var{addr}]
893 When using the user mode network stack, activate a built-in SMB
894 server so that Windows OSes can access to the host files in @file{@var{dir}}
895 transparently. The IP address of the SMB server can be set to @var{addr}. By
896 default the 4th IP in the guest network is used, i.e. x.x.x.4.
897
898 In the guest Windows OS, the line:
899 @example
900 10.0.2.4 smbserver
901 @end example
902 must be added in the file @file{C:\WINDOWS\LMHOSTS} (for windows 9x/Me)
903 or @file{C:\WINNT\SYSTEM32\DRIVERS\ETC\LMHOSTS} (Windows NT/2000).
904
905 Then @file{@var{dir}} can be accessed in @file{\\smbserver\qemu}.
906
907 Note that a SAMBA server must be installed on the host OS in
908 @file{/usr/sbin/smbd}. QEMU was tested successfully with smbd versions from
909 Red Hat 9, Fedora Core 3 and OpenSUSE 11.x.
910
911 @item hostfwd=[tcp|udp]:[@var{hostaddr}]:@var{hostport}-[@var{guestaddr}]:@var{guestport}
912 Redirect incoming TCP or UDP connections to the host port @var{hostport} to
913 the guest IP address @var{guestaddr} on guest port @var{guestport}. If
914 @var{guestaddr} is not specified, its value is x.x.x.15 (default first address
915 given by the built-in DHCP server). By specifying @var{hostaddr}, the rule can
916 be bound to a specific host interface. If no connection type is set, TCP is
917 used. This option can be given multiple times.
918
919 For example, to redirect host X11 connection from screen 1 to guest
920 screen 0, use the following:
921
922 @example
923 # on the host
924 qemu -net user,hostfwd=tcp:127.0.0.1:6001-:6000 [...]
925 # this host xterm should open in the guest X11 server
926 xterm -display :1
927 @end example
928
929 To redirect telnet connections from host port 5555 to telnet port on
930 the guest, use the following:
931
932 @example
933 # on the host
934 qemu -net user,hostfwd=tcp:5555::23 [...]
935 telnet localhost 5555
936 @end example
937
938 Then when you use on the host @code{telnet localhost 5555}, you
939 connect to the guest telnet server.
940
941 @item guestfwd=[tcp]:@var{server}:@var{port}-@var{dev}
942 Forward guest TCP connections to the IP address @var{server} on port @var{port}
943 to the character device @var{dev}. This option can be given multiple times.
944
945 @end table
946
947 Note: Legacy stand-alone options -tftp, -bootp, -smb and -redir are still
948 processed and applied to -net user. Mixing them with the new configuration
949 syntax gives undefined results. Their use for new applications is discouraged
950 as they will be removed from future versions.
951
952 @item -net tap[,vlan=@var{n}][,name=@var{name}][,fd=@var{h}][,ifname=@var{name}][,script=@var{file}][,downscript=@var{dfile}]
953 Connect the host TAP network interface @var{name} to VLAN @var{n}, use
954 the network script @var{file} to configure it and the network script
955 @var{dfile} to deconfigure it. If @var{name} is not provided, the OS
956 automatically provides one. @option{fd}=@var{h} can be used to specify
957 the handle of an already opened host TAP interface. The default network
958 configure script is @file{/etc/qemu-ifup} and the default network
959 deconfigure script is @file{/etc/qemu-ifdown}. Use @option{script=no}
960 or @option{downscript=no} to disable script execution. Example:
961
962 @example
963 qemu linux.img -net nic -net tap
964 @end example
965
966 More complicated example (two NICs, each one connected to a TAP device)
967 @example
968 qemu linux.img -net nic,vlan=0 -net tap,vlan=0,ifname=tap0 \
969 -net nic,vlan=1 -net tap,vlan=1,ifname=tap1
970 @end example
971
972 @item -net socket[,vlan=@var{n}][,name=@var{name}][,fd=@var{h}][,listen=[@var{host}]:@var{port}][,connect=@var{host}:@var{port}]
973
974 Connect the VLAN @var{n} to a remote VLAN in another QEMU virtual
975 machine using a TCP socket connection. If @option{listen} is
976 specified, QEMU waits for incoming connections on @var{port}
977 (@var{host} is optional). @option{connect} is used to connect to
978 another QEMU instance using the @option{listen} option. @option{fd}=@var{h}
979 specifies an already opened TCP socket.
980
981 Example:
982 @example
983 # launch a first QEMU instance
984 qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
985 -net socket,listen=:1234
986 # connect the VLAN 0 of this instance to the VLAN 0
987 # of the first instance
988 qemu linux.img -net nic,macaddr=52:54:00:12:34:57 \
989 -net socket,connect=127.0.0.1:1234
990 @end example
991
992 @item -net socket[,vlan=@var{n}][,name=@var{name}][,fd=@var{h}][,mcast=@var{maddr}:@var{port}]
993
994 Create a VLAN @var{n} shared with another QEMU virtual
995 machines using a UDP multicast socket, effectively making a bus for
996 every QEMU with same multicast address @var{maddr} and @var{port}.
997 NOTES:
998 @enumerate
999 @item
1000 Several QEMU can be running on different hosts and share same bus (assuming
1001 correct multicast setup for these hosts).
1002 @item
1003 mcast support is compatible with User Mode Linux (argument @option{eth@var{N}=mcast}), see
1004 @url{http://user-mode-linux.sf.net}.
1005 @item
1006 Use @option{fd=h} to specify an already opened UDP multicast socket.
1007 @end enumerate
1008
1009 Example:
1010 @example
1011 # launch one QEMU instance
1012 qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
1013 -net socket,mcast=230.0.0.1:1234
1014 # launch another QEMU instance on same "bus"
1015 qemu linux.img -net nic,macaddr=52:54:00:12:34:57 \
1016 -net socket,mcast=230.0.0.1:1234
1017 # launch yet another QEMU instance on same "bus"
1018 qemu linux.img -net nic,macaddr=52:54:00:12:34:58 \
1019 -net socket,mcast=230.0.0.1:1234
1020 @end example
1021
1022 Example (User Mode Linux compat.):
1023 @example
1024 # launch QEMU instance (note mcast address selected
1025 # is UML's default)
1026 qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
1027 -net socket,mcast=239.192.168.1:1102
1028 # launch UML
1029 /path/to/linux ubd0=/path/to/root_fs eth0=mcast
1030 @end example
1031
1032 @item -net vde[,vlan=@var{n}][,name=@var{name}][,sock=@var{socketpath}][,port=@var{n}][,group=@var{groupname}][,mode=@var{octalmode}]
1033 Connect VLAN @var{n} to PORT @var{n} of a vde switch running on host and
1034 listening for incoming connections on @var{socketpath}. Use GROUP @var{groupname}
1035 and MODE @var{octalmode} to change default ownership and permissions for
1036 communication port. This option is available only if QEMU has been compiled
1037 with vde support enabled.
1038
1039 Example:
1040 @example
1041 # launch vde switch
1042 vde_switch -F -sock /tmp/myswitch
1043 # launch QEMU instance
1044 qemu linux.img -net nic -net vde,sock=/tmp/myswitch
1045 @end example
1046
1047 @item -net dump[,vlan=@var{n}][,file=@var{file}][,len=@var{len}]
1048 Dump network traffic on VLAN @var{n} to file @var{file} (@file{qemu-vlan0.pcap} by default).
1049 At most @var{len} bytes (64k by default) per packet are stored. The file format is
1050 libpcap, so it can be analyzed with tools such as tcpdump or Wireshark.
1051
1052 @item -net none
1053 Indicate that no network devices should be configured. It is used to
1054 override the default configuration (@option{-net nic -net user}) which
1055 is activated if no @option{-net} options are provided.
1056
1057 @end table
1058 ETEXI
1059
1060 DEF("bt", HAS_ARG, QEMU_OPTION_bt, \
1061 "\n" \
1062 "-bt hci,null dumb bluetooth HCI - doesn't respond to commands\n" \
1063 "-bt hci,host[:id]\n" \
1064 " use host's HCI with the given name\n" \
1065 "-bt hci[,vlan=n]\n" \
1066 " emulate a standard HCI in virtual scatternet 'n'\n" \
1067 "-bt vhci[,vlan=n]\n" \
1068 " add host computer to virtual scatternet 'n' using VHCI\n" \
1069 "-bt device:dev[,vlan=n]\n" \
1070 " emulate a bluetooth device 'dev' in scatternet 'n'\n")
1071 STEXI
1072 Bluetooth(R) options:
1073 @table @option
1074
1075 @item -bt hci[...]
1076 Defines the function of the corresponding Bluetooth HCI. -bt options
1077 are matched with the HCIs present in the chosen machine type. For
1078 example when emulating a machine with only one HCI built into it, only
1079 the first @code{-bt hci[...]} option is valid and defines the HCI's
1080 logic. The Transport Layer is decided by the machine type. Currently
1081 the machines @code{n800} and @code{n810} have one HCI and all other
1082 machines have none.
1083
1084 @anchor{bt-hcis}
1085 The following three types are recognized:
1086
1087 @table @code
1088 @item -bt hci,null
1089 (default) The corresponding Bluetooth HCI assumes no internal logic
1090 and will not respond to any HCI commands or emit events.
1091
1092 @item -bt hci,host[:@var{id}]
1093 (@code{bluez} only) The corresponding HCI passes commands / events
1094 to / from the physical HCI identified by the name @var{id} (default:
1095 @code{hci0}) on the computer running QEMU. Only available on @code{bluez}
1096 capable systems like Linux.
1097
1098 @item -bt hci[,vlan=@var{n}]
1099 Add a virtual, standard HCI that will participate in the Bluetooth
1100 scatternet @var{n} (default @code{0}). Similarly to @option{-net}
1101 VLANs, devices inside a bluetooth network @var{n} can only communicate
1102 with other devices in the same network (scatternet).
1103 @end table
1104
1105 @item -bt vhci[,vlan=@var{n}]
1106 (Linux-host only) Create a HCI in scatternet @var{n} (default 0) attached
1107 to the host bluetooth stack instead of to the emulated target. This
1108 allows the host and target machines to participate in a common scatternet
1109 and communicate. Requires the Linux @code{vhci} driver installed. Can
1110 be used as following:
1111
1112 @example
1113 qemu [...OPTIONS...] -bt hci,vlan=5 -bt vhci,vlan=5
1114 @end example
1115
1116 @item -bt device:@var{dev}[,vlan=@var{n}]
1117 Emulate a bluetooth device @var{dev} and place it in network @var{n}
1118 (default @code{0}). QEMU can only emulate one type of bluetooth devices
1119 currently:
1120
1121 @table @code
1122 @item keyboard
1123 Virtual wireless keyboard implementing the HIDP bluetooth profile.
1124 @end table
1125 @end table
1126 ETEXI
1127
1128 DEFHEADING()
1129
1130 DEFHEADING(Linux/Multiboot boot specific:)
1131 STEXI
1132
1133 When using these options, you can use a given Linux or Multiboot
1134 kernel without installing it in the disk image. It can be useful
1135 for easier testing of various kernels.
1136
1137 @table @option
1138 ETEXI
1139
1140 DEF("kernel", HAS_ARG, QEMU_OPTION_kernel, \
1141 "-kernel bzImage use 'bzImage' as kernel image\n")
1142 STEXI
1143 @item -kernel @var{bzImage}
1144 Use @var{bzImage} as kernel image. The kernel can be either a Linux kernel
1145 or in multiboot format.
1146 ETEXI
1147
1148 DEF("append", HAS_ARG, QEMU_OPTION_append, \
1149 "-append cmdline use 'cmdline' as kernel command line\n")
1150 STEXI
1151 @item -append @var{cmdline}
1152 Use @var{cmdline} as kernel command line
1153 ETEXI
1154
1155 DEF("initrd", HAS_ARG, QEMU_OPTION_initrd, \
1156 "-initrd file use 'file' as initial ram disk\n")
1157 STEXI
1158 @item -initrd @var{file}
1159 Use @var{file} as initial ram disk.
1160
1161 @item -initrd "@var{file1} arg=foo,@var{file2}"
1162
1163 This syntax is only available with multiboot.
1164
1165 Use @var{file1} and @var{file2} as modules and pass arg=foo as parameter to the
1166 first module.
1167 ETEXI
1168
1169 STEXI
1170 @end table
1171 ETEXI
1172
1173 DEFHEADING()
1174
1175 DEFHEADING(Debug/Expert options:)
1176
1177 STEXI
1178 @table @option
1179 ETEXI
1180
1181 DEF("serial", HAS_ARG, QEMU_OPTION_serial, \
1182 "-serial dev redirect the serial port to char device 'dev'\n")
1183 STEXI
1184 @item -serial @var{dev}
1185 Redirect the virtual serial port to host character device
1186 @var{dev}. The default device is @code{vc} in graphical mode and
1187 @code{stdio} in non graphical mode.
1188
1189 This option can be used several times to simulate up to 4 serial
1190 ports.
1191
1192 Use @code{-serial none} to disable all serial ports.
1193
1194 Available character devices are:
1195 @table @code
1196 @item vc[:WxH]
1197 Virtual console. Optionally, a width and height can be given in pixel with
1198 @example
1199 vc:800x600
1200 @end example
1201 It is also possible to specify width or height in characters:
1202 @example
1203 vc:80Cx24C
1204 @end example
1205 @item pty
1206 [Linux only] Pseudo TTY (a new PTY is automatically allocated)
1207 @item none
1208 No device is allocated.
1209 @item null
1210 void device
1211 @item /dev/XXX
1212 [Linux only] Use host tty, e.g. @file{/dev/ttyS0}. The host serial port
1213 parameters are set according to the emulated ones.
1214 @item /dev/parport@var{N}
1215 [Linux only, parallel port only] Use host parallel port
1216 @var{N}. Currently SPP and EPP parallel port features can be used.
1217 @item file:@var{filename}
1218 Write output to @var{filename}. No character can be read.
1219 @item stdio
1220 [Unix only] standard input/output
1221 @item pipe:@var{filename}
1222 name pipe @var{filename}
1223 @item COM@var{n}
1224 [Windows only] Use host serial port @var{n}
1225 @item udp:[@var{remote_host}]:@var{remote_port}[@@[@var{src_ip}]:@var{src_port}]
1226 This implements UDP Net Console.
1227 When @var{remote_host} or @var{src_ip} are not specified
1228 they default to @code{0.0.0.0}.
1229 When not using a specified @var{src_port} a random port is automatically chosen.
1230 @item msmouse
1231 Three button serial mouse. Configure the guest to use Microsoft protocol.
1232
1233 If you just want a simple readonly console you can use @code{netcat} or
1234 @code{nc}, by starting qemu with: @code{-serial udp::4555} and nc as:
1235 @code{nc -u -l -p 4555}. Any time qemu writes something to that port it
1236 will appear in the netconsole session.
1237
1238 If you plan to send characters back via netconsole or you want to stop
1239 and start qemu a lot of times, you should have qemu use the same
1240 source port each time by using something like @code{-serial
1241 udp::4555@@:4556} to qemu. Another approach is to use a patched
1242 version of netcat which can listen to a TCP port and send and receive
1243 characters via udp. If you have a patched version of netcat which
1244 activates telnet remote echo and single char transfer, then you can
1245 use the following options to step up a netcat redirector to allow
1246 telnet on port 5555 to access the qemu port.
1247 @table @code
1248 @item Qemu Options:
1249 -serial udp::4555@@:4556
1250 @item netcat options:
1251 -u -P 4555 -L 0.0.0.0:4556 -t -p 5555 -I -T
1252 @item telnet options:
1253 localhost 5555
1254 @end table
1255
1256 @item tcp:[@var{host}]:@var{port}[,@var{server}][,nowait][,nodelay]
1257 The TCP Net Console has two modes of operation. It can send the serial
1258 I/O to a location or wait for a connection from a location. By default
1259 the TCP Net Console is sent to @var{host} at the @var{port}. If you use
1260 the @var{server} option QEMU will wait for a client socket application
1261 to connect to the port before continuing, unless the @code{nowait}
1262 option was specified. The @code{nodelay} option disables the Nagle buffering
1263 algorithm. If @var{host} is omitted, 0.0.0.0 is assumed. Only
1264 one TCP connection at a time is accepted. You can use @code{telnet} to
1265 connect to the corresponding character device.
1266 @table @code
1267 @item Example to send tcp console to 192.168.0.2 port 4444
1268 -serial tcp:192.168.0.2:4444
1269 @item Example to listen and wait on port 4444 for connection
1270 -serial tcp::4444,server
1271 @item Example to not wait and listen on ip 192.168.0.100 port 4444
1272 -serial tcp:192.168.0.100:4444,server,nowait
1273 @end table
1274
1275 @item telnet:@var{host}:@var{port}[,server][,nowait][,nodelay]
1276 The telnet protocol is used instead of raw tcp sockets. The options
1277 work the same as if you had specified @code{-serial tcp}. The
1278 difference is that the port acts like a telnet server or client using
1279 telnet option negotiation. This will also allow you to send the
1280 MAGIC_SYSRQ sequence if you use a telnet that supports sending the break
1281 sequence. Typically in unix telnet you do it with Control-] and then
1282 type "send break" followed by pressing the enter key.
1283
1284 @item unix:@var{path}[,server][,nowait]
1285 A unix domain socket is used instead of a tcp socket. The option works the
1286 same as if you had specified @code{-serial tcp} except the unix domain socket
1287 @var{path} is used for connections.
1288
1289 @item mon:@var{dev_string}
1290 This is a special option to allow the monitor to be multiplexed onto
1291 another serial port. The monitor is accessed with key sequence of
1292 @key{Control-a} and then pressing @key{c}. See monitor access
1293 @ref{pcsys_keys} in the -nographic section for more keys.
1294 @var{dev_string} should be any one of the serial devices specified
1295 above. An example to multiplex the monitor onto a telnet server
1296 listening on port 4444 would be:
1297 @table @code
1298 @item -serial mon:telnet::4444,server,nowait
1299 @end table
1300
1301 @item braille
1302 Braille device. This will use BrlAPI to display the braille output on a real
1303 or fake device.
1304
1305 @end table
1306 ETEXI
1307
1308 DEF("parallel", HAS_ARG, QEMU_OPTION_parallel, \
1309 "-parallel dev redirect the parallel port to char device 'dev'\n")
1310 STEXI
1311 @item -parallel @var{dev}
1312 Redirect the virtual parallel port to host device @var{dev} (same
1313 devices as the serial port). On Linux hosts, @file{/dev/parportN} can
1314 be used to use hardware devices connected on the corresponding host
1315 parallel port.
1316
1317 This option can be used several times to simulate up to 3 parallel
1318 ports.
1319
1320 Use @code{-parallel none} to disable all parallel ports.
1321 ETEXI
1322
1323 DEF("monitor", HAS_ARG, QEMU_OPTION_monitor, \
1324 "-monitor dev redirect the monitor to char device 'dev'\n")
1325 STEXI
1326 @item -monitor @var{dev}
1327 Redirect the monitor to host device @var{dev} (same devices as the
1328 serial port).
1329 The default device is @code{vc} in graphical mode and @code{stdio} in
1330 non graphical mode.
1331 ETEXI
1332
1333 DEF("pidfile", HAS_ARG, QEMU_OPTION_pidfile, \
1334 "-pidfile file write PID to 'file'\n")
1335 STEXI
1336 @item -pidfile @var{file}
1337 Store the QEMU process PID in @var{file}. It is useful if you launch QEMU
1338 from a script.
1339 ETEXI
1340
1341 DEF("singlestep", 0, QEMU_OPTION_singlestep, \
1342 "-singlestep always run in singlestep mode\n")
1343 STEXI
1344 @item -singlestep
1345 Run the emulation in single step mode.
1346 ETEXI
1347
1348 DEF("S", 0, QEMU_OPTION_S, \
1349 "-S freeze CPU at startup (use 'c' to start execution)\n")
1350 STEXI
1351 @item -S
1352 Do not start CPU at startup (you must type 'c' in the monitor).
1353 ETEXI
1354
1355 DEF("gdb", HAS_ARG, QEMU_OPTION_gdb, \
1356 "-gdb dev wait for gdb connection on 'dev'\n")
1357 STEXI
1358 @item -gdb @var{dev}
1359 Wait for gdb connection on device @var{dev} (@pxref{gdb_usage}). Typical
1360 connections will likely be TCP-based, but also UDP, pseudo TTY, or even
1361 stdio are reasonable use case. The latter is allowing to start qemu from
1362 within gdb and establish the connection via a pipe:
1363 @example
1364 (gdb) target remote | exec qemu -gdb stdio ...
1365 @end example
1366 ETEXI
1367
1368 DEF("s", 0, QEMU_OPTION_s, \
1369 "-s shorthand for -gdb tcp::%s\n")
1370 STEXI
1371 @item -s
1372 Shorthand for -gdb tcp::1234, i.e. open a gdbserver on TCP port 1234
1373 (@pxref{gdb_usage}).
1374 ETEXI
1375
1376 DEF("d", HAS_ARG, QEMU_OPTION_d, \
1377 "-d item1,... output log to %s (use -d ? for a list of log items)\n")
1378 STEXI
1379 @item -d
1380 Output log in /tmp/qemu.log
1381 ETEXI
1382
1383 DEF("hdachs", HAS_ARG, QEMU_OPTION_hdachs, \
1384 "-hdachs c,h,s[,t]\n" \
1385 " force hard disk 0 physical geometry and the optional BIOS\n" \
1386 " translation (t=none or lba) (usually qemu can guess them)\n")
1387 STEXI
1388 @item -hdachs @var{c},@var{h},@var{s},[,@var{t}]
1389 Force hard disk 0 physical geometry (1 <= @var{c} <= 16383, 1 <=
1390 @var{h} <= 16, 1 <= @var{s} <= 63) and optionally force the BIOS
1391 translation mode (@var{t}=none, lba or auto). Usually QEMU can guess
1392 all those parameters. This option is useful for old MS-DOS disk
1393 images.
1394 ETEXI
1395
1396 DEF("L", HAS_ARG, QEMU_OPTION_L, \
1397 "-L path set the directory for the BIOS, VGA BIOS and keymaps\n")
1398 STEXI
1399 @item -L @var{path}
1400 Set the directory for the BIOS, VGA BIOS and keymaps.
1401 ETEXI
1402
1403 DEF("bios", HAS_ARG, QEMU_OPTION_bios, \
1404 "-bios file set the filename for the BIOS\n")
1405 STEXI
1406 @item -bios @var{file}
1407 Set the filename for the BIOS.
1408 ETEXI
1409
1410 #ifdef CONFIG_KQEMU
1411 DEF("kernel-kqemu", 0, QEMU_OPTION_kernel_kqemu, \
1412 "-kernel-kqemu enable KQEMU full virtualization (default is user mode only)\n")
1413 #endif
1414 STEXI
1415 @item -kernel-kqemu
1416 Enable KQEMU full virtualization (default is user mode only).
1417 ETEXI
1418
1419 #ifdef CONFIG_KQEMU
1420 DEF("enable-kqemu", 0, QEMU_OPTION_enable_kqemu, \
1421 "-enable-kqemu enable KQEMU kernel module usage\n")
1422 #endif
1423 STEXI
1424 @item -enable-kqemu
1425 Enable KQEMU kernel module usage. KQEMU options are only available if
1426 KQEMU support is enabled when compiling.
1427 ETEXI
1428
1429 #ifdef CONFIG_KVM
1430 DEF("enable-kvm", 0, QEMU_OPTION_enable_kvm, \
1431 "-enable-kvm enable KVM full virtualization support\n")
1432 #endif
1433 STEXI
1434 @item -enable-kvm
1435 Enable KVM full virtualization support. This option is only available
1436 if KVM support is enabled when compiling.
1437 ETEXI
1438
1439 #ifdef CONFIG_XEN
1440 DEF("xen-domid", HAS_ARG, QEMU_OPTION_xen_domid,
1441 "-xen-domid id specify xen guest domain id\n")
1442 DEF("xen-create", 0, QEMU_OPTION_xen_create,
1443 "-xen-create create domain using xen hypercalls, bypassing xend\n"
1444 " warning: should not be used when xend is in use\n")
1445 DEF("xen-attach", 0, QEMU_OPTION_xen_attach,
1446 "-xen-attach attach to existing xen domain\n"
1447 " xend will use this when starting qemu\n")
1448 #endif
1449
1450 DEF("no-reboot", 0, QEMU_OPTION_no_reboot, \
1451 "-no-reboot exit instead of rebooting\n")
1452 STEXI
1453 @item -no-reboot
1454 Exit instead of rebooting.
1455 ETEXI
1456
1457 DEF("no-shutdown", 0, QEMU_OPTION_no_shutdown, \
1458 "-no-shutdown stop before shutdown\n")
1459 STEXI
1460 @item -no-shutdown
1461 Don't exit QEMU on guest shutdown, but instead only stop the emulation.
1462 This allows for instance switching to monitor to commit changes to the
1463 disk image.
1464 ETEXI
1465
1466 DEF("loadvm", HAS_ARG, QEMU_OPTION_loadvm, \
1467 "-loadvm [tag|id]\n" \
1468 " start right away with a saved state (loadvm in monitor)\n")
1469 STEXI
1470 @item -loadvm @var{file}
1471 Start right away with a saved state (@code{loadvm} in monitor)
1472 ETEXI
1473
1474 #ifndef _WIN32
1475 DEF("daemonize", 0, QEMU_OPTION_daemonize, \
1476 "-daemonize daemonize QEMU after initializing\n")
1477 #endif
1478 STEXI
1479 @item -daemonize
1480 Daemonize the QEMU process after initialization. QEMU will not detach from
1481 standard IO until it is ready to receive connections on any of its devices.
1482 This option is a useful way for external programs to launch QEMU without having
1483 to cope with initialization race conditions.
1484 ETEXI
1485
1486 DEF("option-rom", HAS_ARG, QEMU_OPTION_option_rom, \
1487 "-option-rom rom load a file, rom, into the option ROM space\n")
1488 STEXI
1489 @item -option-rom @var{file}
1490 Load the contents of @var{file} as an option ROM.
1491 This option is useful to load things like EtherBoot.
1492 ETEXI
1493
1494 DEF("clock", HAS_ARG, QEMU_OPTION_clock, \
1495 "-clock force the use of the given methods for timer alarm.\n" \
1496 " To see what timers are available use -clock ?\n")
1497 STEXI
1498 @item -clock @var{method}
1499 Force the use of the given methods for timer alarm. To see what timers
1500 are available use -clock ?.
1501 ETEXI
1502
1503 DEF("localtime", 0, QEMU_OPTION_localtime, \
1504 "-localtime set the real time clock to local time [default=utc]\n")
1505 STEXI
1506 @item -localtime
1507 Set the real time clock to local time (the default is to UTC
1508 time). This option is needed to have correct date in MS-DOS or
1509 Windows.
1510 ETEXI
1511
1512 DEF("startdate", HAS_ARG, QEMU_OPTION_startdate, \
1513 "-startdate select initial date of the clock\n")
1514 STEXI
1515
1516 @item -startdate @var{date}
1517 Set the initial date of the real time clock. Valid formats for
1518 @var{date} are: @code{now} or @code{2006-06-17T16:01:21} or
1519 @code{2006-06-17}. The default value is @code{now}.
1520 ETEXI
1521
1522 DEF("icount", HAS_ARG, QEMU_OPTION_icount, \
1523 "-icount [N|auto]\n" \
1524 " enable virtual instruction counter with 2^N clock ticks per\n" \
1525 " instruction\n")
1526 STEXI
1527 @item -icount [N|auto]
1528 Enable virtual instruction counter. The virtual cpu will execute one
1529 instruction every 2^N ns of virtual time. If @code{auto} is specified
1530 then the virtual cpu speed will be automatically adjusted to keep virtual
1531 time within a few seconds of real time.
1532
1533 Note that while this option can give deterministic behavior, it does not
1534 provide cycle accurate emulation. Modern CPUs contain superscalar out of
1535 order cores with complex cache hierarchies. The number of instructions
1536 executed often has little or no correlation with actual performance.
1537 ETEXI
1538
1539 DEF("watchdog", HAS_ARG, QEMU_OPTION_watchdog, \
1540 "-watchdog i6300esb|ib700\n" \
1541 " enable virtual hardware watchdog [default=none]\n")
1542 STEXI
1543 @item -watchdog @var{model}
1544 Create a virtual hardware watchdog device. Once enabled (by a guest
1545 action), the watchdog must be periodically polled by an agent inside
1546 the guest or else the guest will be restarted.
1547
1548 The @var{model} is the model of hardware watchdog to emulate. Choices
1549 for model are: @code{ib700} (iBASE 700) which is a very simple ISA
1550 watchdog with a single timer, or @code{i6300esb} (Intel 6300ESB I/O
1551 controller hub) which is a much more featureful PCI-based dual-timer
1552 watchdog. Choose a model for which your guest has drivers.
1553
1554 Use @code{-watchdog ?} to list available hardware models. Only one
1555 watchdog can be enabled for a guest.
1556 ETEXI
1557
1558 DEF("watchdog-action", HAS_ARG, QEMU_OPTION_watchdog_action, \
1559 "-watchdog-action reset|shutdown|poweroff|pause|debug|none\n" \
1560 " action when watchdog fires [default=reset]\n")
1561 STEXI
1562 @item -watchdog-action @var{action}
1563
1564 The @var{action} controls what QEMU will do when the watchdog timer
1565 expires.
1566 The default is
1567 @code{reset} (forcefully reset the guest).
1568 Other possible actions are:
1569 @code{shutdown} (attempt to gracefully shutdown the guest),
1570 @code{poweroff} (forcefully poweroff the guest),
1571 @code{pause} (pause the guest),
1572 @code{debug} (print a debug message and continue), or
1573 @code{none} (do nothing).
1574
1575 Note that the @code{shutdown} action requires that the guest responds
1576 to ACPI signals, which it may not be able to do in the sort of
1577 situations where the watchdog would have expired, and thus
1578 @code{-watchdog-action shutdown} is not recommended for production use.
1579
1580 Examples:
1581
1582 @table @code
1583 @item -watchdog i6300esb -watchdog-action pause
1584 @item -watchdog ib700
1585 @end table
1586 ETEXI
1587
1588 DEF("echr", HAS_ARG, QEMU_OPTION_echr, \
1589 "-echr chr set terminal escape character instead of ctrl-a\n")
1590 STEXI
1591
1592 @item -echr numeric_ascii_value
1593 Change the escape character used for switching to the monitor when using
1594 monitor and serial sharing. The default is @code{0x01} when using the
1595 @code{-nographic} option. @code{0x01} is equal to pressing
1596 @code{Control-a}. You can select a different character from the ascii
1597 control keys where 1 through 26 map to Control-a through Control-z. For
1598 instance you could use the either of the following to change the escape
1599 character to Control-t.
1600 @table @code
1601 @item -echr 0x14
1602 @item -echr 20
1603 @end table
1604 ETEXI
1605
1606 DEF("virtioconsole", HAS_ARG, QEMU_OPTION_virtiocon, \
1607 "-virtioconsole c\n" \
1608 " set virtio console\n")
1609 STEXI
1610 @item -virtioconsole @var{c}
1611 Set virtio console.
1612 ETEXI
1613
1614 DEF("show-cursor", 0, QEMU_OPTION_show_cursor, \
1615 "-show-cursor show cursor\n")
1616 STEXI
1617 ETEXI
1618
1619 DEF("tb-size", HAS_ARG, QEMU_OPTION_tb_size, \
1620 "-tb-size n set TB size\n")
1621 STEXI
1622 ETEXI
1623
1624 DEF("incoming", HAS_ARG, QEMU_OPTION_incoming, \
1625 "-incoming p prepare for incoming migration, listen on port p\n")
1626 STEXI
1627 ETEXI
1628
1629 #ifndef _WIN32
1630 DEF("chroot", HAS_ARG, QEMU_OPTION_chroot, \
1631 "-chroot dir Chroot to dir just before starting the VM.\n")
1632 #endif
1633 STEXI
1634 @item -chroot dir
1635 Immediately before starting guest execution, chroot to the specified
1636 directory. Especially useful in combination with -runas.
1637 ETEXI
1638
1639 #ifndef _WIN32
1640 DEF("runas", HAS_ARG, QEMU_OPTION_runas, \
1641 "-runas user Change to user id user just before starting the VM.\n")
1642 #endif
1643 STEXI
1644 @item -runas user
1645 Immediately before starting guest execution, drop root privileges, switching
1646 to the specified user.
1647 ETEXI
1648
1649 STEXI
1650 @end table
1651 ETEXI
1652
1653 #if defined(TARGET_SPARC) || defined(TARGET_PPC)
1654 DEF("prom-env", HAS_ARG, QEMU_OPTION_prom_env,
1655 "-prom-env variable=value\n"
1656 " set OpenBIOS nvram variables\n")
1657 #endif
1658 #if defined(TARGET_ARM) || defined(TARGET_M68K)
1659 DEF("semihosting", 0, QEMU_OPTION_semihosting,
1660 "-semihosting semihosting mode\n")
1661 #endif
1662 #if defined(TARGET_ARM)
1663 DEF("old-param", 0, QEMU_OPTION_old_param,
1664 "-old-param old param mode\n")
1665 #endif